WorldWideScience

Sample records for simulated pwr benchmark

  1. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  2. Evaluation of PWR and BWR pin cell benchmark results

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J.; Hoogenboom, J.E.; Leege, P.F.A. de; Voet, J. van der; Verhagen, F.C.M.

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs

  3. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs.

  4. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pilgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on the PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs.; 9 figs.; 30 tabs.

  5. Method of characteristics - Based sensitivity calculations for international PWR benchmark

    International Nuclear Information System (INIS)

    Suslov, I. R.; Tormyshev, I. V.; Komlev, O. G.

    2013-01-01

    Method to calculate sensitivity of fractional-linear neutron flux functionals to transport equation coefficients is proposed. Implementation of the method on the basis of MOC code MCCG3D is developed. Sensitivity calculations for fission intensity for international PWR benchmark are performed. (authors)

  6. Benchmarking Computational Fluid Dynamics for Application to PWR Fuel

    International Nuclear Information System (INIS)

    Smith, L.D. III; Conner, M.E.; Liu, B.; Dzodzo, B.; Paramonov, D.V.; Beasley, D.E.; Langford, H.M.; Holloway, M.V.

    2002-01-01

    The present study demonstrates a process used to develop confidence in Computational Fluid Dynamics (CFD) as a tool to investigate flow and temperature distributions in a PWR fuel bundle. The velocity and temperature fields produced by a mixing spacer grid of a PWR fuel assembly are quite complex. Before using CFD to evaluate these flow fields, a rigorous benchmarking effort should be performed to ensure that reasonable results are obtained. Westinghouse has developed a method to quantitatively benchmark CFD tools against data at conditions representative of the PWR. Several measurements in a 5 x 5 rod bundle were performed. Lateral flow-field testing employed visualization techniques and Particle Image Velocimetry (PIV). Heat transfer testing involved measurements of the single-phase heat transfer coefficient downstream of the spacer grid. These test results were used to compare with CFD predictions. Among the parameters optimized in the CFD models based on this comparison with data include computational mesh, turbulence model, and boundary conditions. As an outcome of this effort, a methodology was developed for CFD modeling that provides confidence in the numerical results. (authors)

  7. Actinides transmutation - a comparison of results for PWR benchmark

    International Nuclear Information System (INIS)

    Claro, Luiz H.

    2009-01-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO 2 used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k∞ and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  8. Upgrading of PWR plant simulators

    International Nuclear Information System (INIS)

    Wada, Tomonori; Sasaki, Kazunori; Nakaishi, Hirokazu.

    1989-01-01

    For the education and training of operators in electric power plants, simulators have been employed, and it is well known that their effect is great. There are operation training simulators which simulate the dynamic characteristics of plants and all the machinery and equipment that operators handle, and train the procedure of restoration at the time of abnormality in plants, education simulators which can analyze the dynamic characteristics of plants efficiently in a short time, and offer information by visualizing phenomena with three-dimensional display and others so as to be easily understandable, and forecast simulators which do the analysis forecasting plant behavior at the time of abnormality in plants, and investigate the necessity of the guide for operation procedure and the countermeasures at the time of emergency. In this explanation, the upgrading of operation training simulators which have been put already in training is discussed. The constitution of simulator system and the instructor function, the outline of PWR plant simulation models comprising thermal flow model, pump model, leak model and so on, the techniques of increasing simulator speed, and the example of analysis using the NUPAC code are reported. (K.I.)

  9. Integral Full Core Multi-Physics PWR Benchmark with Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Smith, Kord; Kumar, Shikhar; Rathbun, Miriam; Liang, Jingang

    2018-04-11

    In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevant multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.

  10. Simulation model of a PWR power plant

    International Nuclear Information System (INIS)

    Larsen, N.

    1987-03-01

    A simulation model of a hypothetical PWR power plant is described. A large number of disturbances and failures in plant function can be simulated. The model is written as seven modules to the modular simulation system for continuous processes DYSIM and serves also as a user example of this system. The model runs in Fortran 77 on the IBM-PC-AT. (author)

  11. NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2016-01-01

    Full Text Available This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR. The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers, heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s. The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use 2×2 radial nodes per assembly, 1×18 axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.

  12. Dynamic benchmarking of simulation codes

    International Nuclear Information System (INIS)

    Henry, R.E.; Paik, C.Y.; Hauser, G.M.

    1996-01-01

    Computer simulation of nuclear power plant response can be a full-scope control room simulator, an engineering simulator to represent the general behavior of the plant under normal and abnormal conditions, or the modeling of the plant response to conditions that would eventually lead to core damage. In any of these, the underlying foundation for their use in analysing situations, training of vendor/utility personnel, etc. is how well they represent what has been known from industrial experience, large integral experiments and separate effects tests. Typically, simulation codes are benchmarked with some of these; the level of agreement necessary being dependent upon the ultimate use of the simulation tool. However, these analytical models are computer codes, and as a result, the capabilities are continually enhanced, errors are corrected, new situations are imposed on the code that are outside of the original design basis, etc. Consequently, there is a continual need to assure that the benchmarks with important transients are preserved as the computer code evolves. Retention of this benchmarking capability is essential to develop trust in the computer code. Given the evolving world of computer codes, how is this retention of benchmarking capabilities accomplished? For the MAAP4 codes this capability is accomplished through a 'dynamic benchmarking' feature embedded in the source code. In particular, a set of dynamic benchmarks are included in the source code and these are exercised every time the archive codes are upgraded and distributed to the MAAP users. Three different types of dynamic benchmarks are used: plant transients; large integral experiments; and separate effects tests. Each of these is performed in a different manner. The first is accomplished by developing a parameter file for the plant modeled and an input deck to describe the sequence; i.e. the entire MAAP4 code is exercised. The pertinent plant data is included in the source code and the computer

  13. Validation of gadolinium burnout using PWR benchmark specification

    Energy Technology Data Exchange (ETDEWEB)

    Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2014-07-01

    Graphical abstract: - Highlights: • We present methodology for validation of gadolinium burnout in PWR. • We model 17 × 17 PWR fuel assembly using MCB code. • We demonstrate C/E ratios of measured and calculated concentrations of Gd isotopes. • The C/E for Gd154, Gd156, Gd157, Gd158 and Gd160 shows good agreement of ±10%. • The C/E for Gd152 and Gd155 shows poor agreement below ±10%. - Abstract: The paper presents comparative analysis of measured and calculated concentrations of gadolinium isotopes in spent nuclear fuel from the Japanese Ohi-2 PWR. The irradiation of the 17 × 17 fuel assembly containing pure uranium and gadolinia bearing fuel pins was numerically reconstructed using the Monte Carlo Continuous Energy Burnup Code – MCB. The reference concentrations of gadolinium isotopes were measured in early 1990s at Japan Atomic Energy Research Institute. It seems that the measured concentrations were never used for validation of gadolinium burnout. In our study we fill this gap and assess quality of both: applied numerical methodology and experimental data. Additionally we show time evolutions of infinite neutron multiplication factor K{sub inf}, FIMA burnup, U235 and Gd155–Gd158. Gadolinium-based materials are commonly used in thermal reactors as burnable absorbers due to large neutron absorption cross-section of Gd155 and Gd157.

  14. Benchmark simulation models, quo vadis?

    Science.gov (United States)

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  15. Microcomputer simulation of PWR power plant pressurizer

    International Nuclear Information System (INIS)

    Araujo, L.R.A. de; Calixto Neto, J.; Martinez, A.S.; Schirru, R.

    1990-01-01

    It is presented a method for the simulation of the pressurizer behavior of a PWR power plant. The method was implanted in a microcomputer, and it considers all the devices for the pressure control (spray and relief valves, heaters, controller, etc.). The physical phenomena and the PID (Proportional + Integral + Derivative) controller were mathematically represented by linear relations, uncoupled, discretized in the time. There are three different algorithms which take into account the non-linear effects introduced by the variation of the physical properties due to the temperature and pressure, and also the mutual effects between the physical phenomena and the PID controller. (author)

  16. Benchmark calculations on resonance absorption by 238U in a PWR pin-cell geometry

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Janssen, A.J.

    1993-12-01

    Very accurate Monte Carlo calculations with MCNP have been performed to serve as a reference for benchmark calculations on resonance absorption by 238 U in a typical PWR pin-cell geometry. Calculations with the energy-pointwise slowing down code ROLAIDS-CPM show that this code calculates the resonance absorption accurately. Calculations with the multigroup discrete ordinates code XSDRN show that accurate results can only be achieved with a very fine energy mesh. (orig.)

  17. PWR benchmarks. From OECD working party on physics of plutonium recycling

    International Nuclear Information System (INIS)

    Bernnat, W.; Lutz, D.; Sartori, E.; Schlosser, G.; Cathalau, S.; Soldevila, M.

    1995-01-01

    A two year study organised by the OECD/NEACOGEMA on the physics of plutonium recycle (Working Party on the Physics of Plutonium Recycle - WPPR) has just completed its final report. The study reviewed the important aspects of the physics of plutonium recycle in Pressurised Water Reactors (PWRs), Bolling Water reactors (BWRs) and fast reactors. The final report includes a description and analysis of the results of three physical benchmark exercises which were specified for PWRs and two for fast reactors. This paper presents a summary of the most important observations and conclusions from the PWR benchmark exercises. (authors)

  18. MELCOR/VISOR PWR desktop simulator

    International Nuclear Information System (INIS)

    With, Anka de; Wakker, Pieter

    2010-01-01

    Increasingly, there is a need for a learning support and training tool for nuclear engineers, utilities and students in order to broaden their understanding of advanced nuclear plant characteristics, dynamics, transients and safety features. Nuclear system analysis codes like ASTEC, RELAP5, RETRAN and MELCOR provide calculation results of and visualization tools can be used to graphically represent these results. However, for an efficient education and training a more interactive tool such as a simulator is needed. The simulator connects the graphical tool with the calculation tool in an interactive manner. A small number of desktop simulators exist [1-3]. The existing simulators are capable of representing different types of power plants and various accident conditions. However, they were found to be too general to be used as a reliable plant-specific accident analysis or training tool. A desktop simulator of the Pressurized Water Reactor (PWR) has been created under contract of the Dutch nuclear regulatory body (KFD). The desktop simulator is a software package that provides a close to real simulation of the Dutch nuclear power plant Borssele (KCB) and is used for training of the accident response. The simulator includes the majority of the power plant systems, necessary for the successful simulation of the KCB plant during normal operation, malfunctions and accident situations, and it has been successfully validated against the results of the safety evaluations from the KCB safety report. (orig.)

  19. Experimental benchmark data for PWR rod bundle with spacer-grids

    International Nuclear Information System (INIS)

    Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.; Conner, Michael E.; Karoutas, Zeses

    2012-01-01

    In numerical simulations of fuel rod bundle flow fields, the unsteady Navier–Stokes equations have to be solved in order to determine the time (phase) dependent characteristics of the flow. In order to validate the simulations results, detailed comparison with experimental data must be done. Experiments investigating complex flows in rod bundles with spacer grids that have mixing devices (such as flow mixing vanes) have mostly been performed using single-point measurements. In order to obtain more details and insight on the discrepancies between experimental and numerical data as well as to obtain a global understanding of the causes of these discrepancies, comparisons of the distributions of complete phase-averaged velocity and turbulence fields for various locations near spacer-grids should be performed. The experimental technique Particle Image Velocimetry (PIV) is capable of providing such benchmark data. This paper describes an experimental database obtained using two-dimensional Time Resolved Particle Image Velocimetry (TR-PIV) measurements within a 5 × 5 PWR rod bundle with spacer-grids that have flow mixing vanes. One of the unique characteristic of this set-up is the use of the Matched Index of Refraction technique employed in this investigation to allow complete optical access to the rod bundle. This unique feature allows flow visualization and measurement within the bundle without rod obstruction. This approach also allows the use of high temporal and spatial non-intrusive dynamic measurement techniques namely TR-PIV to investigate the flow evolution below and immediately above the spacer. The experimental data presented in this paper includes explanation of the various cases tested such as test rig dimensions, measurement zones, the test equipment and the boundary conditions in order to provide appropriate data for comparison with Computational Fluid Dynamics (CFD) simulations. Turbulence parameters of the obtained data are presented in order to gain

  20. Benchmark solution of contemporary PWR integral fuel burnable absorbers

    International Nuclear Information System (INIS)

    Stucker, D.L.; Hone, M.J.; Holland, R.A.

    1993-01-01

    This paper presents a closely controlled benchmark solution of the two major contemporary pressurized water reactor integral burnable absorber designs: zirconium diboride (ZrB 2 ) and gadolinia (Gd 2 O 3 ). The comparison is accomplished using self-generating equilibrium cycles with equal energy, equal discharge burnup, and equal safety constraints. The reference plant for this evaluation is a 3411-MW(thermal) Westinghouse four-loop nuclear steam supply system operating with an inlet temperature of 285.9 degrees C, a core coolant mass now rate of 16877.3 kg/s, and coolant pressure of 15.5 MPa. The reactor consists of 193 VANTAGE 5H fuel assemblies that are discharged at a region average burnup of 48.4 GWd/tonne U. Each fuel assembly contains a natural uranium axial blanket 15.24 cm long at the top and the bottom of the fuel rod. The burnable absorber rods are symmetrically radially dispersed within the fuel assembly such that intrabundle power peaking is minimized. The burnable absorber material for both ZrB 2 and Gd 2 O 3 is axially zoned to the central 304.8 cm of the absorber-bearing fuel rods. The fuel management was constrained such that the thermal and safety limitations of F δH q -5 /degrees C were simultaneously achieved. The maximum long-term operating soluble boron concentration was also limited to 446 effective full-power days (EFPDs) including 14 EFPDs of power coastdown were assumed

  1. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  2. Methodology for the LABIHS PWR simulator modernization

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.b, E-mail: mvitor@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  3. Methodology for the LABIHS PWR simulator modernization

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.b, E-mail: mvitor@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  4. Methodology for the LABIHS PWR simulator modernization

    International Nuclear Information System (INIS)

    Jaime, Guilherme D.G.; Oliveira, Mauro V.

    2011-01-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  5. The simulation research for the dynamic performance of integrated PWR

    International Nuclear Information System (INIS)

    Yuan Jiandong; Xia Guoqing; Fu Mingyu

    2005-01-01

    The mathematical model of the reactor core of integrated PWR has been studied and simplified properly. With the lumped parameter method, authors have established the mathematical model of the reactor core, including the neutron dynamic equation, the feedback reactivities model and the thermo-hydraulic model of the reactor. Based on the above equations and models, the incremental transfer functions of the reactor core model have been built. By simulation experimentation, authors have compared the dynamic characteristics of the integrated PWR with the traditional dispersed PWR. The simulation results show that the mathematical models and equations are correct. (authors)

  6. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR)

    International Nuclear Information System (INIS)

    Valle H, J.; Hidago H, F.; Morales S, J.B.

    2007-01-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  7. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to p...

  8. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, Saclay (France); Mimouni, S., E-mail: stephane.mimouni@edf.fr [Electricité de France, EDF MF2E, Chatou (France); Manzini, G., E-mail: giovanni.manzini@rse-web.it [RSE, Milano (Italy); Xiao, J., E-mail: jianjun.xiao@kit.edu [IKET, KIT, Karlsruhe (Germany); Vyskocil, L., E-mail: vyl@ujv.cz [UJV Rez (Czech Republic); Siccama, N.B., E-mail: siccama@nrg.eu [NRG, Safety and Power (Netherlands); Huhtanen, R., E-mail: risto.huhtanen@vtt.fi [VTT, PO Box 1000, FI-02044 VTT (Finland)

    2015-02-15

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety.

  9. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    International Nuclear Information System (INIS)

    Malet, J.; Mimouni, S.; Manzini, G.; Xiao, J.; Vyskocil, L.; Siccama, N.B.; Huhtanen, R.

    2015-01-01

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety

  10. Numerical and computational aspects of the coupled three-dimensional core/ plant simulations: organization for economic cooperation and development/ U.S. nuclear regulatory commission pressurized water reactor main-steam-line-break benchmark-II. 2. TRAB-3D/SMABRE Calculation of the OECD/ NRC PWR MSLB Benchmark

    International Nuclear Information System (INIS)

    Daavittila, A.; Haemaelaeinen, A.; Kyrki-Rajamaki, R.

    2001-01-01

    All three exercises of the OECD/NRC Pressurized Water Reactor (PWR) Main-Steam-Line-Break (MSLB) Benchmark were calculated at VTT Energy. The SMABRE thermal-hydraulics code was used for the first exercise, the plant simulation with point-kinetics neutronics. The second exercise was calculated with the TRAB-3D three-dimensional reactor dynamics code. The third exercise was calculated with the combination TRAB-3D/SMABRE. Both codes have been developed at VTT Energy. The results of all the exercises agree reasonably well with those of the other participants; thus, instead of reporting the results, this paper concentrates on describing the computational aspects of the calculation with the foregoing codes and on some observations of the sensitivity of the results. In the TRAB-3D neutron kinetics, the two-group diffusion equations are solved in homogenized fuel assembly geometry with an efficient two-level nodal method. The point of the two-level iteration scheme is that only one unknown variable per node, the average neutron flux, is calculated during the inner iteration. The nodal flux shapes and cross sections are recalculated only once in the outer iteration loop. The TRAB-3D core model includes also parallel one-dimensional channel hydraulics with detailed fuel models. Advanced implicit time discretization methods are used in all submodels. SMABRE is a fast-running five-equation model completed by a drift-flux model, with a time discretization based on a non-iterative semi-implicit algorithm. For the third exercise of the benchmark, the TMI-1 models of TRAB-3D and SMABRE were coupled. This was the first time these codes were coupled together. However, similar coupling of the HEXTRAN and SMABRE codes has been shown to be stable and efficient, when used in safety analyses of Finnish and foreign VVER-type reactors. The coupling used between the two codes is called a parallel coupling. SMABRE solves the thermal hydraulics both in the cooling circuit and in the core

  11. OECD benchmark a of MOX fueled PWR unit cells using SAS2H, triton and mocup

    International Nuclear Information System (INIS)

    Ganda, F.; Greenspan, A.

    2005-01-01

    Three code systems are tested by applying them to calculate the OECD PWR MOX unit cell benchmark A. The codes tested are the SAS2H code sequence of the SCALE5 code package using 44 group library, MOCUP (MCNP4C + ORIGEN2), and the new TRITON depletion sequence of SCALE5 using 238 group cross sections generated using CENTRM with continuous energy cross sections. The burnup-dependent k ∞ and actinides concentration calculated by all three code-systems were found to be in good agreement with the OECD benchmark average results. Limited results were calculated also with the WIMS-ANL code package. WIMS-ANL was found to significantly under-predict k ∞ as well as the concentration of Pu 242 , consistently with the predictions of the WIMS-LWR reported by two of the OECD benchmark participants. Additionally, SAS2H is benchmarked against MOCUP for a hydride fuel containing unit cell, giving very satisfactory agreement. (authors)

  12. The latest full-scale PWR simulator in Japan

    International Nuclear Information System (INIS)

    Nishimuru, Y.; Tagi, H.; Nakabayashi, T.

    2004-01-01

    The latest MHI Full-scale Simulator has an excellent system configuration, in both flexibility and extendability, and has highly sophisticated performance in PWR simulation by the adoption of CANAC-II and PRETTY codes. It also has an instructive character to display the plant's internal status, such as RCS condition, through animation. Further, the simulation has been verified to meet a functional examination at model plant, and with a scale model test result in a two-phase flow event, after evaluation for its accuracy. Thus, the Simulator can be devoted to a sophisticated and broad training course on PWR operation. (author)

  13. Stationary PWR-calculations by means of LWRSIM at the NEACRP 3D-LWRCT benchmark

    International Nuclear Information System (INIS)

    Van de Wetering, T.F.H.

    1993-01-01

    Within the framework of participation in an international benchmark, calculations were executed by means of an adjusted version of the computer code Light Water Reactor SIMulation (LWRSIM) for three-dimensional reactor core calculations of pressurized water reactors. The 3-D LWR Core Transient Benchmark was set up aimed at the comparison of 3-D computer codes for transient calculations in LWRs. Participation in the benchmark provided more insight in the accuracy of the code when applied for other pressurized water reactors than applied for the nuclear power plant Borssele in the Netherlands, for which the code has been developed and used originally

  14. Analysis of the NEACRP PWR rod ejection benchmark problems with DIF3D-K

    International Nuclear Information System (INIS)

    Kim, M.H.

    1994-01-01

    Analyses of the NEACRP PWR rod ejection transient benchmark problems with the DIF3D-K nodal kinetics code are presented. The DIF3D-K results are shown to be in generally good agreement with results obtained using other codes, in particular reference results previously generated with the PANTHER code. The sensitivity of the transient results to the DIF3D-K input parameters (such as time step size, radial and axial node sizes, and the mesh structure employed for fuel pin heat conduction calculation) are evaluated and discussed. In addition, the potential in reducing computational effort by application of the improved quasistatic scheme (IQS) to these rod ejection transients, which involve very significant flux shape changes and thermal-hydraulic feedback is evaluated

  15. Investigation on the improvement of genetic algorithm for PWR loading pattern search and its benchmark verification

    International Nuclear Information System (INIS)

    Li Qianqian; Jiang Xiaofeng; Zhang Shaohong

    2009-01-01

    In this study, the age technique, the concepts of relativeness degree and worth function are exploited to improve the performance of genetic algorithm (GA) for PWR loading pattern search. Among them, the age technique endows the algorithm be capable of learning from previous search 'experience' and guides it to do a better search in the vicinity ora local optimal; the introduction of the relativeness degree checks the relativeness of two loading patterns before performing crossover between them, which can significantly reduce the possibility of prematurity of the algorithm; while the application of the worth function makes the algorithm be capable of generating new loading patterns based on the statistics of common features of evaluated good loading patterns. Numerical verification against a loading pattern search benchmark problem ora two-loop reactor demonstrates that the adoption of these techniques is able to significantly enhance the efficiency of the genetic algorithm while improves the quality of the final solution as well. (authors)

  16. Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.

    2016-05-15

    Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.

  17. Design of a PWR emergency core cooling simulator loop

    International Nuclear Information System (INIS)

    Melo, C.A. de.

    1982-12-01

    The preliminary design of a PWR Emergency Core Cooling Simulator Loop for investigations of the phenomena involved in a postulated Loss-of-Coolant Accident, during the Reflooding Phase, is presented. The functions of each component of the loop, the design methods and calculations, the specification of the instrumentation, the system operation sequence, the materials list and a cost assessment are included. (Author) [pt

  18. Contribution to study and design of PWR plant simulation code

    International Nuclear Information System (INIS)

    Delourme, Didier.

    1980-11-01

    This paper presents an improvement of PICOLO, a package for PWR plants simulation. Its describes principally the integration to the code of a primary loop and pressurizer model and the corresponding control loops. Fast transients are tested on the packages and results are compared with real transients obtained on plants [fr

  19. PHEDRE model for the simulation of PWR reactors

    International Nuclear Information System (INIS)

    Bernard, Patrice; Dupraz, Remy; Vasile, Alfredo.

    1979-11-01

    This note presents the model of PHEDRE, simulator of a PWR, set on the hybrid computers of CISI, at the Nuclear Research Center of Cadarache. The model mainly concerns the primary part and the steam production of the PWR constructed in France. It includes an axial modelization of the core, the pressurizer, two loops of steam production and the inlet of the turbine, and the regulations concerning these components. The note presents the equations of the model, the structures of the codes concerning the initialization and the dynamic resolution, and describes the control panel of PHEDRE [fr

  20. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  1. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias

    2016-09-16

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  2. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  3. ASTEC-CATHARE2 benchmarks on French PWR 1300MWe reactors

    International Nuclear Information System (INIS)

    Tregoures, Nicolas; Philippot, Marc; Foucher, Laurent; Guillard, Gaetan; Fleurot, Joelle

    2009-01-01

    The French Institut de Radioprotection et de Surete Nucleaire (IRSN) is performing a level 2 Probabilistic Safety Assessment (PSA-2) on the French 1300 MWe reactors. This PSA-2 is heavily relying on the ASTEC integral computer code, jointly developed by IRSN and GRS (Germany). In order to assess the reliability and the quality of physical results of the ASTEC V1.3 code as well as the PWR 1300 MWe reference input deck, an important series of benchmarks with the French best-estimate thermal-hydraulic code CATHARE 2 V2.5 has been performed on 14 different severe accident scenarios. The present paper details 2 out of the 14 studied scenarios: a 12 inches cold leg Loss of Coolant Accident (LOCA) and a 2 tubes Steam Generator Tube Rupture (SGTR). The thermal-hydraulic behavior of the primary and secondary circuits is thoroughly investigated and the ASTEC results of the core degradation phase are presented. Overall, the thermal-hydraulic behavior given by the ASTEC V1.3 is in very good agreement with the CATHARE 2 V2.5 results. (author)

  4. A nodal model for the simulation of a PWR core

    International Nuclear Information System (INIS)

    Souza Pinto, R. de.

    1981-06-01

    A computer program FORTRAN language was developed to simulate the neutronic and thermal-hydraulic transient behaviour of a PWR reactor core. The reator power is calculated using a point kinectics model with six groups of delayed neutron precursors. The fission product decay heat was considered assuming three effective decay heat groups. A nodal model was employed for the treatment of heat transfer in the fuel rod, with integration of the heat equation by the lumped parameter technique. Axial conduction was neglected. A single-channel nodal model was developed for the thermo-hydrodynamic simulation using mass and energy conservation equations for the control volumes. The effect of the axial pressure variation was neglected. The computer program was tested, with good results, through the simulation of the transient behaviour of postulated accidents in a typical PWR. (Author) [pt

  5. VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-10-01

    Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.   ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program

  6. PANTHER solution to the NEA-NSC 3-D PWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.

    1994-10-01

    This report contains the results of PANTHER calculations for the ``NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power``. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.).

  7. PANTHER solution to the NEA-NSC 3-D PWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    International Nuclear Information System (INIS)

    Kuijper, J.C.

    1994-10-01

    This report contains the results of PANTHER calculations for the ''NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power''. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.)

  8. Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems

    International Nuclear Information System (INIS)

    T-M Sembiring; S-Pinem; P-H Liem

    2015-01-01

    The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)

  9. Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2017-01-01

    Full Text Available The in-house coupled neutronic and thermal-hydraulic (N/T-H code of BATAN (National Nuclear Energy Agency of Indonesia, NODAL3, based on the few-group neutron diffusion equation in 3-dimensional geometry using the polynomial nodal method, has been verified with static and transient PWR benchmark cases. This paper reports the verification of NODAL3 code in the NEA-NSC PWR uncontrolled control rods withdrawal at zero power benchmark. The objective of this paper is to determine the accuracy of NODAL3 code in solving the continuously slow and fast reactivity insertions due to single and group of control rod bank withdrawn while the power and temperature increment are limited by the Doppler coefficient. The benchmark is chosen since many organizations participated using various methods and approximations, so the calculation results of NODAL3 can be compared to other codes’ results. The calculated parameters are performed for the steady-state, transient core averaged, and transient hot pellet results. The influence of radial and axial nodes number was investigated for all cases. The results of NODAL3 code are in very good agreement with the reference solutions if the radial and axial nodes number is 2 × 2 and 2 × 18 (total axial layers, respectively.

  10. Summary of ACCSIM and ORBIT Benchmarking Simulations

    CERN Document Server

    AIBA, M

    2009-01-01

    We have performed a benchmarking study of ORBIT and ACCSIM which are accelerator tracking codes having routines to evaluate space charge effects. The study is motivated by the need of predicting/understanding beam behaviour in the CERN Proton Synchrotron Booster (PSB) in which direct space charge is expected to be the dominant performance limitation. Historically at CERN, ACCSIM has been employed for space charge simulation studies. A benchmark study using ORBIT has been started to confirm the results from ACCSIM and to profit from the advantages of ORBIT such as the capability of parallel processing. We observed a fair agreement in emittance evolution in the horizontal plane but not in the vertical one. This may be partly due to the fact that the algorithm to compute the space charge field is different between the two codes.

  11. Calculational limitations in PWR system simulation

    International Nuclear Information System (INIS)

    Abramson, P.B.; Kennedy, M.F.; Speis, T.P.

    1982-01-01

    Engineering transient analysis codes, which are in general more accurate than the present generation of simulator software, can be expected to yield reasonably accurate results (+-20% or so on system pressure) if carefully utilized and if the two-phase and transient flow conditions are not severe. As the severity of the transient increases, the confidence that one may have in the results decreases. None of the existing engineering analysis codes is well assessed or verified for transient analysis, but all give qualitatively the same results lending credence to their results. Recent comparisons to transients in LOFT and SEMISCALE are encouraging as are various comparisons to actual plant data

  12. Study on virtual simulation technology for operation and control of PWR

    International Nuclear Information System (INIS)

    Fang Baoguo; Zhang Dafa; Lin Yajun

    2006-01-01

    The way to build graphical models of PWR with MultiGen Creator is discussed, and the three-dimensional model used in the virtual simulation is built. The mathematical simulation model for PWR based on the platform of MFC and Vega is built through the analysis of the mathematical simulation of PWR. The way to perform the virtual effect is introduced associating with the Pressurizer. And, all above parts are connected in one with VC++ to perform the whole virtual simulation of PWR. (authors)

  13. BENCHMARKING LEARNER EDUCATION USING ONLINE BUSINESS SIMULATION

    Directory of Open Access Journals (Sweden)

    Alfred H. Miller

    2016-06-01

    Full Text Available For programmatic accreditation by the Accreditation Council of Business Schools and Programs (ACBSP, business programs are required to meet STANDARD #4, Measurement and Analysis of Student Learning and Performance. Business units must demonstrate that outcome assessment systems are in place using documented evidence that shows how the results are being used to further develop or improve the academic business program. The Higher Colleges of Technology, a 17 campus federal university in the United Arab Emirates, differentiates its applied degree programs through a ‘learning by doing ethos,’ which permeates the entire curricula. This paper documents benchmarking of education for managing innovation. Using business simulation for Bachelors of Business, Year 3 learners, in a business strategy class; learners explored through a simulated environment the following functional areas; research and development, production, and marketing of a technology product. Student teams were required to use finite resources and compete against other student teams in the same universe. The study employed an instrument developed in a 60-sample pilot study of business simulation learners against which subsequent learners participating in online business simulation could be benchmarked. The results showed incremental improvement in the program due to changes made in assessment strategies, including the oral defense.

  14. Interface tracking simulations of bubbly flows in PWR relevant geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun, E-mail: jfang3@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Rasquin, Michel, E-mail: michel.rasquin@colorado.edu [Aerospace Engineering Department, University of Colorado, Boulder, CO 80309 (United States); Bolotnov, Igor A., E-mail: igor_bolotnov@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2017-02-15

    Highlights: • Simulations were performed for turbulent bubbly flows in PWR subchannel geometry. • Liquid turbulence is fully resolved by direct numerical simulation approach. • Bubble behavior is captured using level-set interface tracking method. • Time-averaged single- and two-phase turbulent flow statistical quantities are obtained. - Abstract: The advances in high performance computing (HPC) have allowed direct numerical simulation (DNS) approach coupled with interface tracking methods (ITM) to perform high fidelity simulations of turbulent bubbly flows in various complex geometries. In this work, we have chosen the geometry of the pressurized water reactor (PWR) core subchannel to perform a set of interface tracking simulations (ITS) with fully resolved liquid turbulence. The presented research utilizes a massively parallel finite-element based code, PHASTA, for the subchannel geometry simulations of bubbly flow turbulence. The main objective for this research is to demonstrate the ITS capabilities in gaining new insight into bubble/turbulence interactions and assisting the development of improved closure laws for multiphase computational fluid dynamics (M-CFD). Both single- and two-phase turbulent flows were studied within a single PWR subchannel. The analysis of numerical results includes the mean gas and liquid velocity profiles, void fraction distribution and turbulent kinetic energy profiles. Two sets of flow rates and bubble sizes were used in the simulations. The chosen flow rates corresponded to the Reynolds numbers of 29,079 and 80,775 based on channel hydraulic diameter (D{sub h}) and mean velocity. The finite element unstructured grids utilized for these simulations include 53.8 million and 1.11 billion elements, respectively. This has allowed to fully resolve all the turbulence scales and the deformable interfaces of individual bubbles. For the two-phase flow simulations, a 1% bubble volume fraction was used which resulted in 17 bubbles in

  15. Benchmark simulations of ICRF antenna coupling

    International Nuclear Information System (INIS)

    Louche, F.; Lamalle, P. U.; Messiaen, A. M.; Compernolle, B. van; Milanesio, D.; Maggiora, R.

    2007-01-01

    The paper reports on ongoing benchmark numerical simulations of antenna input impedance parameters in the ion cyclotron range of frequencies with different coupling codes: CST Microwave Studio, TOPICA and ANTITER 2. In particular we study the validity of the approximation of a magnetized plasma slab by a dielectric medium of suitably chosen permittivity. Different antenna models are considered: a single-strap antenna, a 4-strap antenna and the 24-strap ITER antenna array. Whilst the diagonal impedances are mostly in good agreement, some differences between the mutual terms predicted by Microwave Studio and TOPICA have yet to be resolved

  16. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  17. Abnormal transient analysis by using PWR plant simulator, (2)

    International Nuclear Information System (INIS)

    Naitoh, Akira; Murakami, Yoshimitsu; Yokobayashi, Masao.

    1983-06-01

    This report describes results of abnormal transient analysis by using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at EOL. In the simulator, malfunctions are provided for abnormal conditions of equipment failures, and in this report, 17 malfunctions for secondary system and 4 malfunctions for nuclear instrumentation systems were simulated. The abnormal conditions are turbine and generator trip, failure of condenser, feedwater system and valve and detector failures of pressure and water level. Fathermore, failure of nuclear instrumentations are involved such as source range channel, intermediate range channel and audio counter. Transient behaviors caused by added malfunctions were reasonable and detail information of dynamic characteristics for turbine-condenser system were obtained. (author)

  18. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  19. Benchmarking of SIMULATE-3 on engineering workstations

    International Nuclear Information System (INIS)

    Karlson, C.F.; Reed, M.L.; Webb, J.R.; Elzea, J.D.

    1990-01-01

    The nuclear fuel management department of Arizona Public Service Company (APS) has evaluated various computer platforms for a departmental engineering and business work-station local area network (LAN). Historically, centralized mainframe computer systems have been utilized for engineering calculations. Increasing usage and the resulting longer response times on the company mainframe system and the relative cost differential between a mainframe upgrade and workstation technology justified the examination of current workstations. A primary concern was the time necessary to turn around routine reactor physics reload and analysis calculations. Computers ranging from a Definicon 68020 processing board in an AT compatible personal computer up to an IBM 3090 mainframe were benchmarked. The SIMULATE-3 advanced nodal code was selected for benchmarking based on its extensive use in nuclear fuel management. SIMULATE-3 is used at APS for reload scoping, design verification, core follow, and providing predictions of reactor behavior under nominal conditions and planned reactor maneuvering, such as axial shape control during start-up and shutdown

  20. Transient analysis of multifailure conditions by using PWR plant simulator

    International Nuclear Information System (INIS)

    Morisaki, Hidetoshi; Yokobayashi, Masao.

    1984-11-01

    This report describes results of the analysis of abnormal transients caused by multifailures using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at the end of life. Various malfunctions to simulate abnormal conditions caused by equipment failures are provided. In this report, features of abnormal transients caused by concurrence of malfunctions are discussed. The abnormal conditions studied are leak of primary coolant, loss of charging and feedwater flows, and control systems failure. From the results, it was observed that transient responses caused by some of the malfunctions are almost same as the addition of behaviors caused by each single malfunction. Therefore, it can be said that kinds of malfunctions which are concurrent may be estimated from transient characteristics of each single malfunction. (author)

  1. Benchmark exercises on PWR level-1 PSA (step 3). Analyses of accident sequence and conclusions

    International Nuclear Information System (INIS)

    Niwa, Yuji; Takahashi, Hideaki.

    1996-01-01

    The results of level 1 PSA generate fluctuations due to the assumptions based on several engineering judgements set in the stages of PSA analysis. On the purpose of the investigation of uncertainties due to assumptions, three kinds of a standard problem, what we call benchmark exercise have been set. In this report, sensitivity studies (benchmark exercise) of sequence analyses are treated and conclusions are mentioned. The treatment of inter-system dependency would generate uncertainly of PSA. In addition, as a conclusion of the PSA benchmark exercise, several findings in the sequence analysis together with previous benchmark analyses in earlier INSS Journals are treated. (author)

  2. Benchmarking

    OpenAIRE

    Meylianti S., Brigita

    1999-01-01

    Benchmarking has different meaning to different people. There are five types of benchmarking, namely internal benchmarking, competitive benchmarking, industry / functional benchmarking, process / generic benchmarking and collaborative benchmarking. Each type of benchmarking has its own advantages as well as disadvantages. Therefore it is important to know what kind of benchmarking is suitable to a specific application. This paper will discuss those five types of benchmarking in detail, includ...

  3. Monte Carlo burnup simulation of the TAKAHAMA-3 benchmark experiment

    International Nuclear Information System (INIS)

    Dalle, Hugo M.

    2009-01-01

    High burnup PWR fuel is currently being studied at CDTN/CNEN-MG. Monte Carlo burnup code system MONTEBURNS is used to characterize the neutronic behavior of the fuel. In order to validate the code system and calculation methodology to be used in this study the Japanese Takahama-3 Benchmark was chosen, as it is the single burnup benchmark experimental data set freely available that partially reproduces the conditions of the fuel under evaluation. The burnup of the three PWR fuel rods of the Takahama-3 burnup benchmark was calculated by MONTEBURNS using the simplest infinite fuel pin cell model and also a more complex representation of an infinite heterogeneous fuel pin cells lattice. Calculations results for the mass of most isotopes of Uranium, Neptunium, Plutonium, Americium, Curium and some fission products, commonly used as burnup monitors, were compared with the Post Irradiation Examinations (PIE) values for all the three fuel rods. Results have shown some sensitivity to the MCNP neutron cross-section data libraries, particularly affected by the temperature in which the evaluated nuclear data files were processed. (author)

  4. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    International Nuclear Information System (INIS)

    Wagner, J.C.

    2001-01-01

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses

  5. Analysis and sensitivity studies with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferroukhi, H.; Coddington, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    The OECD/NEA PWR rod ejection benchmark has been analysed using the 3-D nodal spatial-kinetic codes CORETRAN and RETRAN-3D. The following results were obtained. A) The agreement in 3-D solution between CORETRAN and RETRAN-3D was found to be very good both during steady-state and transient conditions. In particular at HZP (hot zero power), an excellent agreement in the initial steady-state 3-D power distribution and with regard to the core power excursion during the super-prompt critical phase of the transient (i.e. when the negative reactivity feedback is still very weak) was found. This illustrates the consistency in the neutronic solution between both codes. B) At both HZP and FP (full power) conditions, the CORETRAN and RETRAN-3D results lie well within the range of the previous benchmark solutions. In particular at HZP, both codes predict a power excursion and an increase in maximum pellet temperature that are among the closest results to those obtained with the benchmark reference solution. It must here be emphasised that these analyses are by no means a validation of the codes. However, the good agreement of both CORETRAN and RETRAN-3D with other 3-D solutions provides confidence in the ability of these codes to analyse LWR (light water reactor) core transients. In addition, it was found appropriate to perform, for this well-defined international benchmark problem, some sensitivity studies in order to assess the impact of modelling options on the CORETRAN and RETRAN-3D results. (authors)

  6. Analysis and sensitivity studies with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    International Nuclear Information System (INIS)

    Ferroukhi, H.; Coddington, P.

    2001-01-01

    The OECD/NEA PWR rod ejection benchmark has been analysed using the 3-D nodal spatial-kinetic codes CORETRAN and RETRAN-3D. The following results were obtained. A) The agreement in 3-D solution between CORETRAN and RETRAN-3D was found to be very good both during steady-state and transient conditions. In particular at HZP (hot zero power), an excellent agreement in the initial steady-state 3-D power distribution and with regard to the core power excursion during the super-prompt critical phase of the transient (i.e. when the negative reactivity feedback is still very weak) was found. This illustrates the consistency in the neutronic solution between both codes. B) At both HZP and FP (full power) conditions, the CORETRAN and RETRAN-3D results lie well within the range of the previous benchmark solutions. In particular at HZP, both codes predict a power excursion and an increase in maximum pellet temperature that are among the closest results to those obtained with the benchmark reference solution. It must here be emphasised that these analyses are by no means a validation of the codes. However, the good agreement of both CORETRAN and RETRAN-3D with other 3-D solutions provides confidence in the ability of these codes to analyse LWR (light water reactor) core transients. In addition, it was found appropriate to perform, for this well-defined international benchmark problem, some sensitivity studies in order to assess the impact of modelling options on the CORETRAN and RETRAN-3D results. (authors)

  7. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR); Implementacion en software libre del simulador universitario de nucleoelectrica tipo PWR (SU-PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Hidago H, F.; Morales S, J.B. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: julfi_jg@yahoo.com.mx

    2007-07-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  8. Simulation of the OECD Main-Steam-Line-Break Benchmark Exercise 3 Using the Coupled RELAP5/PANTHER Codes

    International Nuclear Information System (INIS)

    Schneidesch, Christophe R.; Zhang Jinzhao

    2004-01-01

    The RELAP5 best-estimate thermal-hydraulic system code has been coupled with the PANTHER three-dimensional neutron kinetics code via the TALINK dynamic data exchange control and processing tool. The coupled RELAP5/PANTHER code package has been qualified and will be used at Tractebel Engineering (TE) for analyzing asymmetric pressurized water reactor (PWR) accidents with strong core-system interactions. The Organization for Economic Cooperation and Development/U.S. Nuclear Regulatory Commission PWR main-steam-line-break benchmark problem was analyzed as part of the qualification efforts to demonstrate the capability of the coupled code package of simulating such transients. This paper reports the main results of TE's contribution to the benchmark Exercise 3

  9. Integrated training support system for PWR operator training simulator

    International Nuclear Information System (INIS)

    Sakaguchi, Junichi; Komatsu, Yasuki

    1999-01-01

    The importance of operator training using operator training simulator has been recognized intensively. Since 1986, we have been developing and providing many PWR simulators in Japan. We also have developed some training support systems connected with the simulator and the integrated training support system to improve training effect and to reduce instructor's workload. This paper describes the concept and the effect of the integrated training support system and of the following sub-systems. We have PES (Performance Enhancement System) that evaluates training performance automatically by analyzing many plant parameters and operation data. It can reduce the deviation of training performance evaluation between instructors. PEL (Parameter and Event data Logging system), that is the subset of PES, has some data-logging functions. And we also have TPES (Team Performance Enhancement System) that is used aiming to improve trainees' ability for communication between operators. Trainee can have conversation with virtual trainees that TPES plays automatically. After that, TPES automatically display some advice to be improved. RVD (Reactor coolant system Visual Display) displays the distributed hydraulic-thermal condition of the reactor coolant system in real-time graphically. It can make trainees understand the inside plant condition in more detail. These sub-systems have been used in a training center and have contributed the improvement of operator training and have gained in popularity. (author)

  10. PWR system simulation and parameter estimation with neural networks

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Colak, Uener

    2002-01-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected

  11. PWR system simulation and parameter estimation with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr

    2002-11-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.

  12. PWR plant operator training used full scope simulator incorporated MAAP model

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Tabuchi, T.; Yamashita, T.; Komatsu, Y.; Tsubouchi, K.; Banka, T.; Mochizuki, T.; Nishimura, K.; Iizuka, H.

    2015-01-01

    NTC makes an effort with the understanding of plant behavior of core damage accident as part of our advanced training. For the Fukushima Daiichi Nuclear Power Station accident, we introduced the MAAP model into PWR operator training full scope simulator and also made the Severe Accident Visual Display unit. From 2014, we will introduce new training program for a core damage accident with PWR operator training full scope simulator incorporated the MAAP model and the Severe Accident Visual Display unit. (author)

  13. Benchmarking HRA methods against different NPP simulator data

    International Nuclear Information System (INIS)

    Petkov, Gueorgui; Filipov, Kalin; Velev, Vladimir; Grigorov, Alexander; Popov, Dimiter; Lazarov, Lazar; Stoichev, Kosta

    2008-01-01

    The paper presents both international and Bulgarian experience in assessing HRA methods, underlying models approaches for their validation and verification by benchmarking HRA methods against different NPP simulator data. The organization, status, methodology and outlooks of the studies are described

  14. MC21 Monte Carlo analysis of the Hoogenboom-Martin full-core PWR benchmark problem - 301

    International Nuclear Information System (INIS)

    Kelly, D.J.; Sutton, Th.M.; Trumbull, T.H.; Dobreff, P.S.

