WorldWideScience

Sample records for simulated office environment

  1. Thermal Comfort in Simulated Office Environment with Four Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Mustakallio, Panu; Kolencíková, Sona

    2013-01-01

    with overhead mixing ventilation (MVRC). Whole body thermal sensation (TS) and whole body TS acceptability under the four systems in a simulated office room for one hour exposure were collected. The simulated two-man office (4.12 x 4.20 x 2.89 m, L x W x H) was kept at 26 oC room air temperature. Moderate heat...... to “neutral” compared to male, whose votes were closer to the “slightly warm” thermal sensation. The whole body TS acceptability was rated close to ''clearly acceptable'' (EN 15251-2007) and was independent of subject's gender for all tested systems....

  2. Ergonomics in the office environment

    Science.gov (United States)

    Courtney, Theodore K.

    1993-01-01

    Perhaps the four most popular 'ergonomic' office culprits are: (1) the computer or visual display terminal (VDT); (2) the office chair; (3) the workstation; and (4) other automated equipment such as the facsimile machine, photocopier, etc. Among the ergonomics issues in the office environment are visual fatigue, musculoskeletal disorders, and radiation/electromagnetic (VLF,ELF) field exposure from VDT's. We address each of these in turn and then review some regulatory considerations regarding such stressors in the office and general industrial environment.

  3. Battlefield Electromagnetic Environments Office (BEEO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Battlefield Electromagnetic Environments Office (BEEO) develops, maintains, and operates the Army Materiel Command (AMC) databases for spectrum management, per...

  4. A vision driven wayfinding simulation system based on the architectural features perceived in the office environment

    NARCIS (Netherlands)

    Chen, Qunli

    2012-01-01

    Human wayfinding in the built environment is extensively investigated in the last 50 years. One major aspect of the outcome is the decision made on the egresses based on the information perceived during the wayfinding. Information acquired of the environment could be categorized into several types,

  5. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  6. Thermal environment in a simulated double office room with convective and radiant cooling systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Rezgals, Lauris

    2017-01-01

    anddraught rate was calculated. Manikin-based equivalent temperature (MBET) was determined by using two thermal manikins. CCMV provided slightly more uniform thermal environment and the least sensitive to different workstation layouts than the other systems. CB provided a bit higher draught rate levels than...

  7. Thermal environment in simulated offices with convective and radiant cooling systems under cooling (summer) mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2016-01-01

    The thermal environment in a double office room and in a six-person meeting room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition-mounted local radiant cooling panels with mixing...... calculated. Manikin-based equivalent temperature (MBET) was determined by using two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants' thermal perception. The results revealed that the differences in the thermal conditions achieved...

  8. Office Space: How Will Technology Affect the Education Office Environment?

    Science.gov (United States)

    Day, C. William

    2009-01-01

    The office environment 10 years from now will be different from the one today. More office personnel will be organized around processes rather than functions. More work activities will be done by teams rather than individuals, and those teams will change over time, as will the nature of the work projects and the people who constitute the team. The…

  9. Air quality in a simulated office environment as a result of reducing pollution sources and increasing ventilation

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Bako-Biro, Zsolt; Clausen, Geo

    2002-01-01

    Air quality was studied in an office space classified as low-polluting and ventilated with outdoor air at a rate of 1 h-1. The pollution load in the space was changed by introducing or removing common building-related indoor pollution sources (linoleum, sealant and wooden shelves with books and p...

  10. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  11. Electromagnetic Environments Simulator (EMES)

    International Nuclear Information System (INIS)

    Varnado, G.B.

    1975-11-01

    A multipurpose electromagnetic environments simulator has been designed to provide a capability for performing EMR, EMP, and lightning near stroke testing of systems, subsystems and components in a single facility. This report describes the final facility design and presents the analytical and experimental verification of the design

  12. CAPS Simulation Environment Development

    Science.gov (United States)

    Murphy, Douglas G.; Hoffman, James A.

    2005-01-01

    The final design for an effective Comet/Asteroid Protection System (CAPS) will likely come after a number of competing designs have been simulated and evaluated. Because of the large number of design parameters involved in a system capable of detecting an object, accurately determining its orbit, and diverting the impact threat, a comprehensive simulation environment will be an extremely valuable tool for the CAPS designers. A successful simulation/design tool will aid the user in identifying the critical parameters in the system and eventually allow for automatic optimization of the design once the relationships of the key parameters are understood. A CAPS configuration will consist of space-based detectors whose purpose is to scan the celestial sphere in search of objects likely to make a close approach to Earth and to determine with the greatest possible accuracy the orbits of those objects. Other components of a CAPS configuration may include systems for modifying the orbits of approaching objects, either for the purpose of preventing a collision or for positioning the object into an orbit where it can be studied or used as a mineral resource. The Synergistic Engineering Environment (SEE) is a space-systems design, evaluation, and visualization software tool being leveraged to simulate these aspects of the CAPS study. The long-term goal of the SEE is to provide capabilities to allow the user to build and compare various CAPS designs by running end-to-end simulations that encompass the scanning phase, the orbit determination phase, and the orbit modification phase of a given scenario. Herein, a brief description of the expected simulation phases is provided, the current status and available features of the SEE software system is reported, and examples are shown of how the system is used to build and evaluate a CAPS detection design. Conclusions and the roadmap for future development of the SEE are also presented.

  13. Instructional environments for simulations.

    NARCIS (Netherlands)

    van Berkum, J.J.A.; de Jong, T.

    1991-01-01

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving

  14. Instructional environments for simulations

    NARCIS (Netherlands)

    van Berkum, Jos J.A.; de Jong, Anthonius J.M.

    1991-01-01

    The use of computer simulations in education and training can have substantial advantages over other approaches. In comparison with alternatives such as textbooks, lectures, and tutorial courseware, a simulation-based approach offers the opportunity to learn in a relatively realistic problem-solving

  15. Replicating enterprise environment using Office 365 to enhance graduates’ employability

    Directory of Open Access Journals (Sweden)

    Carutasu Nicoleta Luminita

    2017-01-01

    Full Text Available The need of faster insertion of graduates into labor market and enhancing professional and soft skills of graduates required by employees, conduct to new learning method necessity. Starting from stated foreseen of Europe 2020 strategy, creativity, entrepreneurship and intensive use of ICT should be enhanced soon to all academic levels. Also, the entrepreneurs require that graduates to have strong organizational knowledge, to quickly integrate into company’ business processes. The traditional assessment of students implies an individual form, team assessment being avoided to be sure of each individual contribution. Also, the future Industry 4.0 implementations will ask for interdisciplinary skills regarding ICT use and specific digital workflows. The proposed enterprise environment replication uses ERP as backbone of IT infrastructure and Office 365 as business workflow tool management. The experience in using ERP as laboratory IT infrastructure for multiple subjects of academic curriculum of the same academic program showed that graduates could focus on internal business process and documents flow rather than learning how to use the software. The Office 365 is used to experience internal workflow of companies, implemented on existent tenants. To enhance the entrepreneurship and innovation, the learning method is completed with simulated enterprise specific activities.

  16. Weightless environment simulation test; Mujuryo simulation shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Yamamoto, T.; Kato, F. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-07-20

    Kawasaki Heavy Industries, Ltd., delivered a Weightless Environment Test System (WETS) to National Space Development Agency of Japan in 1994. This system creates a weightless environment similar to that in space by balancing gravity and buoyancy in the water, and is constituted of a large water tank, facilities to supply air and cooling water to space suits worn in the water, etc. In this report, a weightless environment simulation test and the facilities to supply air and cooling water are described. In the weightless environment simulation test, the astronaut to undergo tests and training wears a space suit quite similar to the suit worn on the orbit, and performs EVA/IVA (extravehicular activities/intravehicular activities) around a JEM (Japanese Experimental Module) mockup installed in the water verifying JEM design specifications, preparing manuals for operations on the orbit, or receives basic space-related drill and training. An EVA weightless environment simulation test No. 3 was accomplished with success in January, 1997, when the supply of breathing water and cooling water to the space suit, etc., were carried out with safety and reliability. 2 refs., 8 figs., 2 tabs.

  17. Perceived office environments and occupational physical activity in office-based workers.

    Science.gov (United States)

    Sawyer, A; Smith, L; Ucci, M; Jones, R; Marmot, A; Fisher, A

    2017-06-01

    Individuals in office-based occupations have low levels of physical activity but there is little research into the socio-ecological correlates of workplace activity. To identify factors contributing to office-based workers' perceptions of the office environment and explore cross-sectional relationships between these factors and occupational physical activity. Participants in the Active Buildings study reported perceptions of their office environment using the Movement at Work Survey. A principal component analysis (PCA) was conducted on survey items. A sub-sample wore the ActivPAL3TM accelerometer for ≥3 workdays to measure occupational step count, standing, sitting and sit-to-stand transitions. Linear regression analyses assessed relationships between environmental perceptions and activity. There were 433 participants, with accelerometer data available for 115 participants across 11 organ izations. The PCA revealed four factors: (i) perceived distance to office destinations, (ii) perceived office aesthetics and comfort, (iii) perceived office social environment and (iv) perceived management discouragement of unscheduled breaks. Younger participants perceived office destinations as being closer to their desk. Younger and female participants perceived more positive office social environments; there were no other socio-demographic differences. Within the sub-sample with accelerometer data, perceived discouragement of breaks by management was related to occupational step count/hour (B = -64.5; 95% CI -109.7 to -19.2). No other environmental perceptions were related to activity or sitting. Perceived managerial discouragement of breaks could be related to meaningful decreases in occupational step count. Future research should aim to elucidate the role of the workplace socio-cultural environment in occupational walking, with a focus on the role of management. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All

  18. An Intelligent System for Document Retrieval in Distributed Office Environments.

    Science.gov (United States)

    Mukhopadhyay, Uttam; And Others

    1986-01-01

    MINDS (Multiple Intelligent Node Document Servers) is a distributed system of knowledge-based query engines for efficiently retrieving multimedia documents in an office environment of distributed workstations. By learning document distribution patterns and user interests and preferences during system usage, it customizes document retrievals for…

  19. Physical Environment Comfort Impacts on Office Employee’s Performance

    Directory of Open Access Journals (Sweden)

    Chua Shirley Jin Lin

    2016-01-01

    Full Text Available Office workplaces today is now no longer only consisting of passive and fixed activity but also towards a more flexible environment activity. The number of office workplaces is hiking from day to day which leads to the increase of the office workers. The productivity will be improved by providing optimum physical environment. The physical environment comfort in a workplace is claimed to be vital as it will encourages healthier, more productive and lower absenteeism rate among employees. The physical environment comfort encompassed optimum room temperature, relative humidity and illuminance level. This research intend to investigate the importance of physical environment comfort by evaluating the comfort based on the existing workplace and determine its effect on employee’s performance. Evaluation between the selected case studies are made in the aspects of employee’s comfort perceive health and absenteeism rate by wielding the elements of physical comfort consisting room temperature, relative humidity and illuminance level. Field study was carried out for 3 institutional building particularly management department. High correlations are found between room temperature, lighting and relative humidity with health related issue such as stuffy, easily tired and difficulty in concentration which affect employees’ productivity and work performances.

  20. Gender differences in public office workers' satisfaction, subjective symptoms and musculoskeletal complaints in workplace and office environments.

    Science.gov (United States)

    Lee, Sangbok; Park, Myoung Hwan; Jeong, Byung Yong

    2018-06-01

    This study investigates differences between male and female public office workers' satisfaction levels, sick building syndrome (SBS) symptoms and musculoskeletal disorder (MSD) complaints in workplace and office environments. Questionnaire surveys were performed in 30 offices from 15 public institutions. Male and female workers of the same age were coupled and selected from each office, gathering a total of 120 male and 120 female subjects. The results show that differences exist between genders in noise and lighting satisfaction levels, SBS-related symptoms (eye, nose, skin) and MSD complaints of hand/wrist/finger, while there is no difference in overall satisfaction level of office environments. The study also suggests that office design for public office workers should take into account gender differences in preventing MSDs and also SBS. The findings of this study are expected to serve as basic data for designing effective public office environments.

  1. Perceived Speech Privacy in Computer Simulated Open-plan Offices

    DEFF Research Database (Denmark)

    Pop, Claudiu B.; Rindel, Jens Holger

    2005-01-01

    In open plan offices the lack of speech privacy between the workstations is one of the major acoustic problems. Improving the speech privacy in an open plan design is therefore the main concern for a successful open plan environment. The project described in this paper aimed to find an objective...... parameter that correlates well with the perceived degree of speech privacy and to derive a clear method for evaluating the acoustic conditions in open plan offices. Acoustic measurements were carried out in an open plan office, followed by data analysis at the Acoustic Department, DTU. A computer model...

  2. Occupant Responses and Office Work Performance in Environments with Moderately Drifting Operative Temperatures (RP-1269)

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2009-01-01

    of 21.4°C (70.5°F) (for 6 h) were examined. Subjects assessed their thermal sensation, acceptability of the thermal environment, perceived air quality, and intensity of sick building syndrome (SBS) symptoms. Subjects’ performance was measured by simulated office work, including tasks such as addition...... found, while intensity of headache, concentration ability, and general well-being were significantly affected in most of the ramps. Linear dependence of perceived air quality on operative temperature was noted. No significantly consistent effects of individual temperature ramps on office work...... performance were found....

  3. Task exposures in an office environment: a comparison of methods.

    Science.gov (United States)

    Van Eerd, Dwayne; Hogg-Johnson, Sheilah; Mazumder, Anjali; Cole, Donald; Wells, Richard; Moore, Anne

    2009-10-01

    Task-related factors such as frequency and duration are associated with musculoskeletal disorders in office settings. The primary objective was to compare various task recording methods as measures of exposure in an office workplace. A total of 41 workers from different jobs were recruited from a large urban newspaper (71% female, mean age 41 years SD 9.6). Questionnaire, task diaries, direct observation and video methods were used to record tasks. A common set of task codes was used across methods. Different estimates of task duration, number of tasks and task transitions arose from the different methods. Self-report methods did not consistently result in longer task duration estimates. Methodological issues could explain some of the differences in estimates seen between methods observed. It was concluded that different task recording methods result in different estimates of exposure likely due to different exposure constructs. This work addresses issues of exposure measurement in office environments. It is of relevance to ergonomists/researchers interested in how to best assess the risk of injury among office workers. The paper discusses the trade-offs between precision, accuracy and burden in the collection of computer task-based exposure measures and different underlying constructs captures in each method.

  4. The thermal environment and occupant perceptions in European office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J L [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Building Services Engineering

    2002-02-01

    The results from a large field study of thermal comfort in European office buildings are reported. Environmental conditions and occupant perceptions were collected over fourteen months from twenty-six different office buildings located in France, Greece, Portugal, Sweden and the UK. This thesis focuses on the thermal measurements and occupant perceptions; however, some of the additional variables with strong connections to thermal sensation are also examined. A summary of human comfort is presented to help place this thesis in appropriate context. The summary presents thermal comfort issues within a broad framework of environmental comfort including physical, physiological, behavioural, psychological and other variables. A more narrowly focused overview of current thermal comfort research is also included. The work attempts to show relationships and produce useful information from the data set by using rather simple statistics and graphical methods. The objective is to quite literally use the data set to illustrate the actual thermal conditions in European office buildings and the occupant perceptions of those conditions. The data are examined in some detail with key relationships identified and explored. Significant differences between countries, both for the physical conditions and the perceptions of those conditions are identified. In addition, the variation over the course of the year for each country is explored. The variations occur in complex ways, which make simple, all encompassing explanations impossible. The nature and size of the variations make the application of simple Europe wide models of thermal comfort questionable. It appears that individuals in different European countries have different expectations for their indoor office thermal environment. This data set will be further explored in a more complete study, which will examine the other measured variables.

  5. Simulation Based Acquisition for NASA's Office of Exploration Systems

    Science.gov (United States)

    Hale, Joe

    2004-01-01

    In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OEx

  6. Numerical simulation of ventilation air movement in partitioned offices

    Energy Technology Data Exchange (ETDEWEB)

    Plett, E.G.; Soultogiannis, A.A.; Jouini, D.B. (Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario (Canada))

    1993-01-01

    Good air quality can only be assured throughout an office complex if each workspace receives an adequate supply of ventilation air. The likelihood of achieving this situation would be increased if the building engineer had a means of easily predicting the air movement in each office configuration. A simple computer-based solution to this need is proposed. To this end, the development and validation testing of a numerical solution technique to simulate the ventilation air movement in a room or office is described. The predictions of the two-dimensional, isothermal, inviscid formulation are seen to be in good agreement with experimentally measured airflows in configurations of interest. The computer code is then used to illustrate the airflow in offices served by a single row of supply air diffusers, when partitions are used to divide the space into smaller workspaces. It is observed that the partitions distort the airflow patterns to the extent that it would be difficult to provide desirable ventilation airflows to all the workspaces formed by the partitions. (au) (26 refs.)

  7. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  8. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  9. Virtual Environments for Advanced Trainers and Simulators

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  10. Customising Microsoft Office to Develop a Tutorial Learning Environment

    Science.gov (United States)

    Deacon, Andrew; Jaftha, Jacob; Horwitz, David

    2004-01-01

    Powerful applications such as Microsoft Office's Excel and Word are widely used to perform common tasks in the workplace and in education. Scripting within these applications allows unanticipated user requirements to be addressed. We show that such extensibility, intended to support office automation-type applications, is well suited to the…

  11. Broadband electromagnetic environments simulator (EMES)

    International Nuclear Information System (INIS)

    Pollard, N.

    1977-01-01

    A new test facility has been developed by Sandia Laboratories for determining the effects of electromagnetic environments on systems and components. The facility is capable of producing uniform, vertically polarized, continuous wave (CW) and pulsed fields over the frequency range of dc to 10 GHz. This broadband capability addresses the electromagnetic radiation (EMR) threat and is ideally suited to computer controlled sweeping and data acquisition. EMES is also capable of producing uniform transient fields having the wave shape and magnitude characteristic of a nuclear electromagnetic pulse (EMP) and near lightning. The design consists of a truncated, triplate, rectangular coaxial transmission line. The spacing between the flat center conductor and the ground planes is 4 meters. The line is terminated in its characteristic impedance of 50 ohms. At frequencies below the first resonance of the facility it behaves as a typical coaxial system. Above resonance, a wall of electromagnetic absorbing material provides a nonreflecting termination. Thus, EMES essentially combines the elements of a transmission line and an anechoic chamber. It will not radiate electromagnetic energy into the surrounding area because it is a shielded transmission line

  12. Development of a Virtual Environment for Catapult Launch Officers

    Science.gov (United States)

    2015-03-01

    the duties of a launch officer. Analysis of the data gathered from the job task analysis produced a flowchart that can be represented as a finite...duties of a launch officer. Analysis of the data gathered from the job task analysis produced a flowchart that can be represented as a finite state...pass through when learning a skill as shown in Table 3.1. These skill levels are: novice, advanced beginner , competence, proficiency, expertise

  13. Indoor climate, psychosocial work environment and symptoms in open-plan offices

    DEFF Research Database (Denmark)

    Pejtersen, J; Allermann, L; Kristensen, T S

    2006-01-01

    To study the indoor climate, the psychosocial work environment and occupants' symptoms in offices a cross-sectional questionnaire survey was made in 11 naturally and 11 mechanically ventilated office buildings. Nine of the buildings had mainly cellular offices; five of the buildings had mainly open...... irritation, skin irritation, central nervous system (CNS) symptoms and psychosocial factors. Occupants in open-plan offices are more likely to perceive thermal discomfort, poor air quality and noise and they more frequently complain about CNS and mucous membrane symptoms than occupants in multi......-person and cellular offices. The association between psychosocial factors and office size was weak. Open-plan offices may not be suited for all job types. PRACTICAL IMPLICATION: Open-plan offices may be a risk factor for adverse environmental perceptions and symptoms....

  14. Physical and psychological discomfort in the office environment

    NARCIS (Netherlands)

    Ariës, M.B.C.; Veitch, J.A.; Newsham, G.R.

    2007-01-01

    Office employees spend a lot of time inside buildings, where the physical conditions influence their well-being and indirectþ influence their employers' business performance. With data from a field study conducted in the Netherlands in April-May 2003, we used path analysis to further elucidate the

  15. Issues to Be Solved for Energy Simulation of An Existing Office Building

    Directory of Open Access Journals (Sweden)

    Ki Uhn Ahn

    2016-04-01

    Full Text Available With the increasing focus on low energy buildings and the need to develop sustainable built environments, Building Energy Performance Simulation (BEPS tools have been widely used. However, many issues remain when applying BEPS tools to existing buildings. This paper presents the issues that need to be solved for the application of BEPS tools to an existing office building. The selected building is an office building with 33 stories above ground, six underground levels, and a total floor area of 91,898 m2. The issues to be discussed in this paper are as follows: (1 grey data not ready for simulation; (2 subjective assumptions and judgments on energy modeling; (3 stochastic characteristics of building performance and occupants behavior; (4 verification of model fidelity-comparison of aggregated energy; (5 verification of model fidelity-calibration by trial and error; and (6 use of simulation model for real-time energy management. This study investigates the aforementioned issues and explains the factors that should be considered to address these issues when developing a dynamic simulation model for existing buildings.

  16. Numerical Simulation of Air Temperature and Velocity in a Naturally Ventilated Office

    Directory of Open Access Journals (Sweden)

    S. Shodiya

    2017-04-01

    Full Text Available This paper presents a numerical simulation of air velocity and air temperature distribution in an office room of Computer Engineering Department of University of Maiduguri which is naturally ventilated. The office room under investigation with the dimension 5 m × 5 m × 4 m has a door in the East direction, and two windows, one in the East direction and the other in the South direction. For cost effectiveness, numerical solutions of steady-state airflow and heat transfer were done using a complete two-dimensional model. The results showed that the windows and the door could not undertake indoor heat load that can make the occupants to be thermally comfortable. In activity area where people sit and stand, the air velocity is moderate, this is about 0.98 m/s on the average. In addition, the temperature in this area is relatively high of about 302 K (29 °C on the average. Based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE standard for comfort environment in summer (air temperature: 293 – 299 K (20 – 26 °C; air velocity: 0.5 – 0.8 m/s, the natural ventilation for the office room cannot give a thermal comfort for the inhabitant of the room. However, a window, if installed opposite the door could improve the ventilation of the office.

  17. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2015-01-01

    The thermal environment and air quality conditions provided with combined system of chilled ceiling and personalized ventilation (PV) were studied in a simulated office room for two occupants. The proposed system was compared with total volume HVAC solutions used today, namely mixing ventilation...... and chilled ceiling combined with mixing ventilation. The objective of the study was to evaluate whether PV can be the only ventilation system in the rooms equipped with chilled ceiling. The room air temperature was 26°C in cases with traditional systems and 28°C when PV was used. PV supplied air...... with the temperature of 25°C. PV improved thermal conditions and was up to nearly 10 times more efficient in delivering clean air at workstations than mixing ventilation systems, which resulted in strong protection of occupants from the cross-infection. In the room space outside workstations no substantial differences...

  18. A research on indoor environments of an office building by occupants' subjective evaluation

    International Nuclear Information System (INIS)

    Moon, S.W.; Kim, T.W.; Hong, W.H.

    2008-01-01

    Since modern workers spend more than 80 per cent of their time in indoor environments, it is important to make a comfortable indoor environment in order to maintain occupational health and to improve work efficiency and productivity. Not only are new offices bigger than ever before, the internal heat and air are controlled by a central air conditioning system, which do not allow occupant control. This study evaluated indoor environments of office buildings in an effort to understand how the indoor environment influences work efficiency. The study involved the use of a survey questionnaire to obtain occupants' subjective evaluation of indoor working environments of an office building in terms of thermal comfort, lighting, noise and air quality. The survey results indicated that the indoor environment interrupts the work of many workers. Neck, eye, skin and nasal symptoms were found to be the symptoms most related to the indoor environment, with temperature and humidity posing the greatest challenge. 9 refs., 9 tabs., 7 figs

  19. Human subjects’ perception of indoor environment and their office work performance during exposures to moderate operative temperature ramps

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2008-01-01

    The objective of the presented research work was to study the effects of moderate operative temperature drifts on human thermal comfort, perceived air quality, intensity of SBS symptoms and office work performance. Experimental subjects (52, 50% female) were seated in a climatic chamber and exposed....... A linear relation between perceived air quality and temperature (enthalpy) was found. No significant consistent effect of individual temperature ramps on office work performance was found. Increasing operative temperature appeared to slightly decrease speed of addition and text typing regardless the slope...... sensation was also included. Subjects filled out questionnaires regarding perception of the environment and intensity of SBS symptoms. Subjects performed simulated office tasks (addition, text typing, proof reading, comprehension and reasoning). Results showed that all tested ramps were recognized...

  20. Work environment perceptions following relocation to open-plan offices: A twelve-month longitudinal study.

    Science.gov (United States)

    Bergström, Jessica; Miller, Michael; Horneij, Eva

    2015-01-01

    A workplace's design can have various positive or negative effects on the employees and since the 1970s the advantages and disadvantages of open-plan offices have been discussed. The aim of this study was to investigate perceived health, work environment and self-estimated productivity one month before and at three, six and twelve months after relocation from individual offices to an open-plan office environment. Employees from three departments within the same company group and who worked with relatively similar tasks and who were planned to be relocated from private offices to open-plan offices were invited to participate. Questionnaires comprising items from The Salutogenic Health Indicator Scale, The Work Experience Measurement Scale, the questionnaire by Brennan et al. about perceived performance and one question from the Work Ability Index were sent to participants one month before relocation (baseline) to open-plan offices and then at three, six and twelve months after relocation. At baseline, 82 questionnaires were sent out. The response rate was 85%. At the follow-ups 77-79 questionnaires were sent out and the response-rate was 70%-81%. At follow-ups, perceived health, job satisfaction and performance had generally deteriorated. The results of the study indicate that employees' perception of health, work environment and performance decreased during a 12 month period following relocation from individual offices to open-plan offices.

  1. Humidification and perceived indoor air quality in the office environment.

    Science.gov (United States)

    Reinikainen, L M; Aunela-Tapola, L; Jaakkola, J J

    1997-01-01

    OBJECTIVE: To evaluate the effect of humidification on the odour, acceptability, and stuffiness of indoor air. METHODS: In a six period cross over trial at the Pasila Office Center, Helsinki, the air of two wings of the building in turn were ventilated with air of 30%-40% humidity. A third wing served as a non-humidified control area. The quality of indoor air was assessed weekly by a panel containing 18 to 23 members. The intraindividual differences in the ratings for odour, stuffiness, and acceptability between humidified and non-humidified wings were used to assess the effect of humidification. The roles of sex, current smoking, and age as potential effect modifiers were assessed by comparing the mean intraindividual differences in ratings between the groups. RESULTS: Humidified air was found to be more odorous and stuffy (paired t test P = 0.0001) and less acceptable than the non-humidified air (McNemar's test P humidification decreases the perceived air quality. This effect is strongest in women and young subjects. PMID:9196454

  2. Too hot to carry on? Disinclination to persist at a task in a warm office environment.

    Science.gov (United States)

    Syndicus, Marc; Wiese, Bettina S; van Treeck, Christoph

    2018-04-01

    We investigated the effect of an elevated ambient temperature on performance in a persistence task. The task involved the coding of incorrect symbols and participants were free to decide how long to spend performing this task. Applying a between-subject design, we tested 125 students in an office-like environment in one of the three temperature conditions. The comfort condition (Predicted Mean Vote [PMV] = 0.01) featured an average air temperature of 24 °C. The elevated ambient temperature condition was 28 °C (PMV = 1.17). Condition three employed an airstream of approximately 0.8 m/s, intended to compensate for performance decrements at the elevated air temperature (28 °C, PMV = 0.13), according to Fanger's thermal comfort equation. Participants in the warm condition were significantly less persistent compared with participants in the control and compensation conditions. As predicted by the thermal comfort equation, the airstream seemed to compensate for the higher temperature. Participants' persistence in the compensation and comfort conditions did not differ. Practitioner Summary: A laboratory experiment involving a simulated office environment and three ambient temperature conditions (24 °C, 28 °C and 28 °C plus airstream) showed that persistence at a task is significantly impaired at 28 °C. An airstream of 0.8 m/s at 28 °C compensated for the disinclination to persist with the task.

  3. New indoor environment chambers and field experiment offices for research on human comfort, health and productivity

    DEFF Research Database (Denmark)

    Toftum, Jørn; Langkilde, Gunnar; Fanger, Povl Ole

    2004-01-01

    The article describes three new indoor environment chambers, a new laboratory for the study of air movement in spaces and five offices for controlled environment exposures of human subjects in field experiments at the International Centre for Indoor Environment and Energy, Technical University of...... of Denmark. Together with three older chambers, the Centre now has at its disposal 12 spaces for studying indoor environments and their impact on human comfort, health and productivity.......The article describes three new indoor environment chambers, a new laboratory for the study of air movement in spaces and five offices for controlled environment exposures of human subjects in field experiments at the International Centre for Indoor Environment and Energy, Technical University...

  4. A simulation environment for ITER PCS development

    International Nuclear Information System (INIS)

    Walker, M.L.; Ambrosino, G.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neu, G.; Raupp, G.; Treutterer, W.; Winter, A.

    2014-01-01

    Highlights: • Describes task to develop simulation tool to aid development/testing of ITER PCS. • Requirements and use cases and preliminary architecture have been delivered. • Detailed design is now being developed. • Provides overview of use cases and requirements. • Provides overview of architecture and status of development. - Abstract: A simulation environment known as the Plasma Control System Simulation Platform (PCSSP), specifically designed to support development of the ITER Plasma Control System (PCS), is currently under construction by an international team encompassing a cross-section of expertise in simulation and exception handling for plasma control. The proposed design addresses the challenging requirements of supporting the PCS design. This paper provides an overview of the PCSSP project and a discussion of some of the major features of its design. Plasma control for the ITER tokamak will be significantly more challenging than for existing fusion devices. An order of magnitude greater performance (e.g. [1,2]) is needed for some types of control, which together with limited actuator authority, implies that optimized individual controllers and nonlinear saturation logic are required. At the same time, consequences of control failure are significantly more severe, which implies a conflicting requirement for robust control. It also implies a requirement for comprehensive and robust exception handling. Coordinated control of multiple competing objectives with significant interactions, together with many shared uses of actuators to control multiple variables, implies that highly integrated control logic and shared actuator management will be required. It remains a challenge for the integrated technologies to simultaneously address these multiple and often competing requirements to be demonstrated on existing fusion devices and adapted for ITER in time to support its operational schedule. We describe ways in which the PCSSP will help address

  5. Cell survival in a simulated Mars environment

    Science.gov (United States)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens

  6. Calculation and simulation of atmospheric refraction effects in maritime environments

    Science.gov (United States)

    Dion, Denis, Jr.; Gardenal, Lionel; Lahaie, P.; Forand, J. Luc

    2001-01-01

    Near the sea surface, atmospheric refraction and turbulence affect both IR transmission and image quality. This produces an impact on both the detection and classification/identification of targets. With the financial participation of the U.S. Office of Naval Research (ONR), Canada's Defence Research Establishment Valcartier (DREV) is developing PRIME (Propagation Resources In the Maritime Environment), a computer model aimed at describing the overall atmospheric effects on IR imagery systems in the marine surface layer. PRIME can be used as a complement to MODTRAN to compute the effective transmittance in the marine surface layer, taking into account the lens effects caused by refraction. It also provides information on image degradation caused by both refraction and turbulence. This paper reviews the refraction phenomena that take place in the surface layer and discusses their effects on target detection and identification. We then show how PRIME can benefit detection studies and image degradation simulations.

  7. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    Science.gov (United States)

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  8. Occupant satisfaction with the acoustical environment : green office buildings before and after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, M. [British Columbia Univ., Vancouver, BC (Canada). School of Occupational and Environmental Hygiene, Acoustics and Noise Research Group

    2009-07-01

    Sustainable architecture is meant to preserve the environment and conserve natural resources, as well as provide an environment for the occupants that promotes wellbeing and productivity. Occupants generally claim that the acoustical environment is the least satisfactory aspect of green office buildings. They are dissatisfied with excessive noise and poor speech privacy. This paper reported on the results of 2 studies of the acoustical environments in green office buildings before and after acoustical-control measures were installed. Acoustical quality was evaluated by occupant-satisfaction surveys and acoustical-parameter measurements. The first study, which involved 6 green office buildings, showed that buildings designed to obtain LEED ratings are unlikely to have satisfactory acoustical environments. A naturally-ventilated, green university building with a poor acoustical environment was examined in the second study. The results of this study suggest that improving acoustical environments in green buildings requires good acoustical design, with input from an acoustical specialist from the beginning of the design process. The design should consider site selection and building orientation; external envelope and penetrations in it; building layout and internal partitions; HVAC systems; appropriate dimensioning of spaces; and the amount and location of sound absorbing treatments. The study also showed that a building's energy efficiency, lighting, ventilation, air-quality and acoustics are interconnected, and that no aspect can be successfully designed in isolation. It was concluded that optimized engineering-control measures can improve poor acoustical environments. 11 refs., 1 tab., 1 fig.

  9. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  10. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  11. Human Performance in Simulated Reduced Gravity Environments

    Science.gov (United States)

    Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on

  12. Air Support Control Officer Individual Position Training Simulation

    Science.gov (United States)

    2017-06-01

    example, simulation-aided performance improvement was shown during the Royal Australian Air Forces live training event, Pitch Black (Francis, Best...behind Black Skies was to prepare trainees for the more expensive live training of the Pitch Black exercise. Results demonstrated a twenty percent...evaluation of the system by subject matter experts suggests that a training simulation such as the prototype developed in the course of this work could

  13. The Large Office Environment - Measurement and Modeling of the Wideband Radio Channel

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Bauch, Gerhard

    2006-01-01

    In a future 4G or WLAN wideband application we can imagine multiple users in a large office environment con-sisting of a single room with partitions. Up to now, indoor radio channel measurement and modelling has mainly concentrated on scenarios with several office rooms and corridors. We present...... here measurements at 5.8GHz for 100 MHz bandwidth and a novel modelling approach for the wideband radio channel in a large office room envi-ronment. An acoustic like reverberation theory is pro-posed that allows to specify a tapped delay line model just from the room dimensions and an average...... calculated from the measurements. The pro-posed model can likely also be applied to indoor hot spot scenarios....

  14. Effects of the office environment on health and productivity 1: Auditory and visual distraction

    NARCIS (Netherlands)

    Korte, E. de; Kuijt-Evers, L.; Vink, P.

    2007-01-01

    A pilot experiment was conducted to evaluate the effects of visual or auditory distraction in an office environment on productivity, concentration and emotion. Ten subjects performed a simple, standardized computer task in five conditions (undisturbed, 3 variations of auditory distraction and visual

  15. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  16. Local bureaucrats as bricoleurs. The everyday implementation practices of county environment officers in rural Kenya

    Directory of Open Access Journals (Sweden)

    Mikkel Funder

    2015-03-01

    Full Text Available Bricolage in natural resource governance takes place through the interplay of a variety of actors. This article explores the practices of a group whose agency as bricoleurs has received little attention, namely the government officers who represent the state in the everyday management of water, land, forests and other resources across rural Africa. Specifically we examine how local Environment Officers in Taita Taveta County in Kenya go about implementing the national environmental law on the ground, and how they interact with communities in this process. As representatives of “the local state”, the Environment Officers occupy an ambiguous position in which they are expected to implement lofty laws and policies with limited means and in a complex local reality. In response to this they employ three key practices, namely (i working through personal networks, (ii tailoring informal agreements, and (iii delegating public functions and authority to civil society. As a result, the environmental law is to a large extent implemented through a blend of formal and informal rules and governance arrangements, produced through the interplay of the Environment Officers, communities and other local actors.

  17. An intelligent dynamic simulation environment: An object-oriented approach

    International Nuclear Information System (INIS)

    Robinson, J.T.; Kisner, R.A.

    1988-01-01

    This paper presents a prototype simulation environment for nuclear power plants which illustrates the application of object-oriented programming to process simulation. Systems are modeled using this technique as a collection of objects which communicate via message passing. The environment allows users to build simulation models by selecting iconic representations of plant components from a menu and connecting them with the aid of a mouse. Models can be modified graphically at any time, even as the simulation is running, and the results observed immediately via real-time graphics. This prototype illustrates the use of object-oriented programming to create a highly interactive and automated simulation environment. 9 refs., 4 figs

  18. Employees' satisfaction as influenced by acoustic and visual privacy in the open office environment

    Science.gov (United States)

    Soules, Maureen Jeanette

    The purpose of this study was to examine the relationship between employees' acoustic and visual privacy issues and their perceived satisfaction in their open office work environments while in focus work mode. The study examined the Science Teaching Student Services Building at the University of Minnesota Minneapolis. The building houses instructional classrooms and administrative offices that service UMN students. The Sustainable Post-Occupancy Evaluation Survey was used to collect data on overall privacy conditions, acoustic and visual privacy conditions, and employees' perceived privacy conditions while in their primary workplace. Paired T-tests were used to analyze the relationships between privacy conditions and employees' perceptions of privacy. All hypotheses are supported indicating that the privacy variables are correlated to the employees' perception of satisfaction within the primary workplace. The findings are important because they can be used to inform business leaders, designers, educators and future research in the field of office design.

  19. Simulation Study of Active Ceilings with Phase Change Material in Office Buildings for Different National Building Regulations

    DEFF Research Database (Denmark)

    Farhan, Hajan; Stefansen, Casper; Bourdakis, Eleftherios

    2018-01-01

    The aim of this study was to examine the performance of phase change material (PCM) in active ceilings for an office room under different Danish building regulations for both heating and cooling purposes. A model of a two-person office room was simulated with the only heating and cooling source...... being radiant ceiling panels containing PCM. The target was to reduce energy use for the simulation models and still meet the recommended criteria of Category II for the European Standard EN 15251:2007 namely, 23°C – 26°C (73.4°F – 78.8°F) during summer and between 20°C – 24°C (68.0°F – 73.4°F) during...... winter. The office model was simulated for a whole year and analyzed for three Danish building regulations BR10 (2010), BR15 (2015) and BR20 (2020). The results show that the indoor environment was within the desired Category II, according to EN 15251 for the whole occupancy period. The predicted...

  20. Cognitive test performance following exposure to noise in an open-office simulation study

    DEFF Research Database (Denmark)

    Lund, Søren Peter; Kristiansen, Jesper; Persson, Roger

    each simulated workday, the participants performed different tests, including Choice Reaction Time (CRT) test, Sustained Attention to Response Task (SART) test, and a Two-Back Task (TBT) test. Results: Working in noise did not affect the number of correct trials in the cognitive test after work. Yet......Objective: Noise in open-plan offices may increase mental fatigue of the employees at the end of the day. Measurements: 225 employees completed a screening questionnaire. Of these, 50 persons (33 females) who normally worked in open-plan offices agreed to participate in the experiment. All who...... participated completed two counter balanced experimental sessions, one with exposure to simulation of office noise (Leq=55 dB(A)) and one without noise (Leq=50 dB(A)). To simulate a workday, each session lasted about 7 hours, where the participants engaged in different computerised work tasks. Before and after...

  1. An Empirical Path-Loss Model for Wireless Channels in Indoor Short-Range Office Environment

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2012-01-01

    Full Text Available A novel empirical path-loss model for wireless indoor short-range office environment at 4.3–7.3 GHz band is presented. The model is developed based on the experimental datum sampled in 30 office rooms in both line of sight (LOS and non-LOS (NLOS scenarios. The model is characterized as the path loss to distance with a Gaussian random variable X due to the shadow fading by using linear regression. The path-loss exponent n is fitted by the frequency using power function and modeled as a frequency-dependent Gaussian variable as the standard deviation σ of X. The presented works should be available for the research of wireless channel characteristics under universal indoor short-distance environments in the Internet of Things (IOT.

  2. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    Science.gov (United States)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  3. Using IMPRINT to Guide Experimental Design with Simulated Task Environments

    Science.gov (United States)

    2015-06-18

    USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN OF SIMULATED TASK ENVIRONMENTS THESIS Gregory...ENG-MS-15-J-052 USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN WITH SIMULATED TASK ENVIRONMENTS THESIS Presented to the Faculty Department...Civilian, USAF June 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-J-052 USING IMPRINT

  4. Detailed simulations of lighting conditions in office rooms lit by daylight and artificial light

    DEFF Research Database (Denmark)

    Iversen, Anne

    In this thesis the effect on the annual artificial lighting demand is investigated by employing detailed simulations of lighting conditions in office rooms lit by daylight and artificial. The simulations of the artificial lighting demand is accomplished through daylight simulations in Radiance....... The detailed simulations includes studies of the resolution of different weather data sets in climate-based daylight modeling. Furthermore, influence of the electrical lighting demand by simulating with dynamic occupancy patterns is studied. Finally the thesis explores the influence of obstructions in an urban...... canyon on the daylight availability within the buildings, and hence on the energy consumption for artificial lights. The results from the thesis demonstrates that the effect on the outcome of the daylight simulations when simulating with typical weather data files for the location of Copenhagen...

  5. Development of a Smart Grid Simulation Environment

    OpenAIRE

    Delamare, J; Bitachon, B.; Peng, Z.; Wang, Y.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    2015-01-01

    With the increased integration of renewable energy sources the interaction between energy producers and consumers has become a bi-directional exchange. Therefore, the electrical grid must be adapted into a smart grid which effectively regulates this two-way interaction. With the aid of simulation, stakeholders can obtain information on how to properly develop and control the smart grid. In this paper, we present the development of an integrated smart grid simulation model, using the Anylogic ...

