Sample records for simulated fields produced

  1. A propagative model for simulations of electric fields produced by downward leaders


    Hermoso Costa, Juan Ramón; Montañá Puig, Juan; March Nomen, Víctor; Romero Durán, David; Solà de Las Fuentes, Gloria; Van der Velde, Oscar Arnoud


    This paper presents simulations of a downward negative leaders performed by means of 3D finite element method (FEM). The leaders are considered do progress vertically leaders in which different charge distributions and leader speeds can be adjusted. The output of the model is the electric field at ground level for different leader heights and time. By comparison with experimental measurements of natural cloud-to-ground stepped leaders we find consistent results by adju...

  2. Turbulent Dynamo Amplification of Magnetic Fields in Laser-Produced Plasmas: Simulations and Experiments (United States)

    Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E.; Forest, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B.; Ross, J.; Ryutov, D.; Ryu, D.; Reville, B.; Miniati, F.; Schekochihin, A.; Froula, D.; Lamb, D.; Gregori, G.


    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model for cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo. We have conceived experiments to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through large-scale 3D FLASH simulations on the Mira supercomputer at ANL, and the laser-driven experiments we conducted with the OMEGA laser at LLE. Our results indicate that turbulence is capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. This work was supported in part from the ERC (FP7/2007-2013, No. 256973 and 247039), and the U.S. DOE, Contract No. B591485 to LLNL, FWP 57789 to ANL, Grant No. DE-NA0002724 and DE-SC0016566 to the University of Chicago, and DE-AC02-06CH11357 to ANL.

  3. Three-Dimensional MHD Simulation of FTEs Produced by Merging at an Isolated Point in a Sheared Magnetic Field Configuration (United States)

    Santos, J. C.; Sibeck, D. G.; Buchner, J.; Gonzalez, W. D.; Ferreira, J. L.


    We present predictions for the evolution of FTEs generated by localized bursts of reconnection on a planar magnetopause that separates a magnetosheath region of high densities and weak magnetic field from a magnetospheric region of low densities and strong magnetic field. The magnetic fields present a shear angle of 105 degrees. Reconnection forms a pair of FTEs each crossing the magnetopause in the field reversal region and bulging into the magnetosphere and magnetosheath. At their initial stage they can be characterized as flux tubes since the newly reconnected magnetic field lines are not twisted. Reconnection launches Alfvenic perturbations that propagate along the FTEs generating high-speed jets, which move the pair of FTEs in opposite directions. As the FTE moves, it displaces the ambient magnetic field and plasma producing bipolar magnetic field and plasma velocity signatures normal to the nominal magnetopause in the regions surrounding the FTE. The combination of the ambient plasma with the FTE flows generates a vortical velocity pattern around the reconnected field lines. During its evolution the FTE evolves to a flux rope configuration due to the twist of the magnetic field lines. The alfvenic perturbations propagate faster along the part of the FTE bulging into the magnetosphere than in the magnetosheath, and due to the differences between the plasma and magnetic field properties the perturbations have slightly different signatures in the two regions. As a consequence, the FTEs have different signatures depending on whether the satellite encounters the part bulging into the magnetosphere or into the magnetosheath.

  4. Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics. (United States)

    Krujatz, Felix; Illing, Rico; Krautwer, Tobias; Liao, Jing; Helbig, Karsten; Goy, Katharina; Opitz, Jörg; Cuniberti, Gianaurelio; Bley, Thomas; Weber, Jost


    Externally illuminated photobioreactors (PBRs) are widely used in studies on the use of phototrophic microorganisms as sources of bioenergy and other photobiotechnology research. In this work, straightforward simulation techniques were used to describe effects of varying fluid flow conditions in a continuous hydrogen-producing PBR on the rate of photofermentative hydrogen production (rH2 ) by Rhodobacter sphaeroides DSM 158. A ZEMAX optical ray tracing simulation was performed to quantify the illumination intensity reaching the interior of the cylindrical PBR vessel. 24.2% of the emitted energy was lost through optical effects, or did not reach the PBR surface. In a dense culture of continuously producing bacteria during chemostatic cultivation, the illumination intensity became completely attenuated within the first centimeter of the PBR radius as described by an empirical three-parametric model implemented in Mathcad. The bacterial movement in chemostatic steady-state conditions was influenced by varying the fluid Reynolds number. The "Computational Fluid Dynamics" and "Particle Tracing" tools of COMSOL Multiphysics were used to visualize the fluid flow pattern and cellular trajectories through well-illuminated zones near the PBR periphery and dark zones in the center of the PBR. A moderate turbulence (Reynolds number = 12,600) and fluctuating illumination of 1.5 Hz were found to yield the highest continuous rH2 by R. sphaeroides DSM 158 (170.5 mL L(-1) h(-1) ) in this study. © 2015 Wiley Periodicals, Inc.

  5. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations (United States)

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...

  6. Trip Report-Produced-Water Field Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J. [Los Alamos National Laboratory


    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  7. Field theory, disorder and simulations

    CERN Document Server

    Parisi, Giorgio


    This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion

  8. Field: A Program for Simulating Ultrasound Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt


    A program for the simulation of ultrasound systems is presented.It is based on the Tupholme-Stepanishen method, and is fastbecause of the use of a far-field approximation. Any kind oftransducer geometry and excitation can be simulated, and bothpulse-echo and continuous wave fields can be calculated...... it possible to simulate all types of ultrasound imaging systems....

  9. Rotating superconductor magnet for producing rotating lobed magnetic field lines (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.


    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  10. Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite (United States)

    Hung, Ching-cheh; McNatt, Jeremiah


    A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.

  11. FRIDA integral field spectroscopy PSF quality simulations (United States)

    Cuevas, Salvador


    FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) has been designed as a cryogenic and diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy (IFS). Both, the imaging mode and IFS observing modes will use the same Teledyne 2Kx2K detector. This instrument will be installed at Nasmyth B station, behind the GTC Adaptive Optics system (GTCAO). FRIDA will provide the IFS mode using a 30 slices Integral Field Unit (IFU). This IFU design is based on University of Florida FISICA where the mirror block arrays are diamond turned on monolithic metal blocks. FRIDA IFU is conformed mainly by 2 mirror blocks with 30 spherical mirrors each. The image slicing is performed by a block of 30 cylindrical mirrors each of 400 μm width. It also has a Schwarzschild relay based on two off axis spherical mirrors that adapts the GTCAO corrected PSF to the slicer mirrors dimensions. To readapt the sliced PSF to the spectrograph input numerical aperture the IFU has an afocal system of two parabolic off axis mirrors. The AO PSF is bigger than the slice mirror dimensions and this produces diffraction effects. These diffraction effects combined with the intrinsic IFU and spectrograph aberrations produce the final instrumental PSF of the IFS mode. In order to evaluate the instrumental PSF quality of the FRIDA IFS, modeling simulations were performed by the ZEMAX Physical Optics Propagation (POP) module. In this work the simulations are described and the PSF quality and uniformity on a reconstructed IFS image is evaluated. It is shown the PSF quality of the IFS mode including the instrument manufacturing tolerances fulfills the specifications.

  12. Oil field produced water discharges into wetlands in Wyoming (United States)

    US Fish and Wildlife Service, Department of the Interior — Approximately 600 oil field produced water discharges are permitted in Wyoming by the State’s Department of Environmental Quality's (WDEQ) National Pollutant...

  13. Produce logistics simulation in a section steel mill (United States)

    Chen, Chenglang; Xie, Zhijiang; Liang, Tiantian


    A new universal rolling production line's produce logistics simulation system has been successfully designed and put into practice with the help of eM-plant. It can not only simulate the whole process, but also get statistics of the whole production line and each working procedure's capacity. Meanwhile, it can provide relevant decision-making support by simulating new product before putting into production. By running it, the line's bottleneck can be found out and an optimal produce logistics model can be designed. Comparing the improved one with the original, a better decision can be deduced. Application indicates that the simulation model can precisely simulate the production line's condition. And experimental and debugging time of new product can be reduced sharply.

  14. Producing ultrastrong magnetic fields in neutron star mergers. (United States)

    Price, D J; Rosswog, S


    We report an extremely rapid mechanism for magnetic field amplification during the merger of a binary neutron star system. This has implications for the production of the short class of gamma-ray bursts, which recent observations suggest may originate in such mergers. In detailed magnetohydrodynamic simulations of the merger process, the fields are amplified by Kelvin-Helmholtz instabilities beyond magnetar field strength and may therefore represent the strongest magnetic fields in the universe. The amplification occurs in the shear layer that forms between the neutron stars and on a time scale of only 1 millisecond, that is, long before the remnant can collapse into a black hole.

  15. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.


    An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...

  16. Simulation for detective field of HRO


    UTSUMI, Yousuke; 内海, 洋輔


    HRO (Ham Radio Observation) is one of the valuable methods of observing meteoractivity. However, it not only has the advantages but also suffers from unknown detective fieldof HRO. If the field would be transformed by zenithal position of radiation point, the numberof meteor by HRO is not reliable. Thus, the purpose of this report is to prove time shift of thedetective field through simulation. HRO is the meteor radar of a forward scatter systern. If thesurface of the meteor trail is smooth a...

  17. Proton radiography of magnetic field produced by ultra-intense laser irradiating capacity-coil target

    CERN Document Server

    Wang, W W; Chen, J; Cai, H B; He, S K; Zhou, W M; Shan, L Q; Lu, F; Wu, Y C; Hong, W; Liu, D X; Bi, B; Zhang, F; Xue, F B; Li, B Y; Zhang, B; He, Y L; He, W; Jiao, J L; Dong, K G; Zhang, F Q; Deng, Z G; Zhang, Z M; Cui, B; Han, D; Zhou, K N; Wang, X D; Zhao, Z Q; Cao, L F; Zhang, B H; He, X T; Gu, Y Q


    Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.

  18. The LOFT wide field monitor simulator

    DEFF Research Database (Denmark)

    Donnarumma, I.; Evangelista, Y.; Campana, R.


    We present the simulator we developed for the Wide Field Monitor (WFM) aboard the Large Observatory For Xray Timing (LOFT) mission, one of the four ESA M3 candidate missions considered for launch in the 2022–2024 timeframe. The WFM is designed to cover a large FoV in the same bandpass as the Larg...

  19. Collimation of laser-produced plasmas using axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.


    We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.

  20. Mechanism and Simulation of Generating Pulsed Strong Magnetic Field (United States)

    Yang, Xian-Jun; Wang, Shuai-Chuang; Deng, Ai-Dong; Gu, Zhuo-Wei; Luo, Hao


    A strong magnetic field (over 1000 T) was recently experimentally produced at the Academy of Engineering Physics in China. The theoretical methods, which include a simple model and MHD code, are discussed to investigate the physical mechanism and dynamics of generating the strong magnetic field. The analysis and simulation results show that nonlinear magnetic diffusion contributes less as compared to the linear magnetic diffusion. This indicates that the compressible hydrodynamic effect and solid imploding compression may have a large influence on strong magnetic field generation.

  1. Ocean Wave Simulation Based on Wind Field. (United States)

    Li, Zhongyi; Wang, Hao


    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  2. WFIRST: Simulating the Wide-Field Sky (United States)

    Peeples, Molly; WFIRST Wide Field Imager Simulations Working Group


    As astronomy’s first high-resolution wide-field multi-mode instrument, simulated data will play a vital role in the planning for and analysis of data from WFIRST’s WFI (Wide Field Imager) instrument. Part of the key to WFIRST’s scientific success lies in our ability to push the systematics limit, but in order to do so, the WFI pipeline will need to be able to measure and take out said systematics. The efficacy of this pipeline can only be verified with large suites of synthetic data; these data must include both the range of astrophysical sky scenes (from crowded starfields to high-latitude grism data observations) and the systematics from the detector and telescope optics the WFI pipeline aims to mitigate. We summarize here(1) the status of current and planned astrophysical simulations in support of the WFI,(2) the status of current WFI instrument simulators and requirements on future generations thereof, and(3) plans, methods, and requirements on interfacing astrophysical simulations and WFI instrument simulators.

  3. Monte Carlo simulation of bremsstrahlung produced at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Beam lines of SPring-8 storage ring is now under operation after 1997. An energy range necessary for safety analysis is from some keV synchrotrons radiation to 8 GeV electrons, photons and photoneutrons, some of them have directional distribution. Simulations which includes empirical data are needed in some cases, these are: (1) gas bremsstrahlung radiation produced by the interaction between storage electrons and residual gases, (2) high energy photon behaviors caused by inverse-compton scattering, (3) neutrons produced by photonuclear reaction. A leakage flux caused by ground-shine of synchrotrons radiation is also estimated by simulation. Usually the beam line is set up on the extrapolated position of the straight line of the storage ring. In this case, gas bremsstrahlung from the storage ring is not negligible at the beam line. The Monte Carlo code (EGS4) on electromagnetic cascade interaction is used for estimation. Accuracy of the result is discussed with availability of assumptions including radial distribution. SPring-8 has the beam line in which high energy photons are produced by laser-electron interaction. In this case a photon has an energy of about 3.5 GeV. Local shielding for this gamma radiation is one of the key issues in the beam line design. The EGS4 code is used to simulate the effective shielding structure. The EGS4 code is also used to obtain track length distribution for gas bremsstrahlung photon to impinge the lead target. Safety analysis is made by the MCNP4b code. The wiggler and/or undulator installed in the storage ring produce complicated radiation spectrum. Computer codes (STAC8, ITS3.0, EGS4) are used to analyze photon transport. In this case, attenuation is very large, and time consuming calculation is needed. (Y. Tanaka)

  4. A simulator for a light field display (United States)

    Lee, Beom-Ryeol; Son, Jung-Young; Lee, Hyoung; Yano, Sumio; Son, Hyung Ki; Jeong, Ilkwon


    A simulator which can test the visual perception response of light field displays is introduced. The simulator can provide up to 8 view images to each eye simultaneously to test the differences between different numbers of different view images in supermultiview condition. The images are going through a window with 4 mm width, which is located at the pupil plane of each eye. Since each view image has its own slot in the window, the image is separately entring the eye without overlapping with other images. The simulator shows that the vergence response of viewers' eyes for an image at a certain distance is closer to the real object of the same distance for 4 views than 2 views. This informs that the focusable depth range will increase more as the the number of different view images increases.