    2010-01-01

    At the 2009 American Nuclear Society Mathematics and Computation conference, Hoogenboom and Martin proposed a full-core PWR model to monitor the improvement of Monte Carlo codes to compute detailed power density distributions. This paper describes the application of the MC21 Monte Carlo code to the analysis of this benchmark model. With the MC21 code, we obtained detailed power distributions over the entire core. The model consisted of 214 assemblies, each made up of a 17x17 array of pins. Each pin was subdivided into 100 axial nodes, thus resulting in over seven million tally regions. Various cases were run to assess the statistical convergence of the model. This included runs of 10 billion and 40 billion neutron histories, as well as ten independent runs of 4 billion neutron histories each. The 40 billion neutron-history calculation resulted in 43% of all regions having a 95% confidence level of 2% or less implying a relative standard deviation of 1%. Furthermore, 99.7% of regions having a relative power density of 1.0 or greater have a similar confidence level. We present timing results that assess the MC21 performance relative to the number of tallies requested. Source convergence was monitored by analyzing plots of the Shannon entropy and eigenvalue versus active cycle. We also obtained an estimate of the dominance ratio. Additionally, we performed an analysis of the error in an attempt to ascertain the validity of the confidence intervals predicted by MC21. Finally, we look forward to the prospect of full core 3-D Monte Carlo depletion by scoping out the required problem size. This study provides an initial data point for the Hoogenboom-Martin benchmark model using a state-of-the-art Monte Carlo code. (authors)

  15. Application of the Relap5-3D to phase 1 and 3 of the OECD-CSNI/NSC PWR MSLB benchmark related to TMI-1

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.; Spadoni, A.; Hassan, Y.

    2001-01-01

    The Relap5-3D, the latest in the series of the Relap5 code, distinguishes from the previous versions by the fully integrated, multi-dimensional thermalhydraulic and kinetic modeling capability. It has been applied to Phase I and III of OECD-CSNI/ NSC PWR MSLB Benchmark adopting the same thermalhydraulic input deck already used with Relap5/Parcs and Relap5/Quabbox coupled codes during the previous MSLB analysis. The OECD jointly with the US NRC proposed the PWR MSLB Benchmark in order to gather a common understanding about the coupling between thermal hydraulics and neutronics, and evaluating the behavior of this transient with different coupled codes, giving emphasis to the 3-D modeling. This paper deals with the application of Relap5-3D code to phase I and III of the PWR MSLB Benchmark. The Relap5-3D is a thermal hydraulics-neutronics internally coupled code, the thermal hydraulics module is the INEEL version of Relap and the neutronics module is derived from NESTLE multi-dimension kinetics code. (author)

  16. Benchmark for evaluation and validation of reactor simulations (BEAVRS)

    Energy Technology Data Exchange (ETDEWEB)

    Horelik, N.; Herman, B.; Forget, B.; Smith, K. [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-07-01

    Advances in parallel computing have made possible the development of high-fidelity tools for the design and analysis of nuclear reactor cores, and such tools require extensive verification and validation. This paper introduces BEAVRS, a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading patterns, and numerous in-vessel components. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from fifty-eight instrumented assemblies. Initial comparisons between calculations performed with MIT's OpenMC Monte Carlo neutron transport code and measured cycle 1 HZP test data are presented, and these results display an average deviation of approximately 100 pcm for the various critical configurations and control rod worth measurements. Computed HZP radial fission detector flux maps also agree reasonably well with the available measured data. All results indicate that this benchmark will be extremely useful in validation of coupled-physics codes and uncertainty quantification of in-core physics computational predictions. The detailed BEAVRS specification and its associated data package is hosted online at the MIT Computational Reactor Physics Group web site (http://crpg.mit.edu/), where future revisions and refinements to the benchmark specification will be made publicly available. (authors)

  17. Achievement of a training simulator for PWR power plant: application to control parametric studies

    International Nuclear Information System (INIS)

    Salomon-Sigogne, A.

    1982-09-01

    A simulation tool adapted to training tasks is developed. One presents the description of the simulator. One studies the management of a model by NEPTUN X2. A general description of a 900 MW PWR power station and the modelling of the power station are presented. The results obtained on the FIDIANE version of the simulator are finally analyzed [fr

  18. MCNP simulation of the TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Jeraj, R.; Glumac, B.; Maucec, M.

    1996-01-01

    The complete 3D MCNP model of the TRIGA Mark II reactor is presented. It enables precise calculations of some quantities of interest in a steady-state mode of operation. Calculational results are compared to the experimental results gathered during reactor reconstruction in 1992. Since the operating conditions were well defined at that time, the experimental results can be used as a benchmark. It may be noted that this benchmark is one of very few high enrichment benchmarks available. In our simulations experimental conditions were thoroughly simulated: fuel elements and control rods were precisely modeled as well as entire core configuration and the vicinity of the core. ENDF/B-VI and ENDF/B-V libraries were used. Partial results of benchmark calculations are presented. Excellent agreement of core criticality, excess reactivity and control rod worths can be observed. (author)

  19. Mathematical modelling of plant transients in the PWR for simulator purposes

    International Nuclear Information System (INIS)

    Hartel, K.

    1984-01-01

    This chapter presents the results of the testing of anticipated and abnormal plant transients in pressurized water reactors (PWRs) of the type WWER 440 by means of the numerical simulation of 32 different, stationary and nonstationary, operational regimes. Topics considered include the formation of the PWR mathematical model, the physical approximation of the reactor core, the structure of the reactor core model, a mathematical approximation of the reactor model, the selection of numerical methods, and a computerized simulation system. The necessity of a PWR simulator in Czechoslovakia is justified by the present status and the outlook for the further development of the Czechoslovak nuclear power complex

  20. SIVAR - Computer code for simulation of fuel rod behavior in PWR during fast transients

    International Nuclear Information System (INIS)

    Dias, A.F.V.

    1980-10-01

    Fuel rod behavior during a stationary and a transitory operation, is studied. A computer code aiming at simulating PWR type rods, was developed; however, it can be adapted for simulating other type of rods. A finite difference method was used. (E.G.) [pt

  1. SCAR - Post-Accident Simulator SIPA with safety analysis code CATHARE-2 and PWR cold shutdown state simulation

    International Nuclear Information System (INIS)

    Farvacque, M.; Faydide, B.; Dufeil, Ph.; Raimond, E.

    2003-01-01

    The use of Cathare in the simulators of pressurized water reactors has been effective since the beginning of the nineties. Scar project is the second stage of the Cathare strategy for the simulators, its main objective is the extension of the field of simulation to the accident situations in cold shutdown states. Work was carried out in 3 major areas: modelling, optimization and integration in the simulator. Throughout the project, the developments were part of a 3 stages validation strategy: -) elementary tests of the developments of new model on the N4 (1450 MW PWR); -) analytical tests and systems to ensure non regression of the validation of the physical laws of the Cathare code during the modifications carried out within the optimization stage; and -) overall tests of the SIPA-CP1 (900 MW PWR) simulator, controlled automatically by programmed scenarios including the transients which are carried out in PWR, the transients of the Regulatory Guides and the accident transients

  2. Shear Strength Measurement Benchmarking Tests for K Basin Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carolyn A.; Daniel, Richard C.; Enderlin, Carl W.; Luna, Maria; Schmidt, Andrew J.

    2009-06-10

    Equipment development and demonstration testing for sludge retrieval is being conducted by the K Basin Sludge Treatment Project (STP) at the MASF (Maintenance and Storage Facility) using sludge simulants. In testing performed at the Pacific Northwest National Laboratory (under contract with the CH2M Hill Plateau Remediation Company), the performance of the Geovane instrument was successfully benchmarked against the M5 Haake rheometer using a series of simulants with shear strengths (τ) ranging from about 700 to 22,000 Pa (shaft corrected). Operating steps for obtaining consistent shear strength measurements with the Geovane instrument during the benchmark testing were refined and documented.

  3. OECD/NRC Benchmark Based on NUPEC PWR Sub-channel and Bundle Test (PSBT). Volume I: Experimental Database and Final Problem Specifications

    International Nuclear Information System (INIS)

    Rubin, A.; Schoedel, A.; Avramova, M.; Utsuno, H.; Bajorek, S.; Velazquez-Lozada, A.

    2012-01-01

    The need to refine models for best-estimate calculations, based on good-quality experimental data, has been expressed in many recent meetings in the field of nuclear applications. The needs arising in this respect should not be limited to the currently available macroscopic methods but should be extended to next-generation analysis techniques that focus on more microscopic processes. One of the most valuable databases identified for the thermal-hydraulics modelling was developed by the Nuclear Power Engineering Corporation (NUPEC), Japan, which includes sub-channel void fraction and departure from nucleate boiling (DNB) measurements in a representative Pressurised Water Reactor (PWR) fuel assembly. Part of this database has been made available for this international benchmark activity entitled 'NUPEC PWR Sub-channel and Bundle Tests (PSBT) benchmark'. This international project has been officially approved by the Japanese Ministry of Economy, Trade, and Industry (METI), the US Nuclear Regulatory Commission (NRC) and endorsed by the OECD/NEA. The benchmark team has been organised based on the collaboration between Japan and the USA. A large number of international experts have agreed to participate in this programme. The fine-mesh high-quality sub-channel void fraction and departure from nucleate boiling data encourages advancement in understanding and modelling complex flow behaviour in real bundles. Considering that the present theoretical approach is relatively immature, the benchmark specification is designed so that it will systematically assess and compare the participants' analytical models on the prediction of detailed void distributions and DNB. The development of truly mechanistic models for DNB prediction is currently underway. The benchmark problem includes both macroscopic and microscopic measurement data. In this context, the sub-channel grade void fraction data are regarded as the macroscopic data and the digitised computer graphic images are the

  4. Three-dimensional space-time kinetic analysis with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferroukhi, H.; Coddington, P

    2001-03-01

    One of the activities within the STARS project, in the Laboratory for Reactor Physics and System Behaviour; is the development of a coupling methodology between the three-dimensional, space-time kinetics codes CORETRAN and RETRAN-3D in order to perform core and plant transient analyses of the Swiss LWRs. The CORETRAN code is a 3-D full-core simulator, intended to be used for core-related analyses, while RETRAN-3D is the three-dimensional kinetics version of the plant system code RETRAN, and can therefore be used for best-estimate analyses of a wide range of transients in both PWRs and BWRs. Because the neutronics solver in both codes is based on the same kinetics model, one important advantage is that the codes can be coupled so that the initial conditions for a RETRAN-3D plant analysis are generated by a detailed-core, steady-state calculation using CORETRAN. As a first step towards using CORETRAN and RETRAN-3D for kinetic applications, the NEACRP PWR rod ejection benchmark has been analyzed with both codes, and is presented in this paper. The first objective is to verify the consistency between the static and kinetic solutions of the two codes, and so gain confidence in the coupling methodology. The second objective is to assess the CORETRAN and RETRAN-3D solutions for a well-defined RIA transient, comparing with previously published results. In parallel, several sensitivity studies have been performed in an attempt to identify models and calculational options important for a correct analysis of an RIA event in a LWR using these two codes. (author)

  5. Benchmark Simulation Model No 2 in Matlab-Simulink

    DEFF Research Database (Denmark)

    Vrecko, Darko; Gernaey, Krist; Rosen, Christian

    2006-01-01

    In this paper, implementation of the Benchmark Simulation Model No 2 (BSM2) within Matlab-Simulink is presented. The BSM2 is developed for plant-wide WWTP control strategy evaluation on a long-term basis. It consists of a pre-treatment process, an activated sludge process and sludge treatment...

  6. Numerical simulation of the heating and start-up of PWR nuclear power station

    International Nuclear Information System (INIS)

    Faraco-Medeiros, M.A.; Leite, C.A.T.; Ramalho, F.P.

    1992-01-01

    The start-up of a PWR nuclear power plant must be done within safety criteria and requires a simulation. The design of some equipment, cost and time can be optimized. A computer simulator, which allows control of all the equipment and variables into the operation, has been developed and is presented in this paper. The KWU procedure and an alternative for Angra II were simulated. The results are showed up. 09 refs, 03 figs. (B.C.A.)

  7. Rupther: a simulation approach applied to a PWR vessel failure during a severe accident

    International Nuclear Information System (INIS)

    Mongabure, Ph.; Nicolas, L.; Devos, J.

    2000-01-01

    The Rupther program (Rupture Under Thermal Conditions) is a part of the international researches on severe accidents in the PWR type reactors. The aim of the program is the definition of failure simulation validated by experimental data on vessel steel 16MND5 mechanical properties. The paper presents the program and the first results. (A.L.B.)

  8. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    Yao Zewu; Ji Huaxiang; Chen Zhicheng; Yao Zhiquan; Chen Chen; Li Yuwen

    1995-01-01

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  9. Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2014-01-01

    The assessment of the uncertainties of COBRA-IIIC thermal-hydraulic analyses of rod bundles is performed for a 5-by-5 bundle representing a PWR fuel assembly. In the first part of the paper the modeling uncertainties are evaluated in the term of the uncertainty of the turbulent mixing factor using the OECD NEA/NRC PSBT benchmark data. After that the uncertainties of the COBRA calculations are discussed performing Monte-Carlo type statistical analyses taking into account the modeling uncertainties and other uncertainties prescribed in the OECD NEA UAM benchmark specification. Both steady-state and transient cases are investigated. The target quantities are the uncertainties of the void distribution, the moderator density, the moderator temperature and the DNBR. We will see that - beyond the uncertainties of the geometry and the boundary conditions - it is very important to take into account the modeling uncertainties in case of bundle or sub-channel thermo-hydraulic calculations.

  10. CFD simulation of a four-loop PWR at asymmetric operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian-Ping; Yan, Li-Ming; Li, Feng-Chen, E-mail: lifch@hit.edu.cn

    2016-04-15

    Highlights: • A CFD numerical simulation procedure was established for simulating RPV of VVER-1000. • The established CFD approach was validated by comparing with available data. • Thermal hydraulic characteristics under asymmetric operation condition were investigated. • Apparent influences of the shutdown loop on its neighboring loops were obtained. - Abstract: The pressurized water reactor (PWR) with multiple loops may have abnormal working conditions with coolant pumps out of running in some loops. In this paper, a computational fluid dynamics (CFD) numerical study of the four-loop VVER-1000 PWR pressure vessel model was presented. Numerical simulations of the thermohydrodynamic characteristics in the pressure vessel were carried out at different inlet conditions with four and three loops running, respectively. At normal stead-state condition (four-loop running), different parameters were obtained for the full fluid domain, including pressure losses across different parts, pressure, velocity and temperature distributions in the reactor pressure vessel (RPV) and mass flow distribution of the coolant at the inlet of reactor core. The obtained results for pressure losses matched with the experimental reference values of the VVER-1000 PWR at Tianwan nuclear power plant (NPP). For most fuel assemblies (FAs), the inlet flow rates presented a symmetrical distribution about the center under full-loop operation conditions, which accorded with the practical distribution. These results indicate that it is now possible to study the dynamic transition process between different asymmetric operation conditions in a multi-loop PWR using the established CFD method.

  11. Development of a computer code for transients simulation in PWR type reactors

    International Nuclear Information System (INIS)

    Alvim, A.C.M.; Botelho, D.A.; Oliveira Barroso, A.C. de

    1981-01-01

    A computer code for the simulation of operacional-transients and accidents in PWR type reactors is being developed at IEN (Instituto de Engenharia Nuclear). Accidents will be considered in which variations in thermohydraulics parameters of fuel and coolant don't cause nucleate boiling in the reactor core, but, otherwise are sufficiently strong to justify a more detailed simulation than that used in linearized models. (E.G.) [pt

  12. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  13. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  14. Experimental Benchmarking of Fire Modeling Simulations. Final Report

    International Nuclear Information System (INIS)

    Greiner, Miles; Lopez, Carlos

    2003-01-01

    A series of large-scale fire tests were performed at Sandia National Laboratories to simulate a nuclear waste transport package under severe accident conditions. The test data were used to benchmark and adjust the Container Analysis Fire Environment (CAFE) computer code. CAFE is a computational fluid dynamics fire model that accurately calculates the heat transfer from a large fire to a massive engulfed transport package. CAFE will be used in transport package design studies and risk analyses

  15. Investigation of modeling and simulation on a PWR power conversion system with RELAP5

    International Nuclear Information System (INIS)

    Rui Gao; Yang Yanhua; Lin Meng; Yuan Minghao; Xie Zhengrui

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Dayabay nuclear power station, this paper models the thermal-hydraulic systems for PWR by using the best-estimate program, RELAP5. To simulate the full-scope power conversion system, not only the reactor coolant system (RCP) of nuclear island, but also the main steam system (VVP), turbine steam and drain system (GPV), bypass system (GCT), feedwater system (FW), condensate extraction system (CEX), moisture separator reheater system (GSS), turbine-driven feedwater pump (APP), low-pressure and high-pressure feedwater heater systems (ABP and AHP) of conventional island are considered and modeled. A comparison between the simulated results and the actual data of reactor under full-power demonstrates a fine match for Dayabay, and also manifests the feasibility in simulating full-scope power conversion system of PWR with RELAP5. (author)

  16. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    International Nuclear Information System (INIS)

    Tisseur, D.; Costin, M.; Rattoni, B.; Vienne, C.; Vabre, A.; Cattiaux, G.; Sollier, T.

    2015-01-01

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software

  17. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    Energy Technology Data Exchange (ETDEWEB)

    Tisseur, D., E-mail: david.tisseur@cea.fr; Costin, M., E-mail: david.tisseur@cea.fr; Rattoni, B., E-mail: david.tisseur@cea.fr; Vienne, C., E-mail: david.tisseur@cea.fr; Vabre, A., E-mail: david.tisseur@cea.fr; Cattiaux, G., E-mail: david.tisseur@cea.fr [CEA LIST, CEA Saclay 91191 Gif sur Yvette Cedex (France); Sollier, T. [Institut de Radioprotection et de Sûreté Nucléaire, B.P.17 92262 Fontenay-Aux-Roses (France)

    2015-03-31

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software.

  18. PWR station blackout transient simulation in the INER integral system test facility

    International Nuclear Information System (INIS)

    Liu, T.J.; Lee, C.H.; Hong, W.T.; Chang, Y.H.

    2004-01-01

    Station blackout transient (or TMLB' scenario) in a pressurized water reactor (PWR) was simulated using the INER Integral System Test Facility (IIST) which is a 1/400 volumetrically-scaled reduce-height and reduce-pressure (RHRP) simulator of a Westinghouse three-loop PWR. Long-term thermal-hydraulic responses including the secondary boil-off and the subsequent primary saturation, pressurization and core uncovery were simulated based on the assumptions of no offsite and onsite power, feedwater and operator actions. The results indicate that two-phase discharge is the major depletion mode since it covers 81.3% of the total amount of the coolant inventory loss. The primary coolant inventory has experienced significant re-distribution during a station blackout transient. The decided parameter to avoid the core overheating is not the total amount of the coolant inventory remained in the primary core cooling system but only the part of coolant left in the pressure vessel. The sequence of significant events during transient for the IIST were also compared with those of the ROSA-IV large-scale test facility (LSTF), which is a 1/48 volumetrically-scaled full-height and full-pressure (FHFP) simulator of a PWR. The comparison indicates that the sequence and timing of these events during TMLB' transient studied in the RHRP IIST facility are generally consistent with those of the FHFP LSTF. (author)

  19. DOMPAC dosimetry experiment. Neutronic simulation of the thickness of a PWR pressure vessel. Irradiation damages

    International Nuclear Information System (INIS)

    Alberman, A.; Faure, M.; Thierry, M.; Hoclet, O.; Le Dieu de Ville, A.; Nimal, J.C.; Soulat, P.

    1979-01-01

    For suitable extrapolation of irradiated PWR ferritic steel results, proper irradiation of the pressure vessel has been 'simulated' in test reactor. For this purpose, a huge steel block (20 cm in depth) was loaded with Saclay's graphite (GAMIN) and tungsten damage detectors. Core-block water gap was optimized through spectrum indexes method, by ANISN and SABINE codes so that spectrum in 1/4 thickness matches with ANISN computations for PWR Fessenheim 1. A good experimental agreement is found with calculated dpa damage gradient. 3D Monte Carlo computation (TRIPOLI), was performed on the DOMPAC device, and spectrum indexes evolution was found consistent with experimental results. Surveillance rigs behind a 'thermal shield' were also simulated, including damage and activation monitors. Dosimetry results give an order of magnitude of accuracies involved in projecting steel sample embrittlement to the pressure vessel [fr

  20. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  1. A new model for simulation of pressurizers in PWR power plants

    International Nuclear Information System (INIS)

    Madeira, A.A.

    1981-02-01

    The pressurizer of a PWR type reactor was simulated as a thermodynamical system made up of three regions with movable boundaries. The mechanisms of normal condensation, condensation induced by spray, flashing and heat exchange across the water - steam interface, were studied. Various tests have been carried out and satisfactory results were obtained when compared with those from other models and also with some available experimental data. (E.G.) [pt

  2. Comparison of thermal behavior of different PWR fuel rod simulators for LOCA experiments

    International Nuclear Information System (INIS)

    Casal, V.; Malang, S.; Rust, K.

    1982-10-01

    For experimental investigations of a loss-of-coolant accident (LOCA) of a PWR electrical heater rods are applied as thermal fuel rod simulators. To substitute heater rods from the SEMISCALE program by INTERATOM-KfK heater rods in a current experimental program at the Instituut for Energiteknikk-(OECD-Halden), the thermodynamic behavior of different heater rods during a LOCA were compared. The results show, that SEMISCALE-heater rods can be replaced by those fabricated by INTERATOM. (orig.) [de

  3. Benchmarking

    OpenAIRE

    Beretta Sergio; Dossi Andrea; Grove Hugh

    2000-01-01

    Due to their particular nature, the benchmarking methodologies tend to exceed the boundaries of management techniques, and to enter the territories of managerial culture. A culture that is also destined to break into the accounting area not only strongly supporting the possibility of fixing targets, and measuring and comparing the performance (an aspect that is already innovative and that is worthy of attention), but also questioning one of the principles (or taboos) of the accounting or...

  4. Principle simulator for a PWR nuclear power station

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1975-05-01

    A report is given on a simulator developed for the training of operational and planning staff for the Lovisa nuclear power station in Finland. All main components of the power station are illustrated and trainees can operate the simulator in the power range 3-100 %. The model was originally developed for planning the control system of Lovisa I, for which reason the simulator project could be carried out on a relatively limited budget. (author)

  5. Mathematical model for the simulation of PWR power plant

    International Nuclear Information System (INIS)

    Delfosse, C.

    1979-01-01

    A reactor simulator representing the principal characteristics of a nuclear power plant and their regulation has been developed. Special attention has been devoted to the simulation of the pressurizer, the steam turbine and the valves. Numerical tests have been realised in order to verify the speed of the calculations. (MDC)

  6. Optimization of PWR fuel assembly radial enrichment and burnable poison location based on adaptive simulated annealing

    International Nuclear Information System (INIS)

    Rogers, Timothy; Ragusa, Jean; Schultz, Stephen; St Clair, Robert

    2009-01-01

    The focus of this paper is to present a concurrent optimization scheme for the radial pin enrichment and burnable poison location in PWR fuel assemblies. The methodology is based on the Adaptive Simulated Annealing (ASA) technique, coupled with a neutron lattice physics code to update the cost function values. In this work, the variations in the pin U-235 enrichment are variables to be optimized radially, i.e., pin by pin. We consider the optimization of two categories of fuel assemblies, with and without Gadolinium burnable poison pins. When burnable poisons are present, both the radial distribution of enrichment and the poison locations are variables in the optimization process. Results for 15 x 15 PWR fuel assembly designs are provided.

  7. An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies

    International Nuclear Information System (INIS)

    Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.

    2014-01-01

    Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement

  8. Modeling and simulation of pressurizer dynamic process in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ma Jin; Liu Changliang; Li Shu'na

    2010-01-01

    By analysis of the actual operating characteristics of pressurizer in pressurized water reactor (PWR) nuclear power plant and based on some reasonable simplification and basic assumptions, the quality and energy conservation equations about pressurizer' s steam zone and the liquid zone are set up. The purpose of this paper is to build a pressurizer model of two imbalance districts. Water level and pressure control system of pressurizer is formed though model encapsulation. Dynamic simulation curves of main parameters are also shown. At last, comparisons between the theoretical analysis and simulation results show that the pressurizer model of two imbalance districts is reasonable. (authors)

  9. Nonlinear punctual dynamic applied to simulation of PWR type reactors

    International Nuclear Information System (INIS)

    Cysne, F.S.

    1978-01-01

    In order to study some kinds of nuclear reactor accidents, a simulation is made using the punctual kinetics model to the reactor core. The following integration methods are used: Hansen's method in which a linearization is made and C S M P using a variable interval fourth-order Runge Kutta method. The results were good and were compared with those obtained by the code Dinamica I which uses a finite difference integration method of backward kind. (author)

  10. Non-linear punctual kinetics applied to PWR reactors simulation

    International Nuclear Information System (INIS)

    Cysne, F.S.

    1978-11-01

    In order to study some kinds of nuclear reactor accidents, a simulation is made using the punctual kinetics model for the reactor core. The following integration methods are used: Hansen's method in which a linearization is made and CSMP using a variable interval fourth-order Runge Kutta method. The results were good and were compared with those obtained by the code Dinamica I which uses a finite difference integration method of backward kind. (Author) [pt

  11. Verification of NUREC Code Transient Calculation Capability Using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Noh, Jae Man; Lee, Hyung Chul; Yoo, Jae Woon

    2006-01-01

    In this report, we verified the NUREC code transient calculation capability using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem. The benchmark problem consists of Part 1, a 2-D problem with given T/H conditions, Part 2, a 3-D problem at HFP condition, Part 3, a 3-D problem at HZP condition, and Part 4, a transient state initiated by a control rod ejection at HZP condition in Part 3. In Part 1, the results of NUREC code agreed well with the reference solution obtained from DeCART calculation except for the pin power distributions at the rodded assemblies. In Part 2, the results of NUREC code agreed well with the reference DeCART solutions. In Part 3, some results of NUREC code such as critical boron concentration and core averaged delayed neutron fraction agreed well with the reference PARCS 2G solutions. But the error of the assembly power at the core center was quite large. The pin power errors of NUREC code at the rodded assemblies was much smaller the those of PARCS code. The axial power distribution also agreed well with the reference solution. In Part 4, the results of NUREC code agreed well with those of PARCS 2G code which was taken as the reference solution. From the above results we can conclude that the results of NUREC code for steady states and transient states of the MOX loaded LWR core agree well with those of the other codes

  12. Benchmarking Simulation of Long Term Station Blackout Events

    International Nuclear Information System (INIS)

    Kim, Sung Kyum; Lee, John C.; Fynan, Douglas A.; Lee, John C.

    2013-01-01

    The importance of passive cooling systems has emerged since the SBO events. Turbine-driven auxiliary feedwater (TD-AFW) system is the only passive cooling system for steam generators (SGs) in current PWRs. During SBO events, all alternating current (AC) and direct current (DC) are interrupted and then the water levels of steam generators become high. In this case, turbine blades could be degraded and cannot cool down the SGs anymore. To prevent this kind of degradations, improved TD-AFW system should be installed for current PWRs, especially OPR 1000 plants. A long-term station blackout (LTSBO) scenario based on the improved TD-AFW system has been benchmarked as a reference input file. The following task is a safety analysis in order to find some important parameters causing the peak cladding temperature (PCT) to vary. This task has been initiated with the benchmarked input deck applying to the State-of-the-Art Reactor Consequence Analyses (SOARCA) Report. The point of the improved TD-AFW is to control the water level of the SG by using the auxiliary battery charged by a generator connected with the auxiliary turbine. However, this battery also could be disconnected from the generator. To analyze the uncertainties of the failure of the auxiliary battery, the simulation for the time-dependent failure of the TD-AFW has been performed. In addition to the cases simulated in the paper, some valves (e. g., pressurizer safety valve), available during SBO events in the paper, could be important parameters to assess uncertainties in PCTs estimated. The results for these parameters will be included in a future study in addition to the results for the leakage of the RCP seals. After the simulation of several transient cases, alternating conditional expectation (ACE) algorithm will be used to derive functional relationships between the PCT and several system parameters

  13. Evaluation of PWR and BWR assembly benchmark calculations. Status report of EPRI computational benchmark results, performed in the framework of the Netherlands` PINK programme (Joint project of ECN, IRI, KEMA and GKN)

    Energy Technology Data Exchange (ETDEWEB)

    Gruppelaar, H. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Klippel, H.T. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Instituut; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Instituut; Verhagen, F.C.M. [Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands); Bruggink, J.C. [Gemeenschappelijke Kernenergiecentrale Nederland N.V., Dodewaard (Netherlands)

    1993-11-01

    Benchmark results of the Dutch PINK working group on calculational benchmarks on single pin cell and multipin assemblies as defined by EPRI are presented and evaluated. First a short update of methods used by the various institutes involved is given as well as an update of the status with respect to previous performed pin-cell calculations. Problems detected in previous pin-cell calculations are inspected more closely. Detailed discussion of results of multipin assembly calculations is given. The assembly consists of 9 pins in a multicell square lattice in which the central pin is filled differently, i.e. a Gd pin for the BWR assembly and a control rod/guide tube for the PWR assembly. The results for pin cells showed a rather good overall agreement between the four participants although BWR pins with high void fraction turned out to be difficult to calculate. With respect to burnup calculations good overall agreement for the reactivity swing was obtained, provided that a fine time grid is used. (orig.)

  14. Evaluation of PWR and BWR assembly benchmark calculations. Status report of EPRI computational benchmark results, performed in the framework of the Netherlands' PINK programme (Joint project of ECN, IRI, KEMA and GKN)

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Klippel, H.T.; Kloosterman, J.L.; Hoogenboom, J.E.; Bruggink, J.C.

    1993-11-01

    Benchmark results of the Dutch PINK working group on calculational benchmarks on single pin cell and multipin assemblies as defined by EPRI are presented and evaluated. First a short update of methods used by the various institutes involved is given as well as an update of the status with respect to previous performed pin-cell calculations. Problems detected in previous pin-cell calculations are inspected more closely. Detailed discussion of results of multipin assembly calculations is given. The assembly consists of 9 pins in a multicell square lattice in which the central pin is filled differently, i.e. a Gd pin for the BWR assembly and a control rod/guide tube for the PWR assembly. The results for pin cells showed a rather good overall agreement between the four participants although BWR pins with high void fraction turned out to be difficult to calculate. With respect to burnup calculations good overall agreement for the reactivity swing was obtained, provided that a fine time grid is used. (orig.)

  15. Benchmarking Benchmarks

    NARCIS (Netherlands)

    D.C. Blitz (David)

    2011-01-01

    textabstractBenchmarking benchmarks is a bundle of six studies that are inspired by the prevalence of benchmarking in academic finance research as well as in investment practice. Three studies examine if current benchmark asset pricing models adequately describe the cross-section of stock returns.

  16. Holistic simulation of geotechnical installation processes benchmarks and simulations

    CERN Document Server

    2016-01-01

    This book examines in detail the entire process involved in implementing geotechnical projects, from a well-defined initial stress and deformation state, to the completion of the installation process.   The individual chapters provide the fundamental knowledge needed to effectively improve soil-structure interaction models. Further, they present the results of theoretical fundamental research on suitable constitutive models, contact formulations, and efficient numerical implementations and algorithms. Applications of fundamental research on boundary value problems are also considered in order to improve the implementation of the theoretical models developed. Subsequent chapters highlight parametric studies of the respective geotechnical installation process, as well as elementary and large-scale model tests under well-defined conditions, in order to identify the most essential parameters for optimizing the process. The book provides suitable methods for simulating boundary value problems in connection with g...

  17. A model to simulate the dynamic of a PWR pressurizer using the CSMP program

    International Nuclear Information System (INIS)

    Woiski, E.R.

    1981-01-01

    A mathematical model has been developed to simulate the dynamic behavior of a PWR pressurizer using the CSMP program. A two-control-volume formulation non-equilibrium model has been used for this purpose. Thermodynamic states are obtained after each integration cycle. The code was tested against experimental results of Shippingport and NPD (Nuclear Power Demonstration Plant) pressurizers. It was also tested against available data from Angra I and Angra II/III safety analysis report. Despite the model simplicity, the lack of important data and the low reliability or the experimental curves, the calculated and experimental results compared well. (Author) [pt

  18. Flow with boiling in four-cusp channels simulating damaged core in PWR type reactors

    International Nuclear Information System (INIS)

    Esteves, M.M.

    1985-01-01

    The study of subcooled nucleate flow boiling in non-circular channels is of great importance to engineering applications in particular to Nuclear Engineering. In the present work, an experimental apparatus, consisting basically of a refrigeration system, running on refrigerant-12, has been developed. Preliminary tests were made with a circular tube. The main objective has been to analyse subcooled flow boiling in four-cusp channels simulating the flow conditions in a PWR core degraded by accident. Correlations were developed for the forced convection film coefficient for both single-phase and subcooled flow boiling. The incipience of boiling in such geometry has also been studied. (author) [pt

  19. SARDAN- A program for the transients simulation in a typical PWR plant

    International Nuclear Information System (INIS)

    Mattos Santos, R.L.P. de.

    1979-10-01

    A program in FORTRAN-IV language was developed that simulates the behaviour of the primary circuit in a typical PWR plant during condition II transients, in particular uncontrolled withdrawal of a control rod set, control rod set drops and uncontrolled boron dilution. It the mathematical model adopted the reactor core, the hot piping to which a pressurizer is coupled, the steam generator and the cold piping are considered. The results obtained in the analysis of the mentioned accidents are compared to those present at the Final Safety Analysis Report (FSAR) of the Angra-1 reactor and are considered satisfactory. (F.E.) [pt

  20. Numerical simulation of thermohydraulic behavior of the steam generator of PWR type reactor

    International Nuclear Information System (INIS)

    Braga, C.V.M.; Carajilescov, P.

    1981-01-01

    Generally, 'U' tube steam generators with natural internal recirculation are used in PWR power stations. A thermalhydraulic model is developed for simulation of such components, in steady state. The flow of the secondary cycle fluid is divided in two parts individually homogeneous, allowing for heat and mass exchange between them. The secondary pressure is determined by defining the moisture of the vapor that feeds the turbine. This model is applied to the Angra II steam generator, operating in nominal conditions and with tubing partially plugged. (Author) [pt

  1. Simulation model for the dynamic behavior of the hydraUlic circuito of PWR reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.

    1987-01-01

    The present work consist of the development of a computer code for the simulations of hydraulic transients caused by stoppages of the primary coolant pumps of nuclear reactors and it applied to the hydraulic circuits typical of PWR reactor. The code calculates the time-histories of the mass flux, rotation speed, electric and hydraulic torque and dynamic head of the pumps. It can be used for any combination of active and inactive pumps. Several transients were analysed and the results were compared with comparared with data from the Angra-I nuclear power plant. The results were considered satisfactory. (author) [pt

  2. Study of the formation and transport of corrosion products in PWR primary circuit simulators

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Camp, J.J.

    1983-01-01

    The formation, migration and deposition of corrosion products in PWR primary circuits are studied in out-of-reactor loops. The aim of these studies is to limit the build-up of the radiation fields impinging on out-of-flux walls and to reduce the danger of rapid corrosion of fuel cans, taking into account the tougher conditions imposed on current trends in the operation of such industrial plants. Four simulator loops and their respective possibilities and research methods are described. (author)

  3. Design and simulation experimental study of bracket plates in steam generator for AC600 PWR

    International Nuclear Information System (INIS)

    Zhang Fuyuan; Zhang Wenqi; Ji Quankai; Zeng Xi; Xie Yongyao

    1998-01-01

    Seven-holes type bracket plate at the inlet nozzle and three-holes taper bracket plate at outlet nozzle are designed. According to 'local form and structure change' simulation theory, hydraulic models and simulators for the simulative experiments are designed. Taking water as the medium, the simulative experiments have been completed at the room temperature. The ζ-Re curves (here, ζ is the local pressure loss coefficient at the nozzles after the bracket plates are installed and Re is Reynolds number) have been got. Based on the experimental results, the computation and the analysis have been shown that. If the bracket plates are used in the steam generator (SG) of AC600 PWR, the pressure drop of primary side in the SG is about 14 percent higher than that of the 55/19 B style SG

  4. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  5. OECD/NEZ Main Steam Line Break Benchmark Problem Exercise I Simulation Using the SPACE Code with the Point Kinetics Model

    International Nuclear Information System (INIS)

    Kim, Yohan; Kim, Seyun; Ha, Sangjun

    2014-01-01

    The Safety and Performance Analysis Code for Nuclear Power Plants (SPACE) has been developed in recent years by the Korea Nuclear Hydro and Nuclear Power Co. (KHNP) through collaborative works with other Korean nuclear industries. The SPACE is a best-estimated two-phase three-field thermal-hydraulic analysis code to analyze the safety and performance of pressurized water reactors (PWRs). The SPACE code has sufficient features to replace outdated vendor supplied codes and to be used for the safety analysis of operating PWRs and the design of advanced reactors. As a result of the second phase of the development, the 2.14 version of the code was released through the successive various V and V works. The topical reports on the code and related safety analysis methodologies have been prepared for license works. In this study, the OECD/NEA Main Steam Line Break (MSLB) Benchmark Problem Exercise I was simulated as a V and V work. The results were compared with those of the participants in the benchmark project. The OECD/NEA MSLB Benchmark Problem Exercise I was simulated using the SPACE code. The results were compared with those of the participants in the benchmark project. Through the simulation, it was concluded that the SPACE code can effectively simulate PWR MSLB accidents

  6. General model for Pc-based simulation of PWR and BWR plant components

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, W M; Abomustafa, A M [Faculty of enginnering, alfateh univerity Tripoli, (Libyan Arab Jamahiriya)

    1995-10-01

    In this paper, we present a basic mathematical model derived from physical principles to suit the simulation of PWR-components such as pressurizer, intact steam generator, ruptured steam generator, and the reactor component of a BWR-plant. In our development, we produced an NMMS-package for nuclear modular modelling simulation. Such package is installed on a personal computer and it is designed to be user friendly through color graphics windows interfacing. The package works under three environments, namely, pre-processor, simulation, and post-processor. Our analysis of results using cross graphing technique for steam generator tube rupture (SGTR) accident, yielded a new proposal for on-line monitoring of control strategy of SGTR-accident for nuclear or conventional power plant. 4 figs.

  7. PKL/K9, Refill and Reflood Experiment in a Simulated PWR Primary System (PKL)

    International Nuclear Information System (INIS)

    1981-01-01

    1 - Description of test facility: PKL-facility simulates the essential primary system components of a typical West German 1300 PWR with regard to their thermohydraulic behaviour. The facility essentially consists of the pressure vessel with the heated bundle, the downcomer simulator, the primary loops with the components steam generator and pump simulator, the injection devices, the break geometry simulator, as well as the separators connected thereto, and the test containment to maintain a back-pressure at the location of break which is expected to be typical for emergency conditions. The number of heater rods and the cross-sections of the testing plant are on a reduced scale 1:134 in comparison with a typical German PWR. The elevations and locations are essentially full scale. Pressure vessel: The space between the pressure vessel and the inner core casing is sealed from the core region and the upper and lower plenum and connected with the upper plenum only by a pressure equalization line. The rod bundle surrounded by the inner core casing consists of 340 rods, 337 of which are indirect electrically heated. The test bundle cross-section as well as a heater element with the measuring elevations, the original-KWU-spacers and the axial power profile (7 power steps) are described. Downcomer: The downcomer is simulated by the downcomer nozzle region and the downcomer U-tube. The cold leg injection takes place both directly in the downcomer nozzle region and in the lines of t he intact single and double loop near to the downcomer nozzle region. A cylindrical insertion and repulsing metal sheets are installed in the downcomer nozzle region in order to avoid the emergency injection points into the broken loop. 2 - Description of test: Test K 9 out of a series PKL-IB was conducted on May 30, 1979 by Kraftwerk Union (KWU) at Erlangen (Germany). The objective of the integral cold leg injection test K 9 (double-ended 200%-break) was to investigate after a LOCA the refill and

  8. VOF Simulations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

    Directory of Open Access Journals (Sweden)

    Michio Murase

    2012-12-01

    Full Text Available In order to evaluate flow patterns and CCFL (countercurrent flow limitation characteristics in a PWR hot leg under reflux condensation, numerical simulations have been done using a two-fluid model and a VOF (volume of fluid method implemented in the CFD software, FLUENT6.3.26. The two-fluid model gave good agreement with CCFL data under low pressure conditions but did not give good results under high pressure steam-water conditions. On the other hand, the VOF method gave good agreement with CCFL data for tests with a rectangular channel but did not give good results for calculations in a circular channel. Therefore, in this paper, the computational grid and schemes were improved in the VOF method, numerical simulations were done for steam-water flows at 1.5 MPa under PWR full-scale conditions with the diameter of 0.75 m, and the calculated results were compared with the UPTF data at 1.5 MPa. As a result, the calculated flow pattern was found to be similar to the flow pattern observed in small-scale air-water tests, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa except in the region of a large steam volumetric flux.

  9. The determination of magnesium in simulated PWR coolant by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gatford, C.; Torrance, K.

    1988-06-01

    The determination of magnesium in simulated PWR coolant has been investigated by graphite furnace atomic absorption spectrometry with atomization from a L'vov platform. The presence of boric acid in the coolant suppresses the magnesium absorption to such an extent that removal of the boron is necessary and three variations of a methyl borate volatilization technique for the in situ removal of boron from the sample platform were investigated. This work has shown that dilution of the sample with an equal volume of acidified methanol and volatilization of the methyl borate was adequate for the determination of magnesium in coolant samples containing up to 2000 mg 1 -1 of boron. In simulated coolant samples containing 25 and 4 μg 1 -1 of magnesium, positive biases of about 2 and 0.5 μg 1 -1 were measured and these errors were considered to be due to contamination. The limit of detection in the presence of 100 and 2000 mg 1 -1 boron were 0.14 and 0.93 μg 1 -1 respectively. These performance characteristics suggest the method is completely acceptable for monitoring the chemical purity of PWR coolant and associated waters containing boric acid. If, however, more precise analyses were to be required for research purposes then any significant improvement in the above figures would require increased purity of reagents, clean-room conditions to reduce contamination and a more versatile atomic absorption spectrophotometer. (author)

  10. Investigating the cooling ability of reactor vessel head injection in the Maanshan PWR using CFD simulation

    International Nuclear Information System (INIS)

    Tseng Yungshin; Lin Chihhung; Wan Jongrong; Shih Chunkuan; Tsai, F. Peter

    2011-01-01

    In order to reduce the crack growth rate on the welding of penetration pipe, Pressurized Water Reactor (PWR) of Maanshan nuclear power plant (NPP) uses vessel head injection to cool vessel lid and control rod driving components. The injection flow from the cold leg is drained by the pressure difference between cold leg and upper internal components. In this study, 10 million meshes model with 4 sub-models have been developed to simulate the thermal-hydraulic behavior by commercial CFD program FLUENT. The results indicate that the injection nozzles can provide good cooling ability to reduce the maximum temperature for lid on the vessel head. The maximum temperature of vessel lid is about 293.81degC. Based on the simulated temperature, ASME CODE N-729-1 was further used to recount the effective degradation years (EDY) and reinspection years (RIY) factors. It demonstrates that the EDY and RIY factors are still less than 1.0. Therefore, the re-inspection period for Maanshan PWR would not be significantly affected by the miner temperature difference. (author)

  11. A digital simulation of a pressurizer in a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sato, E.F.

    1980-11-01

    A model for pressurizer digital simulation of a PWR nuclear power plant during transients, considering all pressurizer control features, is presented. The pressurizer is divided into two regions separated by a water-vapor interface and non-equilibrium conditions are considered. The particular thermodynamic process followed during insurge and outsurges is determined at each instant of analysis without any previous assumption. The pressure behavior is defined by an explicit equation in any of four possible pressurizer thermodynamic conditions. Thermodynamic properties of steam and water are computed by ASME subroutines and the mathematical formulation presented in this study was programed in FORTRAN IV for a Burroughs-6700 digital computer system. This program was employed to simulate the Shippingport Atomic Power Station and Almirante Alvaro Alberto Nuclear Power Plant - Unit 1 pressurizers. The test results compared with experimental or vendor data show the validity of this analysis method. (Author) [pt

  12. Simulating the steam generator and the pressurizer of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    De Greef, J.F.

    1985-01-01

    In a PWR nuclear power plant, considered as a power generating device, the steam generator as a subset plays an important role in the generation process, whereas the pressurizer rather acts as a control device for security purposes. Nevertheless, from a thermodynamical point of view, the two subsets behave basically in the same way, so that a common set of basic equations may be suggested to develop for each the proper mathematical simulation model. In this paper the generation of this common set of basic equations is described, from which a specific model for each device is derived. A numerical illustration of the behaviour of the two devices for typical inputs to the derived simulation model is pictured. (author)

  13. Laboratory results gained from cold worked type 316Ti under simulated PWR primary environment

    International Nuclear Information System (INIS)

    Devrient, B.; Kilian, R.; Koenig, G.; Widera, M.; Wermelinger, T.

    2015-01-01

    Beginning in 2005, intergranular stress corrosion cracking (IGSCC) of barrel bolts made from cold worked type 316Ti (German Material No. 1.4571 K) was observed in several S/KWU type PWRs. This mechanism was so far less understood for PWR primary conditions. Therefore an extended joint research program was launched by AREVA GmbH and VGB e.V. to clarify the specific conditions which contributed to the observed findings on barrel bolts. In the frame of this research program beneath the evaluation of the operational experience also laboratory tests on the general cracking behavior of cold worked type 316Ti material, which followed the same production line as for barrel bolt manufacturing in the eighties, with different cold work levels covering up to 30 % were performed to determine whether there is a specific susceptibility of cold worked austenitic stainless steel specimens to suffer IGSCC under simulated PWR primary conditions. All these slow strain rate tests on tapered specimens and component specimens came to the results that first, much higher cold work levels than used for the existing barrel bolts are needed for IGSCC initiation. Secondly, additional high active plastic deformation is needed to generate and propagate intergranular cracking. And thirdly, all specimens finally showed ductile fracture at the applied strain rates. (authors)

  14. Numerical simulations of concrete flow: A benchmark comparison

    DEFF Research Database (Denmark)

    Roussel, Nicolas; Gram, Annika; Cremonesi, Massimiliano

    2016-01-01

    First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we ...