  6. CHAVIR: A virtual site simulation environment

    International Nuclear Information System (INIS)

    Leservot, Arnauld; Chodorge, Laurent

    2006-01-01

    In nuclear field, any companies involved in the management and/or the design and performance of an intervention aim at preparing it, by finding the most appropriate scenario(s) under several needs: - Technical requirements: feasibility, kind of means to engage, operating modes, tasks scheduling; - economical requirements: global mission cost minimization; - Environmental requirements: take into account the individual and collective dose rate received by the human operators involved in the intervention(s), according to the ALARA principle. Today, they also must answer complex questions to design their interventions with increasing reactivity and always lowering costs. Besides, they must be brought to answer unexpected situations during the effective realization of their nuclear interventions, and naturally to consolidate their experience feedback of the missions. An interesting way to help them in these different needs consists in taking advantage of simulation. The paper has the following contents: - Introduction; - CHAVIR project; - Goal; - Simulation and virtual reality; - Strategy; - Interactive dose evaluation; - Requirements; - Physical algorithm; - Objects representation; - Calculation optimization; - Interactive mechanical simulation; - First study cases; - Conclusion - prospects. To summarize, the authors succeeded in developing a software simulation tool, helping the users from nuclear field to prepare their interventions. CHAVIR allows interactive evaluation of dose rate, when taking into account real industrial models coming from CAD world. One can also perform mechanical simulations, to address accessibilities issues and design scenario involving either manual tasks of robotic interventions. CHAVIR is already entered the industrialization process. It aims at becoming shortly a commercial software tool for dismantling site simulation, adapted to the professional needs in order to respect the ALARA principle. It should efficiently contribute to optimize

  7. Psychobiological stress response to a simulated school shooting in police officers.

    Science.gov (United States)

    Strahler, Jana; Ziegert, Thomas

    2015-01-01

    Police work is one of the most demanding professions with various sources of high occupational stress. Among the most demanding tasks are amok situations, such as school shootings. Hardly anything is known about endocrine and cardiovascular markers in safety professionals during emergency situations in real life and how this relates to stress perception and management. This study will therefore explore police officers' stress responses to a reality-based school shooting simulation assessing neuroendocrine, cardiovascular, and psychological stress markers. A convenience sample of 50 police officers (39.5 ± 8.7 yrs, 9 women) participating in a basic or refresher amok training session for the German uniformed and criminal police were recruited. Saliva samples were collected shortly before the simulation task (school shooting), immediately after, 20 and 45 min after finishing the task for the assessment of cortisol and alpha-amylase (sAA), as markers of the hypothalamic-pituitary-adrenal axis and the autonomic nervous system, respectively. Heart rate (variability) was assessed continuously. Officers rated their actual mood right before and 10 min after the simulation. Subjective experience of task stressfulness was assessed minutes after finishing the simulation. Overall, the simulated school shooting did not result in changes of mood, tiredness, or calmness but higher restlessness was experienced during the basic training, which was also experienced as more controllable. Female officers reported to experience more strain and anxiety. Cortisol showed highest levels at the beginning of the training and steadily decreasing values thereafter. In contrast, sAA increased substantially right after the simulation with officers on the front position showing most pronounced changes. Cardiovascular reactivity was highest in officers acting on the side positions while advancing to find the suspect. Furthermore higher self-efficacy as well as, by trend, controllability and

  8. Development of a Smart Grid Simulation Environment

    NARCIS (Netherlands)

    Delamare, J; Bitachon, B.; Peng, Z.; Wang, Y.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    2015-01-01

    With the increased integration of renewable energy sources the interaction between energy producers and consumers has become a bi-directional exchange. Therefore, the electrical grid must be adapted into a smart grid which effectively regulates this two-way interaction. With the aid of simulation,

  9. Perceived Indoor Environment and Occupants' Comfort in European "Modern" Office Buildings: The OFFICAIR Study.

    Science.gov (United States)

    Sakellaris, Ioannis A; Saraga, Dikaia E; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G; Bluyssen, Philomena M

    2016-04-25

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  10. Low-energy office buildings using existing technology. Simulations with low internal heat gains

    Energy Technology Data Exchange (ETDEWEB)

    Flodberg, Kajsa; Blomsterberg, Aake; Dubois, Marie-Claude [Lund Univ. (Sweden). Div. of Energy and Building Design

    2012-11-01

    Although low-energy and nearly zero-energy residential houses have been built in Sweden in the past decade, there are very few examples of low-energy office buildings. This paper investigates the design features affecting energy use in office buildings and suggests the optimal low-energy design from a Swedish perspective. Dynamic simulations have been carried out with IDA ICE 4 on a typical narrow office building with perimeter cell rooms. The results from the parametric study reveal that the most important design features for energy saving are demand-controlled ventilation as well as limited glazing on the facade. Further energy-saving features are efficient lighting and office equipment which strongly reduce user-related electricity and cooling energy. Together, the simulation results suggest that about 48% energy can be saved compared to a new office building built according to the Swedish building code. Thus, it is possible, using a combination of simple and well-known building technologies and configurations, to have very low energy use in new office buildings. If renewable energy sources, such as solar energy and wind power, are added, there is a potential for the annual energy production to exceed the annual energy consumption and a net zero-energy building can be reached. One aspect of the results concerns user-related electricity, which becomes a major energy post in very low-energy offices and which is rarely regulated in building codes today. This results not only in high electricity use, but also in large internal heat gains and unnecessary high cooling loads given the high latitude and cold climate. (orig.)

  11. Cloning simulation in the cage environment.

    OpenAIRE

    Douthart, R J; Thomas, J J; Rosier, S D; Schmaltz, J E; West, J W

    1986-01-01

    The CAGE/GEM(TM) software toolkit for genetic engineering is briefly described. The system functionally uses color graphics and is menu driven. It integrates genetics and features information ("Overlays") with information based on sequence analysis ("Representations"). The system is structured around CAD (Computer Aided Design) principles. The CAGE (Computer Aided Genetic Engineering) aspects of the software are emphasized and illustrated by a simulated cloning of the hepatitis B core antigen...

  12. Simulating tumor growth in confined heterogeneous environments

    International Nuclear Information System (INIS)

    Gevertz, Jana L; Torquato, Salvatore; Gillies, George T

    2008-01-01

    The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics

  13. Simulation of temperature in office with building integrated heating and cooling system

    DEFF Research Database (Denmark)

    Weitzmann, Peter

    2002-01-01

    In this paper a numerical investigation of the thermal indoor environment has been performed for an office with building integrated hydronic heating and cooling system. Today office buildings are designed in such a way, and have such high internal heat loads and solar gains, that some kind...... of cooling is normally necessary for most of the year. Even in as cool climates as in the Nordic countries. The way the cooling is often achieved is through air conditioning. This can in many cases lead to sick building syndrome (SBS) symptoms, and furthermore it results in high energy consumption periods...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...

  14. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.; Schuchardt, Karen L.; Guillen, Zoe C.; Sivaramakrishnan, Chandrika; Gorton, Ian

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations and a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.

  15. Applying virtual environments to training and simulation (abstract)

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment (VE) technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human-senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  16. NECTAR: Simulation and Visualization in a 3D Collaborative Environment

    NARCIS (Netherlands)

    Law, Y.W.; Chan, K.Y.

    For simulation and visualization in a 3D collaborative environment, an architecture called the Nanyang Experimental CollaboraTive ARchitecture (NECTAR) has been developed. The objective is to support multi-user collaboration in a virtual environment with an emphasis on cost-effectiveness and

  17. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    Science.gov (United States)

    Sakellaris, Ioannis A.; Saraga, Dikaia E.; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G.; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G.; Bluyssen, Philomena M.

    2016-01-01

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building’s location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants. PMID:27120608

  18. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    Directory of Open Access Journals (Sweden)

    Ioannis A. Sakellaris

    2016-04-01

    Full Text Available Indoor environmental conditions (thermal, noise, light, and indoor air quality may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain. Occupants assessed indoor environmental quality (IEQ using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality, and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index, and building characteristics (office type and building’s location. Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  19. Simulation environment for algorithms and agents evaluation.

    Directory of Open Access Journals (Sweden)

    Pablo CHAMOSO

    2016-06-01

    Full Text Available This article presents an adaptive platform that can simulate the centralized control of different smart city areas. For example, public lighting and intelligent management, public zones of buildings, energy distribution, etc. It can operate the hardware infrastructure and perform optimization both in energy consumption and economic control from a modular architecture which is fully adaptable to most cities. Machine-to-machine (M2M permits connecting all the sensors of the city so that they provide the platform with a perfect perspective of the global city status. To carry out this optimization, the platform offers the developers a software that operates on the hardware infrastructure and merges various techniques of artificial intelligence (AI and statistics, such as artificial neural networks (ANN, multi-agent systems (MAS or a Service Oriented Approach (SOA, forming an Internet of Services (IoS. Different case studies were tested by using the presented platform, and further development is still underway with additional case studies.

  20. Environments for online maritime simulators with cloud computing capabilities

    Science.gov (United States)

    Raicu, Gabriel; Raicu, Alexandra

    2016-12-01

    This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.

  1. A Simulated Learning Environment for Teaching Medicine Dispensing Skills.

    Science.gov (United States)

    McDowell, Jenny; Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som

    2016-02-25

    To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment.

  2. An intelligent simulation environment for control system design

    International Nuclear Information System (INIS)

    Robinson, J.T.

    1989-01-01

    The Oak Ridge National Laboratory is currently assisting in the development of advanced control systems for the next generation of nuclear power plants. This paper presents a prototype interactive and intelligent simulation environment being developed to support this effort. The environment combines tools from the field of Artificial Intelligence; in particular object-oriented programming, a LISP programming environment, and a direct manipulation user interface; with traditional numerical methods for simulating combined continuous/discrete processes. The resulting environment is highly interactive and easy to use. Models may be created and modified quickly through a window oriented direct manipulation interface. Models may be modified at any time, even as the simulation is running, and the results observed immediately via real-time graphics. 8 refs., 3 figs

  3. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  4. Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments - A review

    Science.gov (United States)

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Laitinen, Sirpa; Clifford, Sam; Mikkola, Raimo; Lappalainen, Sanna; Reijula, Kari; Morawska, Lidia

    2016-10-01

    As endotoxin exposure has known effects on human health, it is important to know the generally existing levels of endotoxins as well as their contributing factors. This work reviews current knowledge on the endotoxin loads in settled floor dust, concentrations of endotoxins in indoor air, and different environmental factors potentially affecting endotoxin levels. The literature review consists of peer-reviewed manuscripts located using Google and PubMed, with search terms based on individual words and combinations. References from relevant articles have also been searched. Analysis of the data showed that in residential, school, and office environments, the mean endotoxin loads in settled floor dust varied between 660 and 107,000 EU/m2, 2180 and 48,000 EU/m2, and 2700 and 12,890 EU/m2, respectively. Correspondingly, the mean endotoxin concentrations in indoor air varied between 0.04 and 1610 EU/m3 in residences, and 0.07 and 9.30 EU/m3 in schools and offices. There is strong scientific evidence indicating that age of houses (or housing unit year category), cleaning, farm or rural living, flooring materials (the presence of carpets), number of occupants, the presence of dogs or cats indoors, and relative humidity affect endotoxin loads in settled floor dust. The presence of pets (especially dogs) was extremely strongly associated with endotoxin concentrations in indoor air. However, as reviewed articles show inconsistency, additional studies on these and other possible predicting factors are needed.

  5. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  6. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T.; Wulff, Julie S. G.

    2016-01-01

    BACKGROUND: Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based...... the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice....... learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...

  7. Using Office Simulation Software in Teaching Computer Literacy Using Three Sets of Teaching/Learning Activities

    Directory of Open Access Journals (Sweden)

    Azad Ali

    2016-05-01

    Full Text Available The most common course delivery model is based on teacher (knowledge provider - student (knowledge receiver relationship. The most visible symptom of this situation is over-reliance on textbook’s tutorials. This traditional model of delivery reduces teacher flexibility, causes lack of interest among students, and often makes classes boring. Especially this is visible when teaching Computer Literacy courses. Instead, authors of this paper suggest a new active model which is based on MS Office simulation. The proposed model was discussed within the framework of three activities: guided software simulation, instructor-led activities, and self-directed learning activities. The model proposed in the paper of active teaching based on software simulation was proven as more effective than traditional.

  8. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    Science.gov (United States)

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  9. A simulation and training environment for robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Schlaefer, Alexander [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany); Stanford University, Department of Radiation Oncology, Stanford, CA (United States); Gill, Jakub; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)

    2008-09-15

    To provide a software environment for simulation of robotic radiosurgery, particularly to study the effective robot workspace with respect to the treatment plan quality, and to illustrate the concepts of robotic radiosurgery. A simulation environment for a robotic radiosurgery system was developed using Java and Java3D. The kinematics and the beam characteristics were modeled and linked to a treatment planning module. Simulations of different robot workspace parameters for two example radiosurgical patient cases were performed using the novel software tool. The first case was an intracranial lesion near the left inner ear, the second case was a spinal lesion. The planning parameters for both cases were visualized with the novel simulation environment. An incremental extension of the robot workspace had limited effect for the intracranial case, where the original workspace already covered the left side of the patient. For the spinal case, a larger workspace resulted in a noticeable improvement in plan quality and a large portion of the beams being delivered from the extended workspace. The new software environment is useful to simulate and analyze parameters and configurations for robotic radiosurgery. An enlarged robot workspace may result in improved plan quality depending on the location of the target region. (orig.)

  10. A simulation and training environment for robotic radiosurgery

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Gill, Jakub; Schweikard, Achim

    2008-01-01

    To provide a software environment for simulation of robotic radiosurgery, particularly to study the effective robot workspace with respect to the treatment plan quality, and to illustrate the concepts of robotic radiosurgery. A simulation environment for a robotic radiosurgery system was developed using Java and Java3D. The kinematics and the beam characteristics were modeled and linked to a treatment planning module. Simulations of different robot workspace parameters for two example radiosurgical patient cases were performed using the novel software tool. The first case was an intracranial lesion near the left inner ear, the second case was a spinal lesion. The planning parameters for both cases were visualized with the novel simulation environment. An incremental extension of the robot workspace had limited effect for the intracranial case, where the original workspace already covered the left side of the patient. For the spinal case, a larger workspace resulted in a noticeable improvement in plan quality and a large portion of the beams being delivered from the extended workspace. The new software environment is useful to simulate and analyze parameters and configurations for robotic radiosurgery. An enlarged robot workspace may result in improved plan quality depending on the location of the target region. (orig.)

  11. Visual simulation study of equipment maintenance in dangerous environment

    International Nuclear Information System (INIS)

    Zhu Bo; Yang Yanhua; Li Shiting

    2010-01-01

    The maintenance characteristics in dangerous environments are analyzed, and the application characteristics of visualized maintenance technology are introduced. The interactive method to implement maintenance simulation is presented using EON simulation platform. Then an interacted Virtual Maintenance Training System (VMTS) is further developed, and the composition and function are described in details. The VMTS can be used in extensive array of application scopes, and it is well compatible to the hardware of virtual reality. (author)

  12. A Web-Based Lean Simulation Game for Office Operations: Training the Other Side of a Lean Enterprise

    Science.gov (United States)

    Kuriger, Glenn W.; Wan, Huang-da; Mirehei, S. Moussa; Tamma, Saumya; Chen, F. Frank

    2010-01-01

    This research proposes a Web-based version of a lean office simulation game (WeBLOG). The game is designed to be used to train lean concepts to office and administrative personnel. This group belongs to the frequently forgotten side of a lean enterprise. Over four phases, the game presents the following seven lean tools: one-piece flow,…

  13. The Future Security Environment: Why the U.S. Army Must Differentiate and Grow Millennial Officer Talent

    Science.gov (United States)

    2015-09-01

    and M. Epstein, “ Millennials and the World of Work: An Organizational and Management Perspective,” Journal of Business and Psychology, Vol. 25, 2010...Why the U.S. Army Must Differentiate and Grow Millennial Officer Talent FOR THIS AND OTHER PUBLICATIONS, VISIT US AT http://www.carlisle.army.mil...SUBTITLE The Future Security Environment: Why the U.S. Army Must Differentiate and Grow Millennial Officer Talent 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  14. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    Science.gov (United States)

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A SIMULATION ENVIRONMENT FOR AUTOMATIC NIGHT DRIVING AND VISUAL CONTROL

    OpenAIRE

    Arroyo Rubio, Fernando

    2012-01-01

    This project consists on developing an automatic night driving system in a simulation environment. The simulator I have used is TORCS. TORCS is an Open Source car racing simulator written in C++. It is used as an ordinary car racing game, as a IA racing game and as a research platform. The goal of this thesis is to implement an automatic driving system to control the car under night conditions using computer vision. A camera is implemented inside the vehicle and it will detect the reflective ...

  16. Solar shading for low energy use and daylight quality in offices: Simulations, measurements and design tools

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.C.

    2001-11-01

    This thesis investigates the impact of solar shading devices on energy use and daylight quality in office rooms. The impact on energy use is analysed through computer simulations with the dynamic energy simulation program Derob-LTH while the impact on daylight quality is investigated through measurements in full-scale experimental office rooms and simulations with the program Radiance. This thesis also includes a literature review of research on solar shading as well as design tools to incorporate shading devices at an early stage in the design of buildings. This thesis indicates that, in cold countries, shading devices may provide more annual energy savings than any solar-protective (reflective, tinted) glazing and that the optimum glazing transmittance is orientation- and climate-dependent. For example, high annual energy savings are obtained on the south facade with higher transmittance glazings (compared with the east and west facade) because the potential for passive solar gain utilisation in the winter is high in comparison with the annual cooling demand. Exterior shading devices like awnings and overhangs may reduce the cooling demand dramatically but they are not suitable as daylight (glare) control devices. Devices like screens and venetian blinds are preferable because they cover the entire window area, which prevents sunlight patches in the room and the direct view of the bright sky. Screens and venetian blinds also reduce daylight in the room to levels that are suitable for computer work. However, it is essential that the screen is of a diffusing type since screens with a strong (specular) transmittance component result in poor daylight quality. The study on daylight quality also indicated that a screen transmittance of around 15 % may be optimum for a standard (3.5 by 6.0 m{sup 2}) south-oriented office room with a window covering around 25 % of the facade area (12 % of the floor area)

  17. PREDICTION OF AEROSOL HAZARDS ARISING FROM THE OPENING OF AN ANTHRAX-TAINTED LETTER IN AN OPEN OFFICE ENVIRONMENT USING COMPUTATIONAL FLUID DYNAMICS

    Directory of Open Access Journals (Sweden)

    FUE-SANG LIEN

    2010-09-01

    Full Text Available Early experimental work, conducted at Defence R&D Canada–Suffield, measured and characterized the personal and environmental contamination associated with simulated anthrax-tainted letters under a number of different scenarios in order to obtain a better understanding of the physical and biological processes for detecting, assessing, and formulating potential mitigation strategies for managing the risks associated with opening an anthrax-tainted letter. These experimental investigations have been extended in the present study to simulate numerically the contamination from the opening of anthrax-tainted letters in an open office environment using computational fluid dynamics (CFD. A quantity of 0.1 g of Bacillus atropheus (formerly referred to as Bacillus subtilis var globigii (BG spores in dry powder form, which was used here as a surrogate species for Bacillus anthracis (anthrax, was released from an opened letter in the experiment. The accuracy of the model for prediction of the spatial distribution of BG spores in the office from the opened letter is assessed qualitatively (and to the extent possible, quantitatively by detailed comparison with measured BG concentrations obtained under a number of different scenarios, some involving people moving within the office. The observed discrepancy between the numerical predictions and experimental measurements of concentration was probably the result of a number of physical processes which were not accounted for in the numerical simulation. These include air flow leakage from cracks and crevices of the building shell; the dispersion of BG spores in the Heating, Ventilation, and Air Conditioning (HVAC system; and, the effect of deposition and re-suspension of BG spores from various surfaces in the office environment.

  18. MARS: An Educational Environment for Multiagent Robot Simulations

    Directory of Open Access Journals (Sweden)

    Marco Casini

    2016-01-01

    Full Text Available Undergraduate robotics students often find it difficult to design and validate control algorithms for teams of mobile robots. This is mainly due to two reasons. First, very rarely, educational laboratories are equipped with large teams of robots, which are usually expensive, bulky, and difficult to manage and maintain. Second, robotics simulators often require students to spend much time to learn their use and functionalities. For this purpose, a simulator of multiagent mobile robots named MARS has been developed within the Matlab environment, with the aim of helping students to simulate a wide variety of control algorithms in an easy way and without spending time for understanding a new language. Through this facility, the user is able to simulate multirobot teams performing different tasks, from cooperative to competitive ones, by using both centralized and distributed controllers. Virtual sensors are provided to simulate real devices. A graphical user interface allows students to monitor the robots behaviour through an online animation.

  19. Open Source Power Plant Simulator Development Under Matlab Environment

    International Nuclear Information System (INIS)

    Ratemi, W.M.; Fadilah, S.M.; Abonoor, N

    2008-01-01

    In this paper an open source programming approach is targeted for the development of power plant simulator under Matlab environment. With this approach many individuals can contribute to the development of the simulator by developing different orders of complexities of the power plant components. Such modules can be modeled based on physical principles, or using neural networks or other methods. All of these modules are categorized in Matlab library, of which the user can select and build up his simulator. Many international companies developed its own authoring tool for the development of its simulators, and hence it became its own property available for high costs. Matlab is a general software developed by mathworks that can be used with its toolkits as the authoring tool for the development of components by different individuals, and through the appropriate coordination, different plant simulators, nuclear, traditional , or even research reactors can be computerly assembled. In this paper, power plant components such as a pressurizer, a reactor, a steam generator, a turbine, a condenser, a feedwater heater, a valve, a pump are modeled based on physical principles. Also a prototype modeling of a reactor ( a scram case) based on neural networks is developed. These modules are inserted in two different Matlab libraries one called physical and the other is called neural. Furthermore, during the simulation one can pause and shuffle the modules selected from the two libraries and then proceed the simulation. Also, under the Matlab environment a PID controller is developed for multi-loop plant which can be integrated for the control of the appropriate developed simulator. This paper is an attempt to base the open source approach for the development of power plant simulators or even research reactor simulators. It then requires the coordination among interested individuals or institutions to set it to professionalism. (author)

  20. TACOP : A cognitive agent for a naval training simulation environment

    NARCIS (Netherlands)

    Doesburg, W.A. van; Heuvelink, A.; Broek, E.L. van den

    2005-01-01

    This paper describes how cognitive modeling can be exploited in the design of software agents that support naval training sessions. The architecture, specifications, and embedding of the cognitive agent in a simulation environment are described. Subsequently, the agent's functioning was evaluated in

  1. TACOP: A Cognitive Agent for a Naval Training Simulation Environment

    NARCIS (Netherlands)

    van Doesburg, W.A.; Verbeeck, K.; Heuvelink, A.; Tuyls, K.; Nowé, A.; van den Broek, Egon; Manderick, B.; Kuijpers, B.

    2005-01-01

    The full version of this paper appeared in: Doesburg, W. A. van, Heuvelink, A., and Broek, E. L. van den (2005). TACOP: A cognitive agent for a naval training simulation environment. In M. Pechoucek, D. Steiner, and S. Thompson (Eds.), Proceedings of the Industry Track of the Fourth International

  2. Exploring the Environment/Energy Pareto Optimal Front of an Office Room Using Computational Fluid Dynamics-Based Interactive Optimization Method

    Directory of Open Access Journals (Sweden)

    Kangji Li

    2017-02-01

    Full Text Available This paper is concerned with the development of a high-resolution and control-friendly optimization framework in enclosed environments that helps improve thermal comfort, indoor air quality (IAQ, and energy costs of heating, ventilation and air conditioning (HVAC system simultaneously. A computational fluid dynamics (CFD-based optimization method which couples algorithms implemented in Matlab with CFD simulation is proposed. The key part of this method is a data interactive mechanism which efficiently passes parameters between CFD simulations and optimization functions. A two-person office room is modeled for the numerical optimization. The multi-objective evolutionary algorithm—non-dominated-and-crowding Sorting Genetic Algorithm II (NSGA-II—is realized to explore the environment/energy Pareto front of the enclosed space. Performance analysis will demonstrate the effectiveness of the presented optimization method.

  3. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  4. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  5. Sick building syndrome (SBS) among office workers in a Malaysian university--Associations with atopy, fractional exhaled nitric oxide (FeNO) and the office environment.

    Science.gov (United States)

    Lim, Fang-Lee; Hashim, Zailina; Md Said, Salmiah; Than, Leslie Thian-Lung; Hashim, Jamal Hisham; Norbäck, Dan

    2015-12-01

    There are few studies on sick building syndrome (SBS) including clinical measurements for atopy and fractional exhaled nitric oxide (FeNO). Our aim was to study associations between SBS symptoms, selected personal factors, office characteristics and indoor office exposures among office workers from a university in Malaysia. Health data were collected by a questionnaire (n=695), skin prick test (SPT) (n=463) and FeNO test (n=460). Office settled dust was vacuumed and analyzed for endotoxin, (1,3)-β-glucan and house dust mites (HDM) allergens group 1 namely Dermatophagoides pteronyssinus (Der p 1) and Dermatophagoides farinae (Der f 1). Office indoor temperature, relative air humidity (RH), carbon monoxide (CO) and carbon dioxide (CO2) were measured by a direct reading instrument. Associations were studied by two-levels multiple logistic regression with mutual adjustment and stratified analysis. The prevalence of weekly dermal, mucosal and general symptoms was 11.9%, 16.0% and 23.0% respectively. A combination of SPT positivity (allergy to HDM or cat) and high FeNO level (≥25 ppb) was associated with dermal (p=0.002), mucosal (p<0.001) and general symptoms (p=0.05). Der f1 level in dust was associated with dermal (p<0.001), mucosal (p<0.001) and general (p=0.02) symptoms. Among those with allergy to D. farinae, associations were found between Der f 1 levels in dust and dermal (p=0.003), mucosal (p=0.001) and general symptoms (p=0.007). Office-related symptoms were associated with Der f 1 levels in dust (p=0.02), low relative air humidity (p=0.04) and high office temperature (p=0.05). In conclusion, a combination of allergy to cat or HDM and high FeNO is a risk factor for SBS symptoms. Der f 1 allergen in dust can be a risk factor for SBS in the office environment, particularly among those sensitized to Der f 1 allergen. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Classroom Simulation for Trainee Teachers Using 3D Virtual Environments and Simulated Smartbot Student Behaviours

    OpenAIRE

    Alotaibi, Fahad Mazaed

    2014-01-01

    his thesis consists of an analysis of a classroom simulation using a Second Life (SL) experiment that aims to investigate the teaching impact on smartbots (virtual students) from trainee teacher avatars with respect to interaction, simulated behaviour, and observed teaching roles. The classroom-based SL experiments’ motivation is to enable the trainee teacher to acquire the necessary skills and experience to manage a real classroom environment through simulations of a real classroom. This ty...

  7. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  8. The use of in-situ simulation to improve safety in the plastic surgery office: a feasibility study.

    Science.gov (United States)

    Shapiro, Fred E; Pawlowski, John B; Rosenberg, Noah M; Liu, Xiaoxia; Feinstein, David M; Urman, Richard D

    2014-01-01

    Simulation-based interventions and education can potentially contribute to safer and more effective systems of care. We utilized in-situ simulation to highlight safety issues, regulatory requirements, and assess perceptions of safety processes by the plastic surgery office staff. A high-fidelity human patient simulator was brought to an office-based plastic surgery setting to enact a half-day full-scale, multidisciplinary medical emergency. Facilitated group debriefings were conducted after each scenario with special consideration of the principles of team training, communication, crisis management, and adherence to evidence-based protocols and regulatory standards. Abbreviated AHRQ Medical Office Safety Culture Survey was completed by the participants before and after the session. The in-situ simulations had a high degree of acceptance and face validity according to the participants. Areas highlighted by the simulation sessions included rapid communication, delegation of tasks, location of emergency materials, scope of practice, and logistics of transport. The participant survey indicated greater awareness of patient safety issues following participation in simulation and debriefing exercises in 3 areas (P issue (100% vs 75%), openness to ideas about improving office processes (100% vs 88%), and the need to discuss ways to prevent errors from recurring (88% vs 62%). Issues of safety and regulatory compliance can be assessed in an office-based setting through the short-term (half-day) use of in-situ simulation with facilitated debriefing and the review of audiovisual recordings by trained facilities inspectors.

  9. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to

  10. Generic Simulator Environment for Realistic Simulation - Autonomous Entity Proof and Emotion in Decision Making

    Directory of Open Access Journals (Sweden)

    Mickaël Camus

    2004-10-01

    Full Text Available Simulation is usually used as an evaluation and testing system. Many sectors are concerned such as EUROPEAN SPACE AGENCY or the EUROPEAN DEFENCE. It is important to make sure that the project is error-free in order to continue it. The difficulty is to develop a realistic environment for the simulation and the execution of a scenario. This paper presents PALOMA, a Generic Simulator Environment. This project is based essantially on the Chaos Theory and Complex Systems to create and direct an environment for a simulation. An important point is the generic aspect. PALOMA will be able to create an environment for different sectors (Aero-space, Biology, Mathematic, .... PALOMA includes six components : the Simulation Engine, the Direction Module, the Environment Generator, the Natural Behavior Restriction, the Communication API and the User API. Three languages are used to develop this simulator. SCHEME for the Direction language, C/C++ for the development of modules and OZ/MOZART for the heart of PALOMA.

  11. Simulation Environment Synchronizing Real Equipment for Manufacturing Cell

    Science.gov (United States)

    Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro

    Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.

  12. Air distribution in office environment with asymmetric workstation layout using chilled beams

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Hannu; Haeggblom, Henna [Finnish Institute of Occupational Health, Lemminkaeisenkatu 14-18 B, 20520 Turku (Finland); Kosonen, Risto; Ruponen, Mika [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland)

    2010-09-15

    Air flow patterns and mean air speeds were studied under laboratory conditions representing a full scale open-plan office. Three basic conditions were tested: summer, spring/autumn and winter. Chilled beams were used to provide cooling, outdoor air supply and air distribution in the room. The heat sources had a notable influence on the flow pattern in the room causing large scale circulation and affecting the direction of inlet jets. The maximum air speed in the occupied zone was higher than the recommendations. The mean air speed was also high on at the floor level but low on at the head level. The air speed was highest in the summer case under high cooling load. Results indicate that especially with high heat loads, it is difficult to fulfill the targets of the existing standards in practice. Two main sources of draught risk were found: a) downfall of colliding inlet jets causing local maxima of air speed and b) large scale circulation caused by asymmetric layout of chilled beams and heat sources. The first phenomenon can cause local draught risk when the workstation is located in the downfall area. The flow pattern is not stable and the position of draught risk areas can change in time and also due to changes in room heat sources. The second phenomenon can cause more constant high air speeds on at the floor level. CFD-simulation was able to predict the general flow pattern but somewhat overestimated the air speed compared to measurements. (author)

  13. A virtual environment for simulation of radiological accidents

    International Nuclear Information System (INIS)

    Silva, Tadeu Augusto de Almeida; Farias, Oscar Luiz Monteiro de

    2013-01-01

    A virtual environment is a computer environment, representative of a subset of the real world, and where models of the real world entities, process and events are included in a virtual (three-dimensional) space. Virtual environments are ideal tools for simulation of certain critical processes, such as radiological accidents, where human beings or properties can suffer irreversible or long term damages. Radiological accidents are characterized by the significant exposure to radiation of specialized workers and general public. The early detection of a radiological accident and the determination of its possible extension are essential factors for the planning of prompt answers and emergency actions. This paper proposes the integration of georeferenced representation of the three-dimensional space and agent-based models, with the objective to construct virtual environments that have the capacity to simulate radiological accidents. The three-dimensional georeferenced representations of space candidates are: 1) the spatial representation of traditional geographical information systems (GIS); 2) the representation adopted by Google Maps®. Adding agents to these spatial representations allow us to simulate radiological accidents, quantify the doses received by members of the public, obtain a possible spatial distribution of people contaminated, estimate the number of contaminated individuals, estimate the impact on the health-network, estimate environmental impacts, generate exclusion zones, build alternative scenarios and train staff to deal with radiological accidents. (author)

  14. A virtual environment for simulation of radiological accidents

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tadeu Augusto de Almeida, E-mail: tedsilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Farias, Oscar Luiz Monteiro de, E-mail: fariasol@eng.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    A virtual environment is a computer environment, representative of a subset of the real world, and where models of the real world entities, process and events are included in a virtual (three-dimensional) space. Virtual environments are ideal tools for simulation of certain critical processes, such as radiological accidents, where human beings or properties can suffer irreversible or long term damages. Radiological accidents are characterized by the significant exposure to radiation of specialized workers and general public. The early detection of a radiological accident and the determination of its possible extension are essential factors for the planning of prompt answers and emergency actions. This paper proposes the integration of georeferenced representation of the three-dimensional space and agent-based models, with the objective to construct virtual environments that have the capacity to simulate radiological accidents. The three-dimensional georeferenced representations of space candidates are: 1) the spatial representation of traditional geographical information systems (GIS); 2) the representation adopted by Google Maps®. Adding agents to these spatial representations allow us to simulate radiological accidents, quantify the doses received by members of the public, obtain a possible spatial distribution of people contaminated, estimate the number of contaminated individuals, estimate the impact on the health-network, estimate environmental impacts, generate exclusion zones, build alternative scenarios and train staff to deal with radiological accidents. (author)

  15. BLOND, a building-level office environment dataset of typical electrical appliances.

    Science.gov (United States)

    Kriechbaumer, Thomas; Jacobsen, Hans-Arno

    2018-03-27

    Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of.

  16. BLOND, a building-level office environment dataset of typical electrical appliances

    Science.gov (United States)

    Kriechbaumer, Thomas; Jacobsen, Hans-Arno

    2018-03-01

    Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND dataset: continuous energy measurements of a typical office environment at high sampling rates with common appliances and load profiles. We provide voltage and current readings for aggregated circuits and matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53 appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at 50kSps (aggregate) and 6.4kSps (individual appliances). BLOND-250 consists of the same setup: 50 days, 250kSps (aggregate), 50kSps (individual appliances). These are the longest continuous measurements at such high sampling rates and fully-labeled ground truth we are aware of.

  17. Simulation Study of Performance of Active Ceilings with Phase Change Material in Office Buildings under Extreme Climate Conditions

    DEFF Research Database (Denmark)

    Stefansen, Casper; Farhan, Hajan; Bourdakis, Eleftherios

    2018-01-01

    simulations were run with a building simulation software for eight climates. The chosen climates were Dubai –UAE, Istanbul – Turkey, Lima – Peru, Moscow – Russia, Nuuk – Greenland, Salvador – Brazil, Tokyo – Japan and Tromsø – Norway. Two models of a two-person office were made for each climate; one model...

  18. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Ionescu, Teodor; Studineanu, Emil; Radulescu, Catalina; Bolocan, Gabriel

    2005-01-01

    Full text: Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which has occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  19. Qualified operator training in the simulated control room environment

    International Nuclear Information System (INIS)

    Ionescu, Teodor; Studineanu, Emil; Radulescu, Catalina; Bolocan, Gabriel

    2005-01-01

    Mainly designed for the training of the Cernavoda NPP Unit 2 operators, the virtual simulated environment allows the training of the already qualified operators for Cernavoda NPP Unit 1, adding to the already trained knowledge, the differences which have occurred in the Unit 2 design. Using state-of-the-art computers and displays and qualified software, the virtual simulated panels could offer a viable alternative to classic hardware-based training. This approach allows quick training of the new procedures required by the new configuration of the re-designed operator panels in the main control room of Cernavoda NPP Unit 2. (authors)

  20. Electrophysiological measurement of interest during walking in a simulated environment.

    Science.gov (United States)

    Takeda, Yuji; Okuma, Takashi; Kimura, Motohiro; Kurata, Takeshi; Takenaka, Takeshi; Iwaki, Sunao

    2014-09-01

    A reliable neuroscientific technique for objectively estimating the degree of interest in a real environment is currently required in the research fields of neuroergonomics and neuroeconomics. Toward the development of such a technique, the present study explored electrophysiological measures that reflect an observer's interest in a nearly-real visual environment. Participants were asked to walk through a simulated shopping mall and the attractiveness of the shopping mall was manipulated by opening and closing the shutters of stores. During the walking task, participants were exposed to task-irrelevant auditory probes (two-stimulus oddball sequence). The results showed a smaller P2/early P3a component of task-irrelevant auditory event-related potentials and a larger lambda response of eye-fixation-related potentials in an interesting environment (i.e., open-shutter condition) than in a boring environment (i.e., closed-shutter condition); these findings can be reasonably explained by supposing that participants allocated more attentional resources to visual information in an interesting environment than in a boring environment, and thus residual attentional resources that could be allocated to task-irrelevant auditory probes were reduced. The P2/early P3a component and the lambda response may be useful measures of interest in a real visual environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Temperature field simulation of complex structures in fire environment

    International Nuclear Information System (INIS)

    Li Weifen; Hao Zhiming; Li Minghai

    2010-01-01

    In this paper, the typical model of the system of dangerous goods - steel - wood composite structure including components of explosives is used as the research object. Using MARC program, the temperature field of the structure in the fire environment is simulated. Radiation, conduction and convection heat transfer within the gap of the structure are taken into account, contact heat transfer is also considered. The phenomenon of thermal decomposition of wood in high temperature is deal with by equivalent method. The results show that the temperature of the explosives is not high in the fire environment. The timber inside the composite structure has played a very good insulation effect of explosives.

  2. Electrochemistry of lead in simulated ground water environments

    International Nuclear Information System (INIS)

    Joerg, E.A.; Devereux, O.F.

    1996-01-01

    Lead and lead alloys are used commonly as moisture barriers for underground cables. Lead exhibits excellent corrosion resistance in a variety of environments, but areas of localized attack have been found. These can result in able failures. The susceptibility of lead to pitting in several simulated ground water (SGW) environments was assessed using cyclic potentiodynamic pitting scans (PPS) and microscopy. Although general corrosion was observed, PPS demonstrated pitting did not occur in the same sense as in alloys known to be susceptible to pitting (i.e., very localized pit formation without general corrosion). However, areas of nonuniform general attack did occur, resulting in pitted surface morphologies

  3. A maker-community-friendly implementation of a smart and green office environment: Lessons learned

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2015-05-01

    Full Text Available previously untested (again, by ourselves) concepts and technologies, our learning from the first design iteration proved to be of significant value. Both design iterations incorporate a combination of an Arduino Uno [11] and a Raspberry Pi [12... into the office. Sensing the state of the office door, the office window, and the presence of a person within the office is simple: By wiring three sensors that each sends one of two signals levels to an Arduino Uno circuit, we can independently detect whether...

  4. Experiences with a simulated learning environment - the SimuScape©: Virtual environments in medical education

    Directory of Open Access Journals (Sweden)

    Anna-Lena Thies

    2014-03-01

    Full Text Available INTRODUCTION: Simulation as a tool for medical education has gained considerable importance in the past years. Various studies have shown that the mastering of basic skills happens best if taught in a realistic and workplace-based context. It is necessary that simulation itself takes place in the realistic background of a genuine clinical or in an accordingly simulated learning environment. METHODS: A panoramic projection system that allows the simulation of different scenarios has been created at the medical school of the Westphalian Wilhelms-University  Muenster/Germany. The SimuScape© is a circular training room of six meters in diameter and has the capacity to generate pictures or moving images as well as the corresponding background noises for medical students, who are then able to interact with simulated patients inside a realistic environment. RESULTS: About 1,000 students have been instructed using the SimuScape© in the courses of emergency medicine, family medicine and anesthesia. The SimuScape©, with its 270°-panoramic projection, gives the students the impression “of being right in the center of action”.  It is a flexible learning environment that can be easily integrated into curricular teaching and which is in full operation for 10 days per semester. CONCLUSION: The SimuScape© allows the establishment of new medical areas outside the hospital and surgery for simulation and it is an extremely adaptable and cost-effective utilization of a lecture room. In this simulated environment it is possible to teach objectives like self-protection and patient care during disturbing environmental influences in practice.

  5. Warm ambient temperature decreases food intake in a simulated office setting: A pilot randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Molly eBernhard

    2015-08-01

    Full Text Available Background: We hypothesized that exposure to temperatures above the thermoneutral zone would decrease food intake in young adults in a sedentary office environment over a 2-hour period. Methods: Participants wearing standardized clothing were randomized to perform routine office work in either within the thermoneutral zone, considered control (19-20°C, or above the thermoneutral zone considered warmer (26-27°C treatment in parallel-group design (n=11 and 9, respectively. Thermal images of the inner canthus of their eye and middle finger nail bed, representing proxies of core and peripheral temperatures, respectively, were taken at baseline, 1st, and 2nd hour during this lunchtime study. Relative heat dissipation was estimated as peripheral temperature. General linear models were conducted to examine the effects of thermal treatment the calories intake and potential mediation. Researchers conducted the trial registered as NCT02386891 at Clinicaltrials.gov during April- May 2014. Results: During the 2 hours stay in different ambient temperatures, the participants in the control conditions ate 99.5 kcal more than those in the warmer conditions; however, the difference was not statistically significant. Female participants ate about 350 kcal less than the male participants (P=0.024 in both groups and there was no significant association between calories intake and participant’s BMI. After controlling for thermal treatment, gender and BMI, the participant’s peripheral temperature was significantly associated with calories intake (p=0.002, suggesting a mediating effect. Specifically, for every 1°C increase in peripheral temperature indicating reduced heat dissipation, participants ate 85.9 kcal less food. Conclusions: This pilot study provided preliminary evidence of effects of thermal environment on food intake and the decreased food intake in the experimental (warmer environment is potentially mediated through thermoregulatory mechanisms.

  6. Warm Ambient Temperature Decreases Food Intake in a Simulated Office Setting: A Pilot Randomized Controlled Trial.

    Science.gov (United States)

    Bernhard, Molly C; Li, Peng; Allison, David B; Gohlke, Julia M

    2015-01-01

    We hypothesized that exposure to temperatures above the thermoneutral zone (TNZ) would decrease food intake in young adults in a sedentary office environment over a 2-h period. Participants wearing standardized clothing were randomized to perform routine office work in the TNZ, considered control (19-20°C), or above the TNZ considered warmer (26-27°C) using a parallel-group design (n = 11 and 9, respectively). Thermal images of the inner canthus of their eye and middle finger nail bed, representing proxies of core and peripheral temperatures, respectively, were taken at baseline, first, and second hour during this lunchtime study. Heat dissipation was estimated using peripheral temperature. General linear models were built to examine the effects of thermal treatment on caloric intake and potential mediation by heat dissipation. Researchers conducted the trial registered as NCT02386891 at Clinicaltrials.gov during April to May 2014. During the 2-h stay in different ambient temperatures, the participants in the control conditions ate 99.5 kcal more than those in the warmer conditions; however, the difference was not statistically significant. Female participants ate about 350 kcal less than the male participants (p = 0.024) in both groups and there was no significant association between caloric intake and participant's body mass index (BMI). After controlling for thermal treatment, gender and BMI, the participant's peripheral temperature was significantly associated with caloric intake (p = 0.002), suggesting a mediating effect. Specifically, for every 1°C increase in peripheral temperature suggesting increased heat dissipation, participants ate 85.9 kcal less food. This pilot study provided preliminary evidence of effects of thermal environment on food intake. It suggests that decreased food intake in the experimental (warmer) environment is potentially mediated through thermoregulatory mechanisms.

  7. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T; Wulff, Julie S G

    2016-01-01

    learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...... in medicine, received a 2-h training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday clinical...... practice were demonstrated. RESULTS: Knowledge (Cohen's d = 0.73), intrinsic motivation (d = 0.24), and self-efficacy (d = 0.46) significantly increased from the pre- to post-test. Low knowledge students showed the greatest increases in knowledge (d = 3.35) and self-efficacy (d = 0.61), but a non...