  5. Electric field numerical simulation of disc type electrostatic spinning spinneret (United States)

    Wei, L.; Deng, ZL; Qin, XH; Liang, ZY


    Electrospinning is a new type of free-end spinning built on electric field. Different from traditional single needle spinneret, in this study, a new disc type free surface spinneret is used to produce multiple jets, this will greatly improve production efficiency of nanofiber. The electric-field distribution of spinneret is the crux of the formation and trajectory of jets. In order to probe the electric field intensity of the disc type spinneret, computational software of Ansoft Maxwell 12 is adopted for a precise and intuitive analysis. The results showed that the whole round cambered surface of the spinning solution at edge of each layer of the spinneret with the maximum curvature has the highest electric field intensity, and through the simulation of the electric field distribution of different spinneret parameters such as layer, the height and radius of the spinneret. Influences of various parameters on the electrostatic spinning are obtained.

  6. Multi-Fluid Simulations of Field Reversed Configuration Formation (United States)

    Sousa, Eder; Martin, Robert


    The use of field reversed configuration (FRC) have been studied extensively for fusion application but here we investigate them for propulsion purposes. FRCs have the potential to produce highly variable thrust and specific impulse using different gases as propellant. Aspects of the FRC formation physics, using a rotating magnetic field (RMF) at low power, are simulated using a multi-fluid plasma model. Results are compared with experimental observations with emphasis in the development of instabilities and robustness of the field reversal. The use of collisional radiative models are used to help compare experiment versus simulation results. Distribution A: Approved for public release; distribution unlimited; Clearance No. 17445. This work is supported by the Air Force Office of Scientific Research Grant Number 17RQCOR465.

  7. The electric fields produced by lightning stepped leaders (United States)

    Krider, E. P.; Weidman, C. D.; Noggle, R. C.


    The electric fields produced by stepped and dart-stepped leaders which immediately precede return strokes in lightning discharges to the ground have been recorded in Florida and Arizona. The mean interval time between normal steps is about 16 microsec, and the mean interval between dart steps is 6-8 microsec. The amplitudes of leader pulses in Florida increase just prior to the return stroke, the largest usually being about 10% of the return-stroke peak. In Arizona the leader pulse amplitudes are smaller than those in Florida, in relation to the return stroke, and are not as easy to identify. The shapes of the fields produced by normal steps are similar to dart steps, and the dart steps are very similar to regular sequences of pulses produced by many intracloud discharges. The 10-90% rise times of individual step wave forms are often less than 0.3 microsec, and the full width at half maximum of a step pulse is typically 0.4-0.5 microsec under conditions where the propagation distortion is minimal. The amplitudes and the shapes of leader step wave forms suggest that the peak step current is at least 2000-8000 A close to the ground and that the maximum rate of change of step current is 6-24 kA/microsec or larger. A rough estimate of the minimum charge lowered during the formation of a step is 0.001 to 0.004 C.

  8. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)


    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  9. Simulation of a Hyperbolic Field Energy Analyzer

    CERN Document Server

    Gonzalez-Lizardo, Angel


    Energy analyzers are important plasma diagnostic tools with applications in a broad range of disciplines including molecular spectroscopy, electron microscopy, basic plasma physics, plasma etching, plasma processing, and ion sputtering technology. The Hyperbolic Field Energy Analyzer (HFEA) is a novel device able to determine ion and electron energy spectra and temperatures. The HFEA is well suited for ion temperature and density diagnostics at those situations where ions are scarce. A simulation of the capacities of the HFEA to discriminate particles of a particular energy level, as well as to determine temperature and density is performed in this work. The electric field due the combination of the conical elements, collimator lens, and Faraday cup applied voltage was computed in a well suited three-dimensional grid. The field is later used to compute the trajectory of a set of particles with a predetermined energy distribution. The results include the observation of the particle trajectories inside the sens...

  10. A Numerical Simulator for a Crop-Producing Greenhouse

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær; Krink, Thiemo; Filipic, Bogdan


    This report describes a greenhouse simulator. The described simulator is translated from a German description (Pohlheim and Heißner, 1996), and some minor modifications are introduced. The simulator is reimplemented in Java and is based on the original MatLab version. The purpose of the simulator...

  11. Simulating realistic implementations of spin field effect transistor (United States)

    Gao, Yunfei; Lundstrom, Mark S.; Nikonov, Dmitri E.


    The spin field effect transistor (spinFET), consisting of two ferromagnetic source/drain contacts and a Si channel, is predicted to have outstanding device and circuit performance. We carry out a rigorous numerical simulation of the spinFET based on the nonequilibrium Green's function formalism self-consistently coupled with a Poisson solver to produce the device I-V characteristics. Good agreement with the recent experiments in terms of spin injection, spin transport, and the magnetoresistance ratio (MR) is obtained. We include factors crucial for realistic devices: tunneling through a dielectric barrier, and spin relaxation at the interface and in the channel. Using these simulations, we suggest ways of optimizing the device. We propose that by choosing the right contact material and inserting tunnel oxide barriers between the source/drain and channel to filter different spins, the MR can be restored to ˜2000%, which would be beneficial to the reconfigurable logic circuit application.

  12. Strong horizontal photospheric magnetic field in a surface dynamo simulation

    NARCIS (Netherlands)

    SchÜssler, M.; Vögler, A.|info:eu-repo/dai/nl/323397212


    Context. Observations with the Hinode spectro-polarimeter have revealed strong horizontal internetwork magnetic fields in the quiet solar photosphere. Aims. We aim to interpret the observations with results from numerical simulations. Methods. Radiative MHD simulations of dynamo action by

  13. The space transformation in the simulation of multidimensional random fields (United States)

    Christakos, G.


    Space transformations are proposed as a mathematically meaningful and practically comprehensive approach to simulate multidimensional random fields. Within this context the turning bands method of simulation is reconsidered and improved in both the space and frequency domains. ?? 1987.

  14. Explosively produced megagauss fields and recent solid state applications

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.M.; Freeman, B.L.; Hults, W.L.; King, J.C.; Mueller, F.M.; Rickel, D.G.; Smith, J.L. [Los Alamos National Lab., NM (United States); Brooks, J.S.; Goettee, J.D. [Boston Univ., MA (United States). Dept. of Physics


    Large magnetic fields may be generated by compression of an initial magnetic flux generated over a large area at relatively low magnetic field into a region of smaller area. Following a discussion of flux compression principles, the authors discuss megagauss field systems in use at Los Alamos where chemical explosives are used to compress the flux. Their use in some solid state experiments will be discussed briefly, including a planned set of experiments on YBCO to be done jointly with a Russian team, whose aim is to determine the low temperature, critical magnetic field of YBCO.


    Energy Technology Data Exchange (ETDEWEB)

    Simard, Corinne; Charbonneau, Paul [Departement de Physique, Universite de Montreal, C.P. 6128 Succ. Centre-ville, Montreal, Qc H3C 3J7 (Canada); Bouchat, Amelie, E-mail:, E-mail:, E-mail: [Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke West, Montreal, Quebec H3A 2K6 (Canada)


    We construct a series of kinematic axisymmetric mean-field dynamo models operating in the {alpha}{Omega}, {alpha}{sup 2}{Omega} and {alpha}{sup 2} regimes, all using the full {alpha}-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An {alpha}{sup 2}{Omega} mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields that share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with {alpha}{sup 2} and {alpha}{Omega} mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating {alpha}{sup 2} solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.

  16. A Field Study of the Microbiological Quality of Fresh Produce

    National Research Council Canada - National Science Library

    Johnston, Lynette M; Jaykus, Lee-Ann; Moll, Deborah; Martinez, Martha C; Anciso, Juan; Mora, Brenda; Moe, Christine L


    .... A total of 398 produce samples (leafy greens, herbs, and cantaloupe) were collected through production and the packing shed and assayed by enumerative tests for total aerobic bacteria, total coliforms, total Enterococcus, and Escherichia...

  17. S-Z power spectrum produced by primordial magnetic fields


    Tashiro, Hiroyuki; Sugiyama, Naoshi


    Primordial magnetic fields generated in the very early universe are one of the candidates for the origin of magnetic fields observed in galaxy clusters. After recombination, the Lorentz force acts on the residual ions and electrons to generate density fluctuations of baryons. Accordingly these fluctuations induce the early formation of dark halos which cause the Sunyaev-Zel'dovich (S-Z) effect in cosmic microwave background radiation. This additional S-Z effect due to primordial magnetic fiel...

  18. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt


    geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal...

  19. Simulated field maps for susceptibility artefact correction in interventional MRI. (United States)

    Kochan, Martin; Daga, Pankaj; Burgos, Ninon; White, Mark; Cardoso, M Jorge; Mancini, Laura; Winston, Gavin P; McEvoy, Andrew W; Thornton, John; Yousry, Tarek; Duncan, John S; Stoyanov, Danail; Ourselin, Sébastien


    Intraoperative MRI (iMRI) is a powerful modality for acquiring images of the brain to facilitate precise image-guided neurosurgery. Diffusion-weighted MRI (DW-MRI) provides critical information about location, orientation and structure of nerve fibre tracts, but suffers from the "susceptibility artefact" stemming from magnetic field perturbations due to the step change in magnetic susceptibility at air-tissue boundaries in the head. An existing approach to correcting the artefact is to acquire a field map by means of an additional MRI scan. However, to recover true field maps from the acquired field maps near air-tissue boundaries is challenging, and acquired field maps are unavailable in historical MRI data sets. This paper reports a detailed account of our method to simulate field maps from structural MRI scans that was first presented at IPCAI 2014 and provides a thorough experimental and analysis section to quantitatively validate our technique. We perform automatic air-tissue segmentation of intraoperative MRI scans, feed the segmentation into a field map simulation step and apply the acquired and the simulated field maps to correct DW-MRI data sets. We report results for 12 patient data sets acquired during anterior temporal lobe resection surgery for the surgical management of focal epilepsy. We find a close agreement between acquired and simulated field maps and observe a statistically significant reduction in the susceptibility artefact in DW-MRI data sets corrected using simulated field maps in the vicinity of the resection. The artefact reduction obtained using acquired field maps remains better than that using the simulated field maps in all evaluated regions of the brain. The proposed simulated field maps facilitate susceptibility artefact reduction near the resection. Accurate air-tissue segmentation is key to achieving accurate simulation. The proposed simulation approach is adaptable to different iMRI and neurosurgical applications.

  20. Simulated Tempering and Swapping on Mean-Field Models


    Bhatnagar, Nayantara; Randall, Dana


    Simulated and parallel tempering are families of Markov Chain Monte Carlo algorithms where a temperature parameter is varied during the simulation to overcome bottlenecks to convergence due to multimodality. In this work we introduce and analyze the convergence for a set of new tempering distributions which we call \\textit{entropy dampening}. For asymmetric exponential distributions and the mean field Ising model with and external field simulated tempering is known to converge slowly. We show...

  1. Transient simulation in interior flow field of lobe pump (United States)

    Li, Y. B.; Sang, X. H.; Meng, Q. W.; Shen, H.; Jia, K.


    The subject of this paper is mainly focused on the development and control of the double folium and trifolium lobe pump profiles by using the principle of involute engagement and use CAD to get an accurate involute profile. We use the standard k-ε turbulence model and PISO algorithm based on CFD software FLUENT. The dynamic mesh and UDF technology is introduced to simulate the interior flow field inside a lobe pump, and the variation of interior flow field under the condition of the lobe rotating is analyzed. We also analyse the influence produced by the difference in lobes, and then reveal which lobe is best. The results show that dynamic variation of the interior flow field is easily obtained by dynamic mesh technology and the distribution of its pressure and velocity. Because of the small gaps existing between the rotors and pump case, the higher pressure area will flow into the lower area though the small gaps which cause the working area keep with higher pressure all the time. Both of the double folium and trifolium are existing the vortex during the rotting time and its position, size and shape changes all the time. The vortexes even disappear in a circle period and there are more vortexes in double folium lobe pump. The velocity and pressure pulsation of trifolium pump are lower than that of the double folium.

  2. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination (United States)

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer to avoid harvesting fecal-contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal-contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil,...

  3. Radiation field wave forms produced by lightning stepped leaders (United States)

    Krider, E. P.; Radda, G. J.


    Broadband electric field data are presented which show stepped leader wave forms preceding records of distant lightning return strokes. The majority of leader pulses are characterized by a large initial peak with a small and slow opposite overshoot. Total pulse durations range from 15-40 microsec several milliseconds before the return stroke to 2-10 microsec immediately preceding the return stroke. Close to the ground the stepped leader pulses occur at regular 10- to 20-microsec intervals and are almost unipolar with rise times of about 1 microsec and full widths at half maximum in the range from 1 to 3 microsec. The ratio of the peak of the last leader pulse to the subsequent return stroke peak is typically 0.1, which suggests a peak step current near the ground of about 10% of the return stroke peak current.

  4. Simulations of pressure and salinity fields at Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)


    The primary objective of this study was to examine whether the geochemical field data from Aespoe could be interpreted and understood by means of numerical simulations for flow and transport. A site-specific simulation model for groundwater flow and salt transport was developed on the basis of the field investigations. Both steady-state and transient simulations of flow and transport were performed. In the transient simulations, land uplift and the effect of diffusion into/from the matrix blocks with stagnant water were taken into account. The computational results were evaluated on the basis of the experimental values for the pressure and salt concentration.