  15. An homogeneous model of steam generator to simulate operational transiento and accidents in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Souza, A.L. de.

    1981-07-01

    GEVAP - A digital computer code was developed to simulate the thermodynamic transient behaviour of steam generators. The steam generator is divided in heating sections. In each section, the conservation equations of mass and energy are integrated numerically, using a predictor-corrector method. As good reslts where obtained, as compared to transients simulated using more detainled codes, it is concluded that GEVAP can be included as the steam generator module of a more complete systems simulation code for PWR's. (E.G.) [pt

  16. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

    International Nuclear Information System (INIS)

    Su, Jian; Cotta, Renato M.

    2000-01-01

    In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

  17. Low cycle fatigue behavior of hot-bent 347 stainless steel in a simulated PWR water environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Ho; Seo, Myung Gyu; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Hong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Soon [Central Research InstituteKorea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    The effect of hot bending on the Low cycle fatigue (LCF) behavior of 347 SS was evaluated in Room temperature (RT) air and simulated Pressurized water reactor (PWR) water environments. The LCF life of 347 SS in PWR water was shorter than that in RT air for the as-received and hot-bent conditions. The LCF life of hot-bent 347 SS was relatively longer than that of the as-received condition in both RT air and PWR water. Microstructure analysis indicated development of dislocation structure near niobium carbide particles and increase in dislocation density for the hot-bent 347 SS. Such microstructure acted as barriers to dislocation movement during the LCF test, resulting in minimal hardening for the hot-bent 347 SS in RT air.

  18. Simulation of a Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos.

    1980-01-01

    The following work intends to perform the digital simulation, of the Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant for control systems design and analysis purposes. There are mathematical models for the reactor, the steam generator, the pressurizer and for transport lags of the coolant in the primary circuit. Nevertheless no one control system has been considered to permit any user the inclusion in the more convenient way of the desired control systems' models. The characteristics of the system in consideration are fundamentally equal to the ones of Almirante Alvaro Alberto Nuclear Power Plant, Unit I (Angra I) obtained in the Final Safety Analysis Report at Comissao Nacional de Energia Nuclear. (author)

  19. Design and static simulation of secondary loop of small PWR nuclear power plants

    International Nuclear Information System (INIS)

    Martin Lopez, L.A.N.

    1989-01-01

    A computer program that has been developed with the purpose of making easier the decisions concerning the design of the secondary loop of small PWR nuclear power plants through numerical experiments of low running costs and short time is presented. Initially, the first part of the computer program is described. It aims to preliminarily design several major components of the secondary circuit from user-defined design conditions. Next, the second part of the computer program is presented. It simulates the steady state operation at part-load conditions of the preliminary design of the plant by generating and solving systems of simultaneous nonlinear algebraic equations, their number varying from 17 to 107. The computer program has been tested for several application cases. The program results are discussed in the last part of the work, along with several aspects to be added to the program in future works. (author)

  20. HEXBU-3D, a three-dimensional PWR-simulator program for hexagonal fuel assemblies

    International Nuclear Information System (INIS)

    Karvinen, E.

    1981-06-01

    HEXBU-3D is a three-dimensional nodal simulator program for PWR reactors. It is designed for a reactor core that consists of hexagonal fuel assemblies and of big follower-type control assemblies. The program solves two-group diffusion equations in homogenized fuel assembly geometry by a sophisticated nodal method. The treatment of feedback effects from xenon-poisoning, fuel temperature, moderator temperature and density and soluble boron concentration are included in the program. The nodal equations are solved by a fast two-level iteration technique and the eigenvalue can be either the effective multiplication factor or the boron concentration of the moderator. Burnup calculations are performed by tabulated sets of burnup-dependent cross sections evaluated by a cell burnup program. HEXBY-3D has been originally programmed in FORTRAN V for the UNIVAC 1108 computer, but there is also another version which is operable on the CDC CYBER 170 computer. (author)

  1. Essays of leaching in cemented products containing simulated waste from evaporator concentrated of PWR reactor

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes

    2011-01-01

    This paper evaluated the results from leaching resistance essays of cemented products, prepared from three distinct formulations, containing simulated waste of concentrated from the PWR reactor evaporator. The leaching rate is a parameter of qualification of solidified products containing radioactive waste and is determined in accordance with regulation ISO 6961. This procedure evaluates the capacity of transfer organic and inorganic substances presents in the waste through dissolution in the extractor medium. For the case of radioactive waste it is reached the more retention of contaminants in the cemented product, i.e.the lesser value of lixiviation rate. Therefore, this work evaluated among the proposed formulation that one which attend the criterion established in the regulation CNEN-NN-6.09

  2. An axial calculation method for accurate two-dimensional PWR core simulation

    International Nuclear Information System (INIS)

    Grimm, P.

    1985-02-01

    An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)

  3. TRSM-a thermal-hydraulic real-time simulation model for PWR

    International Nuclear Information System (INIS)

    Zhou Weichang

    1997-01-01

    TRSM (a Thermal-hydraulic Real-time Simulation Model) has been developed for PWR real-time simulation and best-estimate prediction of normal operating and abnormal accident conditions. It is a non-equilibrium two phase flow thermal-hydraulic model based on five basic conservation equations. A drift flux model is used to account for the unequal velocities of liquid and gaseous mixture, with or without the presence of the noncondensibles. Critical flow models are applied for break flow and valve flow calculations. A 5-regime two phase heat convection model is applied for clad-to-coolant as well as fluid-to-tubing heat transfer. A rigorous reactor coolant pump model is used to calculate the pressure drop and rise for the suction and discharge ends with complete pump characteristics curves included. The TRSM model has been adapted in the full-scale training simulator of Qinshan Nuclear Power Plant 300 MW unit to simulate the thermal-hydraulic performance of the NSSS. The simulation results of a cold leg LOCA and a steam generator tube rupture (SGTR) accident are presented

  4. Benchmark Simulation Model No 2 – finalisation of plant layout and default control strategy

    DEFF Research Database (Denmark)

    Nopens, I.; Benedetti, L.; Jeppsson, U.

    2010-01-01

    The COST/IWA Benchmark Simulation Model No 1 (BSM1) has been available for almost a decade. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the research work related to the benchmark simulation models has resulted...... in more than 300 publications worldwide demonstrates the interest in and need of such tools within the research community. Recent efforts within the IWA Task Group on “Benchmarking of control strategies for WWTPs” have focused on an extension of the benchmark simulation model. This extension aims...... be evaluated in a realistic fashion in the one week BSM1 evaluation period. In this paper, the finalised plant layout is summarised and, as was done for BSM1, a default control strategy is proposed. A demonstration of how BSM2 can be used to evaluate control strategies is also given....

  5. A benchmark on computational simulation of a CT fracture experiment

    International Nuclear Information System (INIS)

    Franco, C.; Brochard, J.; Ignaccolo, S.; Eripret, C.

    1992-01-01

    For a better understanding of the fracture behavior of cracked welds in piping, FRAMATOME, EDF and CEA have launched an important analytical research program. This program is mainly based on the analysis of the effects of the geometrical parameters (the crack size and the welded joint dimensions) and the yield strength ratio on the fracture behavior of several cracked configurations. Two approaches have been selected for the fracture analyses: on one hand, the global approach based on the concept of crack driving force J and on the other hand, a local approach of ductile fracture. In this approach the crack initiation and growth are modelized by the nucleation, growth and coalescence of cavities in front of the crack tip. The model selected in this study estimates only the growth of the cavities using the RICE and TRACEY relationship. The present study deals with a benchmark on computational simulation of CT fracture experiments using three computer codes : ALIBABA developed by EDF the CEA's code CASTEM 2000 and the FRAMATOME's code SYSTUS. The paper is split into three parts. At first, the authors present the experimental procedure for high temperature toughness testing of two CT specimens taken from a welded pipe, characteristic of pressurized water reactor primary piping. Secondly, considerations are outlined about the Finite Element analysis and the application procedure. A detailed description is given on boundary and loading conditions, on the mesh characteristics, on the numerical scheme involved and on the void growth computation. Finally, the comparisons between numerical and experimental results are presented up to the crack initiation, the tearing process being not taken into account in the present study. The variations of J and of the local variables used to estimate the damage around the crack tip (triaxiality and hydrostatic stresses, plastic deformations, void growth ...) are computed as a function of the increasing load

  6. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-06-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behaviour. We also suggest some other tests that could be used as bench-marks

  7. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-01-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behavior. We also suggest some other tests that could be used as bench-marks

  8. Test requirements for the integral effect test to simulate Korean PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time.

  9. Test requirements for the integral effect test to simulate Korean PWR plants

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K.

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time

  10. A numerical integration approach suitable for simulating PWR dynamics using a microcomputer system

    International Nuclear Information System (INIS)

    Zhiwei, L.; Kerlin, T.W.

    1983-01-01

    It is attractive to use microcomputer systems to simulate nuclear power plant dynamics for the purpose of teaching and/or control system design. An analysis and a comparison of feasibility of existing numerical integration methods have been made. The criteria for choosing the integration step using various numerical integration methods including the matrix exponential method are derived. In order to speed up the simulation, an approach is presented using the Newton recursion calculus which can avoid convergence limitations in choosing the integration step size. The accuracy consideration will dominate the integration step limited. The advantages of this method have been demonstrated through a case study using CBM model 8032 microcomputer to simulate a reduced order linear PWR model under various perturbations. It has been proven theoretically and practically that the Runge-Kutta method and Adams-Moulton method are not feasible. The matrix exponential method is good at accuracy and fairly good at speed. The Newton recursion method can save 3/4 to 4/5 time compared to the matrix exponential method with reasonable accuracy. Vertical Barhis method can be expanded to deal with nonlinear nuclear power plant models and higher order models as well

  11. Simulation of a Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant. Simulacao do sistema nuclear de geracao de vapor de uma central PWR

    Energy Technology Data Exchange (ETDEWEB)

    Reis Martins Junior, L.L. dos.

    1980-01-01

    The following work intends to perform the digital simulation, of the Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant for control systems design and analysis purposes. There are mathematical models for the reactor, the steam generator, the pressurizer and for transport lags of the coolant in the primary circuit. Nevertheless no one control system has been considered to permit any user the inclusion in the more convenient way of the desired control systems' models. The characteristics of the system in consideration are fundamentally equal to the ones of Almirante Alvaro Alberto Nuclear Power Plant, Unit I (Angra I) obtained in the Final Safety Analysis Report at Comissao Nacional de Energia Nuclear. (author).

  12. Simulation of steam generator plugging tubes in a PWR to analyze the operating impact

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Patricia, E-mail: patricia.pla-freixa@ec.europa.eu [Nuclear Reactor Safety Assessment Unit, Institute for Energy and Transport, Joint Research Centre (JRC) of the European Commission, Petten (Netherlands); Reventos, Francesc, E-mail: francesc.reventos@upc.edu [Technical University of Catalonia (UPC), Barcelona (Spain); Martin Ramos, Manuel, E-mail: manuel.martin-ramos@ec.europa.eu [Nuclear Safety and Security Coordination Unit, Policy Support Coordination, Joint Research Centre of the European Commission, Brussels (Belgium); Sol, Ismael, E-mail: isol@anacnv.com [Asociación Nuclear Ascó-Vandellós-II (ANAV), Tarragona (Spain); Strucic, Miodrag, E-mail: miodrag.strucic@ec.europa.eu [Nuclear Reactor Safety Assessment Unit, Institute for Energy and Transport, Joint Research Centre (JRC) of the European Commission, Petten (Netherlands)

    2016-08-15

    Highlights: • Plugging a fraction of the SG tubes does not affect power output of the plant. • There is a limit to SG plugging in the range of 10–15%. • The rupture of a SG tube in a 12% plugged SG has shown no significant differences in operator actions. • A SBLOCA in a 12% plugged SG has shown no significant differences in operator actions. - Abstract: A number of nuclear power plants (NPPs) with pressurized water reactors (PWR) in the world have replaced their steam generators (SG) due to degradation of the SG tubes caused by different problems. Several methods were attempted to correct the defects of the tubes, but eventually the only permanent solution was to plug them. The consequences of plugging the tubes are the decrease of heat transfer surface, the reduction of the flow area and subsequent reduction of the primary system mass flow and for a fraction of plugged tubes higher than a given value, the reduction of reactor output and economic losses. The objective of this paper is to analyze whether steam generator tube plugging has an impact in the effectiveness of accident management actions. An analysis with Relap5 Mod 3.3 patch03 for the Spanish reactor Ascó-2, a 3-loop 2940.6 MWth Westinghouse PWR, in which plugging of steam generator tubes are simulated, is presented in order to find the limit for the adequate operation of the plant. Several steady state calculations were performed with different fractions of plugged SG tubes, by modeling the reduction of the primary to secondary heat transfer surface and the reduction of the primary coolant mass flow area in the tubes as well. The results of the analysis yield that plugging 12% of the SG tubes is around the limit for optimal reactor operation. To complete the study two events, in which the steam generators are used to cooldown the plant, were simulated to find out if the plugging of SGs tubes could influence the efficiency of the operator actions described in the emergency operating

  13. Simulation of Benchmark Cases with the Terminal Area Simulation System (TASS)

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    The hydrodynamic core of the Terminal Area Simulation System (TASS) is evaluated against different benchmark cases. In the absence of closed form solutions for the equations governing atmospheric flows, the models are usually evaluated against idealized test cases. Over the years, various authors have suggested a suite of these idealized cases which have become standards for testing and evaluating the dynamics and thermodynamics of atmospheric flow models. In this paper, simulations of three such cases are described. In addition, the TASS model is evaluated against a test case that uses an exact solution of the Navier-Stokes equations. The TASS results are compared against previously reported simulations of these banchmark cases in the literature. It is demonstrated that the TASS model is highly accurate, stable and robust.

  14. Development of computer code SIMPSEX for simulation of FBR fuel reprocessing flowsheets: II. additional benchmarking results

    International Nuclear Information System (INIS)

    Shekhar Kumar; Koganti, S.B.

    2003-07-01

    Benchmarking and application of a computer code SIMPSEX for high plutonium FBR flowsheets was reported recently in an earlier report (IGC-234). Improvements and recompilation of the code (Version 4.01, March 2003) required re-validation with the existing benchmarks as well as additional benchmark flowsheets. Improvements in the high Pu region (Pu Aq >30 g/L) resulted in better results in the 75% Pu flowsheet benchmark. Below 30 g/L Pu Aq concentration, results were identical to those from the earlier version (SIMPSEX Version 3, code compiled in 1999). In addition, 13 published flowsheets were taken as additional benchmarks. Eleven of these flowsheets have a wide range of feed concentrations and few of them are β-γ active runs with FBR fuels having a wide distribution of burnup and Pu ratios. A published total partitioning flowsheet using externally generated U(IV) was also simulated using SIMPSEX. SIMPSEX predictions were compared with listed predictions from conventional SEPHIS, PUMA, PUNE and PUBG. SIMPSEX results were found to be comparable and better than the result from above listed codes. In addition, recently reported UREX demo results along with AMUSE simulations are also compared with SIMPSEX predictions. Results of the benchmarking SIMPSEX with these 14 benchmark flowsheets are discussed in this report. (author)

  15. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Terachi, T.; Yamada, T.; Miyamoto, T.; Arioka, K.

    2012-07-01

    The rates of SCC growth were measured under simulated PWR primary water conditions (500 ppm B + 2 ppm Li + 30 cm3/kg-H2O-STP DH2) using cold worked 316SS and 304SS. The direct current potential drop method was applied to measure the crack growth rates for 53 specimens. Dependence of the major engineering factors, such as yield strength, temperature and stress intensity was systematically examined. The rates of crack growth were proportional to the 2.9 power of yield strength, and directly proportional to the apparent yield strength. The estimated apparent activation energy was 84 kJ/mol. No significant differences in the SCC growth rates and behaviors were identified between 316SS and 304SS. Based on the measured results, an empirical equation for crack growth rate was proposed for engineering applications. Although there were deviations, 92.8% of the measured crack growth rates did not exceed twice the value calculated by the empirical equation.

  16. Precursor evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2017-03-27

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.

  17. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs

    DEFF Research Database (Denmark)

    Jeppsson, Ulf; Rosen, Christian; Alex, Jens

    2006-01-01

    The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also...... worldwide, demonstrates the interest in such a tool within the research community In this paper, an extension of the benchmark simulation model no 1 (BSM1) is proposed. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently...... the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one-week BSM1 evaluation period. In the paper, the extended plant...

  18. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2012-01-01

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  19. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  20. Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink

    DEFF Research Database (Denmark)

    Rosen, Christian; Vrecko, Darko; Gernaey, Krist

    2006-01-01

    , in particular if the ADM1 is to be included in dynamic simulations of plant-wide or even integrated systems. In this paper, the experiences gained from a Matlab/Simulink implementation of ADM1 into the extended COST/IWA Benchmark Simulation Model (BSM2) are presented. Aspects related to system stiffness, model...

  1. Uncertainty and sensitivity analysis of control strategies using the benchmark simulation model No1 (BSM1)

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan

    2009-01-01

    The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predict...

  2. Modular simulation of the dynamics of a 925 MWe PWR electronuclear type reactor and design of a multivariable control algorithm

    International Nuclear Information System (INIS)

    Mansouri, S.

    1985-06-01

    This work has been consecrated to the modular simulation of a PWR 925 MWe power plant's dynamic and to the design of a multivariable algorithm control: a mathematical model of a plant type was developed. The programs were written on a structured manner in order to maximize flexibility. A multivariable control algorithm based on pole placement with output feedback was elaborated together with its correspondent program. The simulation results for different normal transients were shown and the capabilities of the new method of multivariable control are illustrated through many examples

  3. Development of parallel benchmark code by sheet metal forming simulator 'ITAS'

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Suzuki, Shintaro; Minami, Kazuo

    1999-03-01

    This report describes the development of parallel benchmark code by sheet metal forming simulator 'ITAS'. ITAS is a nonlinear elasto-plastic analysis program by the finite element method for the purpose of the simulation of sheet metal forming. ITAS adopts the dynamic analysis method that computes displacement of sheet metal at every time unit and utilizes the implicit method with the direct linear equation solver. Therefore the simulator is very robust. However, it requires a lot of computational time and memory capacity. In the development of the parallel benchmark code, we designed the code by MPI programming to reduce the computational time. In numerical experiments on the five kinds of parallel super computers at CCSE JAERI, i.e., SP2, SR2201, SX-4, T94 and VPP300, good performances are observed. The result will be shown to the public through WWW so that the benchmark results may become a guideline of research and development of the parallel program. (author)

  4. Coupled simulation of steam line break accident

    International Nuclear Information System (INIS)

    Royer, E.; Raimond, E.; Caruge, D.

    2000-01-01

    The steam line break is a PWR type reactor design accident, which concerns coupled physical phenomena. To control these problems simulation are needed to define and validate the operating procedures. The benchmark OECD PWR MSLB (Main Steam Line Break) has been proposed by the OECD to validate the feasibility and the contribution of the multi-dimensional tools in the simulation of the core transients. First the benchmark OECD PWR MSLB is presented. Then the analysis of the three exercises (system with pinpoint kinetic, three-dimensional core and whole system with three-dimensional core) are discussed. (A.L.B.)

  5. Numerical simulation of radioisotope's dependency on containment performance for large dry PWR containment under severe accidents

    International Nuclear Information System (INIS)

    Mehboob, Khurram; Xinrong, Cao; Ahmed, Raheel; Ali, Majid

    2013-01-01

    Highlights: • Calculation and comparison of activity of BURN-UP code with ORIGEN2 code. • Development of SASTC computer code. • Radioisotopes dependency on containment ESFs. • Mitigation in atmospheric release with ESFs operation. • Variation in radioisotopes source term with spray flow and pH value. -- Abstract: During the core melt accidents large amount of fission products can be released into the containment building. These fission products escape into the environment to contribute in accident source term. The mitigation in environmental release is demanded for such radiological consequences. Thus, countermeasures to source term, mitigations of release of radioactivity have been studied for 1000 MWe PWR reactor. The procedure of study is divided into five steps: (1) calculation and verification of core inventory, evaluated by BURN-UP code, (2) containment modeling based on radioactivity removal factors, (3) selection of potential accidents initiates the severe accident, (4) calculation of release of radioactivity, (5) study the dependency of release of radioactivity on containment engineering safety features (ESFs) inducing mitigation. Loss of coolant accident (LOCA), small break LOCA and flow blockage accidents (FBA) are selected as initiating accidents. The mitigation effect of ESFs on source term has been studied against ESFs performance. Parametric study of release of radioactivity has been carried out by modeling and simulating the containment parameters in MATLAB, which takes BURN-UP outcomes as input along with the probabilistic data. The dependency of iodine and aerosol source term on boric and caustic acid spray has been determined. The variation in source term mitigation with the variation of containment spray flow rate and pH values have been studied. The variation in containment retention factor (CRF) has also been studied with the ESF performance. A rapid decrease in source term is observed with the increase in pH value

  6. Fatigue crack growth threshold of austenitic stainless steels in simulated PWR primary water

    International Nuclear Information System (INIS)

    Tsutsumi, Kazuya; Yamamoto, Kenji; Nitta, Yoshikazu

    2007-01-01

    Many studies have revealed that fatigue crack growth (FCG) rate of austenitic stainless steels is accelerated in light water reactor environment compared to that in air at room temperature. Major driving factors in the acceleration of FCG rate are stress ratio, temperature and stress rise time. Based on this knowledge, FCG curves have been developed considering these factors as parameters. However, there are few data of FCG threshold ΔK th in light water reactor environment. Hence it is necessary to clarify FCG rate under near-threshold condition for more accurate evaluation of fatigue crack growth behavior under cyclic stress with relatively low ΔK. In the present study, therefore, ΔK th was determined for austenitic stainless steels in simulated PWR primary water, and FCG behavior under near-threshold condition was revealed by collecting fatigue crack propagation data. The results are summarized as follows: No propagation of fatigue crack was found in high temperature water, and there was a definite ΔK th . Average ΔK eff,th was 4.3 MPa·m 0.5 at 325degC, 3.3 MPa·m 0.5 at 100degC, and there was no considerable reduction compared to currently known ΔK eff,th in air. Thus, it was revealed tha ambient conditions had minimal effect, on ΔK eff,th , ΔK th increases with increasing temperature and decreasing frequency. As a result of fracture surface observation, oxide-induced-crack-closure was considered to be a cause of the dependency described above. In addition, it was suggested that changes in material properties also had influence on ΔK th, since ΔK eff,th itself increased at elevated temperature. (author)

  7. Best-estimate LOCA simulation in a PWR-W containment building with a detailed 3D GOTHIC model

    International Nuclear Information System (INIS)

    Jimenez, G.; Fernandez-Cosials, K.; Bocanegra, R.; Lopez-Alonso, E.

    2015-01-01

    The design-basis accidents in a PWR-W containment building are usually simulated with a lumped parameter model, normally used for license analysis. Nevertheless, some phenomenology is difficult to be simulated with a lumped model: the condensation rate in each structure, stagnant water areas, temperature in different compartments, sumps and recirculation pumps disabled because of lack of water, etc. Therefore, for the detailed study of the thermal-hydraulic (TH) behaviour in every room of the containment building could be more appropriate to do it with a detailed 3D representation of the containment building geometry. The main objective of this project has been to build a 3D PWR-W containment model with the GOTHIC code to analyze the detailed behavior during a design basis accident. In the process of the 3D GOTHIC model development some previous steps were necessary: a detailed CAD model of the containment, followed by a simplified model adapted to the GOTHIC geometric capabilities. Once the geometry has been adapted to the GOTHIC requirements, the 3D model is created with this information. A design-basis accident has been simulated with the 3D model (LBLOCA), and the local TH behaviour is analysed. The results show that in comparison with a lumped parameter model, high temperatures are reached locally. Nevertheless the average pressure behaviour is found to be similar to that given by a lumped parameter model. The present paper demonstrates that is possible to build a 3D PWR-W model with the GOTHIC code with enough resolution to analyse the TH behaviour in each one of the containment rooms but at the same time with reasonable computing time. Once the GOTHIC model has been created a new road is opened enabling the simulation of other accidents such as MSLB, a SBLOCA or even a long-term SBO sequence. This document is made up of an abstract and the slides of the presentation. (authors)

  8. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  9. A simple analytical scaling method for a scaled-down test facility simulating SB-LOCAs in a passive PWR

    International Nuclear Information System (INIS)

    Lee, Sang Il

    1992-02-01

    A Simple analytical scaling method is developed for a scaled-down test facility simulating SB-LOCAs in a passive PWR. The whole scenario of a SB-LOCA is divided into two phases on the basis of the pressure trend ; depressurization phase and pot-boiling phase. The pressure and the core mixture level are selected as the most critical parameters to be preserved between the prototype and the scaled-down model. In each phase the high important phenomena having the influence on the critical parameters are identified and the scaling parameters governing the high important phenomena are generated by the present method. To validate the model used, Marviken CFT and 336 rod bundle experiment are simulated. The models overpredict both the pressure and two phase mixture level, but it shows agreement at least qualitatively with experimental results. In order to validate whether the scaled-down model well represents the important phenomena, we simulate the nondimensional pressure response of a cold-leg 4-inch break transient for AP-600 and the scaled-down model. The results of the present method are in excellent agreement with those of AP-600. It can be concluded that the present method is suitable for scaling the test facility simulating SB-LOCAs in a passive PWR

  10. A preliminary evaluation of the simulation requirements of accident situations in a PWR training simulator

    International Nuclear Information System (INIS)

    Bhattacharya, A.S.

    1978-07-01

    An attempt was made to establish here the need to incorporate ''Accident Situations'' in Training Simulators, and, to indicate that the modelling of such otherwise complex situations could admit a great deal of simplifications. In most cases, a ''semidynamic'' model to display time dependent flows or Tank levels would do while ESF actuated start/stop or open/close of equipment could be modelled merely ''Live''. Transport delays and Time Constants in most cases are of no significance as are the accuracy considerations of most variables. The systems which need complete Dynamic Simulation are the ones which are always running, such as Pressuriser, RCS, Reactor, and the Steam Generator with the added advantages of the modest accuracy requirements and the plant being shutdown. (author)

  11. An investigation into the efficiency of ion-exchange membranes in simulated PWR coolants

    International Nuclear Information System (INIS)

    Clune, T.

    1980-11-01

    This report describes an investigation of the retention efficiency of cation-exchange membranes for magnesium, calcium and nickel ions in PWR-coolant type solutions containing 2 ppm lithium (as lithium hydroxide) and 1000 ppm boron (as boric acid). By analysis of the membranes themselves or of the effluent, the retention characteristics of the membranes in various experimental conditions have been examined. (author)

  12. Burn-up Credit Criticality Safety Benchmark-Phase II-E. Impact of Isotopic Inventory Changes due to Control Rod Insertions on Reactivity and the End Effect in PWR UO2 Fuel Assemblies

    International Nuclear Information System (INIS)

    Neuber, Jens Christian; Tippl, Wolfgang; Hemptinne, Gwendoline de; Maes, Philippe; Ranta-aho, Anssu; Peneliau, Yannick; Jutier, Ludyvine; Tardy, Marcel; Reiche, Ingo; Kroeger, Helge; Nakata, Tetsuo; Armishaw, Malcom; Miller, Thomas M.

    2015-01-01

    The report describes the final results of the Phase II-E Burn-up Credit Criticality Benchmark conducted by the Expert Group on Burn-up Credit Criticality Safety. The objective of Phase II of the Burn-up Credit Criticality Safety programme is to study the impact of axial burn-up profiles of PWR UO 2 spent fuel assemblies on the reactivity of PWR UO 2 spent fuel assembly configurations. The objective of the Phase II-E benchmark was to study the impact of changes on the spent nuclear fuel isotopic composition due to control rod insertion during depletion on the reactivity and the end effect of spent fuel assemblies with realistic axial burn-up profiles for different control rod insertion depths ranging from 0 cm (no insertion) to full insertion (i.e. to the case that the fuel assemblies were exposed to control rod insertion over their full active length). For this purpose two axial burn-up profiles have been extracted from an AREVA-NP-GmbH-owned 17x17-(24+1) PWR UO 2 spent fuel assembly burn-up profile database. One profile has an average burn-up of 30 MWd/kg U, the other profile is related to an average burn-up of 50 MWd/kg U. Two profiles with different average burn-up values were selected because the shape of the burn-up profile is affected by the average burn-up and the end effect depends on the average burn-up of the fuel. The Phase II-E benchmark exercise complements the Phase II-C and Phase II-D benchmark exercises. In Phase II-D different irradiation histories were analysed using different control rod insertion histories during depletion as well as irradiation histories without control rod insertion. But in all the histories analysed a uniform distribution of the burn-up and hence a uniform distribution of the isotopic composition were assumed; and in all the histories including any usage of control rods full insertion of the control rods was assumed. In Phase II-C the impact of the asymmetry of axial burn-up profiles on the reactivity and the end effect of

  13. Measurement of local flow pattern in boiling R12 simulating PWR conditions with multiple optical probes

    International Nuclear Information System (INIS)

    Garnier, J.

    1998-01-01

    center of particles is presented. Moreover, some numerical simulations gives the uncertainty induced by this treatment method. We quantify the uncertainty on gas velocity and on granulometric properties when, at the measurement point, there is a velocity gradient, a gradient of particles number and a gradient or particles diameter. Then, we detail the data acquisition system which measures the frequency of particles intercepted by the probe, the histogram of time of flight between the two fibers and the histogram of vapor time of the first P.I.F. Moreover, a numerical scope acquires the raw signal to check that the probe works properly. Finally, we present some of the results we obtained. A wide range of thermal hydraulic parameters has been covered (more than 10000 measurements have been performed). We first show that we can get a criteria to check that our particles have a spherical shape. We also find that rise and fall time of the electrical signal are strongly correlated with the gas velocity and we expect it will be possible to perform velocity measurements with a single fiber probe (after a specific calibration which is under definition). The concluding remarks deals with the future developments. A first work concern probes able to measure in the real conditions of a PWR (16 MPa and 340 deg. C). Another development concerns the size of the sensitive part for probes with classical optical fibres. We intend to get nanometric tips to minimize flow disturbance, increase accuracy for small particles measurements and get multiple probes (four fibres) with low dimensions for local measurements of interfacial area density. We also intend to extend the capability of our data acquisition system in order to keep more information on the P.I.F. (author)

  14. Simulation benchmark based on THAI-experiment on dissolution of a steam stratification by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, M., E-mail: freitag@becker-technologies.com; Schmidt, E.; Gupta, S.; Poss, G.

    2016-04-01

    Highlights: . • We studied the generation and dissolution of steam stratification in natural convection. • We performed a computer code benchmark including blind and open phases. • The dissolution of stratification predicted only qualitatively by LP and CFD models during the blind simulation phase. - Abstract: Locally enriched hydrogen as in stratification may contribute to early containment failure in the course of severe nuclear reactor accidents. During accident sequences steam might accumulate as well to stratifications which can directly influence the distribution and ignitability of hydrogen mixtures in containments. An international code benchmark including Computational Fluid Dynamics (CFD) and Lumped Parameter (LP) codes was conducted in the frame of the German THAI program. Basis for the benchmark was experiment TH24.3 which investigates the dissolution of a steam layer subject to natural convection in the steam-air atmosphere of the THAI vessel. The test provides validation data for the development of CFD and LP models to simulate the atmosphere in the containment of a nuclear reactor installation. In test TH24.3 saturated steam is injected into the upper third of the vessel forming a stratification layer which is then mixed by a superposed thermal convection. In this paper the simulation benchmark will be evaluated in addition to the general discussion about the experimental transient of test TH24.3. Concerning the steam stratification build-up and dilution of the stratification, the numerical programs showed very different results during the blind evaluation phase, but improved noticeable during open simulation phase.

  15. A model library for simulation and benchmarking of integrated urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, R.; Flores Alsina, Xavier; Kroll, J. S.

    2017-01-01

    This paper presents a freely distributed, open-source toolbox to predict the behaviour of urban wastewater systems (UWS). The proposed library is used to develop a system-wide Benchmark Simulation Model (BSM-UWS) for evaluating (local/global) control strategies in urban wastewater systems (UWS...

  16. Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations

    KAUST Repository

    VERMA, MAHENDRA K

    2013-09-21

    Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.

  17. Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations

    KAUST Repository

    VERMA, MAHENDRA K; CHATTERJEE, ANANDO; REDDY, K SANDEEP; YADAV, RAKESH K; PAUL, SUPRIYO; CHANDRA, MANI; Samtaney, Ravi

    2013-01-01

    Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.

  18. Calculations of steady-state and reactivity insertion transients in a research reactor simulating the PWR

    International Nuclear Information System (INIS)

    Mladin, Mirea; Mladin, Daniela; Prodea, Ilie

    2010-01-01

    In 2008, IAEA started a Coordinated Research Project for benchmarking the thermalhydraulic and neutronic computer codes for research reactor analysis against the experimental data. In this framework, for the first year of research contract, the Institute for Nuclear Research engaged in steady-state analysis of SPERT-III reactor and also in the simulation of the reactivity insertion tests performed in this reactor during mid sixties. In the first part, the paper describes a Monte Carlo input model of the oxide core selected for investigation and the results of the steady-state neutronic calculations with respect to hot and cold core reactivity excess and control rods worth. Also, prompt neutron life and reactivity feed-back coefficients were examined. These results were compared with the data provided in the reactor specification document concerning neutronic design calculated data. The second part of the paper is dedicated to calculation of the reactivity insertion transients with RELAP5 and CATHARE2 thermalhydraulic codes, both including point reactor kinetics models, and to comparison with experimental data. (authors)

  19. Mechanical simulations of sandia II tests OECD ISP 48 benchmark

    International Nuclear Information System (INIS)

    Ghavamian, Sh.; Courtois, A.; Valfort, J.-L.; Heinfling, G.

    2005-01-01

    This paper illustrates the work carried out by EDF within the framework of ISP48 post-test analysis of NUPEC/NRCN 1:4-scale model of a prestressed pressure containment vessel of a nuclear power plant. EDF as a participant of the International Standard Problem n degree 8 has performed several simulations to determine the ultimate response of the scale model. To determine the most influent parameter in such an analysis several studies were carried out. The mesh was built using a parametric tool to measure the influence of discretization on results. Different material laws of concrete were also used. The purpose of this paper is to illustrate the ultimate behaviour of SANDIA II model obtained by Code-Asterwith comparison to tests records, and also to share the lessons learned from the parametric computations and precautions that must be taken. (authors)

  20. Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking

    CERN Document Server

    Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria

    One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...

  1. Monte Carlo simulations and benchmark studies at CERN's accelerator chain

    CERN Document Server

    AUTHOR|(CDS)2083190; Brugger, Markus

    2016-01-01

    Mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its accelerator chain are responsible for failures on electronic devices located in the vicinity of the accelerator beam lines. These radiation effects on electronics and, more generally, the overall radiation damage issues have a direct impact on component and system lifetimes, as well as on maintenance requirements and radiation exposure to personnel who have to intervene and fix existing faults. The radiation environments and respective radiation damage issues along the CERN’s accelerator chain were studied in the framework of the CERN Radiation to Electronics (R2E) project and are hereby presented. The important interplay between Monte Carlo simulations and radiation monitoring is also highlighted.

  2. Operating function tests of the PWR type RHR pump for engineering safety system under simulated strong ground excitation

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, Kazuhiro; Homma, Toshiaki; Inazuka, Hisashi; Nakajima, Norifumi.

    1979-08-01

    Results are described of operating function verification tests of a PWR RHR pump during an earthquake. Of the active reactor components, the PWR residual heat removal pump was chosen from view points of aseismic classification, safety function, structural complexity and past aseismic tests. Through survey of the service conditions and structure of this pump, seismic test conditions such as acceleration level, simulated seismic wave form and earthquake duration were decided for seismicity of the operating pump. Then, plans were prepared to evaluate vibration chracteristics of the pump and to estimate its aseismic design margins. Subsequently, test facility and instrumentation system were designed and constructed. Experimental results could thus be acquired on vibration characteristics of the pump and its dynamic behavior during different kinds and levels of simulated earthquake. In conclusion: (1) Stiffeners attached to the auxiliary system piping do improve aseismic performance of the pump. (2) The rotor-shaft-bearing system is secure unless it is subjected to transient disturbunces having high frequency content. (3) The motor and pump casing having resonance frequencies much higher than frequency content of the seismic wave show only small amplifications. (4) The RHR pump possesses an aseismic design margin more than 2.6 times the expected ultimate earthquake on design basis. (author)

  3. Simulation of corrosion product activity in ion- exchanger of PWR under acceleration of corrosion and flow rate perturbations

    International Nuclear Information System (INIS)

    Mirza, N.M.; Mirza, S.M.; Rafique, M.

    2005-01-01

    In this paper computer code developed earlier by the authors (CPAIR-P) has been employed to compute corrosion product activity in PWRs for flow rate perturbations. The values of radioactivity in ion exchanger of Pressurized Water Reactor (PWR) under normal and flow rate perturbation conditions have been calculated. For linearly accelerating corrosion rates, activity saturates for removal rate of 600 cm/sup 3// s in primary coolant of PWR. A higher removal rate of 750 cm/sup 3// s was selected for which the saturation value is sufficiently low (0. 28 micro Ci/cm/sup 3/). Simulation results shows that the Fe/sup 59/ Na/sup 24/, Mo/sup 99/, Mn/sup 56/ reaches saturation values with in about 700 hours of reactor operation. However, Co/sup 58/ and Co/sup 60/ keep on accumulating and do not saturate with in 2000 hours of these simulation time. When flow rate is decreased by 10% of rated flow rate after 500 hours of reactor operation, a dip in activity is seen, which reaches to the value of 0.00138 micro Ci cm/sup -3/ then again it begins to rise and reaches saturation value of 0.00147 cm/sup 3//s. (author)

  4. Benchmark of the neutronic model used in Maanshan compact simulator

    International Nuclear Information System (INIS)

    Hu, C.-H.; Gone, J.-K.; Ko, H.-T.

    2004-01-01

    The Maanshan compact simulator has adopted a three dimensional kinetic model CONcERT, which was developed by GP International Inc. (GPI) in 1991 for real-time neutronic analysis. Maanshan Nuclear Power Plant utilizes a Westinghouse nuclear steam supply system with three-loop pressurized water reactor. There are 157 fuel assemblies and 52 full-length Rod Cluster Control Assemblies in the reactor core. The control of excess reactivity and power peaking is provided by soluble boron in moderator and burnable absorber rods in fuel assemblies. The neutronic model of CONcERT is based on solving a modified time-dependent two-group diffusion equations coupled to the equations of six-group delayed neutron precursor concentrations. The validation of CONcERT for the Maanshan plant is separated into two groups. The first group compared (1) boron endpoints for different control bank inserted conditions, (2) control rod differential and integral worths and (3) temperature coefficients with the measurements in the Low Power Physical Test (LPPT). The second group compared critical boron concentration and power distribution in high power condition with the measurements. In addition, xenon and samarium equilibrium worths at different power levels as well as the time dependent changes of their worth after the reactor scram are illustrated. (author)

  5. Helped positioning by using a simulation tool for qualification of PWR vessel examination technique

    International Nuclear Information System (INIS)

    Lasserre, Frederic; Pasquier, Thierry; Haiat, Guillaume; Calmon, Pierre; Leberre, Stephane; Lutsen, Mickael

    2006-01-01

    INTERCONTROLE have been performing the examination of all PWR vessels in France from the inside, using UT techniques since 1975. The in-service inspection machine (MIS) features several tools equipped with focussed transducers; each tool is dedicated to one specific area of the vessel. In the core region, the very first millimeters from the cladding-base metal interface has to be inspected with accuracy because of the under-cladding cracks type defects (perpendicular to the inner surface) likely to be found. The technique used up to now was qualified according to the RSE-M code in 1998. It is based on a set of 63 angle L-waves transducers specifically designed for the detection of defect tip diffraction echoes in the 25 first millimeters in through-wall thickness. The analysis methods for defect characterization are based on a global integration of various cladding induced phenomena. The technique, the procedure and the analysis methods were qualified for a given limited volume. The new qualification in process in France, requires that INTERCONTROLE find solutions for increasing the accuracy of the analysis, in a larger qualification volume than before, while remaining in close compliance with the RSE-M code. A new computer assisted analysis tool for the characterization, the sizing and the positioning of defects is part of the improvements currently in progress or already completed. This tool is the result of a thesis commissioned to the CEA (Atomic Energy Commission), now implemented in the CIVAMIS software (developed on a CIVA based system). The updated version of CIVAMIS including this characterization tool and the RSE-M qualification of the new analysis method (with validation on mock-ups) is now qualified. Despite of a larger qualification volume, the results obtained (mentioned in the present paper) fulfill the customer's requirements thanks to the amount of data, of information and of knowledge, available today. The ability to simulate the cladding in terms

  6. Simulation of the fuel rod thermal hydraulic performance during the blow down phase in a PWR

    International Nuclear Information System (INIS)

    Gadelha, J.A.M.

    1982-10-01

    A digital computer code to predict the fuel rod thermalhydraulic performance during a postulated loss-of-coolant accident (LOCA) in the primary circuit of a PWR nuclear power plant is developed. The fuel rod corresponds to that in an average channel in the core. Only the blowdown phase is considered during the accident. The conservation equations of mass, momentum, and energy, and the heat conduction equation are solved to determine the fuel rod conditions during the accident. Finite differences are applied as a numerical method in the solution of the equations modelling the rod and coolant conditions. (Author) [pt

  7. Design of a steam generator for PWR power plants and steady state simulation

    International Nuclear Information System (INIS)

    Ferreira, W.J.

    1982-01-01

    A procedure and a computer code for the thermal design of a steam generator for PWR power plants is developed. A vertical integral steam generator with inverted U-tubes and natural circulation of the secondary side is selected for modelling. Primary fluid velocity and recirculation ratio are varied to obtain the preliminary dimensions. Further, adjustments are made through iteractive solution of the equations of conservation of mass, energy and momentum. An agreement is found between design calculations for steam generators of different capacities and existing designs. (Author) [pt

  8. IRIS-2012 OECD/NEA/CSNI benchmark: Numerical simulations of structural impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Tarallo, Francois; Rambach, Jean-Mathieu; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    A benchmark of numerical simulations related to the missile impact on reinforced concrete (RC) slabs has been launched in the frame of OECD/NEA/CSNI research program “Improving Robustness Assessment Methodologies for Structures Impacted by Missiles”, under the acronym IRIS. The goal of the research program is to simulate RC structural, flexural and punching, behavior under deformable and rigid missile impact. The first phase called IRIS-2010 was a blind prediction of the tests performed at VTT facility in Espoo, Finland. The two simulations were performed related to two series of tests: (1) two tests on the impact of a deformable missile exhibiting damage mainly by flexural (so-called “flexural tests”) or global response and (2) three tests on the impact of a rigid missile exhibiting damage mainly by punching response (so-called “punching tests”) or local response. The simulation results showed significant scatter (coefficient of variation up to 132%) for both flexural and punching cases. The IRIS-2012 is the second, post-test, phase of the benchmark with the goal to improve simulations and reduce the scatter of the results. Based on the IRIS-2010 recommendations and to better calibrate concrete constitutive models, a series of tri-axial tests as well as Brazilian tests were performed as a part of the IRIS-2012 benchmark. 25 teams from 11 countries took part in this exercise. Majority of participants were part of the IRIS-2010 benchmark. Participants showed significant improvement in reducing epistemic uncertainties in impact simulations. Several teams presented both finite element (FE) and simplified analysis as per recommendations of the IRIS-2010. The improvements were at the level of simulation results but also at the level of understanding of impact phenomena and its modeling. Due to the complexity of the physical phenomena and its simulation (high geometric and material non-linear behavior) and inherent epistemic and aleatory uncertainties, the

  9. IRIS-2012 OECD/NEA/CSNI benchmark: Numerical simulations of structural impact

    Energy Technology Data Exchange (ETDEWEB)

    Orbovic, Nebojsa, E-mail: nebojsa.orbovic@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); Tarallo, Francois [IRSN, Fontenay aux Roses (France); Rambach, Jean-Mathieu [Géodynamique et Structures, Bagneux (France); Sagals, Genadijs; Blahoianu, Andrei [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-12-15

    A benchmark of numerical simulations related to the missile impact on reinforced concrete (RC) slabs has been launched in the frame of OECD/NEA/CSNI research program “Improving Robustness Assessment Methodologies for Structures Impacted by Missiles”, under the acronym IRIS. The goal of the research program is to simulate RC structural, flexural and punching, behavior under deformable and rigid missile impact. The first phase called IRIS-2010 was a blind prediction of the tests performed at VTT facility in Espoo, Finland. The two simulations were performed related to two series of tests: (1) two tests on the impact of a deformable missile exhibiting damage mainly by flexural (so-called “flexural tests”) or global response and (2) three tests on the impact of a rigid missile exhibiting damage mainly by punching response (so-called “punching tests”) or local response. The simulation results showed significant scatter (coefficient of variation up to 132%) for both flexural and punching cases. The IRIS-2012 is the second, post-test, phase of the benchmark with the goal to improve simulations and reduce the scatter of the results. Based on the IRIS-2010 recommendations and to better calibrate concrete constitutive models, a series of tri-axial tests as well as Brazilian tests were performed as a part of the IRIS-2012 benchmark. 25 teams from 11 countries took part in this exercise. Majority of participants were part of the IRIS-2010 benchmark. Participants showed significant improvement in reducing epistemic uncertainties in impact simulations. Several teams presented both finite element (FE) and simplified analysis as per recommendations of the IRIS-2010. The improvements were at the level of simulation results but also at the level of understanding of impact phenomena and its modeling. Due to the complexity of the physical phenomena and its simulation (high geometric and material non-linear behavior) and inherent epistemic and aleatory uncertainties, the

  10. Uncertainty and sensitivity analysis in the neutronic parameters generation for BWR and PWR coupled thermal-hydraulic–neutronic simulations

    International Nuclear Information System (INIS)

    Ánchel, F.; Barrachina, T.; Miró, R.; Verdú, G.; Juanas, J.; Macián-Juan, R.