  8. DIGITAL SIMULATIONS FOR IMPROVING EDUCATION: Learning Through Artificial Teaching Environments

    OpenAIRE

    Reviewed by Özlem OZAN

    2009-01-01

    DIGITAL SIMULATIONS FOR IMPROVING EDUCATION:Learning Through Artificial Teaching EnvironmentsGibson, David, Ed.D.; Information Science Reference, Hershey, PA,SBN-10: 1605663239, ISBN-13: 9781605663234, p.514 Jan 2009Reviewed byÖzlem OZANFaculty of Education, Eskişehir Osmangazi University,Eskisehir-TURKEYSimulations in education, both for children and adults,become popular with the development of computer technology, because they are fun and engaging and allow learners to internalize knowledg...

  9. Virtual environment display for a 3D audio room simulation

    Science.gov (United States)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  10. Acoustic emission from fuel pellets in a simulated reactor environment

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Kennedy, C.R.; Reimann, K.J.

    1977-01-01

    Thermal-shock damage of nuclear reactor fuel pellets in a simulated reactor environment has been correlated with acoustic-emission data obtained from sensors placed on extensions of the electrical feedthroughs. Ringdown counts, rms output data, and event-location data has been acquired for experiments carried out with single pellets as well as multiple pellet stacks. These tests have shown that acoustic-emission monitoring can provide information indicating the onset and the extent of cracking

  11. Simulated learning environment experience in nursing students for paediatric practice.

    Science.gov (United States)

    Mendoza-Maldonado, Yessy; Barría-Pailaquilén, René Mauricio

    The training of health professionals requires the acquisition of clinical skills in a safe and efficient manner, which is facilitated by a simulated learning environment (SLE). It is also an efficient alternative when there are limitations for clinical practice in certain areas. This paper shows the work undertaken in a Chilean university in implementing paediatric practice using SLE. Over eight days, the care experience of a hospitalized infant was studied applying the nursing process. The participation of a paediatrician, resident physician, nursing technician, and simulated user was included in addition to the use of a simulation mannequin and equipment. Simulation of care was integral and covered interaction with the child and family and was developed in groups of six students by a teacher. The different phases of the simulation methodology were developed from a pedagogical point of view. The possibility of implementing paediatric clinical practice in an efficient and safe way was confirmed. The experience in SLE was highly valued by the students, allowing them to develop different skills and abilities required for paediatric nursing through simulation. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  12. Simulated Space Environment Effects on a Candidate Solar Sail Material

    Science.gov (United States)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  13. Expanding the modeling capabilities of the cognitive environment simulation

    International Nuclear Information System (INIS)

    Roth, E.M.; Mumaw, R.J.; Pople, H.E. Jr.

    1991-01-01

    The Nuclear Regulatory Commission has been conducting a research program to develop more effective tools to model the cognitive activities that underlie intention formation during nuclear power plant (NPP) emergencies. Under this program an artificial intelligence (AI) computer simulation called Cognitive Environment Simulation (CES) has been developed. CES simulates the cognitive activities involved in responding to a NPP accident situation. It is intended to provide an analytic tool for predicting likely human responses, and the kinds of errors that can plausibly arise under different accident conditions to support human reliability analysis. Recently CES was extended to handle a class of interfacing loss of coolant accidents (ISLOCAs). This paper summarizes the results of these exercises and describes follow-on work currently underway

  14. Virtual environment simulation as a tool to support evacuation planning

    International Nuclear Information System (INIS)

    Mol, Antonio C.; Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R.; Jorge, Carlos A.F.; Sales, Douglas S.; Couto, Pedro M.; Botelho, Felipe M.; Bastos, Felipe R.

    2007-01-01

    This work is a preliminary study of the use of a free game-engine as a tool to build and to navigate in virtual environments, with a good degree of realism, for virtual simulations of evacuation from building and risk zones. To achieve this goal, some adjustments in the game engine have been implemented. A real building with four floors, consisting of some rooms with furniture and people, has been virtually implemented. Simulations of simple different evacuation scenarios have been performed, measuring the total time spent in each case. The measured times have been compared with their corresponding real evacuation times, measured in the real building. The first results have demonstrated that the virtual environment building with the free game engine is capable to reproduce the real situation with a satisfactory level. However, it is important to emphasize that such virtual simulations serve only as an aid in the planning of real evacuation simulations, and as such must never substitute the later. (author)

  15. Construction material processed using lunar simulant in various environments

    Science.gov (United States)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry

    1995-01-01

    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  16. Transit Officer Training Recommendations to Improve Safety in a High Stress Environment

    Science.gov (United States)

    Teague, Christine; Quin, Robyn; Green, Lelia; Bahn, Susanne

    2014-01-01

    This paper draws on the experience of one of the authors, an ethnographic researcher who, in the course of her investigation into the everyday work and communication cultures of Australian public transport officers, spent 12 weeks undergoing training as a rail transit officer before spending four months on the job where she was rostered on duty…

  17. Daylight artificial light and people in an office environment, overview of visual and biological responses

    NARCIS (Netherlands)

    Begemann, S.H.A.; Beld, van den G.J.; Tenner, A.D.

    1997-01-01

    Abstract Long-term behaviour/response of people has been studied in standard window zone offices during daytime working hours. Regular cell-offices were equipped with experimental lighting systems delivering lighting conditions that are known to influence human physiology. The results show that most

  18. Simulator for testing hardware and software of the office system with RFID tags

    Directory of Open Access Journals (Sweden)

    Nowicki Tadeusz

    2017-01-01

    Full Text Available This paper presents the method for examining the properties of the RFID-tagged document management system. The system is composed of computers, where the software for supporting processes of the RFID-tagged documents was installed. Furthermore, the system cooperates with many other elements of the office (cabinets, sluices, copiers, try rider, end so one. The examination of the properties of the RFID-tagged document management system is, in this case, complex due to the number of a possible examination scenarios. The simulator method for examining the system properties was design and implemented. It allows to conduct the examination of the properties in a short period of time for numerous testing scenarios.

  19. Performance and Evaluation of the Global Modeling and Assimilation Office Observing System Simulation Experiment

    Science.gov (United States)

    Prive, Nikki; Errico, R. M.; Carvalho, D.

    2018-01-01

    The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) has spent more than a decade developing and implementing a global Observing System Simulation Experiment framework for use in evaluting both new observation types as well as the behavior of data assimilation systems. The NASA/GMAO OSSE has constantly evolved to relect changes in the Gridpoint Statistical Interpolation data assimiation system, the Global Earth Observing System model, version 5 (GEOS-5), and the real world observational network. Software and observational datasets for the GMAO OSSE are publicly available, along with a technical report. Substantial modifications have recently been made to the NASA/GMAO OSSE framework, including the character of synthetic observation errors, new instrument types, and more sophisticated atmospheric wind vectors. These improvements will be described, along with the overall performance of the current OSSE. Lessons learned from investigations into correlated errors and model error will be discussed.

  20. Creating pedestrian crash scenarios in a driving simulator environment.

    Science.gov (United States)

    Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W

    2015-01-01

    In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to

  1. [Risk for environment-induced diseases due to air pollution from motor vehicles in road-patrol officers].

    Science.gov (United States)

    Mikhaĭlichenko, K Iu; Kas'ianenko, A A; Shchelkunova, I G; Grechko, A V

    2010-01-01

    The paper describes risk factors for environment-induced diseases in road-patrol (RP) officers under the existing working conditions: noise and chemical ambient air pollution from motor vehicles. There is evidence for a significant increase in the incidence of diseases of the cardiovascular and nervous system, sense organs, digestive and endocrine metabolic systems in the State Road Safety Inspectorate officers who are directly engaged in traffic management. Potential and real risks from motor transport to the health of RP roads have been estimated. Recommendations on optimizing the working conditions are given.

  2. A Phenomenological Study of the Office Environments of Clinical Social Workers.

    Science.gov (United States)

    Jones, Jamie K

    2018-01-01

    The purpose of this study was to explore the meaning and uses of the office space among licensed clinical social workers in private practice. Previous research suggests the importance of the office space in clinical practice in regard to therapeutic alliance, client behavior, and the well-being of the therapist. However, therapist offices contain much variation in design. This study looked further into specifically how the therapy room is important through the perspective of the licensed clinical social workers in order to identify common themes. Seven licensed clinical social workers in private psychotherapy practice were interviewed in their offices. Phenomenological research methods were used to explore and analyze their experiences. While the offices contained many physical differences, the intentions behind the designs were similar. Three themes emerged regarding how participants used and designed their spaces. First, participants used their offices to provide care for clients and themselves. Second, participants used their spaces to communicate therapeutic messages and to reveal and/or conceal aspects of themselves. Third, participants also used their space in direct practice. This phenomenological study provided insight into the importance and use of the psychotherapy office space. These findings may be helpful for therapists designing or redesigning their own practice spaces.

  3. Construction of the quantitative analysis environment using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Shirakawa, Seiji; Ushiroda, Tomoya; Hashimoto, Hiroshi; Tadokoro, Masanori; Uno, Masaki; Tsujimoto, Masakazu; Ishiguro, Masanobu; Toyama, Hiroshi

    2013-01-01

    The thoracic phantom image was acquisitioned of the axial section to construct maps of the source and density with Monte Carlo (MC) simulation. The phantom was Heart/Liver Type HL (Kyoto Kagaku Co., Ltd.) single photon emission CT (SPECT)/CT machine was Symbia T6 (Siemence) with the collimator LMEGP (low-medium energy general purpose). Maps were constructed from CT images with an in-house software using Visual studio C Sharp (Microsoft). The code simulation of imaging nuclear detectors (SIMIND) was used for MC simulation, Prominence processor (Nihon Medi-Physics) for filter processing and image reconstruction, and the environment DELL Precision T7400 for all image processes. For the actual experiment, the phantom was given 15 MBq of 99m Tc assuming the uptake 2% at the dose of 740 MBq in its myocardial portion and SPECT image was acquisitioned and reconstructed with Butter-worth filter and filter back projection method. CT images were similarly obtained in 0.3 mm thick slices, which were filed in one formatted with digital imaging and communication in medicine (DICOM), and then processed for application to SIMIND for mapping the source and density. Physical and mensuration factors were examined in ideal images by sequential exclusion and simulation of those factors as attenuation, scattering, spatial resolution deterioration and statistical fluctuation. Gamma energy spectrum, SPECT projection and reconstructed images given by the simulation were found to well agree with the actual data, and the precision of MC simulation was confirmed. Physical and mensuration factors were found to be evaluable individually, suggesting the usefulness of the simulation for assessing the precision of their correction. (T.T.)

  4. Energy Analysis of Multi-Function Devices in an Office Environment

    Data.gov (United States)

    National Aeronautics and Space Administration — As part of an effort to monitor electricity usage by plug loads in a new high performance office building, plug load management devices were deployed to enable data...

  5. Simulation of energy use, human thermal comfort and office work performance in buildings with moderately drifting operative temperatures

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2011-01-01

    Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS) s....... The TABS working in a moderate climate kept the predicted percentage of dissatisfied (PPD) 10%; 1.4% in comparison to 17.5% h/yr. The highest estimated loss of occupants’ productivity related to their thermal sensation hasn’t exceeded 1% in whole year average....

  6. USMC Contingency Contracting Force: An Analysis of Transient Officers in a Rapidly Changing Acquisition Environment

    Science.gov (United States)

    2016-06-01

    and skills needed to manage the department’s acquisition system” (2008, p. 268). Relating back to the CCF, an overpopulation of lieutenant colonels...an individual task. Officers should subsequently be deployed in real world operations based upon the levels of technical competency they have...therefore, officers that transfer to the ECP need to be engaged in real- world operations as soon as possible to retain the skills obtained during

  7. Simulation Environment Based on the Universal Verification Methodology

    CERN Document Server

    AUTHOR|(SzGeCERN)697338

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC desi...

  8. Improved climate risk simulations for rice in arid environments.

    Directory of Open Access Journals (Sweden)

    Pepijn A J van Oort

    Full Text Available We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed potential yields with yields simulated with default ORYZA2000, with modified subversions of ORYZA2000 and with ORYZA_S, a model developed for the region of interest in the 1990s. Rice variety 'IR64' was sown monthly 15-times in a row in two locations in Senegal. The Senegal River Valley is located in the Sahel, near the Sahara desert with extreme temperatures during day and night. The existing subroutines underestimated cold stress and overestimated heat stress. Forcing the model to use observed spikelet number and phenology and replacing the existing heat and cold subroutines improved accuracy of yield simulation from EF = -0.32 to EF =0.70 (EF is modelling efficiency. The main causes of improved accuracy were that the new model subversions take into account transpirational cooling (which is high in arid environments and early morning flowering for heat sterility, and minimum rather than average temperature for cold sterility. Simulations were less accurate when also spikelet number and phenology were simulated. Model efficiency was 0.14 with new heat and cold routines and improved to 0.48 when using new cardinal temperatures for phenology and early leaf growth. The new adapted subversion of ORYZA2000 offers a powerful analytic tool for climate change impact assessment and cropping calendar optimisation in arid regions.

  9. Simulation-based support for integrated design of new low-energy office buildings

    DEFF Research Database (Denmark)

    Petersen, Steffen

    . The method uses the energy frame concept to express the constraints of the optimisation problem, which is then solved by minimising the costs of conserving energy in all the individual energy-saving measures. A case example illustrates how the method enables designers to establish a qualified estimate...... a method for making informed decisions in the early stages of building design to fulfil performance requirements with regard to energy consumption and indoor environment. The method is operationalised in a program that utilises a simple simulation program to make performance predictions of user......-defined parameter variations. The program then presents the output in a way that enables designers to make informed decisions. The method and the program reduce the need for design iterations, reducing time consumption and construction costs, to obtain the intended energy performance and indoor environment. Paper...

  10. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Yeon, Choul W.

    2008-01-01

    The trademark 4 + D Technology TM based Engineering Super Simulation Emulation (ESSE) is introduced. ESSE resorting to three-dimensional (3D) Virtual Reality (VR) technology pledges to provide with an interactive real-time motion, sound and tactile and other forms of feedback in the man machine systems environment. In particular, the 3D Virtual Engineering Neo cybernetic Unit Soft Power (VENUS) adds a physics engine to the VR platform so as to materialize a physical atmosphere. A close cooperation system and prompt information share are crucial, thereby increasing the necessity of centralized information system and electronic cooperation system. VENUS is further deemed to contribute towards public acceptance of nuclear power in general, and safety in particular. For instance, visualization of nuclear systems can familiarize the public in answering their questions and alleviating misunderstandings on nuclear power plants answering their questions and alleviating misunderstandings on nuclear power plants (NPPs) in general, and performance, security and safety in particular. An in-house flagship project Systemic Three-dimensional Engine Platform Prototype Engineering (STEPPE) endeavors to develop the Systemic Three-dimensional Engine Platform (STEP) for a variety of VR applications. STEP is home to a level system providing the whole visible scene of virtual engineering of man machine system environment. The system is linked with video monitoring that provides a 3D Computer Graphics (CG) visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators easy access to visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators to access the virtual systems by using their virtual characters. Virtually Engineered NPP Informative systems by using their virtual characters. Virtually Engineered NPP Informative

  11. Comparison of discrete event simulation tools in an academic environment

    Directory of Open Access Journals (Sweden)

    Mario Jadrić

    2014-12-01

    Full Text Available A new research model for simulation software evaluation is proposed consisting of three main categories of criteria: modeling and simulation capabilities of the explored tools, and tools’ input/output analysis possibilities, all with respective sub-criteria. Using the presented model, two discrete event simulation tools are evaluated in detail using the task-centred scenario. Both tools (Arena and ExtendSim were used for teaching discrete event simulation in preceding academic years. With the aim to inspect their effectiveness and to help us determine which tool is more suitable for students i.e. academic purposes, we used a simple simulation model of entities competing for limited resources. The main goal was to measure subjective (primarily attitude and objective indicators while using the tools when the same simulation scenario is given. The subjects were first year students of Master studies in Information Management at the Faculty of Economics in Split taking a course in Business Process Simulations (BPS. In a controlled environment – in a computer lab, two groups of students were given detailed, step-by-step instructions for building models using both tools - first using ExtendSim then Arena or vice versa. Subjective indicators (students’ attitudes were collected using an online survey completed immediately upon building each model. Subjective indicators primarily include students’ personal estimations of Arena and ExtendSim capabilities/features for model building, model simulation and result analysis. Objective indicators were measured using specialised software that logs information on user's behavior while performing a particular task on their computer such as distance crossed by mouse during model building, the number of mouse clicks, usage of the mouse wheel and speed achieved. The results indicate that ExtendSim is well preferred comparing to Arena with regards to subjective indicators while the objective indicators are

  12. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive

  13. Optical intensity scintillation in the simulated atmospherical environment

    Science.gov (United States)

    Hajek, Lukas; Latal, Jan; Vanderka, Ales; Vitasek, Jan; Bojko, Marian; Bednarek, Lukas; Vasinek, Vladimir

    2016-09-01

    There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.

  14. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    Science.gov (United States)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say

  15. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  16. The influence of dry eye and office environment on visual functioning

    NARCIS (Netherlands)

    van Tilborg, M.A.; Kort, Helianthe; Murphy, P.; Evans, K.; Sik-Lányi, C.; Hoogerwerf, E.-J.; Miesenberger, K.; Cudd, P.

    2015-01-01

    Environmental factors, such as high airflow and low relative humidity, are known to promote dry eye symptoms during reading tasks in office workers. These symptoms are associated with an adverse impact on daily activities at work. This study reports on the relationship between eye symptoms and

  17. Factors defining face-to-face interruptions in the office environment

    NARCIS (Netherlands)

    Matysiak, A.J.; Markopoulos, P.

    2006-01-01

    This paper presents an on-going investigation on interruptions in the office caused by face-to-face interactions between knowledge workers. The study aims to identify opportunities for interactive solutions that will support both, the interrupters and the interrupted. The study involves contextual

  18. A 3D visualization approach for process training in office environments

    NARCIS (Netherlands)

    Aysolmaz, Banu; Brown, Ross; Bruza, Peter; Reijers, Hajo A.

    2016-01-01

    Process participants need to learn how to perform in the context of their business processes. Process training is challenging due to cognitive difficulties in relating process model elements to real world concepts. In this paper we present a 3D VirtualWorld (VW) process training approach for office

  19. Satisfying light conditions: a field study on perception of consensus light in Dutch open office environments

    NARCIS (Netherlands)

    Chraibi, S.; Lashina, T.A.; Shrubsole, P.; Aries, M.B.C.; van Loenen, E.J.; Rosemann, A.L.P.

    2016-01-01

    Workplace innovation has been changing the European office landscape into mostly open spaces, where enhanced interaction between people is combined by efficient use of space. However, challenges are found in offering individual preferred conditions in these multi-user spaces, especially when dealing

  20. Tomorrow's offices through today's eyes: effects of innovation in the working environment

    NARCIS (Netherlands)

    van der Voordt, Theo; Vos, PGJC

    2002-01-01

    Many organisations have changed to new ways of working, steered or followed up by design interventions and sharing of activity related workplaces. Expectations have been high. Innovative offices should lead to more efficient use of space and other facilities; greater job satisfaction; the projection

  1. Multiuser MIMO Channel Measurements and Performance in a Large Office Environment

    DEFF Research Database (Denmark)

    Bauch, Gerhard; Andersen, Jørgen Bach; Guthy, Christian

    2007-01-01

    We consider a multiuser MIMO-OFDMA scheme which exploits multiuser diversity in all dimensions: time, frequency and space. The main contribution of this paper is the evaluation and explanation of multiuser MIMO in a real world scenario, i.e. a large office room, based on measured channels. We rep...

  2. Eawag Forum Chriesbach - Simulation and measurement of energy performance and comfort in a sustainable office building

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, B.; Dorer, V.; Frank, Th. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Building Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Guettinger, H. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland); van Velsen, S.; Thiemann, A. [3-Plan Haustechnik AG, Winterthur (Switzerland)

    2010-10-15

    The Eawag's new headquarters ''Forum Chriesbach'' is an exemplary illustration of a 'sustainable' construction design for office buildings. With a unique combination of architectural and technical elements the building reaches a very low 88 kWh/m{sup 2} overall primary energy consumption, which is significantly lower than the Swiss Passive House standard, Minergie-P. A monitoring and evaluation project shows that the building is heated mainly by using the sun and internal heat gains from lighting, electrical appliances and occupants, resulting in an extremely low space heating demand. Cooling is provided by natural night time ventilation and the earth-coupled air intake, which pre-cools supply air and provides free cooling for computer servers. However, values for embodied energy and electricity consumption remain significant, even with partial on-site electricity production using photovoltaics. TRNSYS computer simulations show the contributions of individual building services to the overall energy balance and indicate that the building is resilient towards changes in parameters such as climate or occupancy density. Measurements confirm comfortable room temperatures below 26 C, even during an extremely hot summer period, and 20-23 C in the winter season. An economic analysis reveals additional costs of only 5% compared to a conventionally constructed building and a payback-time of 13 years. (author)

  3. Daylight Design of Office Buildings: Optimisation of External Solar Shadings by Using Combined Simulation Methods

    Directory of Open Access Journals (Sweden)

    Javier González

    2015-05-01

    Full Text Available Integrating daylight and energy performance with optimization into the design process has always been a challenge for designers. Most of the building environmental performance simulation tools require a considerable amount of time and iterations for achieving accurate results. Moreover the combination of daylight and energy performances has always been an issue, as different software packages are needed to perform detailed calculations. A simplified method to overcome both issues using recent advances in software integration is explored here. As a case study; the optimization of external shadings in a typical office space in Australia is presented. Results are compared against common solutions adopted as industry standard practices. Visual comfort and energy efficiency are analysed in an integrated approach. The DIVA (Design, Iterate, Validate and Adapt plug-in for Rhinoceros/Grasshopper software is used as the main tool, given its ability to effectively calculate daylight metrics (using the Radiance/Daysim engine and energy consumption (using the EnergyPlus engine. The optimization process is carried out parametrically controlling the shadings’ geometries. Genetic Algorithms (GA embedded in the evolutionary solver Galapagos are adopted in order to achieve close to optimum results by controlling iteration parameters. The optimized result, in comparison with conventional design techniques, reveals significant enhancement of comfort levels and energy efficiency. Benefits and drawbacks of the proposed strategy are then discussed.

  4. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  5. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  6. Remote online ergonomic assessment in the office environment as compared to face-to-face ergonomic assessment.

    Science.gov (United States)

    Eyal, Levy; Ribak, Joseph; Badihi, Yehuda

    2012-01-01

    remote online ergonomic assessment in the office environment as compared to face-to-face ergonomic assessment and examination of the applicability of remote online ergonomic assessment to office workers. 40 employees from a large Israeli hi-tech company were ergonomically assessed per the University of California computer usage checklist, according to the two assessment types (face-to-face and remote). An additional Ergonomist "assessor 2" examined the credibility of the process. Research hypothesis 1 was verified: 21 out of 22 questions (95.45%) from the checklist indicated compatibility between "assessor 1" to the "Gold Standard" at an 80% level. Research hypothesis 2: examining the credibility between the assessors with regard to remote assessment. This hypothesis was partially verified, the correlation between the assessors was measured at 0.54. Research hypothesis 3: examining the extent of deviation of natural posture between distal body parts assessment (distant from the center of the body) and proximal body parts (close to the center of the body). This hypothesis was clearly verified. It has been proven that there is statistical significance between the results. The current research has proved that there is an additional method to assess musculoskeletal disorders risk factors remotely online at office environment.

  7. Status of activities on the inactive uranium mill tailings sites remedial action program. Office of the Assistant Secretary for Environment

    International Nuclear Information System (INIS)

    1981-04-01

    This report on the status of the Office of Environment's program for inactive uranium mill tailings sites is an analysis of the current status and a forecast of future activities of the Office of Environment. The termination date for receipt of information was September 30, 1980. Aerial radiological surveys and detailed ground radiological assessments of properties within the communities in the vicinity of the designated processing sites in Canonsburg, Pennsylvania, Salt Lake City, Utah, and Boise, Idaho led to the designation of an initial group of vicinity properties for remedial action. The potential health effects of the residual radioactive materials on or near these properties were estimated, and the Assistant Secretary for Environment recommended priorities for performing remedial action to the Department's Assistant Secretary for Nuclear Energy. In designating these properties and establishing recommended priorities for performing remedial action, the Office of Environment consulted with the Environmental Protection Agency, the Nuclear Regulatory Commission, representatives from the affected State and local governments, and individual property owners. After notifying the Governors of each of the affected States and the Navajo Nation of the Secretary of Energy's designation of processing sites within their areas of jurisdiction and establishment of remedial action priorities, a Sample Cooperative Agreement was developed by the Department in consultation with the Nuclear Regulatory Commission and provided to the affected States and the Navajo Nation for comments. During September 1980, a Cooperative Agreement with the Commonwealth of Pennsylvania for the designated Canonsburg processing site was executed by the Department. It is anticipated that a Cooperative Agreement between the State of Utah and the Department to perform remedial actions at the designated Salt Lake City site will be executed in the near future

  8. Status of activities on the inactive uranium mill tailings sites remedial action program. Office of the Assistant Secretary for Environment

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    This report on the status of the Office of Environment's program for inactive uranium mill tailings sites is an analysis of the current status and a forecast of future activities of the Office of Environment. The termination date for receipt of information was September 30, 1980. Aerial radiological surveys and detailed ground radiological assessments of properties within the communities in the vicinity of the designated processing sites in Canonsburg, Pennsylvania, Salt Lake City, Utah, and Boise, Idaho led to the designation of an initial group of vicinity properties for remedial action. The potential health effects of the residual radioactive materials on or near these properties were estimated, and the Assistant Secretary for Environment recommended priorities for performing remedial action to the Department's Assistant Secretary for Nuclear Energy. In designating these properties and establishing recommended priorities for performing remedial action, the Office of Environment consulted with the Environmental Protection Agency, the Nuclear Regulatory Commission, representatives from the affected State and local governments, and individual property owners. After notifying the Governors of each of the affected States and the Navajo Nation of the Secretary of Energy's designation of processing sites within their areas of jurisdiction and establishment of remedial action priorities, a Sample Cooperative Agreement was developed by the Department in consultation with the Nuclear Regulatory Commission and provided to the affected States and the Navajo Nation for comments. During September 1980, a Cooperative Agreement with the Commonwealth of Pennsylvania for the designated Canonsburg processing site was executed by the Department. It is anticipated that a Cooperative Agreement between the State of Utah and the Department to perform remedial actions at the designated Salt Lake City site will be executed in the near future.

  9. Specification of requirements for the virtual environment for reactor applications simulation environment

    International Nuclear Information System (INIS)

    Hess, S. M.; Pytel, M.

    2012-01-01

    In 2010, the United States Dept. of Energy initiated a research and development effort to develop modern modeling and simulation methods that could utilize high performance computing capabilities to address issues important to nuclear power plant operation, safety and sustainability. To respond to this need, a consortium of national laboratories, academic institutions and industry partners (the Consortium for Advanced Simulation of Light Water Reactors - CASL) was formed to develop an integrated Virtual Environment for Reactor Applications (VERA) modeling and simulation capability. A critical element for the success of the CASL research and development effort was the development of an integrated set of overarching requirements that provides guidance in the planning, development, and management of the VERA modeling and simulation software. These requirements also provide a mechanism from which the needs of a broad array of external CASL stakeholders (e.g. reactor / fuel vendors, plant owner / operators, regulatory personnel, etc.) can be identified and integrated into the VERA development plans. This paper presents an overview of the initial set of requirements contained within the VERA Requirements Document (VRD) that currently is being used to govern development of the VERA software within the CASL program. The complex interdisciplinary nature of these requirements together with a multi-physics coupling approach to realize a core simulator capability pose a challenge to how the VRD should be derived and subsequently revised to accommodate the needs of different stakeholders. Thus, the VRD is viewed as an evolving document that will be updated periodically to reflect the changing needs of identified CASL stakeholders and lessons learned during the progress of the CASL modeling and simulation program. (authors)

  10. Home automation and simulation of presence in empty environments

    Directory of Open Access Journals (Sweden)

    Marques Israel

    2017-01-01

    Full Text Available Since their humble beginnings at the dawn of the 20th Century until contemporary age, automation and control systems have grown exponentially in both complexity and importance. Its relevance on human activities, be they mundane tasks or crucial processes, is self-evident. Among its many utilities, automated systems acquire a noble mission when put in service to protect life and property from aggressors of any kind. This paper discusses how home automation components can be utilized to implement an alternative domestic security strategy that consists in simulating the presence of an individual in an empty environment in the absence of its owner in order dissuade potential trespassing criminals, once they would feel highly discouraged to carry the criminal act should they believe the property is occupied.

  11. Flexible Environments for Grand-Challenge Simulation in Climate Science

    Science.gov (United States)

    Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.

    2004-12-01

    Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility

  12. The physical environment and occupant thermal perceptions in office buildings. An evaluation of sampled data from five European countries

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J L [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Building Services Engineering

    2002-02-01

    The results from a large field study of thermal comfort in European office buildings are reported. Measurements of physical environmental conditions and occupant perceptions were collected over sixteen months from twenty-six different office buildings located in France, Greece, Portugal, Sweden and the UK. This thesis focuses on the physical environmental measurements and occupant thermal perceptions; however, additional variables with connections to environmental satisfaction are also examined. An overview of human comfort theory is presented to help place this thesis in appropriate context. The overview presents thermal comfort issues within a broad framework of human response to the environment including physical, physiological. behavioural, psychological and other variables. A more narrowly focused overview of current thermal comfort research is also included. The work attempts to show relationships and produce useful information from the data set using graphical methods, especially lowess, a locally weighted regression based scatter plot smoothing technique. The objective of using this approach is to literally show the relationships visually. This approach allows the data set itself to illustrate the actual thermal conditions in European office buildings and the occupant perceptions of those conditions along with illustrating relationships. The data is examined in some detail with key relationships identified and explored. Significant differences between countries, both for the physical conditions and the perceptions of those conditions are identified. In addition, the variation over the course of the year for each country is explored. The relationship of daily average outdoor temperatures to indoor temperatures and indoor temperature perceptions is found to be critically important. The relationships, which appear to drive perceptions of thermal comfort, occur in complex ways, making simple, all encompassing explanations impossible. The nature and size of the

  13. Flight Simulation of ARES in the Mars Environment

    Science.gov (United States)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  14. Simulation of machine-maintenance training in virtual environment

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Tezuka, Tetsuo; Kashiwa, Ken-ichiro; Ishii, Hirotake

    1997-01-01

    The periodical inspection of nuclear power plants needs a lot of workforces with a high degree of technical skill for the maintenance of various sorts of machines. Therefore, a new type of maintenance training system is required, where trainees can get training safely, easily and effectively. In this study we developed a training simulation system for disassembling a check valve in virtual environment (VE). The features of this system are as follows: Firstly, the trainees can execute tasks even in wrong order, and can experience the resultant conditions. In order to realize this environment, we developed a new Petri-net model for representing the objects' states in VE. This Petri-net model has several original characteristics, which make it easier to manage the change of the objects' states. Furthermore, we made a support system for constructing the Petri-net model of machine-disassembling training, because the Petri-net model is apt to become of large size. The effectiveness of this support system is shown through the system development. Secondly, this system can perform appropriate tasks to be done next in VE whenever the trainee wants even after some mistakes have been made. The effectiveness of this function has also been confirmed by experiments. (author)

  15. Simulation environment based on the Universal Verification Methodology

    International Nuclear Information System (INIS)

    Fiergolski, A.

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC design; (2) the C3PD 180 nm HV-CMOS active sensor ASIC design; (3) the FPGA-based DAQ system of the CLICpix chip. This paper, based on the experience from the above projects, introduces briefly UVM and presents a set of tips and advices applicable at different stages of the verification process-cycle.

  16. Simulating cloud environment for HIS backup using secret sharing.

    Science.gov (United States)

    Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto

    2013-01-01

    In the face of a disaster hospitals are expected to be able to continue providing efficient and high-quality care to patients. It is therefore crucial for hospitals to develop business continuity plans (BCPs) that identify their vulnerabilities, and prepare procedures to overcome them. A key aspect of most hospitals' BCPs is creating the backup of the hospital information system (HIS) data at multiple remote sites. However, the need to keep the data confidential dramatically increases the costs of making such backups. Secret sharing is a method to split an original secret message so that individual pieces are meaningless, but putting sufficient number of pieces together reveals the original message. It allows creation of pseudo-redundant arrays of independent disks for privacy-sensitive data over the Internet. We developed a secret sharing environment for StarBED, a large-scale network experiment environment, and evaluated its potential and performance during disaster recovery. Simulation results showed that the entire main HIS database of Kyoto University Hospital could be retrieved within three days even if one of the distributed storage systems crashed during a disaster.

  17. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology

    Directory of Open Access Journals (Sweden)

    Gerber Susanne

    2011-04-01

    Full Text Available Abstract Background Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. Results The Spatio-Temporal Simulation Environment (STSE is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images. STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts

  18. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.

    Science.gov (United States)

    Stoma, Szymon; Fröhlich, Martina; Gerber, Susanne; Klipp, Edda

    2011-04-28

    Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and workflow. We

  19. Comparative Study of the Effectiveness of Three Learning Environments: Hyper-Realistic Virtual Simulations, Traditional Schematic Simulations and Traditional Laboratory

    Science.gov (United States)

    Martinez, Guadalupe; Naranjo, Francisco L.; Perez, Angel L.; Suero, Maria Isabel; Pardo, Pedro J.

    2011-01-01

    This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output.…

  20. Industry and the environment: Chief executive officer attitudes, 1976 and 1986

    Science.gov (United States)

    Bowman, James S.; Davis, Charles

    1989-03-01

    This research considers the question of changing environmental values within the leadership of firms responsible for the management of pollution as an unwanted byproduct. Information was obtained from a pair of surveys mailed to the chief executive officers (CEOs) of the 50 largest firms listed within the mining and manufacturing directories of Colorado, Montana, Utah, and Wyoming in 1976 and again in 1986. The authors found that industry CEOs were more supportive of environmental concerns in 1986 than 1976, suggesting that ecological values have become institutionalized to some extent. Yet, there is little indication that this attitudinal shift in environmental concern among CEOs has been accompanied by a willingness to spend a larger proportion of the company budget on pollution control or to improve working relationships with federal regulatory officials.

  1. The Development and Evaluation of a Computer-Simulated Science Inquiry Environment Using Gamified Elements

    Science.gov (United States)

    Tsai, Fu-Hsing

    2018-01-01

    This study developed a computer-simulated science inquiry environment, called the Science Detective Squad, to engage students in investigating an electricity problem that may happen in daily life. The environment combined the simulation of scientific instruments and a virtual environment, including gamified elements, such as points and a story for…

  2. WinGraphics: An optimized windowing environment for interactive real-time simulations

    International Nuclear Information System (INIS)

    Verboncoeur, J.P.; Vahedi, V.

    1989-01-01

    We have developed a customized windowing environment, Win Graphics, which provides particle simulation codes with an interactive user interface. The environment supports real-time animation of the simulation, displaying multiple diagnostics as they evolve in time. In addition, keyboard and printer (PostScript and dot matrix) support is provided. This paper describes this environment

  3. Modes of Disintegration of Solid Foods in Simulated Gastric Environment

    Science.gov (United States)

    Kong, Fanbin

    2009-01-01

    A model stomach system was used to investigate disintegration of various foods in simulated gastric environment. Food disintegration modes and typical disintegration profiles are summarized in this paper. Mechanisms contributing to the disintegration kinetics of different foods were investigated as related to acidity, temperature, and enzymatic effect on the texture and changes in microstructure. Food disintegration was dominated by either fragmentation or erosion, depending on the physical forces acting on food and the cohesive force within the food matrix. The internal cohesive forces changed during digestion as a result of water penetration and acidic and enzymatic hydrolysis. When erosion was dominant, the disintegration data (weight retention vs. disintegration time) may be expressed with exponential, sigmoidal, and delayed-sigmoidal profiles. The different profiles are the result of competition among the rates of water absorption, texture softening, and erosion. A linear-exponential equation was used to describe the different disintegration curves with good fit. Acidity and temperature of gastric juice showed a synergistic effect on carrot softening, while pepsin was the key factor in disintegrating high-protein foods. A study of the change of carrot microstructure during digestion indicated that degradation of the pectin and cell wall was responsible for texture softening that contributed to the sigmoidal profile of carrot disintegration. PMID:20401314

  4. Simulated learning environment (SLE) in audiology education: A systematic review.

    Science.gov (United States)

    Dzulkarnain, Ahmad Aidil Arafat; Wan Mhd Pandi, Wan Mahirah; Rahmat, Sarah; Zakaria, Nur 'Azzah

    2015-01-01

    To systematically review the relevant peer-review literature investigating the outcome of simulated learning environment (SLE) training in audiology education. A systematic review research design. Fifteen databases were searched with four studies meeting the inclusion criteria. Three of the four studies revealed positive findings for the use of an SLE (that is, the SLE group showed a higher post-training score compared to the traditional training group or a significantly higher post-training score than the non-training groups). One study revealed negative findings where the traditional training group showed a significantly higher post-training score than the SLE group. In addition, both the studies comparing post- and pre-training scores reported significantly higher post-training scores than the pre-training scores of the participants that underwent SLE training. Overall, this review supports the notions that SLE training is an effective learning tool and can be used for basic clinical training. This conclusion should be treated with caution, considering the limited numbers of studies published in this area and future research should be conducted to cope with the gaps highlighted in this review.

  5. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Science.gov (United States)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  6. Creation of an Integrated Environment to Supply e-Learning Platforms with Office Automation Features

    Science.gov (United States)

    Palumbo, Emilio; Verga, Francesca

    2015-01-01

    Over the last years great efforts have been made within the University environment to implement e-learning technologies in the standard educational practice. These learning technologies distribute online educational multimedia contents through technological platforms. Even though specific e-learning tools for technical disciplines were already…

  7. Perceived indoor environment and occupants’ comfort in European “Modern” office buildings: The OFFICAIR Study

    NARCIS (Netherlands)

    Sakellaris, I.A.; Saraga, D.E.; Mandin, C.; Roda, C.; Fossati, S.; Kluizenaar, Y. de; Carrer, P.; Dimitroulopoulou, S.; Mihucz, V.G.; Szigeti, T.; Hänninen, O.; Oliveira Fernandes, E. de; Bartzis, J.G.; Bluyssen, P.M.

    2016-01-01

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to

  8. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Science.gov (United States)

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  9. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-01-01

    Full Text Available A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1 measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2 implementing questionnaire survey analysis to explore people’s environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3 constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV, two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1~0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement.

  10. A numerical study on the effects of exhaust locations on energy consumption and thermal environment in an office room served by displacement ventilation

    International Nuclear Information System (INIS)

    Ahmed, Ahmed Qasim; Gao, Shian; Kareem, Ali Khaleel

    2016-01-01

    Highlights: • An advanced CFD program was developed and validated successfully. • The relation between the exhaust positions and heat sources was analysed. • Energy saving, thermal comfort and inhaled air quality were studied for 5 cases. • By combining the exhaust with office lamps, a 25% of energy saving was achieved. - Abstract: In an office room, many factors affect the pattern of airflow, thermal comfort, indoor air quality and energy saving. In this study, the effects of the location of exhaust diffusers where the warm and contaminant air is extracted and their relation to room heat sources on thermal comfort and energy saving were investigated numerically for an office served by a displacement ventilation system. The indoor air quality in the breathing level and the inhaled zone were also evaluated. The contaminants were released from window and door frames in order to simulate the contaminants coming from outside. The amount of energy consumption and the indoor thermal environment for various exhaust locations were investigated numerically using the computational fluid dynamics techniques. The results showed that the thermal indoor environment, thermal comfort, quality of indoor air and energy saving were greatly improved by combining the exhaust outlets with some of the room’s heat sources such as ceiling lamps and external walls. In particular, a 25.0% of energy saving was achieved by combining the exhaust diffuser with room’s ceiling lamps. In addition, locating the exhaust diffuser near the heat sources also reduced the cooling coil load by 13.8%. The risk of a large difference in temperature between the head and foot levels, increased particle concentration in the occupied zone, as well as increased energy consumption was also clearly demonstrated when the exhaust and recirculated air outlet (return opening) were combined in one unit in the occupied boundary area that is located at 2 m away from the occupants. Thus, for the optimum energy

  11. A longitudinal investigation of work environment stressors on the performance and wellbeing of office workers.

    Science.gov (United States)

    Lamb, S; Kwok, K C S

    2016-01-01

    This study uses a longitudinal within-subjects design to investigate the effects of inadequate Indoor Environmental Quality (IEQ) on work performance and wellbeing in a sample of 114 office workers over a period of 8 months. Participants completed a total of 2261 online surveys measuring perceived thermal comfort, lighting comfort and noise annoyance, measures of work performance, and individual state factors underlying performance and wellbeing. Characterising inadequate aspects of IEQ as environmental stressors, these stress factors can significantly reduce self-reported work performance and objectively measured cognitive performance by between 2.4% and 5.8% in most situations, and by up to 14.8% in rare cases. Environmental stressors act indirectly on work performance by reducing state variables, motivation, tiredness, and distractibility, which support high-functioning work performance. Exposure to environmental stress appears to erode individuals' resilience, or ability to cope with additional task demands. These results indicate that environmental stress reduces not only the cognitive capacity for work, but the rate of work (i.e. by reducing motivation). Increasing the number of individual stress factors is associated with a near linear reduction in work performance indicating that environmental stress factors are additive, not multiplicative. Environmental stressors reduce occupant wellbeing (mood, headaches, and feeling 'off') causing indirect reductions in work performance. Improving IEQ will likely produce small but pervasive increases in productivity. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure.

    Science.gov (United States)

    Morawska, L; Ayoko, G A; Bae, G N; Buonanno, G; Chao, C Y H; Clifford, S; Fu, S C; Hänninen, O; He, C; Isaxon, C; Mazaheri, M; Salthammer, T; Waring, M S; Wierzbicka, A

    2017-11-01

    It has been shown that the exposure to airborne particulate matter is one of the most significant environmental risks people face. Since indoor environment is where people spend the majority of time, in order to protect against this risk, the origin of the particles needs to be understood: do they come from indoor, outdoor sources or both? Further, this question needs to be answered separately for each of the PM mass/number size fractions, as they originate from different sources. Numerous studies have been conducted for specific indoor environments or under specific setting. Here our aim was to go beyond the specifics of individual studies, and to explore, based on pooled data from the literature, whether there are generalizable trends in routes of exposure at homes, schools and day cares, offices and aged care facilities. To do this, we quantified the overall 24h and occupancy weighted means of PM 10 , PM 2.5 and PN - particle number concentration. Based on this, we developed a summary of the indoor versus outdoor origin of indoor particles and compared the means to the WHO guidelines (for PM 10 and PM 2.5 ) and to the typical levels reported for urban environments (PN). We showed that the main origins of particle metrics differ from one type of indoor environment to another. For homes, outdoor air is the main origin of PM 10 and PM 2.5 but PN originate from indoor sources; for schools and day cares, outdoor air is the source of PN while PM 10 and PM 2.5 have indoor sources; and for offices, outdoor air is the source of all three particle size fractions. While each individual building is different, leading to differences in exposure and ideally necessitating its own assessment (which is very rarely done), our findings point to the existence of generalizable trends for the main types of indoor environments where people spend time, and therefore to the type of prevention measures which need to be considered in general for these environments. Copyright © 2017 The

  13. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology.