  5. Mean field simulation for Monte Carlo integration

    CERN Document Server

    Del Moral, Pierre


    In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko

  6. Simulation of Second Harmonic Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt


    , and the fundamental pressure is calculated by Field II. The second harmonic pressure in k-space along the propagating direction is calculated as an auto-convolution of the fundamental pressure multiplied by an exponential propagating coefficient. In this case, the second harmonic pressure can be calculated using ASA...... for any plane parallel to the initial plane. In the focal plane (elevation-lateral) at 60 mm from the transducer surface, calculated by ASA, the RMS errors for the fundamental component are 2.66% referred to Field II and 4.28% referred to Abersim. For the second harmonic component, the RMS error is 0...

  7. [Problems of hygienic standardization of electromagnetic fields produced by teletransmitting objects]. (United States)

    Karachev, I I


    Maximum allowable electromagnetic field levels produced by teletransmitting stations and differentiated by frequency have been described. The prospects of further studies on the improvement of hygienic standardization of electromagnetic fields have been set forth.

  8. Collisionless Interaction of a Magnetized Ambient Plasma and a Field-Parallel Laser Produced Plasma (United States)

    Heuer, P. V.; Bondarenko, A. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Weidl, M.; Winske, D.; Niemann, C.


    We present measurements of the collisionless coupling between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP was created by focusing the Raptor laser (400 J, 40 ns) on a planar plastic target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting ablated material moved parallel to the background magnetic field, interacting with the ambient plasma along the full 17m length of the LAPD. The amplitude and polarization of waves driven by the interaction were measured by an array of 3-axis magnetic flux probes. Emissive doppler spectroscopy and a high temporal resolution monochrometer were used to observe the velocity and charge state distributions of both ambient and debris ions. Measurements are compared to hybrid simulations of quasi-parallel shocks.

  9. Field distribution of magnetograms from simulations of active region formation (United States)

    Dacie, S.; van Driel-Gesztelyi, L.; Démoulin, P.; Linton, M. G.; Leake, J. E.; MacTaggart, D.; Cheung, M. C. M.


    Context. The evolution of the photospheric magnetic field distributions (probability densities) has previously been derived for a set of active regions. Photospheric field distributions are a consequence of physical processes that are difficult to determine from observations alone. Aims: We analyse simulated magnetograms from numerical simulations, which model the emergence and decay of active regions. These simulations have different experimental set-ups and include different physical processes, allowing us to investigate the relative importance of convection, magnetic buoyancy, magnetic twist, and braiding for flux emergence. Methods: We specifically studied the photospheric field distributions (probability densities found with a kernel density estimation analysis) and compared the results with those found from observations. Results: Simulations including convection most accurately reproduce the observed evolution of the photospheric field distributions during active region evolution. Conclusions: This indicates that convection may play an important role during the decay phase and also during the formation of active regions, particularly for low flux density values.

  10. Three dimensional numerical simulation for air flow field in melt blowing (United States)

    Xie, Sheng; Han, Wanli; Jiang, Guojun


    Melt blowing is one-step approach for producing microfibrous nonwovens. In this study, the characteristics of air flow field in different die melt blowing were studied. CFD simulation analysis was adopted to complete the air flow field simulation. The characteristics of the air flow fields in different die melt blowing were revealed and compared. Meanwhile, the fiber paths in these two melt-blowing processes are recorded with a high-speed camera. The fiber path profiles, especially the whipping, are obtained and presented.

  11. Determining material parameters using phase-field simulations and experiments

    DEFF Research Database (Denmark)

    Zhang, Jin; Poulsen, Stefan O.; Gibbs, John W.


    as an initial condition in a phase-field simulation, the computed structure is compared to that measured experimentally at a later time. An optimization technique is used to find the material parameters that yield the best match of the simulated microstructure to the measured microstructure in a global manner...

  12. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories. (United States)

    Park, Kiwan; Blackman, Eric G; Subramanian, Kandaswamy


    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  13. Numerical simulation of transverse jet flow field under supersonic inflow

    Directory of Open Access Journals (Sweden)

    Qian Li


    Full Text Available Transverse jet flow field under supersonic inflow is simulated numerically for studying the characteristic of fuel transverse jet and fuel mixing in scramjet combustion chamber. Comparison is performed between simulated results and the results of references and experiments. Results indicate that the CFD code in this paper is applicable for simulation of transverse jut flow field under supersonic inflow, but in order to providing more effective numerical predictive method, CFD code should be modified through increasing mesh density and adding LES module.

  14. Measurements and simulation of induced activity at the CERN-EU high- energy reference field facility

    CERN Document Server

    Brugger, M; Mitaroff, W A; Roesler, S


    Samples of aluminum, copper, stainless steel, iron, boron nitride, carbon composite and water were irradiated by the stray radiation field produced by interactions of high-energy hadrons in a copper target. The specific activity induced in the samples was measured by gamma spectrometry. In addition, the isotope production in the samples was calculated with detailed Monte-Carlo simulations using the FLUKA code. Results of the simulation are in reasonable agreement with the measured activities. 7 Refs.

  15. Gyrokinetic particle simulation of a field reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, D. P., E-mail:; Lau, C. K.; Holod, I.; Lin, Z., E-mail: [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Dettrick, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)


    Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.

  16. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V. [Ohio State University, Columbus, OH 43210 (United States)]. E-mail:; Humanic, T.J. [Ohio State University, Columbus, OH 43210 (United States); Nouais, D. [INFN, Sezione di Torino, I-10125 Turin (Italy); Randel, J. [Ohio State University, Columbus, OH 43210 (United States); Rashevsky, A. [INFN, Sezione di Triste, I-34127 Trieste (Italy)


    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and ] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile.

  17. Simulations of nonlinear continuous wave pressure fields in FOCUS (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.


    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  18. The large-scale properties of simulated cosmological magnetic fields (United States)

    Marinacci, Federico; Vogelsberger, Mark; Mocz, Philip; Pakmor, Rüdiger


    We perform uniformly sampled large-scale cosmological simulations including magnetic fields with the moving mesh code AREPO. We run two sets of MHD simulations: one including adiabatic gas physics only; the other featuring the fiducial feedback model of the Illustris simulation. In the adiabatic case, the magnetic field amplification follows the B ∝ ρ2/3 scaling derived from `flux-freezing' arguments, with the seed field strength providing an overall normalization factor. At high baryon overdensities the amplification is enhanced by shear flows and turbulence. Feedback physics and the inclusion of radiative cooling change this picture dramatically. In haloes, gas collapses to much larger densities and the magnetic field is amplified strongly and to the same maximum intensity irrespective of the initial seed field of which any memory is lost. At lower densities a dependence on the seed field strength and orientation, which in principle can be used to constrain models of cosmic magnetogenesis, is still present. Inside the most massive haloes magnetic fields reach values of ˜ 10-100 μG, in agreement with galaxy cluster observations. The topology of the field is tangled and gives rise to rotation measure signals in reasonable agreement with the observations. However, the rotation measure signal declines too rapidly towards larger radii as compared to observational data.

  19. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations (United States)


    linear combination of the L1 and L2 norms (called L1 -penalized least-squares). These methods are capable of producing smoother and more realistic...reduce spurious electric fields. A new technique was developed for sparse reconstruction of electric field based on L1 -minimization, which allowed a...technique, with test cases taken from (a) a simple flux transport model (with known electric field) and (b) a two-month ADAPT sequence. A comparison of

  20. On the Electric Fields Produced by Dipolar Coulomb Charges of an Individual Thundercloud in the Ionosphere

    Directory of Open Access Journals (Sweden)

    Vitaly P. Kim


    Full Text Available In this paper we study the transmission of the electrostatic field due to coulomb charges of an individual thundercloud into the midlatitude ionosphere, taking into account the total geomagnetic field integrated Pedersen conductivity of the ionosphere. It is shown that at ionospheric altitudes, a typical thundercloud produces an insignificant electrostatic field whereas a giant thundercloud can drive the horizontal electrostatic field with a magnitude of ~270 μV/m for nighttime conditions.

  1. Virtual Reality System with Integrated Sound Field Simulation and Reproduction

    Directory of Open Access Journals (Sweden)

    Assenmacher Ingo


    Full Text Available A real-time audio rendering system is introduced which combines a full room-specific simulation, dynamic crosstalk cancellation, and multitrack binaural synthesis for virtual acoustical imaging. The system is applicable for any room shape (normal, long, flat, coupled, independent of the a priori assumption of a diffuse sound field. This provides the possibility of simulating indoor or outdoor spatially distributed, freely movable sources and a moving listener in virtual environments. In addition to that, near-to-head sources can be simulated by using measured near-field HRTFs. The reproduction component consists of a headphone-free reproduction by dynamic crosstalk cancellation. The focus of the project is mainly on the integration and interaction of all involved subsystems. It is demonstrated that the system is capable of real-time room simulation and reproduction and, thus, can be used as a reliable platform for further research on VR applications.

  2. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt


    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  3. Three-dimensional phase-field simulations of directional solidification (United States)

    Plapp, Mathis


    The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.

  4. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    Energy Technology Data Exchange (ETDEWEB)

    Alves Batista, Rafael [Oxford Univ. (United Kingdom). Dept. of Physics and Astrophysics; Saveliev, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Russian Academy of Sciences, Moscow (Russian Federation). Keldysh Inst. of Applied Mathematics; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vachaspati, Tanmay [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics


    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10{sup -15} G and magnetic coherence lengths L{sub c}>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.

  5. Effect of transverse magnetic fields on a simulated in-line 6 MV linac. (United States)

    St Aubin, J; Steciw, S; Fallone, B G


    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 +/- 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  6. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current (United States)

    Jimenez, J. L.; Campos, I.; Aquino, N.


    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  7. Electric field distribution and simulation of avalanche formation due ...

    Indian Academy of Sciences (India)

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed ...

  8. Simulating Capacitive Micromachined Ultrasonic Transducers (CMUTs) using Field II

    DEFF Research Database (Denmark)

    Bæk, David; Oralkan, Omer; Kupnik, Mario


    Field II has been a recognized simulation tool for piezoceramic medical transducer arrays for more than a decade. The program has its strength in doing fast computations of the spatial impulse response (SIR) from array elements by dividing the elements into smaller mathematical elements (ME)s fro...

  9. Particle simulation in stochastic magnetic fields at tokamak edge (United States)

    Chang, C. C.; Nishimura, Y.; Cheng, C. Z.


    An orbit following simulation code is developed incorporating magnetic perturbation. While magnetic field lines can exhibit stochastic behavior in the presence of incommensurate magnetic perturbations, the particle motions are also influenced by the mirror force and the perturbed electric fields. Remnants of lowest order magnetic islands can also play an important role in regulating the particle and heat transport. Effective perpendicular transport can be enhanced in the presence of trapped particles; how the mirror force influences the transport in stochastic magnetic fields is examined. This work is supported by National Science Council of Taiwan, NSC 100-2112-M-006-021-MY3 and NCKU Top University Project.

  10. Vlasov simulations of electron trapping on auroral field lines (United States)

    Gunell, H.; Mann, I.; De Keyser, J.; Andersson, L.


    In the auroral zone, electric fields that are parallel to the earth's magnetic field are known to exist and to contribute to the acceleration of auroral electrons. Transverse electric fields at high altitude result in parallel electric fields as a consequence of the closure of the field-aligned currents through the conducting ionosphere (L. R. Lyons, JGR, vol. 85, 1724, 1980). These parallel electric fields can be supported by the magnetic mirror field (Alfvén and Fälthammar, Cosmical Electrodynamics, 2nd ed., 1963). Stationary kinetic models have been used to study the current-voltage characteristics of the auroral current circuit (Knight, Planet. and Space Sci., vol. 21, 741-750, 1973). Fluid and hybrid simulations have been used to model parallel electric fields and Alfvén waves, and to study the relationship between them (e.g., Vedin and Rönnmark, JGR, vol. 111, 12201, 2006). Ergun, et al. (GRL, vol. 27, 4053-4056, 2000) found stationary Vlasov solutions over regions extending several Earth radii, and Main, et al. (PRL, vol. 97, 185001, 2006) performed Vlasov simulations of the auroral acceleration region. Observations have shown that field-aligned potential drops often are concentrated in electric double layers (e.g. Ergun, et al., Phys. Plasmas, vol. 9, 3685-3694, 2002). In the upward current region, 20-50% of the total potential drop has been identified as localised. How the rest of the potential is spread out as function of altitude is not yet known from observations. Gunell et al. (submitted to GRL, 2012) performed Vlasov simulations, using a model that is one-dimensional in configuration space and two-dimensional in velocity space, and found that about half of the potential drop is found in a thin double layer. The other half is in a region, which extends a few earth radii above it. The double layer itself is stationary, while there are oscillations in the longer low-field region. The current-voltage characteristic approximately follows the Knight

  11. 3D numerical simulation of flow field around twin piles (United States)

    Amini, Ata; Parto, Akram Asadi


    In this study to identify the flow pattern and local scour mechanism around pile groups, the flow field was simulated using FLOW-3D software. A pair of pile on a flat-bed channel with side by side and tandem arrangements was investigated. To establish Navier-Stokes equations, the RNG k- ɛ turbulence model was used and the results were verified using experimental data. In case of FLOW-3D capability, it was found that the software was able to properly simulate the expected interaction between the pile groups. The results of flow field simulation showed that Reynolds number and the pile spacing are the most influential variables in forming vortices. The flow around tandem pile and the downward flow around wake vortices were more intense and complicate in comparison with side by side arrangements and single pile.