    2012-01-01

    Highlights: ► Best-estimate codes are affected by the uncertainty in the methods and the models. ► Influence of the uncertainty in the macroscopic cross-sections in a BWR and PWR RIA accidents analysis. ► The fast diffusion coefficient, the scattering cross section and both fission cross sections are the most influential factors. ► The absorption cross sections very little influence. ► Using a normal pdf the results are more “conservative” comparing the power peak reached with uncertainty quantified with a uniform pdf. - Abstract: The Best Estimate analysis consists of a coupled thermal-hydraulic and neutronic description of the nuclear system's behavior; uncertainties from both aspects should be included and jointly propagated. This paper presents a study of the influence of the uncertainty in the macroscopic neutronic information that describes a three-dimensional core model on the most relevant results of the simulation of a Reactivity Induced Accident (RIA). The analyses of a BWR-RIA and a PWR-RIA have been carried out with a three-dimensional thermal-hydraulic and neutronic model for the coupled system TRACE-PARCS and RELAP-PARCS. The cross section information has been generated by the SIMTAB methodology based on the joint use of CASMO-SIMULATE. The statistically based methodology performs a Monte-Carlo kind of sampling of the uncertainty in the macroscopic cross sections. The size of the sampling is determined by the characteristics of the tolerance intervals by applying the Noether–Wilks formulas. A number of simulations equal to the sample size have been carried out in which the cross sections used by PARCS are directly modified with uncertainty, and non-parametric statistical methods are applied to the resulting sample of the values of the output variables to determine their intervals of tolerance.

  11. Benchmarking of the simulation of the ATLAS HaLL background

    International Nuclear Information System (INIS)

    Vincke, H.

    2000-01-01

    The LHC, mainly to be used as a proton-proton collider, providing collisions at energies of 14 TeV, will be operational in the year 2005. ATLAS, one of the LHC experiments, will provide high accuracy measurements concerning these p-p collisions. In these collisions also a high particle background is produced. This background was already calculated with the Monte Carlo simulation program FLUKA. Unfortunately, the prediction concerning this background rate is only understood within an uncertainty level of five. The main contribution of this factor can be seen as limited knowledge concerning the ability of FLUKA to simulate these kinds of scenarios. In order to reduce the uncertainty, benchmarking simulations of experiments similar to the ATLAS background situation were performed. The comparison of the simulations with the experiments proves to which extent FLUKA is able to provide reliable results concerning the ATLAS background situation. In order to perform this benchmark, an iron construction was irradiated by a hadron beam. The primary particles had ATLAS equivalent energies. Behind the iron structure, the remnants of the shower processes are measured and simulated. The simulation procedure and its encouraging results, including the comparison with the measured numbers, are presented and discussed in this work. (author)

  12. Crack growth testing of cold worked stainless steel in a simulated PWR primary water environment to assess susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Tice, D.R.; Stairmand, J.W.; Fairbrother, H.J.; Stock, A.

    2007-01-01

    Although austenitic stainless steels do not show a high degree of susceptibility to stress corrosion cracking (SCC) in PWR primary environments, there is limited evidence from laboratory testing that crack propagation may occur under some conditions for materials in a cold-worked condition. A test program is therefore underway to examine the factors influencing SCC propagation in good quality PWR primary coolant. Type 304 stainless steel was subjected to cold working by either rolling (at ambient or elevated temperature) or fatigue cycling, to produce a range of yield strengths. Compact tension specimens were fabricated from these materials and tested in simulated high temperature (250-300 o C) PWR primary coolant. It was observed that the degree of crack propagation was influenced by the degree of cold work, the crack growth orientation relative to the rolling direction and the method of working. (author)

  13. A computer code package for Monte Carlo photon-electron transport simulation Comparisons with experimental benchmarks

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    2000-01-01

    A computer code package (PTSIM) for particle transport Monte Carlo simulation was developed using object oriented techniques of design and programming. A flexible system for simulation of coupled photon, electron transport, facilitating development of efficient simulation applications, was obtained. For photons: Compton and photo-electric effects, pair production and Rayleigh interactions are simulated, while for electrons, a class II condensed history scheme was considered, in which catastrophic interactions (Moeller electron-electron interaction, bremsstrahlung, etc.) are treated in detail and all other interactions with reduced individual effect on electron history are grouped together using continuous slowing down approximation and energy straggling theories. Electron angular straggling is simulated using Moliere theory or a mixed model in which scatters at large angles are treated as distinct events. Comparisons with experimentally benchmarks for electron transmission and bremsstrahlung emissions energy and angular spectra, and for dose calculations are presented

  14. Catchment & sewer network simulation model to benchmark control strategies within urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, Ramesh; Flores Alsina, Xavier; Fu, Guangtao

    2016-01-01

    This paper aims at developing a benchmark simulation model to evaluate control strategies for the urban catchment and sewer network. Various modules describing wastewater generation in the catchment, its subsequent transport and storage in the sewer system are presented. Global/local overflow based...... evaluation criteria describing the cumulative and acute effects are presented. Simulation results show that the proposed set of models is capable of generating daily, weekly and seasonal variations as well as describing the effect of rain events on wastewater characteristics. Two sets of case studies...

  15. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1983-08-01

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 2000 0 C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW) [de

  16. Horizontal loading test by whole model specimen simulating inner concrete structure of PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Furuya, Noriyuki; Sekine, Masataka; Kimura, Kozo; Yamaguchi, Yoshihiro; Yamaguchi, Tsuneo; Takeda, Toshikazu

    1985-01-01

    The Nuclear Power Engineering Test Center has performed a horizontal loading test by a whole model specimen simulating the inner concrete structure of a PWR type nuclear power plant in order to investigate restoring force characteristics of reactor buildings. This report describes the results of examination of applicability to the test results of analysis methods based on elastic theory. The analysis results of elastic stiffness, concrete cracking load, rebar yielding loads and ultimate strength were compared with the test results. According to this examination, it is recognized that even these analysis methods based on elastic theory are comparatively effective for analysis of an inner concrete structure of fairly complex configuration, although there are limits of the scope of applicability. (author)

  17. Study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP

    International Nuclear Information System (INIS)

    Soares, Alexandre de Souza

    2014-01-01

    The present paper proposes a study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP. To this end, it considered a loss of coolant accident with 160 cm 2 breaking area in cold leg of 20 circuit of the reactor cooling system of nuclear power plant Angra 2, with the reactor operating in stationary condition, to 100% power. It considered that occurred at the same time the loss of External Power Supply and the availability of emergency cooling system was not full. The results obtained are quite relevant and with the possibility of being used in the planning of future activities, given that the construction of Angra 3 is underway and resembles the Angra 2. (author)

  18. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Science.gov (United States)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  19. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  20. List of benchmarks for simulation tools of steam-water two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S. [Electricite de France (EDF), Div. R and D, 78 - Chatou (France); Serre, G. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, DTP, 38 (France)

    2001-07-01

    A physical-numerical benchmarks matrix was drawn up in the context of the ECUME co-development action. Its purpose is to test the different potentialities required for the numerical methods to be used in the codes of the future which will benefit from advanced physics simulations. This benchmarks matrix is to be used for each numerical method in order to answer the following questions: What is the two-phase flow field that the combination of physics model + numerical scheme can process? What is the accuracy of the scheme for each type of physics situation? What is the numerical efficiency (computing time) of the numerical scheme for each type of physics situation? (author)

  1. List of benchmarks for simulation tools of steam-water two-phase flows

    International Nuclear Information System (INIS)

    Mimouni, S.; Serre, G.

    2001-01-01

    A physical-numerical benchmarks matrix was drawn up in the context of the ECUME co-development action. Its purpose is to test the different potentialities required for the numerical methods to be used in the codes of the future which will benefit from advanced physics simulations. This benchmarks matrix is to be used for each numerical method in order to answer the following questions: What is the two-phase flow field that the combination of physics model + numerical scheme can process? What is the accuracy of the scheme for each type of physics situation? What is the numerical efficiency (computing time) of the numerical scheme for each type of physics situation? (author)

  2. Simulation of a severe accident at a typical PWR due to break of a hot leg ECCS line using MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Sabundjian, Gaianê, E-mail: smlee@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The aim of this work was to simulate a severe accident at a typical PWR caused by break in Emergency Core Cooling System (ECCS) line of a hot leg using the MELCOR code. The nodalization of this typical PWR was elaborated by the Global Research for Safety (GRS) and provided to the CNEN for analysis of the severe accidents at the Angra 2, which is similar to that PWR. Although both of them are not identical the results obtained for that typical PWR may be valuable because of the lack of officially published calculation for Angra 2. Relevant parameters such as pressure, temperature and water level in various control volumes after the break in the hot leg were calculated as well as degree of core degradation and hydrogen concentration in containment. The result obtained in this work could be considered satisfactory in the sense that the physical phenomena reproduced by the simulation were in general very reasonable, and most of the events occurred within acceptable time intervals. However, the uncertainty analysis was not carried out in this work. Furthermore, this scenario could be used as a base for the study of the effectiveness of some preventive or/and mitigating measures of Severe Accident Management (SAMG) by adding associated conditions for each measure in its input. (author)

  3. Simulation of a severe accident at a typical PWR due to break of a hot leg ECCS line using MELCOR code

    International Nuclear Information System (INIS)

    Lee, Seung Min; Sabundjian, Gaianê

    2017-01-01

    The aim of this work was to simulate a severe accident at a typical PWR caused by break in Emergency Core Cooling System (ECCS) line of a hot leg using the MELCOR code. The nodalization of this typical PWR was elaborated by the Global Research for Safety (GRS) and provided to the CNEN for analysis of the severe accidents at the Angra 2, which is similar to that PWR. Although both of them are not identical the results obtained for that typical PWR may be valuable because of the lack of officially published calculation for Angra 2. Relevant parameters such as pressure, temperature and water level in various control volumes after the break in the hot leg were calculated as well as degree of core degradation and hydrogen concentration in containment. The result obtained in this work could be considered satisfactory in the sense that the physical phenomena reproduced by the simulation were in general very reasonable, and most of the events occurred within acceptable time intervals. However, the uncertainty analysis was not carried out in this work. Furthermore, this scenario could be used as a base for the study of the effectiveness of some preventive or/and mitigating measures of Severe Accident Management (SAMG) by adding associated conditions for each measure in its input. (author)

  4. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie; Xiao, Qian [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China)

    2017-06-15

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters. - Highlights: •Long-term EIS measurements of 316L SS in simulated PWR primary water. •Highest charge-transfer resistance and oxide film resistance in oxygenated water. •Highest electric double-layer capacitance and oxide film CPE in hydrogenated water. •Similar compositions, different shapes of oxides in deaerated/hydrogenated water. •Inner layer Cr-rich in hydrogenated/deaerated water, Ni-rich in oxygenated water.

  5. Computational simulation of natural convection of a molten core in lower head of a PWR pressure vessel

    International Nuclear Information System (INIS)

    Vieira, Camila Braga; Romero, Gabriel Alves; Jian Su

    2010-01-01

    Computational simulation of natural convection in a molten core during a hypothetical severe accident in the lower head of a typical PWR pressure vessel was performed for two-dimensional semi-circular geometry with isothermal walls. Transient turbulent natural convection heat transfer of a fluid with uniformly distributed volumetric heat generation rate was simulated by using a commercial computational fluid dynamics software ANSYS CFX 12.0. The Boussinesq model was used for the buoyancy effect generated by the internal heat source in the flow field. The two-equation k-ω based SST (Shear Stress Transport) turbulence model was used to mould the turbulent stresses in the Reynolds-Average Navier-Stokes equations (RANS). Two Prandtl numbers, 6:13 and 7:0, were considered. Five Rayleigh numbers were simulated for each Prandtl number used (109, 1010, 1011, 1012, and 1013). The average Nusselt numbers on the bottom surface of the semicircular cavity were in excellent agreement with Mayinger et al. (1976) correlation and only at Ra = 109 the average Nusselt number on the top flat surface was in agreement with Mayinger et al. (1976) and Kulacki and Emara (1975) correlations. (author)

  6. Computer simulation of Masurca critical and subcritical experiments. Muse-4 benchmark. Final report

    International Nuclear Information System (INIS)

    2006-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. In this context, partitioning and transmutation (P and T) of minor actinides and long-lived fission products can play an important role, significantly reducing the burden on geological repositories of nuclear waste and allowing their more effective use. Various systems, including existing reactors, fast reactors and advanced systems have been considered to optimise the transmutation scheme. Recently, many countries have shown interest in accelerator-driven systems (ADS) due to their potential for transmutation of minor actinides. Much R and D work is still required in order to demonstrate their desired capability as a whole system, and the current analysis methods and nuclear data for minor actinide burners are not as well established as those for conventionally-fuelled systems. Recognizing a need for code and data validation in this area, the Nuclear Science Committee of the OECD/NEA has organised various theoretical benchmarks on ADS burners. Many improvements and clarifications concerning nuclear data and calculation methods have been achieved. However, some significant discrepancies for important parameters are not fully understood and still require clarification. Therefore, this international benchmark based on MASURCA experiments, which were carried out under the auspices of the EC 5. Framework Programme, was launched in December 2001 in co-operation with the CEA (France) and CIEMAT (Spain). The benchmark model was oriented to compare simulation predictions based on available codes and nuclear data libraries with experimental data related to TRU transmutation, criticality constants and time evolution of the neutronic flux following source variation, within liquid metal fast subcritical systems. A total of 16 different institutions participated in this first experiment based benchmark, providing 34 solutions. The large number

  7. What are the assets and weaknesses of HFO detectors? A benchmark framework based on realistic simulations.

    Directory of Open Access Journals (Sweden)

    Nicolas Roehri

    Full Text Available High-frequency oscillations (HFO have been suggested as biomarkers of epileptic tissues. While visual marking of these short and small oscillations is tedious and time-consuming, automatic HFO detectors have not yet met a large consensus. Even though detectors have been shown to perform well when validated against visual marking, the large number of false detections due to their lack of robustness hinder their clinical application. In this study, we developed a validation framework based on realistic and controlled simulations to quantify precisely the assets and weaknesses of current detectors. We constructed a dictionary of synthesized elements-HFOs and epileptic spikes-from different patients and brain areas by extracting these elements from the original data using discrete wavelet transform coefficients. These elements were then added to their corresponding simulated background activity (preserving patient- and region- specific spectra. We tested five existing detectors against this benchmark. Compared to other studies confronting detectors, we did not only ranked them according their performance but we investigated the reasons leading to these results. Our simulations, thanks to their realism and their variability, enabled us to highlight unreported issues of current detectors: (1 the lack of robust estimation of the background activity, (2 the underestimated impact of the 1/f spectrum, and (3 the inadequate criteria defining an HFO. We believe that our benchmark framework could be a valuable tool to translate HFOs into a clinical environment.

  8. Simulation of hydrogen deflagration experiment – Benchmark exercise with lumped-parameter codes

    Energy Technology Data Exchange (ETDEWEB)

    Kljenak, Ivo, E-mail: ivo.kljenak@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kuznetsov, Mikhail, E-mail: mike.kuznetsov@kit.edu [Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe (Germany); Kostka, Pal, E-mail: kostka@nubiki.hu [NUBIKI Nuclear Safety Research Institute, Konkoly-Thege Miklós út 29-33, 1121 Budapest (Hungary); Kubišova, Lubica, E-mail: lubica.kubisova@ujd.gov.sk [Nuclear Regulatory Authority of the Slovak Republic, Bajkalská 27, 82007 Bratislava (Slovakia); Maltsev, Mikhail, E-mail: maltsev_MB@aep.ru [JSC Atomenergoproekt, 1, st. Podolskykh Kursantov, Moscow (Russian Federation); Manzini, Giovanni, E-mail: giovanni.manzini@rse-web.it [Ricerca sul Sistema Energetico, Via Rubattino 54, 20134 Milano (Italy); Povilaitis, Mantas, E-mail: mantas.p@mail.lei.lt [Lithuania Energy Institute, Breslaujos g.3, 44403 Kaunas (Lithuania)

    2015-03-15

    Highlights: • Blind and open simulations of hydrogen combustion experiment in large-scale containment-like facility with different lumped-parameter codes. • Simulation of axial as well as radial flame propagation. • Confirmation of adequacy of lumped-parameter codes for safety analyses of actual nuclear power plants. - Abstract: An experiment on hydrogen deflagration (Upward Flame Propagation Experiment – UFPE) was proposed by the Jozef Stefan Institute (Slovenia) and performed in the HYKA A2 facility at the Karlsruhe Institute of Technology (Germany). The experimental results were used to organize a benchmark exercise for lumped-parameter codes. Six organizations (JSI, AEP, LEI, NUBIKI, RSE and UJD SR) participated in the benchmark exercise, using altogether four different computer codes: ANGAR, ASTEC, COCOSYS and ECART. Both blind and open simulations were performed. In general, all the codes provided satisfactory results of the pressure increase, whereas the results of the temperature show a wider dispersal. Concerning the flame axial and radial velocities, the results may be considered satisfactory, given the inherent simplification of the lumped-parameter description compared to the local instantaneous description.

  9. Construct validity and expert benchmarking of the haptic virtual reality dental simulator.

    Science.gov (United States)

    Suebnukarn, Siriwan; Chaisombat, Monthalee; Kongpunwijit, Thanapohn; Rhienmora, Phattanapon

    2014-10-01

    The aim of this study was to demonstrate construct validation of the haptic virtual reality (VR) dental simulator and to define expert benchmarking criteria for skills assessment. Thirty-four self-selected participants (fourteen novices, fourteen intermediates, and six experts in endodontics) at one dental school performed ten repetitions of three mode tasks of endodontic cavity preparation: easy (mandibular premolar with one canal), medium (maxillary premolar with two canals), and hard (mandibular molar with three canals). The virtual instrument's path length was registered by the simulator. The outcomes were assessed by an expert. The error scores in easy and medium modes accurately distinguished the experts from novices and intermediates at the onset of training, when there was a significant difference between groups (ANOVA, p<0.05). The trend was consistent until trial 5. From trial 6 on, the three groups achieved similar scores. No significant difference was found between groups at the end of training. Error score analysis was not able to distinguish any group at the hard level of training. Instrument path length showed a difference in performance according to groups at the onset of training (ANOVA, p<0.05). This study established construct validity for the haptic VR dental simulator by demonstrating its discriminant capabilities between that of experts and non-experts. The experts' error scores and path length were used to define benchmarking criteria for optimal performance.

  10. Simulation of hydrogen deflagration experiment – Benchmark exercise with lumped-parameter codes

    International Nuclear Information System (INIS)

    Kljenak, Ivo; Kuznetsov, Mikhail; Kostka, Pal; Kubišova, Lubica; Maltsev, Mikhail; Manzini, Giovanni; Povilaitis, Mantas

    2015-01-01

    Highlights: • Blind and open simulations of hydrogen combustion experiment in large-scale containment-like facility with different lumped-parameter codes. • Simulation of axial as well as radial flame propagation. • Confirmation of adequacy of lumped-parameter codes for safety analyses of actual nuclear power plants. - Abstract: An experiment on hydrogen deflagration (Upward Flame Propagation Experiment – UFPE) was proposed by the Jozef Stefan Institute (Slovenia) and performed in the HYKA A2 facility at the Karlsruhe Institute of Technology (Germany). The experimental results were used to organize a benchmark exercise for lumped-parameter codes. Six organizations (JSI, AEP, LEI, NUBIKI, RSE and UJD SR) participated in the benchmark exercise, using altogether four different computer codes: ANGAR, ASTEC, COCOSYS and ECART. Both blind and open simulations were performed. In general, all the codes provided satisfactory results of the pressure increase, whereas the results of the temperature show a wider dispersal. Concerning the flame axial and radial velocities, the results may be considered satisfactory, given the inherent simplification of the lumped-parameter description compared to the local instantaneous description

  11. Simulation of single-phase rod bundle flow. Comparison between CFD-code ESTET, PWR core code THYC and experimental results

    International Nuclear Information System (INIS)

    Mur, J.; Larrauri, D.

    1998-07-01

    Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)

  12. Simulation of a PWR power plant for process control and diagnosis

    International Nuclear Information System (INIS)

    Ravnsbjerg Nielsen, F.

    1991-12-01

    A computer model of a simplified pressurized nuclear power plant is developed with aim at studies concerning process control, diagnosis and decision making. The model includes the traditional PWR plant components, primary circuit with reactor, pressurizer and steam generator, steam circuit with steam line, turbine and condenser, interconnected with pumps, valves and controllers. The model can be used for calculation of transients for both normal operation and incidents such as turbine trip, loss of feedwater, run down of pumps or various valve failures. The computer model is not directed to any specific existing plant. For convenience and alleviation in implementation the physical description of many components are simplified to an extent where the qualitative behavior of the system is not violated. For computer memory economy a variety of thermodynamical functions for water and steam have been approximated with analytical expressions based on table values. The model is implemented in the C language and has been run on both the IBM PC and the SUN workstation. (au) 8 tabs., 25 ills., 10 refs

  13. Fatigue-crack growth behavior of Type 347 stainless steels under simulated PWR water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Min, Ki-Deuk; Yoon, Ji-Hyun; Kim, Min-Chul; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fatigue crack growth rate (FCGR) curve of stainless steel exists in ASME code section XI, but it is still not considering the environmental effects. The longer time nuclear power plant is operated, the more the environmental degradation issues of materials pop up. There are some researches on fatigue crack growth rate of S304 and S316, but researches of FCGR of S347 used in Korea nuclear power plant are insufficient. In this study, the FCGR of S347 stainless steel was evaluated in the PWR high temperature water conditions. The FCGRs of S347 stainless steel under pressurized-water conditions were measured by using compact-tension (CT) specimens at different levels of dissolved oxygen (DO) and frequency. 1. FCGRs of SS347 were slower than that in ASME XI and environmental effect did not occur when frequency was higher than 1Hz. 2. Fatigue crack growth is accelerated by corrosion fatigue and it is more severe when frequency is slower than 0.1Hz. 3. Increase of crack tip opening time increased corrosion fatigue and it deteriorated environmental fatigue properties.

  14. Low cycle fatigue of Alloy 690 and welds in a simulated PWR primary water environment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jongdae; Cho, Pyungyeon; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cho, Pyungyeon [Khalifa Univ., Abu Dhabi (United Arab Emirates); Kim, Tae Soon; Lee, Yong Sung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, environmental fatigue tests for these materials were performed and the new prediction model of fatigue life of Alloy 690 and weld in primary water condition was proposed. To evaluate the fatigue life of Alloy 690 and 52M in a PWR environment, low cycle fatigue tests were performed and revised fatigue life prediction models and environmental factor were proposed. With the revised Fen model for Alloy 690 and 52M, the reliability of the fatigue life prediction has been improved. The reduction of low cycle fatigue life of metallic materials in the primary coolant water environments has been the subject of debate between the utility and regulator since 1980s. It became the significant licensing problem since the issue of RG-1.207 by U. S. NRC. The statistical model for the environmental factor, Fen, specified in RG-1.207 was based on the extensive test results accumulated by the ANL and Japanese national program. Of the materials, the limited fatigue life data of Ni-Cr-Fe alloys were used to develop the Fen for the alloys. Furthermore, test data for Alloy 690 and its weld are limited. Considering that Alloy 690 will be extensively used in the new nuclear power plants, additional effort to validate or improve current Fen model is required.

  15. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  16. Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking

    Science.gov (United States)

    Daetwyler, Hans D.; Calus, Mario P. L.; Pong-Wong, Ricardo; de los Campos, Gustavo; Hickey, John M.

    2013-01-01

    The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits

  17. Benchmarking of measurement and simulation of transverse rms-emittance growth

    Directory of Open Access Journals (Sweden)

    L. Groening

    2008-09-01

    Full Text Available Transverse emittance growth along the Alvarez drift tube linac (DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth, appropriate tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different transverse phase advances along the DTL. Special emphasis is put on the modeling of the initial distribution for the simulations. The concept of rms equivalence is expanded from full intensity to fractions of less than 100% of the beam. The experimental setup, data reduction, preparation of the simulations, and the evaluation of the simulations are described. In the experiments and in the simulations, a minimum of the rms-emittance growth was observed at zero current phase advances of about 60°. In general, good agreement was found between simulations and experiment for the mean values of horizontal and vertical emittances at the DTL exit.

  18. Criteria for safety-related nuclear-power-plant operator actions: 1982 pressurized-water-reactor (PWR) simulator exercises

    International Nuclear Information System (INIS)

    Crowe, D.S.; Beare, A.N.; Kozinsky, E.J.; Haas, P.M.

    1983-06-01

    The primary objective of the Safety-Related Operator Action (SROA) Program at Oak Ridge National Laboratory is to provide a data base to support development of criteria for safety-related actions by nuclear power plant operators. When compared to field data collected on similar events, a base of operator performance data developed from the simulator experiments can then be used to establish safety-related operator action design evaluation criteria, evaluate the effects of performance shaping factors, and support safety/risk assessment analyses. This report presents data obtained from refresher training exercises conducted in a pressurized water reactor (PWR) power plant control room simulator. The 14 exercises were performed by 24 teams of licensed operators from one utility, and operator performance was recorded by an automatic Performance Measurement System. Data tapes were analyzed to extract operator response times (RTs) and error rate information. Demographic and subjective data were collected by means of brief questionnaires and analyzed in an attempt to evaluate the effects of selected performance shaping factors on operator performance

  19. The influence of simultaneous or sequential test conditions in the properties of industrial polymers, submitted to PWR accident simulations

    International Nuclear Information System (INIS)

    Carlin, F.; Alba, C.; Chenion, J.; Gaussens, G.; Henry, J.Y.

    1986-10-01

    The effect of PWR plant normal and accident operating conditions on polymers forms the basis of nuclear qualification of safety-related containment equipment. This study was carried out on the request of safety organizations. Its purpose was to check whether accident simulations carried out sequentially during equipment qualification tests would lead to the same deterioration as that caused by an accident involving simultaneous irradiation and thermodynamic effects. The IPSN, DAS and the United States NRC have collaborated in preparing this study. The work carried out by ORIS Company as well as the results obtained from measurement of the mechanical properties of 8 industrial polymers are described in this report. The results are given in the conclusion. They tend to show that, overall, the most suitable test cycle for simulating accident operating conditions would be one which included irradiation and consecutive thermodynamic shock. The results of this study and the results obtained in a previous study, which included the same test cycles, except for more severe thermo-ageing, have been compared. This comparison, which was made on three elastomers, shows that ageing after the accident has a different effect on each material [fr

  20. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  1. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    International Nuclear Information System (INIS)

    Andrs, David; Berry, Ray; Gaston, Derek; Martineau, Richard; Peterson, John; Zhang, Hongbin; Zhao, Haihua; Zou, Ling

    2012-01-01

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7 is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to

  2. Two NEA sensitivity, 1-D benchmark calculations. Part I: Sensitivity of the dose rate at the outside of a PWR configuration and of the vessel damage

    International Nuclear Information System (INIS)

    Canali, U.; Gonano, G.; Nicks, R.

    1978-01-01

    Within the framework of the coordinated programme of sensitivity analysis studies, the reactor shielding benchmark calculation concerning the shield of a typical Pressurized Water Reactor, as proposed by I.K.E. (Stuttgart) and K.W.U. (Erlangen) has been performed. The direct and adjoint fluxes were calculated using ANISN, the cross-section sensitivity using SWANLAKE. The cross-section library used was EL4, 100 neutron + 19 gamma groups. The following quantities were of interest: neutron damage in the pressure vessel; dose rate outside the concrete shield. SWANLAKE was used to calculate the sensitivity of the above mentioned results to variations in the density of each nuclide present. The contributions of the different cross-section Legendre components are also given. Sensitivity profiles indicate the energy ranges in which a cross-section variation has a greater influence on the results. (author)

  3. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch.

    Science.gov (United States)

    AlZhrani, Gmaan; Alotaibi, Fahad; Azarnoush, Hamed; Winkler-Schwartz, Alexander; Sabbagh, Abdulrahman; Bajunaid, Khalid; Lajoie, Susanne P; Del Maestro, Rolando F

    2015-01-01

    Assessment of neurosurgical technical skills involved in the resection of cerebral tumors in operative environments is complex. Educators emphasize the need to develop and use objective and meaningful assessment tools that are reliable and valid for assessing trainees' progress in acquiring surgical skills. The purpose of this study was to develop proficiency performance benchmarks for a newly proposed set of objective measures (metrics) of neurosurgical technical skills performance during simulated brain tumor resection using a new virtual reality simulator (NeuroTouch). Each participant performed the resection of 18 simulated brain tumors of different complexity using the NeuroTouch platform. Surgical performance was computed using Tier 1 and Tier 2 metrics derived from NeuroTouch simulator data consisting of (1) safety metrics, including (a) volume of surrounding simulated normal brain tissue removed, (b) sum of forces utilized, and (c) maximum force applied during tumor resection; (2) quality of operation metric, which involved the percentage of tumor removed; and (3) efficiency metrics, including (a) instrument total tip path lengths and (b) frequency of pedal activation. All studies were conducted in the Neurosurgical Simulation Research Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada. A total of 33 participants were recruited, including 17 experts (board-certified neurosurgeons) and 16 novices (7 senior and 9 junior neurosurgery residents). The results demonstrated that "expert" neurosurgeons resected less surrounding simulated normal brain tissue and less tumor tissue than residents. These data are consistent with the concept that "experts" focused more on safety of the surgical procedure compared with novices. By analyzing experts' neurosurgical technical skills performance on these different metrics, we were able to establish benchmarks for goal proficiency performance training of neurosurgery residents. This

  4. Magnetite solubility studies under simulated PWR primary-side conditions, using lithiated, hydrogenated water

    International Nuclear Information System (INIS)

    Hewett, John; Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Dickinson, Shirley; Henshaw, Jim

    2014-01-01

    As software for modelling dissolution, precipitation, and transport of metallic species and subsequent CRUD deposition within nuclear plant becomes more advanced, there is an increasing need for accurate and reliable thermodynamic data. The solubility behaviour of magnetite is an example of such data, and is central to any treatment of CRUD solubility due to the prevalence of magnetite and nickel ferrites in CRUD. Several workers have shown the most consistent solubility data comes from once-through flowing systems. However, despite a strong consensus between the results in acidic to mildly alkaline solutions, there is disagreement between the results at approximately pH 25C 9 and higher. A programme of experimental work is on-going at the University of Birmingham, focusing on solubility of metal oxides (e.g., magnetite) in conditions relevant to PWR primary coolant. One objective of this programme is to calculate thermodynamic constants from the data obtained. Magnetite solubility from 200 to 300°C, in lithiated, hydrogenated water of pH 25C 9–11 is being studied using a once-through rig constructed of 316L stainless steel. The feedwater is pumped at 100 bar pressure through a heated bed of magnetite granules, and the output solution is collected and analysed for iron and several other metals by ICP-MS. This paper presents results from preliminary tests without magnetite granules, in which the corroding surface of the rig itself was used as the sole source of soluble iron and of dissolved hydrogen. Levels of iron were generally within an order of magnitude of literature solubility values. Comparison of results at different flow rates and temperatures, in conjunction with conclusions drawn from the published literature, suggests that this is likely due to the presence of particulate matter in a greatly under-saturated solution, compensating for the low surface area of oxide in contact with the solution. (author)

  5. Corrosion behaviour of E110- and E635- type zirconium alloys under PWR irradiation simulating conditions

    International Nuclear Information System (INIS)

    Markelov, V.A.; Novikov, V.V.; Kon'kov, V.F.; Tselishchev, A.V.; Dologov, A.B.; Zmitko, M.; Maserik, V.; Kocik, J.

    2008-01-01

    As structural materials for VVER 1000 fuel rod claddings and FA components use is made of zirconium alloys E110 (Zr 1Nb) and E635 (Zr 1.2Sn 1Nb 0.35Fe) that meet the design parameters of operation. Nonetheless, the work is in progress to perfect those alloys to reach higher corrosion and shape change resistance. At VNIINM updated E110M and E635M alloys have been developed on E110 and E635 bases. To assess the corrosion behaviour of the updated alloys in comparison to the base alloys their cladding samples were tested in RVS 3 loop of LWR 15 reactor (NRI, Rez) in PWR water chemistry with coolant surface and volume boiling. The data are presented on the influence effected by in pile irradiation for up to 324 days on oxide coat thickness and microstructure of fuel claddings produced from the four tested alloys. It has been revealed that E110 alloy its updated version E110M and E635M alloy compared to E635 have higher corrosion resistances. The paper discusses th+e results on the in pile corrosion of cladding samples from the alloys under study in comparison to the results acquired for similar samples tested in LWR 15 inactive channel and under autoclave conditions. Using methods of TEM, EDX analyses of extraction replicas dislocation structure and phase composition changes were studied in samples of all four alloy claddings LWR 15 reactor irradiated to the material damage dose of 1.5 dpa. The interrelation is discussed between irradiation effected strengthening and corrosion of fuel claddings made of E110 and E635 type zirconium alloys and the evolution of their structure and phase states

  6. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    International Nuclear Information System (INIS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-01-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies

  7. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    Science.gov (United States)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  8. Power-Energy Simulation for Multi-Core Processors in Bench-marking

    Directory of Open Access Journals (Sweden)

    Mona A. Abou-Of

    2017-01-01

    Full Text Available At Microarchitectural level, multi-core processor, as a complex System on Chip, has sophisticated on-chip components including cores, shared caches, interconnects and system controllers such as memory and ethernet controllers. At technological level, architects should consider the device types forecast in the International Technology Roadmap for Semiconductors (ITRS. Energy simulation enables architects to study two important metrics simultaneously. Timing is a key element of the CPU performance that imposes constraints on the CPU target clock frequency. Power and the resulting heat impose more severe design constraints, such as core clustering, while semiconductor industry is providing more transistors in the die area in pace with Moore’s law. Energy simulators provide a solution for such serious challenge. Energy is modelled either by combining performance benchmarking tool with a power simulator or by an integrated framework of both performance simulator and power profiling system. This article presents and asses trade-offs between different architectures using four cores battery-powered mobile systems by running a custom-made and a standard benchmark tools. The experimental results assure the Energy/ Frequency convexity rule over a range of frequency settings on different number of enabled cores. The reported results show that increasing the number of cores has a great effect on increasing the power consumption. However, a minimum energy dissipation will occur at a lower frequency which reduces the power consumption. Despite that, increasing the number of cores will also increase the effective cores value which will reflect a better processor performance.

  9. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G.

    2013-01-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  10. Effects of PbO on the oxide films of incoloy 800HT in simulated primary circuit of PWR

    International Nuclear Information System (INIS)

    Tan, Yu; Yang, Junhan; Wang, Wanwan; Shi, Rongxue; Liang, Kexin; Zhang, Shenghan

    2016-01-01

    Effects of trace PbO on oxide films of Incoloy 800HT were investigated in simulated primary circuit water chemistry of PWR, also with proper Co addition. The trace PbO addition in high temperature water blocked the protective spinel oxides formation of the oxide films of Incoloy 800HT. XPS results indicated that the lead, added as PbO into the high temperature water, shows not only +2 valance but also +4 and 0 valances in the oxide film of 800HT co-operated with Fe, Cr and Ni to form oxides films. Potentiodynamic polarization results indicated that as PbO concentration increased, the current densities of the less protective oxide films of Incoloy 800HT decreased in a buffer solution tested at room temperature. The capacitance results indicated that the donor densities of oxidation film of Incoloy 800HT decreased as trace PbO addition into the high temperature water. - Highlights: • Trace PbO addition into the high temperature water block the formation of spinel oxides on Incoloy 800HT. • The donor density of oxide film decreases with trace PbO addition. • The current density of potentiodynamic polarization decreases of oxide film with trace PbO addition.

  11. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    Science.gov (United States)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  12. Conception of a PWR simulator as a tool for safety analysis

    International Nuclear Information System (INIS)

    Lanore, J.M.; Bernard, P.; Romeyer Dherbey, J.; Bonnet, C.; Quilchini, P.

    1982-09-01

    A simulator can be a very useful tool for safety analysis to study accident sequences involving malfunctions of the systems and operator interventions. The main characteristics of the simulator SALAMANDRE (description of the systems, physical models, programming organization, control desk) have then been selected according tot he objectives of safety analysis

  13. Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

    Science.gov (United States)

    Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.

    2017-02-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.

  14. OECD/NRC BWR Turbine Trip Benchmark: Simulation by POLCA-T Code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and three-dimensional (3-D) neutron kinetics core models. Participation in the OECD/NRC BWR Turbine Trip (TT) Benchmark is a part of our efforts toward the code's validation. The paper describes the objectives for TT analyses and gives a brief overview of the developed plant system input deck and 3-D core model.The results of exercise 1, system model without netronics, are presented. Sensitivity studies performed cover the maximal time step, turbine stop valve position and mass flow, feedwater temperature, and steam bypass mass flow. Results of exercise 2, 3-D core neutronic and thermal-hydraulic model with boundary conditions, are also presented. Sensitivity studies include the core inlet temperature, cladding properties, and direct heating to core coolant and bypass.The entire plant model was validated in the framework of the benchmark's phase 3. Sensitivity studies include the effect of SCRAM initialization and carry-under. The results obtained - transient fission power and its initial axial distribution and steam dome, core exit, lower and upper plenum, main steam line, and turbine inlet pressures - showed good agreement with measured data. Thus, the POLCA-T code capabilities for correct simulation of pressurizing transients with very fast power were proved

  15. Study on the mechanism and efficiency of simulated annealing using an LP optimization benchmark problem - 113

    International Nuclear Information System (INIS)

    Qianqian, Li; Xiaofeng, Jiang; Shaohong, Zhang

    2010-01-01

    Simulated Annealing Algorithm (SAA) for solving combinatorial optimization problems is a popular method for loading pattern optimization. The main purpose of this paper is to understand the underlying search mechanism of SAA and to study its efficiency. In this study, a general SAA that employs random pair exchange of fuel assemblies to search for the optimum fuel Loading Pattern (LP) is applied to an exhaustively searched LP optimization benchmark problem. All the possible LPs of the benchmark problem have been enumerated and evaluated via the use of the very fast and accurate Hybrid Harmonics and Linear Perturbation (HHLP) method, such that the mechanism of SA for LP optimization can be explicitly analyzed and its search efficiency evaluated. The generic core geometry itself dictates that only a small number LPs can be generated by performing random single pair exchanges and that the LPs are necessarily mostly similar to the initial LP. This phase space effect turns out to be the basic mechanism in SAA that can explain its efficiency and good local search ability. A measure of search efficiency is introduced which shows that the stochastic nature of SAA greatly influences the variability of its search efficiency. It is also found that using fuel assembly k-infinity distribution as a technique to filter the LPs can significantly enhance the SAA search efficiency. (authors)

  16. New methods to benchmark simulations of accreting black holes systems against observations

    Science.gov (United States)

    Markoff, Sera; Chatterjee, Koushik; Liska, Matthew; Tchekhovskoy, Alexander; Hesp, Casper; Ceccobello, Chiara; Russell, Thomas

    2017-08-01

    The field of black hole accretion has been significantly advanced by the use of complex ideal general relativistic magnetohydrodynamics (GRMHD) codes, now capable of simulating scales from the event horizon out to ~10^5 gravitational radii at high resolution. The challenge remains how to test these simulations against data, because the self-consistent treatment of radiation is still in its early days, and is complicated by dependence on non-ideal/microphysical processes not yet included in the codes. On the other extreme, a variety of phenomenological models (disk, corona, jet, wind) can well-describe spectra or variability signatures in a particular waveband, although often not both. To bring these two methodologies together, we need robust observational “benchmarks” that can be identified and studied in simulations. I will focus on one example of such a benchmark, from recent observational campaigns on black holes across the mass scale: the jet break. I will describe new work attempting to understand what drives this feature by searching for regions that share similar trends in terms of dependence on accretion power or magnetisation. Such methods can allow early tests of simulation assumptions and help pinpoint which regions will dominate the light production, well before full radiative processes are incorporated, and will help guide the interpretation of, e.g. Event Horizon Telescope data.

  17. Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations

    International Nuclear Information System (INIS)

    Satake, S.; Sugama, H.; Watanabe, T.-H.; Idomura, Yasuhiro

    2009-09-01

    Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by comparing the simulation results of neoclassical transport. The two codes are the drift-kinetic δf Monte Carlo code (FORTEC-3D) and the gyrokinetic full- f Vlasov code (GT5D), both of which solve radially-global, five-dimensional kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and temperature gradient, are compared between these two codes, and their results are also compared with the local neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage of plasma collisionality parameter ν * = 0.01 - 10 and also agree with the theoretical estimations. The time evolution of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper neoclassical effects of collisional diffusion and equilibrium radial electric field. (author)

  18. BSM-MBR: a benchmark simulation model to compare control and operational strategies for membrane bioreactors.

    Science.gov (United States)

    Maere, Thomas; Verrecht, Bart; Moerenhout, Stefanie; Judd, Simon; Nopens, Ingmar

    2011-03-01

    A benchmark simulation model for membrane bioreactors (BSM-MBR) was developed to evaluate operational and control strategies in terms of effluent quality and operational costs. The configuration of the existing BSM1 for conventional wastewater treatment plants was adapted using reactor volumes, pumped sludge flows and membrane filtration for the water-sludge separation. The BSM1 performance criteria were extended for an MBR taking into account additional pumping requirements for permeate production and aeration requirements for membrane fouling prevention. To incorporate the effects of elevated sludge concentrations on aeration efficiency and costs a dedicated aeration model was adopted. Steady-state and dynamic simulations revealed BSM-MBR, as expected, to out-perform BSM1 for effluent quality, mainly due to complete retention of solids and improved ammonium removal from extensive aeration combined with higher biomass levels. However, this was at the expense of significantly higher operational costs. A comparison with three large-scale MBRs showed BSM-MBR energy costs to be realistic. The membrane aeration costs for the open loop simulations were rather high, attributed to non-optimization of BSM-MBR. As proof of concept two closed loop simulations were run to demonstrate the usefulness of BSM-MBR for identifying control strategies to lower operational costs without compromising effluent quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  20. Concept of scaled test facility for simulating the PWR thermalhydraulic behaviour

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1990-01-01

    This work deals with the design of a scaled test facility of a typical pressurized water reactor plant, to simulation of small break Loss-of-Coolant Accident. The computer code RELAP 5/ MOD1 has been utilized to simulate the accident and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermal-hydraulic behaviours of the two sistema. (author)

  1. Numerical simulation of air distribution in a room with a sidewall jet under benchmark test conditions

    Science.gov (United States)

    Zasimova, Marina; Ivanov, Nikolay

    2018-05-01

    The goal of the study is to validate Large Eddy Simulation (LES) data on mixing ventilation in an isothermal room at conditions of benchmark experiments by Hurnik et al. (2015). The focus is on the accuracy of the mean and rms velocity fields prediction in the quasi-free jet zone of the room with 3D jet supplied from a sidewall rectangular diffuser. Calculations were carried out using the ANSYS Fluent 16.2 software with an algebraic wall-modeled LES subgrid-scale model. CFD results on the mean velocity vector are compared with the Laser Doppler Anemometry data. The difference between the mean velocity vector and the mean air speed in the jet zone, both LES-computed, is presented and discussed.

  2. Verification and validation of a numeric procedure for flow simulation of a 2x2 PWR rod bundle

    International Nuclear Information System (INIS)

    Santos, Andre A.C.; Barros Filho, Jose Afonso; Navarro, Moyses A.