    Science.gov (United States)

    Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter

    2015-07-01

    To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  14. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement.

    Science.gov (United States)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-02-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of (238)U, (232)Th, and (40)K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement

    International Nuclear Information System (INIS)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-01-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of "2"3"8U, "2"3"2Th, and "4"0K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. - Highlights: • This study proposes a novel natural environment background model by simulating decays of "2"3"8U, "2"3"2Th, and "4"0K in soil. • The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. • The proposed environment background model is applied to study the properties of anticoincidence detector.

  16. Simulations of embodied evolving semiosis: Emergent semantics in artificial environments

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, L.M.; Joslyn, C.

    1998-02-01

    As we enter this amazing new world of artificial and virtual systems and environments in the context of human communities, we are interested in the development of systems and environments which have the capacity to grow and evolve their own meanings in the context of this community of interaction. In this paper the authors analyze the necessary conditions to achieve systems and environments with these properties: (1) a coupled interaction between a system and its environment; (2) an environment with sufficient initial richness and structure to allow for; (3) embodied emergent classification of that environment system coupling; and (4) which is subject to pragmatic selection.

  17. High Fidelity Simulation of Littoral Environments: Applications and Coupling of Participating Models

    National Research Council Canada - National Science Library

    Allard, Richard

    2003-01-01

    The High Fidelity Simulation of Littoral Environments (HFSoLE) Challenge Project (C75) encompasses a suite of seven oceanographic models capable of exchanging information in a physically meaningful sense across the littoral environment...

  18. BioNessie - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X.; Jiang, J.; Ajayi, O.; Gu, X.; Gilbert, D.; Sinnott, R.O.

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations.

  19. Comparison of portable oxygen concentrators in a simulated airplane environment.

    Science.gov (United States)

    Fischer, Rainald; Wanka, Eva R; Einhaeupl, Franziska; Voll, Klaus; Schiffl, Helmut; Lang, Susanne M; Gruss, Martin; Ferrari, Uta

    2013-01-01

    Portable oxygen concentrators (POC) are highly desirable for patients with lung disease traveling by airplane, as these devices allow theoretically much higher travel times if additional batteries can be used. However, it is unclear whether POCs produce enough oxygen in airplanes at cruising altitude, even if complying with aviation regulations. We evaluated five frequently used POCs (XPO2 (Invacare, USA), Freestyle (AirSep C., USA), Evergo (Philipps Healthcare, Germany), Inogen One (Inogen, USA), Eclipse 3 (Sequal, USA)) at an altitude of 2650 m (as simulated airplane environment) in 11 patients with chronic obstructive lung disease (COPD) and compared theses POCs with the standard oxygen system (WS120, EMS Ltd., Germany) used by Lufthansa. Oxygen was delivered by each POC for 30 min to each patient at rest, blood gases were then drawn from the arterialized ear lobe. All POCs were able to deliver enough oxygen to increase the PaO(2) of our subjects by at least 1.40 kPa (10 mmHg). However, to achieve this increase, the two most lightweight POCs (Freestyle and Invacare XPO2) had to be run at their maximum level. This causes a significant reduction of battery life. The three other POCs (EverGo, Inogen One, Eclipse 3) and the WS120 were able to increase the PaO(2) by more than 2.55 kPa (20 mmHg), which provides extra safety for patients with more severe basal hypoxemia. When choosing the right oxygen system for air travel in patients in COPD, not only weight, but also battery life and maximum possible oxygen output must be considered carefully. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Implementing Iris in the Railway Control Office Application for Secure Saas in Cloud Environment

    OpenAIRE

    Dr. K. Meena; Dr. M. Manimekalai

    2015-01-01

    Technology plays a vital role in each and every part of the world. In particular ―Cloud‖ computing - a moderately recent term, characterizes the path to develop the advancement in the world of computer science. Further, Cloud provides an affordable environment for its users through different forms of services such as SaaS (Software as a service), PaaS (Platform as a service), and IaaS (Infrastructure as a Service). Cloud computing is also an Internet-based computing where a large ...

  1. [Association between psychosocial work environment and workplace bullying among office workers].

    Science.gov (United States)

    Hua, Y J; Dai, J M; Gao, J L; Lu, X Y; Liu, J Y; Fu, H

    2016-04-20

    To assess the prevalence of bullying in companies and health care center and identify the association between psychosocial environment and workplace bullying. A total of 847 employees at in business building companies and 146 employees at one community health service center were invited to this survey by cluster sampling during October to December 2014, using anonymous questionnaires including the general demographic information, job characteristics, job stress core scale, the social capital scale, and NAQ-R. The rate of targets of bullying in the two kinds of workplaces were 13.1% and 5.6% respectively. Workplace bullying was associated with employee's education level(χ(2)=11.17, P=0.019)and the area his or her families live in(χ(2)=5.66, P=0.017). In addition, workplace bullying was significantly associated with psychosocial work environment. Job demand was positively correlated with workplace bullying (OR=2.24, 95% CI=1.34~3.74), and workplace social support was negatively associated with workplace bullying (OR= 0.33, 95% CI=0.18~0.60). Workplace bullying can be reduced by adjusting certain working conditions that negatively affect employees who are susceptible to being bullied, giving their individual and job characteristic. Moreover, workplace bullying could also be reduced if job demands are limited and job control and social capital are increased.

  2. Simulation training tools for nonlethal weapons using gaming environments

    Science.gov (United States)

    Donne, Alexsana; Eagan, Justin; Tse, Gabriel; Vanderslice, Tom; Woods, Jerry

    2006-05-01

    Modern simulation techniques have a growing role for evaluating new technologies and for developing cost-effective training programs. A mission simulator facilitates the productive exchange of ideas by demonstration of concepts through compellingly realistic computer simulation. Revolutionary advances in 3D simulation technology have made it possible for desktop computers to process strikingly realistic and complex interactions with results depicted in real-time. Computer games now allow for multiple real human players and "artificially intelligent" (AI) simulated robots to play together. Advances in computer processing power have compensated for the inherent intensive calculations required for complex simulation scenarios. The main components of the leading game-engines have been released for user modifications, enabling game enthusiasts and amateur programmers to advance the state-of-the-art in AI and computer simulation technologies. It is now possible to simulate sophisticated and realistic conflict situations in order to evaluate the impact of non-lethal devices as well as conflict resolution procedures using such devices. Simulations can reduce training costs as end users: learn what a device does and doesn't do prior to use, understand responses to the device prior to deployment, determine if the device is appropriate for their situational responses, and train with new devices and techniques before purchasing hardware. This paper will present the status of SARA's mission simulation development activities, based on the Half-Life gameengine, for the purpose of evaluating the latest non-lethal weapon devices, and for developing training tools for such devices.

  3. Pressurized water reactor simulation in the training environment

    International Nuclear Information System (INIS)

    Wills, A.G.

    1990-01-01

    The paper gives a brief history of PWR Simulation within the DNST and an outline of the training courses leading to the requirement for the Display Array Simulation System. Focus is then placed upon the flexible use of real time simulation in the teaching of plant dynamics by the use of model generated data. The use of interactive consoles and a large scale colour graphic display has led to the success of the Display Array Simulation System within the DNST. Realisation of the potential of the system has led to many other proposed uses for the installed system and the paper concludes by discussing some of these. (orig./DG)

  4. Initial Development of a Quadcopter Simulation Environment for Auralization

    Science.gov (United States)

    Christian, Andrew; Lawrence, Joseph

    2016-01-01

    This paper describes a recently created computer simulation of quadcopter flight dynamics for the NASA DELIVER project. The goal of this effort is to produce a simulation that includes a number of physical effects that are not usually found in other dynamics simulations (e.g., those used for flight controller development). These effects will be shown to have a significant impact on the fidelity of auralizations - entirely synthetic time-domain predictions of sound - based on this simulation when compared to a recording. High-fidelity auralizations are an important precursor to human subject tests that seek to understand the impact of vehicle configurations on noise and annoyance.

  5. Simulation Assessment Validation Environment (SAVE). Software User’s Manual

    Science.gov (United States)

    2000-09-01

    TOOL USAGE Figure 2-14: Factory Simulation Tool Usage This tool directly emulates real-world system behaviors that are associated with each resource...manufacturing simulation tools and Computer Aided Design (CAD) tools. The Factory/Schedule Simulation tool is used to simulate real-world system behaviors ...char Name>_pfchar Part Usage(Produced)/Part/Feature/Char <partuseName>_<partName>_<matName>_<char Name>_cmat PartUsage( Comsumed )/Part/Material

  6. Governator vs. Hunter and Aggregator: A simulation of party competition with vote-seeking and office-seeking rules.

    Science.gov (United States)

    Lehrer, Roni; Schumacher, Gijs

    2018-01-01

    The policy positions parties choose are central to both attracting voters and forming coalition governments. How then should parties choose positions to best represent voters? Laver and Sergenti show that in an agent-based model with boundedly rational actors a decision rule (Aggregator) that takes the mean policy position of its supporters is the best rule to achieve high congruence between voter preferences and party positions. But this result only pertains to representation by the legislature, not representation by the government. To evaluate this we add a coalition formation procedure with boundedly rational parties to the Laver and Sergenti model of party competition. We also add two new decision rules that are sensitive to government formation outcomes rather than voter positions. We develop two simulations: a single-rule one in which parties with the same rule compete and an evolutionary simulation in which parties with different rules compete. In these simulations we analyze party behavior under a large number of different parameters that describe real-world variance in political parties' motives and party system characteristics. Our most important conclusion is that Aggregators also produce the best match between government policy and voter preferences. Moreover, even though citizens often frown upon politicians' interest in the prestige and rents that come with winning political office (office pay-offs), we find that citizens actually receive better representation by the government if politicians are motivated by these office pay-offs in contrast to politicians with ideological motivations (policy pay-offs). Finally, we show that while more parties are linked to better political representation, how parties choose policy positions affects political representation as well. Overall, we conclude that to understand variation in the quality of political representation scholars should look beyond electoral systems and take into account variation in party

  7. High-fidelity hybrid simulation of allergic emergencies demonstrates improved preparedness for office emergencies in pediatric allergy clinics.

    Science.gov (United States)

    Kennedy, Joshua L; Jones, Stacie M; Porter, Nicholas; White, Marjorie L; Gephardt, Grace; Hill, Travis; Cantrell, Mary; Nick, Todd G; Melguizo, Maria; Smith, Chris; Boateng, Beatrice A; Perry, Tamara T; Scurlock, Amy M; Thompson, Tonya M

    2013-01-01

    Simulation models that used high-fidelity mannequins have shown promise in medical education, particularly for cases in which the event is uncommon. Allergy physicians encounter emergencies in their offices, and these can be the source of much trepidation. To determine if case-based simulations with high-fidelity mannequins are effective in teaching and retention of emergency management team skills. Allergy clinics were invited to Arkansas Children's Hospital Pediatric Understanding and Learning through Simulation Education center for a 1-day workshop to evaluate skills concerning the management of allergic emergencies. A Clinical Emergency Preparedness Team Performance Evaluation was developed to evaluate the competence of teams in several areas: leadership and/or role clarity, closed-loop communication, team support, situational awareness, and scenario-specific skills. Four cases, which focus on common allergic emergencies, were simulated by using high-fidelity mannequins and standardized patients. Teams were evaluated by multiple reviewers by using video recording and standardized scoring. Ten to 12 months after initial training, an unannounced in situ case was performed to determine retention of the skills training. Clinics showed significant improvements for role clarity, teamwork, situational awareness, and scenario-specific skills during the 1-day workshop (all P clinics (all P ≤ .004). Clinical Emergency Preparedness Team Performance Evaluation scores demonstrated improved team management skills with simulation training in office emergencies. Significant recall of team emergency management skills was demonstrated months after the initial training. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  9. Built sustainability. The office building of the Federal Ministry for the Environment in Berlin; Gebaute Nachhaltigkeit. Der Berliner Dienstsitz des Bundesumweltministeriums

    Energy Technology Data Exchange (ETDEWEB)

    Mager, Hans; Schulz, Juergen; Weigand, Reinhold (comps.)

    2011-06-15

    With the move into the office building in the Stresemann Street in Berlin (Federal Republic of Germany), the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety adopts a remarkable new building in the new centre of Berlin. It is the first Federal authority at all which works in a low-energy and passive house. This brochure under consideration reports on the history and architecture of the new office building as well as its sustainable energy management and life cycle assessments.

  10. Evaluation and development the routing protocol of a fully functional simulation environment for VANETs

    Science.gov (United States)

    Ali, Azhar Tareq; Warip, Mohd Nazri Mohd; Yaakob, Naimah; Abduljabbar, Waleed Khalid; Atta, Abdu Mohammed Ali

    2017-11-01

    Vehicular Ad-hoc Networks (VANETs) is an area of wireless technologies that is attracting a great deal of interest. There are still several areas of VANETS, such as security and routing protocols, medium access control, that lack large amounts of research. There is also a lack of freely available simulators that can quickly and accurately simulate VANETs. The main goal of this paper is to develop a freely available VANETS simulator and to evaluate popular mobile ad-hoc network routing protocols in several VANETS scenarios. The VANETS simulator consisted of a network simulator, traffic (mobility simulator) and used a client-server application to keep the two simulators in sync. The VANETS simulator also models buildings to create a more realistic wireless network environment. Ad-Hoc Distance Vector routing (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) were initially simulated in a city, country, and highway environment to provide an overall evaluation.

  11. Discrete event simulation in an artificial intelligence environment: Some examples

    International Nuclear Information System (INIS)

    Roberts, D.J.; Farish, T.

    1991-01-01

    Several Los Alamos National Laboratory (LANL) object-oriented discrete-event simulation efforts have been completed during the past three years. One of these systems has been put into production and has a growing customer base. Another (started two years earlier than the first project) was completed but has not yet been used. This paper will describe these simulation projects. Factors which were pertinent to the success of the one project, and to the failure of the second project will be discussed (success will be measured as the extent to which the simulation model was used as originally intended). 5 figs

  12. Simulating Nonmodel-Fitting Responses in a CAT Environment. ACT Research Report Series 98-10.

    Science.gov (United States)

    Yi, Qing; Nering, Michael L.

    This study developed a model to simulate nonmodel-fitting responses in a computerized adaptive testing (CAT) environment, and to examine the effectiveness of the model. The underlying idea was to simulate examinees' test behaviors realistically. This study simulated a situation in which examinees are exposed to or are coached on test items before…

  13. Simulations of depleted CMOS sensors for high-radiation environments

    CERN Document Server

    Liu, J.; Bhat, S.; Breugnon, P.; Caicedo, I.; Chen, Z.; Degerli, Y.; Godiot-Basolo, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Hügging, F.; Krüger, H.; Moustakas, K.; Pangaud, P.; Rozanov, A.; Rymaszewski, P.; Schwemling, P.; Wang, M.; Wang, T.; Wermes, N.; Zhang, L.

    2017-01-01

    After the Phase II upgrade for the Large Hadron Collider (LHC), the increased luminosity requests a new upgraded Inner Tracker (ITk) for the ATLAS experiment. As a possible option for the ATLAS ITk, a new pixel detector based on High Voltage/High Resistivity CMOS (HV/HR CMOS) technology is under study. Meanwhile, a new CMOS pixel sensor is also under development for the tracker of Circular Electron Position Collider (CEPC). In order to explore the sensor electric properties, such as the breakdown voltage and charge collection efficiency, 2D/3D Technology Computer Aided Design (TCAD) simulations have been performed carefully for the above mentioned both of prototypes. In this paper, the guard-ring simulation for a HV/HR CMOS sensor developed for the ATLAS ITk and the charge collection efficiency simulation for a CMOS sensor explored for the CEPC tracker will be discussed in details. Some comparisons between the simulations and the latest measurements will also be addressed.

  14. Integrated Building Energy Design of a Danish Office Building Based on Monte Carlo Simulation Method

    DEFF Research Database (Denmark)

    Sørensen, Mathias Juul; Myhre, Sindre Hammer; Hansen, Kasper Kingo

    2017-01-01

    The focus on reducing buildings energy consumption is gradually increasing, and the optimization of a building’s performance and maximizing its potential leads to great challenges between architects and engineers. In this study, we collaborate with a group of architects on a design project of a new...... office building located in Aarhus, Denmark. Building geometry, floor plans and employee schedules were obtained from the architects which is the basis for this study. This study aims to simplify the iterative design process that is based on the traditional trial and error method in the late design phases...

  15. Towards a Game-Based Periscope Simulator for Submarine Officers Tactical Training

    Science.gov (United States)

    2016-06-01

    ONLY 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE TOWARDS A GAME -BASED PERISCOPE SIMULATOR...career to learn and practice these skills. Following an instructional system design process, this thesis developed a 3D, game -based periscope tactical...experience. Results of this thesis support the use of game -based simulation as training tools and that feedback type could be tailored to individuals based

  16. Comparative study of the effectiveness of three learning environments: Hyper-realistic virtual simulations, traditional schematic simulations and traditional laboratory

    Directory of Open Access Journals (Sweden)

    Maria Isabel Suero

    2011-10-01

    Full Text Available This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output. This new virtual environment concept, which we call hyper-realistic, transcends basic schematic simulation; it provides the user with a more realistic perception of a physical phenomenon being simulated. We compared the learning achievements of three equivalent, homogeneous groups of undergraduates—an experimental group who used only the hyper-realistic virtual laboratory, a first control group who used a schematic simulation, and a second control group who used the traditional laboratory. The three groups received the same theoretical preparation and carried out equivalent practicals in their respective learning environments. The topic chosen for the experiment was optical aberrations. An analysis of variance applied to the data of the study demonstrated a statistically significant difference (p value <0.05 between the three groups. The learning achievements attained by the group using the hyper-realistic virtual environment were 6.1 percentage points higher than those for the group using the traditional schematic simulations and 9.5 percentage points higher than those for the group using the traditional laboratory.

  17. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Rismanchi, B.; Saidur, R.; Masjuki, H.H.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  18. Multiscale simulation of molecular processes in cellular environments.

    Science.gov (United States)

    Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2016-11-13

    We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  19. Cooperative visualization and simulation in a supercomputer environment

    International Nuclear Information System (INIS)

    Ruehle, R.; Lang, U.; Wierse, A.

    1993-01-01

    The article takes a closer look on the requirements being imposed by the idea to integrate all the components into a homogeneous software environment. To this end several methods for the distribtuion of applications in dependence of certain problem types are discussed. The currently available methods at the University of Stuttgart Computer Center for the distribution of applications are further explained. Finally the aims and characteristics of a European sponsored project, called PAGEIN, are explained, which fits perfectly into the line of developments at RUS. The aim of the project is to experiment with future cooperative working modes of aerospace scientists in a high speed distributed supercomputing environment. Project results will have an impact on the development of real future scientific application environments. (orig./DG)

  20. Simulation of maize growth under conservation farming in tropical environments.

    NARCIS (Netherlands)

    Stroosnijder, L.; Kiepe, P.

    1998-01-01

    This book is written for students and researchers with a keen interest in the quantification of the field soil water balance in tropical environments and the effect of conservation farming on crop production. Part 1 deals with the potential production, i.e. crop growth under ample supply of water

  1. Improved climate risk simulations for rice in arid environments

    NARCIS (Netherlands)

    Oort, van P.A.J.; Vries, de M.; Yoshida, H.; Saito, K.

    2015-01-01

    We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed

  2. Simulation of indoor environment in low energy housing

    DEFF Research Database (Denmark)

    Vagiannis, Georgios; Knudsen, Henrik N.; Toftum, Jørn

    2012-01-01

    was selected and sensitivity analyses were conducted for the importance of occupancy, ventilation, window opening, and heat recovery efficiency. In particular occupancy and venting played significant roles for the indoor environment and energy consumption. It was also shown that with passive measures, but also...

  3. Computer simulation of defect behavior under fusion irradiation environments

    International Nuclear Information System (INIS)

    Muroga, T.; Ishino, S.

    1983-01-01

    To simulate defect behavior under irradiation, three kinds of cascade-annealing calculations have been carried out in alpha-iron using the codes MARLOWE, DAIQUIRI and their modifications. They are (1) cascade-annealing calculation with different masses of projectile, (2) defect drifting near dislocations after cascade production and (3) cascade-overlap calculation. The defect survival ratio is found to increase as decreasing mass of the projectile both after athermal close-pair recombination and after thermal annealing. It is shown that at moderate temperatures vacancy clustering is enhanced near dislocations. Cascade-overlap is found to decrease the defect survivability. In addition, the role of helium in vacancy clustering has been calculated in aluminium lattices and its effect is found to depend strongly on temperature, interstitials and the mobility of small clusters. These results correspond well to the experimental data and will be helpful for correlating between fusion and simulation irradiations. (orig.)

  4. 3D hybrid simulation of the Titan's plasma environment

    Science.gov (United States)

    Lipatov, Alexander; Sittler, Edward, Jr.; Hartle, Richard

    2007-11-01

    Titan plays an important role as a simulation laboratory for multiscale kinetic plasma processes which are key processes in space and laboratory plasmas. A development of multiscale combined numerical methods allows us to use more realistic plasma models at Titan. In this report, we describe a Particle-Ion--Fluid-Ion--Fluid--Electron method of kinetic ion-neutral simulation code. This method takes into account charge-exchange and photoionization processes. The model of atmosphere of Titan was based on a paper by Sittler, Hartle, Vinas et al., [2005]. The background ions H^+, O^+ and pickup ions H2^+, CH4^+ and N2^+ are described in a kinetic approximation, where the electrons are approximated as a fluid. In this report we study the coupling between background ions and pickup ions on the multiple space scales determined by the ion gyroradiis. The first results of such a simulation of the dynamics of ions near Titan are discussed in this report and compared with recent measurements made by the Cassini Plasma Spectrometer (CAPS, [Hartle, Sittler et al., 2006]). E C Sittler Jr., R E Hartle, A F Vinas, R E Johnson, H T Smith and I Mueller-Wodarg, J. Geophys. Res., 110, A09302, 2005.R E Hartle, E C Sittler, F M Neubauer, R E Johnson, et al., Planet. Space Sci., 54, 1211, 2006.

  5. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    International Nuclear Information System (INIS)

    Mike Bockelie; Dave Swensen; Martin Denison

    2002-01-01

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, our efforts have become focused on developing an improved workbench for simulating a gasifier based Vision 21 energyplex. To provide for interoperability of models developed under Vision 21 and other DOE programs, discussions have been held with DOE and other organizations developing plant simulator tools to review the possibility of establishing a common software interface or protocol to use when developing component models. A component model that employs the CCA protocol has successfully been interfaced to our CCA enabled workbench. To investigate the software protocol issue, DOE has selected a gasifier based Vision 21 energyplex configuration for use in testing and evaluating the impacts of different software interface methods. A Memo of Understanding with the Cooperative Research Centre for Coal in Sustainable Development (CCSD) in Australia has been completed that will enable collaborative research efforts on gasification issues. Preliminary results have been obtained for a CFD model of a pilot scale, entrained flow gasifier. A paper was presented at the Vision 21 Program Review Meeting at NETL (Morgantown) that summarized our accomplishments for Year One and plans for Year Two and Year Three

  6. Development of a Web-Based Periscope Simulator for Submarine Officer Training

    Science.gov (United States)

    2014-09-01

    could be misdirected without the wise guidance of Amela and Chris , my advisors. Thank you, Amela, for all your time, dedication, patience, and...valuable advice, even during your vacations. Thank you, Chris , for presenting me with otherwise hard subjects of modeling and simulation in such a didactic...behavior (Bandura, 1986). According to Compeau and Higgins (1995), self-efficacy can influence the learner’s choice about the behavior to undertake, effort

  7. Applied environmetrics. Simulation applied to the physical environment

    Energy Technology Data Exchange (ETDEWEB)

    Beer, T

    1988-02-01

    Environmetrics is the application of quantitative methods to all aspects of the social and natural environment. This includes forecasting, mathematical modelling, data analysis, and statistics. Applied Environmetrics as a discipline involves the analysis of environmental data through the use of packaged, or specially designed computer software. Two case studies of recent implementations of applied environmetrics within the Australian mining industry are dealt with. 3 figs., 5 refs.

  8. High performance computing network for cloud environment using simulators

    OpenAIRE

    Singh, N. Ajith; Hemalatha, M.

    2012-01-01

    Cloud computing is the next generation computing. Adopting the cloud computing is like signing up new form of a website. The GUI which controls the cloud computing make is directly control the hardware resource and your application. The difficulty part in cloud computing is to deploy in real environment. Its' difficult to know the exact cost and it's requirement until and unless we buy the service not only that whether it will support the existing application which is available on traditional...

  9. Training and learning for crisis management using a virtual simulation/gaming environment

    NARCIS (Netherlands)

    Walker, W.E.; Giddings, J.; Armstrong, S.

    2011-01-01

    Recent advances in computers, networking, and telecommunications offer new opportunities for using simulation and gaming as methodological tools for improving crisis management. It has become easy to develop virtual environments to support games, to have players at distributed workstations

  10. An Open-Source Simulation Environment for Model-Based Engineering, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work is a new spacecraft simulation environment for model-based engineering of flight algorithms and software. The goal is to provide a much faster way...

  11. The Use of Computer Simulation to Compare Student performance in Traditional versus Distance Learning Environments

    Directory of Open Access Journals (Sweden)

    Retta Guy

    2015-06-01

    Full Text Available Simulations have been shown to be an effective tool in traditional learning environments; however, as distance learning grows in popularity, the need to examine simulation effectiveness in this environment has become paramount. A casual-comparative design was chosen for this study to determine whether students using a computer-based instructional simulation in hybrid and fully online environments learned better than traditional classroom learners. The study spans a period of 6 years beginning fall 2008 through spring 2014. The population studied was 281 undergraduate business students self-enrolled in a 200-level microcomputer application course. The overall results support previous studies in that computer simulations are most effective when used as a supplement to face-to-face lectures and in hybrid environments.

  12. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies

    Directory of Open Access Journals (Sweden)

    Yan-chun Yang

    2008-06-01

    Full Text Available Lunar rover development involves a large amount of validation works in realistic operational conditions, including its mechanical subsystem and on-board software. Real tests require equipped rover platform and a realistic terrain. It is very time consuming and high cost. To improve the development efficiency, a rover simulation environment called RSVE that affords real time capabilities with high fidelity has been developed. It uses fractional Brown motion (fBm technique and statistical properties to generate lunar surface. Thus, various terrain models for simulation can be generated through changing several parameters. To simulate lunar rover evolving on natural and unstructured surface with high realism, the whole dynamics of the multi-body systems and complex interactions with soft ground is integrated in this environment. An example for path planning algorithm and controlling algorithm testing in this environment is tested. This simulation environment runs on PC or Silicon Graphics.

  13. A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies

    Directory of Open Access Journals (Sweden)

    Yan-chun Yang

    2008-11-01

    Full Text Available Lunar rover development involves a large amount of validation works in realistic operational conditions, including its mechanical subsystem and on-board software. Real tests require equipped rover platform and a realistic terrain. It is very time consuming and high cost. To improve the development efficiency, a rover simulation environment called RSVE that affords real time capabilities with high fidelity has been developed. It uses fractional Brown motion (fBm technique and statistical properties to generate lunar surface. Thus, various terrain models for simulation can be generated through changing several parameters. To simulate lunar rover evolving on natural and unstructured surface with high realism, the whole dynamics of the multi-body systems and complex interactions with soft ground is integrated in this environment. An example for path planning algorithm and controlling algorithm testing in this environment is tested. This simulation environment runs on PC or Silicon Graphics.

  14. Tutoring electronic troubleshooting in a simulated maintenance work environment

    Science.gov (United States)

    Gott, Sherrie P.

    1987-01-01

    A series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach to task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training.

  15. Lithium-ion Battery Electrothermal Model, Parameter Estimation, and Simulation Environment

    Directory of Open Access Journals (Sweden)

    Simone Orcioni

    2017-03-01

    Full Text Available The market for lithium-ion batteries is growing exponentially. The performance of battery cells is growing due to improving production technology, but market request is growing even more rapidly. Modeling and characterization of single cells and an efficient simulation environment is fundamental for the development of an efficient battery management system. The present work is devoted to defining a novel lumped electrothermal circuit of a single battery cell, the extraction procedure of the parameters of the single cell from experiments, and a simulation environment in SystemC-WMS for the simulation of a battery pack. The electrothermal model of the cell was validated against experimental measurements obtained in a climatic chamber. The model is then used to simulate a 48-cell battery, allowing statistical variations among parameters. The different behaviors of the cells in terms of state of charge, current, voltage, or heat flow rate can be observed in the results of the simulation environment.

  16. MathModelica - An Extensible Modeling and Simulation Environment with Integrated Graphics and Literate Programming

    OpenAIRE

    Fritzson, Peter; Gunnarsson, Johan; Jirstrand, Mats

    2002-01-01

    MathModelica is an integrated interactive development environment for advanced system modeling and simulation. The environment integrates Modelica-based modeling and simulation with graphic design, advanced scripting facilities, integration of program code, test cases, graphics, documentation, mathematical type setting, and symbolic formula manipulation provided via Mathematica. The user interface consists of a graphical Model Editor and Notebooks. The Model Editor is a graphical user interfa...

  17. Fatigue cracking of alloy 600 in simulated steam generator crevice environment

    International Nuclear Information System (INIS)

    Ogundele, G.; Lepik, O.

    1998-01-01

    Investigations were carried out to generate fatigue life (S-N) and near-threshold fatigue crack propagation (da/dN) data to determine the environmental influence on fatigue behavior for Alloy 600 in air, deionized water and in simulated Bruce Nuclear Generating Station 'A' crevice environments under appropriate loading conditions. In the low cycle fatigue regime, the simulated crevice environment did not affect the fatigue life of Alloy 600 under the applied loading conditions. The near-threshold fatigue crack growth rates of Alloy 600 in the simulated crevice environment were significantly lower compared to either pure water or air environments and is believed to be the result of higher crack closure in the crevice environment. (author)

  18. Simulation of worst-case operating conditions for integrated circuits operating in a total dose environment

    International Nuclear Information System (INIS)

    Bhuva, B.L.

    1987-01-01

    Degradations in the circuit performance created by the radiation exposure of integrated circuits are so unique and abnormal that thorough simulation and testing of VLSI circuits is almost impossible, and new ways to estimate the operating performance in a radiation environment must be developed. The principal goal of this work was the development of simulation techniques for radiation effects on semiconductor devices. The mixed-mode simulation approach proved to be the most promising. The switch-level approach is used to identify the failure mechanisms and critical subcircuits responsible for operational failure along with worst-case operating conditions during and after irradiation. For precise simulations of critical subcircuits, SPICE is used. The identification of failure mechanisms enables the circuit designer to improve the circuit's performance and failure-exposure level. Identification of worst-case operating conditions during and after irradiation reduces the complexity of testing VLSI circuits for radiation environments. The results of test circuits for failure simulations using a conventional simulator and the new simulator showed significant time savings using the new simulator. The savings in simulation time proved to be circuit topology-dependent. However, for large circuits, the simulation time proved to be orders of magnitude smaller than simulation time for conventional simulators

  19. Retention Capability of Local Backfill Materials 1-Simulated Disposal Environment

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.; El-Adham, K.A.; Mahmoud, N.S.

    2001-01-01

    In Egypt, a shallow ground disposal facility was the chosen option for the disposal of low and and intermediate radioactive wastes. The impact of the waste disposal facility on the environment depends on the nature of the barriers, which intend to limit and control contaminant migration. Owing to their physical, chemical and mechanical characteristics. Local soil materials were studied to illustrate the role of the back fill as part of an optimized safety multi-barrier system, which can provide the required level of protection of the environment and meet economic and regulatory requirements. A theoretical model was proposed to calculate the transport phenomena through the backfill materials. The credibility and validity of the proposed model was checked by the experimental results obtained from a three-arms arrangement system. The obtained data for the distribution coefficient (K d ) and the apparent diffusion coefficient (D a ) were in good agreement with those previously obtained in the literatures. Taking in consideration the prevailing initial conditions, the data calculated by the theoretical model applied show a reasonable agreement with the results obtained from experimental work. Prediction of radioactive cesium migration through the backfill materials using the proposed model was performed as a function of distance. The results obtained show that after 100 years, a fraction not exceeding 1E-9 of the original activity could be detected at 1m distance away from the waste material

  20. Computer simulation of population dynamics inside the urban environment

    Science.gov (United States)

    Andreev, A. S.; Inovenkov, I. N.; Echkina, E. Yu.; Nefedov, V. V.; Ponomarenko, L. S.; Tikhomirov, V. V.

    2017-12-01

    In this paper using a mathematical model of the so-called “space-dynamic” approach we investigate the problem of development and temporal dynamics of different urban population groups. For simplicity we consider an interaction of only two population groups inside a single urban area with axial symmetry. This problem can be described qualitatively by a system of two non-stationary nonlinear differential equations of the diffusion type with boundary conditions of the third type. The results of numerical simulations show that with a suitable choice of the diffusion coefficients and interaction functions between different population groups we can receive different scenarios of population dynamics: from complete displacement of one population group by another (originally more “aggressive”) to the “peaceful” situation of co-existence of them together.

  1. Computer simulations of polymers in a confined environment

    International Nuclear Information System (INIS)

    Sikorski, Andrzej; Romiszowski, Piotr

    2007-01-01

    A coarse-grained model of star-branched polymers confined in a slit formed by two parallel impenetrable surfaces, which were attractive for polymer segments, was developed and studied. The model chains were regular stars consisting of f = 3 branches of equal length. The flexible chains were constructed of united atoms (segments) and were restricted to vertices of a simple cubic lattice. Good solvent conditions were modelled and, thus, the macromolecules interacted only with the excluded volume. The properties of the model chains were determined by means of Monte Carlo simulations with a sampling algorithm based on the local changes of conformation of the chains. It appeared that the strongly adsorbed chains located in slits of appropriate width could swap between both confining surfaces. The influence of the chain length, width of the slit and the temperature on the frequency of such jumps was studied. The mechanism of the chain motion is also discussed

  2. Behavioral finance and games: simulations in the academic environment

    Directory of Open Access Journals (Sweden)

    Eliana Marcia Martins Fittipaldi Torga

    2017-12-01

    Full Text Available ABSTRACT The contribution from this study lies in its reflection on the factors that influence market efficiency, which requires a multidisciplinary view to analyze the intervening factors that impact results of the financial system. It also contributes by reflecting on the need for new approaches for training professionals who will go on to work in financial and related areas and preparing them by using different financial analysis techniques; by reflecting on the fact that analytical practices are influenced by social, cognitive, and emotional aspects, enabling the students to be better prepared to act in the financial market; by presenting various technical possibilities and providing more comprehensive knowledge to choose the one that best suits the object of analysis and their preferences; and by reflecting on different ways of perceiving investment opportunities and risk, which can be expanded on in other studies on the segmentation of clients according to their preferences in the investor market. The aim of this study was to analyze how social and psychological aspects influenced the decisions involved in simulated trading operations. The relevance lies in its discussion of the philosophical and epistemological position in finance, which suffers from a vision that only focuses on the rationality of means and does not explain the anomalies verified in the financial market. The study originated from the application of a company game simulating the work of stock market trading desk operators, applied in the Stock Market Operations course and using fundamental, technical, and graphical techniques. The population was intentional and made up of undergraduate and graduate students from one of the four best Brazilian federal universities. The data analysis was performed by analyzing the content of the questionnaires applied and the journal entries made during participant observation.

  3. D-VASim: An Interactive Virtual Laboratory Environment for the Simulation and Analysis of Genetic Circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2016-01-01

    runtime. The runtime interaction gives the user a feeling of being in the lab performing a real world experiment. In this work, we present a user-friendly software tool named D-VASim (Dynamic Virtual Analyzer and Simulator), which provides a virtual laboratory environment to simulate and analyze...

  4. Using Blackboard Wiki Pages as a Shared Space for Simulating the Professional Translation Work Environment

    Science.gov (United States)

    Vine, Juliet

    2015-01-01

    The Work-Integrated Simulation for Translators module is part of a three year undergraduate degree in translation. The semester long module aims to simulate several aspects of the translation process using the Blackboard virtual learning environment's Wikis as the interface for completing translation tasks. For each translation task, one of the…

  5. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    OpenAIRE

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collecti...

  6. Simulations of the potential revenue from investment in improved indoor air quality in an office building

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Djukanovic, Rade

    2005-01-01

    of improved worker performance; benefits from reduced health costs and sickness absence were not included. The building was simulated in a cold, a moderate and a hot climate. It was ventilated by a constant air volume (CAV) system with heat recovery and by a variable air volume (VAV) system with an economizer....... The air quality was improved by increasing the outdoor air supply rate and by reducing the pollution loads. These upgrades involved increased energy and HVAC maintenance costs, first costs of a HVAC system and building construction costs. But the additional investments were highly cost......-effective. The annual benefit due to improved air quality was up to 115 times higher than the increase in annual energy and maintenance costs. LCC analysis showed that productivity benefits resulting from a better indoor air quality were up to 60 times higher than the increased costs; the simple and discounted pay...

  7. Intelligent manufacturing through participation : a participative simulation environment for integral manufacturing enterprise renewal

    NARCIS (Netherlands)

    Eijnatten, F.M. van

    2002-01-01

    This book deals with a 'Participative Simulation environment for Intelligent Manufacturing' (PSIM). PSIM is a software environment for use in assembly operations and it is developed and pilot-demonstrated in five companies: Volvo (Sweden), Finland Post, Fiat (Italy), Yamatake (Japan), Ford (USA).

  8. Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview

    NARCIS (Netherlands)

    Blocken, B.J.E.; Stathopoulos, T.; Carmeliet, J.; Hensen, J.L.M.

    2011-01-01

    This paper provides an overview of the application of CFD in building performance simulation for the outdoor environment, focused on four topics: (1) pedestrian wind environment around buildings, (2) wind-driven rain on building facades, (3) convective heat transfer coefficients at exterior building

  9. The Potential of Simulated Environments in Teacher Education: Current and Future Possibilities

    Science.gov (United States)

    Dieker, Lisa A.; Rodriguez, Jacqueline A.; Lignugaris/Kraft, Benjamin; Hynes, Michael C.; Hughes, Charles E.

    2014-01-01

    The future of virtual environments is evident in many fields but is just emerging in the field of teacher education. In this article, the authors provide a summary of the evolution of simulation in the field of teacher education and three factors that need to be considered as these environments further develop. The authors provide a specific…

  10. Associations between the Objectively Measured Office Environment and Workplace Step Count and Sitting Time: Cross-Sectional Analyses from the Active Buildings Study.

    Science.gov (United States)

    Fisher, Abi; Ucci, Marcella; Smith, Lee; Sawyer, Alexia; Spinney, Richard; Konstantatou, Marina; Marmot, Alexi

    2018-06-01

    Office-based workers spend a large proportion of the day sitting and tend to have low overall activity levels. Despite some evidence that features of the external physical environment are associated with physical activity, little is known about the influence of the spatial layout of the internal environment on movement, and the majority of data use self-report. This study investigated associations between objectively-measured sitting time and activity levels and the spatial layout of office floors in a sample of UK office-based workers. Participants wore activPAL accelerometers for at least three consecutive workdays. Primary outcomes were steps and proportion of sitting time per working hour. Primary exposures were office spatial layout, which was objectively-measured by deriving key spatial variables: 'distance from each workstation to key office destinations', 'distance from participant's workstation to all other workstations', 'visibility of co-workers', and workstation 'closeness'. 131 participants from 10 organisations were included. Fifty-four per cent were female, 81% were white, and the majority had a managerial or professional role (72%) in their organisation. The average proportion of the working hour spent sitting was 0.7 (SD 0.15); participants took on average 444 (SD 210) steps per working hour. Models adjusted for confounders revealed significant negative associations between step count and distance from each workstation to all other office destinations (e.g., B = -4.66, 95% CI: -8.12, -1.12, p office destinations (e.g., B = -6.45, 95% CI: -11.88, -0.41, p office destinations the less they walked, suggesting that changing the relative distance between workstations and other destinations on the same floor may not be the most fruitful target for promoting walking and reducing sitting in the workplace. However, reported effect sizes were very small and based on cross-sectional analyses. The approaches developed in this study could be applied to other

  11. Learner-Centered Instruction (LCI): Volume IV, The Simulated Maintenance Task Environment (SMTE): A Job Specific Simulator.

    Science.gov (United States)

    Rifkin, Kenneth I.; And Others

    The purpose of the simulated maintenance task environment is to provide a means for training and job performance testing of the flight line weapon control systems mechanic/technician for the F-111A aircraft. It provides practice in flight line equipment checkout, troubleshooting, and removal and replacement of line replaceable units in the…

  12. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  13. A comparison of the accuracy of intraoral scanners using an intraoral environment simulator.

    Science.gov (United States)

    Park, Hye-Nan; Lim, Young-Jun; Yi, Won-Jin; Han, Jung-Suk; Lee, Seung-Pyo

    2018-02-01

    The aim of this study was to design an intraoral environment simulator and to assess the accuracy of two intraoral scanners using the simulator. A box-shaped intraoral environment simulator was designed to simulate two specific intraoral environments. The cast was scanned 10 times by Identica Blue (MEDIT, Seoul, South Korea), TRIOS (3Shape, Copenhagen, Denmark), and CS3500 (Carestream Dental, Georgia, USA) scanners in the two simulated groups. The distances between the left and right canines (D3), first molars (D6), second molars (D7), and the left canine and left second molar (D37) were measured. The distance data were analyzed by the Kruskal-Wallis test. The differences in intraoral environments were not statistically significant ( P >.05). Between intraoral scanners, statistically significant differences ( P Kruskal-Wallis test with regard to D3 and D6. No difference due to the intraoral environment was revealed. The simulator will contribute to the higher accuracy of intraoral scanners in the future.

  14. Repeated Induction of Inattentional Blindness in a Simulated Aviation Environment

    Science.gov (United States)

    Kennedy, Kellie D.; Stephens, Chad L.; Williams, Ralph A.; Schutte, Paul C.