  12. Constant electric field simulations of the membrane potential illustrated with simple systems. (United States)

    Gumbart, James; Khalili-Araghi, Fatemeh; Sotomayor, Marcos; Roux, Benoît


    Advances in modern computational methods and technology make it possible to carry out extensive molecular dynamics simulations of complex membrane proteins based on detailed atomic models. The ultimate goal of such detailed simulations is to produce trajectories in which the behavior of the system is as realistic as possible. A critical aspect that requires consideration in the case of biological membrane systems is the existence of a net electric potential difference across the membrane. For meaningful computations, it is important to have well validated methodologies for incorporating the latter in molecular dynamics simulations. A widely used treatment of the membrane potential in molecular dynamics consists of applying an external uniform electric field E perpendicular to the membrane. The field acts on all charged particles throughout the simulated system, and the resulting applied membrane potential V is equal to the applied electric field times the length of the periodic cell in the direction perpendicular to the membrane. A series of test simulations based on simple membrane-slab models are carried out to clarify the consequences of the applied field. These illustrative tests demonstrate that the constant-field method is a simple and valid approach for accounting for the membrane potential in molecular dynamics studies of biomolecular systems. This article is part of a Special Issue entitled: Membrane protein structure and function. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The Temperature - Magnetic Field Relation in Observed and Simulated Sunspots (United States)

    Sobotka, Michal; Rezaei, Reza


    Observations of the relation between continuum intensity and magnetic field strength in sunspots have been made for nearly five decades. This work presents full-Stokes measurements of the full-split (g = 3) line Fe i 1564.85 nm with a spatial resolution of 0.5^'' obtained with the GREGOR Infrared Spectrograph in three large sunspots. The continuum intensity is corrected for instrumental scattered light, and the brightness temperature is calculated. Magnetic field strength and inclination are derived directly from the line split and the ratio of Stokes components. The continuum intensity (temperature) relations to the field strength are studied separately in the umbra, light bridges, and penumbra. The results are consistent with previous studies, and it was found that the scatter of values in the relations increases with increasing spatial resolution thanks to resolved fine structures. The observed relations show trends common for the umbra, light bridges, and the inner penumbra, while the outer penumbra has a weaker magnetic field than the inner penumbra at equal continuum intensities. This fact can be interpreted in terms of the interlocking comb magnetic structure of the penumbra. A comparison with data obtained from numerical simulations was made. The simulated data generally have a stronger magnetic field and a weaker continuum intensity than the observations, which may be explained by stray light and limited spatial resolution of the observations, and also by photometric inaccuracies of the simulations.

  14. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun


    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  15. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.


    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  16. Simulating electric field interactions with polar molecules using spectroscopic databases. (United States)

    Owens, Alec; Zak, Emil J; Chubb, Katy L; Yurchenko, Sergei N; Tennyson, Jonathan; Yachmenev, Andrey


    Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH 3 and NH 3 , and spontaneous emission data for optoelectrical Sisyphus cooling of H 2 CO and CH 3 Cl are discussed.

  17. Properties and simulation of α-permanental random fields

    DEFF Research Database (Denmark)

    Møller, Jesper; Rubak, Ege Holger

    An α-permanental random field is briefly speaking a model for a collection of random variables with positive associations, where α is a positive number and the probability generating function is given in terms of a covariance or more general function so that density and moment expressions are giv......, and second to study stochastic constructions and simulation techniques, which should provide a useful basis for discussing the statistical aspects in future work. The paper also discusses some examples of  α-permanental random fields....

  18. Unsteady Simulation of a Landing-Gear Flow Field (United States)

    Li, Fei; Khorrami, Mehdi R.; Malik, Mujeeb R.


    This paper presents results of an unsteady Reynolds-averaged Navier-Stokes simulation of a landing-gear flow field. The geometry of the four-wheel landing gear assembly consists of several of the fine details including the oleo-strut, two diagonal struts, a door, yokes/pin and a flat-plate simulating the wing surface. The computational results, obtained by using 13.3 million grid points, are presented with an emphasis on the characteristics of the unsteadiness ensuing from different parts of the landing-gear assembly, including vortex shedding patterns and frequencies of dominant oscillations. The results show that the presence of the diagonal struts and the door significantly influence the flow field. Owing to the induced asymmetry, vortices are shed only from one of the rear wheels and not the other. Present computations also capture streamwise vortices originating from the upstream corners of the door.

  19. Electron Tracking Simulations in the Presence of the Beam and External Fields

    CERN Document Server

    Patecki, M; Iadarola, G; Sapinski, M


    The ionisation profile monitors installed in the CERN LHC and SPS make use of the ionisation of a small volume of the injected neon gas by the circulating beam. The electrons produced are guided towards the readout system using a combination of electric and magnetic fields. In the presence of the beam field their tracks are modified and the resulting profile is distorted. The Geant4 particle simulation package has been used to simulate the ionisation process, while the CERN developed PyECLOUD code has been used for tracking of the resulting ionised particles. In this paper the results of simulations are compared with observations and conclusions are presented concerning the accuracy of the reconstruction of high-intensity beam profiles.

  20. The radiation field wave forms produced by intracloud lightning discharge processes (United States)

    Weidman, C. D.; Krider, E. P.


    The large-amplitude radiation field pulses produced by intracloud lightning discharge processes have been recorded with submicrosecond time resolution. The wave forms are distinctly different from those produced by return strokes in cloud-to-ground lightning, yet they are surprisingly alike within a discharge and in different discharges. The shapes tend to be bipolar, with two or three narrow, fast-rising pulses superimposed on the initial half cycle. Pulses with a positive initial polarity are usually produced in the several tens of milliseconds prior to the first return stroke in a cloud-to-ground discharge. Positive pulses tend to occur at regular intervals and have a mean full width of about 40 + or - 13 microsec. Negative pulses are usually produced during isolated cloud discharges at more random intervals and have shapes similar to the positive pulses but with more variability. The implications of the field shapes and polarities for the physics of intracloud discharge processes are discussed.

  1. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, D. P., E-mail: [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); University of California, Irvine, California 92697 (United States); Lau, C. K.; Holod, I.; Lin, Z. [University of California, Irvine, California 92697 (United States); Schmitz, L.; Tajima, T.; Binderbauer, M. W. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)


    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  2. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri


    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  3. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  4. Sound field simulation and acoustic animation in urban squares (United States)

    Kang, Jian; Meng, Yan


    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  5. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields (United States)

    Javed, Afroz; Chakraborty, Debasis


    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  6. A conditional simulation model of intermittent rain fields

    Directory of Open Access Journals (Sweden)

    L. G. Lanza


    Full Text Available The synthetic generation of random fields with specified probability distribution, correlation structure and probability of no-rain areas is used as the basis for the formulation of a stochastic space-time rainfall model conditional on rain gauge observations. A new procedure for conditioning while preserving intermittence is developed to provide constraints to Monte Carlo realisations of possible rainfall scenarios. The method addresses the properties of the convolution operator involved in generating random field realisations and is actually independent of the numerical algorithm used for unconditional simulation. It requires only the solution of a linear system of algebraic equations the order of which is given by the number of the conditioning nodes. Applications of the methodology are expected in rainfall field reconstruction from sparse rain gauge data and in rainfall downscaling from the large scale information that may be provided by remote sensing devices or numerical weather prediction models. Keywords: Space-time rainfall; Conditioning; Stochastic models

  7. Radial focusing and energy compression of a laser-produced proton beam by a synchronous rf field

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami


    Full Text Available The dynamics of a MeV laser-produced proton beam affected by a radio frequency (rf electric field has been studied. The proton beam was emitted normal to the rear surface of a thin polyimide target irradiated with an ultrashort pulsed laser with a power density of 4×10^{18}  W/cm^{2}. The energy spread was compressed to less than 11% at the full width at half maximum (FWHM by an rf field. Focusing and defocusing effects of the transverse direction were also observed. These effects were analyzed and reproduced by Monte Carlo simulations. The simulation results show that the transversely focused protons had a broad continuous spectrum, while the peaks in the proton spectrum were defocused. Based on this new information, we propose that elimination of the continuous energy component of laser-produced protons is possible by utilizing a focal length difference between the continuous spectral protons and the protons included in the spectral peak.

  8. Field Tests and Simulation of Lion-Head River Bridge

    Directory of Open Access Journals (Sweden)

    Yao-Min Fang


    Full Text Available Lion-Head River Bridge is a twin bridge in parallel position. The east-bounded was designed and constructed as a traditional prestress concrete box girder bridge with pot bearings; and the west-bounded was installed with seismic isolation devices of lead rubber bearings. The behavior of the isolated bridge is compared with that of the traditional bridge through several field tests including the ambient vibration test, the force vibration test induced by shakers, the free vibration test induced by a push and fast release system, and the truck test. The bridges suffered from various extents of damage due to the Chi-Chi and the Chi-I earthquakes of great strength during the construction and had been retrofitted. The damage was reflected by the change of the bridges' natural frequencies obtained from the ambient vibration tests. The models of the two bridges are simulated by the finite element method based on the original design drawings. Soil-structure interaction was also scrutinized in this study. The simulation was then modified based on the results from the field tests. Dynamic parameters of bridges are identified and compared with those from theoretical simulation. The efficiency is also verified to be better for an isolated bridge.

  9. Numerical simulation of backward erosion piping in heterogeneous fields (United States)

    Liang, Yue; Yeh, Tian-Chyi Jim; Wang, Yu-Li; Liu, Mingwei; Wang, Junjie; Hao, Yonghong


    Backward erosion piping (BEP) is one of the major causes of seepage failures in levees. Seepage fields dictate the BEP behaviors and are influenced by the heterogeneity of soil properties. To investigate the effects of the heterogeneity on the seepage failures, we develop a numerical algorithm and conduct simulations to study BEP progressions in geologic media with spatially stochastic parameters. Specifically, the void ratio e, the hydraulic conductivity k, and the ratio of the particle contents r of the media are represented as the stochastic variables. They are characterized by means and variances, the spatial correlation structures, and the cross correlation between variables. Results of the simulations reveal that the heterogeneity accelerates the development of preferential flow paths, which profoundly increase the likelihood of seepage failures. To account for unknown heterogeneity, we define the probability of the seepage instability (PI) to evaluate the failure potential of a given site. Using Monte-Carlo simulation (MCS), we demonstrate that the PI value is significantly influenced by the mean and the variance of ln k and its spatial correlation scales. But the other parameters, such as means and variances of e and r, and their cross correlation, have minor impacts. Based on PI analyses, we introduce a risk rating system to classify the field into different regions according to risk levels. This rating system is useful for seepage failures prevention and assists decision making when BEP occurs.

  10. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field (United States)

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.


    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  11. Accelerating large-scale phase-field simulations with GPU (United States)

    Shi, Xiaoming; Huang, Houbing; Cao, Guoping; Ma, Xingqiao


    A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA), Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  12. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi


    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  13. Direct numerical simulation of noninvasive channel healing in electrical field

    KAUST Repository

    Wang, Yi


    Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.

  14. Optical signatures of auroral arcs produced by field line resonances: comparison with satellite observations and modeling

    Directory of Open Access Journals (Sweden)

    J. C. Samson


    Full Text Available We show two examples from the CANOPUS array of the optical signatures of auroral arcs produced by field line resonances on the night of 31 January 1997. The first example occurs during local evening at about 18:00 MLT (Magnetic Local Time, where CANOPUS meridian scanning photometer data show all the classic features of field line resonances. There are two, near-monochromatic resonances (at approximately 2.0 and 2.5 mHz and both show latitudinal peaks in amplitude with an approximately 180 degree latitudinal phase shift across the maximum. The second field line resonance event occurs closer to local midnight, between approximately 22:00 and 22:40 MLT. Magnetometer and optical data show that the field line resonance has a very low frequency, near 1.3 mHz. All-sky imager data from CANOPUS show that in this event the field line resonances produce auroral arcs with westward propagation, with arc widths of about 10 km. Electron energies are on the order of 1 keV. This event was also seen in data from the FAST satellite (Lotko et al., 1998, and we compare our observations with those of Lotko et al. (1998. A remarkable feature of this field line resonance is that the latitudinal phase shift was substantially greater than 180 degrees. In our discussion, we present a model of field line resonances which accounts for the dominant physical effects and which is in good agreement with the observations. We emphasize three points. First, the low frequency of the field line resonance in the second event is likely due to the stretched topology of the magnetotail field lines, with the field line resonance on field lines threading the earthward edge of the plasma sheet. Second, the latitudinal phase structure may indicate dispersive effects due to electron trapping or finite ion gyroradius. Third, we show that a nonlocal conductivity model can easily explain the parallel electric fields and the precipitating electron energies seen in the field line resonance

  15. Optical signatures of auroral arcs produced by field line resonances: comparison with satellite observations and modeling

    Directory of Open Access Journals (Sweden)

    J. C. Samson

    Full Text Available We show two examples from the CANOPUS array of the optical signatures of auroral arcs produced by field line resonances on the night of 31 January 1997. The first example occurs during local evening at about 18:00 MLT (Magnetic Local Time, where CANOPUS meridian scanning photometer data show all the classic features of field line resonances. There are two, near-monochromatic resonances (at approximately 2.0 and 2.5 mHz and both show latitudinal peaks in amplitude with an approximately 180 degree latitudinal phase shift across the maximum. The second field line resonance event occurs closer to local midnight, between approximately 22:00 and 22:40 MLT. Magnetometer and optical data show that the field line resonance has a very low frequency, near 1.3 mHz. All-sky imager data from CANOPUS show that in this event the field line resonances produce auroral arcs with westward propagation, with arc widths of about 10 km. Electron energies are on the order of 1 keV. This event was also seen in data from the FAST satellite (Lotko et al., 1998, and we compare our observations with those of Lotko et al. (1998. A remarkable feature of this field line resonance is that the latitudinal phase shift was substantially greater than 180 degrees. In our discussion, we present a model of field line resonances which accounts for the dominant physical effects and which is in good agreement with the observations. We emphasize three points. First, the low frequency of the field line resonance in the second event is likely due to the stretched topology of the magnetotail field lines, with the field line resonance on field lines threading the earthward edge of the plasma sheet. Second, the latitudinal phase structure may indicate dispersive effects due to electron trapping or finite ion gyroradius. Third, we show that a nonlocal conductivity model can easily explain the parallel electric fields and the precipitating electron energies seen in the field line resonance

  16. CFD simulation on Kappel propeller with a hull wake field

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus


    for propeller designers and the computational effort can be reduced by excluding the hull. The CFD simulation of a propeller flow with a hull wake is verified in order to use CFD as a propeller design tool. A Kappel propeller, which is an innovative tip-modified propeller, is handled. Kappel propellers....... It is investigated how the accuracy is improved, as the wake field is modelled more precisely. The thrust variation and pressure distribution on the blade from the CFD simulation with the hull wake model are also analyzed.......Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD...