    2011-01-01

    Before Computational Fluid Dynamics (CFD) can be considered as a reliable tool for the analysis of flow through rod bundles there is a need to establish the credibility of the numerical results. Procedures must be defined to evaluate the error and uncertainty due to aspects such as mesh refinement, turbulence model, wall treatment and appropriate definition of boundary conditions. These procedures are referred to as Verification and Validation (V and V) processes. In 2009 a standard was published by the American Society of Mechanical Engineers (ASME) establishing detailed procedures for V and V of CFD simulations. This paper presents a V and V evaluation of a numerical methodology applied to the simulation of a PWR rod bundle segment with a split vane spacer grid based on ASMEs standard. In this study six progressively refined meshes were generated to evaluate the numerical uncertainty through the verification procedure. Experimental and analytical results available in the literature were used in this study for validation purpose. The results show that the ASME verification procedure can give highly variable predictions of uncertainty depending on the mesh triplet used for the evaluation. However, the procedure can give good insight towards optimization of the mesh size and overall result quality. Although the experimental results used for the validation were not ideal, through the validation procedure the deficiencies and strengths of the presented modeling could be detected and reasonably evaluated. Even though it is difficult to obtain reliable estimates of the uncertainty of flow quantities in the turbulent flow, this study shows that the V and V process is a necessary step in a CFD analysis of a spacer grid design. (author)

  3. NCS--a software for visual modeling and simulation of PWR nuclear power plant control system

    International Nuclear Information System (INIS)

    Cui Zhenhua

    1998-12-01

    The modeling and simulation of nuclear power plant control system has been investigated. Some mathematical models for rapid and accurate simulation are derived, including core models, pressurizer model, steam generator model, etc. Several numerical methods such as Runge-Kutta Method and Treanor Method are adopted to solve the above system models. In order to model the control system conveniently, a block diagram-oriented visual modeling platform is designed. And the Discrete Similarity Method is used to calculate the control system models. A corresponding simulating software, NCS, is developed for researching on the control systems of commercial nuclear power plant. And some satisfactory results are obtained. The research works will be of referential and applying value to design and analysis of nuclear power plant control system

  4. Development of an engineering simulator for integral type PWR for nuclear ship

    International Nuclear Information System (INIS)

    Takahashi, Teruo; Shimazaki, Junya; Nakazawa, Toshio

    2000-01-01

    JAERI has developed a real-time engineering simulator for the integral type reactor MRX (Marine Reactor X) of power 100 MWt to evaluate the design and operational performance and to study highly automatic operations of a reactor plant. Marine reactor is operated under the conditions of pitching and rolling and load change, in comparison with a reactor for a land-based generating plant. And the MRX has systems with structural features, such as water-filled containment vessel, once-through type steam generator and emergency decay heat removal system. Considerations are paid to take these operational conditions and structural features into the simulation model. It is shown that the simulated results are consistent with the planned design and operational performance, and on the other hand present us some technical issues to be investigated in the design specifications. (author)

  5. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  6. Numerical simulation of the insulation material transport to a PWR core under loss of coolant accident conditions

    International Nuclear Information System (INIS)

    Höhne, Thomas; Grahn, Alexander; Kliem, Sören; Rohde, Ulrich; Weiss, Frank-Peter

    2013-01-01

    Highlights: ► Detailed results of a numerical simulation of the insulation material transport to a PWR core are shown. ► The spacer grid is modeled as a strainer which completely retains the insulation material carried by coolant. ► The CFD calculations showed that the fibers at the upper spacer grid plane are not uniformly distributed. ► Furthermore the pressure loss does not exceed a critical limit. ► The PWR core coolablity can be guaranteed all the time during the transient. -- Abstract: In 1992, strainers on the suction side of the ECCS pumps in Barsebäck NPP Unit 2 became partially clogged with mineral wool because after a safety valve opened the steam impinged on thermally insulated equipment and released mineral wool. This event pointed out that strainer clogging is an issue in the course of a loss-of-coolant accident. Modifications of the insulation material, the strainer area and mesh size were carried out in most of the German NPPs. Moreover, back flushing procedures to remove the mineral wool from the strainers and differential pressure measurements were implemented to assure the performance of emergency core cooling during the containment sump recirculation mode. Nevertheless, it cannot be completely ruled out, that a limited amount of small fractions of the insulation material is transported into the RPV. During a postulated cold leg LOCA with hot leg ECC injection, the fibers enter the upper plenum and can accumulate at the fuel element spacer grids, preferably at the uppermost grid level. This effect might affect the ECC flow into the core and could result in degradation of core cooling. It was the aim of the numerical simulations presented to study where and how many mineral wool fibers are deposited at the upper spacer grid. The 3D, time dependent, multi-phase flow problem was modeled applying the CFD code ANSYS CFX. The CFD calculation does not yet include steam production in the core and also does not include re-suspension of the

  7. Experimental verification of boundary conditions for numerical simulation of airflow in a benchmark ventilation channel

    Directory of Open Access Journals (Sweden)

    Lizal Frantisek

    2016-01-01

    Full Text Available Correct definition of boundary conditions is crucial for the appropriate simulation of a flow. It is a common practice that simulation of sufficiently long upstream entrance section is performed instead of experimental investigation of the actual conditions at the boundary of the examined area, in the case that the measurement is either impossible or extremely demanding. We focused on the case of a benchmark channel with ventilation outlet, which models a regular automotive ventilation system. At first, measurements of air velocity and turbulence intensity were performed at the boundary of the examined area, i.e. in the rectangular channel 272.5 mm upstream the ventilation outlet. Then, the experimentally acquired results were compared with results obtained by numerical simulation of further upstream entrance section defined according to generally approved theoretical suggestions. The comparison showed that despite the simple geometry and general agreement of average axial velocity, certain difference was found in the shape of the velocity profile. The difference was attributed to the simplifications of the numerical model and the isotropic turbulence assumption of the used turbulence model. The appropriate recommendations were stated for the future work.

  8. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  9. Uncertainty and sensitivity analysis of control strategies using the benchmark simulation model No1 (BSM1).

    Science.gov (United States)

    Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V

    2009-01-01

    The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.

  10. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4

    International Nuclear Information System (INIS)

    Sterpin, E.; Sorriaux, J.; Vynckier, S.

    2013-01-01

    Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for 1 H and ICRU 63 data for 12 C, 14 N, 16 O, 31 P, and 40 Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much

  11. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.

    Science.gov (United States)

    Sterpin, E; Sorriaux, J; Vynckier, S

    2013-11-01

    Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within

  12. Essays of leaching in cemented products containing simulated waste from evaporator concentrated of PWR reactor; Ensaios de lixiviacao em produtos cimentados contendo rejeito simulado de concentrado do evaporador de reator PWR

    Energy Technology Data Exchange (ETDEWEB)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes, E-mail: hauczmj@cdtn.b, E-mail: jaalmeida@cdtn.b, E-mail: tellocc@cdtn.b, E-mail: fdc@cdtn.b, E-mail: seless@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    This paper evaluated the results from leaching resistance essays of cemented products, prepared from three distinct formulations, containing simulated waste of concentrated from the PWR reactor evaporator. The leaching rate is a parameter of qualification of solidified products containing radioactive waste and is determined in accordance with regulation ISO 6961. This procedure evaluates the capacity of transfer organic and inorganic substances presents in the waste through dissolution in the extractor medium. For the case of radioactive waste it is reached the more retention of contaminants in the cemented product, i.e.the lesser value of lixiviation rate. Therefore, this work evaluated among the proposed formulation that one which attend the criterion established in the regulation CNEN-NN-6.09

  13. In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study

    International Nuclear Information System (INIS)

    Pang, Kar Mun; Ng, Hoon Kiat; Gan, Suyin

    2012-01-01

    Highlights: ► A performance benchmarking exercise is conducted for diesel combustion simulations. ► The reduced chemical mechanism shows its advantages over base and skeletal models. ► High efficiency and great reduction of CPU runtime are achieved through 4-node solver. ► Increasing ISAT memory from 0.1 to 2 GB reduces the CPU runtime by almost 35%. ► Combustion and soot processes are predicted well with minimal computational cost. - Abstract: In the present study, in-cylinder diesel combustion simulation was performed with parallel processing on an Intel Xeon Quad-Core platform to allow both fluid dynamics and chemical kinetics of the surrogate diesel fuel model to be solved simultaneously on multiple processors. Here, Cartesian Z-Coordinate was selected as the most appropriate partitioning algorithm since it computationally bisects the domain such that the dynamic load associated with fuel particle tracking was evenly distributed during parallel computations. Other variables examined included number of compute nodes, chemistry sizes and in situ adaptive tabulation (ISAT) parameters. Based on the performance benchmarking test conducted, parallel configuration of 4-compute node was found to reduce the computational runtime most efficiently whereby a parallel efficiency of up to 75.4% was achieved. The simulation results also indicated that accuracy level was insensitive to the number of partitions or the partitioning algorithms. The effect of reducing the number of species on computational runtime was observed to be more significant than reducing the number of reactions. Besides, the study showed that an increase in the ISAT maximum storage of up to 2 GB reduced the computational runtime by 50%. Also, the ISAT error tolerance of 10 −3 was chosen to strike a balance between results accuracy and computational runtime. The optimised parameters in parallel processing and ISAT, as well as the use of the in-house reduced chemistry model allowed accurate

  14. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E., E-mail: emerzari@anl.gov [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Fischer, P. [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Yuan, H. [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL (United States); Van Tichelen, K.; Keijers, S. [SCK-CEN, Boeretang 200, Mol (Belgium); De Ridder, J.; Degroote, J.; Vierendeels, J. [Ghent University, Ghent (Belgium); Doolaard, H.; Gopala, V.R.; Roelofs, F. [NRG, Petten (Netherlands)

    2016-03-15

    Highlights: • A EUROTAM-US INERI consortium has performed a benchmark exercise related to fast reactor assembly simulations. • LES calculations for a wire-wrapped rod bundle are compared with RANS calculations. • Results show good agreement for velocity and cross flows. - Abstract: As part of a U.S. Department of Energy International Nuclear Energy Research Initiative (I-NERI), Argonne National Laboratory (Argonne) is collaborating with the Dutch Nuclear Research and consultancy Group (NRG), the Belgian Nuclear Research Centre (SCK·CEN), and Ghent University (UGent) in Belgium to perform and compare a series of fuel-pin-bundle calculations representative of a fast reactor core. A wire-wrapped fuel bundle is a complex configuration for which little data is available for verification and validation of new simulation tools. UGent and NRG performed their simulations with commercially available computational fluid dynamics (CFD) codes. The high-fidelity Argonne large-eddy simulations were performed with Nek5000, used for CFD in the Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) suite. SHARP is a versatile tool that is being developed to model the core of a wide variety of reactor types under various scenarios. It is intended both to serve as a surrogate for physical experiments and to provide insight into experimental results. Comparison of the results obtained by the different participants with the reference Nek5000 results shows good agreement, especially for the cross-flow data. The comparison also helps highlight issues with current modeling approaches. The results of the study will be valuable in the design and licensing process of MYRRHA, a flexible fast research reactor under design at SCK·CEN that features wire-wrapped fuel bundles cooled by lead-bismuth eutectic.

  15. Computer code to simulate transients in a steam generator of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Silva, J.M. da.

    1979-01-01

    A digital computer code KIBE was developed to simulate the transient behavior of a Steam Generator used in Pressurized Water Reactor Power PLants. The equations of Conservation of mass, energy and momentum were numerically integrated by an implicit method progressively in the several axial sections into which the Steam Generator was divided. Forced convection heat transfer was assumed on the primary side, while on the secondary side all the different modes of heat transfer were permitted and deternined from the various correlations. The stability of the stationary state was verified by its reproducibility during the integration of the conservation equation without any pertubation. Transient behavior resulting from pertubations in the flow and the internal energy (temperature) at the inlet of the primary side were simulated. The results obtained exhibited satisfactory behaviour. (author) [pt

  16. Computer simulation of black out followed by multiple failures in PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1989-01-01

    The computer code RELAP 5/MOD 1 has been utilized to investigate the thermal-hydraulic behaviour of a standard 1300 MWe pressurized water reactor plant of the KWU design during a station blackout following a inadequate performance of the pressurizer and steam generator safety valves. During the simulation the reactor scram system the emergency coolant system of the primary loop and the emergency Feedwater system of the secondary loop are considered inactive. (author) [pt

  17. Modelling of core protection and monitoring system for PWR nuclear power plant simulator

    International Nuclear Information System (INIS)

    Jung Kun Lee; Byoung Sung Han

    1997-01-01

    A nuclear power plant simulator was developed for Younggwang units 3 and 4 nuclear power plant (YGN Nos 3 and 4) in Korea; it has been in operation on training center since November 1996. The core protection calculator (CPC) and the core operating limit supervisory system (COLSS) for the simulator were also developed. The CPC is a digital computer-based core protection system, which performs on-line calculation of departure from nucleate boiling ratio (DNBR) and local power density (LPD). It initiates reactor trip when the core conditions exceed designated DNBR or LPD limitations. The COLSS is designed to assist operators by implementing the limiting conditions for operations in the technical specifications. With these systems, it is possible to increase capacity factor and safety of nuclear power plants, because the COLSS data can show accurate operation margin to plant operators and the CPC can protect reactor core. In this study, the function of CPC/COLSS is analyzed in detail, and then simulation model for CPC/COLSS is presented based on the function. Compared with the YGN Nos 3 and 4 plant operation data and CEDIPS/COLSS FORTRAN code test results, the predictions with the model show reasonable results. (Author)

  18. JMCT Monte Carlo simulation analysis of full core PWR Pin-By-Pin and shielding

    International Nuclear Information System (INIS)

    Deng, L.; Li, G.; Zhang, B.; Shangguan, D.; Ma, Y.; Hu, Z.; Fu, Y.; Li, R.; Hu, X.; Cheng, T.; Shi, D.

    2015-01-01

    This paper describes the application of the JMCT Monte Carlo code to the simulation of Kord Smith Challenge H-M model, BEAVRS model and Chinese SG-III model. For H-M model, the 6.3624 millions tally regions and the 98.3 billion neutron histories do. The detailed pin flux and energy deposition densities obtain. 95% regions have less 1% standard deviation. For BEAVRS model, firstly, we performed the neutron transport calculation of 398 axial planes in the Hot Zero Power (HZP) status. Almost the same results with MC21 and OpenMC results are achieved. The detailed pin-power density distribution and standard deviation are shown. Then, we performed the calculation of ten depletion steps in 30 axial plane cases. The depletion regions exceed 1.5 million and 12,000 processors uses. Finally, the Chinese SG-III laser model is simulated. The neutron and photon flux distributions are given, respectively. The results show that the JMCT code well suits for extremely large reactor and shielding simulation. (author)

  19. Experimentation, modelling and simulation of water droplets impact on ballooned sheath of PWR core fuel assemblies in a LOCA situation

    International Nuclear Information System (INIS)

    Lelong, Franck

    2010-01-01

    In a pressurized water reactor (PWR), during a Loss Of Coolant Accident (LOCA), liquid water evaporates and the fuel assemblies are not cooled anymore; as a consequence, the temperature rises to such an extent that some parts of the fuel assemblies can be deformed resulting in 'ballooned regions'. When reflooding occurs, the cooling of these partially blocked parts of the fuel assemblies will depend on the coolant flow that is a mixture of overheated vapour and under-saturated droplets. The aim of this thesis is to study the heat transfer between droplets and hot walls of the fuel rods. In this purpose, an experimental device has been designed in accordance with droplets and wall features (droplet velocity and diameter, wall temperature) representative of LOCA conditions. The cooling of a hot Nickel disk, previously heated by induction, is cooled down by a stream of monodispersed droplet. The rear face temperature profiles are measured by infrared thermography. Then, the estimation of wall heat flux is performed by an inverse conduction technique from these infrared images. The effect of droplet dynamical properties (diameter, velocity) on the heat flux is studied. These experimental data allow us to validate an analytical model of heat exchange between droplet and hot slab. This model is based on combined dynamical and thermal considerations. On the one hand, the droplet dynamics is considered through a spring analogy in order to evaluate the evolution of droplet features such as the spreading diameter when the droplet is squeezed over the hot surface. On the other hand, thermal parameters, such as the thickness of the vapour cushion beneath the droplet, are determined from an energy balance. In the short term, this model will be integrated in a CFD code (named NEPTUNE-CFD) to simulate the cooling of a reactor core during a LOCA, taking into account the droplet/wall heat exchange. (author)

  20. Numerical simulation of radioisotope's dependency on containment performance for large dry PWR containment under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Khurram, E-mail: khurramhrbeu@gmail.com [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Xinrong, Cao [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Ahmed, Raheel [College of Automation, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Ali, Majid [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China)

    2013-09-15

    Highlights: • Calculation and comparison of activity of BURN-UP code with ORIGEN2 code. • Development of SASTC computer code. • Radioisotopes dependency on containment ESFs. • Mitigation in atmospheric release with ESFs operation. • Variation in radioisotopes source term with spray flow and pH value. -- Abstract: During the core melt accidents large amount of fission products can be released into the containment building. These fission products escape into the environment to contribute in accident source term. The mitigation in environmental release is demanded for such radiological consequences. Thus, countermeasures to source term, mitigations of release of radioactivity have been studied for 1000 MWe PWR reactor. The procedure of study is divided into five steps: (1) calculation and verification of core inventory, evaluated by BURN-UP code, (2) containment modeling based on radioactivity removal factors, (3) selection of potential accidents initiates the severe accident, (4) calculation of release of radioactivity, (5) study the dependency of release of radioactivity on containment engineering safety features (ESFs) inducing mitigation. Loss of coolant accident (LOCA), small break LOCA and flow blockage accidents (FBA) are selected as initiating accidents. The mitigation effect of ESFs on source term has been studied against ESFs performance. Parametric study of release of radioactivity has been carried out by modeling and simulating the containment parameters in MATLAB, which takes BURN-UP outcomes as input along with the probabilistic data. The dependency of iodine and aerosol source term on boric and caustic acid spray has been determined. The variation in source term mitigation with the variation of containment spray flow rate and pH values have been studied. The variation in containment retention factor (CRF) has also been studied with the ESF performance. A rapid decrease in source term is observed with the increase in pH value.

  1. The KINA neutronic module of the LEGO code for steady-state and transient PWR plant simulations

    International Nuclear Information System (INIS)

    Nicolopoulos, D.; Pollacchini, L.; Vimercati, G.; Spelta, S.

    1989-01-01

    The Automation Research Center (CRA) of ENEl has implemented some models for analyzing both incidental and operational transients in PWR power plants. For such models an axial neutron kinetics module characterized by high computational efficency with adequate results accuracy was called for. CISE has been entrusted with the task of implementing such a module named KINA and based on IQS (Improved Quasi Static) method, to be included in the library of LEGO modular code used by CRA to set up PWR power models. Moreover, The KINA module has been adapted to the neutron constants computing model developed by the EdF-SEPTEN, which has been using and improving the LEGO code for a long time in cooperation with ENEL-CRA. In this paper, after some remarks on the LEGO code, a general description of KINA neutronic module is given. The resylts of a preliminary validation activity of KINA for an EdF 1300 MWe PWR plant are also presented

  2. Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.

    Science.gov (United States)

    Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.

    2006-12-01

    Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Mlhandle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of synthetic seismograms, proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, paper #243, 2004. [3] Kristekova M. et al., Misfit Criteria for Quantitative Comparison of Seismograms, Bull. Seism. Soc. Am., in press, 2006.

  3. International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN) : Verification Phase Based on Canonical Cases

    NARCIS (Netherlands)

    Régnier, Julie; Bonilla, Luis-Fabian; Bard, Pierre-Yves; Bertrand, Etienne; Hollender, Fabrice; Kawase, Hiroshi; Sicilia, Deborah; Arduino, Pedro; Amorosi, Angelo; Asimaki, Dominiki; Pisano, F.

    2016-01-01

    PREdiction of NOn‐LINear soil behavior (PRENOLIN) is an international benchmark aiming to test multiple numerical simulation codes that are capable of predicting nonlinear seismic site response with various constitutive models. One of the objectives of this project is the assessment of the

  4. Implementation of high fidelity models for the conditions of operation in stop in PWR simulators

    International Nuclear Information System (INIS)

    Gonzalez Sevillano, I.; Jimenez Bogarin, R.; Ortega Pascual, F.

    2014-01-01

    The operation in stop cold conditions and in particular the States of operation with reduced inventory, the call of half loop or half nozzle, is becoming increasingly more important. These States of operation are characterized by having the coolant level approximately on the generatrix of the branches, so that any deviation in the level or malfunction of the system for the disposal of waste heat could lead to compromising situations. The importance of this type of situation is reflected in the APS in other modes (APSOM), which show that the risk in these conditions may be comparable to the power. Hence the importance that the simulator training programmes include scenarios that cover these States of operation. The article describes on the one hand, the difficulties encountered in the simulation of situations characterized by low pressure and presence of Non-Condensable and, on the other hand, its implementation, not only in the field of training of plant personnel, but also in the field of review/validation of operating procedures. (Author)

  5. Simulation of TRIGA Mark II Benchmark Experiment using WIMSD4 and CITATION codes

    International Nuclear Information System (INIS)

    Dalle, Hugo Moura; Pereira, Claubia

    2000-01-01

    This paper presents a simulation of the TRIGA Mark II Benchmark Experiment, Part I: Steady-State Operation and is part of the calculation methodology validation developed to the neutronic calculation of the CDTN's TRIGA IPR - R1 reactor. A version of the WIMSD4, obtained in the Centro de Tecnologia Nuclear, in Cuba, was used in the cells calculation. In the core calculations was adopted the diffusion code CITATION. Was adopted a 3D representation of the core and the calculations were carried out at two energy groups. Many of the experiments were simulated, including, K eff , control rods reactivity worth, fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or on an acceptable range, following the literature, to the K eff and fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental. results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or in an acceptable range, following the literature, to the K eff and fuel elements reactivity worth distribution. (author)

  6. Ratchetting in PWR: on use of numerical simulations to reduce the conservatism of design rules

    International Nuclear Information System (INIS)

    Geyer, P.; Meziere, Y.; Taheri, S.

    1996-01-01

    The French design Code (RCC-M Code) for pressurised water nuclear power plants includes criteria with regard to the risk of progressive deformation. With the new operating conditions, some components no longer check this criteria. Therefore, R and D actions were initiated in 1991 by EDF, CEA and FRAMATOME with the aim of putting forward more suitable design criteria that the present rules, which seem to be too conservative. In the two first parts, this paper presents the RCC-M design rules with regard to the risk progressive deformation, the components that don't check the criteria, and the alternative solutions proposed by FRAMATOME. In the two last parts, we focus on one R and D study to show the theoretical and experimental ways used to solve the problem. Numerical simulations become necessary to model experimental results. But constitutive equations for cyclic plasticity derived from Chaboche model appear inadequate to get accurate predictions. (authors)

  7. Scaling studies - PWR

    International Nuclear Information System (INIS)

    Sonneck, G.

    1983-05-01

    A RELAP 4/MOD 6 study was made based on the blowdown phase of the intermediate break experiment LOFT L5-1. The method was to set up a base model and to vary parametrically some areas where it is known or suspected that LOFT differs from a commercial PWR. The aim was not to simulate LOFT or a PWR exactly but to understand the influence of the following parameters on the thermohydraulic behaviour of the system and the clad temperature: stored heat in the downcomer (LOFT has rather large filler blocks in this part of the pressure vessel); bypass between downcomer and upper plenum; and core length. The results show that LOFT is prototypical for all calculated blowdowns. As the clad temperatures decrease with decreasing stored energy in the downcomer, increased bypass and increased core length, LOFT results seem to be realistic as long as realistic bypass sizes are considered; they are conservative in the two other areas. (author)

  8. SIPA, a PWR simulator for post-accident training and studies

    International Nuclear Information System (INIS)

    Peltier, J.; Poizat, F.

    1990-01-01

    SIPA (Simulator for Post-Accident conditions) which is now under development will be operated by EDF and CEA. Each organization will have its own version, SIPA 1 for EDF and SIPA 2 for CEA. The three main purposes will meet the needs of EDF and CEA as described below: - training of the EDF's ISR (Ingenieurs de Surete et Radioprotection = Shift Safety Advisors) which needs physical relevance, real time during accidental transients and visualisation of two-phase flow phenomena to well understand what could physically happen, - studies for EDF's designs which require calculation of a lot of points or scenarios. Quality Assurance of the models and data package, interactivity for procedure finalisation, availability of resources to all engineers, and possibility of creation of new models, - safety analysis requirements for CEA/IPSN (technical support of the French safety authority, the Central Service for the Safety of Nuclear Installations) which includes the actual safety analysis (analysis of procedures, design basis accidents, probabilistic safety analysis, real incidents studies, reactor tests...), the preparation and the execution of safety drills and training of engineer analysts

  9. Simulation study on insoluble granular corrosion products deposited in PWR core

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Ru Xiaolong; Lin Daping; Fang Xiaolu

    2014-01-01

    In the operation of reactor, such as fuel rods, reactor vessel internals etc. will be affected by corrosion erosion of high pressure coolant. It will produce many insoluble corrosion products. The FLUENT software is adopted to simulate insoluble granular corrosion products deposit distribution in the reactor core. The fluid phase uses the standard model to predict the flow field in the channel and forecast turbulence variation in the near-wall region. The insoluble granular corrosion products use DPM (Discrete Phase Model) to track the trajectory of the particles. The discrete phase model in FLUENT follows the Euler-Lagrange approach. The fluid phase is treated as a continuum by solving the Navier-Stokes equations, while the dispersed phase is solved by tracking a large number of particles through the calculated flow field. Through the study found, Corrosion products particles form high concentration area near the symmetry, and the entrance section of the corrosion products particles concentration is higher than export section. Corrosion products particles deposition attached on large area for the entrance of the cladding, this will change the core neutron flux distribution and the thermal conductivity of cladding material, and cause core axial offset anomaly (AOA). Corrosion products particles dot deposit in the outlet of cladding, which can lead to pitting phenomenon in a sheath. Pitting area will cause deterioration of heat transfer, destroy the cladding integrity. In view of the law of corrosion products deposition and corrosion characteristics of components in the reactor core. this paper proposes regular targeted local cleanup and other mitigation measures. (authors)

  10. BI/TRI-dimensional effects observed in PWR fuel during transient conditions and their numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Linet, B; Hourdequin, N [Departement de Mecanique et Technologie, CEA Centre d` Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1997-08-01

    TOUTATIS is the modular program (both modules 2D and 3D are included) from the METERO project developed by the French Atomic Energy Commission ``CEA``. The model allows the user to calculate the deformations connected to the pellet-clad systems, and hence the Pellet-Cladding Interactions ``PCI`` induced by unilateral contact. Furthermore TOUTATIS provides sufficient versatility to allow the simulation of almost any phenomena, from creep and plasticity to the stress corrosion (residual stresses, dish filling of the pellets from the center, thermo-mechanical feedback) or fuel cracking (3D). The general approach provides a unique capability for understanding different phenomena, some of which remain still unexplained. The first example is related to rod bending, since this phenomenon has been observed in some experimental reactors. Several possible explanations have been put forward, such as flux dipping, buckling or thermohydraulic perturbations. Indeed a spatial parabolic distribution of the flux induces a shift of the isopower area in the pellets, but its effect decreases progressively as the distance from the center of the pellet is increased. So the variations on the clad temperature are just a few degrees and cannot produce the stated rod bending. The second hypothesis was based on a thermohydraulic perturbation. Both chosen configurations (azymutal area/small spot), which induced a thermal perturbation (corroborated by shift of the bubble area), are nevertheless insufficient to bring about the recorded strains. Lastly the calculations performed with the 3D model showed clearly that this rod bending was caused by single buckling induced itself by the immobilization of the rod in experimental channel. 19 figs.

  11. Boron dilution transients during natural circulation flow in PWR-Experiments and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Thomas [Forschungszentrum Dresden-Rossendorf (FZD)-Institute of Safety Research, P.O. Box 510119, D-01314 Dresden (Germany)], E-mail: T.Hoehne@fzd.de; Kliem, Soeren; Rohde, Ulrich; Weiss, Frank-Peter [Forschungszentrum Dresden-Rossendorf (FZD)-Institute of Safety Research, P.O. Box 510119, D-01314 Dresden (Germany)

    2008-08-15

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loops 1:5 scaled Rossendorf coolant mixing model (ROCOM) mixing test facility. In particular thermal hydraulics analyses have shown, that weakly borated condensate can accumulate in the pump loop seal of those loops, which do not receive a safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side, the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities.

  12. BI/TRI-dimensional effects observed in PWR fuel during transient conditions and their numerical simulation

    International Nuclear Information System (INIS)

    Linet, B.; Hourdequin, N.

    1997-01-01

    TOUTATIS is the modular program (both modules 2D and 3D are included) from the METERO project developed by the French Atomic Energy Commission ''CEA''. The model allows the user to calculate the deformations connected to the pellet-clad systems, and hence the Pellet-Cladding Interactions ''PCI'' induced by unilateral contact. Furthermore TOUTATIS provides sufficient versatility to allow the simulation of almost any phenomena, from creep and plasticity to the stress corrosion (residual stresses, dish filling of the pellets from the center, thermo-mechanical feedback) or fuel cracking (3D). The general approach provides a unique capability for understanding different phenomena, some of which remain still unexplained. The first example is related to rod bending, since this phenomenon has been observed in some experimental reactors. Several possible explanations have been put forward, such as flux dipping, buckling or thermohydraulic perturbations. Indeed a spatial parabolic distribution of the flux induces a shift of the isopower area in the pellets, but its effect decreases progressively as the distance from the center of the pellet is increased. So the variations on the clad temperature are just a few degrees and cannot produce the stated rod bending. The second hypothesis was based on a thermohydraulic perturbation. Both chosen configurations (azymutal area/small spot), which induced a thermal perturbation (corroborated by shift of the bubble area), are nevertheless insufficient to bring about the recorded strains. Lastly the calculations performed with the 3D model showed clearly that this rod bending was caused by single buckling induced itself by the immobilization of the rod in experimental channel. 19 figs

  13. Development of neutron own codes for the simulation of PWR reactor core; Desarrollo de codigos neutronicos propios para la simulacion del nucleo de reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Cabellos, O.; Garcia-Herranz, N.; Cuervo, D.; Herrero, J. J.; Jimenez, J.; Ochoa, R.

    2011-07-01

    The core physic simulation is enough complex to need computers and ad-hoc software, and its evolution is to best-estimate methodologies, in order to improve availability and safety margins in the power plant operation. the Nuclear Engineering Department (UPM) has developed the SEANAP System in use in several power plants in Spain, with simulation in 3D and at the pin level detail, of the nominal and actual core burnup, with the on-line surveillance, and operational maneuvers optimization. (Author) 8 refs.

  14. Quo Vadis Benchmark Simulation Models? 8th IWA Symposium on Systems Analysis and Integrated Assessment

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J.; Batstone, D,

    2011-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for WWTPs is coming towards an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, hi...

  15. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function {Phi}(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  16. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2011-01-01

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function Φ(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  17. On the validity of empirical potentials for simulating radiation damage in graphite: a benchmark

    International Nuclear Information System (INIS)

    Latham, C D; McKenna, A J; Trevethan, T P; Heggie, M I; Rayson, M J; Briddon, P R

    2015-01-01

    In this work, the ability of methods based on empirical potentials to simulate the effects of radiation damage in graphite is examined by comparing results for point defects, found using ab initio calculations based on density functional theory (DFT), with those given by two state of the art potentials: the Environment-Dependent Interatomic Potential (EDIP) and the Adaptive Intermolecular Reactive Empirical Bond Order potential (AIREBO). Formation energies for the interstitial, the vacancy and the Stone–Wales (5775) defect are all reasonably close to DFT values. Both EDIP and AIREBO can thus be suitable for the prompt defects in a cascade, for example. Both potentials suffer from arefacts. One is the pinch defect, where two α-atoms adopt a fourfold-coordinated sp 3 configuration, that forms a cross-link between neighbouring graphene sheets. Another, for AIREBO only, is that its ground state vacancy structure is close to the transition state found by DFT for migration. The EDIP fails to reproduce the ground state self-interstitial structure given by DFT, but has nearly the same formation energy. Also, for both potentials, the energy barriers that control diffusion and the evolution of a damage cascade, are not well reproduced. In particular the EDIP gives a barrier to removal of the Stone–Wales defect as 0.9 eV against DFT's 4.5 eV. The suite of defect structures used is provided as supplementary information as a benchmark set for future potentials. (paper)

  18. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    International Nuclear Information System (INIS)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-01-01

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the ''low energy

  19. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  20. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  1. ROX PWR

    International Nuclear Information System (INIS)

    Akie, H.; Yamashita, T.; Shirasu, N.; Takano, H.; Anoda, Y.; Kimura, H.

    1999-01-01

    For an efficient burnup of excess plutonium from nuclear reactors spent fuels and dismantled warheads, plutonium rock-like oxide(ROX) fuel has been investigated. The ROX fuel is expected to provide high Pu transmutation capability, irradiation stability and chemical and geological stability. While, a zirconia-based ROX(Zr-ROX)-fueled PWR core has some problems of Doppler reactivity coefficient and power peaking factor. For the improvement of these characteristics, two approaches were considered: the additives such as UO 2 , ThO 2 and Er 2 O 3 , and a heterogeneous core with Zr-ROX and UO 2 assemblies. As a result, the additives UO 2 + Er 2 O 3 are found to sufficiently improve the reactivity coefficients and accident behavior, and to flatten power distribution. On the other hand, in the 1/3Zr-ROX + 2/3UO 2 heterogeneous core, further reduction of power peaking seems necessary. (author)

  2. Simplified model for the thermo-hydraulic simulation of the hot channel of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    Belem, J.A.T.

    1993-09-01

    The present work deals with the thermal-hydraulic analysis of the hot channel of a standard PWR type reactor utilizing a simplified mathematical model that considers constant the water mass flux during single-phase flow and reduction of the flow when the steam quality is increasing in the channel (two-phase flow). The model has been applied to the Angra-1 reactor and it has proved satisfactory when compared to other ones. (author). 25 refs, 15 figs, 3 tabs

  3. Investigation of irradiation induced inter-granular stress corrosion cracking susceptibility on austenitic stainless steels for PWR by simulated radiation induced segregation materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Toshio; Fujimoto, Koji; Kanasaki, Hiroshi; Iwamura, Toshihiko [Mitsubishi Heavy Industries Ltd., Takasago R and D Center, Takasago, Hyogo (Japan); Nakada, Shizuo; Ajiki, Kazuhide [Mitsubishi Heavy Industries Ltd., Kobe Shipyard and Machinery Works, Kobe, Hyogo (Japan); Urata, Sigeru [General Office of Nuclear and Fossil Power Production, Kansai Electric Power Co., Inc., Osaka (Japan)

    2000-07-01

    An Irradiation Assisted Stress Corrosion Cracking (IASCC) has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated Type 304 and Type 316 CW stainless steels. Low chromium, high nickel and silicon (12%Cr-28%Ni-3%Si) steel showed high susceptibility to PWSCC (Primary Water Stress Corrosion Cracking) by SSRT (Slow Strain Rate Tensile) test in simulated PWR primary water. PWSCC susceptibility of the test steels increases with a decrease of chromium content and a increase of nickel and silicon contents. The aged test steel included coherent M{sub 23}C{sub 6} carbides with matrices at the grain boundaries showed low PWSCC susceptibility. This tendency is in very good agreement with that of the PWSCC susceptibility of nickel based alloys X-750 and 690. From these results, if there is the possibility of IASCC for austenitic stainless steels in PWRs, in the future, the IASCC shall be caused by the PWSCC as a result of irradiation induced grain boundary segregation. (author)

  4. Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn

    2018-01-01

    Five computational methods are benchmarked by computing quality factors and resonance wavelengths inphotonic crystal membrane L5 and L9 line defect cavities. Careful convergence studies reveal that some methods are more suitable than others for analyzing these cavities....

  5. Generalizable open source urban water portfolio simulation framework demonstrated using a multi-objective risk-based planning benchmark problem.

    Science.gov (United States)

    Trindade, B. C.; Reed, P. M.

    2017-12-01

    The growing access and reduced cost for computing power in recent years has promoted rapid development and application of multi-objective water supply portfolio planning. As this trend continues there is a pressing need for flexible risk-based simulation frameworks and improved algorithm benchmarking for emerging classes of water supply planning and management problems. This work contributes the Water Utilities Management and Planning (WUMP) model: a generalizable and open source simulation framework designed to capture how water utilities can minimize operational and financial risks by regionally coordinating planning and management choices, i.e. making more efficient and coordinated use of restrictions, water transfers and financial hedging combined with possible construction of new infrastructure. We introduce the WUMP simulation framework as part of a new multi-objective benchmark problem for planning and management of regionally integrated water utility companies. In this problem, a group of fictitious water utilities seek to balance the use of the mentioned reliability driven actions (e.g., restrictions, water transfers and infrastructure pathways) and their inherent financial risks. Several traits of this problem make it ideal for a benchmark problem, namely the presence of (1) strong non-linearities and discontinuities in the Pareto front caused by the step-wise nature of the decision making formulation and by the abrupt addition of storage through infrastructure construction, (2) noise due to the stochastic nature of the streamflows and water demands, and (3) non-separability resulting from the cooperative formulation of the problem, in which decisions made by stakeholder may substantially impact others. Both the open source WUMP simulation framework and its demonstration in a challenging benchmarking example hold value for promoting broader advances in urban water supply portfolio planning for regions confronting change.

  6. Some Lessons Learned From the SIPACT Simulations on the Design of PWR and Improvement of AM Measures

    International Nuclear Information System (INIS)

    Pochard, R.; Jedrzejewski, F.; Nilsuwankosit, S.

    2002-01-01

    In the general context of the nuclear activities, life extension of the existing plants is the interesting option for countries that are already well equipped with NPPs. As the working life of 60 years is now expected possible for some well maintained plants, their safety measures needs to be improved such that they should be comparable to the new or future designs, taken into account the results from the probabilistic and the deterministic accident analysis. To accomplish this aim, the Accident Management (AM) is the important part of the process that must be utilized including possible automation of some processes. At INSTN, the extensive sensitivity studies related to the feed and bleed process on the primary and the secondary side had been carried out with the SIPACT simulator, based on the Cathare code, for a 900 MWe pressurized water reactor. The simulations had been mainly conducted for the Beyond Design Basis Accident (BDBA) condition. This condition included the total loss of feed-water and a small break with the loss of the high pressure injection system (HPIS). From these studies, several interesting findings had been obtained. For AM purpose and with the bleeding process, the criterion called 'the safety time margin' for core uncover was introduced. By plotting the safety time margin against the bleeding time, the relation between them was established and used to optimize, when possible, the AM measures. For the scenario that involved the total loss of feed water, in case of full bleeding, a window was found for the bleeding time around the degradation of the heat exchange in SGs would be resulted. In this scenario, one of the solutions was to open only one relief valve at first in order to let through only the minimal mass. At the time of the injection by the accumulator, the other two relief valves were then opened. As a result, the flow through the relief valves could be effectively compensated by the flow from the accumulator, the mass balance in

  7. Benchmark studies of UV-vis spectra simulation for cinnamates with UV filter profile.

    Science.gov (United States)

    Garcia, Ricardo D'A; Maltarollo, Vinícius G; Honório, Káthia M; Trossini, Gustavo H G

    2015-06-01

    Skin cancer is a serious public health problem worldwide, being incident over all five continents and affecting an increasing number of people. As sunscreens are considered an important preventive measure, studies to develop better and safer sunscreens are crucial. Cinnamates are UVB filters with good efficiency and cost-benefit, therefore, their study could lead to the development of new UV filters. A benchmark to define the most suitable density functional theory (DFT) functional to predict UV-vis spectra for ethylhexyl methoxycinnamate was performed. Time-dependent DFT (TD-DFT) calculations were then carried out [B3LYP/6-311 + G(d,p) and B3P86/6-311 + G(d,p) in methanol environment] for seven cinammete derivatives implemented in the Gaussian 03 package. All DFT/TD-DFT simulations were performed after a conformational search with the Monte-Carlo method and MMFF94 force field. B3LYP and B3P86 functionals were better at reproducing closely the experimental spectra of ethylhexyl methoxycinnamate. Calculations of seven cinnamates showed a λmax of around 310 nm, corroborating literature reports. It was observed that the energy for the main electronic transition was around 3.95 eV and could be explained by electron delocalization on the aromatic ring and ester group, which is important to UV absorption. The methodology employed proved to be suitable for determination of the UV spectra of cinnamates and could be used as a tool for the development of novel UV filters.

  8. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.S., E-mail: csbrown3@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Raleigh, NC 27695-7909 (United States); Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3870 (United States); Kucukboyaci, V., E-mail: kucukbvn@westinghouse.com [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Sung, Y., E-mail: sungy@westinghouse.com [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2016-12-01

    Highlights: • Best estimate plus uncertainty (BEPU) analyses of PWR core responses under main steam line break (MSLB) accident. • CASL’s coupled neutron transport/subchannel code VERA-CS. • Wilks’ nonparametric statistical method. • MDNBR 95/95 tolerance limit. - Abstract: VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was applied to simulate core behavior of a typical Westinghouse-designed 4-loop pressurized water reactor (PWR) with 17 × 17 fuel assemblies in response to two main steam line break (MSLB) accident scenarios initiated at hot zero power (HZP) at the end of the first fuel cycle with the most reactive rod cluster control assembly stuck out of the core. The reactor core boundary conditions at the most DNB limiting time step were determined by a system analysis code. The core inlet flow and temperature distributions were obtained from computational fluid dynamics (CFD) simulations. The two MSLB scenarios consisted of the high and low flow situations, where reactor coolant pumps either continue to operate with offsite power or do not continue to operate since offsite power is unavailable. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this demonstration of BEPU application, 59 full core simulations were performed for each accident scenario to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. A parametric goodness-of-fit approach was also applied to the results to obtain the MDNBR value at the 95/95 tolerance limit. Initial sensitivity analysis was performed with the 59 cases per accident scenario by use of Pearson correlation coefficients. The results show that this typical PWR core

  9. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    International Nuclear Information System (INIS)

    Brown, C.S.; Zhang, H.; Kucukboyaci, V.; Sung, Y.

    2016-01-01

    Highlights: • Best estimate plus uncertainty (BEPU) analyses of PWR core responses under main steam line break (MSLB) accident. • CASL’s coupled neutron transport/subchannel code VERA-CS. • Wilks’ nonparametric statistical method. • MDNBR 95/95 tolerance limit. - Abstract: VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was applied to simulate core behavior of a typical Westinghouse-designed 4-loop pressurized water reactor (PWR) with 17 × 17 fuel assemblies in response to two main steam line break (MSLB) accident scenarios initiated at hot zero power (HZP) at the end of the first fuel cycle with the most reactive rod cluster control assembly stuck out of the core. The reactor core boundary conditions at the most DNB limiting time step were determined by a system analysis code. The core inlet flow and temperature distributions were obtained from computational fluid dynamics (CFD) simulations. The two MSLB scenarios consisted of the high and low flow situations, where reactor coolant pumps either continue to operate with offsite power or do not continue to operate since offsite power is unavailable. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this demonstration of BEPU application, 59 full core simulations were performed for each accident scenario to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. A parametric goodness-of-fit approach was also applied to the results to obtain the MDNBR value at the 95/95 tolerance limit. Initial sensitivity analysis was performed with the 59 cases per accident scenario by use of Pearson correlation coefficients. The results show that this typical PWR core

  10. Simulation model and methodology for calculating the damage by internal radiation in a PWR reactor; Modelo de simulacion y metodologia para el calculo del dano por irradiacion en los internos de un reactor PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas Mendicoa, A. M.; Benito Hernandez, M.; Barreira Pereira, P.

    2012-07-01

    This study involves the development of the methodology and three-dimensional models to estimate the damage to the vessel internals of a commercial PWR reactor from irradiation history of operating cycles.

  11. Bituminization of simulated PWR type reactor wastes, boric evaporator bottons and ion exchange resins, carried out in CNEN/SP using commercial bitumen available in the Brazilian market

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The first results of the study of bituminization of simulated PWR wastes, boric evaporator bottons and spent ion-exclange resins (OH - , H + ) and incinerated ash-wates are presented and discussed. The study consisted of characterization of the commercial bitumen, locally available and bitumen wastes products of varying whight compositions. The characterization was carried out using standard analysis methods of ABNT and ASTM, and included measurement of, penetration, softening point and flash point. In addition, the bitumen samples were analized for their resin and asphaltene contents. For leaching studies, wastes products of bitumen and resin loaded with 134 Cs were utilized. The method used was according to the ISO norms. The simulation of the industrial process was carried out using an extruder-evaporator typically used in the plastic industries offered by Industria de Maquinas Miotto Ltda., Sao Bernardo do Campo - SP. (Author) [pt

  12. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  13. ROX PWR

    Energy Technology Data Exchange (ETDEWEB)

    Akie, H.; Yamashita, T.; Shirasu, N.; Takano, H.; Anoda, Y.; Kimura, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    For an efficient burnup of excess plutonium from nuclear reactors spent fuels and dismantled warheads, plutonium rock-like oxide(ROX) fuel has been investigated. The ROX fuel is expected to provide high Pu transmutation capability, irradiation stability and chemical and geological stability. While, a zirconia-based ROX(Zr-ROX)-fueled PWR core has some problems of Doppler reactivity coefficient and power peaking factor. For the improvement of these characteristics, two approaches were considered: the additives such as UO{sub 2}, ThO{sub 2} and Er{sub 2}O{sub 3}, and a heterogeneous core with Zr-ROX and UO{sub 2} assemblies. As a result, the additives UO{sub 2}+ Er{sub 2}O{sub 3} are found to sufficiently improve the reactivity coefficients and accident behavior, and to flatten power distribution. On the other hand, in the 1/3Zr-ROX + 2/3UO{sub 2} heterogeneous core, further reduction of power peaking seems necessary. (author)

  14. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States)

    2017-03-31

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding is likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.