    2017-01-01

    The study reported herein is a subset of a larger investigation on the role of automation in the context of the flight deck and used a fixed-based, human-in-the-loop simulator. This paper explored the relationship between automation and inattentional blindness (IB) occurrences in a repeated induction paradigm using two types of runway incursions. The critical stimuli for both runway incursions were directly relevant to primary task performance. Sixty non-pilot participants performed the final five minutes of a landing scenario twice in one of three automation conditions: full automation (FA), partial automation (PA), and no automation (NA). The first induction resulted in a 70 percent (42 of 60) detection failure rate with those in the PA condition significantly more likely to detect the incursion compared to the FA condition or the NA condition. The second induction yielded a 50 percent detection failure rate. Although detection improved (detection failure rates declined) in all conditions, those in the FA condition demonstrated the greatest improvement with doubled detection rates. The detection behavior in the first trial did not preclude a failed detection in the second induction. Group membership (IB vs. Detection) in the FA condition showed a greater improvement than those in the NA condition and rated the Mental Demand and Effort subscales of the NASA-TLX (NASA Task Load Index) significantly higher for Time 2 compared Time 1. Participants in the FA condition used the experience of IB exposure to improve task performance whereas those in the NA condition did not, indicating the availability and reallocation of attentional resources in the FA condition. These findings support the role of engagement in operational attention detriment and the consideration of attentional failure causation to determine appropriate mitigation strategies.

  15. Reliability Verification of DBE Environment Simulation Test Facility by using Statistics Method

    International Nuclear Information System (INIS)

    Jang, Kyung Nam; Kim, Jong Soeg; Jeong, Sun Chul; Kyung Heum

    2011-01-01

    In the nuclear power plant, all the safety-related equipment including cables under the harsh environment should perform the equipment qualification (EQ) according to the IEEE std 323. There are three types of qualification methods including type testing, operating experience and analysis. In order to environmentally qualify the safety-related equipment using type testing method, not analysis or operation experience method, the representative sample of equipment, including interfaces, should be subjected to a series of tests. Among these tests, Design Basis Events (DBE) environment simulating test is the most important test. DBE simulation test is performed in DBE simulation test chamber according to the postulated DBE conditions including specified high-energy line break (HELB), loss of coolant accident (LOCA), main steam line break (MSLB) and etc, after thermal and radiation aging. Because most DBE conditions have 100% humidity condition, in order to trace temperature and pressure of DBE condition, high temperature steam should be used. During DBE simulation test, if high temperature steam under high pressure inject to the DBE test chamber, the temperature and pressure in test chamber rapidly increase over the target temperature. Therefore, the temperature and pressure in test chamber continue fluctuating during the DBE simulation test to meet target temperature and pressure. We should ensure fairness and accuracy of test result by confirming the performance of DBE environment simulation test facility. In this paper, in order to verify reliability of DBE environment simulation test facility, statistics method is used

  16. Measurement Properties of a Self-Report Index of Ergonomic Exposures for Use in an Office Work Environment

    National Research Council Canada - National Science Library

    Dane, Dane

    2002-01-01

    Office work-related upper extremity symptoms and disorders have been associated with static work posture, repetition, and inadequate recovery in the anatomic structures of the neck and upper extremities...

  17. Virtual X-ray imaging techniques in an immersive casting simulation environment

    International Nuclear Information System (INIS)

    Li, Ning; Kim, Sung-Hee; Suh, Ji-Hyun; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee

    2007-01-01

    A computer code was developed to simulate radiograph of complex casting products in a CAVE TM -like environment. The simulation is based on the deterministic algorithms and ray tracing techniques. The aim of this study is to examine CAD/CAE/CAM models at the design stage, to optimize the design and inspect predicted defective regions with fast speed, good accuracy and small numerical expense. The present work discusses the algorithms for the radiography simulation of CAD/CAM model and proposes algorithmic solutions adapted from ray-box intersection algorithm and octree data structure specifically for radiographic simulation of CAE model. The stereoscopic visualization of full-size of product in the immersive casting simulation environment as well as the virtual X-ray images of castings provides an effective tool for design and evaluation of foundry processes by engineers and metallurgists

  18. Simulation of sustainability aspects within the industrial environment and their implication on the simulation technique

    OpenAIRE

    Rabe, M.; Jäkel, F.-W.; Weinaug, H.

    2010-01-01

    Simulation is a broadly excepted analytic instrument and planning tool. Today, industrial simulation is mainly applied for engineering and physical purposes and covers a short time horizon compared to intergenerational justice. In parallel, sustainability is gaining more importance for the industrial planning because themes like global warming, child labour, and compliance with social and environmental standards have to be taken into account. Sustainability is characterized by comprehensively...

  19. MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

    Science.gov (United States)

    Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre

    This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

  20. Generation of large scale urban environments to support advanced sensor and seeker simulation

    Science.gov (United States)

    Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan

    2009-05-01

    One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.

  1. Analysis of the effects of simulated synergistic LEO environment on solar panels

    Science.gov (United States)

    Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.

    2007-02-01

    The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.

  2. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  3. Physics-based statistical model and simulation method of RF propagation in urban environments

    Science.gov (United States)

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  4. Using numeric simulation in an online e-learning environment to teach functional physiological contexts.

    Science.gov (United States)

    Christ, Andreas; Thews, Oliver

    2016-04-01

    Mathematical models are suitable to simulate complex biological processes by a set of non-linear differential equations. These simulation models can be used as an e-learning tool in medical education. However, in many cases these mathematical systems have to be treated numerically which is computationally intensive. The aim of the study was to develop a system for numerical simulation to be used in an online e-learning environment. In the software system the simulation is located on the server as a CGI application. The user (student) selects the boundary conditions for the simulation (e.g., properties of a simulated patient) on the browser. With these parameters the simulation on the server is started and the simulation result is re-transferred to the browser. With this system two examples of e-learning units were realized. The first one uses a multi-compartment model of the glucose-insulin control loop for the simulation of the plasma glucose level after a simulated meal or during diabetes (including treatment by subcutaneous insulin application). The second one simulates the ion transport leading to the resting and action potential in nerves. The student can vary parameters systematically to explore the biological behavior of the system. The described system is able to simulate complex biological processes and offers the possibility to use these models in an online e-learning environment. As far as the underlying principles can be described mathematically, this type of system can be applied to a broad spectrum of biomedical or natural scientific topics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Simulation-based computation of dose to humans in radiological environments

    Energy Technology Data Exchange (ETDEWEB)

    Breazeal, N.L. [Sandia National Labs., Livermore, CA (United States); Davis, K.R.; Watson, R.A. [Sandia National Labs., Albuquerque, NM (United States); Vickers, D.S. [Brigham Young Univ., Provo, UT (United States). Dept. of Electrical and Computer Engineering; Ford, M.S. [Battelle Pantex, Amarillo, TX (United States). Dept. of Radiation Safety

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  6. Simulation-based computation of dose to humans in radiological environments

    International Nuclear Information System (INIS)

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface

  7. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  8. Hardware in the loop radar environment simulation on wideband DRFM platforms

    CSIR Research Space (South Africa)

    Strydom, JJ

    2012-10-01

    Full Text Available @csir.co.za, dnaiker@csir.co.za, kolivier@csir.co.za Keywords: DRFM, ECM, Complex Targets, Clutter, HIL, radar environment, simulation. Abstract This paper describes the development and testing of a digital radio frequency memory (DRFM) kernel, as well... as follows: Section 2 describes the design of a high performance DRFM kernel. Section 3 describes the integration of this kernel into a radar environment simulator system. Sections 4, 5 and 6 then present the generation of realistic targets, ECM...

  9. Integrated Simulation Environment for Unmanned Autonomous Systems—Towards a Conceptual Framework

    Directory of Open Access Journals (Sweden)

    M. G. Perhinschi

    2010-01-01

    Full Text Available The paper initiates a comprehensive conceptual framework for an integrated simulation environment for unmanned autonomous systems (UAS that is capable of supporting the design, analysis, testing, and evaluation from a “system of systems” perspective. The paper also investigates the current state of the art of modeling and performance assessment of UAS and their components and identifies directions for future developments. All the components of a comprehensive simulation environment focused on the testing and evaluation of UAS are identified and defined through detailed analysis of current and future required capabilities and performance. The generality and completeness of the simulation environment is ensured by including all operational domains, types of agents, external systems, missions, and interactions between components. The conceptual framework for the simulation environment is formulated with flexibility, modularity, generality, and portability as key objectives. The development of the conceptual framework for the UAS simulation reveals important aspects related to the mechanisms and interactions that determine specific UAS characteristics including complexity, adaptability, synergy, and high impact of artificial and human intelligence on system performance and effectiveness.

  10. A web-based, collaborative modeling, simulation, and parallel computing environment for electromechanical systems

    Directory of Open Access Journals (Sweden)

    Xiaoliang Yin

    2015-03-01

    Full Text Available Complex electromechanical system is usually composed of multiple components from different domains, including mechanical, electronic, hydraulic, control, and so on. Modeling and simulation for electromechanical system on a unified platform is one of the research hotspots in system engineering at present. It is also the development trend of the design for complex electromechanical system. The unified modeling techniques and tools based on Modelica language provide a satisfactory solution. To meet with the requirements of collaborative modeling, simulation, and parallel computing for complex electromechanical systems based on Modelica, a general web-based modeling and simulation prototype environment, namely, WebMWorks, is designed and implemented. Based on the rich Internet application technologies, an interactive graphic user interface for modeling and post-processing on web browser was implemented; with the collaborative design module, the environment supports top-down, concurrent modeling and team cooperation; additionally, service-oriented architecture–based architecture was applied to supply compiling and solving services which run on cloud-like servers, so the environment can manage and dispatch large-scale simulation tasks in parallel on multiple computing servers simultaneously. An engineering application about pure electric vehicle is tested on WebMWorks. The results of simulation and parametric experiment demonstrate that the tested web-based environment can effectively shorten the design cycle of the complex electromechanical system.

  11. Simulation experience enhances physical therapist student confidence in managing a patient in the critical care environment.

    Science.gov (United States)

    Ohtake, Patricia J; Lazarus, Marcilene; Schillo, Rebecca; Rosen, Michael

    2013-02-01

    Rehabilitation of patients in critical care environments improves functional outcomes. This finding has led to increased implementation of intensive care unit (ICU) rehabilitation programs, including early mobility, and an associated increased demand for physical therapists practicing in ICUs. Unfortunately, many physical therapists report being inadequately prepared to work in this high-risk environment. Simulation provides focused, deliberate practice in safe, controlled learning environments and may be a method to initiate academic preparation of physical therapists for ICU practice. The purpose of this study was to examine the effect of participation in simulation-based management of a patient with critical illness in an ICU setting on levels of confidence and satisfaction in physical therapist students. A one-group, pretest-posttest, quasi-experimental design was used. Physical therapist students (N=43) participated in a critical care simulation experience requiring technical (assessing bed mobility and pulmonary status), behavioral (patient and interprofessional communication), and cognitive (recognizing a patient status change and initiating appropriate responses) skill performance. Student confidence and satisfaction were surveyed before and after the simulation experience. Students' confidence in their technical, behavioral, and cognitive skill performance increased from "somewhat confident" to "confident" following the critical care simulation experience. Student satisfaction was highly positive, with strong agreement the simulation experience was valuable, reinforced course content, and was a useful educational tool. Limitations of the study were the small sample from one university and a control group was not included. Incorporating a simulated, interprofessional critical care experience into a required clinical course improved physical therapist student confidence in technical, behavioral, and cognitive performance measures and was associated with high

  12. A Versatile Simulation Environment of FTC Architectures for Large Transport Aircraft

    OpenAIRE

    Ossmann, Daniel; Varga, Andreas; Simon, Hecker

    2010-01-01

    We present a simulation environment with 3-D stereo visualization facilities destined for an easy setup and versatile assessment of fault detection and diagnosis based fault tolerant control systems. This environment has been primarily developed as a technology demonstrator of advanced reconfigurable flight control systems and is based on a realistic six degree of freedom flexible aircraft model. The aircraft control system architecture includes a flexible fault detection and diagnosis syste...

  13. Behavior of HfB2-SiC Materials in Simulated Re-Entry Environments

    Science.gov (United States)

    Ellerby, Don; Beckman, Sarah; Irby, Edward; Johnson, Sylvia M.; Gunsman, Michael; Gasch, Matthew; Ridge, Jerry; Martinez, Ed; Squire, Tom; Olejniczak, Joe

    2003-01-01

    The objectives of this research are to: 1) Investigate the oxidation/ablation behavior of HfB2/SiC materials in simulated re-entry environments; 2) Use the arc jet test results to define appropriate use environments for these materials for use in vehicle design. The parameters to be investigated include: surface temperature, stagnation pressure, duration, number of cycles, and thermal stresses.

  14. Towards a comfortable, energy-efficient office using a publish-subscribe pattern in an internet of things environment

    CSIR Research Space (South Africa)

    Butgereit, LL

    2014-09-01

    Full Text Available an implementation of the pub-sub pattern specifically for an Internet of Things platform which operated at four levels –sensors (and actuator), Supervisors, Middleware, and application. This platform was specifically instantiated to control a typical office meeting...

  15. A Data Stream Model For Runoff Simulation In A Changing Environment

    Science.gov (United States)

    Yang, Q.; Shao, J.; Zhang, H.; Wang, G.

    2017-12-01

    Runoff simulation is of great significance for water engineering design, water disaster control, water resources planning and management in a catchment or region. A large number of methods including concept-based process-driven models and statistic-based data-driven models, have been proposed and widely used in worldwide during past decades. Most existing models assume that the relationship among runoff and its impacting factors is stationary. However, in the changing environment (e.g., climate change, human disturbance), their relationship usually evolves over time. In this study, we propose a data stream model for runoff simulation in a changing environment. Specifically, the proposed model works in three steps: learning a rule set, expansion of a rule, and simulation. The first step is to initialize a rule set. When a new observation arrives, the model will check which rule covers it and then use the rule for simulation. Meanwhile, Page-Hinckley (PH) change detection test is used to monitor the online simulation error of each rule. If a change is detected, the corresponding rule is removed from the rule set. In the second step, for each rule, if it covers more than a given number of instance, the rule is expected to expand. In the third step, a simulation model of each leaf node is learnt with a perceptron without activation function, and is updated with adding a newly incoming observation. Taking Fuxi River catchment as a case study, we applied the model to simulate the monthly runoff in the catchment. Results show that abrupt change is detected in the year of 1997 by using the Page-Hinckley change detection test method, which is consistent with the historic record of flooding. In addition, the model achieves good simulation results with the RMSE of 13.326, and outperforms many established methods. The findings demonstrated that the proposed data stream model provides a promising way to simulate runoff in a changing environment.

  16. Office Computers: Ergonomic Considerations.

    Science.gov (United States)

    Ganus, Susannah

    1984-01-01

    Each new report of the office automation market indicates technology is overrunning the office. The impacts of this technology are described and some ways to manage and physically "soften" the change to a computer-based office environment are suggested. (Author/MLW)

  17. SpiCAD: Integrated environment for circuitry simulation with SPICE code

    Energy Technology Data Exchange (ETDEWEB)

    D' Amore, D; Padovini, G; Santomauro, M [Politecnico di Milano (Italy). Dip. di Elettronica

    1991-11-01

    SPICE is one of the most commonly used programs for the simulation of the behaviour of electronic circuits. This article describes in detail the key design characteristics and capabilities of a computer environment called SpiCAD which integrates all the different phases of SPICE based circuitry simulation on a personal computer, i.e., the tracing of the electronics scheme, simulation and visualization of the results so as to help define semiconductor device models, determine input signals, construct macro-models and convert design sketches into formats acceptable to graphic systems.

  18. Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments

    Science.gov (United States)

    Vijayaraghavan, Rukmani

    2015-07-01

    Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of

  19. A novel approach to simulate gene-environment interactions in complex diseases

    Directory of Open Access Journals (Sweden)

    Nicodemi Mario

    2010-01-01

    Full Text Available Abstract Background Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.. Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS, a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte

  20. Virtual Property Manager: Providing a Simulated Learning Environment in a New University Program of Study

    Directory of Open Access Journals (Sweden)

    Andrew Carswell

    2007-08-01

    Full Text Available This paper relates the experience that students have while accessing Virtual Property Manager (VPM, a Web-based simulation learning tool designed to introduce students to a new discipline being offered at the university – Residential Property Management. The VPM simulation was designed in part to develop student interest in the new program. Results indicate that this simple simulation device did make a notable impact on student interest. Additionally, student acceptance and self-reported impact differed significantly based upon the delivery context. Adding a competitive reward element to the simulation experience improved student's evaluation of the software and self-reported interest in the field. Results indicate that educational simulation evaluation, acceptance, and performance may often be substantially influenced by the delivery context, rather than simply the program itself. Developers may do well to focus "outside the box" of program content to promote audience-specific delivery environments.

  1. A Language and Environment for Analysis of Dynamics by SimulaTiOn

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.

    2007-01-01

    This article presents the language and software environment LEADSTO that has been developed to model and simulate dynamic processes in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with quantitative notions like

  2. Teachers' Conceptions and Their Approaches to Teaching in Virtual Reality and Simulation-Based Learning Environments

    Science.gov (United States)

    Keskitalo, Tuulikki

    2011-01-01

    This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…

  3. Molecular simulations in electrochemistry : Electron and proton transfer reactions mediated by flavins in different molecular environments

    NARCIS (Netherlands)

    Kılıç, M.

    2014-01-01

    The aim of this thesis is to address specific questions about the role of solvent reorganization on electron transfer in different environments and about the calculation of acidity constant, as well. Particularly, we focus on molecular simulation of flavin in water and different protein (BLUF and

  4. LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn (extended abstract)

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.

    2005-01-01

    This paper presents the language and software environment LEADSTO that has been developed to model and simulate dynamic processes in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with quantitative means. Dynamic

  5. LEADSTO: a Language and Environment for Analysis of Dynamics by SimulaTiOn

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; van der Meij, L.; Treur, J.

    2005-01-01

    This paper presents the language and software environment LEADSTO that has been developed to model and simulate the dynamics of Multi-Agent Systems (MAS) in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with

  6. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2008-11-01

    Full Text Available This paper presents a new architecture called FAIS for imple- menting intelligent agents cooperating in a special Multi Agent environ- ment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  7. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2005-06-01

    Full Text Available This paper presents a new architecture called FAIS for implementing intelligent agents cooperating in a special Multi Agent environment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  8. Market Garden: a Simulation Environment for Research and User Experience in Smart Grids

    NARCIS (Netherlands)

    B.J. Liefers (Bart); F.N. Claessen (Felix); E.J. Pauwels (Eric); P.A.N. Bosman (Peter); J.A. La Poutré (Han)

    2014-01-01

    htmlabstractMarket Garden is a scalable research environment and demonstration tool, in which market mechanisms for smart energy systems and the interaction between end users, traders, system operators, and markets can be simulated. Users can create scenarios in a user-friendly editor in which a

  9. Agent model for the simulation of pedestrian behavior in a shopping environment

    NARCIS (Netherlands)

    Dijkstra, J.; Timmermans, H.J.P.; Vries, de B.

    2008-01-01

    Simulation of human behavior in the built environment is of particular interest and receives a lot of attention, especially in precarious situations like evacuation and fire alarm. Also, walking behavior in streets, railway stations and airports is subject of research for gaining a clear

  10. Bringing Reality into Calculus Classrooms: Mathematizing a Real-life Problem Simulated in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    Olga V. Shipulina

    2013-01-01

    Full Text Available The study explores how students, who had completed the AP calculus course, mathematized the optimal navigation real-life problem simulated in the Second Life Virtual Environment. The particular research interest was to investigate whether/how students’ empirical activity in VE influences the way of their mathematizing.

  11. SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation

    Science.gov (United States)

    Steinman, Jeff S.

    1992-01-01

    Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.

  12. Modelling of an industrial environment, part 1.: Monte Carlo simulations of photon transport

    International Nuclear Information System (INIS)

    Kis, Z.; Eged, K.; Meckbach, R.; Voigt, G.

    2002-01-01

    After a nuclear accident releasing radioactive material into the environment the external exposures may contribute significantly to the radiation exposure of the population (UNSCEAR 1988, 2000). For urban populations the external gamma exposure from radionuclides deposited on the surfaces of the urban-industrial environments yields the dominant contributions to the total dose to the public (Kelly 1987; Jacob and Meckbach 1990). The radiation field is naturally influenced by the environment around the sources. For calculations of the shielding effect of the structures in complex and realistic urban environments Monte Carlo methods turned out to be useful tools (Jacob and Meckbach 1987; Meckbach et al. 1988). Using these methods a complex environment can be set up in which the photon transport can be solved on a reliable way. The accuracy of the methods is in principle limited only by the knowledge of the atomic cross sections and the computational time. Several papers using Monte Carlo results for calculating doses from the external gamma exposures were published (Jacob and Meckbach 1987, 1990; Meckbach et al. 1988; Rochedo et al. 1996). In these papers the Monte Carlo simulations were run in urban environments and for different photon energies. The industrial environment can be defined as such an area where productive and/or commercial activity is carried out. A good example can be a factory or a supermarket. An industrial environment can rather be different from the urban ones as for the types and structures of the buildings and their dimensions. These variations will affect the radiation field of this environment. Hence there is a need to run new Monte Carlo simulations designed specially for the industrial environments

  13. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  14. Simulation of UMTS Capacity and Quality of Coverage in Urban Macro- and Microcellular Environment

    Directory of Open Access Journals (Sweden)

    P. Pechac

    2005-12-01

    Full Text Available This paper deals with simulations of a radio interface of thirdgeneration (3G mobile systems operating in the WCDMA FDD modeincluding propagation predictions in macro and microcells. In the radionetwork planning of 3G mobile systems, the quality of coverage and thesystem capacity present a common problem. Both macro and microcellularconcepts are very important for implementing wireless communicationsystems, such as Universal Mobile Telecommunication Systems (UMTS indense urban areas. The aim of this paper is to introduce differentimpacts - selected bit rate, uplink (UL loading, allocation and numberof Nodes B, selected propagation prediction models, macro andmicrocellular environment - on system capacity and quality of coveragein UMTS networks. Both separated and composite simulation scenarios ofmacro and microcellular environments are presented. The necessity of aniteration-based simulation approach and site-specific propagationmodeling in microcells is proven.

  15. Unmasking the effects of masking on performance: The potential of multiple-voice masking in the office environment.

    Science.gov (United States)

    Keus van de Poll, Marijke; Carlsson, Johannes; Marsh, John E; Ljung, Robert; Odelius, Johan; Schlittmeier, Sabine J; Sundin, Gunilla; Sörqvist, Patrik

    2015-08-01

    Broadband noise is often used as a masking sound to combat the negative consequences of background speech on performance in open-plan offices. As office workers generally dislike broadband noise, it is important to find alternatives that are more appreciated while being at least not less effective. The purpose of experiment 1 was to compare broadband noise with two alternatives-multiple voices and water waves-in the context of a serial short-term memory task. A single voice impaired memory in comparison with silence, but when the single voice was masked with multiple voices, performance was on level with silence. Experiment 2 explored the benefits of multiple-voice masking in more detail (by comparing one voice, three voices, five voices, and seven voices) in the context of word processed writing (arguably a more office-relevant task). Performance (i.e., writing fluency) increased linearly from worst performance in the one-voice condition to best performance in the seven-voice condition. Psychological mechanisms underpinning these effects are discussed.

  16. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    International Nuclear Information System (INIS)

    Apisit, Patchimpattapong; Alireza, Haghighat; Shedlock, D.

    2003-01-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  17. An expert system for automatic mesh generation for Sn particle transport simulation in parallel environment

    Energy Technology Data Exchange (ETDEWEB)

    Apisit, Patchimpattapong [Electricity Generating Authority of Thailand, Office of Corporate Planning, Bangkruai, Nonthaburi (Thailand); Alireza, Haghighat; Shedlock, D. [Florida Univ., Department of Nuclear and Radiological Engineering, Gainesville, FL (United States)

    2003-07-01

    An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)

  18. Improving Integrated Operation in the Joint Integrated Mission Model (JIMM) and the Simulated Warfare Environment Data Transfer (SWEDAT) Protocol

    National Research Council Canada - National Science Library

    Mutschler, David W

    2005-01-01

    ...). It allows integrated operation of resources whereby the JIMM threat environment, stimulators virtual cockpits, systems under test, and other agents are combined within the same simulation exercise...

  19. A Novel CPU/GPU Simulation Environment for Large-Scale Biologically-Realistic Neural Modeling

    Directory of Open Access Journals (Sweden)

    Roger V Hoang

    2013-10-01

    Full Text Available Computational Neuroscience is an emerging field that provides unique opportunities to studycomplex brain structures through realistic neural simulations. However, as biological details are added tomodels, the execution time for the simulation becomes longer. Graphics Processing Units (GPUs are now being utilized to accelerate simulations due to their ability to perform computations in parallel. As such, they haveshown significant improvement in execution time compared to Central Processing Units (CPUs. Most neural simulators utilize either multiple CPUs or a single GPU for better performance, but still show limitations in execution time when biological details are not sacrificed. Therefore, we present a novel CPU/GPU simulation environment for large-scale biological networks,the NeoCortical Simulator version 6 (NCS6. NCS6 is a free, open-source, parallelizable, and scalable simula-tor, designed to run on clusters of multiple machines, potentially with high performance computing devicesin each of them. It has built-in leaky-integrate-and-fire (LIF and Izhikevich (IZH neuron models, but usersalso have the capability to design their own plug-in interface for different neuron types as desired. NCS6is currently able to simulate one million cells and 100 million synapses in quasi real time by distributing dataacross these heterogeneous clusters of CPUs and GPUs.

  20. The atomic simulation environment-a Python library for working with atoms.

    Science.gov (United States)

    Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D; Jennings, Paul C; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W

    2017-07-12

    The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.

  1. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    International Nuclear Information System (INIS)

    Cupini, E.

    1999-01-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it

  2. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    Science.gov (United States)

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  3. Semantic and Virtual Reality-Enhanced Configuration of Domestic Environments: The Smart Home Simulator

    Directory of Open Access Journals (Sweden)

    Daniele Spoladore

    2017-01-01

    Full Text Available This paper introduces the Smart Home Simulator, one of the main outcomes of the D4All project. This application takes into account the variety of issues involved in the development of Ambient Assisted Living (AAL solutions, such as the peculiarity of each end-users, appliances, and technologies with their deployment and data-sharing issues. The Smart Home Simulator—a mixed reality application able to support the configuration and customization of domestic environments in AAL systems—leverages on integration capabilities of Semantic Web technologies and the possibility to model relevant knowledge (about both the dwellers and the domestic environment into formal models. It also exploits Virtual Reality technologies as an efficient means to simplify the configuration of customized AAL environments. The application and the underlying framework will be validated through two different use cases, each one foreseeing the customized configuration of a domestic environment for specific segments of users.

  4. Time-Domain Simulations of Transient Species in Experimentally Relevant Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueltschi, Tyler W.; Fischer, Sean A.; Apra, Edoardo; Tarnovsky, Alexander N.; Govind, Niranjan; El-Khoury, Patrick Z.; Hess, Wayne P.

    2016-02-04

    Simulating the spectroscopic properties of short-lived thermal and photochemical reaction intermediates and products is a challenging task, as these species often feature atypical molecular and electronic structures. The complex environments in which such species typically reside in practice add further complexity to the problem. Herein, we tackle this problem in silico using ab initio molecular dynamics (AIMD) simulations, employing iso-CHBr3, namely H(Br)C-Br-Br, as a prototypical system. This species was chosen because it features both a non-conventional C-Br-Br bonding pattern, as well as a strong dependence of its spectral features on the local environment in which it resides, as illustrated in recent experimental reports. The spectroscopic properties of iso-CHBr3 were measured by several groups that captured this transient intermediate in the photochemistry of CHBr3 in the gas phase, in rare gas matrices at 5K, and in solution under ambient laboratory conditions. We simulate the UV-Vis and IR spectra of iso-CHBr3 in all three media, including a Ne cluster (64 atoms) and a methylcyclohexane cage (14 solvent molecules) representative of the matrix isolated and solvated species. We exclusively perform fully quantum mechanical static and dynamic simulations. By comparing our condensed phase simulations to their experimental analogues, we stress the importance of (i) conformational sampling, even at cryogenic temperatures, and (ii) using a fully quantum mechanical description of both solute and bath to properly account for the experimental observables.

  5. A simple interface to computational fluid dynamics programs for building environment simulations

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, III, C R; Chen, Q [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2000-07-01

    It is becoming a popular practice for architects and HVAC engineers to simulate airflow in and around buildings by computational fluid dynamics (CFD) methods in order to predict indoor and outdoor environment. However, many CFD programs are crippled by a historically poor and inefficient user interface system, particularly for users with little training in numerical simulation. This investigation endeavors to create a simplified CFD interface (SCI) that allows architects and buildings engineers to use CFD without excessive training. The SCI can be easily integrated into new CFD programs. (author)

  6. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  7. A spacecraft's own ambient environment: The role of simulation-based research

    Energy Technology Data Exchange (ETDEWEB)

    Ketsdever, Andrew D. [University of Colorado Colorado Springs, Department of Mechanical and Aerospace Engineering, Colorado Springs, CO (United States); Gimelshein, Sergey [University of Southern California, Department of Astronautical Engineering, Los Angeles, CA (United States)

    2014-12-09

    Spacecraft contamination has long been a subject of study in the rarefied gas dynamics community. Professor Mikhail Ivanov coined the term a spacecraft's 'own ambient environment' to describe the effects of natural and satellite driven processes on the conditions encountered by a spacecraft in orbit. Outgassing, thruster firings, and gas and liquid dumps all contribute to the spacecraft's contamination environment. Rarefied gas dynamic modeling techniques, such as Direct Simulation Monte Carlo, are well suited to investigate these spacebased environments. However, many advances were necessary to fully characterize the extent of this problem. A better understanding of modeling flows over large pressure ranges, for example hybrid continuum and rarefied numerical schemes, were required. Two-phase flow modeling under rarefied conditions was necessary. And the ability to model plasma flows for a new era of propulsion systems was also required. Through the work of Professor Ivanov and his team, we now have a better understanding of processes that create a spacecraft's own ambient environment and are able to better characterize these environments. Advances in numerical simulation have also spurred on the development of experimental facilities to study these effects. The relationship between numerical results and experimental advances will be explored in this manuscript.

  8. Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments.

    Directory of Open Access Journals (Sweden)

    Yao Yao

    Full Text Available One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN. An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment.

  9. Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments

    Science.gov (United States)

    Yao, Yao; Marchal, Kathleen; Van de Peer, Yves

    2014-01-01

    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store ‘good behaviour’ and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment. PMID:24599485

  10. Influence of anatomic landmarks in the virtual environment on simulated angled laparoscope navigation

    Science.gov (United States)

    Christie, Lorna S.; Goossens, Richard H. M.; de Ridder, Huib; Jakimowicz, Jack J.

    2010-01-01

    Background The aim of this study is to investigate the influence of the presence of anatomic landmarks on the performance of angled laparoscope navigation on the SimSurgery SEP simulator. Methods Twenty-eight experienced laparoscopic surgeons (familiar with 30° angled laparoscope, >100 basic laparoscopic procedures, >5 advanced laparoscopic procedures) and 23 novices (no laparoscopy experience) performed the Camera Navigation task in an abstract virtual environment (CN-box) and in a virtual representation of the lower abdomen (CN-abdomen). They also rated the realism and added value of the virtual environments on seven-point scales. Results Within both groups, the CN-box task was accomplished in less time and with shorter tip trajectory than the CN-abdomen task (Wilcoxon test, p  0.05). In both groups, the CN tasks were perceived as hard work and more challenging than anticipated. Conclusions Performance of the angled laparoscope navigation task is influenced by the virtual environment surrounding the exercise. The task was performed better in an abstract environment than in a virtual environment with anatomic landmarks. More insight is required into the influence and function of different types of intrinsic and extrinsic feedback on the effectiveness of preclinical simulator training. PMID:20419318

  11. SIMULATIONS IN TECHNOLOGICAL ENVIRONMENTS AS A TOOL FOR TRAINING IN TRANSVERSAL COMPETENCES FOR UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Mercè Gisbert Cervera

    2010-02-01

    Full Text Available This paper consists of a reflection on how the technological environments can play a key role in the current Higher Education scene. This reflection observes the structural configuration and the key agents of the educational process. The content is developed firstly locating the student in the University of the 21st century; the methodological renovation is analyzed from two perspectives: the development of the technologies and the new role of teacher and student in this new scene; finally the simulations in technological environments are proposed as a valuable strategy to give response to the formative needs of the student in the current society.

  12. Interaction of a 238Pu fueled-sphere assembly with a simulated terrestrial environment

    International Nuclear Information System (INIS)

    Steinkruger, F.J.; Patterson, J.H.; Herrera, B.; Nelson, G.B.; Matlack, G.M.; Waterbury, G.R.; Pavone, D.

    1981-02-01

    A 238 Pu fueled sphere assembly (FSA) was exposed to a simulated humid environment on sandy soil for 3 y. After a 70-week exposure, plutonium was first detected in measurable quantities in rain and condensate samples. A core sample taken in the ninety-third week contained 302 ng of plutonium. Examination of the FSA after exposure revealed a hole in the bottom of the graphite impact shell (GIS) and a leaking weld on the vent assembly of the postimpact containment shell (PICS). These two openings may be the pathways for plutonium entry into the environment from the FSA

  13. Simulation of GNSS reflected signals and estimation of position accuracy in GNSS-challenged environment

    DEFF Research Database (Denmark)

    Jakobsen, Jakob; Jensen, Anna B. O.; Nielsen, Allan Aasbjerg

    2015-01-01

    non-line-of-sight satellites. The signal reflections are implemented using the extended geometric path length of the signal path caused by reflections from the surrounding buildings. Based on real GPS satellite positions, simulated Galileo satellite positions, models of atmospheric effect...... on the satellite signals, designs of representative environments e.g. urban and rural scenarios, and a method to simulate reflection of satellite signals within the environment we are able to estimate the position accuracy given several prerequisites as described in the paper. The result is a modelling...... of the signal path from satellite to receiver, the satellite availability, the extended pseudoranges caused by signal reflection, and an estimate of the position accuracy based on a least squares adjustment of the extended pseudoranges. The paper describes the models and algorithms used and a verification test...

  14. The psychosocial environment at work: an assessment of the World Health Organization Regional Office for the Eastern Mediterranean.

    Science.gov (United States)

    Join, A; Saeed, K; Arnaout, S; Kortum, E

    2012-04-01

    Psychosocial risks are widely recognised as major challenges to occupational health and safety. The risk management approach, which starts with an assessment of the risk that they pose, is acknowledged as the most effective way of preventing and managing psychosocial risks at the workplace. This paper presents the findings and action taken following a risk assessment of psychosocial risks, at the World health Organization Regional Officeforthe Eastern Mediterranean (EMRO) and country offices, carried outon behalf of the Committee on Health and Safety in the Workplace in EMRO. The findings show that psychosocial risks pose a threat to the mental well-being of staff. Management and co-worker support, rewards, possibilities for development, and trust mitigate the negative impact of psychosocial risks. The results of this risk assessment are being used to develop interventions aimed at enhancing the sense of well-being of staff, initially through actions at the employee level.

  15. Hypobaric chamber for the study of oral health problems in a simulated spacecraft environment

    Science.gov (United States)

    Brown, L. R.

    1974-01-01

    A hypobaric chamber was constructed to house two marmo-sets simultaneously in a space-simulated environment for periods of 14, 28 and 56 days which coincided with the anticipated Skylab missions. This report details the fabrication, operation, and performance of the chamber and very briefly reviews the scientific data from nine chamber trials involving 18 animals. The possible application of this model system to studies unrelated to oral health or space missions is discussed.

  16. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  17. Influence of anatomic landmarks in the virtual environment on simulated angled laparoscope navigation

    OpenAIRE

    Buzink, S.N.; Christie, L.S.; Goossens, R.H.M.; De Ridder, H.; Jakimowicz, J.J.

    2010-01-01

    Background - The aim of this study is to investigate the influence of the presence of anatomic landmarks on the performance of angled laparoscope navigation on the SimSurgery SEP simulator. Methods - Twenty-eight experienced laparoscopic surgeons (familiar with 30º angled laparoscope, >100 basic laparoscopic procedures, >5 advanced laparoscopic procedures) and 23 novices (no laparoscopy experience) performed the Camera Navigation task in an abstract virtual environment (CN-box) and in a virtu...

  18. Influence of a controlled environment simulating an in-flight airplane cabin on dry eye disease.

    Science.gov (United States)

    Tesón, Marisa; González-García, María J; López-Miguel, Alberto; Enríquez-de-Salamanca, Amalia; Martín-Montañez, Vicente; Benito, María Jesús; Mateo, María Eugenia; Stern, Michael E; Calonge, Margarita

    2013-03-01

    To evaluate symptoms, signs, and the levels of 16 tears inflammatory mediators of dry eye (DE) patients exposed to an environment simulating an in-flight air cabin in an environmental chamber. Twenty DE patients were exposed to controlled environment simulating an in-flight airplane cabin (simulated in-flight condition [SIC]) of 23°C, 5% relative humidity, localized air flow, and 750 millibars (mb) of barometric pressure. As controls, 15 DE patients were subjected to a simulated standard condition (SSC) of 23°C, 45% relative humidity, and 930 mb. A DE symptoms questionnaire, diagnostic tests, and determination of 16 tear molecules by multiplex bead array were performed before and 2 hours after exposure. After SIC exposure, DE patients became more symptomatic, suffered a significant (P ≤ 0.05) decrease in tear stability (tear break up time) (from 2.18 ± 0.28 to 1.53 ± 0.20), and tear volume (phenol red thread test), and a significant (P ≤ 0.05) increase in corneal staining, both globally (0.50 ± 0.14 before and 1.25 ± 0.19 after) and in each area (Baylor scale). After SSC, DE patients only showed a mild, but significant (P ≤ 0.05), increase in central and inferior corneal staining. Consistently, tear levels of IL-6 and matrix metalloproteinase (MMP)-9 significantly increased and tear epidermal growth factor (EGF) significantly decreased (P ≤ 0.05) only after SIC. The controlled adverse environment conditions in this environmental chamber can simulate the conditions in which DE patients might be exposed during flight. As this clearly impaired their lacrimal functional unit, it would be advisable that DE patients use therapeutic strategies capable of ameliorating these adverse episodes.

  19. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Science.gov (United States)

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737

  20. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Directory of Open Access Journals (Sweden)

    Kuan Peng

    2010-01-01

    Full Text Available As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SPn, and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  1. Study on photon transport problem based on the platform of molecular optical simulation environment.

    Science.gov (United States)

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  2. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    Science.gov (United States)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  3. A method to solve the aircraft magnetic field model basing on geomagnetic environment simulation

    International Nuclear Information System (INIS)

    Lin, Chunsheng; Zhou, Jian-jun; Yang, Zhen-yu

    2015-01-01

    In aeromagnetic survey, it is difficult to solve the aircraft magnetic field model by flying for some unman controlled or disposable aircrafts. So a model solving method on the ground is proposed. The method simulates the geomagnetic environment where the aircraft is flying and creates the background magnetic field samples which is the same as the magnetic field arose by aircraft’s maneuvering. Then the aircraft magnetic field model can be solved by collecting the magnetic field samples. The method to simulate the magnetic environment and the method to control the errors are presented as well. Finally, an experiment is done for verification. The result shows that the model solving precision and stability by the method is well. The calculated model parameters by the method in one district can be used in worldwide districts as well. - Highlights: • A method to solve the aircraft magnetic field model on the ground is proposed. • The method solves the model by simulating dynamic geomagnetic environment as in the real flying. • The way to control the error of the method was analyzed. • An experiment is done for verification

  4. Conversion of a mainframe simulation for maintenance performance to a PC environment

    International Nuclear Information System (INIS)

    Gertman, D.I.

    1991-01-01

    A computer-based simulation capable of generating human error probabilities (HEPs) for maintenance activities is presented. The HEPs are suitable for use in probabilistic risk assessments (PRAs) and are an important source of information for data management systems such as NUCLARR- the Nuclear Computerized Library for Assessing Reactor Reliability. (1) The basic computer model MAPPS--the maintenance personnel performance simulation has been developed and validated by the US NRC in order to improve maintenance practices and procedures at nuclear power plants. This model validated previously, has now been implemented and improved, in a PC environment, and renamed MicroMAPPS. The model is stochastically based, able to simulate the performance of 2 to 15 person crews for a variety of maintenance conditions. These conditions include aspects of crew actions as potentially influenced by the task, the environment, or characteristics of the personnel involved. The nature of the software code makes it particularly appropriate for determining changes in HEP rates due to fluctuations in important task, environment,. or personnel parameters. The presentation presents a brief review of the mainframe version of the code and presents a summarization of the enhancements which dramatically change the nature of the human computer interaction

  5. The physical work environment and end-user requirements: Investigating marine engineering officers' operational demands and ship design.

    Science.gov (United States)

    Mallam, Steven C; Lundh, Monica

    2016-08-12

    Physical environments influence how individuals perceive a space and behave within it. Previous research has revealed deficiencies in ship engine department work environments, and their impact on crew productivity, health and wellbeing. Connect operational task demands to pragmatic physical design and layout solutions by implementing a user-centric perspective. Three focus groups, each consisting of three marine engineers participated in this study. Focus groups were divided into two sessions: first, to investigate the end-user's operational requirements and their relationship with ship physical design and layout. Second, criteria formulated from group discussions were applied to a ship design case study. All focus group sessions were audio recorded and transcribed verbatim. The data were analyzed using Grounded Theory. Design choices made in a ships general arrangement were described to inherently influence how individuals and teams are able to function within the system. Participants detailed logistical relationships between key areas, stressing that the work environment and physical linkages must allow for flexibility of work organization and task execution. Traditional engine control paradigms do not allow effective mitigation of traditional engine department challenges. The influence of technology and modernization of ship systems can facilitate improvement of physical environments and work organization if effectively utilized.

  6. Influence of the urban environment on the effectiveness of natural night-ventilation of an office building

    NARCIS (Netherlands)

    Ramponi, R.; Gaetani, I.; Angelotti, A.

    2014-01-01

    The effectiveness of natural night-ventilation in the urban environment depends on local climate characteristics, but also on solar shading and wind shielding effects of the surrounding buildings. However, the impact of the latter factors on the effectiveness of night-ventilation is often

  7. The effects of the aircraft cabin environment on passengers during simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter

    2007-01-01

    enables subjective assessments of the symptoms commonly experienced by passengers and crew during flights. Six investigations with subject exposure have subsequently been carried out in the aircraft cabin facility covering four environmental areas of study, i.e. humidity, air purification techniques...... but intensified complaints of headache, dizziness and claustrophobia, suggesting that air pollutants rather than low humidity cause the distress reported by airline passengers. Three investigations studying the efficacy of various air purification technologies showed that a gas phase adsorption purification unit......A 3-row, 21-seat section of a simulated Boeing 767 aircraft cabin has been built in a climate chamber, simulating the cabin environment not only in terms of materials and geometry, but also in terms of cabin air and wall temperatures and ventilation with very dry air. This realistic simulation...