  17. Numerical simulation of flow fields and particle trajectories

    DEFF Research Database (Denmark)

    Mayer, Stefan


    in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical...... contact between particle and cilia. A local capture efficiency is defined and its value computed for various values of beat frequencies and other parameters. The results indicate that the simulated particle capture process is most effective when the flow field oscillates within timescales comparable......A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation...

  18. Conversion of Fractal Fields into Heterogeneities inside SPH Simulations (United States)

    Hušek, Martin; Kala, Jiří; Hokeš, Filip; Král, Petr


    The inclusion of material heterogeneities in numerical simulations enables us to come close to the almost perfect description of the behaviour of structures. There are various ways and methods of introducing heterogeneity into a computational model. One of the methods is the creation of areas (fractal fields) in which material properties differ. The shape of such fractals is most frequently based on simple mathematical functions. However, this destroys the ability of the model to represent reality, as the structure of a real material is not based on any mathematical function. Fractals do not have to be based just on one simple mathematical function. On the contrary, they can be based on more complex inputs, such as real images of materials. In the case of images of concrete, fields can be generated which correspond to the presence of an aggregate, a cement binder or an air void. The contribution therefore describes fundamental steps in the creation of fractals, or the creation of fields based on real images of a material. The contribution also deals with the creation of material parameter oscillations and their subsequent inclusion in the numerical code of the Smoothed Particle Hydrodynamics (SPH) method. The conditions necessary for successful simulations if the SPH method is used are described. The whole process is clearly demonstrated using a pressure test conducted on a cylindrical concrete specimens. The presented results show the consequences of the inclusion of material heterogeneity in numerical simulations. These include randomness in the failure type or differences in the stress–strain diagrams of the monitored specimens. The functionality of the proposed process is supported by the results.

  19. Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields (United States)

    Podaru, George; Moore, John; Dani, Raj Kumar; Prakash, Punit; Chikan, Viktor


    Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.

  20. Field Quality and Alignment of the Series Produced Superconducting Matching Quadrupoles for the LHC Insertions

    CERN Document Server

    Catalan-Lasheras, Nuria; Kirby, Glyn; Ostojic, Ranko; Perez, Juan C; Prin, Herve


    The production of the superconducting quadrupoles for the LHC insertions is advancing well and about half of the magnets have been produced. The coil size and field measurements performed on individual magnets both in warm and cold conditions are yielding significant results. In this paper we present the procedures and results of steering the series production at the magnet manufacturers and the assembly of cold masses at CERN. In particular, we present the correlation between coil sizes and geometrical field errors, the effect of permeability of magnet collars, and the analysis of warm-cold correlations and hysteresis of the main field multipoles. The results are compared with the target values for field multipoles and quadrupole alignment.

  1. A permanent magnet device for producing variable high magnetic field in three dimensions

    CERN Document Server

    Hwang, C S; Chang, P C; Chen, H H; Chang, C H; Huang Ming Hsiung


    By combining four parallel rows of permanent magnet blocks, a magnet device that can produce variable high magnetic field in three dimensions has been designed. In this device, the magnetic field direction and strength can be varied by shifting the four rows along their longitudinal direction and by varying the magnet gap between the top and bottom rows. With a magnet gap of 10 mm, the magnetic field strength at the center of the device is about 1.4 T along the longitudinal and two transverse directions. This device can be utilized in X-ray magnetic circular dichroism and X-ray magnetic linear dichroism experiments as well as in other applications where a variable high magnetic field in three dimensions is needed.

  2. Superconducting circuits for quantum simulation of dynamical gauge fields. (United States)

    Marcos, D; Rabl, P; Rico, E; Zoller, P


    We describe a superconducting-circuit lattice design for the implementation and simulation of dynamical lattice gauge theories. We illustrate our proposal by analyzing a one-dimensional U(1) quantum-link model, where superconducting qubits play the role of matter fields on the lattice sites and the gauge fields are represented by two coupled microwave resonators on each link between neighboring sites. A detailed analysis of a minimal experimental protocol for probing the physics related to string breaking effects shows that, despite the presence of decoherence in these systems, distinctive phenomena from condensed-matter and high-energy physics can be visualized with state-of-the-art technology in small superconducting-circuit arrays.

  3. Effects of a static inhomogeneous magnetic field acting on a laser-produced carbon plasma plume

    Directory of Open Access Journals (Sweden)

    M. Favre


    Full Text Available We present time- and space-resolved observations of the dynamics of a laser-produced carbon plasma, propagating in a sub-Tesla inhomogeneous magnetic field, with both, axial and radial field gradients. An Nd:YAG laser pulse, 340 mJ, 3.5 ns, at 1.06 μm, with a fluence of 7 J/cm2, is used to generate the plasma from a solid graphite target, in vacuum. The magnetic field is produced using two coaxial sets of two NeFeB ring magnets, parallel to the laser target surface. The diagnostics include plasma imaging with 50 ns time resolution, spatially resolved optical emission spectroscopy and Faraday cup. Based on our observations, evidence of radial and axial plasma confinement due to magnetic field gradients is presented. Formation of C2 molecules, previously observed in the presence of a low pressure neutral gas background, and enhanced on-axis ion flux, are ascribed to finite Larmor radius effects and reduced radial transport due to the presence of the magnetic field.

  4. Effect of atom- and group-based truncations on biomolecules simulated with reaction-field electrostatics (United States)

    Ni, Boris


    The performance of the reaction-field method of electrostatics is tested in molecular dynamics simulations of protein human interleukin-4 and a short DNA fragment in explicit solvent. Two truncation schemes are considered: one based on the position of atomic charges in water molecules and the other on the position of groups of charges. The group-based truncation leads to the melting of the DNA double helix. In contrast, the atom-based truncation maintains the helical structure intact. Similarly for the protein, the group-based truncation leads to an unfolding at pH 2 while the atom-based truncation produces stable trajectories at low and normal pH, in agreement with experiment. Artificial repulsion between charged residues associated with the group-based truncation is identified as the microscopic reason behind unfolding of the protein. Implications of different truncation schemes in reaction-field simulations of biomolecules are discussed. PMID:21311933

  5. Large Eddy Simulations of Double-Ruler Electromagnetic Field Effect on Transient Flow During Continuous Casting (United States)

    Singh, Ramnik; Thomas, Brian G.; Vanka, Surya P.


    Transient flow during nominally steady conditions is responsible for many intermittent defects during the continuous casting of steel. The double-ruler electromagnetic field configuration, or "FC-Mold EMBr," is popular in commercial slab casting as it provides independent control of the applied static field near the jet and free surface regions of the mold. In the current study, transient flow in a typical commercial caster is simulated in the absence and in the presence of a double-ruler magnetic field, with rulers of equal strengths. Large eddy simulations with the in-house code CU-FLOW resolve the important transient behavior, using grids of over five million cells with a fast parallel solver. In the absence of a magnetic field, a double-roll pattern is observed, with transient unbalanced behavior, high surface velocities (~0.5 m/s), surface vortex formation, and very large surface-level fluctuations (~±12 mm). Applying the magnetic field suppresses the unbalanced behavior, producing a more complex mold flow pattern, but with much lower surface velocities (~0.1 m/s), and a flat surface level with small level fluctuations (<±1 mm). Nail board measurements taken at this commercial caster, in the absence of the field, matched reasonably well with the calculated results, both quantitatively and qualitatively.

  6. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán


    Full Text Available Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using glycerol as separation agent. Simulations were done on an Aspen Plus process simulator (Aspen Tech version 11.1. The simulated process involves two distillation columns, a dehydrator and a glycerol recuperation column. Simulation restrictions were ethanol’s molar composition in dehydrator column distillate and the process’s energy consumption. The effect of molar reflux ratio, solvent-feed ratio, solvent entry and feed stage and solvent entry temperature were evaluated on the chosen restrictions. The results showed that the ethanol-water mixture dehydration with glycerol as separation agent is efficient from the energy point of view.

  7. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán


    Full Text Available Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using glycerol as separation agent. Simulations were done on an Aspen Plus process simulator (Aspen Tech version 11.1. The simulated process involves two distillation columns, a dehydrator and a glycerol recuperation column. Simulation restrictions were ethanol’s molar composition in dehydrator column distillate and the process’s energy consumption. The effect of molar reflux ratio, solvent-feed ratio, solvent entry and feed stage and solvent entry temperature were evaluated on the chosen restrictions. The results showed that the ethanol-water mixture dehydration with glycerol as separation agent is efficient from the energy point of view.

  8. Fresnel zone plate light field spectral imaging simulation (United States)

    Hallada, Francis D.; Franz, Anthony L.; Hawks, Michael R.


    Through numerical simulation, we have demonstrated a novel snapshot spectral imaging concept using binary diffractive optics. Binary diffractive optics, such as Fresnel zone plates (FZP) or photon sieves, can be used as the single optical element in a spectral imager that conducts both imaging and dispersion. In previous demonstrations of spectral imaging with diffractive optics, the detector array was physically translated along the optic axis to measure different image formation planes. In this new concept the wavelength-dependent images are constructed synthetically, by using integral photography concepts commonly applied to light field (plenoptic) cameras. Light field cameras use computational digital refocusing methods after exposure to make images at different object distances. Our concept refocuses to make images at different wavelengths instead of different object distances. The simulations in this study demonstrate this concept for an imager designed with a FZP. Monochromatic light from planar sources is propagated through the system to a measurement plane using wave optics in the Fresnel approximation. Simple images, placed at optical infinity, are illuminated by monochromatic sources and then digitally refocused to show different spectral bins. We show the formation of distinct images from different objects, illuminated by monochromatic sources in the VIS/NIR spectrum. Additionally, this concept could easily be applied to imaging in the MWIR and LWIR ranges. In conclusion, this new type of imager offers a rugged and simple optical design for snapshot spectral imaging and warrants further development.

  9. Co-producing simulation models to inform resource management: a case study from southwest South Dakota (United States)

    Miller, Brian W.; Symstad, Amy J.; Frid, Leonardo; Fisichelli, Nicholas A.; Schuurman, Gregor W.


    Simulation models can represent complexities of the real world and serve as virtual laboratories for asking “what if…?” questions about how systems might respond to different scenarios. However, simulation models have limited relevance to real-world applications when designed without input from people who could use the simulated scenarios to inform their decisions. Here, we report on a state-and-transition simulation model of vegetation dynamics that was coupled to a scenario planning process and co-produced by researchers, resource managers, local subject-matter experts, and climate change adaptation specialists to explore potential effects of climate scenarios and management alternatives on key resources in southwest South Dakota. Input from management partners and local experts was critical for representing key vegetation types, bison and cattle grazing, exotic plants, fire, and the effects of climate change and management on rangeland productivity and composition given the paucity of published data on many of these topics. By simulating multiple land management jurisdictions, climate scenarios, and management alternatives, the model highlighted important tradeoffs between grazer density and vegetation composition, as well as between the short- and long-term costs of invasive species management. It also pointed to impactful uncertainties related to the effects of fire and grazing on vegetation. More broadly, a scenario-based approach to model co-production bracketed the uncertainty associated with climate change and ensured that the most important (and impactful) uncertainties related to resource management were addressed. This cooperative study demonstrates six opportunities for scientists to engage users throughout the modeling process to improve model utility and relevance: (1) identifying focal dynamics and variables, (2) developing conceptual model(s), (3) parameterizing the simulation, (4) identifying relevant climate scenarios and management

  10. A Three-dimensional Magnetohydrodynamic Simulation of the Formation of Solar Chromospheric Jets with Twisted Magnetic Field Lines (United States)

    Iijima, H.; Yokoyama, T.


    This paper presents a three-dimensional simulation of chromospheric jets with twisted magnetic field lines. Detailed treatments of the photospheric radiative transfer and the equations of state allow us to model realistic thermal convection near the solar surface, which excites various MHD waves and produces chromospheric jets in the simulation. A tall chromospheric jet with a maximum height of 10-11 Mm and lifetime of 8-10 minutes is formed above a strong magnetic field concentration. The magnetic field lines are strongly entangled in the chromosphere, which helps the chromospheric jet to be driven by the Lorentz force. The jet exhibits oscillatory motion as a natural consequence of its generation mechanism. We also find that the produced chromospheric jet forms a cluster with a diameter of several Mm with finer strands. These results imply a close relationship between the simulated jet and solar spicules.

  11. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves. (United States)

    Gregori, G; Ravasio, A; Murphy, C D; Schaar, K; Baird, A; Bell, A R; Benuzzi-Mounaix, A; Bingham, R; Constantin, C; Drake, R P; Edwards, M; Everson, E T; Gregory, C D; Kuramitsu, Y; Lau, W; Mithen, J; Niemann, C; Park, H-S; Remington, B A; Reville, B; Robinson, A P L; Ryutov, D D; Sakawa, Y; Yang, S; Woolsey, N C; Koenig, M; Miniati, F


    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

  12. Proton radiography of magnetic fields in a laser-produced plasma (United States)

    Le Pape, Sebastien; Patel, Pravesh; Chen, Sophia; Town, Richard; Hey, Dan; Mackinnon, Andrew


    Magnetic and electric fields generated by the interaction of long-pulse laser beams with plasmas relevant to inertial confinement fusion have been measured. A proton beam generated by the interaction of an ultraintense laser with a thin metallic foil is used to probe laser-produced fields. The proton beam is temporally short (on the order of a picosecond at the source position) and highly laminar, and hence equivalent to a virtual point source which makes it an ideal source for point projection radiography. We have investigated, using face-on and side-on radiography, fields due to the non-collinearity of temperature and density gradients at laser intensities around 5 × 10 13 W/cm 2.