  15. Study on concentrating treatment test of simulated radioactive wastewater containing boron by reverse osmosis membrane in PWR NPP

    International Nuclear Information System (INIS)

    Ye Xinnan; Jiang Baihua; Fan Wenwen; Zhang Zhiyin; Yang Cangsheng

    2015-01-01

    The reverse osmosis membrane equipment in PWR NPP was employed to investigate the application of pilot scale system in the radioactive wastewater treatment at the full recirculation operation. The removal performance of the equipment for the boron and the radioactivity nuclide were studied, respectively. The experimental results show that the removal efficiency of the aromatic polyamide composite reverse osmosis membrane for boron is over 83.3% and the concentration of boron in concentrate is over 10000 mg/L. The experimental results also show that the removal efficiency of two nuclides including cobalt and cesium is over 97.9%. (authors)

  16. Towards a plant-wide Benchmark Simulation Model with simultaneous nitrogen and phosphorus removal wastewater treatment processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Ikumi, David; Batstone, Damien

    It is more than 10 years since the publication of the Benchmark Simulation Model No 1 (BSM1) manual (Copp, 2002). The main objective of BSM1 was creating a platform for benchmarking carbon and nitrogen removal strategies in activated sludge systems. The initial platform evolved into BSM1_LT and BSM....... This extension aims at facilitating simultaneous carbon, nitrogen and phosphorus (P) removal process development and performance evaluation at a plant-wide level. The main motivation of the work is that numerous wastewater treatment plants (WWTPs) pursue biological phosphorus removal as an alternative...... to chemical P removal based on precipitation using metal salts, such as Fe or Al. This paper identifies and discusses important issues that need to be addressed to upgrade the BSM2 to BSM2-P, for example: 1) new influent wastewater characteristics; 2) new (bio) chemical processes to account for; 3...

  17. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.

    2015-01-01

    In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control...

  18. A benchmark simulation model to describe plant-wide phosphorus transformations in WWTPs

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Ikumi, D.; Kazadi-Mbamba, C.

    It is more than 10 years since the publication of the BSM1 technical report (Copp, 2002). The main objective of BSM1 was to create a platform for benchmarking C and N removal strategies in activated sludge systems. The initial platform evolved into BSM1_LT and BSM2, which allowed for the evaluati...

  19. Behavior of four PWR rods subjected to a simulated loss-of-coolant accient in the power burst facility

    International Nuclear Information System (INIS)

    Cook, T.F.; Hagrman, D.L.; Sepold, L.K.

    1978-01-01

    Cladding deformation characteristics resulting from the first nuclear blowdown tests (LOC-11) conducted in the Power Burst Facility (PBF) are emphasized in this paper. The objective of the LOC-11 tests was to obtain data on the thermal, mechanical, and materials behavior of pressurized and unpressurized fuel rods when exposed to a blowdown similiar to that expected in a pressurized water reactor (PWR) during a hypothesized double-ended cold-leg break. The test hardware consisted of four separately shrouded fresh fuel rods of PWR 15 x 15 design. Initial plenum pressures ranged from atmospheric to 4.8 MPa (representative of end-of-life). During LOC-11C, the four fuel rods were subjected to 6.5 hours of nuclear operation at approximately 67 kW/m average rod power to cause decay heat build-up. Just before the start of blowdown, cladding surface temperatures were about 620 K and fuel centerline temperatures were in the 2500 to 2600 K range. During the 30-second blowdown transient, CHF occurred 2 seconds after initiation. Fuel centerline temperature dropped continuously, while cladding surface temperatures increased. Maximum cladding temperatures of 1030 to 1050 K occurred 15 seconds into the transient. Posttest destructive examination revealed cladding microstructures and oxide thicknesses consistent with the measured cladding temperatures. The cladding surface thermocouples did not appreciably affect cladding temperature distributuion (fin cooling effect) in the vicinity of the thermocouples

  20. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q.

    2015-01-01

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  1. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q. [Department of Radiation Oncology, Duke University Medical Center Durham, North Carolina 27710 (United States)

    2015-01-15

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  2. Quality assurance for online adapted treatment plans: benchmarking and delivery monitoring simulation.

    Science.gov (United States)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q

    2015-01-01

    An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were

  3. Retarding effect of prior-overloading on stress corrosion cracking of cold rolled 316L SS in simulated PWR water environment

    Science.gov (United States)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Ma, Jiarong; Shoji, Tetsuo

    2017-12-01

    The effect of prior single tensile overloading on the stress corrosion cracking behavior of cold rolled 316L in a simulated PWR water environment at 310 °C was investigated. SCC growth retardation by overloading was observed in cold rolled 316L specimens in both the T-L and L-T orientations. The stretch zone observed on the fracture surfaces of the overloaded specimens affected SCC propagation. The compressive residual stress induced by overloading process reduced the effective driving force of SCC propagation. The negative dK/da effect ahead of the crack tip likely contributes to the retardation of SCC growth. The duration of overloading is dependent on water chemistry and the local stress conditions.

  4. Assessing reactor physics codes capabilities to simulate fast reactors on the example of the BN-600 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir [Scientific and Engineering Centre for Nuclear and Radiation Safety (SES NRS), Moscow (Russian Federation); Bousquet, Jeremy [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work aims to assess the capabilities of reactor physics codes (initially validated for thermal reactors) to simulate fast sodium cooled reactors. The BFS-62-3A critical experiment from the BN-600 Hybrid Core Benchmark Analyses was chosen for the investigation. Monte-Carlo codes (KENO from SCALE and SERPENT 2.1.23) and the deterministic diffusion code DYN3D-MG are applied to calculate the neutronic parameters. It was found that the multiplication factor and reactivity effects calculated by KENO and SERPENT using the ENDF/B-VII.0 continuous energy library are in a good agreement with each other and with the measured benchmark values. Few-groups macroscopic cross sections, required for DYN3D-MG, were prepared in applying different methods implemented in SCALE and SERPENT. The DYN3D-MG results of a simplified benchmark show reasonable agreement with results from Monte-Carlo calculations and measured values. The former results are used to justify DYN3D-MG implementation for sodium cooled fast reactors coupled deterministic analysis.

  5. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    International Nuclear Information System (INIS)

    Mendonça, R.; Bosch, R.-W.; Van Renterghem, W.; Vankeerberghen, M.; Araújo Figueiredo, C. de

    2016-01-01

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H 2 /kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition. - Highlights: • Exposure tests with Ni-coupons showed that the Ni/NiO transition curve shifted to more oxidizing conditions. • The Ni specimens tested in PWR water were free of oxides at all temperatures. • The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures. • The Alloy 182 surface morphology changed from spinel crystals to needle like oxides when the Ni/NiO curve was approached

  6. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, R. [CAPES Foundation, Ministry of Education, Brasilia (Brazil); Bosch, R.-W., E-mail: rbosch@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Van Renterghem, W.; Vankeerberghen, M. [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Araújo Figueiredo, C. de [CDTN/CNEN, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG (Brazil)

    2016-08-15

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H{sub 2}/kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition. - Highlights: • Exposure tests with Ni-coupons showed that the Ni/NiO transition curve shifted to more oxidizing conditions. • The Ni specimens tested in PWR water were free of oxides at all temperatures. • The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures. • The Alloy 182 surface morphology changed from spinel crystals to needle like oxides when the Ni/NiO curve was

  7. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    Science.gov (United States)

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  8. Long-term in situ corrosion investigation of Zr alloys in simulated PWR environment by electrochemical measurements

    International Nuclear Information System (INIS)

    Goehr, H.; Schaller, J.; Ruhmann, H.; Garzarolli, F.

    1996-01-01

    The corrosion behavior of Zircaloy-type alloys with different tin contents of 1.55, 0.70, and 0.55 wt% was studied at 350 C and 17 MPa in an environment similar to PWR primary water. Impedance spectra were taken at time intervals and evaluated for thickness and morphology of the oxide layer as well as for its electrical resistance. The tests without any temperature and pressure cycling showed similar oxidation behavior with repeated transitions as in discontinuously performed standard autoclave tests. Early in the pre-transition range, a dense oxide layer is formed, and fast changes of corrosion potential and electrical resistance are observed. The dense layer increases in thickness and homogeneity up to the transition, where a sudden breakdown occurs. Abrupt changes of the corrosion potential and electrical resistance were observed also at those points. After transition, a new dense layer is built up. The corrosion potential changes are caused by a decrease of the electrical corrosion current with increasing oxide layer thickness, by the formation of a potential drop over the high-resistance dense oxide layer, and by structural changes at the transition points. In general, alloys with different tin contents show similar behavior. However, they show differences in the time to transition, the kinetic constants deduced from their impedance spectra, and in the ionic and electronic resistance of the dense inner layer controlling corrosion

  9. Maturity of the PWR

    International Nuclear Information System (INIS)

    Bacher, P.; Rapin, M.; Aboudarham, L.; Bitsch, D.

    1983-03-01

    Figures illustrating the predominant position of the PWR system are presented. The question is whether on the basis of these figures the PWR can be considered to have reached maturity. The following analysis, based on the French program experience, is an attempt to pinpoint those areas in which industrial maturity of the PWR has been attained, and in which areas a certain evolution can still be expected to take place

  10. Post test investigation of the single rod tests ESSI 1-11 on temperature escalation in PWR fuel rod simulators due to the Zircaloy/steam reaction

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Katanishi, S.

    1987-03-01

    This KfK-report describes the posttest investigation of the single rod tests ESSI-1 to ESSI-11. The objective of these tests was to investigate the temperature escalation behaviour of Zircaloy clad PWR-fuel rods in steam. The investigation of the temperature escalation is part of the program of out-of-pile experiments (CORA) performed within the frame work of the PNS Severe Fuel Damage Program. The experimental arrangement consisted of fuel rod simulator (central tungsten heater, UO 2 ring pellets and Zircaloy cladding), Zircaloy shroud and fiber ceramic insulation. The introductory test ESSI-1 to ESSI-3 were scoping tests designed to obtain information on the temperature escalation of zircaloy in steam. ESSI-4 to ESSI-8 were run with increasing heating rates to investigate the influence of the oxide layer thickness at the start of the escalation. ESSI-9 to ESSI-11 were performed to investigate the influence of the insulation thickness on the escalation behaviour. In these tests we also learned that the gap between removed shroud and insulation has a remarkable influence due to heat removal by convection in the gap. After the test the fuel rod simulator was embedded into epoxy and cut by a diamond saw. The cross sections were photographed and investigated by metalograph microscope, SEM and EMP examinations. (orig./GL) [de

  11. Performance of core exit thermocouple for PWR accident management action in vessel top break LOCA simulation experiment at OECD/NEA ROSA project

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Nakamura, Hideo

    2009-01-01

    Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary side in case of core temperature excursion. Test 6-1 is first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reason of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection. (author)

  12. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Thomas, E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Deendarlianto,; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany)

    2011-10-15

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-{omega} turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.

  13. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hohne, T.; Deendarlianto; Vallee, C.; Lucas, D.; Beyer, M., E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany)

    2011-07-01

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden- Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a SST turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all ANSYS CFX users, with the possibility of the implementation of their own correlations. (author)

  14. Simplified model for the thermo-hydraulic simulation of the hot channel of a PWR type nuclear reactor; Modelo simplificado para simulacao do comportamento termohidraulico do canal quente de reator nuclear do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Belem, J A.T.

    1993-09-01

    The present work deals with the thermal-hydraulic analysis of the hot channel of a standard PWR type reactor utilizing a simplified mathematical model that considers constant the water mass flux during single-phase flow and reduction of the flow when the steam quality is increasing in the channel (two-phase flow). The model has been applied to the Angra-1 reactor and it has proved satisfactory when compared to other ones. (author). 25 refs, 15 figs, 3 tabs.

  15. Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking

    NARCIS (Netherlands)

    Daetwyler, H.D.; Calus, M.P.L.; Pong-Wong, R.; Los Campos, De G.; Hickey, J.M.

    2013-01-01

    The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant

  16. Local approach of cleavage fracture applied to a vessel with subclad flaw. A benchmark on computational simulation

    International Nuclear Information System (INIS)

    Moinereau, D.; Brochard, J.; Guichard, D.; Bhandari, S.; Sherry, A.; France, C.

    1996-10-01

    A benchmark on the computational simulation of a cladded vessel with a 6.2 mm sub-clad flaw submitted to a thermal transient has been conducted. Two-dimensional elastic and elastic-plastic finite element computations of the vessel have been performed by the different partners with respective finite element codes ASTER (EDF), CASTEM 2000 (CEA), SYSTUS (Framatome) and ABAQUS (AEA Technology). Main results have been compared: temperature field in the vessel, crack opening, opening stress at crack tips, stress intensity factor in cladding and base metal, Weibull stress σ w and probability of failure in base metal, void growth rate R/R 0 in cladding. This comparison shows an excellent agreement on main results, in particular on results obtained with local approach. (K.A.)

  17. Benchmark simulation of turbulent flow through a staggered tube bundle to support CFD as a reactor design tool. Part 2. URANS CFD simulation

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira

    2008-01-01

    In Part II, we described the unsteady flow simulation and proposed a modification of a traditional turbulence flow model. Computational fluid dynamics (CFD) simulations of an isothermal, fully periodic flow across a tube bundle using unsteady Reynolds averaged Navier-Stokes (URANS) equations, with turbulence models such as the Reynolds stress model (RSM) were investigated at a Reynolds number of 1.8x10 4 , based on the tube diameter and inlet velocity. As noted in Part I, CFD simulation and experimental results were compared at five positions along (x,y) coordinates. The steady RANS simulation showed that four diverse turbulence models were efficient for predicting the Reynolds stresses, and generally, SRANS results were marginal to poor, using a consistent evaluation terminology. In the URANS simulation, we modeled the turbulent flow field in a manner similar to the approach used for large eddy simulation (LES). The time-dependent URANS results showed that the simulation reproduces the dynamic stability as characterized by transverse oscillatory flow structures in the near-wake region. In particular, the inclusion of terms accounting for the time scales associated with the production range and dissipation rate of turbulence generates unsteady statistics of the mean and fluctuation flow. In spite of this, the model implemented produces better agreement with a benchmark data set and is thus recommended. (author)

  18. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  19. Verification and validation benchmarks.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  20. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  1. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William L.; Trucano, Timothy G.

    2008-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  2. Scale resolved simulations of the OECD/NEA–Vattenfall T-junction benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Thomas, E-mail: t.hoehne@hzdr.de

    2014-04-01

    Mixing of fluids in T-junction geometries is of significant interest for nuclear safety research. The most prominent example is the thermal striping phenomena in piping T-junctions, where hot and cold streams join and turbulently mix, however not completely or not immediately at the T-junction. This result in significant temperature fluctuations near the piping wall, either at the side of the secondary pipe branch or at the opposite side of the main branch pipe. The wall temperature fluctuation can cause cyclical thermal stresses and subsequently fatigue cracking of the wall. Thermal mixing in a T-junction has been studied for validation of CFD-calculations. A T-junction thermal mixing test was carried out at the Älvkarleby Laboratory of Vattenfall Research and Development (VRD) in Sweden. Data from this test have been reserved specifically for a OECD CFD benchmark exercise. The computational results show that RANS fail to predict a realistic mixing between the fluids. The results were significantly better with scale-resolving methods such as LES, showing fairly good predictions of the velocity field and mean temperatures. The calculation predicts also similar fluctuations and frequencies observed in the model test.

  3. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  4. Numerical analysis and simulation of behavior of high burn-up PWR fuel pulse-irradiated in reactivity-initiated accident conditions

    International Nuclear Information System (INIS)

    Suzuki, M.; Sugiyama, T.; Udagawa, Y.; Nagase, F.; Fuketa, T.

    2010-01-01

    The four cases of the NSRR experiments, consisting of two room temperature tests and two high temperature tests, using high burn-up PWR fuel rods are analyzed by using the RANNS code to discuss the fuel behavior in hypothetical pulse-irradiation conditions, and the results are compared with metallography observations of ruptured claddings. The cladding rupture occurred by a shear sliding which starts from the tip of incipient crack generated in the hydride dense layer. The analyses reveal that the onset of shear sliding leading to cladding rupture can be closely associated with the stress intensity factor KI at the crack tip and local plastic strain evolution around the tip as well, and that these two factors depend also on the temperature of cladding. Simulation calculations on the basis of experimental conditions reveals that the cladding stress is dependent on the height and half-width of pulse power, and for the same integral enthalpy of pulse a larger half-width mitigates the severity of transient and decreases KI to allow plastic strain by temperature rise, thus failure possibility would be markedly decreased

  5. Stress intensity factor at the tip of cladding incipient crack in RIA-simulating experiments for high-burnup PWR fuels

    International Nuclear Information System (INIS)

    Udagawa, Yutaka; Suzuki, Motoe; Sugiyama, Tomoyuki; Fuketa, Toyoshi

    2009-01-01

    RIA-simulating experiments for high-burnup PWR fuels have been performed in the NSRR, and the stress intensity factor K 1 at the tip of cladding incipient crack has been evaluated in order to investigate its validity as a PCMI failure threshold under RIA conditions. An incipient crack depth was determined by observation of metallographs. The maximum hydride-rim thickness in the cladding of the test fuel rod was regarded as the incipient crack depth in each test case. Hoop stress in the cladding periphery during the pulse power transient was calculated by the RANNS code. K 1 was calculated based on crack depth and hoop stress. According to the RANNS calculation, PCMI failure cases can be divided into two groups: failure in the elastic phase and failure in the plastic phase. In the former case, elastic deformation was predominant around the incipient crack at failure time. K 1 is available only in this case. In the latter, plastic deformation was predominant around the incipient crack at failure time. Failure in the elastic phase never occurred when K 1 was less than 17 MPa m 1/2 . For failure in the plastic phase, the plastic hoop strain of the cladding periphery at failure time clearly showed a tendency to decrease with incipient crack depth. The combination of K 1 , for failure in the elastic phase, and plastic hoop strain at failure, for failure in the plastic phase, can be an effective index of PCMI failure under RIA conditions. (author)

  6. Pre-test prediction and post-test analysis of PWR fuel rod ballooning in the MT-3 in-pile LOCA simulation experiment in the NRU reactor

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The USNRC and the UKAEA have jointly funded a series of in-pile LOCA simulation experiments in the Canadian NRU reactor in order to secure further information on the thermal hydraulic and clad deformation response of PWR fuel rod bundles. Test MT-3 in the series was performed using reflood rate and rod internal pressure conditions specified by the UK nuclear industry. The parameters were selected to ensure the development of a near-isothermal clad temperature history during which zircaloy was required to balloon and rupture near the alpha-alpha/beta phase transition. Specification of the reflood rate conditions was assisted by the performance of a precursor test on an unpressurised rod bundle and by complementary application of appropriate thermal hydraulic analyses. Identification of the rod internal pressure needed to cause ballooning and rupture was achieved using a creep deformation model, BALLOON, in conjunction with the clad thermal history defined by the prior thermal hydraulic test. This paper presents the basis of the BALLOON analysis and describes its application in calculating the fill gas pressure for rods MT-3, their axial ballooning profile and the clad temperature at peak radial strain elevations. (author)

  7. Comparison benchmark between tokamak simulation code and TokSys for Chinese Fusion Engineering Test Reactor vertical displacement control design

    International Nuclear Information System (INIS)

    Qiu Qing-Lai; Xiao Bing-Jia; Guo Yong; Liu Lei; Wang Yue-Hang

    2017-01-01

    Vertical displacement event (VDE) is a big challenge to the existing tokamak equipment and that being designed. As a Chinese next-step tokamak, the Chinese Fusion Engineering Test Reactor (CFETR) has to pay attention to the VDE study with full-fledged numerical codes during its conceptual design. The tokamak simulation code (TSC) is a free boundary time-dependent axisymmetric tokamak simulation code developed in PPPL, which advances the MHD equations describing the evolution of the plasma in a rectangular domain. The electromagnetic interactions between the surrounding conductor circuits and the plasma are solved self-consistently. The TokSys code is a generic modeling and simulation environment developed in GA. Its RZIP model treats the plasma as a fixed spatial distribution of currents which couple with the surrounding conductors through circuit equations. Both codes have been individually used for the VDE study on many tokamak devices, such as JT-60U, EAST, NSTX, DIII-D, and ITER. Considering the model differences, benchmark work is needed to answer whether they reproduce each other’s results correctly. In this paper, the TSC and TokSys codes are used for analyzing the CFETR vertical instability passive and active controls design simultaneously. It is shown that with the same inputs, the results from these two codes conform with each other. (paper)

  8. Implementation of Extended Statistical Entropy Analysis to the Effluent Quality Index of the Benchmarking Simulation Model No. 2

    Directory of Open Access Journals (Sweden)

    Alicja P. Sobańtka

    2014-01-01

    Full Text Available Extended statistical entropy analysis (eSEA is used to assess the nitrogen (N removal performance of the wastewater treatment (WWT simulation software, the Benchmarking Simulation Model No. 2 (BSM No. 2 . Six simulations with three different types of wastewater are carried out, which vary in the dissolved oxygen concentration (O2,diss. during the aerobic treatment. N2O emissions generated during denitrification are included in the model. The N-removal performance is expressed as reduction in statistical entropy, ΔH, compared to the hypothetical reference situation of direct discharge of the wastewater into the river. The parameters chemical and biological oxygen demand (COD, BOD and suspended solids (SS are analogously expressed in terms of reduction of COD, BOD, and SS, compared to a direct discharge of the wastewater to the river (ΔEQrest. The cleaning performance is expressed as ΔEQnew, the weighted average of ΔH and ΔEQrest. The results show that ΔEQnew is a more comprehensive indicator of the cleaning performance because, in contrast to the traditional effluent quality index (EQ, it considers the characteristics of the wastewater, includes all N-compounds and their distribution in the effluent, the off-gas, and the sludge. Furthermore, it is demonstrated that realistically expectable N2O emissions have only a moderate impact on ΔEQnew.

  9. Three-Dimensional (X,Y,Z) Deterministic Analysis of the PCA-Replica Neutron Shielding Benchmark Experiment using the TORT-3.2 Code and Group Cross Section Libraries for LWR Shielding and Pressure Vessel Dosimetry

    OpenAIRE

    Pescarini Massimo; Orsi Roberto; Frisoni Manuela

    2016-01-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the ORNL TORT-3.2 3D SN code. PCA-Replica, specifically conceived to test the accuracy of nuclear data and transport codes employed in LWR shielding and radiation damage calculations, reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a PWR pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with ...

  10. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  11. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    Directory of Open Access Journals (Sweden)

    Nataliia Cherkashyna

    2015-08-01

    Full Text Available The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS, currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ, at the Paul Scherrer Institute (PSI, Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters instruments at ESS.

  12. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.

    Science.gov (United States)

    Hariharan, Prasanna; Giarra, Matthew; Reddy, Varun; Day, Steven W; Manning, Keefe B; Deutsch, Steven; Stewart, Sandy F C; Myers, Matthew R; Berman, Michael R; Burgreen, Greg W; Paterson, Eric G; Malinauskas, Richard A

    2011-04-01

    at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.

  13. Benchmark simulation model no 2: general protocol and exploratory case studies

    DEFF Research Database (Denmark)

    Jeppsson, U.; Pons, M.N.; Nopens, I.

    2007-01-01

    and digester models, the included temperature dependencies and the reject water storage. BSM2-implementations are now available in a wide range of simulation platforms and a ring test has verified their proper implementation, consistent with the BSM2 definition. This guarantees that users can focus...

  14. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ; Tang, Y.; Liu, H.; Yoon, Hongkyu; Kang, Qinjun; Joekar Niasar, Vahid; Balhoff, Matthew; Dewers, T.; Tartakovsky, Guzel D.; Leist, Emily AE; Hess, Nancy J.; Perkins, William A.; Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Werth, Charles J.; Valocchi, Albert J.; Wietsma, Thomas W.; Zhang, Changyong

    2016-08-01

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.

  15. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Directory of Open Access Journals (Sweden)

    Lerendegui-Marco J.

    2017-01-01

    Full Text Available Monte Carlo (MC simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1, especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2 of the facility.

  16. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Science.gov (United States)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.; Meo, S. Lo; Massimi, C.; Barbagallo, M.; Colonna, N.; Mancussi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; Gómez-Hornillos, M. B.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1), especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2) of the facility.

  17. GEANT4 simulations of the n{sub T}OF spallation source and their benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Lo Meo, S. [Research Centre ' ' Ezio Clementel' ' , ENEA, Bologna (Italy); Section of Bologna, INFN, Bologna (Italy); Cortes-Giraldo, M.A.; Lerendegui-Marco, J.; Guerrero, C.; Quesada, J.M. [Universidad de Sevilla, Facultad de Fisica, Sevilla (Spain); Massimi, C.; Vannini, G. [Section of Bologna, INFN, Bologna (Italy); University of Bologna, Physics and Astronomy Dept. ' ' Alma Mater Studiorum' ' , Bologna (Italy); Barbagallo, M.; Colonna, N. [INFN, Section of Bari, Bari (Italy); Mancusi, D. [CEA-Saclay, DEN, DM2S, SERMA, LTSD, Gif-sur-Yvette CEDEX (France); Mingrone, F. [Section of Bologna, INFN, Bologna (Italy); Sabate-Gilarte, M. [Universidad de Sevilla, Facultad de Fisica, Sevilla (Spain); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Collaboration: The n_TOF Collaboration

    2015-12-15

    Neutron production and transport in the spallation target of the n{sub T}OF facility at CERN has been simulated with GEANT4. The results obtained with different models of high-energy nucleon-nucleus interaction have been compared with the measured characteristics of the neutron beam, in particular the flux and its dependence on neutron energy, measured in the first experimental area. The best agreement at present, within 20% for the absolute value of the flux, and within few percent for the energy dependence in the whole energy range from thermal to 1 GeV, is obtained with the INCL++ model coupled with the GEANT4 native de-excitation model. All other available models overestimate by a larger factor, of up to 70%, the n{sub T}OF neutron flux. The simulations are also able to accurately reproduce the neutron beam energy resolution function, which is essentially determined by the moderation time inside the target/moderator assembly. The results here reported provide confidence on the use of GEANT4 for simulations of spallation neutron sources. (orig.)

  18. Simulation as a new tool to establish benchmark outcome measures in obstetrics.

    Directory of Open Access Journals (Sweden)

    Matt M Kurrek

    Full Text Available There are not enough clinical data from rare critical events to calculate statistics to decide if the management of actual events might be below what could reasonably be expected (i.e. was an outlier.In this project we used simulation to describe the distribution of management times as an approach to decide if the management of a simulated obstetrical crisis scenario could be considered an outlier.Twelve obstetrical teams managed 4 scenarios that were previously developed. Relevant outcome variables were defined by expert consensus. The distribution of the response times from the teams who performed the respective intervention was graphically displayed and median and quartiles calculated using rank order statistics.Only 7 of the 12 teams performed chest compressions during the arrest following the 'cannot intubate/cannot ventilate' scenario. All other outcome measures were performed by at least 11 of the 12 teams. Calculation of medians and quartiles with 95% CI was possible for all outcomes. Confidence intervals, given the small sample size, were large.We demonstrated the use of simulation to calculate quantiles for management times of critical event. This approach could assist in deciding if a given performance could be considered normal and also point to aspects of care that seem to pose particular challenges as evidenced by a large number of teams not performing the expected maneuver. However sufficiently large sample sizes (i.e. from a national data base will be required to calculate acceptable confidence intervals and to establish actual tolerance limits.

  19. Development of BWR [boiling water reactor] and PWR [pressurized water reactor] event descriptions for nuclear facility simulator training

    International Nuclear Information System (INIS)

    Carter, R.J.; Bovell, C.R.

    1987-01-01

    A number of tools that can aid nuclear facility training developers in designing realistic simulator scenarios have been developed. This paper describes each of the tools, i.e., event lists, events-by-competencies matrices, and event descriptions, and illustrates how the tools can be used to construct scenarios

  20. Simulation of steady states of an integral PWR and power change transients using RELAP5 MOD3

    International Nuclear Information System (INIS)

    Aronne, Ivan Dionysio Aronne; Palmieri, Elcio Tadeu; Azwvedo, Carlos Vicente Goulart de; Baptista Filho, Benedito Dias; Barroso, Antonio Carlos de Oliveira

    2005-01-01

    An integral pressurized water reactor presents several differences in relation to conventional PWRs. The metal and cooling fluid masses of integral reactors are larger than those of a conventional reactor and, on the other hand, bombs tend to be smaller and the pressurizer should present characteristics proper of that arrangement. These characteristics, representing inertias different from the usual ones, makes obtaining the stationary state of the integral reactor a task with particularities that demand strategies different from the usually employed. This paper presents, initially, the main physical characteristics of the reactor in study and then the options adopted in developing the model and that were used to obtain the simulation of stationary states with the code RELAP5-MOD3. The results of the simulation of the steady state show the effects of the fore mentioned differences, where the times lags are significantly larger, as well as the suitability and efficiency of the defined approach. Two transients were simulated for changing the reactor power from steady state power of 100% to steady state power of 90%. The power change of these transients were one in step and the other in ramp with a rate of 5%/min. These calculations represent a first step for the definition and tests of parts of a preliminary control system for this reactor. The two transient simulated were based on plausible control hypotheses whose results are presented and commented. The final objective of this study is the use of results of simulations of steady states as much as of transients in support to the development of a transient identification and classification system, based on a neural network using self organizing maps whose basic proposition is presented in this paper. (author)

  1. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Rechner, Laura; Mirkovic, Dragan; Yepes, Pablo; Koch, Nicholas C.; Titt, Uwe; Fontenot, Jonas D.; Zhang, Rui

    2013-01-01

    Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beamline. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved. - Highlights: • We compared measurements and Monte Carlo predictions of dose perturbations caused by the metal objects in proton beams. • Different Monte Carlo codes were used, including MCNPX, GEANT4 and Fast Dose Calculator. • Good agreement was found between measurements and Monte Carlo simulations. • The modification of multiple Coulomb scattering model in MCNPX code yielded improved accuracy. • Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy

  2. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  3. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    International Nuclear Information System (INIS)

    Nabeshima Kunihiko; Suzuki Katsuo; Nose, Shoichi; Kudo, Kazuhiko

    1996-01-01

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs

  4. Development of nuclear power plant monitoring system with neutral network using on-line PWR plant simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kunihiko, Nabeshima; Katsuo, Suzuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Nose, Shoichi; Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-12-31

    The purpose of this paper is to demonstrate a nuclear power plant monitoring system using artificial neural network (ANN). The major advantages of the monitoring system are that a multi-output process system can be modelled using measurement information without establishing any mathematical expressions. The dynamics model of reactor plant was constructed by using three layered auto-associative neural network with backpropagation learning algorithm. The basic idea of anomaly detection method is to monitor the deviation between process signals measured from actual plant and corresponding output signals from the ANN plant model. The simulator used is a self contained system designed for training. Four kinds of simulated malfunction caused by equipment failure during steady state operation were used to evaluate the capability of the neural network monitoring system. The results showed that this monitoring system detected the symptom of small anomaly earlier than the prevailing alarm system. (author). 7 refs, 7 figs, 2 tabs.

  5. PWR simplified fuel element simulation using calculation trailer ANSYS CFX and PARCS including pressure drop and turbulence in the spacer

    International Nuclear Information System (INIS)

    Pena-Monferrer, C.; Chiva, S.; Miro, R.; Barrachina, T.; Pellacani, F.; Macian-Juan, R.

    2012-01-01

    With the recent development of a new computational tool for calculations of nuclear reactors based on the coupling between the PARCS neutron transport code and computational fluid dynamics commercial code (CFD) ANSYS CFX opens new possibilities in the fuel element design that contributes to a better understanding and a better simulation of the processes of heat transfer and specific phenomena of fluid dynamics as the c rossflow .

  6. The PWR cores management

    International Nuclear Information System (INIS)

    Barral, J.C.; Rippert, D.; Johner, J.

    2000-01-01

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  7. Uncertainty and Sensitivity of Neutron Kinetic Parameters in the Dynamic Response of a PWR Rod Ejection Accident Coupled Simulation

    Directory of Open Access Journals (Sweden)

    C. Mesado

    2012-01-01

    Full Text Available In nuclear safety analysis, it is very important to be able to simulate the different transients that can occur in a nuclear power plant with a very high accuracy. Although the best estimate codes can simulate the transients and provide realistic system responses, the use of nonexact models, together with assumptions and estimations, is a source of uncertainties which must be properly evaluated. This paper describes a Rod Ejection Accident (REA simulated using the coupled code RELAP5/PARCSv2.7 with a perturbation on the cross-sectional sets in order to determine the uncertainties in the macroscopic neutronic information. The procedure to perform the uncertainty and sensitivity (U&S analysis is a sampling-based method which is easy to implement and allows different procedures for the sensitivity analyses despite its high computational time. DAKOTA-Jaguar software package is the selected toolkit for the U&S analysis presented in this paper. The size of the sampling is determined by applying the Wilks’ formula for double tolerance limits with a 95% of uncertainty and with 95% of statistical confidence for the output variables. Each sample has a corresponding set of perturbations that will modify the cross-sectional sets used by PARCS. Finally, the intervals of tolerance of the output variables will be obtained by the use of nonparametric statistical methods.

  8. Library Benchmarking

    Directory of Open Access Journals (Sweden)

    Wiji Suwarno

    2017-02-01

    Full Text Available The term benchmarking has been encountered in the implementation of total quality (TQM or in Indonesian termed holistic quality management because benchmarking is a tool to look for ideas or learn from the library. Benchmarking is a processof measuring and comparing for continuous business process of systematic and continuous measurement, the process of measuring and comparing for continuous business process of an organization to get information that can help these organization improve their performance efforts.

  9. Benchmark Simulation for the Development of the Regulatory Audit Subchannel Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. H.; Song, C.; Woo, S. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    For the safe and reliable operation of a reactor, it is important to predict accurately the flow and temperature distributions in the thermal-hydraulic design of a reactor core. A subchannel approach can give the reasonable flow and temperature distributions with the short computing time. Korea Institute of Nuclear Safety (KINS) is presently reviewing new subchannel code, THALES, which will substitute for both THINC-IV and TORC code. To assess the prediction performance of THALES, KINS is developing the subchannel analysis code for the independent audit calculation. The code is based on workstation version of COBRA-IV-I. The main objective of the present study is to assess the performance of COBRA-IV-I code by comparing the simulation results with experimental ones for the sample problems

  10. MFTF TOTAL benchmark

    International Nuclear Information System (INIS)

    Choy, J.H.

    1979-06-01

    A benchmark of the TOTAL data base management system as applied to the Mirror Fusion Test Facility (MFTF) data base was implemented and run in February and March of 1979. The benchmark was run on an Interdata 8/32 and involved the following tasks: (1) data base design, (2) data base generation, (3) data base load, and (4) develop and implement programs to simulate MFTF usage of the data base

  11. Simulation of accident and restrained transients in PWR nuclear power plant with RELAP 5/MOD 1 computer code

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1986-01-01

    The computer code RELAP5/MOD1 has been utilized to investigate the thermal-hydraulic behaviour of a standard 1300 Mwe pressurized water reactor plant of the KWU design during a station blackout and during a loss-of-coolant accident involving 2% break in the cross-sectional area the cold leg in one of the four loops and located between the pump and the reactor pressure vessel. During the simulations the reactor scram system and the emergency coolant system were considered inactive. (Author) [pt

  12. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction ESSI-4 ESSI-11

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauscheck, H.; Wallenfels, K.P.; Buescher, B.J.

    1985-03-01

    The tests had the initial heatup rate as main parameter. The experimental arrangement consisted of a fuel rod simulator (central tungsten heater, UO 2 ring pellets and zircaloy cladding), a zircaloy shroud and the fiber ceramic insulation. A steam flow of ca. 20 g/min was introduced at the lower end of the bundle. A temperature escalation was observed in every test. The maximum cladding surface temperature in the single rod tests never exceeded 2200 0 C. The escalation began in the upper region of the rods and moved down the rods, opposite to the direction of steam flow. For fast initial heatup rates, the runoff of molten zircaloy was a limiting process for the escalation. For slow heatup rates, the formation of a protective oxide layer reduced the reaction rate. The test with less insulation thickness showed a reduction of the escalation. A stronger influence was found for the gap between shroud and insulation. This is caused by convection heat losses to the steam circulating in this gap by natural convection. Removal of the gap between shroud and insulation in essentially the same experimental arrangement produced a faster escalation. The posttest appearance of the fuel rod simulators showed that, at slow heatup rates oxidation of the cladding was complete, and the fuel rod was relatively intact. Conversely, at fast heatup rates, relatively little cladding oxidation with extensive dissolution of the UO 2 pellets and runoff of molten cladding was observed. (orig./HP) [de

  13. OpenMP-accelerated SWAT simulation using Intel C and FORTRAN compilers: Development and benchmark

    Science.gov (United States)

    Ki, Seo Jin; Sugimura, Tak; Kim, Albert S.

    2015-02-01

    We developed a practical method to accelerate execution of Soil and Water Assessment Tool (SWAT) using open (free) computational resources. The SWAT source code (rev 622) was recompiled using a non-commercial Intel FORTRAN compiler in Ubuntu 12.04 LTS Linux platform, and newly named iOMP-SWAT in this study. GNU utilities of make, gprof, and diff were used to develop the iOMP-SWAT package, profile memory usage, and check identicalness of parallel and serial simulations. Among 302 SWAT subroutines, the slowest routines were identified using GNU gprof, and later modified using Open Multiple Processing (OpenMP) library in an 8-core shared memory system. In addition, a C wrapping function was used to rapidly set large arrays to zero by cross compiling with the original SWAT FORTRAN package. A universal speedup ratio of 2.3 was achieved using input data sets of a large number of hydrological response units. As we specifically focus on acceleration of a single SWAT run, the use of iOMP-SWAT for parameter calibrations will significantly improve the performance of SWAT optimization.

  14. Thermohydraulic calculations of PWR primary circuits

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1984-01-01

    Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt

  15. Sensitivity analysis for thermo-hydraulics model of a Westinghouse type PWR. Verification of the simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Aref Zarnooshe [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club

    2017-07-15

    Development of a steady-state model is the first step in nuclear safety analysis. The developed model should be qualitatively analyzed first, then a sensitivity analysis is required on the number of nodes for models of different systems to ensure the reliability of the obtained results. This contribution aims to show through sensitivity analysis, the independence of modeling results to the number of nodes in a qualified MELCOR model for a Westinghouse type pressurized power plant. For this purpose, and to minimize user error, the nuclear analysis software, SNAP, is employed. Different sensitivity cases were developed by modification of the existing model and refinement of the nodes for the simulated systems including steam generators, reactor coolant system and also reactor core and its connecting flow paths. By comparing the obtained results to those of the original model no significant difference is observed which is indicative of the model independence to the finer nodes.

  16. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Test ESBU-1

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Peck, S.O.; Wallenfels, K.P.

    1983-12-01

    This report describes the test conduct and results of the bundle test ESBU-1. The test objective was the investigation of temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of a program of out-of-pile experiments, performed within the framework of the PNS Several Fuel Damage Program. The bundle was composed of a 3x3 array of fuel rod simulators surrounded by a zircaloy shroud which was insulated with a ZrO 2 fiber ceramic wrap. The fuel rod simulators comprised a tungsten heater, UO 2 annular pellets, and zircaloy cladding over a 0.4 m heated length. A steam flow of 1 g/s was inlet to the bundle. The most pronounced temperature escalation was found on the central rod. The initial heatup rate of 2 0 C/s at 1100 0 C increased to approximately 6 0 C/s. The maximum temperature reached was 2250 0 C. The following fast temperature decrease was caused by runoff of molten zircaloy. Molten zircaloy swept down the thin cladding oxide layer formed during heatup. The melt dissolved the surface of the UO 2 pellets and refroze as a coherent lump in the lower part of the bundle. The remaining pellets fragmented during cooldown and formed a powdery layer on the refrozen lump. The lump was sectioned posttest at several elevations: Dissolution of UO 2 by the molten zircaloy, interaction between the melt and previously oxidized zircaloy, and oxidation of the melt had occurred. (orig.) [de

  17. Temperature escalation in PWR fuel rod simulator bundles due to the Zircaloy/steam reaction: Test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1984-07-01

    This report describes the test conduct and results of the bundle test ESBU-2A, which was run to investigate the temperature escalation of zircaloy clad fuel rods. This investigation of temperature escalation is part of a series of out-of-pile experiments, performed within the framework of the PNS Severe Fuel Damage Program. The test bundle was of a 3 x 3 array of fuel rod simulators with a 0.4 m heated length. The fuel rod simulators were electrically heated and consisted of tungsten heaters, UO 2 annular pellets, and zircaloy cladding. A nominal steam flow of 0.7 g/s was inlet to the bundle. The bundle was surrounded by a zircaloy shroud which was insulated with ZrO 2 fiber ceramic wrap. The initial heatup rate of the bundle was 0.4 0 C/s. The temperature escalation began at the 255 mm elevation after 1200 0 C had been reached. At this elevation, the measured peak temperature was limited to 1500 0 C. It was concluded from different thermocouple results, that induced by this first escalation melt was formed in the lower part of the bundle. Consequently, the escalation in the lower part must be much higher, at least up to the melting temperature of zircaloy. Due to the failure in the steam production system, steam starvation in the upper region may explain the beginning of the escalation at the 255 mm elevation. The maximum temperature reached was 2175 0 C on the center rod at the end of the test. The unregularities in the steam supply may be the reason for less oxidation than expected. (orig./GL) [de

  18. Interactive benchmarking

    DEFF Research Database (Denmark)

    Lawson, Lartey; Nielsen, Kurt

    2005-01-01

    We discuss individual learning by interactive benchmarking using stochastic frontier models. The interactions allow the user to tailor the performance evaluation to preferences and explore alternative improvement strategies by selecting and searching the different frontiers using directional...... in the suggested benchmarking tool. The study investigates how different characteristics on dairy farms influences the technical efficiency....

  19. RUNE benchmarks

    DEFF Research Database (Denmark)

    Peña, Alfredo

    This report contains the description of a number of benchmarks with the purpose of evaluating flow models for near-shore wind resource estimation. The benchmarks are designed based on the comprehensive database of observations that the RUNE coastal experiment established from onshore lidar...

  20. Benchmark selection

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2002-01-01

    Within a production theoretic framework, this paper considers an axiomatic approach to benchmark selection. It is shown that two simple and weak axioms; efficiency and comprehensive monotonicity characterize a natural family of benchmarks which typically becomes unique. Further axioms are added...... in order to obtain a unique selection...

  1. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    Science.gov (United States)

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  2. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  3. Stress corrosion cracking growth rate of TT alloy 690 and its weld joint in simulated PWR primary water

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    Recently, some researchers reported that the SCC growth rate (SCCGR) of cold worked thermally treated (TT) Alloy 690 was significantly different in heat by heat. But, author has hypothesized that these high SCCGRs in cold worked TT Alloy 690 could be due to the metallurgical characteristics of these heats. In order to confirm this hypothesis, this study has been started in the author's laboratory, and the following 4 new evidences were obtained. First, microcracks of carbides and voids were observed in eutectic M 23 C 6 GB carbides (primary carbides) for cold rolled laboratory heat after as cast or lightly forged condition or for chemical composition simulated Bettis'TT Alloy 690 heat, after cold rolling, before SCC test. However, microcracks in primary carbides along grain boundaries and voids were rarely detected in the cold rolled commercial heat of TT Alloy 690 used for CRDM penetrations. Secondly, the SCCGR observed in TT Alloy 690 was different in each hot working process and each heat. Comparing the SCCGRs for all heats of cold worked TT Alloy 690, the SCCGR decreased with increasing of Vickers hardness. However, in same heats of cold worked TT Alloy 690, the SCCGR increased with increasing of Vickers hardness. Thirdly, the SCCGR in cold rolled TT Alloy 690 should be integrated by the effect of hardness or cold working ratio and by the effect of existing ratio of primary M23C6 carbides with cracks and Voids due to chemical composition and the fabrication process of TT Alloy 690. Fourthly, it is argued that the high SCCGRs in highly cold rolled TT Alloy 690 are not representative of the practical situation with TT Alloy 690 in service for CRDM adapter nozzles etc. The high SCCGR of highly cold rolled TT Alloy 690 is not thought to be an accurate tool in predicting the possibility of cracking of TT Alloy 690 for CRDM adapter nozzles. (author)

  4. Sensitivity Analysis of OECD Benchmark Tests in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmidt, Rodney C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williamson, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on sensitivity analysis of a fuels performance benchmark problem. The benchmark problem was defined by the Uncertainty Analysis in Modeling working group of the Nuclear Science Committee, part of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD ). The benchmark problem involv ed steady - state behavior of a fuel pin in a Pressurized Water Reactor (PWR). The problem was created in the BISON Fuels Performance code. Dakota was used to generate and analyze 300 samples of 17 input parameters defining core boundary conditions, manuf acturing tolerances , and fuel properties. There were 24 responses of interest, including fuel centerline temperatures at a variety of locations and burnup levels, fission gas released, axial elongation of the fuel pin, etc. Pearson and Spearman correlatio n coefficients and Sobol' variance - based indices were used to perform the sensitivity analysis. This report summarizes the process and presents results from this study.