  8. Application of numerical environment system to regional atmospheric radioactivity transport simulations

    International Nuclear Information System (INIS)

    Yamazawa, H.; Ohkura, T.; Iida, T.; Chino, M.; Nagai, H.

    2003-01-01

    Main functions of the Numerical Environment System (NES), as a part of the Information Technology Based Laboratory (ITBL) project implemented by Japan Atomic Energy Research Institute, became available for test use purposes although the development of the system is still underway. This system consists of numerical models of meteorology and atmospheric dispersion, database necessary for model simulations, post- and pre-processors such as data conversion and visualization, and a suite of system software which provide the users with system functions through a web page access. The system utilizes calculation servers such as vector- and scalar-parallel processors for numerical model execution, a EWS which serves as a hub of the system. This system provides users in the field of nuclear emergency preparedness and atmospheric environment with easy-to-use functions of atmospheric dispersion simulations including input meteorological data preparation and visualization of simulation results. The performance of numerical models in the system was examined with observation data of long-range transported radon-222. The models in the system reproduced quite well temporal variations in the observed radon-222 concentrations in air which were caused by changes in the meteorological field in the synoptic scale. By applying the NES models in combination with the idea of backward-in-time atmospheric dispersion simulation, seasonal shift of source areas of radon-222 in the eastern Asian regions affecting the concentrations in Japan was quantitatively illustrated. (authors)

  9. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh

    2017-08-01

    With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A PC/workstation cluster computing environment for reservoir engineering simulation applications

    International Nuclear Information System (INIS)

    Hermes, C.E.; Koo, J.

    1995-01-01

    Like the rest of the petroleum industry, Texaco has been transferring its applications and databases from mainframes to PC's and workstations. This transition has been very positive because it provides an environment for integrating applications, increases end-user productivity, and in general reduces overall computing costs. On the down side, the transition typically results in a dramatic increase in workstation purchases and raises concerns regarding the cost and effective management of computing resources in this new environment. The workstation transition also places the user in a Unix computing environment which, to say the least, can be quite frustrating to learn and to use. This paper describes the approach, philosophy, architecture, and current status of the new reservoir engineering/simulation computing environment developed at Texaco's E and P Technology Dept. (EPTD) in Houston. The environment is representative of those under development at several other large oil companies and is based on a cluster of IBM and Silicon Graphics Intl. (SGI) workstations connected by a fiber-optics communications network and engineering PC's connected to local area networks, or Ethernets. Because computing resources and software licenses are shared among a group of users, the new environment enables the company to get more out of its investments in workstation hardware and software

  11. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    Science.gov (United States)

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  12. Simulating extreme environments: Ergonomic evaluation of Chinese pilot performance and heat stress tolerance.

    Science.gov (United States)

    Li, Jing; Tian, Yinsheng; Ding, Li; Zou, Huijuan; Ren, Zhaosheng; Shi, Liyong; Feathers, David; Wang, Ning

    2015-06-05

    High-temperatures in the cockpit environment can adversely influence pilot behavior and performance. To investigate the impact of high thermal environments on Chinese pilot performance in a simulated cockpit environment. Ten subjects volunteered to participate in the tests under 40°C and 45°C high-temperature simulations in an environmentally controlled chamber. Measures such as grip strength, perception, dexterity, somatic sense reaction, and analytical reasoning were taken. The results were compared to the Combined Index of Heat Stress (CIHS). CIHS exceeded the heat stress safety limit after 45 min under 40°C, grip strength decreased by 12% and somatic perception became 2.89 times larger than the initial value. In the case of 45°C, CIHS exceeded the safety limit after only 20 min, while the grip strength decreased just by 3.2% and somatic perception increased to 4.36 times larger than the initial value. Reaction and finger dexterity were not statistically different from baseline measurements, but the error rate of analytical reasoning test rose remarkably. Somatic perception was the most sensitive index to high-temperature, followed by grip strength. Results of this paper may help to improve environmental control design of new fighter cockpit and for pilot physiology and cockpit environment ergonomics research for Chinese pilots.

  13. A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects

    Science.gov (United States)

    Marigorta, Urko M.; Gibson, Greg

    2014-01-01

    The switch to a modern lifestyle in recent decades has coincided with a rapid increase in prevalence of obesity and other diseases. These shifts in prevalence could be explained by the release of genetic susceptibility for disease in the form of gene-by-environment (GxE) interactions. Yet, the detection of interaction effects requires large sample sizes, little replication has been reported, and a few studies have demonstrated environmental effects only after summing the risk of GWAS alleles into genetic risk scores (GRSxE). We performed extensive simulations of a quantitative trait controlled by 2500 causal variants to inspect the feasibility to detect gene-by-environment interactions in the context of GWAS. The simulated individuals were assigned either to an ancestral or a modern setting that alters the phenotype by increasing the effect size by 1.05–2-fold at a varying fraction of perturbed SNPs (from 1 to 20%). We report two main results. First, for a wide range of realistic scenarios, highly significant GRSxE is detected despite the absence of individual genotype GxE evidence at the contributing loci. Second, an increase in phenotypic variance after environmental perturbation reduces the power to discover susceptibility variants by GWAS in mixed cohorts with individuals from both ancestral and modern environments. We conclude that a pervasive presence of gene-by-environment effects can remain hidden even though it contributes to the genetic architecture of complex traits. PMID:25101110

  14. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of the Assistant Secretary for Environment, Safety and Health. Part 5. Overview and assessment

    International Nuclear Information System (INIS)

    Faust, L.G.

    1986-02-01

    This volume is progress on work performed for the Office of Nuclear Safety, the Office of Operational Safety, and for the Office of Environmental Analysis for each project. Separate abstracts have been prepared for individual projects. ACR

  15. Effect of oxygen in the simulated LOCA environments of the degradation of cable insulating materials

    International Nuclear Information System (INIS)

    Kusuma, Y.; Okada, S.; Itoh, M.; Yagi, T.; Yoshikawa, M.; Yoshida, K.; Machi, S.; Tamura, N.; Kawakami, W.

    1990-01-01

    Five kinds of insulating and jacketing materials for the cables used in nuclear power plants were exposed to various LOCA environments of both simultaneous and sequential methods using SEAMATE-II. Experimental conditions of the simultaneous LOCA tests were done at different radiation dose rate, steam temperature and amount of air added to the LOCA environments. The sequential tests consist of two stages, that is, pre-irradiation and subsequent steam/spray exposure. Pre-irradiation conditions and subsequent steam/spray exposure conditions of the sequential LOCA tests are systematically changed in order to find appropriate conditions which can bring about the degradation of same degree to those obtained for various simultaneous LOCA simulations. Tensile properties, insulating resistance and water sorption of the insulating materials exposed to various LOCA environments are measured and discussed. (author). 11 refs, 19 figs, 3 tabs

  16. USB HW/SW Co-Simulation Environment with Custom Test Tool Integration

    Directory of Open Access Journals (Sweden)

    Grigor Y. Zargaryan

    2014-06-01

    Full Text Available This paper describes a new verification environment for USB 2.0 controller. New methodology is presented, where a co-simulation environment is used as one of the starting points for the embedded hardware/software development and as an accelerator of the overall design process. The verification environment is based on the device emulation/virtualization technique, using USB controller’s real register transfer level (RTL instead of models. This approach is functionally very close to the corresponding real-world devices and allows wider opportunities for hardware debugging. The new software utilities for USB host and device functionality testing are also presented. This tool allows generating custom tests by including various transfer types and modifying parameters such as data payload, interval, number of pipes, etc. It can be used for both hardware (HW and software (SW limitations characterization, as well as debugging.

  17. Interpretation of Simulations in Interactive VR Environments: Depth Perception in Cave and Panorama

    DEFF Research Database (Denmark)

    Mullins, Michael

    2006-01-01

     Virtual reality (VR) applications are transforming the way architecture is conceived and produced. By introducing an open and inclusive approach, they encourage a creative dialogue with the users of residential schemes and other buildings and allow competition juries a more thorough understanding...... of architectural concepts. Architects need to heed the dynamics set in motion by these technologies and especially of how laypersons interpret building forms and their simulations in interactive VR environments. The article presents a study which compares aspects of spatial perception in a physical environment...... contextual experience of the viewer, and that spatial ability is an important contributing factor. Results in the two virtual environments tested show consistent differences in how depth and shape are perceived, indicating that VR context is a significant variable in spatial representation. It is asserted...

  18. Adoption of information technology in primary care physician offices in New Zealand and Denmark, part 3: medical record environment comparisons

    Directory of Open Access Journals (Sweden)

    Denis Protti

    2008-12-01

    Full Text Available This is the third in a series of five papers about the use of computing technology in general practitioner (GP practices in Denmark and New Zealand. This paper looks at the environments within which electronic medical records (EMRs operate, including their functionality and the extent to which electronic communications are used to send and receive clinical information. It also introduces the notion of a longitudinal electronic health record (versus an EMR.

  19. How users organize electronic files on their workstations in the office environment: a preliminary study of personal information organization behaviour

    Directory of Open Access Journals (Sweden)

    Christopher S.G. Khoo

    2007-01-01

    Full Text Available An ongoing study of how people organize their computer files and folders on the hard disk of their office workstations. A questionnaire was used to collect information on the subjects, their work responsibilities and characteristics of their workstations. Data on file and folder names and file structure were extracted from the hard disk using a computer program STG FolderPrint Plus, DOS command and screen capture. A semi-structured interview collected information on subjects' strategies in naming and organizing files and folders, and in locating and retrieving files. The data were analysed mainly through qualitative analysis and content analysis. The subjects organized their folders in a variety of structures, from broad and shallow to narrow and deep hierarchies. One to three levels of folders is common. The labels for first level folders tended to be task-based or project-based. Most subjects located files by browsing the folder structure, with searching used as a last resort. The most common types of folder names were document type, organizational function or structure, and miscellaneous or temporary. The frequency of folders of different types appear related to the type of occupation.

  20. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    Science.gov (United States)

    Zhang, Ye; Wu, Honglu

    2012-07-01

    RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on

  1. A stochastic simulator of a blood product donation environment with demand spikes and supply shocks.

    Science.gov (United States)

    An, Ming-Wen; Reich, Nicholas G; Crawford, Stephen O; Brookmeyer, Ron; Louis, Thomas A; Nelson, Kenrad E

    2011-01-01

    The availability of an adequate blood supply is a critical public health need. An influenza epidemic or another crisis affecting population mobility could create a critical donor shortage, which could profoundly impact blood availability. We developed a simulation model for the blood supply environment in the United States to assess the likely impact on blood availability of factors such as an epidemic. We developed a simulator of a multi-state model with transitions among states. Weekly numbers of blood units donated and needed were generated by negative binomial stochastic processes. The simulator allows exploration of the blood system under certain conditions of supply and demand rates, and can be used for planning purposes to prepare for sudden changes in the public's health. The simulator incorporates three donor groups (first-time, sporadic, and regular), immigration and emigration, deferral period, and adjustment factors for recruitment. We illustrate possible uses of the simulator by specifying input values for an 8-week flu epidemic, resulting in a moderate supply shock and demand spike (for example, from postponed elective surgeries), and different recruitment strategies. The input values are based in part on data from a regional blood center of the American Red Cross during 1996-2005. Our results from these scenarios suggest that the key to alleviating deficit effects of a system shock may be appropriate timing and duration of recruitment efforts, in turn depending critically on anticipating shocks and rapidly implementing recruitment efforts.

  2. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows

    Science.gov (United States)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.

    2014-12-01

    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  3. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  4. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    Science.gov (United States)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  5. Prediction and evaluation method of wind environment in the early design stage using BIM-based CFD simulation

    International Nuclear Information System (INIS)

    Lee, Sumi; Song, Doosam

    2010-01-01

    Drastic urbanization and manhattanization are causing various problems in wind environment. This study suggests a CFD simulation method to evaluate wind environment in the early design stage of high-rise buildings. The CFD simulation of this study is not a traditional in-depth simulation, but a method to immediately evaluate wind environment for each design alternative and provide guidelines for design modification. Thus, the CFD simulation of this study to evaluate wind environments uses BIM-based CFD tools to utilize building models in the design stage. This study examined previous criteria to evaluate wind environment for pedestrians around buildings and selected evaluation criteria applicable to the CFD simulation method of this study. Furthermore, proper mesh generation method and CPU time were reviewed to find a meaningful CFD simulation result for determining optimal design alternative from the perspective of wind environment in the design stage. In addition, this study is to suggest a wind environment evaluation method through a BIM-based CFD simulation.

  6. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality.

    Science.gov (United States)

    Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen

    2017-11-01

    Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Auxiliary office chair

    OpenAIRE

    Pascual Osés, Maite

    2007-01-01

    The aim of this project is to develop an auxiliary office chair, which favorably will compete with the existing chairs on the market. Evolutions of ergonomical survey in the work environment and on the configuration of offices require new products which fulfill the requirements properly. In order to achieve it a survey about office chairs has been carried out: types, characteristics, ways of usage and products on the market besides a large antropometrical study and ergonomics related to work ...

  8. Comparison Of The I-Gel Supraglottic And King Laryngotracheal Airways In A Simulated Tactical Environment.

    Science.gov (United States)

    March, Juan A; Tassey, Theresa E; Resurreccion, Noel B; Portela, Roberto C; Taylor, Stephen E

    2018-01-01

    When working in a tactical environment there are several different airway management options that exist. One published manuscript suggests that when compared to endotracheal intubation, the King LT laryngotracheal airway (KA) device minimizes time to successful tube placement and minimizes exposure in a tactical environment. However, comparison of two different blind insertion supraglottic airway devices in a tactical environment has not been performed. This study compared the I-Gel airway (IGA) to the KA in a simulated tactical environment, to determine if one device is superior in minimizing exposure and minimizing time to successful tube placement. This prospective randomized cross over trial was performed using the same methods and tactical environment employed in a previously published study, which compared endotracheal intubation versus the KA in a tactical environment. The tactical environment was simulated with a one-foot vertical barrier. The participants were paramedic students who wore an Advanced Combat Helmet (ACH) and a ballistic vest (IIIA) during the study. Participants were then randomized to perform tactical airway management on an airway manikin with either the KA or the IGA, and then again using the alternate device. The participants performed a low military type crawl and remained in this low position during each tube placement. We evaluated the time to successful tube placement between the IGA and KA. During attempts, participants were videotaped to monitor their height exposure above the barrier. Following completion, participants were asked which airway device they preferred. Data was analyzed using Student's t-test across the groups for time to ventilation and height of exposure. In total 19 paramedic students who were already at the basic EMT level participated. Time to successful placement for the KA was 39.7 seconds (95%CI: 32.7-46.7) versus 14.4 seconds (95%CI: 12.0-16.9) for the IGA, p tactical environment placement of the IGA for

  9. Learning environment simulator: a tool for local decision makers and first responders

    Energy Technology Data Exchange (ETDEWEB)

    Leclaire, Rene J [Los Alamos National Laboratory; Hirsch, Gary B [CLE, INCORPORATED

    2009-01-01

    The National Infrastructure Simulation and Analysis Center (NISAC) has developed a prototype learning environment simulator (LES) based on the Critical Infrastructure Protection Decision Support System (CIPDSS) infrastructure and scenario models. The LES is designed to engage decision makers at the grass-roots level (local/city/state) to deepen their understanding of an evolving crisis, enhance their intuition and allow them to test their own strategies for events before they occur. An initial version is being developed, centered on a pandemic influenza outbreak and has been successfully tested with a group of hospital administrators and first responders. LES is not a predictive tool but rather a simulated environment allowing the user to experience the complexities of a crisis before it happens. Users can contrast various approaches to the crisis, competing with alternative strategies of their own or other participants. LES is designed to assist decision makers in making informed choices by functionally representing relevant scenarios before they occur, including impacts to critical infrastructures with their interdependencies, and estimating human health & safety and economic impacts. In this paper a brief overview of the underlying models are given followed by a description of the LES, its interface and usage and an overview of the experience testing LES with a group of hospital administrators and first responders. The paper concludes with a brief discussion of the work remaining to make LES operational.

  10. Performance of an alpha-vane and pitot tube in simulated heavy rain environment

    Science.gov (United States)

    Luers, J. K.; Fiscus, I. B.

    1985-01-01

    Experimental tests were conducted in the UDRI Environmental Wind/Rain Tunnel to establish the performance of an alpha-vane, that measures angle of attack, in a simulated heavy rain environment. The tests consisted of emersing the alpha-vane in an airstream with a concurrent water spray penetrating vertically through the airstream. The direction of the spray was varied to make an angle of 5.8 to 18 deg with the airstream direction in order to simulate the conditions that occur when an aircraft lands in a heavy rain environment. Rainrates simulated varied from 1000 to 1200 mm/hr which are the most severe ever expected to be encountered by an aircraft over even a 30 second period. Tunnel airspeeds ranged from 85 to 125 miles per hour. The results showed that even the most severe rainrates produced a misalignment in the alpha-vane of only 1 deg away from the airstream direction. Thus for normal rain conditions experienced by landing aircraft no significant deterioration in alpha-vane performance is expected.

  11. How to avoid simulation sickness in virtual environments during user displacement

    Science.gov (United States)

    Kemeny, A.; Colombet, F.; Denoual, T.

    2015-03-01

    Driving simulation (DS) and Virtual Reality (VR) share the same technologies for visualization and 3D vision and may use the same technics for head movement tracking. They experience also similar difficulties when rendering the displacements of the observer in virtual environments, especially when these displacements are carried out using driver commands, including steering wheels, joysticks and nomad devices. High values for transport delay, the time lag between the action and the corresponding rendering cues and/or visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems when driving or displacing using a control device, induces the so-called simulation sickness. While the visual transport delay can be efficiently reduced using high frequency frame rate, the visual-vestibular conflict is inherent to VR, when not using motion platforms. In order to study the impact of displacements on simulation sickness, we have tested various driving scenarios in Renault's 5-sided ultra-high resolution CAVE. First results indicate that low speed displacements with longitudinal and lateral accelerations under a given perception thresholds are well accepted by a large number of users and relatively high values are only accepted by experienced users and induce VR induced symptoms and effects (VRISE) for novice users, with a worst case scenario corresponding to rotational displacements. These results will be used for optimization technics at Arts et Métiers ParisTech for motion sickness reduction in virtual environments for industrial, research, educational or gaming applications.

  12. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  13. Evaluation of materials for bipolar plates in simulated PEM fuel-cell cathodic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, S.V.; Belmonte, M.R.; Moron, L.E.; Torres, J.; Orozco, G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica S.C. Parcque Sanfandila, Queretaro (Mexico); Perez-Quiroz, J.T. [Mexican Transport Inst., Queretaro (Mexico); Cortes, M. A. [Mexican Petroleum Inst., Mexico City (Mexico)

    2008-04-15

    The bipolar plates in proton exchange membrane fuel cells (PEMFC) are exposed to an oxidizing environment on the cathodic side, and therefore are susceptible to corrosion. Corrosion resistant materials are needed for the bipolar plates in order to improve the lifespan of fuel cells. This article described a study in which a molybdenum (Mo) coating was deposited over austenitic stainless steel 316 and carbon steel as substrates in order to evaluate the resulting surfaces with respect to their corrosion resistance in simulated anodic and cathodic PEMFC environments. The molybdenum oxide films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The article presented the experiment and discussed the results of the corrosion behaviour of coated stainless steel. In general, the electrochemical characterization of bare materials and coated steel consisted of slow potentiodynamic polarization curves followed by a constant potential polarization test. The test medium was 0.5M sulfuric acid with additional introduction of oxygen to simulate the cathodic environment. All tests were performed at ambient temperature and at 50 degrees Celsius. The potentiostat used was a Gamry instrument. It was concluded that it is possible to deposit Mo-oxides on steel without using another alloying metal. The preferred substrate for corrosion prevention was found to be an alloy with high chromium content. 24 refs., 4 figs.

  14. GOOSE Version 1.4: A powerful object-oriented simulation environment for developing reactor models

    International Nuclear Information System (INIS)

    Nypaver, D.J.; March-Leuba, C.; Abdalla, M.A.; Guimaraes, L.

    1992-01-01

    A prototype software package for a fully interactive Generalized Object-Oriented Simulation Environment (GOOSE) is being developed at Oak Ridge National Laboratory. Dynamic models are easily constructed and tested; fully interactive capabilities allow the user to alter model parameters and complexity without recompilation. This environment provides assess to powerful tools such as numerical integration packages, graphical displays, and online help. In GOOSE, portability has been achieved by creating the environment in Objective-C 1 , which is supported by a variety of platforms including UNIX and DOS. GOOSE Version 1.4 introduces new enhancements like the capability of creating ''initial,'' ''dynamic,'' and ''digital'' methods. The object-oriented approach to simulation used in GOOSE combines the concept of modularity with the additional features of allowing precompilation, optimization, testing, and validation of individual modules. Once a library of classes has been defined and compiled, models can be built and modified without recompilation. GOOSE Version 1.4 is primarily command-line driven

  15. Thermal and fluid simulation of the environment under the dashboard, compared with measurement data

    Science.gov (United States)

    Popescu, C. S.; Sirbu, G. M.; Nita, I. C.

    2017-10-01

    The development of vehicles during the last decade is related to the evolution of electronic systems added in order to increase the safety and the number of services available on board, such as advanced driver-assistance systems (ADAS). Cars already have a complex computer network, with electronic control units (ECUs) connected to each other and receiving information from many sensors. The ECUs transfer an important heat power to the environment, while proper operating conditions need to be provided to ensure their reliability at high and low temperature, vibration and humidity. In a car cabin, electronic devices are usually placed in the compartment under the dashboard, an enclosed space designed for functional purposes. In the early stages of the vehicle design it has become necessary to analyse the environment under dashboard, by the use of Computational Fluid Dynamics (CFD) simulations and measurements. This paper presents the cooling of heat sinks by natural convection, a thermal and fluid simulation of the environment under the dashboard compared with test data.

  16. A coarse-grained model for the simulations of biomolecular interactions in cellular environments

    International Nuclear Information System (INIS)

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2014-01-01

    The interactions of bio-molecules constitute the key steps of cellular functions. However, in vivo binding properties differ significantly from their in vitro measurements due to the heterogeneity of cellular environments. Here we introduce a coarse-grained model based on rigid-body representation to study how factors such as cellular crowding and membrane confinement affect molecular binding. The macroscopic parameters such as the equilibrium constant and the kinetic rate constant are calibrated by adjusting the microscopic coefficients used in the numerical simulations. By changing these model parameters that are experimentally approachable, we are able to study the kinetic and thermodynamic properties of molecular binding, as well as the effects caused by specific cellular environments. We investigate the volumetric effects of crowded intracellular space on bio-molecular diffusion and diffusion-limited reactions. Furthermore, the binding constants of membrane proteins are currently difficult to measure. We provide quantitative estimations about how the binding of membrane proteins deviates from soluble proteins under different degrees of membrane confinements. The simulation results provide biological insights to the functions of membrane receptors on cell surfaces. Overall, our studies establish a connection between the details of molecular interactions and the heterogeneity of cellular environments

  17. Improved scheme for parametrization of convection in the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME)

    Science.gov (United States)

    Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta

    2015-04-01

    NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of

  18. pCloud: A Cloud-based Power Market Simulation Environment

    Energy Technology Data Exchange (ETDEWEB)

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs

  19. A Vascular Anastomosis Simulation Can Provide a Safe and Effective Environment for Resident Skills Development.

    Science.gov (United States)

    Heelan Gladden, Alicia A; Conzen, Kendra D; Benge, Michael J; Gralla, Jane; Kennealey, Peter T

    2018-04-09

    Vascular anastomoses are complex surgical procedures, performed in time-sensitive circumstances, making intraoperative teaching more challenging. We sought to evaluate whether a vascular anastomosis simulation was effective in developing resident skills. General surgery residents participated in a vascular anastomosis simulation for 1 to 2hours during their transplant rotation. An attending transplant surgeon at the University of Colorado guided the resident through end-to-end and end-to-side anastomoses using bovine carotid artery (Artegraft). The residents completed a presimulation and postsimulation survey which quantitated their confidence. They also completed the MiSSES scale, which assessed the validity of the simulation. Twenty residents participated in the simulation and completed the surveys. The residents reported increased understanding in how to set up an end-to-end anastomosis and an end-to-side anastomosis (p = 0.001 and p = 0.009, respectively). They reported increased ability to suture, forehand and backhand with a Castro-Viejo needle driver (both p < 0.001). The residents reported increased ability to manipulate the needle (p = 0.006), and increased ability to manipulate tissue without causing trauma (p = 0.021). They reported increased confidence in tying a surgical knot with 6-0 Prolene and in operating while wearing loupes (p = 0.002, and p < 0.001, respectively). Overall, the residents reported increased confidence when asked to perform part of a vascular anastomosis in the operating room (p < 0.001). Seventeen residents completed the MiSSES scale with median scores of "somewhat agree" to "strongly agree" on all domains of the scale. The use of a simple, inexpensive vascular anastomosis simulation is an effective and safe environment to improve residents' surgical skills and the residents felt that the simulation was valid. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    Science.gov (United States)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data

  1. A Cost Effective Solution for Development Environment for Data Acquisition, Monitoring and Simulation of PLC Controlled Applications

    Directory of Open Access Journals (Sweden)

    O. Bjelica

    2014-06-01

    Full Text Available It is very important to test and monitor the operation of Programmable Logic Controller (PLC in real time (online. Nowadays, conventional, but expensive monitoring systems for PLCs, such as Supervisory Control and Data Acquisition (SCADA systems, software and hardware simulators (or debuggers, are widely used. This paper proposes a user friendly and cost-effective development environment for monitoring, data acquisition and online simulation of applications with PLC. The purpose of this solution is to simulate the process which is controlled by the PLC. The performances of the proposed development environment are presented on the examples of washing machine and dishwasher simulators.

  2. Modeling and Simulation of Renewable Hybrid Power System using Matlab Simulink Environment

    Directory of Open Access Journals (Sweden)

    Cristian Dragoş Dumitru

    2010-12-01

    Full Text Available The paper presents the modeling of a solar-wind-hydroelectric hybrid system in Matlab/Simulink environment. The application is useful for analysis and simulation of a real hybrid solar-wind-hydroelectric system connected to a public grid. Application is built on modular architecture to facilitate easy study of each component module influence. Blocks like wind model, solar model, hydroelectric model, energy conversion and load are implemented and the results of simulation are also presented. As an example, one of the most important studies is the behavior of hybrid system which allows employing renewable and variable in time energy sources while providing a continuous supply. Application represents a useful tool in research activity and also in teaching

  3. Constant extension rate testing of Type 304L stainless steel in simulated waste tank environments

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-01-01

    New tanks for storage of low level radioactive wastes will be constructed at the Savannah River Site (SRS) of AISI Type 304L stainless steel (304L). The presence of chlorides and fluorides in the wastes may induce Stress Corrosion Cracking (SCC) in 304L. Constant Extension Rate Tests (CERT) were performed to determine the susceptibility of 304L to SCC in simulated wastes. In five of the six tests conducted thus far 304L was not susceptible to SCC in the simulated waste environments. Conflicting results were obtained in the final test and will be resolved by further tests. For comparison purposes the CERT tests were also performed with A537 carbon steel, a material similar to that utilized for the existing nuclear waste storage tanks at SRS

  4. ENVIRONMENT: a computational platform to stochastically simulate reacting and self-reproducing lipid compartments

    Science.gov (United States)

    Mavelli, Fabio; Ruiz-Mirazo, Kepa

    2010-09-01

    'ENVIRONMENT' is a computational platform that has been developed in the last few years with the aim to simulate stochastically the dynamics and stability of chemically reacting protocellular systems. Here we present and describe some of its main features, showing how the stochastic kinetics approach can be applied to study the time evolution of reaction networks in heterogeneous conditions, particularly when supramolecular lipid structures (micelles, vesicles, etc) coexist with aqueous domains. These conditions are of special relevance to understand the origins of cellular, self-reproducing compartments, in the context of prebiotic chemistry and evolution. We contrast our simulation results with real lab experiments, with the aim to bring together theoretical and experimental research on protocell and minimal artificial cell systems.

  5. Behavior of ceramics at 1200 C in a simulated gas turbine environment

    Science.gov (United States)

    Sanders, W. A.; Probst, H. B.

    1974-01-01

    This report summarizes programs at the NASA Lewis Research Center evaluating several classes of commercial ceramics, in a high gas velocity burner rig simulating a gas turbine engine environment. Testing of 23 ceramics in rod geometry identified SiC and Si3N4 as outstanding in resistance to oxidation and thermal stress and identified the failure modes of other ceramics. Further testing of a group of 15 types of SiC and Si3N4 in simulated vane shape geometry has identified a hot pressed SiC, a reaction sintered SiC, and hot pressed Si3N4 as the best of that group. SiC and Si3N4 test specimens were compared on the basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, and failure mode.

  6. Nuclear plant's virtual simulation for on-line radioactive environment monitoring and dose assessment for personnel

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso Marcelo F.

    2009-01-01

    This paper reports the use of nuclear plant's simulation for online dose rate monitoring and dose assessment for personnel, using virtual reality technology. The platform used for virtual simulation was adapted from a low cost game engine, taking advantage of all its image rendering capabilities, as well as the physics for movement and collision, and networking capabilities for multi-user interactive navigation. A real nuclear plant was virtually modeled and simulated, so that a number of users can navigate simultaneously in this virtual environment in first or third person view, each one receiving visual information about both the radiation dose rate in each actual position, and the radiation dose received. Currently, this research and development activity has been extended to consider also on-line measurements collected from radiation monitors installed in the real plant that feed the simulation platform with dose rate data, through a TCP/IP network. Results are shown and commented, and other improvements are discussed, as the execution of a more detailed dose rate mapping campaign.

  7. Simulation-Based Learning Environments to Teach Complexity: The Missing Link in Teaching Sustainable Public Management

    Directory of Open Access Journals (Sweden)

    Michael Deegan

    2014-05-01

    Full Text Available While public-sector management problems are steeped in positivistic and socially constructed complexity, public management education in the management of complexity lags behind that of business schools, particularly in the application of simulation-based learning. This paper describes a Simulation-Based Learning Environment for public management education that includes a coupled case study and System Dynamics simulation surrounding flood protection, a domain where stewardship decisions regarding public infrastructure and investment have direct and indirect effects on businesses and the public. The Pointe Claire case and CoastalProtectSIM simulation provide a platform for policy experimentation under conditions of exogenous uncertainty (weather and climate change as well as endogenous effects generated by structure. We discuss the model in some detail, and present teaching materials developed to date to support the use of our work in public administration curricula. Our experience with this case demonstrates the potential of this approach to motivate sustainable learning about complexity in public management settings and enhance learners’ competency to deal with complex dynamic problems.

  8. Experiences of simulated tracer dispersal studies using effluent discharges at Tarapur aquatic environment

    International Nuclear Information System (INIS)

    Sudheendran, V.; Baburajan, A.; Sawane, Pratibha; Rao, D.D.; Hegde, A.G.

    2007-01-01

    The nuclear complex in Tarapur, Maharashtra is a multi facility nuclear site comprising of power reactors and research facilities. Each facility has independent liquid effluent discharge line to Arabian Sea. Experimental studies were conducted to evaluate dilution factors in the aquatic environment using liquid effluent releases as tracer from one of the facilities. 3 H and 137 Cs radioisotopes present in the routine releases were used as simulated tracer nuclides. The dilution factors(D.F) observed for tritium were in the range of 20-20000 in a distance range of 10 m to 1500 m respectively and for 137 Cs the D.F. were in the range of 50 to 900 over a distance range of 10-200 m. The paper describes the analytical methodology and sampling scenarios and the results of dilution factors obtained for Tarapur aquatic environment. (author)

  9. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    International Nuclear Information System (INIS)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-01-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [es

  10. Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science

    Science.gov (United States)

    Lui, Michelle Mei Yee

    This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective

  11. Simulation of fusion first-wall environment in a fission reactor

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Kulcinski, G.L.; Longhurst, G.R.

    1982-01-01

    A novel concept to produce a realistic simulation of a fusion first-wall test environment has been proposed recently. This concept takes advantage of the (/eta/, α) reaction in 59 Ni to produce a high internal helium content in the metal while using the 3 He (/eta/, /rho/)T reaction in the gas surrounding the specimen to produce an external heat and particle flux. Models to calculate heat flux, erosion rate, implantation, and damage rate to the walls of the test module are presented. Preliminary results show that a number of important fusion technology issues could be tested experimentally in a fission reactor such as the Engineering Test Reactor

  12. Monte Carlo simulations of the radiation environment for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mallows, S., E-mail: sophie.mallows@cern.ch [KIT, Karlsruhe (Germany); Azhgirey, I.; Bayshev, I. [IHEP, Protvino (Russian Federation); Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M. [CERN, Geneva (Switzerland); Kurochkin, I. [IHEP, Protvino (Russian Federation); Vincke, H.; Tajeda, S. [CERN, Geneva (Switzerland)

    2016-07-11

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton–proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarized, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  13. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...... gravity field, Earth magnetic field and eclipse. The structure and facilities within the toolbox are described and exemplified using a student satellite case (AAUSAT-II). The validity of developed models is confirmed by comparing the simulation results with the realistic data obtained from the Danish...

  14. OST: analysis tool for real time software by simulation of material and software environments

    International Nuclear Information System (INIS)

    Boulc'h; Le Meur; Lapassat; Salichon; Segalard

    1988-07-01

    The utilization of microprocessors systems in a nuclear installation control oblige a great operation safety in the installation operation and in the environment protection. For the safety analysis of these installations the Institute of Protection and Nuclear Safety (IPSN) will dispose tools which permit to make controls during all the life of the software. The simulation and test tool (OST) which have been created is completely made by softwares. It is used on VAX calculators and can be easily transportable on other calculators [fr

  15. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    DEFF Research Database (Denmark)

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2005-01-01

    get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts......Background Coalescent simulations are playing a large role in interpreting large scale intra- polymorphism surveys and for planning and evaluating association studies. Coalescent of data sets under different models can be compared to the actual data to test different evolutionary factors and thus...

  16. Monte Carlo simulations of the radiation environment for the CMS Experiment

    CERN Document Server

    AUTHOR|(CDS)2068566; Bayshev, I.; Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M.; Kurochkin, I.; Vincke, H.; Tajeda, S.

    2016-01-01

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarised, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  17. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  18. Analysis of insulation material deterioration under the LOCA simulated environment on the basis of reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Kusama, Yasuo; Ito, Masayuki; Yagi, Toshiaki; Yoshikawa, Masato (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1982-12-01

    In the type test of the electric cables installed in reactor containment vessels, it is considerably difficult to perform the testing over a year once in a while to simulate the accidental environment containing radiation and high temperature steam. Two requirements which seem to be more realistic as compared with the above mentioned testing method are inconsistent with each other. To solve this problem, a general rule of deterioration or the expression by an equation is necessary, which enables the extrapolation to show that a short term testing stands on the safety side. The authors have tried to numerically analyze the change of mechanical characteristics of ethylene-propylene rubber (EPR) and Hypalon which are, important as the materials for PH cables (fire-retardant, EP rubber-insulated, chlorosulfonated polyethylene-sheathed cable), in a complex environment of radiation, steam and chemical spray simulating PWR LOCA conditions. In this report, a method is proposed to analyze and estimate the properties by the regression analysis technique on the basis of reaction kinetics, and the analyzed results are described in the order of experiment, analysis method and the results and consideration. The deterioration of the elongation P = e/esub(o) of EPR and Hypalon in the above described complex environment can be represented by the equation - dP/dt = KPsup(n). The exponent n varied in the cases when air is contained or not in that environment, suggesting that the different reactions are dominant in both conditions, respectively. For EPR, n was close to 2 if air was not contained and close to 1 if air was contained in the system.

  19. Tree-crown-resolving large-eddy simulation for evaluating greenery effects on urban heat environments

    Science.gov (United States)

    Matsuda, K.; Onishi, R.; Takahashi, K.

    2017-12-01

    Urban high temperatures due to the combined influence of global warming and urban heat islands increase the risk of heat stroke. Greenery is one of possible countermeasures for mitigating the heat environments since the transpiration and shading effect of trees can reduce the air temperature and the radiative heat flux. In order to formulate effective measures, it is important to estimate the influence of the greenery on the heat stroke risk. In this study, we have developed a tree-crown-resolving large-eddy simulation (LES) model that is coupled with three-dimensional radiative transfer (3DRT) model. The Multi-Scale Simulator for the Geoenvironment (MSSG) is used for performing building- and tree-crown-resolving LES. The 3DRT model is implemented in the MSSG so that the 3DRT is calculated repeatedly during the time integration of the LES. We have confirmed that the computational time for the 3DRT model is negligibly small compared with that for the LES and the accuracy of the 3DRT model is sufficiently high to evaluate the radiative heat flux at the pedestrian level. The present model is applied to the analysis of the heat environment in an actual urban area around the Tokyo Bay area, covering 8 km × 8 km with 5-m grid mesh, in order to confirm its feasibility. The results show that the wet-bulb globe temperature (WBGT), which is an indicator of the heat stroke risk, is predicted in a sufficiently high accuracy to evaluate the influence of tree crowns on the heat environment. In addition, by comparing with a case without the greenery in the Tokyo Bay area, we have confirmed that the greenery increases the low WBGT areas in major pedestrian spaces by a factor of 3.4. This indicates that the present model can predict the greenery effect on the urban heat environment quantitatively.

  20. Simulation of the space debris environment in LEO using a simplified approach

    Science.gov (United States)

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  1. Medical Simulation as a Vital Adjunct to Identifying Clinical Life-Threatening Gaps in Austere Environments.

    Science.gov (United States)

    Chima, Adaora M; Koka, Rahul; Lee, Benjamin; Tran, Tina; Ogbuagu, Onyebuchi U; Nelson-Williams, Howard; Rosen, Michael; Koroma, Michael; Sampson, John B

    2018-04-01

    Maternal mortality and morbidity are major causes of death in low-resource countries, especially those in Sub-Saharan Africa. Healthcare workforce scarcities present in these locations result in poor perioperative care access and quality. These scarcities also limit the capacity for progressive development and enhancement of workforce training, and skills through continuing medical education. Newly available low-cost, in-situ simulation systems make it possible for a small cadre of trainers to use simulation to identify areas needing improvement and to rehearse best practice approaches, relevant to the context of target environments. Nurse anesthetists were recruited throughout Sierra Leone to participate in simulation-based obstetric anesthesia scenarios at the country's national referral maternity hospital. All subjects participated in a detailed computer assisted training program to familiarize themselves with the Universal Anesthesia Machine (UAM). An expert panel rated the morbidity/mortality risk of pre-identified critical incidents within the scenario via the Delphi process. Participant responses to critical incidents were observed during these scenarios. Participants had an obstetric anesthesia pretest and post-test as well as debrief sessions focused on reviewing the significance of critical incident responses observed during the scenario. 21 nurse anesthetists, (20% of anesthesia providers nationally) participated. Median age was 41 years and median experience practicing anesthesia was 3.5 years. Most participants (57.1%) were female, two-thirds (66.7%) performed obstetrics anesthesia daily but 57.1% had no experience using the UAM. During the simulation, participants were observed and assessed on critical incident responses for case preparation with a median score of 7 out of 13 points, anesthesia management with a median score of 10 out of 20 points and rapid sequence intubation with a median score of 3 out of 10 points. This study identified

  2. Aerosol transport simulations in indoor and outdoor environments using computational fluid dynamics (CFD)

    Science.gov (United States)

    Landazuri, Andrea C.

    This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the

  3. Inauguration of the Moscow-based office of GRS/IPSN-RISKAUDIT by the Federal German Minister of the Environment, Mr. Klaus Toepfer, and the Minister of Industry, Mr. Dominique Strauss-Kahn

    International Nuclear Information System (INIS)

    1993-02-01

    The German and the French Government as well as the EC are taking particular interest in cooperative activities with the Russian Federation in the field of reactor safety enhancement and protection of the environment. The existing cooperation is expected to be intensified by the establishment of a common office in Moscow. The organisation, tasks and financing scheme of the RISKAUDIT office are explained in the languages German, Russian and French. (HP) [de

  4. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Science.gov (United States)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  5. On the Efficient Simulation of Outage Probability in a Log-normal Fading Environment

    KAUST Repository

    Rached, Nadhir B.

    2017-02-15

    The outage probability (OP) of the signal-to-interference-plus-noise ratio (SINR) is an important metric that is used to evaluate the performance of wireless systems. One difficulty toward assessing the OP is that, in realistic scenarios, closed-form expressions cannot be derived. This is for instance the case of the Log-normal environment, in which evaluating the OP of the SINR amounts to computing the probability that a sum of correlated Log-normal variates exceeds a given threshold. Since such a probability does not admit a closed-form expression, it has thus far been evaluated by several approximation techniques, the accuracies of which are not guaranteed in the region of small OPs. For these regions, simulation techniques based on variance reduction algorithms is a good alternative, being quick and highly accurate for estimating rare event probabilities. This constitutes the major motivation behind our work. More specifically, we propose a generalized hybrid importance sampling scheme, based on a combination of a mean shifting and a covariance matrix scaling, to evaluate the OP of the SINR in a Log-normal environment. We further our analysis by providing a detailed study of two particular cases. Finally, the performance of these techniques is performed both theoretically and through various simulation results.

  6. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    Science.gov (United States)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  7. On the Efficient Simulation of Outage Probability in a Log-normal Fading Environment

    KAUST Repository

    Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2017-01-01

    The outage probability (OP) of the signal-to-interference-plus-noise ratio (SINR) is an important metric that is used to evaluate the performance of wireless systems. One difficulty toward assessing the OP is that, in realistic scenarios, closed-form expressions cannot be derived. This is for instance the case of the Log-normal environment, in which evaluating the OP of the SINR amounts to computing the probability that a sum of correlated Log-normal variates exceeds a given threshold. Since such a probability does not admit a closed-form expression, it has thus far been evaluated by several approximation techniques, the accuracies of which are not guaranteed in the region of small OPs. For these regions, simulation techniques based on variance reduction algorithms is a good alternative, being quick and highly accurate for estimating rare event probabilities. This constitutes the major motivation behind our work. More specifically, we propose a generalized hybrid importance sampling scheme, based on a combination of a mean shifting and a covariance matrix scaling, to evaluate the OP of the SINR in a Log-normal environment. We further our analysis by providing a detailed study of two particular cases. Finally, the performance of these techniques is performed both theoretically and through various simulation results.