  13. Fuzzy Pheromone Potential Fields for Virtual Pedestrian Simulation

    Directory of Open Access Journals (Sweden)

    Meriem Mandar


    Full Text Available The study of collective movement of pedestrians is crucial in various situations, such as evacuation of buildings, stadiums, or external events like concerts or public events. In such situations and under panic conditions, several incidents and disasters may arise, resulting in loss of human lives. Hence, the study and modeling of the pedestrians behavior are imperative in both normal and panic situations. In a previous work, we developed a microscopic model for pedestrian movement based on the algorithm of Ant Colonies and the principles of cellular automata. We took advantage of a fuzzy model to better reflect the uncertainty and vagueness of the perception of space to pedestrians, especially to represent the desirability or blurred visibility of virtual pedestrians. This paper uses the mechanism of artificial potential fields. Said fields provide virtual pedestrians with better visibility of their surroundings and its various components (goals and obstacles. The predictions provided by the first-order traffic flow theory are confirmed by the results of the simulation. The advantage of this model lies in the combination of benefits provided by the model of ants and artificial potential fields in a fuzzy modeling, to better understand the perceptions of pedestrians.

  14. Interpretation of Water Tracer Simulation in the H-1 Segment of the Gullfaks Field

    Energy Technology Data Exchange (ETDEWEB)

    Moid, Farrukh


    This thesis describes the water tracer simulation in the H-1 segment of the Gullfaks field. Three passive water tracer slugs were injected from the two producing wells during water flooding, pressure maintenance and reservoir monitoring program in the Gullfaks field. The same program is considered in this thesis. Computer Modelling Group's (CMG) simulator STARS is used for the general reservoir simulation and a separate module for tracer flow (ITRC-SIM) which is incorporated in the STARS and developed at Institute For Energy (IFE) is used for the tracer simulation. Water cut and tracer concentration data are used in history matching of the field. History matching is performed by changing the transmissibility and permeability of different layers; also the effect of changing saturations near the well bore on history matching is examined. It is noted that water cut is sensitive to transmissibility of the layers and the saturation around the well bore. Tracers are found to be moving in the most permeable layers. The corresponding history matching of water and tracer production shows a severe loss of first tracer injected because of imbibition process. Water phase velocity and areal communication between different wells are determined. Advance numerical features of tracer module ITRC-SIM such as flux limiting scheme and grid refinement scheme are evaluated and are found to be an important tool for reducing the numerical smearing. The effects of dispersion and diffusion on tracer response curve are also evaluated. Dispersion makes the tracer concentration curve smeared. Simulation results of water cut and tracer concentration show a good history match for this reservoir. The improved simulation model and the tracer module for this reservoir can be used for the prediction of future performance of the reservoir and interpretation of the tracer behaviour in the reservoir. (author)

  15. DEM simulation of granular flows in a centrifugal acceleration field (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei


    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  16. Abiotic partitioning of clothianidin under simulated rice field conditions. (United States)

    Mulligan, Rebecca A; Parikh, Sanjai J; Tjeerdema, Ronald S


    Clothianidin is registered for pre- and post-flood application in Californian rice fields for control of the rice seed midge, Cricotopus sylvestris, and the rice water weevil, Lissorhoptrus oryzophilus. The objective was to characterize air-water and soil-water partitioning of clothianidin under simulated Californian rice field conditions. Clothianidin was confirmed to be non-volatile (from water) via the gas purge method, as no loss from the aqueous phase was observed at 22 and 37 °C; an upper-limit KH value was calculated at 2.9 × 10(-11) Pa m(3) mol(-1) (20 °C). Soil-water partitioning was determined by the batch equilibrium method using four soils collected from rice fields in the Sacramento Valley, and sorption affinity (Kd ), sorbent capacity, desorption and organic-carbon-normalized distribution (Koc ) were determined. Values for pH, cation exchange capacity and organic matter content ranged from 4.5 to 6.6, from 5.9 to 37.9 and from 1.25 to 1.97% respectively. The log Koc values (22 and 37 °C) ranged from 2.6 to 2.7, while sorption capacity was low at 22 °C and decreased further at 37 °C. Hysteresis was observed in soils at both temperatures, suggesting that bound residues do not readily desorb. Soil-water and air-water partitioning will not significantly reduce offsite transport of clothianidin from flooded rice fields via drainage. © 2014 Society of Chemical Industry.

  17. Modeling melt convection in phase-field simulations of solidification

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, C.; Diepers, H.J.; Steinbach, I.; Karma, A.; Tong, X.


    A novel diffuse interface model is presented for the direct numerical simulation of microstructure evolution in solidification processes involving convection in the liquid phase. The solidification front is treated as a moving interface in the diffuse approximation as known from phase-field theories. The no-slip condition between the melt and the solid is realized via a drag resistivity in the diffuse interface region. The model is shown to accurately reproduce the usual sharp interface conditions in the limit of a thin diffuse interface region. A first test of the model is provided for flow through regular arrays of cylinders with a stationary interface. Then, two examples are presented that involve solid/liquid phase-change: (1) coarsening of a mush of a binary alloy, where both the interface curvature and the flow permeability evolve with time, and (2) dendritic growth in the presence of melt convection with particular emphasis on the operating point of the tip.

  18. Simulating thimble regularization of lattice quantum field theories

    CERN Document Server

    Di Renzo, Francesco


    Monte Carlo simulations of lattice quantum field theories on Lefschetz thimbles are non trivial. We discuss a new Monte Carlo algorithm based on the idea of computing contributions to the functional integral which come from complete flow lines. The latter are the steepest ascent paths attached to critical points, i.e. the basic building blocks of thimbles. The measure to sample is thus dictated by the contribution of complete flow lines to the partition function. The algorithm is based on a heat bath sampling of the gaussian approximation of the thimble: this defines the proposals for a Metropolis-like accept/reject step. The effectiveness of the algorithm has been tested on a few models, e.g. the chiral random matrix model. We also discuss thimble regularization of gauge theories, and in particular the successfull application to 0+1 dimensional QCD and the status and prospects for Yang-Mills theories.

  19. Boron doped simulated graphene field effect transistor model

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Preetika, E-mail:; Gupta, Shuchi, E-mail: [University Institute Of Engineering And Technology, Panjab University Chandigarh (India); Kaur, Inderpreet, E-mail:; Singh, Sukhbir, E-mail: [Central Scientific Instruments Organization, Chandigarh (India)


    Graphene based electronic devices due to its unique properties has transformed electronics. A Graphene Field Effect Transistor (GNRFET) model is simulated in Virtual Nano Lab (VNL) and the calculations are based on density functional theory (DFT). Simulations were performed on this pristine GNRFET model and the transmission spectrum was observed. The graph obtained showed a uniform energy gap of +1 to −1eV and the highest transmission peak at −1.75 eV. To this pristine model of GNRFET, doping was introduced and its effect was seen on the Fermi level obtained in the transmission spectrum. Boron as a dopant was used which showed variations in both the transmission peaks and the energy gap. In this model, first the single boron was substituted in place of carbon and Fermi level showed an energy gap of 1.5 to −0.5eV with the highest transmission peak at −1.3 eV. In another variation in the model, two carbon atoms were replaced by two boron atoms and Fermi level shifted from 2 to 0.25eV. In this observation, the highest transmission peak was observed at −1(approx.). The use of nanoelectronic devices have opened many areas of applications as GFET is an excellent building block for electronic circuits, and is being used in applications such as high-performance frequency doublers and mixers, digital modulators, phase detectors, optoelectronics and spintronics.

  20. Quantum mechanical force fields for condensed phase molecular simulations (United States)

    Giese, Timothy J.; York, Darrin M.


    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  1. Comparison of magnetic field and electric potential produced by frog heart muscle (United States)

    Burstein, Deborah; Cohen, David


    A comparison is made here between the magnetic field and electric potential produced by a thin strip of frog heart muscle. An experimental test is made of the theory which states that the wave front of a single fiber (or parallel bundle of fibers as in this strip) can be represented, for both the magnetic field and electric potential, by the same single-current dipole. First, an experimental measurement is made of the ratio of magnetic field/electric potential produced by an actual current dipole in an electrolytic tank. Then the dipole is replaced by the muscle strip and a measurement is again made of the ratio; this is done for three muscle strips at eight different source-to-detector distances ranging from 1 to 5 cm. It is found, in all cases, that the muscle ratios are equal to those of the actual dipole to within the experimental uncertainty of ±10%. Therefore, to this extent the theory is verified for this case of a thin strip of frog heart tissue.

  2. How are completely desolvated ions produced in electrospray ionization: insights from molecular dynamics simulations. (United States)

    Daub, Christopher D; Cann, Natalie M


    We apply molecular dynamics (MD) simulations to study the final phase of electrospray ionization (ESI), where an ion loses all of its associated solvent molecules. By applying an electric field to a cluster of H(2)O molecules solvating an ion and including a surrounding gas of varying pressure, we demonstrate that collisions with the gas play a major role in removing this final layer of solvent. We make quantitative predictions of the critical velocity required for the cluster to start losing molecules via collisions with gas and propose that this should be important in real ESI experiments. Such collisions have heretofore not been explicitly considered in discussions of the ESI process.

  3. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu


    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  4. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt


    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  5. Vlasov simulations of electron hole dynamics in inhomogeneous magnetic field (United States)

    Kuzichev, Ilya; Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton


    Electron holes (EHs) or phase space vortices are solitary electrostatic waves existing due to electrons trapped within EH electrostatic potential. Since the first direct observation [1], EHs have been widely observed in the Earth's magnetosphere: in reconnecting current sheets [2], injection fronts [3], auroral region [4], and many other space plasma systems. EHs have typical spatial scales up to tens of Debye lengths, electric field amplitudes up to hundreds of mV/m and propagate along magnetic field lines with velocities of about electron thermal velocity [5]. The role of EHs in energy dissipation and supporting of large-scale potential drops is under active investigation. The accurate interpretation of spacecraft observations requires understanding of EH evolution in inhomogeneous plasma. The critical role of plasma density gradients in EH evolution was demonstrated in [6] using PIC simulations. Interestingly, up to date no studies have addressed a role of magnetic field gradients in EH evolution. In this report, we use 1.5D gyrokinetic Vlasov code to demonstrate the critical role of magnetic field gradients in EH dynamics. We show that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, the reflection points of decelerating EHs are independent of the average magnetic field gradient in the system and depend only on the EH parameters. EHs are decelerated (accelerated) faster than would follow from the "quasi-particle" concept assuming that EH is decelerated (accelerated) entirely due to the mirror force acting on electrons trapped within EH. We demonstrate that EH propagation in inhomogeneous magnetic fields results in development of a net potential drop along an EH, which depends on the magnetic field gradient. The revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. In

  6. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel


    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  7. Artificial reproduction of magnetic fields produced by a natural geomagnetic storm increases systolic blood pressure in rats (United States)

    Martínez-Bretón, J. L.; Mendoza, B.; Miranda-Anaya, M.; Durán, P.; Flores-Chávez, P. L.


    The incidence of geomagnetic storms may be associated with changes in circulatory physiology. The way in which the natural variations of the geomagnetic field due to solar activity affects the blood pressure are poorly understood and require further study in controlled experimental designs in animal models. In the present study, we tested whether the systolic arterial pressure (AP) in adult rats is affected by simulated magnetic fields resembling the natural changes of a geomagnetic storm. We exposed adult rats to a linear magnetic profile that simulates the average changes associated to some well-known geomagnetic storm phases: the sudden commencement and principal phase. Magnetic stimulus was provided by a coil inductor and regulated by a microcontroller. The experiments were conducted in the electromagnetically isolated environment of a semi-anechoic chamber. After exposure, AP was determined with a non-invasive method through the pulse on the rat's tail. Animals were used as their own control. Our results indicate that there was no statistically significant effect in AP when the artificial profile was applied, neither in the sudden commencement nor in the principal phases. However, during the experimental period, a natural geomagnetic storm occurred, and we did observe statistically significant AP increase during the sudden commencement phase. Furthermore, when this storm phase was artificially replicated with a non-linear profile, we noticed a 7 to 9 % increase of the rats' AP in relation to a reference value. We suggested that the changes in the geomagnetic field associated with a geomagnetic storm in its first day could produce a measurable and reproducible physiological response in AP.

  8. Muscle damage produced during a simulated badminton match in competitive male players. (United States)

    Abián, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidón; Muñoz, Victor; Lorenzo-Capella, Irma; Abián-Vicén, Javier


    The purpose of the study was to assess the occurrence of muscle damage after a simulated badminton match and its influence on physical and haematological parameters. Sixteen competitive male badminton players participated in the study. Before and just after a 45-min simulated badminton match, maximal isometric force and badminton-specific running/movement velocity were measured to assess muscle fatigue. Blood samples were also obtained before and after the match. The badminton match did not affect maximal isometric force or badminton-specific velocity. Blood volume and plasma volume were significantly reduced during the match and consequently haematite, leucocyte, and platelet counts significantly increased. Blood myoglobin and creatine kinase concentrations increased from 26.5 ± 11.6 to 197.3 ± 70.2 µg·L(-1) and from 258.6 ± 192.2 to 466.0 ± 296.5 U·L(-1), respectively. In conclusion, a simulated badminton match modified haematological parameters of whole blood and serum blood that indicate the occurrence of muscle fibre damage. However, the level of muscle damage did not produce decreased muscle performance.

  9. Performance of dithiocarbamate-type flocculant in treating simulated polymer flooding produced water. (United States)

    Gao, Baoyu; Jia, Yuyan; Zhang, Yongqiang; Li, Qian; Yue, Qinyan


    Produced water from polymer flooding is difficult to treat due to its high polymer concentration, high viscosity, and emulsified characteristics. The dithiocarbamate flocculant, DTC (T403), was prepared by the amine-terminated polyoxypropane-ether compound known as Jeffamine-T403. The product was characterized by IR spectra and elemental analysis. The DTC agent chelating with Fe2+ produced a network polymer matrix, which captured and removed oil droplets efficiently. Oil removal by the flocculent on simulated produced water with 0, 200, 500, 900 mg/L of partially hydrolyzed polyacrylamide (HPAM) was investigated for aspects of effectiveness of DTC (T403) dosage and concentrations of HPAM and Fe2+ ions in the wastewater. Results showed that HPAM had a negative influence on oil removal efficiency when DTC (T403) dosage was lower than 20 mg/L. However, residual oil concentrations in tested samples with different concentrations of HPAM all decreased below 10 mg/L when DTC (T403) dosage reached 30 mg/L. The concentration of Fe2+ in the initial wastewater had a slight effect on oil removal at the range of 2-12 mg/L. Results showed that Fe3+ could not be used in place of Fe2+ as Fe3+ could not react with DTC under flocculated conditions. The effects of mineral salts ions were also investigated.