  5. A benchmark study of 2D and 3D finite element calculations simulating dynamic pulse buckling tests of cylindrical shells under axial impact

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1993-01-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry

  6. MOx Depletion Calculation Benchmark

    International Nuclear Information System (INIS)

    San Felice, Laurence; Eschbach, Romain; Dewi Syarifah, Ratna; Maryam, Seif-Eddine; Hesketh, Kevin

    2016-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of Reactor Systems (WPRS) has been established to study the reactor physics, fuel performance, radiation transport and shielding, and the uncertainties associated with modelling of these phenomena in present and future nuclear power systems. The WPRS has different expert groups to cover a wide range of scientific issues in these fields. The Expert Group on Reactor Physics and Advanced Nuclear Systems (EGRPANS) was created in 2011 to perform specific tasks associated with reactor physics aspects of present and future nuclear power systems. EGRPANS provides expert advice to the WPRS and the nuclear community on the development needs (data and methods, validation experiments, scenario studies) for different reactor systems and also provides specific technical information regarding: core reactivity characteristics, including fuel depletion effects; core power/flux distributions; Core dynamics and reactivity control. In 2013 EGRPANS published a report that investigated fuel depletion effects in a Pressurised Water Reactor (PWR). This was entitled 'International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues' NEA/NSC/DOC(2013) that documented a benchmark exercise for UO 2 fuel rods. This report documents a complementary benchmark exercise that focused on PuO 2 /UO 2 Mixed Oxide (MOX) fuel rods. The results are especially relevant to the back-end of the fuel cycle, including irradiated fuel transport, reprocessing, interim storage and waste repository. Saint-Laurent B1 (SLB1) was the first French reactor to use MOx assemblies. SLB1 is a 900 MWe PWR, with 30% MOx fuel loading. The standard MOx assemblies, used in Saint-Laurent B1 reactor, include three zones with different plutonium enrichments, high Pu content (5.64%) in the center zone, medium Pu content (4.42%) in the intermediate zone and low Pu content (2.91%) in the peripheral zone

  7. OECD/NEA Sandia Fuel Project phase I: Benchmark of the ignition testing

    Energy Technology Data Exchange (ETDEWEB)

    Adorni, Martina, E-mail: martina_adorni@hotmail.it [UNIPI (Italy); Herranz, Luis E. [CIEMAT (Spain); Hollands, Thorsten [GRS (Germany); Ahn, Kwang-II [KAERI (Korea, Republic of); Bals, Christine [GRS (Germany); D' Auria, Francesco [UNIPI (Italy); Horvath, Gabor L. [NUBIKI (Hungary); Jaeckel, Bernd S. [PSI (Switzerland); Kim, Han-Chul; Lee, Jung-Jae [KINS (Korea, Republic of); Ogino, Masao [JNES (Japan); Techy, Zsolt [NUBIKI (Hungary); Velazquez-Lozad, Alexander; Zigh, Abdelghani [USNRC (United States); Rehacek, Radomir [OECD/NEA (France)

    2016-10-15

    Highlights: • A unique PWR spent fuel pool experimental project is analytically investigated. • Predictability of fuel clad ignition in case of a complete loss of coolant in SFPs is assessed. • Computer codes reasonably estimate peak cladding temperature and time of ignition. - Abstract: The OECD/NEA Sandia Fuel Project provided unique thermal-hydraulic experimental data associated with Spent Fuel Pool (SFP) complete drain down. The study conducted at Sandia National Laboratories (SNL) was successfully completed (July 2009 to February 2013). The accident conditions of interest for the SFP were simulated in a full scale prototypic fashion (electrically heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate severe accident code validation and to reduce modeling uncertainties within the codes. Phase I focused on axial heating and burn propagation in a single PWR 17 × 17 assembly (i.e. “hot neighbors” configuration). Phase II addressed axial and radial heating and zirconium fire propagation including effects of fuel rod ballooning in a 1 × 4 assembly configuration (i.e. single, hot center assembly and four, “cooler neighbors”). This paper summarizes the comparative analysis regarding the final destructive ignition test of the phase I of the project. The objective of the benchmark is to evaluate and compare the predictive capabilities of computer codes concerning the ignition testing of PWR fuel assemblies. Nine institutions from eight different countries were involved in the benchmark calculations. The time to ignition and the maximum temperature are adequately captured by the calculations. It is believed that the benchmark constitutes an enlargement of the validation range for the codes to the conditions tested, thus enhancing the code applicability to other fuel assembly designs and configurations. The comparison of

  8. WLUP benchmarks

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2002-01-01

    The IAEA-WIMS Library Update Project (WLUP) is on the end stage. The final library will be released on 2002. It is a result of research and development made by more than ten investigators during 10 years. The organization of benchmarks for testing and choosing the best set of data has been coordinated by the author of this paper. It is presented the organization, name conventions, contents and documentation of WLUP benchmarks, and an updated list of the main parameters for all cases. First, the benchmarks objectives and types are given. Then, comparisons of results from different WIMSD libraries are included. Finally it is described the program QVALUE for analysis and plot of results. Some examples are given. The set of benchmarks implemented on this work is a fundamental tool for testing new multigroup libraries. (author)

  9. Benchmarking in a differentially heated rotating annulus experiment: Multiple equilibria in the light of laboratory experiments and simulations

    Science.gov (United States)

    Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian

    2014-05-01

    In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave

  10. PWR core design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.; Zeleznik, N.

    1992-01-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl

  11. Next generation PWR

    International Nuclear Information System (INIS)

    Tanaka, Toshihiko; Fukuda, Toshihiko; Usui, Shuji

    2001-01-01

    Development of LWR for power generation in Japan has been intended to upgrade its reliability, safety, operability, maintenance and economy as well as to increase its capacity in order, since nuclear power generation for commercial use was begun on 1970, to steadily increase its generation power. And, in Japan, ABWR (advanced BWR) of the most promising LWR in the world, was already used actually and APWR (advanced PWR) with the largest output in the world is also at a step of its actual use. And, development of the APWR in Japan was begun on 1980s, and is at a step of plan on construction of its first machine at early of this century. However, by large change of social affairs, economy of nuclear power generation is extremely required, to be positioned at an APWR improved development reactor promoted by collaboration of five PWR generation companies and the Mitsubishi Electric Co., Ltd. Therefore, on its development, investigation on effect of change in social affairs on nuclear power stations was at first carried out, to establish a design requirement for the next generation PWR. Here were described on outline, reactor core design, safety concept, and safety evaluation of APWR+ and development of an innovative PWR. (G.K.)

  12. Reactor fuel depletion benchmark of TINDER

    International Nuclear Information System (INIS)

    Martin, W.J.; Oliveira, C.R.E. de; Hecht, A.A.

    2014-01-01

    Highlights: • A reactor burnup benchmark of TINDER, coupling MCNP6 to CINDER2008, was performed. • TINDER is a poor candidate for fuel depletion calculations using its current libraries. • Data library modification is necessary if fuel depletion is desired from TINDER. - Abstract: Accurate burnup calculations are key to proper nuclear reactor design, fuel cycle modeling, and disposal estimations. The TINDER code, originally designed for activation analyses, has been modified to handle full burnup calculations, including the widely used predictor–corrector feature. In order to properly characterize the performance of TINDER for this application, a benchmark calculation was performed. Although the results followed the trends of past benchmarked codes for a UO 2 PWR fuel sample from the Takahama-3 reactor, there were obvious deficiencies in the final result, likely in the nuclear data library that was used. Isotopic comparisons versus experiment and past code benchmarks are given, as well as hypothesized areas of deficiency and future work

  13. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of bench-marking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  14. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  15. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  16. Laboratory simulation of rod-to-rod mechanical interactions during postulated loss-of-coolant accidents in a PWR involving cladding oxidation

    International Nuclear Information System (INIS)

    Hindle, E.D.; Haste, T.J.; Harrison, W.R.

    1987-01-01

    Creep deformation of Zircaloy cladding in postulated PWR loss-of-coolant accidents may lead to rod-to-rod mechanical interactions. Tests have been performed in the electrically heated FOURSQUARE rig at 750 0 C and 850 0 C in steam to investigate this effect. Conservatisms inherent in a simple 'square with rounded corners' coolant channel blockage model have been quantified; about 5-10% flow area may remain even at strains which in ideal circumstances would give total blockage. Reduction of average burst strains produced by an oxide layer (up to 13 μm) has been demonstrated, resulting from strain concentration at oxide cracks. (author)

  17. Plutonium recycling in PWR

    International Nuclear Information System (INIS)

    Youinou, G.; Girieud, R.; Guigon, B.

    2000-01-01

    Two concepts of 100% MOX PWR cores are presented. They are designed such as to minimize the consequences of the introduction of Pu on the core control. The first one has a high moderation ratio and the second one utilizes an enriched uranium support. The important design parameters as well as their capabilities to multi recycle Pu are discussed. We conclude with the potential interest of the two concepts. (author)

  18. The integrated PWR

    International Nuclear Information System (INIS)

    Gautier, G.M.

    2002-01-01

    This document presents the integrated reactors concepts by a presentation of four reactors: PIUS, SIR, IRIS and CAREM. The core conception, the operating, the safety, the economical aspects and the possible users are detailed. From the performance of the classical integrated PWR, the necessity of new innovative fuels utilization, the research of a simplified design to make easier the safety and the KWh cost decrease, a new integrated reactor is presented: SCAR 600. (A.L.B.)

  19. POLCA-T simulation of OECD/NRC BWR turbine trip benchmark exercise 3 best estimate scenario TT2 test and four extreme scenarios

    International Nuclear Information System (INIS)

    Panayotov, D.

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and the 3D neutron kinetics core model. Code validation plan includes the calculations of Peach Bottom end of cycle 2 turbine trip transients and low-flow stability tests. The paper describes the objectives, method, and results of analyses performed in the final phase of OECD/NRC Peach Bottom 2 Boiling Water Reactor Turbine Trip Benchmark. Brief overview of the code features, the method of simulation, the developed 3D core model and system input deck for Peach Bottom 2 are given. The paper presents the results of benchmark exercise 3 best estimate scenario: coupled 3D core neutron kinetics with system thermal-hydraulics analyses. Performed sensitivity studies cover the SCRAM initiation, carry-under, and decay power. Obtained results including total power, steam dome, core exit, lower and upper plenum, main steam line and turbine inlet pressures showed good agreement with measured plant data Thus the POLCA-T code capabilities for correct simulation of turbine trip transients were proved The performed calculations and obtained results for extreme cases demonstrate the POLCA-T code wide range capabilities to simulate transients when scram, steam bypass, and safety and relief valves are not activated. The code is able to handle such transients even when the reactor power and pressure reach values higher than 600 % of rated power, and 10.8 MPa. (authors)

  20. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  1. AGR v PWR

    International Nuclear Information System (INIS)

    Green, D.

    1986-01-01

    When the Central Electricity Generating Board (CEGB) invited tenders and placed a contract for the Advanced Gas Cooled Reactor (AGR) at Dungeness B in 1965 -preferring it to the Pressurised Water Reactor (PWR) -the AGR was lamentably ill developed. The effects of the decision were widely felt, for it took the British nuclear industry off the light water reactor highway of world reactor business and up and idiosyncratic private highway of its own, excluding it altogether from any material export business in the two decades which followed. Yet although the UK may have made wrong decisions in rejecting the PWR in 1965, that does not mean that it can necessarily now either correct them, or redeem their consequence, by reversing the choice in 1985. In the 20 years since 1965 the whole world economic and energy picture has been transformed and the national picture with it. Picking up the PWR now could prove as big a disaster as rejecting it may have been in 1965. (author)

  2. Water chemistry in PWR

    International Nuclear Information System (INIS)

    Abe, Kenji

    1987-01-01

    This article outlines major features and basic concept of the secondary system of PWR's and water properties control measures adopted in recent PWR plants. The secondary system of a PWR consists of a condenser cooling pipe (aluminum-brass, titanium, or stainless steel), low-pressure make-up water heating pipe (aluminum-brass or stainless steel), high-ressure make-up water heating pipe (cupro-nickel or stainless steel), steam generator heat-transfer pipe (Inconel 600 or 690), and bleed/drain pipe (carbon steel, low alloy steel or stainless steel). Other major pipes and equipment are made of carbon steel or stainless steel. Major troubles likely to be caused by water in the secondary system include reduction in wall thickness of the heat-transfer pipe, stress corrosion cracking in the heat-transfer pipe, and denting. All of these are caused by local corrosion due to concentration of purities contained in water. For controlling the water properties in the secondary system, it is necessary to prevent impurities from entering the system, to remove impurities and corrosion products from the system, and to prevent corrosion of apparatus making up the system. Measures widely adopted for controlling the formation of IGA include the addition of boric acid for decreasing the concentration of free alkali and high hydrazine operation for providing a highly reducing atmospere. (Nogami, K.)

  3. Track 3: growth of nuclear technology and research numerical and computational aspects of the coupled three-dimensional core/plant simulations: organization for economic cooperation and development/U.S. nuclear regulatory commission pressurized water reactor main-steam-line-break benchmark-I. 5. Analyses of the OECD MSLB Benchmark with the Codes DYN3D and DYN3D/ATHLET

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.

    2001-01-01

    The code DYN3D coupled with ATHLET was used for the analysis of the OECD Main-Steam-Line-Break (MSLB) Benchmark, which is based on real plant design and operational data of the TMI-1 pressurized water reactor (PWR). Like the codes RELAP or TRAC,ATHLET is a thermal-hydraulic system code with point or one-dimensional neutron kinetic models. ATHLET, developed by the Gesellschaft for Anlagen- und Reaktorsicherheit, is widely used in Germany for safety analyses of nuclear power plants. DYN3D consists of three-dimensional nodal kinetic models and a thermal-hydraulic part with parallel coolant channels of the reactor core. DYN3D was coupled with ATHLET for analyzing more complex transients with interactions between coolant flow conditions and core behavior. It can be applied to the whole spectrum of operational transients and accidents, from small and intermediate leaks to large breaks of coolant loops or steam lines at PWRs and boiling water reactors. The so-called external coupling is used for the benchmark, where the thermal hydraulics is split into two parts: DYN3D describes the thermal hydraulics of the core, while ATHLET models the coolant system. Three exercises of the benchmark were simulated: Exercise 1: point kinetics plant simulation (ATHLET) Exercise 2: coupled three-dimensional neutronics/core thermal-hydraulics evaluation of the core response for given core thermal-hydraulic boundary conditions (DYN3D) Exercise 3: best-estimate coupled core-plant transient analysis (DYN3D/ATHLET). Considering the best-estimate cases (scenarios 1 of exercises 2 and 3), the reactor does not reach criticality after the reactor trip. Defining more serious tests for the codes, the efficiency of the control rods was decreased (scenarios 2 of exercises 2 and 3) to obtain recriticality during the transient. Besides the standard simulation given by the specification, modifications are introduced for sensitivity studies. The results presented here show (a) the influence of a reduced

  4. PWR: 10 years after and perspectives

    International Nuclear Information System (INIS)

    1990-01-01

    These proceedings of the SFEN days on PWR (Ten years after and perspectives) comprise 13 conferences bearing on: - From the occurential approach to the state approach - Evolution of calculating tools - Human factors and safety - Reactor safety in the PWR 2000 - The PWR and the electrical power grid load follow - Fuel aspect of PWR management - PWR chemistry evolution - Balance of radiation protection - PWR modifications balance and influence on reactor operation - Design and maintenance of reactor components: 4 conferences [fr

  5. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith

    2012-09-01

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  6. Evaluation of tight-pitch PWR cores

    International Nuclear Information System (INIS)

    Correa, F.; Driscoll, M.J.; Lanning, D.D.

    1979-08-01

    The impact of tight pinch cores on the consumption of natural uranium ore has been evaluated for two systems of coupled PWR's namely one particular type of thorium system - 235 U/UO 2 : Pu/ThO 2 : 233 U/ThO 2 - and the conventional recycle-mode uranium system - 235 U/UO 2 : Pu/UO 2 . The basic parameter varied was the fuel-to-moderator volume ratio (F/M) of the (uniform) lattice for the last core in each sequence. Although methods and data verification in the range of present interest, 0.5 (current lattices) 1.0, the EPRI-LEOPARD and LASER programs used for the thorium and uranium calculations, respectively, were successfully benchmarked against several of the more pertinent experiments

  7. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Numerical simulation of the accurate RCP start-up flow rate

    International Nuclear Information System (INIS)

    Martin, A.; Alvarez, D.; Cases, F.; Stelletta, S.

    1997-06-01

    This report explains the last results about the mixing in the 900 MW PWR vessels. The accurate fluid flow transient, induced by the RCP starting-up, is represented. In a first time, we present the Thermalhydraulic Finite Element Code N3S used for the 3D numerical computations. After that, results obtained for one reactor operation case are given. This case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. A comparison made between two injection modes; a steady state fluid flow conditions or the accurate RCP transient fluid flow conditions. The results giving the local minimum of concentration and the time response of the mean concentration at the core inlet are compared. The results show the real importance of the unsteadiness characteristics of the fluid flow transport of the clear water plug. (author)

  8. Vver-1000 Mox core computational benchmark

    International Nuclear Information System (INIS)

    2006-01-01

    The NEA Nuclear Science Committee has established an Expert Group that deals with the status and trends of reactor physics, fuel performance and fuel cycle issues related to disposing of weapons-grade plutonium in mixed-oxide fuel. The objectives of the group are to provide NEA member countries with up-to-date information on, and to develop consensus regarding, core and fuel cycle issues associated with burning weapons-grade plutonium in thermal water reactors (PWR, BWR, VVER-1000, CANDU) and fast reactors (BN-600). These issues concern core physics, fuel performance and reliability, and the capability and flexibility of thermal water reactors and fast reactors to dispose of weapons-grade plutonium in standard fuel cycles. The activities of the NEA Expert Group on Reactor-based Plutonium Disposition are carried out in close co-operation (jointly, in most cases) with the NEA Working Party on Scientific Issues in Reactor Systems (WPRS). A prominent part of these activities include benchmark studies. At the time of preparation of this report, the following benchmarks were completed or in progress: VENUS-2 MOX Core Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); VVER-1000 LEU and MOX Benchmark (completed); KRITZ-2 Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); Hollow and Solid MOX Fuel Behaviour Benchmark (completed); PRIMO MOX Fuel Performance Benchmark (ongoing); VENUS-2 MOX-fuelled Reactor Dosimetry Calculation (ongoing); VVER-1000 In-core Self-powered Neutron Detector Calculational Benchmark (started); MOX Fuel Rod Behaviour in Fast Power Pulse Conditions (started); Benchmark on the VENUS Plutonium Recycling Experiments Configuration 7 (started). This report describes the detailed results of the benchmark investigating the physics of a whole VVER-1000 reactor core using two-thirds low-enriched uranium (LEU) and one-third MOX fuel. It contributes to the computer code certification process and to the

  9. French PWR safety philosophy

    International Nuclear Information System (INIS)

    Conte, M.

    1986-05-01

    Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach, each of them having possibilities and limits. As a consequence of the global risk objective set in 1977 for nuclear reactors, safety analysis was extended to the evaluation of events more complex than the conventional ones, and later to the evaluation of the feasibility of the offsite emergency plans in case of severe accidents

  10. PWR decontamination feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silliman, P.L.

    1978-12-18

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations.

  11. PWR decontamination feasibility study

    International Nuclear Information System (INIS)

    Silliman, P.L.

    1978-01-01

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  12. PWR core design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A; Ravnik, M; Zeleznik, N [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [Slovenian] Opisali smo programski paket CORD-2, ki se uporablja pri projektnih izracunih sredice pri upravljanju tlacnovodnega reaktorja. Prikazana je uporaba paketa in racunskih postopkov za tipicne probleme, ki nastopajo pri projektiranju sredice. Primerjava glavnih rezultatov z eksperimentalnimi vrednostmi je predstavljena kot del preveritvenega procesa. (author)

  13. ZZ WPPR, Pu Recycling Benchmark Results

    International Nuclear Information System (INIS)

    Lutz, D.; Mattes, M.; Delpech, Marc; Juanola, Marc

    2002-01-01

    Description of program or function: The NEA NSC Working Party on Physics of Plutonium Recycling has commissioned a series of benchmarks covering: - Plutonium recycling in pressurized-water reactors; - Void reactivity effect in pressurized-water reactors; - Fast Plutonium-burner reactors: beginning of life; - Plutonium recycling in fast reactors; - Multiple recycling in advanced pressurized-water reactors. The results have been published (see references). ZZ-WPPR-1-A/B contains graphs and tables relative to the PWR Mox pin cell benchmark, representing typical fuel for plutonium recycling, one corresponding to a first cycle, the second for a fifth cycle. These computer readable files contain the complete set of results, while the printed report contains only a subset. ZZ-WPPR-2-CYC1 are the results from cycle 1 of the multiple recycling benchmarks

  14. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  15. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    International Nuclear Information System (INIS)

    Virpi Kouhia, V.; Purhonen, H.; Riikonen, V.; Puustinen, M.; Kyrki-Rajamaki, R.; Vihavainen, J.

    2012-01-01

    This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  16. Transient performance of flow in circuits of PWR type reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.; Carajilescov, P.

    1988-09-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which could cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  17. Transient performance of flow in PWR reactor circuits

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.; Carajilescov, P.

    1988-12-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  18. Numerical and computational aspects of the coupled three-dimensional core/ plant simulations: organization for economic cooperation and development/ U.S. nuclear regulatory commission pressurized water reactor main-steam-line-break benchmark-II. 3. Analysis of the OECD TMI-1 Main-Steam- Line-Break Benchmark Accident Using the Coupled RELAP5/PANTHER Codes

    International Nuclear Information System (INIS)

    Schneidesch, C.R.; Guisset, J.P.; Zhang, J.; Bryce, P.; Parkes, M.

    2001-01-01

    The RELAP5 best-estimate thermal-hydraulic system code has been coupled with the PANTHER three-dimensional (3-D) neutron kinetics code via the TALINK dynamic data exchange control and processing tool. The coupled RELAP5/PANTHER code package is being qualified and will be used at British Energy (BE) and Tractebel Energy Engineering (TEE), independently, to analyze pressurized water reactor (PWR) transients where strong core-system interactions occur. The Organization for Economic Cooperation and Development/Nuclear Energy Agency PWR Main-Steam-Line-Break (MSLB) Benchmark problem was performed to demonstrate the capability of the coupled code package to simulate such transients, and this paper reports the BE and TEE contributions. In the first exercise, a point-kinetics (PK) calculation is performed using the RELAP5 code. Two solutions have been derived for the PK case. The first corresponds to scenario, 1 where calculations are carried out using the original (BE) rod worth and where no significant return to power (RTP) occurs. The second corresponds to scenario 2 with arbitrarily reduced rod worth in order to obtain RTP (and was not part of the 'official' results). The results, as illustrated in Fig. 1, show that the thermalhydraulic system response and rod worth are essential in determining the core response. The second exercise consists of a 3-D neutron kinetics transient calculation driven by best-estimate time-dependent core inlet conditions on a 18 T and H zones basis derived from TRAC-PF1/MOD2 (PSU), again analyzing two scenarios of different rod worths. Two sets of PANTHER solutions were submitted for exercise 2. The first solution uses a spatial discretization of one node per assembly and 24 core axial layers for both flux and T and H mesh. The second is characterized by spatial refinement (2 x 2 nodes per assembly, 48 core layers for flux, and T and H calculation), time refinement (half-size time steps), and an increased radial discretization for solution

  19. Modeling on a PWR power conversion system with system program

    International Nuclear Information System (INIS)

    Gao Rui; Yang Yanhua; Lin Meng

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Daya Bay Power Station, this paper models the thermal-hydraulic systems of primary and secondary loops for PWR by using the PWR best-estimate program-RELAP5. To simulate the full-scope power conversion system, not only the traditional basic system models of nuclear island, but also the major system models of conventional island are all considered and modeled. A comparison between the calculated results and the actual data of reactor demonstrates a fine match for Daya Bay Nuclear Power Station, and manifests the feasibility in simulating full-scope power conversion system of PWR by RELAP5 at the same time. (authors)

  20. Safety considerations of PWR's

    International Nuclear Information System (INIS)

    Arnold, W.H. Jr.

    1977-01-01

    The safety of the central station pressurized water reactor is well established and substantiated by its excellent operating record. Operating data from 55 reactors of this type have established a record of safe operating history unparalleled by any modern large scale industry. The 186 plants under construction require a continuing commitment to maintain this outstanding record. The safety of the PWR has been further verified by the recently completed Reactor Safety Study (''Rasmussen'' Report). Not only has this study confirmed the exceptionally low risk associated with PWR operation, it has also introduced a valuable new tool in the decision making process. PWR designs, utilizing the philosophy of defense in depth, provide the bases for evaluating margins of safety. The design of the reactor coolant system, the containment system, emergency core cooling system and other related systems and components provide substantial margins of safety under both normal and postulated accident conditions even considering simultaneous effects of earthquakes and other environmental phenomena. Margins of safety in the assessment of various postulated accident conditions, with emphasis on the postulated loss of reactor coolant accident (LOCA), have been evaluated in depth as exemplified by the comprehensive ECCS rulemaking hearings followed by imposition of very conservative Nuclear Regulatory Commission requirements. When evaluated on an engineering best estimate approach, the significant margins to safety for a LOCA become more apparent. Extensive test programs have also substantiated margins to safety limits. These programs have included both separate effects and systems tests. Component testing has also been performed to substantiate performance levels under adverse combinations of environmental stress. The importance of utilizing past experience and of optimizing the deployment of incremental resources is self evident. Recent safety concerns have included specific areas such

  1. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  2. Experimental benchmarks and simulation of GAMMA-T for overcooling and undercooling transients in HTGRs coupled with MED desalination plants

    International Nuclear Information System (INIS)

    Kim, Ho Sik; Kim, In Hun; NO, Hee Cheon; Jin, Hyung Gon

    2013-01-01

    Highlights: ► The GAMMA-T code was well validated through benchmark experiments. ► Based on the KAIST coupling scheme, the GTHTR300 + MED systems were made. ► Safety analysis was performed for overcooling and undercooling accidents. ► In all accidents, maximum peak fuel temperatures were well below than 1600 °C. ► In all accidents, the HTGR + MED system could be operated continuously. -- Abstracts: The nuclear desalination based on the high temperature gas-cooled reactor (HTGR) with gas turbomachinery and multi-effect distillation (MED) is attracting attention because the coupling system can utilize the waste heat of the nuclear power system for the MED desalination system. In previous work, KAIST proposed the new HTGR + MED coupling scheme, evaluated desalination performance, and performed cost analysis for the system. In this paper, in order to confirm the safety and the performance of the coupling system, we performed the transient analysis with GAMMA-T (GAs Multidimensional Multicomponent mixture Analysis–Turbomachinery) code for the KAIST HTGR + MED systems. The experimental benchmarks of GAMMA-T code were set up before the transient analysis for several accident scenarios. The GAMMA-T code was well validated against steady state and transient scenarios of the He–Water test loop such as changes in water mass flow rate and water inlet temperatures. Then, for transient analysis, the GTHTR300 was chosen as a reference plant. The GTHTR300 + MED systems were made, based on the KAIST HTGR + MED coupling scheme. Transient analysis was performed for three kinds of accidents scenarios: (1) loss of heat rejection through MED plant, (2) loss of heat rejection through heat sink, and (3) overcooling due to abnormal cold temperature of seawater. In all kinds of accident scenarios, maximum peak fuel temperatures were well below than the fuel failure criterion, 1600 °C and the GTHTR300 + MED system could be operated continuously and safely. Specially, in the

  3. A Study on Structured Simulation Framework for Design and Evaluation of Human-Machine Interface System -Application for On-line Risk Monitoring for PWR Nuclear Power Plant-

    International Nuclear Information System (INIS)

    Zhan, J.; Yang, M.; Li, S.C.; Peng, M.J.; Yan, S.Y.; Zhang, Z.J.

    2006-01-01

    The operators in the main control room of Nuclear Power Plant (NPP) need to monitor plant condition through operation panels and understand the system problems by their experiences and skills. It is a very hard work because even a single fault will cause a large number of plant parameters abnormal and operators are required to perform trouble-shooting actions in a short time interval. It will bring potential risks if operators misunderstand the system problems or make a commission error to manipulate an irrelevant switch with their current operation. This study aims at developing an on-line risk monitoring technique based on Multilevel Flow Models (MFM) for monitoring and predicting potential risks in current plant condition by calculating plant reliability. The proposed technique can be also used for navigating operators by estimating the influence of their operations on plant condition before they take an action that will be necessary in plant operation, and therefore, can reduce human errors. This paper describes the risk monitoring technique and illustrates its application by a Steam Generator Tube Rupture (SGTR) accident in a 2-loop Pressurized Water Reactor (PWR) Marine Nuclear Power Plant (MNPP). (authors)

  4. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  5. PWR systems transient analysis

    International Nuclear Information System (INIS)

    Kennedy, M.F.; Peeler, G.B.; Abramson, P.B.

    1985-01-01

    Analysis of transients in pressurized water reactor (PWR) systems involves the assessment of the response of the total plant, including primary and secondary coolant systems, steam piping and turbine (possibly including the complete feedwater train), and various control and safety systems. Transient analysis is performed as part of the plant safety analysis to insure the adequacy of the reactor design and operating procedures and to verify the applicable plant emergency guidelines. Event sequences which must be examined are developed by considering possible failures or maloperations of plant components. These vary in severity (and calculational difficulty) from a series of normal operational transients, such as minor load changes, reactor trips, valve and pump malfunctions, up to the double-ended guillotine rupture of a primary reactor coolant system pipe known as a Large Break Loss of Coolant Accident (LBLOCA). The focus of this paper is the analysis of all those transients and accidents except loss of coolant accidents

  6. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  7. Steam generators in PWR's

    International Nuclear Information System (INIS)

    Michel, R.

    1974-01-01

    The steam generator of the PWR operates according to the principle of natural circulation. It consists of a U-shaped tube bundle whose free ends are welded to a bottom plate. The tube bundle is surrounded by a cylinder jacket which has slots closely above the bottom or tube plate. The feed water mixed with boiling water enters the tube bundle through these slots. Because of its buoyancy, the steam-water mixture flows upwards. Below the tube plate there are chambers for distributing and collecting pressurized water separated by means of a partition wall. By omitting some tubes, a free alloy is created so that the tubes in the center get sufficient water, too. By asymmetrical arrangement of the partition wall it is further possible to limit the tube alloy only to the inlet side for pressurized water. The flow over the tube plate is thus improved on the inlet side. (DG) [de

  8. Benchmarking the cad-based attila discrete ordinates code with experimental data of fusion experiments and to the results of MCNP code in simulating ITER

    International Nuclear Information System (INIS)

    Youssef, M. Z.

    2007-01-01

    Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the

  9. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  10. Study of power peak migration due to insertion of control bars in a PWR reactor

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Costa, Danilo Leite; Borges, Diogo da Silva; Lava, Deise Diana; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes

    2014-01-01

    This paper aims to present a study on the power distribution behavior in a PWR reactor, considering the intensity and the migration of power peaks as is the insertion of control rods in the core banks. For this, the study of the diffusion of neutrons in the reactor was adopted by computer simulation that uses the finite difference method for numerically solving the neutron diffusion equation to two energy groups in steady state and in symmetry of a fourth quarter core. We decided to add the EPRI-9R 3D benchmark thermal-hydraulic parameters of a typical power PWR. With a new configuration for the reactor, the positions of the control rods banks were also modified. Due to the new positioning of these banks in the reactor, there was intense power gradients, favoring the occurrence of critical situations and logically unconventional for operation of a nuclear reactor. However, these facts have led interesting times for the study on the power distribution behavior in the reactor, showing axial migration of power peaks and mainly the effect of the geometry of the core on the latter. Based on the distribution of power was evident the increase of the power in elements located in the central region of the reactor core and, concomitantly, the reduction in elements of its periphery. Of course, the behavior exhibited by the simulated reactor is not in agreement with that expected in an actual reactor, where the insertion of control rods banks should lead to reduced power throughout the core as evenly as possible, avoiding sharp power peaks, standardizing the burning fuel, controlling reactivity deviations and acting in reactor shutdown

  11. Transient study of a PWR pressurizer

    International Nuclear Information System (INIS)

    Sotoma, H.

    1973-01-01

    An appropriate method for the calculation and transient performance of the pressurizer of a pressurized water reactor is presented. The study shows a digital program of simulation of pressurizer dynamics based on the First Law of Thermodynamic and Laws of Heat and Mass Transfer. The importance of the digital program that was written for a pressurizer of PWR, lies in the fact that, this can be of practical use in the safety analysis of a reactor of Angra dos Reis type with a power of about 500 M We. (author)

  12. Lower hybrid current drive: an overview of simulation models, benchmarking with experiment, and predictions for future devices

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Barbato, E.; Imbeaux, F.

    2003-01-01

    This paper reviews the status of lower hybrid current drive (LHCD) simulation and modeling. We first discuss modules used for wave propagation, absorption, and current drive with particular emphasis placed on comparing exact numerical solutions of the Fokker Planck equation in 2-dimension with solution methods that employ 1-dimensional and adjoint approaches. We also survey model predictions for LHCD in past and present experiments showing detailed comparisons between simulated and observed current drive efficiencies and hard X-ray profiles. Finally we discuss several model predictions for lower hybrid current profile control in proposed next step reactor options. (authors)

  13. Benchmarking in Foodservice Operations

    National Research Council Canada - National Science Library

    Johnson, Bonnie

    1998-01-01

    The objective of this study was to identify usage of foodservice performance measures, important activities in foodservice benchmarking, and benchmarking attitudes, beliefs, and practices by foodservice directors...

  14. Human factors reliability benchmark exercise: a review

    International Nuclear Information System (INIS)

    Humphreys, P.

    1990-01-01

    The Human Factors Reliability Benchmark Exercise has addressed the issues of identification, analysis, representation and quantification of Human Error in order to identify the strengths and weaknesses of available techniques. Using a German PWR nuclear powerplant as the basis for the studies, fifteen teams undertook evaluations of a routine functional Test and Maintenance procedure plus an analysis of human actions during an operational transient. The techniques employed by the teams are discussed and reviewed on a comparative basis. The qualitative assessments performed by each team compare well, but at the quantification stage there is much less agreement. (author)

  15. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  16. Simulation of sound waves using the Lattice Boltzmann Method for fluid flow: Benchmark cases for outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.; Lohman, W.J.A.; Zhou, H.

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases:

  17. Two optimal control methods for PWR core control

    International Nuclear Information System (INIS)

    Karppinen, J.; Blomsnes, B.; Versluis, R.M.

    1976-01-01

    The Multistage Mathematical Programming (MMP) and State Variable Feedback (SVF) methods for PWR core control are presented in this paper. The MMP method is primarily intended for optimization of the core behaviour with respect to xenon induced power distribution effects in load cycle operation. The SVF method is most suited for xenon oscillation damping in situations where the core load is unpredictable or expected to stay constant. Results from simulation studies in which the two methods have been applied for control of simple PWR core models are presented. (orig./RW) [de

  18. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Seco, Joao; Sørensen, Thomas Sangild

    2015-01-01

    Background. Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in...... development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. Material and methods. A CT calibration phantom and an abdomen cross section...... phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling...

  19. French PWR Safety Philosophy

    International Nuclear Information System (INIS)

    Conte, M. M.

    1986-01-01

    The first 900 MWe units, built under the American Westinghouse licence and with reference to the U. S. regulation, were followed by 28 standardized units, C P1 and C P2 series. Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. As early as 1976, this experience was taken into account by French Safety organisms to discuss, with Electricite de France, the safety options for the planned 1300 MWe units, P4 and P4 series. In 1983, the new reactor scheduled, Ni4 series 1400 MWe, is a totally French design which satisfies the French regulations and other French standards and codes. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach each of them having possibilities and limits. Increasing knowledge and lessons learned from operating experience have contributed to the French safety philosophy improvement. The methodology now applied to safety evaluation develops a new facet of the in depth defense concept by taking highly unlikely events into consideration, by developing the search of safety consistency of the design, and by completing the deterministic approach by the probabilistic one

  20. Numisheet2005 Benchmark Analysis on Forming of an Automotive Underbody Cross Member: Benchmark 2

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao Jian

    2005-01-01

    This report presents an international cooperation benchmark effort focusing on simulations of a sheet metal stamping process. A forming process of an automotive underbody cross member using steel and aluminum blanks is used as a benchmark. Simulation predictions from each submission are analyzed via comparison with the experimental results. A brief summary of various models submitted for this benchmark study is discussed. Prediction accuracy of each parameter of interest is discussed through the evaluation of cumulative errors from each submission

  1. Stochastic optimization of loading pattern for PWR

    International Nuclear Information System (INIS)

    Smuc, T.; Pevec, D.

    1994-01-01

    The application of stochastic optimization methods in solving in-core fuel management problems is restrained by the need for a large number of proposed solutions loading patterns, if a high quality final solution is wanted. Proposed loading patterns have to be evaluated by core neutronics simulator, which can impose unrealistic computer time requirements. A new loading pattern optimization code Monte Carlo Loading Pattern Search has been developed by coupling the simulated annealing optimization algorithm with a fast one-and-a-half dimensional core depletion simulator. The structure of the optimization method provides more efficient performance and allows the user to empty precious experience in the search process, thus reducing the search space size. Hereinafter, we discuss the characteristics of the method and illustrate them on the results obtained by solving the PWR reload problem. (authors). 7 refs., 1 tab., 1 fig

  2. Argonne Code Center: benchmark problem book

    International Nuclear Information System (INIS)

    1977-06-01

    This report is a supplement to the original report, published in 1968, as revised. The Benchmark Problem Book is intended to serve as a source book of solutions to mathematically well-defined problems for which either analytical or very accurate approximate solutions are known. This supplement contains problems in eight new areas: two-dimensional (R-z) reactor model; multidimensional (Hex-z) HTGR model; PWR thermal hydraulics--flow between two channels with different heat fluxes; multidimensional (x-y-z) LWR model; neutron transport in a cylindrical ''black'' rod; neutron transport in a BWR rod bundle; multidimensional (x-y-z) BWR model; and neutronic depletion benchmark problems. This supplement contains only the additional pages and those requiring modification

  3. Benchmarking and Performance Measurement.

    Science.gov (United States)

    Town, J. Stephen

    This paper defines benchmarking and its relationship to quality management, describes a project which applied the technique in a library context, and explores the relationship between performance measurement and benchmarking. Numerous benchmarking methods contain similar elements: deciding what to benchmark; identifying partners; gathering…

  4. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  5. 3D-FE Modeling of 316 SS under Strain-Controlled Fatigue Loading and CFD Simulation of PWR Surge Line

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Barua, Bipul [Argonne National Lab. (ANL), Argonne, IL (United States); Listwan, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models with implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can cost

  6. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  7. Validation of the BUGJEFF311.BOLIB, BUGENDF70.BOLIB and BUGLE-B7 broad-group libraries on the PCA-Replica (H2O/Fe) neutron shielding benchmark experiment

    OpenAIRE

    Pescarini Massimo; Orsi Roberto; Frisoni Manuela

    2016-01-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the TORT-3.2 3D SN code. PCA-Replica reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and U...

  8. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.

    Science.gov (United States)

    Hansen, David C; Seco, Joao; Sørensen, Thomas Sangild; Petersen, Jørgen Breede Baltzer; Wildberger, Joachim E; Verhaegen, Frank; Landry, Guillaume

    2015-01-01

    Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.

  9. Benchmarking in the Netherlands

    International Nuclear Information System (INIS)

    1999-01-01

    In two articles an overview is given of the activities in the Dutch industry and energy sector with respect to benchmarking. In benchmarking operational processes of different competitive businesses are compared to improve your own performance. Benchmark covenants for energy efficiency between the Dutch government and industrial sectors contribute to a growth of the number of benchmark surveys in the energy intensive industry in the Netherlands. However, some doubt the effectiveness of the benchmark studies

  10. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peiyuan [Univ. of Colorado, Boulder, CO (United States); Brown, Timothy [Univ. of Colorado, Boulder, CO (United States); Fullmer, William D. [Univ. of Colorado, Boulder, CO (United States); Hauser, Thomas [Univ. of Colorado, Boulder, CO (United States); Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States); Grout, Ray [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sitaraman, Hariswaran [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-29

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling of the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.

  11. Valve testing for UK PWR safety applications

    International Nuclear Information System (INIS)

    George, P.T.; Bryant, S.

    1989-01-01

    Extensive testing and development has been done by the Central Electricity Generating Board (CEGB) to support the design, construction and operation of Sizewell B, the UK's first PWR. A Blowdown Rig for the Assessment of Valve Operability - (BRAVO) has been constructed at the CEGB Marchwood Engineering Laboratory to reproduce PWR Pressurizer fluid conditions for the full scale testing of Pressurizer Relief System (PRS) valves. A full size tandem pair of Pilot Operated Safety Relief Valves (POSRVs) is being tested under the full range of pressurizer fluid conditions. Tests to date have produced important data on the performance of the valve in its Cold Overpressure protection mode of operation and on methods for the in-service testing of the valve. Also, a full size pressurizer safety valve has been tested under full PRS fluid conditions to develop a methodology for the pre-service testing of the Sizewell valves. Further work will be carried out to develop procedures for the in-service testing of the valve. In the Main Steam Safety Valve test program carried out at the Siemens-KWU Test Facilities, a single MSSV from three potential suppliers was tested under full secondary system conditions. The test results have been analyzed and are reflected in the CEGB's arrangements for the pre-service and in-service testing of the Sizewell MSSVs. Valves required to interrupt pipebreak flow must be qualified for this duty by testing or a combination of testing and analysis. To obtain guidance on the performance of such tests gate and globe valves have been subjected to simulated pipebreaks under PWR primary circuit conditions. In the light of problems encountered with gate valve closure under these conditions, further tests are currently being carried out on the BRAVO facility on a gate valve, in preparation for the full scale flow interruption qualification testing of the Sizewell main steam isolation valve

  12. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    International Nuclear Information System (INIS)

    Peng Hong Liem; Surian Pinem; Tagor Malem Sembiring; Tran Hoai Nam

    2015-01-01

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  13. Final results of the 'Benchmark on computer simulation of radioactive nuclides production rate and heat generation rate in a spallation target'

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Pohorecki, W.; Domanska, G.; Maiorino, R.J.; David, J.C.; Velarde, F.A.

    2011-01-01

    A benchmark has been organized to assess the computer simulation of nuclide production and heat generation in a spallation lead target. The physical models applied for the calculation of thick lead target activation do not produce satisfactory results for the majority of analysed nuclides, however one can observe better or worse quantitative compliance with the experimental results. Analysis of the quality of calculated results show the best performance for heavy nuclides (A: 170 - 190). For intermediate nuclides (A: 60 - 130) almost all are underestimated while for A: 130 - 170 mainly overestimated. The shape of the activity distribution in the target is well reproduced in calculations by all models but the numerical comparison shows similar performance as for the whole target. The Isabel model yields best results. As for the whole target heating rate, the results from all participants are consistent. Only small differences are observed between results from physical models. As for the heating distribution in the target it looks not quite similar. The quantitative comparison of the distributions yielded by different spallation reaction models shows for the major part of the target no serious differences - generally below 10%. However, in the most outside parts of the target front layers and the part of the target at its end behind the primary protons range, a spread higher than 40 % is obtained

  14. Sizewell 'B' PWR reference design

    International Nuclear Information System (INIS)

    1982-04-01

    The reference design for a PWR power station to be constructed as Sizewell 'B' is presented in 3 volumes containing 14 chapters and in a volume of drawings. The report describes the proposed design and provides the basis upon which the safety case and the Pre-Construction Safety Report have been prepared. The station is based on a 3425MWt Westinghouse PWR providing steam to two turbine generators each of 600 MW. The layout and many of the systems are based on the SNUPPS design for Callaway which has been chosen as the US reference plant for the project. (U.K.)

  15. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  16. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    Science.gov (United States)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense

  17. Data assimilation and PWR primary measurement

    International Nuclear Information System (INIS)

    Mercier, Thibaud

    2015-01-01

    A Pressurized Water Reactor (PWR) Reactor Coolant System (RCS) is a highly complex physical process: heterogeneous power, flow and temperature distributions are difficult to be accurately measured, since instrumentations are limited in number, thus leading to the relevant safety and protection margins. EDF R and D is seeking to assess the potential benefits of applying Data Assimilation to a PWR's RCS (Reactor Coolant System) measurements, in order to improve the estimators for parameters of a reactor's operating setpoint, i.e. improving accuracy and reducing uncertainties and biases of measured RCS parameters. In this thesis, we define a 0D semi-empirical model for RCS, satisfying the description level usually chosen by plant operators, and construct a Monte-Carlo Method (inspired from Ensemble Methods) in order to use this model with Data Assimilation tools. We apply this method on simulated data in order to assess the reduction of uncertainties on key parameters: results are beyond expectations, however strong hypothesis are required, implying a careful preprocessing of input data. (author)

  18. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  19. Gamma ray benchmark on the spent fuel shipping cask TN 12

    International Nuclear Information System (INIS)

    Blum, P.; Cagnon, R.; Cladel, C.; Ermont, G.; Nimal, J.C.