  8. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Directory of Open Access Journals (Sweden)

    Jin Tea-Hwan

    2017-01-01

    Full Text Available A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  9. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Azimy, Naheed; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2014-10-01

    The consumption of polyphenols in green tea has been associated with beneficial health effects. Although polyphenols are unstable in the intestinal environment, they may be protected by interactions with dairy proteins during digestion. The objectives of this study were to evaluate the effect of a green tea extract on the digestibility of different dairy matrices and to monitor the antioxidant activity of these matrices with or without the green tea extract during digestion in a simulated gastrointestinal environment. Milk, yogurt and cheese with similar fat-to-protein ratios were subjected to simulated digestion. Matrix degradation, protein and fat hydrolysis, polyphenol concentration and radical scavenging activity were analyzed during gastric and intestinal digestion phases. Cheese was the matrix most resistant to protein and fat digestion. The addition of the green tea extract significantly decreased proteolysis in the gastric phase but had no effect in the intestinal phase. The kinetics of fatty acid release was reduced by the presence of the green tea extract. Transition from the gastric phase to the intestinal phase induced a 50% decrease in the antioxidant activity of the control (tea extract dispersed in water) due to the degradation of polyphenols. The presence of dairy matrices significantly improved polyphenol stability in the intestinal phase and increased the antioxidant activity by 29% (cheese) to 42% (milk) compared to the control. These results suggest that simultaneous consumption of green tea and dairy products helps to maintain the integrity and antioxidant activity of polyphenols during digestion.

  10. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment

    DEFF Research Database (Denmark)

    Fadeyi, Moshood O.; Weschler, Charles J.; Tham, Kwok W.

    2013-01-01

    's reactions with various indoor pollutants. The present study examines this possibility for secondary organic aerosols (SOA) derived from ozone-initiated chemistry with limonene, a commonly occurring indoor terpene. The experiments were conducted at realistic ozone and limonene concentrations in a 240 m3...

  11. High fidelity medical simulation in the difficult environment of a helicopter: feasibility, self-efficacy and cost

    Directory of Open Access Journals (Sweden)

    Holland Carolyn

    2006-10-01

    Full Text Available Abstract Background This study assessed the feasibility, self-efficacy and cost of providing a high fidelity medical simulation experience in the difficult environment of an air ambulance helicopter. Methods Seven of 12 EM residents in their first postgraduate year participated in an EMS flight simulation as the flight physician. The simulation used the Laerdal SimMan™ to present a cardiac and a trauma case in an EMS helicopter while running at flight idle. Before and after the simulation, subjects completed visual analog scales and a semi-structured interview to measure their self-efficacy, i.e. comfort with their ability to treat patients in the helicopter, and recognition of obstacles to care in the helicopter environment. After all 12 residents had completed their first non-simulated flight as the flight physician; they were surveyed about self-assessed comfort and perceived value of the simulation. Continuous data were compared between pre- and post-simulation using a paired samples t-test, and between residents participating in the simulation and those who did not using an independent samples t-test. Categorical data were compared using Fisher's exact test. Cost data for the simulation experience were estimated by the investigators. Results The simulations functioned correctly 5 out of 7 times; suggesting some refinement is necessary. Cost data indicated a monetary cost of $440 and a time cost of 22 hours of skilled instructor time. The simulation and non-simulation groups were similar in their demographics and pre-hospital experiences. The simulation did not improve residents' self-assessed comfort prior to their first flight (p > 0.234, but did improve understanding of the obstacles to patient care in the helicopter (p = 0.029. Every resident undertaking the simulation agreed it was educational and it should be included in their training. Qualitative data suggested residents would benefit from high fidelity simulation in other

  12. Effect of air on speed of insulating material deterioration under simulated LOCA environment. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, Yasuo; Yagi, Toshiaki; Ito, Masayuki; Okada, Sohei; Yoshikawa, Masato (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1982-12-01

    To examine the quality approval testing method for the electric cables used for nuclear reactors, various covering insulating materials employed for the cables have been investigated from all angles. The factors which are considered to affect the deterioration of cable materials in a simulated LOCA (loss of coolant accident) environmental test are numerous. This paper reports on the result of investigation on the effect of air on the rate of deterioration of various organic materials usually used as the insulating and covering materials for the cables. Five kinds of polymer sheets (1 mm thick) used for reactor cables were employed as samples. The samples of both standard compounding ratio and the compounding ratio for practical reactor use were tested. As the deterioration prior to LOCA simulation, the thermal deterioration corresponding to 40 years aging (at 121 deg C for 7 days) was given, and subsequently, 50 Mrad gamma -irradiation at 1 Mrad/h was performed in the air. After that, the samples were subject to LOCA simulated environment. Since the results were different according to the kinds of samples, those are described separately for Hypalon, ethylene propylene rubber, cross-linked polyethylene, chloroprene and silicone rubber. The existence of air under LOCA environment accelerated the deterioration of insulation materials except silicone rubber, though its influence differed to the polymers. These materials swelled in the presence of air, and the degree of swelling increased with the temperature, having the close relation to oxidation deterioration. Polyethylene was more susceptible to the effect of air, and silicone rubber was rather stable. The samples of fire-retardant compounding ratio more swelled by water absorption than those of standard compounding ratio.

  13. The Relationship Between Technical And Nontechnical Skills Within A Simulation-Based Ureteroscopy Training Environment.

    Science.gov (United States)

    Brunckhorst, Oliver; Shahid, Shahab; Aydin, Abdullatif; Khan, Shahid; McIlhenny, Craig; Brewin, James; Sahai, Arun; Bello, Fernando; Kneebone, Roger; Shamim Khan, Muhammad; Dasgupta, Prokar; Ahmed, Kamran

    2015-01-01

    Little integration of technical and nontechnical skills (e.g., situational awareness, communication, decision making, teamwork, and leadership) teaching exists within surgery. We therefore aimed to (1) evaluate the relationship between these 2 skill sets within a simulation-based environment and (2) assess if certain nontechnical skill components are of particular relevance to technical performance. A prospective analysis of data acquired from a comparative study of simulation vs nonsimulation training was conducted. Half of the participants underwent training of technical and nontechnical skills within ureteroscopy, with the remaining half undergoing no training. All were assessed within a full immersion environment against both technical (time to completion, Objective Structured Assessment of Technical Skills, and task-specific checklist scores) and nontechnical parameters (Nontechnical Skills for Surgeons [NOTSS] rating scale). The data of whole and individual cohorts were analyzed using Pearson correlation coefficient. The trial took place within the Simulation and Interactive Learning Centre at Guy's Hospital, London, UK. In total, 32 novice participants with no prior practical ureteroscopy experience were included within the data analysis. A correlation was found within all outcome measures analyzed. For the whole cohort, a strong negative correlation was found between time to completion and NOTSS scores (r = -0.75, p Technical Skills (r = 0.89, p technical skill parameters, regardless of training. A strong correlation between technical and nontechnical performance exists, which was demonstrated to be irrespective of training received. This may suggest an inherent link between skill sets. Furthermore, all nontechnical skill sets are important in technical performance. This supports the notion that both of these skills should be trained and assessed together within 1 curriculum. Copyright © 2015 Association of Program Directors in Surgery. Published by

  14. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments

    International Nuclear Information System (INIS)

    Szoke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-01-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation’s lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers. IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry. This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. (paper)

  15. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    Science.gov (United States)

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  16. Experimental simulation: using generative modelling and palaeoecological data to understand human-environment interactions

    Directory of Open Access Journals (Sweden)

    George Perry

    2016-10-01

    Full Text Available The amount of palaeoecological information available continues to grow rapidly, providing improved descriptions of the dynamics of past ecosystems and enabling them to be seen from new perspectives. At the same time, there has been concern over whether palaeoecological enquiry needs to move beyond descriptive inference to a more hypothesis-focussed or experimental approach; however, the extent to which conventional hypothesis-driven scientific frameworks can be applied to historical contexts (i.e., the past is the subject of ongoing debate. In other disciplines concerned with human-environment interactions, including physical geography and archaeology, there has been growing use of generative simulation models, typified by agent-based approaches. Generative modelling encourages counter-factual questioning (what if…?, a mode of argument that is particularly important in systems and time-periods, such as the Holocene and now the Anthropocene, where the effects of humans and other biophysical processes are deeply intertwined. However, palaeoecologically focused simulation of the dynamics of the ecosystems of the past either seems to be conducted to assess the applicability of some model to the future or treats humans simplistically as external forcing factors. In this review we consider how generative simulation-modelling approaches could contribute to our understanding of past human-environment interactions. We consider two key issues: the need for null models for understanding past dynamics and the need to be able learn more from pattern-based analysis. In this light, we argue that there is considerable scope for palaeocology to benefit from developments in generative models and their evaluation. We discuss the view that simulation is a form of experiment and, by using case studies, consider how the many patterns available to palaeoecologists can support model evaluation in a way that moves beyond simplistic pattern-matching and how such models

  17. Numerical Simulation of Blast Action on Civil Structures in Urban Environment

    Science.gov (United States)

    Valger, Svetlana A.; Fedorova, Natalya N.; Fedorov, Alexander V.

    2017-10-01

    Nowadays, a lot of industrial accidents accompanied by explosions are happening throughout the world. Also, increase in the number of terrorist acts committed by means of explosions is observed. For improving safety of buildings and structures it is necessary to raise their resistance to explosive effects, as well as to be able to predict degree of potential damage upon explosive loads of various intensities. One of the principal goals in designing the structure resistant to explosive effects is to determine the dynamic response of structures to the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil engineering structures are to be determined. The simulation of explosion is highly complicated, involving an explosion causing the shock wave propagation in air and then interaction with a structure. The engineering-level techniques permit one to estimate an explosive shock impact only for isolated buildings. The complexity of the building, the presence of nearby structures and the surrounding environment cannot be taken into account. Advanced computer aid engineering (CAE) software techniques combined with the latest methods of discrete three-dimensional city modelling permits one to simulate and analyse the effects of explosions in urban areas with a precision which previously was not possible. In the paper, the simulation results are presented of shock wave forming due to a spherical explosive charge and its propagation in the vicinity of geometrical configuration imitating an urban environment. The numerical simulation of a flow in the vicinity of prisms of different cross-sections and heights located on a flat plate was performed. The calculations are carried out in a three-dimensional non-viscous formulation using ANSYS software. On a basis of simulation results, a complex wave structures were analysed, and all the peculiarities of flows and pressure history records on building walls were described and explained. The

  18. Experimental measurement of a shipboard fire environment with simulated radioactive materials packages

    International Nuclear Information System (INIS)

    Koski, J.A.; Wix, S.D.

    1996-01-01

    Results from a series of eight test fires ranging in size from 2.2 to 18.8 MW conducted aboard the Coast Guard fire test ship Mayo Lykes at Mobile, Alabama are presented and discussed. Tests aboard the break-bulk type cargo ship consisted of heptane spray fires simulating engine room and galley fires, wood crib fires simulating cargo hold fires, and pool fires staged for comparison to land-based regulatory fire results. Primary instrumentation for the tests consisted of two pipe calorimeters that simulated a typical package shape for radioactive materials packages. The calorimeters were both located adjacent to the fires and on the opposite side of the cargo hold bulkhead nearest the fire. The calorimeters were constructed from 1.5 m length sections of nominal 2 foot diameter schedule 60 steel pipe. Type K thermocouples were attached at 12 locations on the circumference and ends of the calorimeter. Fire heat fluxes to the calorimeter surfaces were estimated with the use of the Sandia SODDIT inverse heat conduction code. Experimental results from all types of tests are discussed, and some comparisons are made between the environments found on the ship and those found in land-based pool fire tests

  19. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    International Nuclear Information System (INIS)

    Carlone, Marco; Harnett, Nicole; Jaffray, David; Norrlinger, Bern; Prooijen, Monique van; Milne, Emily

    2014-01-01

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance of all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator

  20. Analysis of exposure to electromagnetic fields in a healthcare environment: simulation and experimental study.

    Science.gov (United States)

    de Miguel-Bilbao, Silvia; Martín, Miguel Angel; Del Pozo, Alejandro; Febles, Victor; Hernández, José A; de Aldecoa, José C Fernández; Ramos, Victoria

    2013-11-01

    Recent advances in wireless technologies have lead to an increase in wireless instrumentation present in healthcare centers. This paper presents an analytical method for characterizing electric field (E-field) exposure within these environments. The E-field levels of the different wireless communications systems have been measured in two floors of the Canary University Hospital Consortium (CUHC). The electromagnetic (EM) conditions detected with the experimental measures have been estimated using the software EFC-400-Telecommunications (Narda Safety Test Solutions, Sandwiesenstrasse 7, 72793 Pfullingen, Germany). The experimental and simulated results are represented through 2D contour maps, and have been compared with the recommended safety and exposure thresholds. The maximum value obtained is much lower than the 3 V m(-1) that is established in the International Electrotechnical Commission Standard of Electromedical Devices. Results show a high correlation in terms of E-field cumulative distribution function (CDF) between the experimental and simulation results. In general, the CDFs of each pair of experimental and simulated samples follow a lognormal distribution with the same mean.

  1. Building a Simulated Environment for the Study of Multilateral Approaches to Nuclear Materials Verification

    International Nuclear Information System (INIS)

    Moul, R.; Persbo, A.; Keir, D.

    2015-01-01

    Verification research can be resource-intensive, particularly when it relies on practical or field exercises. These exercises can also involve substantial logistical preparations and are difficult to run in an iterative manner to produce data sets that can be later utilized in verification research. This paper presents the conceptual framework, methodology and preliminary findings from part of a multi-year research project, led by VERTIC. The multi-component simulated environment that we have generated, using existing computer models for nuclear reactors and other components of fuel cycles, can be used to investigate options for future multilateral nuclear verification, at a variety of locations and time points in a nuclear complex. We have constructed detailed fuel cycle simulations for two fictional, and very different, states. In addition to these mass-flow models, a 3-dimensional, avatarbased simulation of a nuclear facility is under development. We have also developed accompanying scenarios-that provide legal and procedural assumptions that will control the process of our fictional verification solutions. These tools have all been produced using open source information and software. While these tools are valuable for research purposes, they can also play an important role in support of training and education in the field of nuclear materials verification, in a variety of settings and circumstances. (author)

  2. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    Science.gov (United States)

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  3. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, Marco; Harnett, Nicole; Jaffray, David [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada); Norrlinger, Bern; Prooijen, Monique van; Milne, Emily [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON (Canada)

    2014-08-15

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance of all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.

  4. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.; Roth, E.M.

    1990-01-01

    The US Nuclear Regulatory Commission is sponsoring a research program to develop improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. Under this program, a tool for simulating how people form intentions to act in NPP emergency situations was developed using artificial intelligence (AI) techniques. This tool is called Cognitive Environment Simulation (CES). The Cognitive Reliability Assessment Technique (or CREATE) was also developed to specify how CBS can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. The next step in the research program was to evaluate the modeling tool and the method for using the tool for Human Reliability Analysis (HRA) in PRAs. Three evaluation activities were conducted. First, a panel of highly distinguished experts in cognitive modeling, AI, PRA and HRA provided a technical review of the simulation development work. Second, based on panel recommendations, CES was exercised on a family of steam generator tube rupture incidents where empirical data on operator performance already existed. Third, a workshop with HRA practitioners was held to analyze a worked example of the CREATE method to evaluate the role of CES/CREATE in HRA. The results of all three evaluations indicate that CES/CREATE represents a promising approach to modeling operator intention formation during emergency operations

  5. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    Directory of Open Access Journals (Sweden)

    Danish Shehzad

    2016-01-01

    Full Text Available Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  6. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Langlois, Ariane; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2016-03-01

    Green tea polyphenols are recognized for their antioxidant properties and their effects on lipid digestion kinetics. Polyphenols are sensitive to degradation in the intestinal environment. Interactions with dairy proteins could modulate the stability and biological activity of polyphenols during digestion. The objective of this study was to evaluate the release of nutrients (polyphenols, fatty acids and peptides) and the antioxidant activity in polyphenol-enriched cheese containing different levels of calcium in a simulated gastrointestinal environment. The relationship between cheese matrix texture, matrix degradation and nutrient release during digestion was also studied. Green tea extract was added to milk at 0% or 0.1%, and cheeses were produced on a laboratory scale. The level of available calcium was adjusted to low (Ca(low)), regular (Ca(reg)) or high (Ca(high)) during the salting step of the cheese-making process. Cheeses were subjected to simulated digestion. The rate and extent of fatty acid release were 21% lower for Ca(low) cheese than for Ca(reg) and Ca(high) cheeses. The greater adhesiveness of Ca(low) cheese, which resulted in lower rates of matrix degradation and proteolysis, contributed to the reduced rate of lipolysis. The presence of green tea extract in cheese reduced the release of free fatty acids at the end of digestion by 7%. The addition of green tea extract increased cheese hardness but did not influence matrix degradation or proteolysis profiles. The formation of complexes between tea polyphenols and proteins within the cheese matrix resulted in a more than twofold increase in polyphenol recovery in the intestinal phase compared with the control (tea polyphenol extract incubated with polyphenol-free cheese). Antioxidant activity was 14% higher in the digest from polyphenol-enriched cheese than in the control. These results suggest that cheese is an effective matrix for the controlled release of nutrients and for the protection of green

  7. Conversion of a mainframe simulation for maintenance performance to a PC environment

    International Nuclear Information System (INIS)

    Gertman, D.I.

    1990-01-01

    The computer model MAPPS, the Maintenance Personnel Performance Simulation, has been developed and validated by the US NRC [Nuclear Regulatory Commission] in order to improve maintenance practices and procedures at nuclear power plants. This model has now been implemented and improved, in a PC [personal computer] environment and renamed MICROMAPPS. The model is stochastically based and users are able to simulate the performance of 2- to 8-person crews for a variety of maintenance tasks under a variety of conditions. These conditions include aspects of crew actions as potentially influenced by the task, the environment, or the personnel involved. For example, the influence of the following factors is currently modeled within the MAPPS computer code: (1) personnel characteristics include but are not limited to intellectual and perceptual motor ability levels, the effect of fatigue and conversely, of rest breaks on performance, stress, communication, supervisor acceptance, motivation, organizational climate, time since the tasks was last performed and the staffing level available; (2) task variables include but are not limited to time allowed, occurrence of shift change, intellectual requirements, perceptual motor requirements, procedures quality, necessity for protective clothing and essentiality of a procedures quality, necessity for protective clothing and essentiality of a subtask; and (3) environment variables include temperature of the workplace, radiation level, and noise levels. The output describing maintainer performance includes subtask and task identification, success proportion, work and wait durations, time spent repeating various subtasks and outcome in terms of errors detected by the crew, false alarms, undetected errors, duration, and the probability of success. The model is comprehensive and allows for the modeling of decision making, trouble-shooting and branching of tasks

  8. The limits of extremophilic life expanded under extraterrestrial environment-simulated experiments

    Science.gov (United States)

    Lage, C.; Dalmaso, G.; Teixeira, L.; Bendia, A.; Rosado, A.

    2012-09-01

    Astrobiology is a brand new area of science that seeks to understand the origin and dynamics of life in the universe. Several hypotheses to explain life in the cosmic context have been developed throughout human history, but only now technology has allowed many of them to be tested. Laboratory experiments have been able to show how chemical elements essential to life, carbon, nitrogen, oxygen and hydrogen combine in biologically important compounds. Interestingly, these compounds are found universally. As these compounds were combined to the point of originating cells and complex organisms is still a challenge to be unveiled by science. However, our 4.5 billion years-old solar system was born within a 10-billion years-old universe. Thus, simple cells like microorganisms may have had time to form in planets older than ours or other suitable molecular places in the universe. One hypothesis to explain the origin of life on Earth is called panspermia, which predicts that microbial life could have been formed in the universe billions of years ago, traveling between planets, and inseminating units of life that could have become more complex in habitable planets like ours. A project designed to test the viability of extremophile microorganisms exposed to simulated extraterrestrial environments is ongoing at the Carlos Chagas Filho Institute of Biophysics to test whether microbial life could withstand those inhospitable environments. Ultra-resistant (known or novel ones) microorganisms collected from terrestrial extreme environments, extremophiles, have been exposed to intense radiation sources simulating solar radiation (at synchrotron accelerators), capable of emitting in a few hours radiation equivalent of million years accumulated doses. The results obtained in these experiments reveal the interesting possibility of the existence of microbial life beyond Earth.

  9. Health Effects of Airline Cabin Environments in Simulated 8-Hour Flights.

    Science.gov (United States)

    2017-07-01

    Commercial air travel is usually without health incidents. However, there is a view that cabin environments may be detrimental to health, especially flights of 8 h or more. Concerns have been raised about deep vein thrombosis, upper respiratory tract infections, altitude sickness, and toxins from the engines. Passenger cabin simulators were used to achieve a comparative observational study with 8-h flights at pressures equivalent to terrestrial altitudes of ground, 4000, 6000, and 8000 ft. Biomarkers of thrombosis (D-Dimer), inflammation (interleukin-6), and respiratory dysfunction (FEV1) and oxygen saturation (Spo2) were measured, as well as pulse and blood pressure. The wellbeing of the passengers was also monitored. During 36 flights, 1260 healthy subjects [626 women (F) and 634 men (M) (mean age = 43, SD = 16)] were assessed. Additionally, 72 subjects with chronic obstructive pulmonary disease (F = 32, M = 40, mean age = 48, SD = 17) and 74 with heart failure (F = 50, M = 24, mean age = 54, SD = 14) contributed to 11 flights. Additionally, 76 normal controls were observed while engaged in a usual day's work (F = 38, M = 38, mean age = 39, SD = 15). There were no health-significant changes in D-Dimer, interleukin-6, or FEV1. Spo2 varied as expected, with lowest values at 8000 ft and in patients with cardiopulmonary disease. The only differences from the controls were the loss of the normal diurnal variations in interleukin-6 and D-Dimer. This very large, comparative, controlled study provides much reassurance for the traveling public, who use airline flights of up to 8 h. We did not show evidence of the development of venous thrombosis, inflammation, respiratory embarrassment, nor passenger distress. No significant symptoms or adverse effects were reported.Ideal Cabin Environment (ICE) Research Consortium of the European Community 6th Framework Programme. Health effects of airline cabin environments in simulated 8-hour flights. Aerosp Med Hum Perform. 2017; 88(7):651-656.

  10. Drawing-Based Simulation for Primary School Science Education: An Experimental Study of the GearSketch Learning Environment

    NARCIS (Netherlands)

    Leenaars, Frank; van Joolingen, Wouter; Gijlers, Aaltje H.; Bollen, Lars

    2012-01-01

    Touch screen computers are rapidly becoming available to millions of students. These devices make the implementation of drawing-based simulation environments like Gear Sketch possible. This study shows that primary school students who received simulation-based support in a drawing-based learning

  11. CFD simulation of a cabin thermal environment with and without human body - thermal comfort evaluation

    Science.gov (United States)

    Danca, Paul; Bode, Florin; Nastase, Ilinca; Meslem, Amina

    2018-02-01

    Nowadays, thermal comfort became one of the criteria in choosing a vehicle. In last decades time spent by people in vehicles had risen substantially. During each trip, thermal comfort must to be ensured for a good psychological and physical state of the passengers. Also, a comfortable environment leads to a higher power concentration of the driver thereby to a safe trip for vehicle occupants and for all traffic participants. The present study numerically investigated the effect of human body sited in the driver's place, over the air velocity distribution and over the thermal comfort in a passenger compartment. CFD simulations were made with different angles of the left inlet grill, in both cases, with and without driver presence. In majority of the actual vehicles environment studies, are made without consideration of human body geometry, in this case, the results precision can be affected. The results show that the presence of human body, lead to global changing of the whole flow pattern inside the vehicular cabin. Also, the locations of the maximum velocities are changing with the angle of the guiding vanes. The thermal comfort PMV/PPD indexes were calculated for each case. The presence of human body leads to a more comfortable environment.

  12. Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain

    Science.gov (United States)

    Veermans, Koen; van Joolingen, Wouter; de Jong, Ton

    2006-01-01

    This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…

  13. Flexible Simulation E-Learning Environment for Studying Digital Circuits and Possibilities for It Deployment as Semantic Web Service

    Science.gov (United States)

    Radoyska, P.; Ivanova, T.; Spasova, N.

    2011-01-01

    In this article we present a partially realized project for building a distributed learning environment for studying digital circuits Test and Diagnostics at TU-Sofia. We describe the main requirements for this environment, substantiate the developer platform choice, and present our simulation and circuit parameter calculation tools.…

  14. JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator

    Science.gov (United States)

    Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T.

    2014-10-01

    Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.

  15. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.

    1989-01-01

    Various studies have shown that intention errors, or cognitive error, are a major contributor to the risk of disaster. Intention formation refers to the cognitive processes by which an agent decides on what actions are appropriate to carry out (information gathering, situation assessment, diagnosis, response selection). Understanding, measuring, predicting and correcting cognitive errors depends on the answers to the question - what are difficult problems? The answer to this question defines what are risky situations from the point of view of what incidents will the human-technical system manage safely and what incidents will the human-technical system manage poorly and evolve towards negative outcomes. The authors have made progress in the development of such measuring devices through an NRC sponsored research program on cognitive modeling of operator performance. The approach is based on the demand-resource match view of human error. In this approach the difficulty of a problem depends on both the nature of the problem itself and on the resources (e.g., knowledge, plans) available to solve the problem. One can test the difficulty posed by a domain incident, given some set of resources by running the incident through a cognitive simulation that carries out the cognitive activities of a limited resource problem solver in a dynamic, uncertain, risky and highly doctrinal (pre-planned routines and procedures) world. The cognitive simulation that they have developed to do this in NPP accidents is called the Cognitive Environment Simulation (CES). They will illustrate the power of this approach by comparing the behavior of operators in variants on a simulated accident to the behavior of CES in the same accidents

  16. Multispectral simulation environment for modeling low-light-level sensor systems

    Science.gov (United States)

    Ientilucci, Emmett J.; Brown, Scott D.; Schott, John R.; Raqueno, Rolando V.

    1998-11-01

    Image intensifying cameras have been found to be extremely useful in low-light-level (LLL) scenarios including military night vision and civilian rescue operations. These sensors utilize the available visible region photons and an amplification process to produce high contrast imagery. It has been demonstrated that processing techniques can further enhance the quality of this imagery. For example, fusion with matching thermal IR imagery can improve image content when very little visible region contrast is available. To aid in the improvement of current algorithms and the development of new ones, a high fidelity simulation environment capable of producing radiometrically correct multi-band imagery for low- light-level conditions is desired. This paper describes a modeling environment attempting to meet these criteria by addressing the task as two individual components: (1) prediction of a low-light-level radiance field from an arbitrary scene, and (2) simulation of the output from a low- light-level sensor for a given radiance field. The radiance prediction engine utilized in this environment is the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model which is a first principles based multi-spectral synthetic image generation model capable of producing an arbitrary number of bands in the 0.28 to 20 micrometer region. The DIRSIG model is utilized to produce high spatial and spectral resolution radiance field images. These images are then processed by a user configurable multi-stage low-light-level sensor model that applies the appropriate noise and modulation transfer function (MTF) at each stage in the image processing chain. This includes the ability to reproduce common intensifying sensor artifacts such as saturation and 'blooming.' Additionally, co-registered imagery in other spectral bands may be simultaneously generated for testing fusion and exploitation algorithms. This paper discusses specific aspects of the DIRSIG radiance prediction for low

  17. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  18. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator

    Science.gov (United States)

    Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.

  19. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    International Nuclear Information System (INIS)

    Telander, M.R.; Westerman, R.E.

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N 2 , CO 2 , H 2 S, and H 2 . Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H 2 on an equimolar basis with Fe reacted. Presence of CO 2 caused the initial reaction to proceed more rapidly, but CO 2 -induced passivation stopped the reaction if the CO 2 were present in sufficient quantities. Addition of H 2 S to a CO 2 -passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H 2 S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO 2 to an H 2 S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N 2 , CO 2 , and H 2 S except for the rapid and complete reaction between Cu-base materials and H 2 S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO 2 or H 2 S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures

  20. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  1. Secure environment for real-time tele-collaboration on virtual simulation of radiation treatment planning.

    Science.gov (United States)

    Ntasis, Efthymios; Maniatis, Theofanis A; Nikita, Konstantina S

    2003-01-01

    A secure framework is described for real-time tele-collaboration on Virtual Simulation procedure of Radiation Treatment Planning. An integrated approach is followed clustering the security issues faced by the system into organizational issues, security issues over the LAN and security issues over the LAN-to-LAN connection. The design and the implementation of the security services are performed according to the identified security requirements, along with the need for real time communication between the collaborating health care professionals. A detailed description of the implementation is given, presenting a solution, which can directly be tailored to other tele-collaboration services in the field of health care. The pilot study of the proposed security components proves the feasibility of the secure environment, and the consistency with the high performance demands of the application.

  2. DHM simulation in virtual environments: a case-study on control room design.

    Science.gov (United States)

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.

  3. Prototype heater test of the environment around a simulated waste package

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Buscheck, T.A.; Carlson, R.; Daily, W.; Latorre, V.R.; Lee, K; Lin, Wunan; Mao, Nai-hsien; Towse, D.; Ueng, Tzou-Shin; Watwood, D.

    1991-01-01

    This paper presents selected results obtained during the 301 day duration of the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT) planned for the Exploratory Shaft Facility in Yucca Mountain. The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures and gas-phase humidity in the heater borehole

  4. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment

    Energy Technology Data Exchange (ETDEWEB)

    Aldemir, Tunc [The Ohio State Univ., Columbus, OH (United States); Denning, Richard [The Ohio State Univ., Columbus, OH (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States); Unwin, Stephen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-23

    Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, such as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.

  5. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    Science.gov (United States)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  6. Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance Environment

    Directory of Open Access Journals (Sweden)

    Andrea Lani

    2006-01-01

    Full Text Available Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical models and numerical methods that have arisen in the development of COOLFluiD, an environment for PDE solvers. Particular attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the application of two design patterns, Perspective and Method-Command-Strategy, that support extensibility and run-time flexibility in the implementation of physical models and generic numerical algorithms respectively.

  7. Stress corrosion cracking resistance of 22% Cr duplex stainless steel in simulated sour environments

    International Nuclear Information System (INIS)

    Kudo, T.; Tsuge, H.; Moroishi, T.

    1989-01-01

    This paper reports the effect of nickel and nitrogen contents on stress corrosion cracking (SCC) of 22%Cr - 3%Mo-base duplex stainless steel investigated in simulated sour environments with respect to both the base metal and the heat-affected zone (HAZ) of welding. The threshold stress and the critical chloride concentration for SCC were evaluated as a function of the ferrite content (α-content) in the alloy. The threshold stress is highest at the α-content of 40 to 45%, and is lowered with decreasing and increasing the α-content from its value. The alloy whose α-content exceeds 80% at the HAZ has also high susceptibilities to pitting corrosion and intergranular corrosion (ICG). The critical chloride concentration for cracking increases with the decrease in the α-content. Moreover, the contents of chromium, nickel and molybdenum in the α-phase are considered to be an important factor for determining the critical chloride concentration

  8. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment

    International Nuclear Information System (INIS)

    Aldemir, Tunc; Denning, Richard; Catalyurek, Umit; Unwin, Stephen

    2015-01-01

    Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, such as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.

  9. Simulation as a planning tool for job-shop production environment

    Science.gov (United States)

    Maram, Venkataramana; Nawawi, Mohd Kamal Bin Mohd; Rahman, Syariza Abdul; Sultan, Sultan Juma

    2015-12-01

    In this paper, we made an attempt to use discrete event simulation software ARENA® as a planning tool for job shop production environment. We considered job shop produces three types of Jigs with different sequence of operations to study and improve shop floor performance. The sole purpose of the study is to identifying options to improve machines utilization, reducing job waiting times at bottleneck machines. First, the performance of the existing system was evaluated by using ARENA®. Then identified improvement opportunities by analyzing base system results. Second, updated the model with most economical options. The proposed new system outperforms with that of the current base system by 816% improvement in delay times at paint shop by increase 2 to 3 and Jig cycle time reduces by Jig1 92%, Jig2 65% and Jig3 41% and hence new proposal was recommended.

  10. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  11. EIT forward problem parallel simulation environment with anisotropic tissue and realistic electrode models.

    Science.gov (United States)

    De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto

    2012-05-01

    Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.

  12. The development of a collaborative virtual environment for finite element simulation

    Science.gov (United States)

    Abdul-Jalil, Mohamad Kasim

    Element Analysis module, such as is demonstrated in this work). One of the major issues in developing a CVE system for engineering design purposes is to obtain any pertinent simulation results in real-time. This is critical so that the designers can make decisions based on these results quickly. For example, in a finite element analysis, if a design model is changed or perturbed, the analysis results must be obtained in real-time or near real-time to make the virtual meeting environment realistic. In this research, the finite difference-based Design Sensitivity Analysis (DSA) approach is employed to approximate structural responses (i.e. stress, displacement, etc), so as to demonstrate the applicability of CVRoom for engineering design trade-offs. This DSA approach provides for fast approximation and is well-suited for the virtual meeting environment where fast response time is required. The DSA-based approach is tested on several example test problems to show its applicability and limitations. This dissertation demonstrates that an increase in efficiency and reduction of time required for a complex design processing can be accomplished using the approach developed in this dissertation research. Several implementations of CVRoom by students working on common design tasks were investigated. All participants confirmed the preference of using the collaborative virtual environment developed in this dissertation work (CVRoom) over other modes of interactions. It is proposed here that CVRoom is representative of the type of collaborative virtual environment that will be used by most designers in the future to reduce the time required in a design cycle and thereby reduce the associated cost.

  13. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    Science.gov (United States)

    Zhang, Ye; Edwards, Christopher; Wu, Honglu

    2011-01-01

    This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulation of cells in response to antineoplastic agents, we cultured LNCaP cells for 96 hr either in a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as a control. 24 hr after the culture started, mitoxantrone was introduced to the cells at a final concentration of 1 M. The mitoxantrone treatment lasted 72 hr and then the cells were collected for various measurements. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not show significant differences in cell viability, growth rate, or cell cycle distribution. However, in response to mitoxantrone (1uM), a significant proportion of bioreactor cultured cells (30%) was arrested at G2 phase and a significant number of these cells were apoptotic in comparison to their static controls. The expressions of 84 oxidative stress related genes were analyzed using Qiagen PCR array to identify the possible mechanism underlying the altered responses of bioreactor culture cells to mitoxantrone. Nine out of 84 genes showed higher expression at four hour post mitoxantrone treatment in cells cultured at rotating condition compared to those at static. Taken together, the results reported here indicate that simulated microgravity may alter the responses of LNCaP cells to mitoxantrone treatment. The alteration of oxidative stress pathways

  14. Enclosure environment characterization testing for the base line validation of computer fire simulation codes

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1987-03-01

    This report describes a series of fire tests conducted under the direction of Sandia National Laboratories for the US Nuclear Regulatory Commission. The primary purpose of these tests was to provide data against which to validate computer fire environment simulation models to be used in the analysis of nuclear power plant enclosure fire situations. Examples of the data gathered during three of the tests are presented, though the primary objective of this report is to provide a timely description of the test effort itself. These tests were conducted in an enclosure measuring 60x40x20 feet constructed at the Factory Mutual Research Corporation fires test facility in Rhode Island. All of the tests utilized forced ventilation conditions. The ventilation system was designed to simulate typical nuclear power plant installation practices and ventilation rates. A total of 22 tests using simple gas burner, heptane pool, methanol pool, and PMMA solid fires was conducted. Four of these tests were conducted with a full-scale control room mockup in place. Parameters varied during testing were fire intensity, enclosure ventilation rate, and fire location. Data gathered include air temperatures, air velocities, radiative and convective heat flux levels, optical smoke densities, inner and outer enclosure surface temperatures, enclosure surface heat flux levels, and gas concentrations within the enclosure in the exhaust stream

  15. Numerical Simulation of the Effects of Water Surface in Building Environment

    Science.gov (United States)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  16. In vitro analysis of nanotoxicity of metallic nanoparticles in simulated intracorporeal bio-environment

    International Nuclear Information System (INIS)

    Meng Huan; Chen Zhen; Zhang Chengcheng; Zhao Yuliang; Xing Gengmei; Yuan Hui; Chen Chunying; Zhao Feng; Ye Chang; Jia Guang; Wang Xiang

    2005-01-01

    The wildly uses of copper in the various aspects of the life and industry have proved that microsized copper is a substance of very low toxicity. However, the recent experimental results indicate that the acute toxicity of nanosized particles in mice is dramatically different from the microsized particles of copper. The biological toxicity of copper showed increasing feature with the decrease of the particle size. To further study these observations, chemical oxidation-reduction titration analysis was carried out to study the kinetics of nano copper particles in simulated gastric juice. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Thermo Elemental X7) was used to detect the content of copper in the organs of mice exposed to a wide range of doses. These in vitro studies of chemical reactivity suggest that the nano-sized copper is extremely reactive in simulated intracorporeal environment. The nano copper particles can be converted into ionic form much easier than micro particles of the identical quantity under the same conditions in vitro. The hydrogen ion consumed by nano-sized copper in stomach is dramatically quicker than by micro copper particles. At the presentation, we will discuss the analyzed results for the different distribution of nanoparticles, the different mortality in nano copper treated animal groups between male and female mice, and show evidences demonstrating that the huge surface area as well the ultrahigh chemical reactivity would be the main causes dominating the biological activity/toxicity of metallic nanoparticles in vivo.

  17. Design of a Realistic Test Simulator For a Built-In Self Test Environment

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2010-12-01

    Full Text Available This paper presents a realistic test approach suitable to Design For Testability (DFT and Built- In Self Test (BIST environments. The approach is culminated in the form of a test simulator which is capable of providing a required goal of test for the System Under Test (SUT. The simulator uses the approach of fault diagnostics with fault grading procedure to provide the tests. The tool is developed on a common PC platform and hence no special software is required. Thereby, it is a low cost tool and hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any SUT. The developed tool incorporates a flexible Graphical User Interface (GUI procedure and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe - reliable - testable digital logic designs.

  18. System Dynamics based Dengue modeling environment to simulate evolution of Dengue infection under different climate scenarios

    Science.gov (United States)

    Anwar, R.; Khan, R.; Usmani, M.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Vector borne infectious diseases such as Dengue, Zika and Chikungunya remain a public health threat. An estimate of the World Health Organization (WHO) suggests that about 2.5 billion people, representing ca. 40% of human population,are at increased risk of dengue; with more than 100 million infection cases every year. Vector-borne infections cannot be eradicated since disease causing pathogens survive in the environment. Over the last few decades dengue infection has been reported in more than 100 countries and is expanding geographically. Female Ae. Aegypti mosquito, the daytime active and a major vector for dengue virus, is associated with urban population density and regional climatic processes. However, mathematical quantification of relationships on abundance of vectors and climatic processes remain a challenge, particularly in regions where such data are not routinely collected. Here, using system dynamics based feedback mechanism, an algorithm integrating knowledge from entomological, meteorological and epidemiological processes is developed that has potential to provide ensemble simulations on risk of occurrence of dengue infection in human population. Using dataset from satellite remote sensing, the algorithm was calibrated and validated using actual dengue case data of Iquitos, Peru. We will show results on model capabilities in capturing initiation and peak in the observed time series. In addition, results from several simulation scenarios under different climatic conditions will be discussed.

  19. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    Science.gov (United States)

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  20. Towards developing high-fidelity simulated learning environment training modules in audiology.

    Science.gov (United States)

    Dzulkarnain, A A; Rahmat, S; Mohd Puzi, N A F; Badzis, M

    2017-02-01

    This discussion paper reviews and synthesises the literature on simulated learning environment (SLE) from allied health sciences, medical and nursing in general and audiology specifically. The focus of the paper is on discussing the use of high-fidelity (HF) SLE and describing the challenges for developing a HF SLE for clinical audiology training. Through the review of the literature, this paper discusses seven questions, (i) What is SLE? (ii) What are the types of SLEs? (iii) How is SLE classified? (iv) What is HF SLE? (v) What types of SLEs are available in audiology and their level of fidelity? (vi) What are the components needed for developing HF SLE? (vii) What are the possible types of HF SLEs that are suitable for audiology training? Publications were identified by structured searches from three major databases PubMed, Web of Knowledge and PsychInfo and from the reference lists of relevant articles. The authors discussed and mapped the levels of fidelity of SLE audiology training modules from the literature and the learning domains involved in the clinical audiology courses. The discussion paper has highlighted that most of the existing SLE audiology training modules consist of either low- or medium-fidelity types of simulators. Those components needed to achieve a HF SLE for audiology training are also highlighted. Overall, this review recommends that the combined approach of different levels and types of SLE could be used to obtain a HF SLE training module in audiology training.

  1. Polymethylmethacrylate combustion in a narrow channel apparatus simulating a microgravity environment

    Science.gov (United States)

    Bornand, Garrett Randall

    Fire safety is an important part of engineering when human lives are at stake. From everyday homes to spacecraft that can cost hundreds of millions of dollars. The research in this thesis attempts to provide scientific evidence that the apparatus in question successfully simulates microgravity and can possibly replace NASA's current test method for spacecraft fire safety. Flame spread tests were conducted with thermally thick and thermally thin polymethylmethacrylate (PMMA) samples to study flame spread behavior in response to environmental changes. The tests were conducted using the San Diego State University Narrow Channel Apparatus (SDSU NCA) as well as within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS). The SDSU NCA can suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression attained in the NCA allows tests to be conducted in a simulated microgravity environment-a characteristic that NASA's Test 1 lacks since flames present in Test 1 are driven by buoyant flows. The SDSU NCA allows for tests to be conducted at various opposed flow oxidizer velocities, oxygen percent by volume, and total pressure to mimic various spacecraft and habitat atmospheres. Tests were conducted at 1 atm pressure, thin fuel thickness of 50 and 75 microns, thick fuel thickness ranging from 3 mm to 5.6 mm, opposed oxidizer velocity ranging from 10 to 25 cm/s, and oxygen concentration by volume at 21, 30, and 50 percent. The simulated microgravity flame spread results were then compared to true microgravity experiments including; testing conducted on the International Space Station (ISS) under the Burning and Suppression of Solids (BASS) research, NASA's 5.2 second Drop Tower, and Micro-Gravity Laboratory's (MGLAB) 4.5 second Drop Tower. Data was also

  2. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa

  3. Simulations and experimental evaluation of an active orthosis for interaction in virtual environments

    Directory of Open Access Journals (Sweden)

    Tsveov Mihail

    2018-01-01

    Full Text Available In this work, the development of a human arm active orthosis is presented. The orthosis is designed primarily for training and rehabilitation in virtual environments.The orthosis system is intended for embodiment in virtual reality where it is allowing human to perceive forces at different body parts or the weight of lifted objects. In the paper the choice of a mechanical structure is shown equivalent to the structure of the human arm. A mechanical model of the orthosis arm as haptic device is built, where kinematic and dynamic parameters are evaluated. Impedance control scheme is selected as the most suitable for force refection at the hand or arm. An open-loop impedance controller is presented in the paper. Computer experiments are carried out using the dimensions of a real arm orthosis. Computer experiments have been carried out to provide force reflection by VR, according to virtual scenario. The conducted simulations show the range of the forces on the operator hand, orthosis can provide. The results of additional measurements and experimental evaluations of physical quantities in the interaction in a virtual environment are revealed in the paper.