  10. A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation

    Directory of Open Access Journals (Sweden)

    Xueshang eFeng


    Full Text Available This paper presents a comparative study of divergence cleaning methods of magnetic field in the solar coronal three-dimensional numerical simulation. For such purpose, the diffusive method, projection method, generalized Lagrange multiplier method and constrained-transport method are used. All these methods are combined with a finite-volume scheme based on a six-component grid system in spherical coordinates. In order to see the performance between the four divergence cleaning methods, solar coronal numerical simulation for Carrington rotation 2056 has been studied. Numerical results show that the average relative divergence error is around $10^{-4.5}$ for the constrained-transport method, while about $10^{-3.1}- 10^{-3.6}$ for the other three methods. Although there exist some differences in the average relative divergence errors for the four employed methods, our tests show they can all produce basic structured solar wind.

  11. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE


    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI:

  12. Efficient extrapolation methods for electro- and magnetoquasistatic field simulations

    Directory of Open Access Journals (Sweden)

    M. Clemens


    Full Text Available In magneto- and electroquasi-static time domain simulations with implicit time stepping schemes the iterative solvers applied to the large sparse (non-linear systems of equations are observed to converge faster if more accurate start solutions are available. Different extrapolation techniques for such new time step solutions are compared in combination with the preconditioned conjugate gradient algorithm. Simple extrapolation schemes based on Taylor series expansion are used as well as schemes derived especially for multi-stage implicit Runge-Kutta time stepping methods. With several initial guesses available, a new subspace projection extrapolation technique is proven to produce an optimal initial value vector. Numerical tests show the resulting improvements in terms of computational efficiency for several test problems. In quasistatischen elektromagnetischen Zeitbereichsimulationen mit impliziten Zeitschrittverfahren zeigt sich, dass die iterativen Lösungsverfahren für die großen dünnbesetzten (nicht-linearen Gleichungssysteme schneller konvergieren, wenn genauere Startlösungen vorgegeben werden. Verschiedene Extrapolationstechniken werden für jeweils neue Zeitschrittlösungen in Verbindung mit dem präkonditionierten Konjugierte Gradientenverfahren vorgestellt. Einfache Extrapolationsverfahren basierend auf Taylorreihenentwicklungen werden ebenso benutzt wie speziell für mehrstufige implizite Runge-Kutta-Verfahren entwickelte Verfahren. Sind verschiedene Startlösungen verfügbar, so erlaubt ein neues Unterraum-Projektion- Extrapolationsverfahren die Konstruktion eines optimalen neuen Startvektors. Numerische Tests zeigen die aus diesen Verfahren resultierenden Verbesserungen der numerischen Effizienz.

  13. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs (United States)

    Deng, Zhi-De; Lisanby, Sarah H.; Peterchev, Angel V.


    Background Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. Objective To quantify the electric field focality and depth of penetration of various TMS coils. Methods The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d1/2, and focality by the tangential spread, S1/2, defined as the half-value volume (V1/2) divided by the half-value depth, S1/2 = V1/2/d1/2. Results The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth–focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d1/2 are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0–3.5 cm and 0.9–3.4 cm, respectively. However, figure-8 field coils are more focal, having S1/2 as low as 5 cm2 compared to 34 cm2 for circular field coils. Conclusions For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d1/2 and S1/2. PMID:22483681

  14. Fictitious forces and simulated magnetic fields in rotating reference frames. (United States)

    Klink, W H; Wickramasekara, S


    We show that the Wigner-Bargmann program of grounding nonrelativistic quantum mechanics in the unitary projective representations of the Galilei group can be extended to include all noninertial reference frames. The key concept is the Galilean line group, the group of transformations that ties together all accelerating reference frames, and its representations. These representations are constructed under the natural constraint that they reduce to the well-known unitary, projective representations of the Galilei group when the transformations are restricted to inertial reference frames. This constraint can be accommodated only for a class of representations with a sufficiently rich cocycle structure. Unlike the projective representations of the Galilei group, these cocycle representations of the Galilean line group do not correspond to central extensions of the group. Rather, they correspond to a class of nonassociative extensions, known as loop prolongations, that are determined by three-cocycles. As an application, we show that the phase shifts due to the rotation of Earth that have been observed in neutron interferometry experiments and the rotational effects that lead to simulated magnetic fields in optical lattices can be rigorously derived from the representations of the loop prolongations of the Galilean line group.

  15. Fluid mechanics simulation of fog formation associated with polluted atmosphere produced by energy related fuel combustion (United States)

    Hung, R. J.; Liaw, G. S.


    It is noted that large quantities of atmospheric aerosols with composition SO4(-2), NO3(-1), and NH4(+1) have been detected in highly industrialized areas. Most aerosol products come from energy-related fuel combustion. Fluid mechanics simulation of both microphysical and macrophysical processes is considered in studying the time dependent evolution of the saturation spectra of condensation nuclei associated with polluted and clean atmospheres during the time periods of advection fog formation. The results demonstrate that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog having condensation nuclei associated with a polluted atmosphere.

  16. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    CERN Document Server

    Annenkov, V V; Volchok, E P


    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in the realistic formulation allowing for the continuous injection of a relativistic electron beam through the plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of electromagnetic plasma eigenmodes, as in the infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  17. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Annenkov, V. V. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk (Russian Federation); Timofeev, I. V.; Volchok, E. P. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)


    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  18. Simulating the 1946 Aleutian far-field tsunami: The successful dislocation and the impossible landslide. (United States)

    Hebert, H.; Okal, E. A.


    We present a final set of hydrodynamic simulations of the run-up of the 1946 Aleutian tsunami at the transpacific locations obtained during the field surveys taken in 1999-2001 by Okal et al. [2002]. As a source of the tsunami, we use both (i) a dislocation model based on the updated seismological study of Lopez and Okal [2002], which features slow bilateral rupture along a 200-km long fault zone; and (ii) the asymmetric dipolar source successfully used by Okal et al. [2003] to model the near-field run-up surveyed at Unimak Island. The simulations are carried out on a series of grids featuring fine scales both in the source area, and at the receiving shores (the latter up to a final scale of 50 m), but a coarser grid on the high seas. In general, the dislocation source does fit the run-up observations in the far-field, and in particular it reproduces the strong azimuthal directivity expected in the source geometry. This extends the ressults of Titov et al. (2001), who had modeled the inundation at Hilo on the basis of a similar dislocative source, but using a different numerical method. By contrast, the dipolar source produces absolute values of run-up ranging only from a few tens of cm to 3 m on the shorelines of the Marquesas and Juan Fernandez Islands, in all cases significantly less (by a factor of 3 to 5) than observed. We conclude that the near- and far-fields cannot be both modeled by a single source. The final model of the source of the 1946 Aleutian tsunami must be a composite betweem a very large, but very slow earthquake, responsible for the far field tsunami, and a landslide generating the devastating near-field tsunami.

  19. Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields

    NARCIS (Netherlands)

    Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.


    The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with

  20. Simulations

    CERN Document Server

    Ngada, Narcisse


    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  1. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria. (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit


    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  2. Simulation of spatial characteristics of very high frequency hydrogen plasma produced by a balanced power feeding

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, Kohei, E-mail: [Graduate School of Information Science and Electrical Engineering, Kyushu University (Japan); Chen, Weiting; Uchino, Kiichiro; Kawai, Yoshinobu [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University (Japan)


    The effects of a balanced power feeding (BPF) method on a very high frequency hydrogen plasma produced with narrow-gap parallel plate electrodes are studied by 2-dimensional simulation. It was found that the electron density increases inside the electrodes and decreases outside the electrodes. The input power was effectively absorbed into the intermediate region of the electrodes. In addition, the electron density outside the electrodes decreased with increasing the gas pressure, and the electron density inside the electrodes peaked at a certain pressure. The property of the power absorption was improved and the electron temperature decreased for the higher gas pressure in the BPF model. - Highlights: • The effect of balanced power feeding on very high frequency plasma was examined by simulation. • Electron density inside the electrodes increased by the balanced power feeding. • Electron density outside the electrodes decreased significantly. • Suppression effect on electron density was more effective at high gas pressure. • Input power was efficiently absorbed inside the electrodes.

  3. [Treatment of simulated produced wastewater from polymer flooding in oil production using dithiocarbamate-type flocculant]. (United States)

    Gao, Yue; Jia, Yu-Yan; Gao, Bao-Yu; Cao, Bai-Chuan; Zhang, Yong-Qiang; Lu, Lei


    A dithiocarbamate flocculant, DTC (T403), was prepared by the reaction of amine-terminated polyoxypropane-ether compound known as Jeffamine-T403 and carbon disulfide in alkaline solution. The oil removal efficiency of DTC (T403) for simulated produced wastewater from polymer flooding in oil production was studied by Jar-test. The effect of the dosage of DTC (T403), hydrolyzed polyacrylamide (HPAM), Fe2+ and Fe3+ ions, and pH on the oil removal efficiency of DTC (T403) was investigated. The results showed that the chelate polymer formed by DTC (T403) and Fe2+ ion has good oil removal performance by net capturing mechanism. HPAM had a negative effect on oil removal efficiency of DTC (T403). For the treatment of the simulated wastewater containing 0-900 mg/L of HPAM and 300 mg/L of oil, the residual oil concentrations in water samples decreased below 10 mg/L when the dosage of Fe2+ and DTC (T403) was 10 mg/L and 25 mg/L, respectively. The oil removal efficiency of DTC (T403) was affected by pH and good oil removal efficiency was obtained when the pH was below 7.5. DTC (T403) is appropriate for the treatment of oily wastewater containing Fe2+ ion.

  4. Simulation of advanced ultrasound systems using Field II

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt


    impulse responses is explained. A simulation example for a synthetic aperture spread spectrum flow systems is described. It is shown how the advanced coded excitation can be set up, and how the simulation can be parallelized to reduce the simulation time from 17 months to 391 hours using a 32 CPU Linux...

  5. Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field (United States)

    Ghosh, Sanjoy; Roberts, D. Aaron


    We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.

  6. Constrained Simulations of the Magnetic Field in the Local Universe and the Propagation of UHECRs

    CERN Document Server

    Dolag, Klaus; Springel, Volker; Tkachev, Igor; Dolag, Klaus; Grasso, Dario; Springel, Volker; Tkachev, Igor


    We use simulations of LSS formation to study the build-up of magnetic fields (MFs) in the ICM. Our basic assumption is that cosmological MFs grow in a MHD amplification process driven by structure formation out of a seed MF present at high z. Our LCDM initial conditions for the density fluctuations have been statistically constrained by the observed galaxies, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, prominent galaxy clusters in our simulation coincide closely with their real counterparts. We find excellent agreement between RMs of our simulated clusters and observational data. The improved resolution compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of UHE protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies E=1e20eV and 4e19eV, respectively. Strong deflections are only produced if UHE protons cross clusters, however covering only a small area on ...

  7. Electromagnetic fields and beam dynamics simulation for the superstructure of tesla linear collider considering field asymmetry caused by hom and power couplers

    CERN Document Server

    Lalayan, M V; Sobenin, N P; Shvedunov, V I; Zavadtsev, A A; Dohlus, M


    Some features of accelerating section field computation presented by the development of power and high order mode couplers for TESLA linear collider are considered. The devices mentioned produce electromagnetic field asymmetry in the beam area, thus causing transverse kick. For this kick and its influence on beam under acceleration parameters estimation the dynamics modelling calculations were done. 3D-simulation code MAFIA was used for field computation. These data were further used in beam dynamics calculations by means of TRMTrace code. Standing wave mode was simulated while considering HOM couplers, and travelling wave in case of power couplers. Transverse kicks and focussing forces are calculated for one HOM coupler design and two coaxial FM couplers.

  8. Exact simulation of Brown-Resnick random fields at a finite number of locations

    DEFF Research Database (Denmark)

    Dieker, Ton; Mikosch, Thomas Valentin


    We propose an exact simulation method for Brown-Resnick random fields, building on new representations for these stationary max-stable fields. The main idea is to apply suitable changes of measure....

  9. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields. (United States)

    Zradziński, Patryk


    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards.

  10. Numerical Modeling and Simulation of Wind Blown Sand Morphology under Complex Wind-Flow Field

    National Research Council Canada - National Science Library

    Abdikerem, Xamxinur; Wang, Lei; Jin, Afang; Geni, Mamtimin


    ... the road surface height and air stream flow field, then three kinds of different models with different complex air flow fields are made for simulating the sand ripple formation process by weak coupling...

  11. Equivalent lenses of supersonic seeker's outflow refractive index field obtained by simulation and experiment (United States)

    Wei, Qun; Jia, Hongguang; Xuan, Ming


    In order to decrease the aerodynamic drag of supersonic image guide missile and design a non-spherical dome, the outflow field of the missile's dome is simulated using FLUENT. Based on the simulated results, the accurate density field of the outflow field at all kinds of flight conditions is obtained, and then the refractive index field of the outflow field is gotten according to the Gladstone-Dale law. The results show that the shock wave induces the heterogeneity of the refractive index field and the turbulent causes distortion. The outflow field is divided into several zones which are taken as equivalent lenses for aberration analysis.