    1983-05-01

    The purpose of this benchmark is to compare measurements and calculation of gamma-ray dose rates around a shipping cask loaded with 12 spent fuel elements of FESSENHEIM PWR type. The benchmark provides a means to verify gamma-ray sources and gamma-ray transport calculation methods in shipping cask configurations. The comparison between measurements and calculations shows a good agreement except near the fuel element top where the discrepancy reaches a factor 2

  20. Implementation of a phenomenological DNB prediction model based on macroscale boiling flow processes in PWR fuel bundles

    International Nuclear Information System (INIS)

    Mohitpour, Maryam; Jahanfarnia, Gholamreza; Shams, Mehrzad

    2014-01-01

    Highlights: • A numerical framework was developed to mechanistically predict DNB in PWR bundles. • The DNB evaluation module was incorporated into the two-phase flow solver module. • Three-dimensional two-fluid model was the basis of two-phase flow solver module. • Liquid sublayer dryout model was adapted as CHF-triggering mechanism in DNB module. • Ability of DNB modeling approach was studied based on PSBT DNB tests in rod bundle. - Abstract: In this study, a numerical framework, comprising of a two-phase flow subchannel solver module and a Departure from Nucleate Boiling (DNB) evaluation module, was developed to mechanistically predict DNB in rod bundles of Pressurized Water Reactor (PWR). In this regard, the liquid sublayer dryout model was adapted as the Critical Heat Flux (CHF) triggering mechanism to reduce the dependency of the model on empirical correlations in the DNB evaluation module. To predict local flow boiling processes, a three-dimensional two-fluid formalism coupled with heat conduction was selected as the basic tool for the development of the two-phase flow subchannel analysis solver. Evaluation of the DNB modeling approach was performed against OECD/NRC NUPEC PWR Bundle tests (PSBT Benchmark) which supplied an extensive database for the development of truly mechanistic and consistent models for boiling transition and CHF. The results of the analyses demonstrated the need for additional assessment of the subcooled boiling model and the bulk condensation model implemented in the two-phase flow solver module. The proposed model slightly under-predicts the DNB power in comparison with the ones obtained from steady-state benchmark measurements. However, this prediction is acceptable compared with other codes. Another point about the DNB prediction model is that it has a conservative behavior. Examination of the axial and radial position of the first detected DNB using code-to-code comparisons on the basis of PSBT data indicated that the our

  1. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  2. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  3. Benchmark simulation of turbulent flow through a staggered tube bundle to support CFD as a reactor design tool. Part 1. SRANS CFD simulation

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira

    2008-01-01

    Time-invariant and time-variant numerical simulations of flow through a staggered tube bundle array, idealizing the lower plenum (LP) subsystem configuration of a very high temperature reactor (VHTR), were performed. In Part 1, the CFD prediction of fully periodic isothermal tube-bundle flow using steady Reynolds-averaged Navier-Stokes (SRANS) equations with common turbulence models was investigated at a Reynolds number (Re) of 1.8x10 4 , based on the tube diameter and inlet velocity. Three first-order turbulence models, standard k-ε turbulence, renormalized group (RNG) k-ε, and shear stress transport (SST) k-ω models, and a second-order turbulence model, Reynolds stress model (RSM), were considered. A comparison of CFD simulations and experiment results was made at five locations along (x,y) coordinates. The SRANS simulation showed that no universal model predicted the turbulent Reynolds stresses, and generally, the results were marginal to poor. This is because these models cannot accurately model the periodic, spatiotemporal nature of the complex wake flow structure. (author)

  4. Resfria - a computational routine for thermal-hydraulic analysis of a cooldown in the PWR

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Maciel Filho, L.A.

    1989-01-01

    This paper presents the computer code RESFRIA, designed to calculate the process parameters in a PWR nuclear power plant during a cooldown normal procedure. The procedure is described and some of the models developed to the simulation of systems and equipments are presented. A simplified flowchart of the computational routine and the results in the form of a diagram, for a typical PWR nuclear power plant, are also presented. (author)

  5. Bias identification in PWR pressurizer instrumentation using the generalized liklihood-ratio technique

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A method for detecting and identifying biases in the pressure and level sensors of a pressurized water reactor (PWR) pressurizer is described. The generalized likelihood ratio (GLR) technique performs statistical tests on the innovations sequence of a Kalman filter state estimator and is capable of determining when a bias appears, in what sensor the bias exists, and estimating the bias magnitude. Simulation results using a second-order linear, discrete PWR pressurizer model demonstrate the capabilities of the GLR method

  6. Benchmarking for Higher Education.

    Science.gov (United States)

    Jackson, Norman, Ed.; Lund, Helen, Ed.

    The chapters in this collection explore the concept of benchmarking as it is being used and developed in higher education (HE). Case studies and reviews show how universities in the United Kingdom are using benchmarking to aid in self-regulation and self-improvement. The chapters are: (1) "Introduction to Benchmarking" (Norman Jackson…

  7. Influence of boron reduction strategies on PWR accident management flexibility

    International Nuclear Information System (INIS)

    Papukchiev, Angel Aleksandrov; Liu, Yubo; Schaefer, Anselm

    2007-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. Design changes to reduce boron concentration in the reactor coolant are of general interest regarding three aspects - improved reactivity feedback properties, lower impact of boron dilution scenarios on PWR safety and eventually more flexible accident management procedures. In order to assess the potential advantages through the introduction of boron reduction strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 ppm and 805 ppm. For the assessment of the potential safety advantages of these cores a hypothetical beyond design basis accident has been simulated with the system code ATHLET. The analyses showed improved inherent safety and increased accident management flexibility of the low boron cores in comparison with the standard PWR. (author)

  8. Final PANTHER solution to the NEA-NSC3-DPWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    International Nuclear Information System (INIS)

    Kuijper, J.C.

    1996-10-01

    This report contains the final results of PANTHER calculations for the 'NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power'. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.)

  9. Final PANTHER solution to the NEA-NSC3-DPWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.

    1996-10-01

    This report contains the final results of PANTHER calculations for the `NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power`. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.).

  10. High Energy Physics (HEP) benchmark program

    International Nuclear Information System (INIS)

    Yasu, Yoshiji; Ichii, Shingo; Yashiro, Shigeo; Hirayama, Hideo; Kokufuda, Akihiro; Suzuki, Eishin.

    1993-01-01

    High Energy Physics (HEP) benchmark programs are indispensable tools to select suitable computer for HEP application system. Industry standard benchmark programs can not be used for this kind of particular selection. The CERN and the SSC benchmark suite are famous HEP benchmark programs for this purpose. The CERN suite includes event reconstruction and event generator programs, while the SSC one includes event generators. In this paper, we found that the results from these two suites are not consistent. And, the result from the industry benchmark does not agree with either of these two. Besides, we describe comparison of benchmark results using EGS4 Monte Carlo simulation program with ones from two HEP benchmark suites. Then, we found that the result from EGS4 in not consistent with the two ones. The industry standard of SPECmark values on various computer systems are not consistent with the EGS4 results either. Because of these inconsistencies, we point out the necessity of a standardization of HEP benchmark suites. Also, EGS4 benchmark suite should be developed for users of applications such as medical science, nuclear power plant, nuclear physics and high energy physics. (author)

  11. Effects of generation and optimization of libraries of effective sections in the analysis of transient in PWR reactors; Efectos de generacion y optimizacion de librerias de secciones eficaces en el analisis de transitorios en reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cervera, S.; Garcia Herranz, N.; Cuervo, D.; Ahnert, C.

    2014-07-01

    In this paper evaluates the impact that has a certain mesh on a transient in a PWR reactor in the expulsion of a control bar. Have been used for this purpose the coupled codes neutronic and Thermo-hydraulic COBAYA3/COBRA-TF. This objective has been chosen the OECD/NEA PWR MOX/UO{sub 2} rod ejection transient benchmark provides isotopic compositions and defined geometric configurations that allow the use of codes lattice to generate own bookstores. The code used for this transport has been the code APOLLO2.8. The results show large discrepancies when using the benchmark library or libraries own by comparing them to the other participants solutions. The source of these discrepancies is the nodal effective sections provided in the benchmark. (Author)

  12. Boiling water reactor turbine trip (TT) benchmark. Volume II: Summary Results of Exercise 1

    International Nuclear Information System (INIS)

    Akdeniz, Bedirhan; Ivanov, Kostadin N.; Olson, Andy M.

    2005-06-01

    The OECD Nuclear Energy Agency (NEA) completed under US Nuclear Regulatory Commission (NRC) sponsorship a PWR main steam line break (MSLB) benchmark against coupled system three-dimensional (3-D) neutron kinetics and thermal-hydraulic codes. Another OECD/NRC coupled-code benchmark was recently completed for a BWR turbine trip (TT) transient and is the object of the present report. Turbine trip transients in a BWR are pressurisation events in which the coupling between core space-dependent neutronic phenomena and system dynamics plays an important role. The data made available from actual experiments carried out at the Peach Bottom 2 plant make the present benchmark particularly valuable. While defining and coordinating the BWR TT benchmark, a systematic approach and level methodology not only allowed for a consistent and comprehensive validation process, but also contributed to the study of key parameters of pressurisation transients. The benchmark consists of three separate exercises, two initial states and five transient scenarios. The BWR TT Benchmark will be published in four volumes as NEA reports. CD-ROMs will also be prepared and will include the four reports and the transient boundary conditions, decay heat values as a function of time, cross-section libraries and supplementary tables and graphs not published in the paper version. BWR TT Benchmark - Volume I: Final Specifications was issued in 2001 [NEA/NSC/DOC(2001)]. The benchmark team [Pennsylvania State University (PSU) in co-operation with Exelon Nuclear and the NEA] has been responsible for coordinating benchmark activities, answering participant questions and assisting them in developing their models, as well as analysing submitted solutions and providing reports summarising the results for each phase. The benchmark team has also been involved in the technical aspects of the benchmark, including sensitivity studies for the different exercises. Volume II summarises the results for Exercise 1 of the

  13. The applicability of CFD to simulate and study the mixing process and the thermo-hydraulic consequences of a main steam line break in PWR model

    Directory of Open Access Journals (Sweden)

    Farkas Istvan

    2017-01-01

    Full Text Available This paper focuses on the validation and applicability of CFD to simulate and analyze the thermo-hydraulic consequences of a main steam line break. Extensive validation data come from experiments performed using the Rossendorf coolant mixing model facility. For the calculation, the range of 9 to 12 million hexahe¬dral cells was constructed to capture all details in the interrogation domain in the system. The analysis was performed by running a time-dependent calculation, Detailed analyses were made at different cross-sections in the system to evaluate not only the value of the maximum and minimum temperature, but also the loca¬tion and the time at which it occurs during the transient which is considered to be indicator for the quality of mixing in the system. CFD and experimental results were qualitatively compared; mixing in the cold legs with emergency core cooling systems was overestimated. This could be explained by the sensitivity to the bound¬ary conditions. In the downcomer, the experiments displayed higher mixing: by our assumption this related to the dense measurement grid (they were not modelled. The temperature distribution in the core inlet plane agreed with the measurement results. Minor deviations were seen in the quantitative comparisons: the maximum temperature difference was 2ºC.

  14. Benchmarking semantic web technology

    CERN Document Server

    García-Castro, R

    2009-01-01

    This book addresses the problem of benchmarking Semantic Web Technologies; first, from a methodological point of view, proposing a general methodology to follow in benchmarking activities over Semantic Web Technologies and, second, from a practical point of view, presenting two international benchmarking activities that involved benchmarking the interoperability of Semantic Web technologies using RDF(S) as the interchange language in one activity and OWL in the other.The book presents in detail how the different resources needed for these interoperability benchmarking activities were defined:

  15. PWR-to-PWR fuel cycle model using dry process

    International Nuclear Information System (INIS)

    Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong

    2002-03-01

    PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance

  16. Simplified model of a PWR primary circuit

    International Nuclear Information System (INIS)

    Souza, A.L.; Faya, A.J.G.

    1988-07-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analyzed by a nodal model. Average and hot channels are treated so that bulk response of the core and DNBR can be evaluated. A homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  17. Verification and validation methodology of training simulators

    International Nuclear Information System (INIS)

    Hassan, M.W.; Khan, N.M.; Ali, S.; Jafri, M.N.

    1997-01-01

    A full scope training simulator comprising of 109 plant systems of a 300 MWe PWR plant contracted by Pakistan Atomic Energy Commission (PAEC) from China is near completion. The simulator has its distinction in the sense that it will be ready prior to fuel loading. The models for the full scope training simulator have been developed under APROS (Advanced PROcess Simulator) environment developed by the Technical Research Center (VTT) and Imatran Voima (IVO) of Finland. The replicated control room of the plant is contracted from Shanghai Nuclear Engineering Research and Design Institute (SNERDI), China. The development of simulation models to represent all the systems of the target plant that contribute to plant dynamics and are essential for operator training has been indigenously carried out at PAEC. This multifunctional simulator is at present under extensive testing and will be interfaced with the control planes in March 1998 so as to realize a full scope training simulator. The validation of the simulator is a joint venture between PAEC and SNERDI. For the individual components and the individual plant systems, the results have been compared against design data and PSAR results to confirm the faithfulness of the simulator against the physical plant systems. The reactor physics parameters have been validated against experimental results and benchmarks generated using design codes. Verification and validation in the integrated state has been performed against the benchmark transients conducted using the RELAP5/MOD2 for the complete spectrum of anticipated transient covering the well known five different categories. (author)

  18. Calculation of drop course of control rod assembly in PWR

    International Nuclear Information System (INIS)

    Zhou Xiaojia; Mao Fei; Min Peng; Lin Shaoxuan

    2013-01-01

    The validation of control rod drop performance is an important part of safety analysis of nuclear power plant. Development of computer code for calculating control rod drop course will be useful for validating and improving the design of control rod drive line. Based on structural features of the drive line, the driving force on moving assembly was analyzed and decomposed, the transient value of each component of the driving force was calculated by choosing either theoretical method or numerical method, and the simulation code for calculating rod cluster control assembly (RCCA) drop course by time step increase was achieved. The analysis results of control rod assembly drop course calculated by theoretical model and numerical method were validated by comparing with RCCA drop test data of Qinshan Phase Ⅱ 600 MW PWR. It is shown that the developed RCCA drop course calculation code is suitable for RCCA in PWR and can correctly simulate the drop course and the stress of RCCA. (authors)

  19. Benchmarking in University Toolbox

    Directory of Open Access Journals (Sweden)

    Katarzyna Kuźmicz

    2015-06-01

    Full Text Available In the face of global competition and rising challenges that higher education institutions (HEIs meet, it is imperative to increase innovativeness and efficiency of their management. Benchmarking can be the appropriate tool to search for a point of reference necessary to assess institution’s competitive position and learn from the best in order to improve. The primary purpose of the paper is to present in-depth analysis of benchmarking application in HEIs worldwide. The study involves indicating premises of using benchmarking in HEIs. It also contains detailed examination of types, approaches and scope of benchmarking initiatives. The thorough insight of benchmarking applications enabled developing classification of benchmarking undertakings in HEIs. The paper includes review of the most recent benchmarking projects and relating them to the classification according to the elaborated criteria (geographical range, scope, type of data, subject, support and continuity. The presented examples were chosen in order to exemplify different approaches to benchmarking in higher education setting. The study was performed on the basis of the published reports from benchmarking projects, scientific literature and the experience of the author from the active participation in benchmarking projects. The paper concludes with recommendations for university managers undertaking benchmarking, derived on the basis of the conducted analysis.

  20. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Post test investigations of bundle test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.

    1986-11-01

    This KfK report describes the post test investigation of bundle experiment ESBU-2a. ESBU-2a was the second of two bundle tests on the temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS-Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (central tungsten heater, UO 2 -ring pellet and zircaloy cladding). The length was 0.4 meter. The bundle was heated to a maximum temperature of 2175 0 C. Molten cladding which dissolved part of the UO 2 pellets and slumped away from the already oxidized cladding formed a lump in the lower part of the bundle. After the test the bundle was embedded in epoxy and sectioned with a diamand saw, in the region of the refrozen melt. The cross sections were investigated by metallographic examination. The refrozen (U,Zr,O) melt consists variously of three phases with increasing oxygen content (metallic α-Zry, metallic (U,Zr) alloy and a (U,Zr)O 2 mixed oxide), two phases (α-Zry, (U,Zr)O 2 mixed oxide), or one phase ((U,Zr)O 2 mixed oxide). The cross sections show the increasing oxidation of the cladding with increasing elevation (temperature). A strong azimuthal dependency of the oxidation is found. In regions where the initial oxidized cladding is contacted by the melt one can recognize the interaction between the metallic melt and ZrO 2 of the cladding. Oxygen is taken away from the ZrO 2 . If the melt is in direct contact with steam a relatively well defined oxide layer is formed. (orig.) [de

  1. PWR plant construction in Japan

    International Nuclear Information System (INIS)

    Tamura, Toshifumi

    2002-01-01

    The construction methods based on the experiences on the Nuclear Island, which is a critical path in the total construction schedule, have been studied and reconsidered in order to construct by more reliable and economical method. So various improved construction method are being applied and the duration of construction is being reduced continuously. So various improved construction method are being applied and the duration of construction is being reduced continuously. In this paper, the history of construction of twenty-three (23) PWR Plant, the actual construction methods and schedule of Ohi-3/4, to which the many improved methods were applied during their construction, are introduced mainly with the improved points for previously constructed plants. And also the situation of construction method for the next PWR Plant is simply explained

  2. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2017-04-15

    This paper presents the radiation shielding model of a typical PWR (CNPP-II) at Chashma, Pakistan. The model was developed using Monte Carlo N Particle code [2], equipped with ENDF/B-VI continuous energy cross section libraries. This model was applied to calculate the neutron and gamma flux and dose rates in the radial direction at core mid plane. The simulated results were compared with the reference results of Shanghai Nuclear Engineering Research and Design Institute (SNERDI).

  3. Fuel rod behavior of a PWR during load following

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Andrade, G.G. de

    1982-01-01

    The behavior of a PWR fuel rod when operating in normal power cycles, excluding in case of accidents, is analysed. A computer code, that makes the mechanical analysis of the cladding using the finite element method was developed. The ramps and power cycles were simulated suposing the existence of cracks in pellets when the cladding-pellet interaction are done. As a result, an operation procedure of the fuel rod in power cycle is recommended. (E.G.) [pt

  4. Corrosion of PWR steam generators

    International Nuclear Information System (INIS)

    Garnsey, R.

    1979-01-01

    Some designs of pressurized water reactor (PWR) steam generators have experienced a variety of corrosion problems which include stress corrosion cracking, tube thinning, pitting, fatigue, erosion-corrosion and support plate corrosion resulting in 'denting'. Large international research programmes have been mounted to investigate the phenomena. The operational experience is reviewed and mechanisms which have been proposed to explain the corrosion damage are presented. The implications for design development and for boiler and feedwater control are discussed. (author)

  5. PWR system reliability improvement activities

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1985-01-01

    In Japan lacking in energy resources, it is our basic energy policy to accelerate the development program of nuclear power, thereby reducing our dependence. As referred to in the foregoing, every effort has been exerted on our part to improve the PWR system reliability by dint of the so-called 'HOMEMADE' TQC activities, which is our brain-child as a result of applying to the energy industry the quality control philosophy developed in the field of manufacturing industry

  6. Boiling water reactor turbine trip (TT) benchmark

    International Nuclear Information System (INIS)

    2005-01-01

    In the field of coupled neutronics/thermal-hydraulics computation there is a need to enhance scientific knowledge in order to develop advanced modelling techniques for new nuclear technologies and concepts as well as for current applications. Recently developed 'best-estimate' computer code systems for modelling 3-D coupled neutronics/thermal-hydraulics transients in nuclear cores and for coupling core phenomena and system dynamics (PWR, BWR, VVER) need to be compared against each other and validated against results from experiments. International benchmark studies have been set up for this purpose. The present report is the second in a series of four and summarises the results of the first benchmark exercise, which identifies the key parameters and important issues concerning the thermalhydraulic system modelling of the transient, with specified core average axial power distribution and fission power time transient history. The transient addressed is a turbine trip in a boiling water reactor, involving pressurization events in which the coupling between core phenomena and system dynamics plays an important role. In addition, the data made available from experiments carried out at the Peach Bottom 2 reactor (a GE-designed BWR/4) make the present benchmark particularly valuable. (author)

  7. Boiling water reactor turbine trip (TT) benchmark

    International Nuclear Information System (INIS)

    2001-06-01

    In the field of coupled neutronics/thermal-hydraulics computation there is a need to enhance scientific knowledge in order to develop advanced modelling techniques for new nuclear technologies and concepts, as well as for current nuclear applications Recently developed 'best-estimate' computer code systems for modelling 3-D coupled neutronics/thermal-hydraulics transients in nuclear cores and for the coupling of core phenomena and system dynamics (PWR, BWR, VVER) need to be compared against each other and validated against results from experiments. International benchmark studies have been set up for the purpose. The present volume describes the specification of such a benchmark. The transient addressed is a turbine trip (TT) in a BWR involving pressurization events in which the coupling between core phenomena and system dynamics plays an important role. In addition, the data made available from experiments carried out at the plant make the present benchmark very valuable. The data used are from events at the Peach Bottom 2 reactor (a GE-designed BWR/4). (authors)

  8. Gas Flow Validation with Panda Tests from the OECD SETH Benchmark Covering Steam/Air and Steam/Helium/Air Mixtures

    International Nuclear Information System (INIS)

    Royl, P.; Travis, J.R.; Breitung, W.; Kim, J.; Kim, S.B.

    2009-01-01

    The CFD code GASFLOW solves the time-dependent compressible Navier-Stokes Equations with multiple gas species. GASFLOW was developed for nonnuclear and nuclear applications. The major nuclear applications of GASFLOW are 3D analyses of steam/hydrogen distributions in complex PWR containment buildings to simulate scenarios of beyond design basis accidents. Validation of GASFLOW has been a continuously ongoing process together with the development of this code. This contribution reports the results from the open posttest GASFLOW calculations that have been performed for new experiments from the OECD SETH Benchmark. Discussed are the steam distribution tests 9 and 9 bis, 21 and 21 bis involving comparable sequences with and without steam condensation and the last SETH test 25 with steam/helium release and condensation. The latter one involves lighter gas mixture sources like they can result in real accidents. The helium is taken as simulant for hydrogen

  9. PWR secondary water chemistry guidelines: Revision 3

    International Nuclear Information System (INIS)

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239)

  10. Prismatic Core Coupled Transient Benchmark

    International Nuclear Information System (INIS)

    Ortensi, J.; Pope, M.A.; Strydom, G.; Sen, R.S.; DeHart, M.D.; Gougar, H.D.; Ellis, C.; Baxter, A.; Seker, V.; Downar, T.J.; Vierow, K.; Ivanov, K.

    2011-01-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  11. Advanced accumulator for PWR

    International Nuclear Information System (INIS)

    Ichimura, Taiki; Chikahata, Hideyuki

    1997-01-01

    Advanced accumulators have been incorporated into the APWR design in order to simplify the safety system configuration and to improve reliability. The advanced accumulators refill the reactor vessel with a large discharge flow rate in a large LOCA, then switch to a small flow rate to continue safety injection for core reflooding. The functions of the conventional accumulator and the low head safety injection pump are integrated into this advanced accumulator. Injection performance tests simulating LOCA conditions and visualization tests for new designs have been carried out. This paper describes the APWR ECCS configuration, the advanced accumulator design and some of the injection performance and visualization test results. It was verified that the flow resistance of the advanced accumulator is independent of the model scale. The similarity law and performance data of the advanced accumulator for applying APWR was established. (author)

  12. MCNP neutron benchmarks

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Whalen, D.J.; Cardon, D.A.; Uhle, J.L.

    1991-01-01

    Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems

  13. Material property changes of stainless steels under PWR irradiation

    International Nuclear Information System (INIS)

    Fukuya, Koji; Nishioka, Hiromasa; Fujii, Katsuhiko; Kamaya, Masayuki; Miura, Terumitsu; Torimaru, Tadahiko

    2009-01-01

    Structural integrity of core structural materials is one of the key issues for long and safe operation of pressurized water reactors. The stainless steel components are exposed to neutron irradiation and high-temperature water, which cause significant property changes and irradiation assisted stress corrosion cracking (IASCC) in some cases. Understanding of irradiation induced material property changes is essential to predict integrity of core components. In the present study, microstructure and microchemistry, mechanical properties, and IASCC behavior were examined in 316 stainless steels irradiated to 1 - 73 dpa in a PWR. Dose-dependent changes of dislocation loops and cavities, grain boundary segregation, tensile properties and fracture mode, deformation behavior, and their interrelation were discussed. Tensile properties and deformation behavior were well coincident with microstructural changes. IASCC susceptibility under slow strain rate tensile tests, IASCC initiation under constant load tests in simulated PWR primary water, and their relationship to material changes were discussed. (author)

  14. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  15. Conceptual design of simplified PWR

    International Nuclear Information System (INIS)

    Tabata, Hiroaki

    1996-01-01

    The limited availability for location of nuclear power plant in Japan makes plants with higher power ratings more desirable. Having no intention of constructing medium-sized plants as a next generation standard plant, Japanese utilities are interested in applying passive technologies to large ones. So, Japanese utilities have studied large passive plants based on AP600 and SBWR as alternative future LWRs. In a joint effort to develop a new generation nuclear power plant which is more friendly to operator and maintenance personnel and is economically competitive with alternative sources of power generation, JAPC and Japanese Utilities started the study to modify AP600 and SBWR, in order to accommodate the Japanese requirements. During a six year program up to 1994, basic concepts for 1000 MWe class Simplified PWR (SPWR) and Simplified BWR (SBWR) were developed, though there still remain several areas to be improved. These studies have now stepped into the phase of reducing construction cost and searching for maximum power rating that can be attained by reasonably practical technology. These results also suggest that it is hopeful to develop a large 3-loop passive plant (∼1200 MWe). Since Korea mainly deals with PWR, this paper summarizes SPWR study. The SPWR is jointly studied by JAPC, Japanese PWR Utilities, EdF, WH and Mitsubishi Heavy Industry. Using the AP-600 reference design as a basis, we enlarged the plant size to 3-loops and added engineering features to conform with Japanese practice and Utilities' preference. The SPWR program definitively confirmed the feasibility of a passive plant with an NSSS rating about 1000 MWe and 3 loops. (J.P.N.)

  16. Influences of boric acid and lithium hydroxide on oxide film of type 316 stainless steel in PWR simulated primary water; PWR 1次冷却材模擬環境中の316ステンレス鋼に生成した皮膜性状に及ぼすほう酸および水酸化リチウムの影響

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Fukuya, Koji; Arioka, Koji [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan)

    2012-06-15

    In order to understand the influences of boric acid and lithium hydroxide on the IGSCC of type 316 stainless steel, an oxide film was analyzed in simulated PWR primary water while varying the boric acid and lithium hydroxide concentrations. It was found that, although boric acid and lithium hydroxide did not affect the structure and chemical composition of the surface oxide film remarkably, a lower boric acid concentration or a higher lithium concentration produced an oxide film with a thicker surface. It was considered that the lower boric acid concentration and higher lithium hydroxide concentration caused a higher magnetite solubility at the surface of the material and that the higher magnetite solubility caused a higher iron concentration gradient, which promoted iron dissolution from the material and the formation of a thicker oxide film. It was found that the thicker oxide film caused a higher IGSCC susceptibility and that the corrosion was the dominant factor of the IGSCC mechanism. No significant change was found in the morphologies of crack tip oxide in different bulk water chemistry systems, thus producing CT specimens with similar crack growth rates. (author)

  17. Benchmarking af kommunernes sagsbehandling

    DEFF Research Database (Denmark)

    Amilon, Anna

    Fra 2007 skal Ankestyrelsen gennemføre benchmarking af kommuernes sagsbehandlingskvalitet. Formålet med benchmarkingen er at udvikle praksisundersøgelsernes design med henblik på en bedre opfølgning og at forbedre kommunernes sagsbehandling. Dette arbejdspapir diskuterer metoder for benchmarking...

  18. Internet based benchmarking

    DEFF Research Database (Denmark)

    Bogetoft, Peter; Nielsen, Kurt

    2005-01-01

    We discuss the design of interactive, internet based benchmarking using parametric (statistical) as well as nonparametric (DEA) models. The user receives benchmarks and improvement potentials. The user is also given the possibility to search different efficiency frontiers and hereby to explore...

  19. The Drill Down Benchmark

    NARCIS (Netherlands)

    P.A. Boncz (Peter); T. Rühl (Tim); F. Kwakkel

    1998-01-01

    textabstractData Mining places specific requirements on DBMS query performance that cannot be evaluated satisfactorily using existing OLAP benchmarks. The DD Benchmark - defined here - provides a practical case and yardstick to explore how well a DBMS is able to support Data Mining applications. It

  20. Benchmarking Tool Kit.

    Science.gov (United States)

    Canadian Health Libraries Association.

    Nine Canadian health libraries participated in a pilot test of the Benchmarking Tool Kit between January and April, 1998. Although the Tool Kit was designed specifically for health libraries, the content and approach are useful to other types of libraries as well. Used to its full potential, benchmarking can provide a common measuring stick to…

  1. The development of code benchmarks

    International Nuclear Information System (INIS)

    Glass, R.E.

    1986-01-01

    Sandia National Laboratories has undertaken a code benchmarking effort to define a series of cask-like problems having both numerical solutions and experimental data. The development of the benchmarks includes: (1) model problem definition, (2) code intercomparison, and (3) experimental verification. The first two steps are complete and a series of experiments are planned. The experiments will examine the elastic/plastic behavior of cylinders for both the end and side impacts resulting from a nine meter drop. The cylinders will be made from stainless steel and aluminum to give a range of plastic deformations. This paper presents the results of analyses simulating the model's behavior using materials properties for stainless steel and aluminum

  2. Jendl-3.1 iron validation on the PCA-REPLICA (H2O/Fe) shielding benchmark experiment

    International Nuclear Information System (INIS)

    Pescarini, M.; Borgia, M. G.

    1997-03-01

    The PCA-REPLICA (H 2 O/Fe) neutron shielding benchmarks experiment is analysed using the SN 2-D DOT 3.5-E code and the 3-D-equivalent flux synthesis method. This engineering benchmark reproduces the ex-core radial geometry of a PWR, including a mild steel reactor pressure vessel (RPV) simulator, and is designed to test the accuracy of the calculation of the in-vessel neutron exposure parameters. This accuracy is strongly dependent on the quality of the iron neutron cross sections used to describe the nuclear reactions within the RPV simulator. In particular, in this report, the cross sections based on the JENDL-3.1 iron data files are tested, through a comparison of the calculated integral and spectral results with the corresponding experimental data. In addition, the present results are compared, on the same benchmark experiment, with those of a preceding ENEA-Bologna validation of the ENDF/B VI iron cross sections. The integral result comparison indicates that, for all the threshold detectors considered (Rh-103 (n, n') Rh-103m, In-115 (n, n') In-115m and S-32 (n, p) P-32), the JENDL-3.1 natural iron data produce satisfactory results similar to those obtained with the ENDF/B VI iron data. On the contrary, when the JENDL/3.1 Fe-56 data file is used, strongly underestimated results are obtained for the lower energy threshold detectors, Rh-103 and In-115. This fact, in particular, becomes more evident with increasing the neutron penetration depth in the RPV simulator

  3. How Activists Use Benchmarks

    DEFF Research Database (Denmark)

    Seabrooke, Leonard; Wigan, Duncan

    2015-01-01

    Non-governmental organisations use benchmarks as a form of symbolic violence to place political pressure on firms, states, and international organisations. The development of benchmarks requires three elements: (1) salience, that the community of concern is aware of the issue and views...... are put to the test. The first is a reformist benchmarking cycle where organisations defer to experts to create a benchmark that conforms with the broader system of politico-economic norms. The second is a revolutionary benchmarking cycle driven by expert-activists that seek to contest strong vested...... interests and challenge established politico-economic norms. Differentiating these cycles provides insights into how activists work through organisations and with expert networks, as well as how campaigns on complex economic issues can be mounted and sustained....

  4. EGS4 benchmark program

    International Nuclear Information System (INIS)

    Yasu, Y.; Hirayama, H.; Namito, Y.; Yashiro, S.

    1995-01-01

    This paper proposes EGS4 Benchmark Suite which consists of three programs called UCSAMPL4, UCSAMPL4I and XYZDOS. This paper also evaluates optimization methods of recent RISC/UNIX systems, such as IBM, HP, DEC, Hitachi and Fujitsu, for the benchmark suite. When particular compiler option and math library were included in the evaluation process, system performed significantly better. Observed performance of some of the RISC/UNIX systems were beyond some so-called Mainframes of IBM, Hitachi or Fujitsu. The computer performance of EGS4 Code System on an HP9000/735 (99MHz) was defined to be the unit of EGS4 Unit. The EGS4 Benchmark Suite also run on various PCs such as Pentiums, i486 and DEC alpha and so forth. The performance of recent fast PCs reaches that of recent RISC/UNIX systems. The benchmark programs have been evaluated with correlation of industry benchmark programs, namely, SPECmark. (author)

  5. A framework for benchmarking land models

    Directory of Open Access Journals (Sweden)

    Y. Q. Luo

    2012-10-01

    Full Text Available Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1 targeted aspects of model performance to be evaluated, (2 a set of benchmarks as defined references to test model performance, (3 metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4 model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1 a priori thresholds of acceptable model performance and (2 a scoring system to combine data–model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties

  6. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  7. Surveillance of vibrations in PWR

    International Nuclear Information System (INIS)

    Espefaelt, R.; Lorenzen, J.; Aakerhielm, F.

    1980-07-01

    The core of a PWR - including fuel elements, internal structure, control rods and core support structure inside the pressure vessel - is subjected to forces which can cause vibrations. One sensitive means to detect and analyse such vibrations is by means of the noise from incore and excore neutron detector signals. In this project noise recordings have been made on two occasions in the Ringhals 2 plant and the obtained data been analysed using the Studsvik Noise Analysis Program System (SNAPS). The results have been intepreted and a detailed description of the vibrational status of the core and pressure vessel internals has been produced. On the basis of the obtained results it is proposed that neutron signal noise analysis should be performed at each PWR plant in the beginning, middle and end of each fuel cycle and an analysis be made using the methods developed in the project. It would also provide a contribution to a higher degree of preparedness for diagnostic tasks in case of unexpected and abnormal events. (author)

  8. Analytical technical of lightning surges induced on grounding mesh of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ikeda, I.; Tani, M.; Yonezawa, T.

    1990-01-01

    An analytical lightning surge technique is needed to make a qualitative and predictive evaluation of transient voltages induced on local grounding meshes and instrumentation cables by a lightning strike on a lightning rod in a PWR plant. This paper discusses an experiment with lightning surge impulses in a PWR plant which was setup to observe lightning caused transient voltages. Experimental data when compared with EMTP simulation results improved the simulation method. The improved method provides a good estimation of induced voltages on grounding meshes and instrumentation cables

  9. Computer simulation of variform fuel assemblies using Dragon code

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun; Yao Dong

    2005-01-01

    The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)

  10. Benchmarking and the laboratory

    Science.gov (United States)

    Galloway, M; Nadin, L

    2001-01-01

    This article describes how benchmarking can be used to assess laboratory performance. Two benchmarking schemes are reviewed, the Clinical Benchmarking Company's Pathology Report and the College of American Pathologists' Q-Probes scheme. The Clinical Benchmarking Company's Pathology Report is undertaken by staff based in the clinical management unit, Keele University with appropriate input from the professional organisations within pathology. Five annual reports have now been completed. Each report is a detailed analysis of 10 areas of laboratory performance. In this review, particular attention is focused on the areas of quality, productivity, variation in clinical practice, skill mix, and working hours. The Q-Probes scheme is part of the College of American Pathologists programme in studies of quality assurance. The Q-Probes scheme and its applicability to pathology in the UK is illustrated by reviewing two recent Q-Probe studies: routine outpatient test turnaround time and outpatient test order accuracy. The Q-Probes scheme is somewhat limited by the small number of UK laboratories that have participated. In conclusion, as a result of the government's policy in the UK, benchmarking is here to stay. Benchmarking schemes described in this article are one way in which pathologists can demonstrate that they are providing a cost effective and high quality service. Key Words: benchmarking • pathology PMID:11477112

  11. Performance of high burned PWR fuel during transient

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio

    1992-01-01

    In a majority of Japanese light water type commercial powder reactors (LWRs), UO 2 pellet sheathed by zircaloy cladding is used. Licensed discharged burn-up of the PWR fuel rod is going to be increased from 39 MWd/kgU to 48 MWd/kgU. This requests the increased reliability of cladding material as a strong barrier against fission product (FP). A long time usage in the neutron field and in the high temperature coolant will cause the zircaloy hardening and embrittlement. The cladding material is also degraded by waterside corrosion. These degradations are enhanced much by increased burn-up. A increased magnitude of the pellet-cladding mechanical interaction (PCMI) is of importance for increasing the stress of cladding material. In addition, aggressive FPs released from the fuel tends to attack the cladding material to cause stress corrosion cracking (SCC). At the Nuclear Safety Research Reactor (NSRR) in JAERI, 14 x 14 PWR type fuel rods preirradiation up to 42 MWd/kgU was prepared for the transient pulse irradiation under the simulated reactivity initiated accident (RIA) conditions. This will cause a prompt increase of the fuel temperature and stress on the highly burned cladding material. In the present paper, steady-state and transient behavior observed from the tested PWR fuel rod and calculational results obtained from the computer code FPRETAIN will be described. (author)

  12. HELIOS2: Benchmarking Against Experiments for Hexagonal and Square Lattices

    International Nuclear Information System (INIS)

    Simeonov, T.

    2009-01-01

    HELIOS2, is a 2D transport theory program for fuel burnup and gamma-flux calculation. It solves the neutron and gamma transport equations in a general, two-dimensional geometry bounded by a polygon of straight lines. The applied transport solver may be chosen between: The Method of Collision Probabilities and The Method of Characteristics. The former is well known for its successful application for preparation of cross section data banks for 3D simulators for all types lattices for WWER's, PWR's, BWR's, AGR's, RBMK and CANDU reactors. The later, method of characteristics, helps in the areas where the requirements of collision probability for computational power become too large of practical application. The application of HELIOS2 and The method of characteristics for some large from calculation point of view benchmarks is presented in this paper. The analysis combines comparisons to measured data from the Hungarian ZR-6 reactor and JAERI's facility of tanktype critical assembly to verify and validate HELIOS2 and method of characteristics for WWER assembly imitators; configurations with different absorber types-ZrB2, B4C, Eu2O3 and Gd2O3; and critical configurations with stainless steel in the reflector. Core eigenvalues and reaction rates are compared. With the account for the uncertainties the results are generally excellent. Special place in this paper is given to the effect of Iron-made radial reflector. Comparisons to measurements from The Temporary International Collective and tanktype critical assembly for stainless steel and Iron reflected cores are presented. The calculated by HELIOS-2 reactivity effect is in very good agreement with the measurements. (Authors)

  13. Analysis of the pool critical assembly benchmark using raptor-M3G, a parallel deterministic radiation transport code - 289

    International Nuclear Information System (INIS)

    Fischer, G.A.

    2010-01-01

    The PCA Benchmark is analyzed using RAPTOR-M3G, a parallel SN radiation transport code. A variety of mesh structures, angular quadrature sets, cross section treatments, and reactor dosimetry cross sections are presented. The results show that RAPTOR-M3G is generally suitable for PWR neutron dosimetry applications. (authors)

  14. VALIDATION OF SIMBAT-PWR USING STANDARD CODE OF COBRA-EN ON REACTOR TRANSIENT CONDITION

    Directory of Open Access Journals (Sweden)

    Muhammad Darwis Isnaini

    2016-03-01

    Full Text Available The validation of Pressurized Water Reactor typed Nuclear Power Plant simulator developed by BATAN (SIMBAT-PWR using standard code of COBRA-EN on reactor transient condition has been done. The development of SIMBAT-PWR has accomplished several neutronics and thermal-hydraulic calculation modules. Therefore, the validation of the simulator is needed, especially in transient reactor operation condition. The research purpose is for characterizing the thermal-hydraulic parameters of PWR1000 core, which be able to be applied or as a comparison in developing the SIMBAT-PWR. The validation involves the calculation of the thermal-hydraulic parameters using COBRA-EN code. Furthermore, the calculation schemes are based on COBRA-EN with fixed material properties and dynamic properties that calculated by MATPRO subroutine (COBRA-EN+MATPRO for reactor condition of startup, power rise and power fluctuation from nominal to over power. The comparison of the temperature distribution at nominal 100% power shows that the fuel centerline temperature calculated by SIMBAT-PWR has 8.76% higher result than COBRA-EN result and 7.70% lower result than COBRA-EN+MATPRO. In general, SIMBAT-PWR calculation results on fuel temperature distribution are mostly between COBRA-EN and COBRA-EN+MATPRO results. The deviations of the fuel centerline, fuel surface, inner and outer cladding as well as coolant bulk temperature in the SIMBAT-PWR and the COBRA-EN calculation, are due to the value difference of the gap heat transfer coefficient and the cladding thermal conductivity.

  15. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  16. Toxicological Benchmarks for Wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E. Opresko, D.M. Suter, G.W.

    1993-01-01

    Ecological risks of environmental contaminants are evaluated by using a two-tiered process. In the first tier, a screening assessment is performed where concentrations of contaminants in the environment are compared to no observed adverse effects level (NOAEL)-based toxicological benchmarks. These benchmarks represent concentrations of chemicals (i.e., concentrations presumed to be nonhazardous to the biota) in environmental media (water, sediment, soil, food, etc.). While exceedance of these benchmarks does not indicate any particular level or type of risk, concentrations below the benchmarks should not result in significant effects. In practice, when contaminant concentrations in food or water resources are less than these toxicological benchmarks, the contaminants may be excluded from further consideration. However, if the concentration of a contaminant exceeds a benchmark, that contaminant should be retained as a contaminant of potential concern (COPC) and investigated further. The second tier in ecological risk assessment, the baseline ecological risk assessment, may use toxicological benchmarks as part of a weight-of-evidence approach (Suter 1993). Under this approach, based toxicological benchmarks are one of several lines of evidence used to support or refute the presence of ecological effects. Other sources of evidence include media toxicity tests, surveys of biota (abundance and diversity), measures of contaminant body burdens, and biomarkers. This report presents NOAEL- and lowest observed adverse effects level (LOAEL)-based toxicological benchmarks for assessment of effects of 85 chemicals on 9 representative mammalian wildlife species (short-tailed shrew, little brown bat, meadow vole, white-footed mouse, cottontail rabbit, mink, red fox, and whitetail deer) or 11 avian wildlife species (American robin, rough-winged swallow, American woodcock, wild turkey, belted kingfisher, great blue heron, barred owl, barn owl, Cooper's hawk, and red

  17. Results of a recent crud/corrosion fuel risk assessment at a U.S. PWR

    International Nuclear Information System (INIS)

    Lamanna, Larry; Pop, Mike; Gregorich, Carola; Harne, Richard; Jones, John

    2012-09-01

    In order to avoid potential fuel reliability issues, specifically crud-related issues, it is necessary to achieve and maintain a crud safe environment. Therefore, the ability to confidently predict risks associated with crud deposition on fuel becomes critically important. AREVA is applying its cutting-edge PWR Fuel Crud (Primary System corrosion products)/Corrosion Tools, i.e. COBRA-FLX (subchannel-by-subchannel T/H tool) coupled with FDIC (crud deposition tool) to subsequently perform PWR Fuel Crud /Corrosion risk assessments for operating plants in the US. After describing the method, the result of one of these assessments is presented for an operating plant in the US that has experienced recent crud observations/concerns. Both Crud Induced Localized Corrosion (CILC) and Crud Induced Power Shift (CIPS) risk assessment methods, as applied to the upcoming cycle (Cycle N), were compared to the current/on-going cycle (Cycle N-1) and to the previous cycle (Cycle N-2). The results allowed the Utility to consider crud risk management changes associated with the upcoming cycle (Cycle-N). Benchmarking of the AREVA tools, using the plant-specific crud information gained from the crud sampling/characterization for the Unit will be presented. The CIPS analysis references boron loading and the amount of insoluble iron-nickel-borates predicted for Cycles N-2, N-1, and N. The results of the CILC evaluation reference FDIC-predicted crud thickness, cladding temperature under deposit, evolution of CILC bearing species and lithium concentration in the zirconium oxide layer. The approach taken by AREVA during the evaluation was to consider both 'risk' and 'margin' to fuel performance impact caused by crud deposits. The conclusion of the assessment, illustrated by the results presented in this paper, is that the example Plant has sufficient margin in worst case conditions for CIPS and CILC risk in Cycle N, based on Cycle N-1 and Cycle N-2 conditions and behavior

  18. Results of LWR core transient benchmarks

    International Nuclear Information System (INIS)

    Finnemann, H.; Bauer, H.; Galati, A.; Martinelli, R.

    1993-10-01

    LWR core transient (LWRCT) benchmarks, based on well defined problems with a complete set of input data, are used to assess the discrepancies between three-dimensional space-time kinetics codes in transient calculations. The PWR problem chosen is the ejection of a control assembly from an initially critical core at hot zero power or at full power, each for three different geometrical configurations. The set of problems offers a variety of reactivity excursions which efficiently test the coupled neutronic/thermal - hydraulic models of the codes. The 63 sets of submitted solutions are analyzed by comparison with a nodal reference solution defined by using a finer spatial and temporal resolution than in standard calculations. The BWR problems considered are reactivity excursions caused by cold water injection and pressurization events. In the present paper, only the cold water injection event is discussed and evaluated in some detail. Lacking a reference solution the evaluation of the 8 sets of BWR contributions relies on a synthetic comparative discussion. The results of this first phase of LWRCT benchmark calculations are quite satisfactory, though there remain some unresolved issues. It is therefore concluded that even more challenging problems can be successfully tackled in a suggested second test phase. (authors). 46 figs., 21 tabs., 3 refs

  19. Diagnostic Algorithm Benchmarking

    Science.gov (United States)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  20. Benchmarking Swiss electricity grids

    International Nuclear Information System (INIS)

    Walti, N.O.; Weber, Ch.

    2001-01-01

    This extensive article describes a pilot benchmarking project initiated by the Swiss Association of Electricity Enterprises that assessed 37 Swiss utilities. The data collected from these utilities on a voluntary basis included data on technical infrastructure, investments and operating costs. These various factors are listed and discussed in detail. The assessment methods and rating mechanisms that provided the benchmarks are discussed and the results of the pilot study are presented that are to form the basis of benchmarking procedures for the grid regulation authorities under the planned Switzerland's electricity market law. Examples of the practical use of the benchmarking methods are given and cost-efficiency questions still open in the area of investment and operating costs are listed. Prefaces by the Swiss Association of Electricity Enterprises and the Swiss Federal Office of Energy complete the article