  4. Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment

    Science.gov (United States)

    Peeters, Z.; Vos, D.; ten Kate, I. L.; Selch, F.; van Sluis, C. A.; Sorokin, D. Yu.; Muijzer, G.; Stan-Lotter, H.; van Loosdrecht, M. C. M.; Ehrenfreund, P.

    2010-11-01

    Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, -20, and -80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.

  5. Development of a simulation environment to support intercalibration studies over the Algodones Dunes system

    Science.gov (United States)

    Eon, Rehman S.; Gerace, Aaron D.; Montanaro, Matthew; Ambeau, Brittany L.; McCorkel, Joel T.

    2018-01-01

    The ability of sensors to detect changes in the Earth's environment is dependent on retrieving radiometrically consistent and calibrated measurements from its surface. Intercalibration provides consistency among satellite instruments and ensures fidelity of scientific information. Intercalibration is especially important for spaceborne satellites without any on-board calibration, as accuracy of instruments is significantly affected by changes that occur postlaunch. To better understand the key parameters that impact the intercalibration process, this paper describes a simulation environment that was developed to support the primary mission of the Algodones Dunes campaign. Specifically, measurements obtained from the campaign were utilized to create a synthetic landscape to assess the feasibility of using the Algodones Dunes system as an intercalibration site for spaceborne instruments. The impact of two key parameters (differing view-angles and temporal offsets between instruments) on the intercalibration process was assessed. Results of these studies indicate that although the accuracy of intercalibration is sensitive to these parameters, proper knowledge of their impact leads to situations that minimize their effect. This paper concludes with a case study that addresses the feasibility of performing intercalibration on the International Space Station's platform to support NASA's CLARREO, the climate absolute radiance and refractivity observatory, mission.

  6. Experimental control versus realism: methodological solutions for simulator studies in complex operating environments

    Energy Technology Data Exchange (ETDEWEB)

    Skraaning, Gyrd Jr.

    2004-03-15

    This report is a reprint of a dr.philos. thesis written by Gyrd Skraaning Jr. The text was submitted and accepted by the Norwegian University of Science and Technology in 2003 (ISBN 82-471-5237-1). The thesis suggests a nonlinear model of the theoretical relationship between experimental control and realism, claiming that high degrees of realism and experimental control can be obtained simultaneously if the experimental methods are utilized strategically and developed further. This is in opposition to the conventional opinion that realism and experimental control are mutually excluding objectives. The thesis debates the impact of the operating task on human performance during simulator studies in HAMMLAB, and suggests how task variation can be experimentally controlled. In a within subject design, every subject is tested under all experimental conditions, and the presentation order of the conditions is counterbalanced to compensate for order effects. In realistic settings, it is essential that the experimental design imposes few artificial constrains on the research environment. At the same time, the design should be able to uncover experimental effects in situations where the number of participants is low. Within-subject design represents a reasonable compromise between these aspirations. In this respect, an alternative counterbalancing method is proposed (dis-ORDER). A theoretical analysis of the human performance concept and a discussion about performance measurement in complex operating environments, are followed by a debate on the shortcomings of traditional performance indicators. Two specialized operator performance assessment techniques are then presented and evaluated (OPAS and ORT). (Author)

  7. ROSE: A realtime object oriented software environment for high fidelity replica simulation

    International Nuclear Information System (INIS)

    Abramovitch, A.

    1994-01-01

    An object oriented software environment used for the production testing and documentation of real time models for high fidelity training simulators encompasses a wide variety of software constructs including code generators for various classes of physical systems, model executive control programs, a high resolution graphics editor, as well as databases and associated access routines used to store and control information transfer among the various software entities. CAE Electronics' newly developed ROSE allows for the generation and integrated test of thermalhydraulic, analog control, digital control and electrical system models. Based on an iconical/standard subroutine representation of standard plant components along with an admittance matrix solution governed by the topology of the system under consideration, the ROSE blends together network solution algorithms and standard component models, both previously time tested via manual implementation into a single integrated automated software environment. The methodology employed to construct the ROSE, along with a synopsis of the various CASE tools integrated together to form a complete graphics based system for high fidelity real time code generation and validation is described in the presentation. (1 fig.)

  8. Nuclear EMP simulation for large-scale urban environments. FDTD for electrically large problems.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William S. [Los Alamos National Laboratory; Bull, Jeffrey S. [Los Alamos National Laboratory; Wilcox, Trevor [Los Alamos National Laboratory; Bos, Randall J. [Los Alamos National Laboratory; Shao, Xuan-Min [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory; Costigan, Keeley R. [Los Alamos National Laboratory

    2012-08-13

    In case of a terrorist nuclear attack in a metropolitan area, EMP measurement could provide: (1) a prompt confirmation of the nature of the explosion (chemical or nuclear) for emergency response; and (2) and characterization parameters of the device (reaction history, yield) for technical forensics. However, urban environment could affect the fidelity of the prompt EMP measurement (as well as all other types of prompt measurement): (1) Nuclear EMP wavefront would no longer be coherent, due to incoherent production, attenuation, and propagation of gamma and electrons; and (2) EMP propagation from source region outward would undergo complicated transmission, reflection, and diffraction processes. EMP simulation for electrically-large urban environment: (1) Coupled MCNP/FDTD (Finite-difference time domain Maxwell solver) approach; and (2) FDTD tends to be limited to problems that are not 'too' large compared to the wavelengths of interest because of numerical dispersion and anisotropy. We use a higher-order low-dispersion, isotropic FDTD algorithm for EMP propagation.

  9. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2016-12-01

    Full Text Available We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  10. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment.

    Science.gov (United States)

    Yao, Yao; Storme, Veronique; Marchal, Kathleen; Van de Peer, Yves

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  11. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    Science.gov (United States)

    Yao, Yao; Storme, Veronique; Marchal, Kathleen

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population. PMID:28028477

  12. Effects of environmental factor on gas evolution behavior from Al in simulating mortar environments

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1998-01-01

    Dry Low-Level Radioactive Wastes (LLW) which mean incombustible solid LLW generated from nuclear power stations are scheduled to be packed in steel drums followed by solidification with mortar. The solidified dry LLW is then to be disposed to shallow under-ground at Rokkasho LLW Disposal Center. Dry LLW includes some amphoteric metals among which aluminum is the most corrosive with gas evolution in high alkaline media such as mortar. The evolved gas may accelerate the leaching of solidified dry LLW with mortar. Despite the planned removal of aluminum from dry LLW, small inclusion of aluminum is unavoidable. The present study focuses on the effect of environmental factors such as pH and temperature on gas evolution behavior caused by aluminum corrosion. Large effects of pH and temperature on corrosion rate of aluminum and gas evolution were recognized. Principal corrosion product of aluminum was calcium aluminate compound when it was immersed in simulated mortar environments. It is demonstrated that 1.5 mol hydrogen gas evolves with the corrosion of 1 mol aluminum in environments of 12 < pH < 13 at temperatures below 60degC. (author)

  13. Experimental control versus realism: methodological solutions for simulator studies in complex operating environments

    International Nuclear Information System (INIS)

    Skraaning, Gyrd Jr.

    2004-03-01

    This report is a reprint of a dr.philos. thesis written by Gyrd Skraaning Jr. The text was submitted and accepted by the Norwegian University of Science and Technology in 2003 (ISBN 82-471-5237-1). The thesis suggests a nonlinear model of the theoretical relationship between experimental control and realism, claiming that high degrees of realism and experimental control can be obtained simultaneously if the experimental methods are utilized strategically and developed further. This is in opposition to the conventional opinion that realism and experimental control are mutually excluding objectives. The thesis debates the impact of the operating task on human performance during simulator studies in HAMMLAB, and suggests how task variation can be experimentally controlled. In a within subject design, every subject is tested under all experimental conditions, and the presentation order of the conditions is counterbalanced to compensate for order effects. In realistic settings, it is essential that the experimental design imposes few artificial constrains on the research environment. At the same time, the design should be able to uncover experimental effects in situations where the number of participants is low. Within-subject design represents a reasonable compromise between these aspirations. In this respect, an alternative counterbalancing method is proposed (dis-ORDER). A theoretical analysis of the human performance concept and a discussion about performance measurement in complex operating environments, are followed by a debate on the shortcomings of traditional performance indicators. Two specialized operator performance assessment techniques are then presented and evaluated (OPAS and ORT). (Author)

  14. Simulation of pellet-cladding interaction with the Pleiades fuel performance software environment

    International Nuclear Information System (INIS)

    Michel, B.; Nonon, C.; Sercombe, J.; Michel, F.; Marelle, V.

    2013-01-01

    This paper focuses on the PLEIADES fuel performance software environment and its application to the modeling of pellet-cladding interaction (PCI). The PLEIADES platform has been under development for 10 yr; a unified software environment, including the multidimensional finite element solver CAST3M, has been used to develop eight computation schemes now under operation. Among the latter, the ALCYONE application is devoted to pressurized water reactor fuel rod behavior. This application provides a three-dimensional (3-D) model for a detailed analysis of fuel element behavior and enables validation through comparing simulation and post-irradiation examination results (cladding residual diameter and ridges, dishing filling, pellet cracking, etc.). These last years the 3-D computation scheme of the ALCYONE application has been enriched with a complete set of physical models to take into account thermomechanical and chemical-physical behavior of the fuel element under irradiation. These models have been validated through the ALCYONE application on a large experimental database composed of approximately 400 study cases. The strong point of the ALCYONE application concerns the local approach of stress-corrosion-cracking rupture under PCI, which can be computed with the 3-D finite element solver. Further developments for PCI modeling in the PLEIADES platform are devoted to a new mesh refinement method for assessing stress-and-strain concentration (multigrid technique) and a new component for assessing fission product chemical recombination. (authors)

  15. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  16. Using simulation for intervention design in radiating environment: first evaluation of NARVEOS

    Energy Technology Data Exchange (ETDEWEB)

    Thevenon, Jean-Bernard; Lopez, Loic [Euriware, 1 place des Freres Montgolfier, 78044 Guyancourt Cedex (France); Chabal, Caroline; Idasiak, Jean-Marc [CEA-DEN, Dismantling and Operations Support Department, CEA Valrho, BP 17171, 30207 Bagnols-sur-Ceze (France); Chodorge, Laurent [CEA-LIST, Virtual Reality Cognitic and Interface Service, CEA-FAR, Bat 38, 92265 Fontenay-aux-Roses (France); Desbats, Philippe [CEA-LIST, Intelligent Systems and Technologies Department, CEA-Saclay, Bat 476, 91191 Gif-sur-Yvette (France)

    2009-06-15

    Interventions design in radiating environment must bring answers to technical and economical constraint on one hand and, on the other hand, to radiation protection principles and rules. Simulation is a key point for a good understanding of the scene and for testing hypothesis. The paper presents how a simulation tool (called NARVEOS), based on Virtual Reality technology and on fast coupling between geometries descriptions and a solver, can provide significant support to engineers in charge of scenario design. Besides feasibility study scenario design for one-shot project such as dismantling operations, such a tool is well adapted also for dose projection reduction on regular operations such as maintenance and outage. The technologies used to interactively and simultaneously compute the dose estimate within a CAD model are presented. By using CAD model and available radiological data (source term description), the software allows simulating the evolution of the different features of the digital mock-up (virtual human workers, robots, sources, biological protections, etc.) and evaluating the accessibility issues using interactivity with the end-user. Thanks to this software, users can virtually test the operation feasibility, optimise the costs and estimate the dose rate according to ALARA principle. This tool offers new perspectives for studies, costs and deadlines management of decommissioning projects, as well as for communication between project teams, providers and safety authority about integrated dose optimisation. The first results of NARVEOS will be reported through several applications carried out within on-going decommissioning projects in several nuclear sites. Some evaluation tests are also presented and discussed. (authors)

  17. Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment

    Science.gov (United States)

    Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.

    2013-12-01

    Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a

  18. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  19. Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E. [ENEA, Centro Ricerche Ezio Clementel, Bologna, (Italy). Dipt. Innovazione

    1999-07-01

    The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed. [Italian] Nel presente rapporto vengono descritte le principali caratteristiche del codice di calcolo PREMAR-2, che esegue la simulazione Montecarlo del trasporto della radiazione elettromagnetica nell'atmosfera, nell'intervallo di frequenza che va dall'infrarosso all'ultravioletto. Rispetto al codice PREMAR precedentemente sviluppato, il codice

  20. Quantifying the potential of automated dynamic solar shading in office buildings through integrated simulations of energy and daylight

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa; Svendsen, Svend; Bjerregaard Jensen, Lotte

    2011-01-01

    The façade design is and should be considered a central issue in the design of energy-efficient buildings. That is why dynamic façade components are increasingly used to adapt to both internal and external impacts, and to cope with a reduction in energy consumption and an increase in occupant...... them with various window heights and orientations. Their performance was evaluated on the basis of the building’s total energy demand, its energy demand for heating, cooling and lighting, and also its daylight factors. Simulation results comparing the three façade alternatives show potential...

  1. A real-time computer simulation of nuclear simulator software using standard PC hardware and linux environments

    International Nuclear Information System (INIS)

    Cha, K. H.; Kweon, K. C.

    2001-01-01

    A feasibility study, which standard PC hardware and Real-Time Linux are applied to real-time computer simulation of software for a nuclear simulator, is presented in this paper. The feasibility prototype was established with the existing software in the Compact Nuclear Simulator (CNS). Throughout the real-time implementation in the feasibility prototype, we has identified that the approach can enable the computer-based predictive simulation to be approached, due to both the remarkable improvement in real-time performance and the less efforts for real-time implementation under standard PC hardware and Real-Time Linux envrionments

  2. SECAD-- a Schema-based Environment for Configuring, Analyzing and Documenting Integrated Fusion Simulations. Final report

    International Nuclear Information System (INIS)

    Shasharina, Svetlana

    2012-01-01

    SECAD is a project that developed a GUI for running integrated fusion simulations as implemented in FACETS and SWIM SciDAC projects. Using the GUI users can submit simulations locally and remotely and visualize the simulation results

  3. Improved training of house officers in a rheumatology consult service.

    Science.gov (United States)

    Mazzuca, S A; Brandt, K D; Katz, B P

    1993-06-01

    This study examined whether the clinical environment could be used to increase internal medicine house officers' adoption of care recommendations taught in a didactic conference. Subjects were 11 internal medicine house officers who served 6-week rheumatology elective rotations. At the start of each of four rotation periods, house officers attended a 1-hour conference in which periarticular rheumatic disorders associated with knee pain (anserine bursitis, pseudothrombophlebitis) and shoulder pain (bicipital tendinitis) were discussed. All house officers also practiced physical examination techniques on anatomic models simulating the disorders. During alternate rotation periods, reminder sheets were appended to the records of arthritis patients with histories of chronic knee or shoulder pain. The frequency with which house officers followed conference recommendations was documented by direct observation (6 house officers in 17 encounters with reminders, 5 house officers in 30 encounters without reminders). Specific questioning about a recent history of knee or shoulder pain and the performance of four of five recommended physical examination maneuvers were increased significantly by reminder sheets in patients' charts (P < 0.05 for all). Although rheumatology faculty often have limited options available to increase the number of house officer trainees or to intensify clinical activity, qualitative improvements within existing logistic parameters are feasible by assuring that the clinical environment (e.g., patient records) contains salient cues that will prompt desired actions.

  4. Network-Centric Environment: A Modular Modeling and Simulation/Synthetic Environment (M&S/SE) framework

    Science.gov (United States)

    2004-11-01

    military effectiveness, history provides us the answer: In “ Megatrends ”, John Naisbitt, writes about technology itself without knowing that a...Control Simulations; viii. Urban Planning; ix. Urban Combat; x. Chemical Biological Radiological, and Nuclear (CBRN) Evaluations; xi. Military...Capability Management. DRDC Ottawa TM 2004-221 83 References 1. Naisbitt, J. Megatrends . Warner Books, 290 pages, 1982. 2

  5. Office Hysteroscopy

    OpenAIRE

    Hikmet Hassa; Basar Tekin; H. Mete Tanir; Bulent Cakmak

    2007-01-01

    Although hysteroscopy has evolved in recent years, its use in the office setting was not made practical until early 1980s with the introduction of small caliber hysteroscopes of less than 5- mm outer diameter.This innovation simplifies ambulatory uterine exploration and the office evaluation of patients with abnormal uterine bleeding. This article reviews current trends in office hysteroscopy and its areas of application in different forms of gynecological problems.

  6. Office Hysteroscopy

    Directory of Open Access Journals (Sweden)

    Hikmet Hassa

    2007-06-01

    Full Text Available Although hysteroscopy has evolved in recent years, its use in the office setting was not made practical until early 1980s with the introduction of small caliber hysteroscopes of less than 5- mm outer diameter.This innovation simplifies ambulatory uterine exploration and the office evaluation of patients with abnormal uterine bleeding. This article reviews current trends in office hysteroscopy and its areas of application in different forms of gynecological problems.

  7. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  8. The System of the Calibration for Visibility Measurement Instrument Under the Atmospheric Aerosol Simulation Environment

    Directory of Open Access Journals (Sweden)

    Shu Zhifeng

    2016-01-01

    Full Text Available Visibility is one of the most important parameters for meteorological observation and numerical weather prediction (NWP.It is also an important factor in everyday life, mainly for surface and air traffic especially in the Aeronautical Meteorology. The visibility decides the taking off and landing of aircraft. If the airport visibility is lower than requirement for aircraft taking off stipulated by International Civil Aviation Administration, then the aircraft must be parked at the airport. So the accurate measurement of visibility is very important. Nowadays, many devices can be measured the visibility or meteorological optical range (MOR such as Scatterometers, Transmissometers and visibility lidar. But there is not effective way to verify the accuracy of these devices expect the artificial visual method. We have developed a visibility testing system that can be calibration and verification these devices. The system consists of laser transmitter, optical chopper, phase-locking amplifier, the moving optic receiving system, signal detection and data acquisition system, atmospheric aerosol simulation chamber. All of them were placed in the atmosphere aerosol simulation chamber with uniform aerosol concentration. The Continuous wave laser, wavelength 550nm, has been transmitted into the collimation system then the laser beam expanded into 40mm diameter for compressing the laser divergence angle before modulated by optical chopper. The expanding beam transmitting in the atmosphere aerosol cabin received by the optic receiving system moving in the 50m length precision guide with 100mm optical aperture. The data of laser signal has been acquired by phase-locking amplifier every 5 meter range. So the 10 data points can be detected in the 50 meters guide once. The slope of the fitting curve can be obtained by linear fitting these data using the least square method. The laser extinction coefficient was calculated from the slope using the Koschmieder

  9. Eye Movement Patterns during Locomotion in Real-World and Simulated Environments

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2012-05-01

    Full Text Available Eye movements in a search-and-count walking task were compared between a simulated (SE and real-world environment (RE. Eye movements were recorded using the mobile WearCam in either RE or the StroMoHab locomotion simulator, a treadmill-based system for gait mobility rehabilitation. For Experiment 1, a RE was prepared with objects (coloured balls and occluding barriers placed along a 38 m long corridor. A video was captured from a walker's viewpoint at 1.3 km/hr. Fifteen subjects per environment reported the total object count after completing a walk while viewing the video in the SE (at 0, 1.3, or 2.5 km/h and RE (at 1.3 km/h. Examining the number of eye transitions (TotET between objects in relation to walking speed in SE, revealed significant increases between 0 and 2.5 km/h (F3, 56 =20.62, p = .02 and 1.3 and 2.5 km/h (F3, 56 =20.62, p = .039, despite no change in video speed; no significant difference was found between 0 and 1.3 km/h. In Experiment 2, 15 subjects viewed a static checkered screen and were instructed to ‘view the screen’ while walking. TotET decreased significantly, between 1.3 km/h and 5.2 km/h (F2, 27 =3.437, p = .014; no significant differences were observed between 2.6 km/h and either 1.3 km/h or 5.2 km/h. In real-world conditions, walking faster increases the difficulty of search tasks, with a likely correlated increase in eye movements. Apparently, the expectation of increased difficulty carries over to SE, even if the visual task is not more difficult. The findings point to physiological and perceptual correlations between locomotion and eye movements.

  10. Corrosion behaviour of zinc and aluminium in simulated nuclear accident environments

    International Nuclear Information System (INIS)

    Piippo, J.; Laitinen, T.; Sirkiae, P.

    1997-02-01

    The corrosion rates of zinc and aluminium were determined in simulated large pipe break and in severe accident cases. An in situ on fine measurement technique, which is based on the resistance measurement of sample wires, was used. In the large pipe break case the corrosion rates of zinc and aluminium were determined at pH 8 and pH 10 in deaerated and in aerated solutions. Tests were also performed in aerated 0.1 M borate buffer solution at pH 9.2. Temperature range was 130 deg C - 50 deg C. The corrosion of zinc appears to be relatively fast in neutral or mildly alkaline aerated water, while both high pH and deaeration tend to reduce the corrosion rates of zinc. The aeration and pH elevation decrease the corrosion rate of aluminium. The simulation of the severe accident case took place in the pH range 3-11 in chloride containing solutions at 50 deg C temperature. The corrosion rate of aluminium was lower than that of zinc, except for the solution with pH 11, in which the corrosion rate of aluminium was practically identical to that of zinc. Both metals corroded more rapidly in the presence of chlorides in acidic and alkalic conditions than in the absence of chlorides at neutral environment. The solubility of zinc and aluminium and the stability of the corrosion products were estimated using thermodynamical calculations. The experimental results and the thermodynamical calculations were in fair agreement. (8 refs.)

  11. Evaluation of the corrosion resistance of Ni-Co-B coatings in simulated PEMFC environment

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, S.A.; Valenzuela, E.; Sebastian, P.J. [CIE-UNAM, 62580 Temixco, Morelos (Mexico); Gonzalez-Rodriguez, J.G. [UAEM-CIICAp, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Mor. (Mexico); Campillo, B. [Facultad de Quimica-UNAM, Cd. Universitaria, DF, CP 04510 (Mexico); Reyes-Rojas, A. [CIMAV, Miguel de Cervantes 120, Complejo Ind. Chihuahua, 31109 Chihuahua, Chih. (Mexico)

    2006-05-20

    The corrosion resistance behavior of Ni-Co-B coated carbon steel, Al 6061 alloy and 304 stainless steel was evaluated in simulated proton exchange membrane fuel cell (PEMFC) environment. The phase structure of the NiCoB based alloy was determined by Rietveld analysis. The PEMFC environment was constituted of 0.5M H{sub 2}SO{sub 4} at 60{sup o}C and the evaluation techniques employed included potentiodynamic polarization, linear polarization resistance, open circuit potential measurements and electrochemical impedance spectroscopy. The results showed that in all cases the corrosion resistance of the Ni-Co-B coating was higher than that of the uncoated alloys; about two orders of magnitude with respect to carbon steel and an order of magnitude compared to 304 stainless steel. Except for the uncoated 304 type stainless steel, the polarization curves for the coated specimens did not exhibit a passive region but only anodic dissolution. The corrosion potential value, E{sub corr}, was always nobler for the coated samples than for the uncoated specimens. This was true for the stainless steel in the passive region, but in the active state for the carbon steel and Al 6061 alloy. The corrosion of the underlying alloy occurred due to filtering of the solution through coating defects like microcracks, pinholes, etc. During the filtering process the E{sub corr} value of the coating decreased slowly until it reached a steady state value, close to the E{sub corr} value of the underlying alloy. (author)

  12. The cellular environment in computer simulations of radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    Moiseenko, V.V.; Hamm, R.N.; Waker, A.J.; Prestwich, W.V.

    1988-01-01

    Radiation-induced DNA single- and double-strand breaks were modeled for 660 keV photon radiation and scavenger capacity mimicking the cellular environment. Atomistic representation of DNA in B form with a first hydration shell was utilized to model direct and indirect damage. Monte Carlo generated electron tracks were used to model energy deposition in matter and to derive initial spatial distributions of species which appear in the medium following radiolysis. Diffusion of species was followed with time, and their reactions with DNA and each other were modeled in an encounter-controlled manner. Three methods to account for hydroxyl radical diffusion in cellular environment were tested: assumed exponential survival, time-limited modeling and modeling of reactions between hydroxyl radicals and scavengers in an encounter-controlled manner. Although the method based on modeling scavenging in an encounter-controlled manner is more precise, it requires substantially more computer resources than either the exponential or time-limiting method. Scavenger concentrations of 0.5 and 0.15 M were considered using exponential and encounter-controlled methods with reaction rate set at 3x10 9 dm 3 mol -1 s-1. Diffusion length and strand break yields, predicted by these two methods for the same scavenger molarity, were different by 20%-30%. The method based on limiting time of chemistry follow-up to 10 -9 s leads to DNA damage and radical diffusion estimates similar to 0.5 M scavenger concentration in the other two methods. The difference observed in predictions made by the methods considered could be tolerated in computer simulations of DNA damage. (author)

  13. The cellular environment in computer simulations of radiation-induced damage to DNA

    International Nuclear Information System (INIS)

    Moiseenko, V.V.; Waker, A.J.; Prestwich, W.V.

    1998-01-01

    Radiation-induced DNA single- and double-strand breaks were modeled for 660 keV photon radiation and scavenger capacity mimicking the cellular environment. Atomistic representation of DNA in B form with a first hydration shell was utilized to model direct and indirect damage. Monte Carlo generated electron tracks were used to model energy deposition in matter and to derive initial spatial distributions of species which appear in the medium following radiolysis. Diffusion of species was followed with time, and their reactions with DNA and each other were modeled in an encounter-controlled manner. Three methods to account for hydroxyl radical diffusion in a cellular environment were tested: assumed exponential survival, time-limited modeling and modeling of reactions between hydroxyl radicals and scavengers in an encounter-controlled manner. Although the method based on modeling scavenging in an encounter-controlled manner is more precise, it requires substantially more computer resources than either the exponential or time-limiting method. Scavenger concentrations of 0.5 and 0.15 M were considered using exponential and encounter-controlled methods with reaction rate set at 3 x 10 9 dm 3 mol -1 s -1 . Diffusion length and strand break yields, predicted by these two methods for the same scavenger molarity, were different by 20%-30%. The method based on limiting time of chemistry follow-up to 10 -9 s leads to DNA damage and radical diffusion estimates similar to 0.5 M scavenger concentration in the other two methods. The difference observed in predictions made by the methods considered could be tolerated in computer simulations of DNA damage. (orig.)

  14. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  15. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    International Nuclear Information System (INIS)

    Brown, D.L.

    2009-01-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  16. Physical modelling of the composting environment: A review. Part 2: Simulation performance

    International Nuclear Information System (INIS)

    Mason, I.G.; Milke, M.W.

    2005-01-01

    closely replicate full-scale temperature profiles. The importance of controlling aeration rates and CCR losses is discussed and further work suggested in order to investigate the links between simulation of the composting environment and process performance

  17. Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting

    Science.gov (United States)

    Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur

    2017-04-01

    Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff

  18. BWR-plant simulator and its neural network companion with programming under mat lab environment

    International Nuclear Information System (INIS)

    Ghenniwa, Fatma Suleiman

    2008-01-01

    Stand alone nuclear power plant simulators, as well as building blocks based nuclear power simulator are available from different companies throughout the world. In this work, a review of such simulators has been explored for both types. Also a survey of the possible authoring tools for such simulators development has been performed. It is decided, in this research, to develop prototype simulator based on components building blocks. Further more, the authoring tool (Mat lab software) has been selected for programming. It has all the basic tools required for the simulator development similar to that developed by specialized companies for simulator like MMS, APROS and others. Components simulations, as well as integrated components for power plant simulation have been demonstrated. Preliminary neural network reactor model as part of a prepared neural network modules library has been used to demonstrate module order shuffling during simulation. The developed components library can be refined and extended for further development. (author)

  19. SERA: Simulation Environment for Radiotherapy Applications - Users Manual Version 1CO

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert; Wessol, Daniel Edward; Wemple, Charles Alan; Wheeler, Floyd J; Harkin, G. J.; Frandsen, M. W.; Albright, C. L.; Cohen, M.T.; Rossmeier, M.; Cogliati, J.J.

    2002-06-01

    This document is the user manual for the Simulation Environment for Radiotherapy Applications (SERA) software program developed for boron-neutron capture therapy (BNCT) patient treatment planning by researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) and students and faculty at Montana State University (MSU) Computer Science Department. This manual corresponds to the final release of the program, Version 1C0, developed to run under the RedHat Linux Operating System (version 7.2 or newer) or the Solaris™ Operating System (version 2.6 or newer). SERA is a suite of command line or interactively launched software modules, including graphical, geometric reconstruction, and execution interface modules for developing BNCT treatment plans. The program allows the user to develop geometric models of the patient as derived from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, perform dose computation for these geometric models, and display the computed doses on overlays of the original images as three dimensional representations. This manual provides a guide to the practical use of SERA, but is not an exhaustive treatment of each feature of the code.

  20. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. SERA: Simulation Environment for Radiotherapy Applications - Users Manual Version 1CO

    International Nuclear Information System (INIS)

    Venhuizen, James Robert; Wessol, Daniel Edward; Wemple, Charles Alan; Wheeler, Floyd J; Harkin, G. J.; Frandsen, M. W.; Albright, C. L.; Cohen, M.T.; Rossmeier, M.; Cogliati, J.J.

    2002-01-01

    This document is the user manual for the Simulation Environment for Radiotherapy Applications (SERA) software program developed for boron-neutron capture therapy (BNCT) patient treatment planning by researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) and students and faculty at Montana State University (MSU) Computer Science Department. This manual corresponds to the final release of the program, Version 1C0, developed to run under the RedHat Linux Operating System (version 7.2 or newer) or the Solaris Operating System (version 2.6 or newer). SERA is a suite of command line or interactively launched software modules, including graphical, geometric reconstruction, and execution interface modules for developing BNCT treatment plans. The program allows the user to develop geometric models of the patient as derived from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, perform dose computation for these geometric models, and display the computed doses on overlays of the original images as three dimensional representations. This manual provides a guide to the practical use of SERA, but is not an exhaustive treatment of each feature of the code

  2. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Tuzi, Silvia, E-mail: silvia.tuzi@chalmers.se [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Lai, Haiping [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Göransson, Kenneth [Westinghouse Electric Sweden AB, SE-721 63 Västerås (Sweden); Thuvander, Mattias; Stiller, Krystyna [Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe{sub 2}O{sub 4} crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  3. A new perspective of particle adsorption: Dispersed oil and granular materials interactions in simulated coastal environment.

    Science.gov (United States)

    Meng, Long; Bao, Mutai; Sun, Peiyan

    2017-09-15

    This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nitrogen removal and microbial communities in a three-stage system simulating a riparian environment.

    Science.gov (United States)

    Wang, Ziyuan; Wang, Zhixin; Pei, Yuansheng

    2014-06-01

    The riparian zone is an active interface for nitrogen removal, in which nitrogen transformations by microorganisms have not been valued. In this study, a three-stage system was constructed to simulate the riparian zone environments, and nitrogen removal as well as the microbial community was investigated in this 'engineered riparian system'. The results demonstrated that stage 1 of this system accounted for 41-51 % of total nitrogen removal. Initial ammonium loading and redox potential significantly impacted the nitrogen removal performances. Stages 1 and 2 were both composed of an anoxic/oxic (A/O) zone and an anaerobic column. The A/O zone removed most of the ammonium load (6.8 g/m(2)/day), while the anaerobic column showed a significant nitrate removal rate (11.1 g/m(2)/day). Molecular biological analysis demonstrated that bacterial diversity was high in the A/O zones, where ammonium-oxidizing bacteria and nitrite-oxidizing bacteria accounted for 8.42 and 3.32 % of the bacterial population, respectively. The denitrifying bacteria Acidovorax sp. and the nitrifying bacteria Nitrosospira/Nitrosomonas were the predominant microorganisms in this engineered riparian system. This three-stage system was established to achieve favorable nitrogen removal and the microbial community in the system was also retained. This investigation should deepen our understanding of biological nitrogen removal in engineered riparian zones.

  5. Modelling, simulation and optimization of solarthermal systems in an object-oriented simulation environment; Modellierung, Simulation und Optimierung solarthermischer Anlagen in einer objektorientierten Simulationsumgebung

    Energy Technology Data Exchange (ETDEWEB)

    Schrag, T.

    2001-07-01

    The simulation environment SMILE 1.0 and its new possibilities for modelling, simulating and optimising are described and demonstrated by three different examples of solarthermal aided energy supply systems. These examples have in common, that they deal with rather large systems and that they are all related to actual research projects. As the results obtained through the simulations have not only exemplary character but also represent new insights, their scientific background is given, too. The structure of the SMILE system is explained, where the concept of free software architecture enables extentability and adaption for special demands. The structuring of an object-oriented component library for solar- and building-models is shown and the advantages of object-orientation for modelling and validating are described. The integration of numerical optimization methods in the simulation environment allows automatic parameter studies and design calculations. To reduce the calculation time, different optimization strategies are studied as well as the reduction of the input weather data with neuronal nets. With this data reduction an acceleration for the design calculation of solar domestic hot water systems can be achieved, that leads in contrary to ordinary statistical methods to an acceptable accuracy. The examples differ not only in their relevance for the energy market, but also in the features of the simulationenvironment, they demonstrate. First large hot water buffer systems are studied. Two different designs for the discharging of a buffer are compared and it is shown, how object-orientation supports a gradual specification of the models for a detailed investigation of the heatexchangers. The parameters relevant for the discharging are numerically optimised and compared with the results of a paramter study. The focus of the second example is the combined examination of a multicomponent energy supply system and a building. The effects of thick insulation

  6. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  7. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging.

    Science.gov (United States)

    Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing

    2016-09-27

    The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

  8. Transfer validity of laparoscopic knot-tying training on a VR simulator to a realistic environment : A randomized controlled trial

    NARCIS (Netherlands)

    Verdaasdonk, E.G.G.; Dankelman, J.; Lange, J.F.; Stassen, L.P.S.

    2007-01-01

    Background- Laparoscopic suturing is one of the most difficult tasks in endoscopic surgery, requiring extensive training. The aim of this study was to determine the transfer validity of knot-tying training on a virtual-reality (VR) simulator to a realistic laparoscopic environment. Methods- Twenty

  9. Profile control simulations and experiments on TCV : A controller test environment and results using a model-based predictive controller

    NARCIS (Netherlands)

    Maljaars, E.; Felici, F.; Blanken, T.C.; Galperti, C.; Sauter, O.; de Baar, M.R.; Carpanese, F.; Goodman, T.P.; Kim, D.; Kim, S.H.; Kong, M.G.; Mavkov, B.; Merle, A.; Moret, J.M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A.A.; Vu, N.M.T.

    2017-01-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety

  10. Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller

    NARCIS (Netherlands)

    Maljaars, B.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J.; Nouailletas, R.; Scheffer, M.; Teplukhina, A.; Vu, T.

    2017-01-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety

  11. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    Science.gov (United States)

    Genin, Franklin

    The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is

  12. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Feilong [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); China Building Material Test & Certification Group Co. Ltd., Beijing 100024 (China); Ren, Shuai [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); Li, Zhong [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G6 (Canada); Liu, Zhiyong, E-mail: liuzhiyong7804@ustb.edu.cn [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); Li, Xiaogang; Du, Cuiwei [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China)

    2017-02-08

    The stress corrosion cracking (SCC) behavior of X70 steel in simulated shallow and deep sea environments was studied using potentiodynamic polarization measurement, a slow strain rate tensile (SSRT) test and scanning electron microscopy (SEM). The results indicate that the predominant cathodic reaction changes from an oxygen reduction reaction to the hydrogen evolution reaction as the dissolved oxygen (DO) content decreases. In the simulated deep sea environment, the SCC susceptibility of X70 steel decreased first, reached its lowest point at 15 MPa and then increased as the simulated sea hydrostatic pressure (HP) further increased. This is consistent with the regularity for the change of the cathodic hydrogen evolution reaction current density i{sub H} at E{sub corr}, which indicates that the HP may influence the SCC susceptibility of X70 steel by changing the permeated hydrogen concentration.

  13. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus.

    Science.gov (United States)

    Macierzanka, Adam; Böttger, Franziska; Rigby, Neil M; Lille, Martina; Poutanen, Kaisa; Mills, E N Clare; Mackie, Alan R

    2012-12-18

    Fundamental knowledge of physicochemical interactions in the gastrointestinal environment is required in order to support rational designing of protein-stabilized colloidal food and pharmaceutical delivery systems with controlled behavior. In this paper, we report on the colloidal behavior of emulsions stabilized with the milk protein sodium caseinate (Na-Cas), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, we looked at how the kinetics of proteolysis was affected by adsorption to an oil-water interface in emulsion and whether the proteolysis and the emulsion stability could be manipulated by enzymatic structuring of the interface. After cross-linking with the enzyme transglutaminase, the protein was digested with use of an in vitro model of gastro-duodenal proteolysis in the presence or absence of physiologically relevant surfactants (phosphatidylcholine, PC; bile salts, BS). Significant differences were found between the rates of digestion of Na-Cas cross-linked in emulsion (adsorbed protein) and in solution. In emulsion, the digestion of a population of polypeptides of M(r) ca. 50-100 kDa was significantly retarded through the gastric digestion. The persistent interfacial polypeptides maintained the original emulsion droplet size and prevented the system from phase separating. Rapid pepsinolysis of adsorbed, non-cross-linked Na-Cas and its displacement by PC led to emulsion destabilization. These results suggest that structuring of emulsions by enzymatic cross-linking of the interfacial protein may affect the phase behavior of emulsion in the stomach and the gastric digestion rate in vivo. Measurements of ζ-potential revealed that BS displaced the remaining protein from the oil droplets during the simulated duodenal phase of digestion. Diffusion of the postdigestion emulsion droplets through ex vivo porcine intestinal mucus was only significant in the presence of BS due to the high negative charge these

  14. Corrosion resistance of Mo-Fe-Ti alloy for overpack in simulating underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Toshiyasu, E-mail: NISHIMURA.Toshiyasu@nims.go.jp [Structural metals Center, National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-12-15

    of aging heat-treated Mo-Fe-Ti alloy in simulating underground environment.

  15. A Graphical Interactive Simulation Environment for Production Planning in Bacon Factories

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1994-01-01

    The paper describes a graphical interactive simulation tool for production planning in bacon factories........The paper describes a graphical interactive simulation tool for production planning in bacon factories.....

  16. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  17. State estimation approach for live aircraft engagement in a C2 simulation environment

    CSIR Research Space (South Africa)

    Duvenhage, A

    2007-01-01

    Full Text Available The increased use of simulations during live air defense exercises requires interoperability between different Command and Control (C2) systems and simulators. By accepting air picture or sensor tracks from each other, C2 systems and simulators can...

  18. Simulation of the chemical environment of a nuclear explosion with exploding wires

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Walter; Block, Oliver U.J. [Nuclear Engineering, Kansas State University, Manhattan, KS (United States)

    1970-05-15

    The chemical processes in an expanding underground cavity resulting from a nuclear explosion cannot be predicted or controlled as well as such physical characteristics as crater size, magnitude of the outgoing shock wave, or the extent of rock fracturing. However in most underground nuclear explosions it would be desirable to control the chemical and/or physical form and amount of radioactive fallout venting from the explosion. The high temperatures and corresponding high energy densities produced by exploding wires are sufficient to produce in the wire and material immediately surrounding it the temperature (a few thousand degrees) required to simulate the chemical environment of a nuclear explosion in the time interval just preceding the venting of the cavity. The economics and the size of exploding wire apparatus make this type of experiment readily applicable to laboratory study. Design of exploding wire circuits to obtain particular temperatures or energy densities can be completed using several different combinations of circuit and wire conditions. Since the circuit parameters, including charging voltage, capacitor bank capacitance and circuit inductance primarily determine the cost of the necessary laboratory equipment, these parameters should be selected by theoretical expressions while also considering economic factors. Wire parameters are then experimentally determined to produce the most energetic explosions with the selected circuit parameters. A theoretical method applicable to designing exploding wire circuits to produce the desired high temperatures and energy densities in the wire and surrounding sample material has been obtained. The method assumes that a thermal spike of energy is deposited in a low conductivity material (typical of the earth's crust) surrounding the wire. From the assumed temperature distribution in the surrounding sample material the energy which must be deposited in the thermal spike to produce the desired temperature and

  19. Monte Carlo simulation of semiconductor detector response to "2"2"2Rn and "2"2"0Rn environments

    International Nuclear Information System (INIS)

    Irlinger, J.; Trinkl, S.; Wielunksi, M.; Tschiersch, J.; Rühm, W.

    2016-01-01

    A new electronic radon/thoron monitor employing semiconductor detectors based on a passive diffusion chamber design has been recently developed at the Helmholtz Zentrum München (HMGU). This device allows for acquisition of alpha particle energy spectra, in order to distinguish alpha particles originating from radon and radon progeny decays, as well as those originating from thoron and its progeny decays. A Monte-Carlo application is described which uses the Geant4 toolkit to simulate these alpha particle spectra. Reasonable agreement between measured and simulated spectra were obtained for both "2"2"0Rn and "2"2"2Rn, in the energy range between 1 and 10 MeV. Measured calibration factors could be reproduced by the simulation, given the uncertainties involved in the measurement and simulation. The simulated alpha particle spectra can now be used to interpret spectra measured in mixed radon/thoron atmospheres. The results agreed well with measurements performed in both radon and thoron gas environments. It is concluded that the developed simulation allows for an accurate prediction of calibration factors and alpha particle energy spectra. - Highlights: • A method was developed to simulate alpha particle spectra from radon/thoron decay. • New monitor features alpha-particle-spectroscopy based on silicon detectors. • A method is presented to quantify radon/thoron concentrations in mixed atmospheres. • The calibration factor can be simulated for various environmental parameters.

  20. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Model Simulations for Tropical and Continental Summertime Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Wu, D.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The strength of the algorithm relies in part on the representativeness of the simulations; more realistic simulations provide a stronger link between the observables and simulated heating profiles. The current "TRMM" version of the CSH algorithm relies on 2D GCE simulations using an improved version of the Goddard 3-class ice scheme (3ICE), a moderate-sized domain, and 1-km horizontal resolution. Updating the LUTs, which are suitable for tropical and continental summertime environments requires new, more realistic GCE simulations. New simulations are performed using a new, improved 4-class ice scheme, which has been shown to outperform the 3ICE scheme, especially for intense convection. Additional grid configurations are also tested and evaluated to find the best overall setup to for re-deriving and updating the CSH tropical/summertime LUTs.