  12. Simulation of Heat Transfer and Electromagnetic Fields of Protected Microcomputers

    Directory of Open Access Journals (Sweden)

    Josef Lakatos


    Full Text Available The paper presents results of collaboration between Department of mechatronics and electronics at University of Žilina and VÚVT Engineering a.s. Žilina in area of heat transfer simulations and disturbing electromagnetic radiation simulations in computer construction. The simulations results were used in development of protected microcomputer prototypes in frame of applied research at both of workplaces.

  13. Communication: Multiple atomistic force fields in a single enhanced sampling simulation (United States)

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.


    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  14. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation (United States)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian


    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  15. Simulation studies for wells AH-4bis/AH-17 and AH-18, Ahuachapan Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel Ernesto


    Well AH-4bis, at the Ahuachapan Geothermal Field is planned to be drilled on the same pad as the former AH-4. A simulation study was carried out for two casing dameters 13 5/8 and 9 5/8” in order to estimate its production and to know its economic feasibility. The simulation results indcate a high probability of production in the range of 7 Mwe, equivalent to 120 kg/s total mass flow rate, 1250 kJ/kg at 6 bar-a for the new well AH-4bis. Well AH- 17 is good producer, during 1991 after ten years of production, the well was shut-in due to silica scaling problems. A wellbore simulation was carried out in order to predict the new production conditions after the work-over, mainly to estimate the water flow rate in order to reduce the silica scaling. The results indicate a very low water flow rate. The match between the simulated and measured production curves after the work-over was successful. The well AH-18 is located at the southern part of the actual bore field. CEL is planning to expand the borefield at this area and it is neccessary to estimate the possible production condtions at that zone. The results indicate a high probabilty of production at that area. The power potential is estimated at 3.5 Mwe per well at WHP 6 bar-a and the wells will not require induction.

  16. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization (United States)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban


    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  17. Simple method for any planar wiggler field simulation

    Directory of Open Access Journals (Sweden)

    M. N. Smolyakov


    Full Text Available This paper deals with a nonstandard method for calculating the magnetic field of planar wigglers and undulators consisting of pure permanent magnets. This method of calculation is based on certain properties of the Fourier transform. It allows the analytical expression of the Fourier transform for the planar magnetic fields through the wiggler's geometry and magnetization of its blocks. The upper theoretical limit for the amplitude of the magnetic field is derived and matched with the field amplitude of planar wigglers with standard designs. The property of universality for planar wigglers is also taken into consideration as it may greatly simplify the analysis of magnetic fields for wigglers with different designs.

  18. Electromagnetic field effect simulation over a realistic pixel ed phantom human's brain

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, R.; Calderon, J. A.; Rivera, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin, J., E-mail: [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)


    The exposition to different types of electromagnetic radiations can produce damages and injures on the people's tissues. The scientist, spend time and resources studying the effects of electromagnetic fields over the organs. Particularly in medical areas, the specialist in imaging methodologies and radiological treatment, are very worried about no injure there patient. Determination of matter radiation interaction, can be experimental or theoretical is not an easy task anyway. At first case, is not possible make measures inside the patient, then the experimental procedure consist in make measures in human's dummy, however, is not possible see deformations of electromagnetic fields due the organs presence. In the second case, is necessary solve, the Maxwell's equations with the electromagnetic field, crossing a lot of organs and tissues with different electric and magnetic properties each one. One alternative for theoretical solution, is make a computational simulation, however, this option, require an enormous quantity of memory and large computational times. Then, the most simulations are making in 2 dimensional or in 3 dimensional although using human models approximations, build ed with basic geometrical figures, like spheres, cylinders, ellipsoids, etc. Obviously this models just lets obtain a coarse solution of the actually situation. In this work, we propose a novel methodology to build a realistic pixel ed phantom of human's organs, and solve the Maxwell's equations over this models, evidently, the solutions are more approximated to the real behaviour. Additionally, there models results optimized when they are discretized and the finite element method is used to calculate the electromagnetic field and the induced currents. (Author)

  19. Field scale simulation of axial hydrokinetic turbines in a natural marine environment (United States)

    Chawdhary, Saurabh; Angelidis, Dionysios; Shen, Lian; Sotiropoulos, Fotis


    Commercialization of marine and hydrokinetic (MHK) energy technologies is still in the development stage. Existing technologies need fundamental research to enable efficient energy extraction from identified MHK sites. We propose a large eddy simulation (LES)-based framework to investigate the site-specific flow dynamics past MHK arrays in a real-life marine environment. To this end, we use advanced computational tools developed at the Saint Anthony Falls Laboratory (SAFL) to resolve the vast range of scales present in the flow. The new generation unstructured Cartesian flow solver, coupled with a sharp interface immersed boundary method for 3D incompressible flows, is used to numerically investigate New York City's East River, where an array of MHK turbines is to be deployed as part of the Roosevelt Island Tidal Energy (RITE) Project. Multi-resolution simulations on locally refined grids are used to simulate the flow in a section of the East River with detailed river bathymetry and inset turbines at field scale. The results are analyzed in terms of the wake recovery, overall wake dynamics, and the power produced by the turbines. These results will help develop design guidelines for the site-specific turbine array configuration. This work was supported by NSF Grant IIP-1318201.

  20. A field demonstration of the microbial treatment of sour produced water

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)


    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  1. Electromagnetic fields produced by moving sources in a curved beam pipe (United States)

    Goto, Shin-itiro; Tucker, Robin W.


    A new geometrical perturbation scheme is developed in order to calculate the electromagnetic fields produced by charged sources in prescribed motion moving in a nonstraight perfectly conducting beam pipe. The pipe is regarded as a perturbed infinitely long hollow right-circular cylinder. The perturbation maintains the pipe's circular cross section while deforming its axis into a planar space curve with, in general, nonconstant curvature. Various charged source models are considered including a charged bunch and an off-axis point particle. In the ultrarelativistic limit this permits a calculation of the longitudinal wake potential in terms of powers of the product of the pipe radius and the arbitrarily varying curvature of the axial space curve. Analytic expressions to leading order are presented for beam pipes with piecewise defined constant curvature modeling pipes with straight segments linked by circular arcs of finite length. The language of differential forms is used throughout, and to illustrate the power of this formalism, a pedagogical introduction is developed by deriving the theory ab initio from Maxwell's equations expressed intrinsically as a differential system on (Minkowski) space-time.

  2. Characterization of Line Nanopatterns on Positive Photoresist Produced by Scanning Near-Field Optical Microscope

    Directory of Open Access Journals (Sweden)

    Sadegh Mehdi Aghaei


    Full Text Available Line nanopatterns are produced on the positive photoresist by scanning near-field optical microscope (SNOM. A laser diode with a wavelength of 450 nm and a power of 250 mW as the light source and an aluminum coated nanoprobe with a 70 nm aperture at the tip apex have been employed. A neutral density filter has been used to control the exposure power of the photoresist. It is found that the changes induced by light in the photoresist can be detected by in situ shear force microscopy (ShFM, before the development of the photoresist. Scanning electron microscope (SEM images of the developed photoresist have been used to optimize the scanning speed and the power required for exposure, in order to minimize the final line width. It is shown that nanometric lines with a minimum width of 33 nm can be achieved with a scanning speed of 75 µm/s and a laser power of 113 mW. It is also revealed that the overexposure of the photoresist by continuous wave laser generated heat can be prevented by means of proper photoresist selection. In addition, the effects of multiple exposures of nanopatterns on their width and depth are investigated.

  3. An Observing System Simulation Experiment (OSSE) Investigating the OMI Aerosol Products Using Simulated Aerosol and Atmospheric Fields from the NASA GEOS-5 Model (United States)

    Colarco, P. R.; Gasso, S.; Jethva, H. T.; Buchard, V.; Ahn, C.; Torres, O.; daSilva, A.


    Output from the NASA Goddard Earth Observing System, version 5 (GEOS-5) Earth system model is used to simulate the top-of-atmosphere 354 and 388 nm radiances observed by the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft. The principle purpose of developing this simulator tool is to compute from the modeled fields the so-called OMI Aerosol Index (AI), which is a more fundamental retrieval product than higher level products such as the aerosol optical depth (AOD) or absorbing aerosol optical depth (AAOD). This lays the groundwork for eventually developing a capability to assimilate either the OMI AI or its radiances, which would provide further constraint on aerosol loading and absorption properties for global models. We extend the use of the simulator capability to understand the nature of the OMI aerosol retrieval algorithms themselves in an Observing System Simulation Experiment (OSSE). The simulated radiances are used to calculate the AI from the modeled fields. These radiances are also provided to the OMI aerosol algorithms, which return their own retrievals of the AI, AOD, and AAOD. Our assessment reveals that the OMI-retrieved AI can be mostly harmonized with the model-derived AI given the same radiances provided a common surface pressure field is assumed. This is important because the operational OMI algorithms presently assume a fixed pressure field, while the contribution of molecular scattering to the actual OMI signal in fact responds to the actual atmospheric pressure profile, which is accounted for in our OSSE by using GEOS-5 produced atmospheric reanalyses. Other differences between the model and OMI AI are discussed, and we present a preliminary assessment of the OMI AOD and AAOD products with respect to the known inputs from the GEOS-5 simulation.

  4. Treatment of Simulated Coalbed Methane Produced Water Using Direct Contact Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Dong-Wan Cho


    Full Text Available Expolitation of coalbed methane (CBM involves production of a massive amount saline water that needs to be properly managed for environmental protection. In this study, direct contact membrane distillation (DCMD was utilized for treatment of CBM-produced water to remove saline components in the water. Simulated CBM waters containing varying concentrations of NaCl (1, 20, and 500 mM and NaHCO3 (1 and 25 mM were used as feed solutions under two transmembrane temperatures (Δ40 and 60 °C. In short-term distillation (~360 min, DCMD systems showed good performance with nearly 100% removal of salts for all solutes concentrations at both temperatures. The permeate flux increased with the feed temperature, but at a given temperature, it remained fairly stable throughout the whole operation. A gradual decline in permeate flux was observed at Δ60 °C at high NaHCO3 concentration (25 mM. In long-term distillation (5400 min, the presence of 25 mM NaHCO3 further decreased the flux to 25%–35% of the initial value toward the end of the operation, likely due to membrane fouling by deposition of Ca-carbonate minerals on the pore openings. Furthermore, pore wetting by the scalants occurred at the end of the experiment, and it increased the distillate conducitivity to 110 µS·cm−1. The precipitates formed on the surface were dominantly CaCO3 crystals, identified as aragonite.

  5. Two-dimensional neural field simulator with parameter interface and 3D visualization


    Nichols, Eric; Hutt, Axel


    International audience; A simulator calculating two-dimensional dynamic neural fields with multiple order derivatives is presented in this work. The simulated neural fields are of the type ... where I, L and S are respectively a field's input, spatial delay kernel with axonal transmission speed c and nonlinear firing rate function S = S0 / (1 + exp(-α(V-Θ)). A Fast Fourier Transform in space is used to accelerate the integral calculation. The stochastic differential equation is useful for stu...

  6. Evaluation of GEOS-5 Sulfur Dioxide Simulations During the Frostburg, MD 2010 Field Campaign. (United States)

    Buchard, V.; Da Silva, A. M.; Colarco, P.; Krotkov, N.; Dickerson, R. R.; Stehr, J. W.; Mount, G.; Spenei, E.; Arkinson, H. L.; He, H.


    Sulfur dioxide (SO2) is a major atmospheric pollutant with a strong anthropogenic component mostly produced by the combustion of fossil fuel and other industrial activities. As a precursor of sulfate aerosols that affect climate, air quality, and human health, this gas needs to be monitored on a global scale. Global climate and chemistry models including aerosol processes along with their radiative effects are important tools for climate and air quality research. Validation of these models against in-situ and satellite measurements is essential to ascertain the credibility of these models and to guide model improvements. In this study the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running on-line inside the Goddard Earth Observing System version 5 (GEOS-5) model is used to simulate aerosol and SO2 concentrations. Data taken in November 2010 over Frostburg, Maryland during an SO2 field campaign involving ground instrumentation and aircraft are used to evaluate GEOS-5 simulated SO2 concentrations. Preliminary data analysis indicated the model overestimated surface SO2 concentration, which motivated the examination of mixing processes in the model and the specification of SO2 anthropogenic emission rates. As a result of this analysis, a revision of anthropogenic emission inventories in GEOS-5 was implemented, and the vertical placement of SO2 sources was updated. Results show that these revisions improve the model agreement with observations locally and in regions outside the area of this field campaign. In particular, we use the ground-based measurements collected by the United States Environmental Protection Agency (US EPA) for the year 2010 to evaluate the revised model simulations over North America.

  7. Produced water silica removal treatment in PETROBRAS Fazenda Belem fields - Brazil; Tratamento da agua produzida do Campo de Fazenda Belem (PETROBRAS, UN/RNCE) para remocao de silica

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Agenor J.; Sampaio, Alberto C.; Silva, Arnaldo F. da; Christiano, Fernando P.; Freire, Norma de O.; Pereira Junior, Oswaldo de A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas


    Extracting oil from mature fields generates huge volumes of produced water whose pollutive character requires adequate treatment to minimize environmental impact. Nevertheless, produced water may be re-used, avoiding environmental contamination and helping in water resources preservation. According to future use, produced water receives specific treatment, intending to remove critical contaminants to the application involved. In the case o UN/RNCE's Fazenda Belem Field produced water is treated for steam generation Membrane Separation Processes are currently in test for this treatment. These processes are sensitive to high water hardness and silica concentrations. To avoid scaling, caustic soda is added in the water-oil separator outlet, precipitating calcium carbonate and magnesium hydroxide. This treatment, however, helps solubilizing silica. Coagulation-flocculation laboratory tests were run with poly aluminum chloride (PAC) and magnesium chloride at constant temperature (45 deg C) and pH adjusted to 9,5, attempting to simulate the water-oil separator outlet conditions. Laboratory analysis showed good silica removal results only in samples treated with PAC, suggesting its use in produced water for steam generation pre-treatment, avoiding silica-based scaling in membranes. (author)

  8. Fate of pesticides in field ditches: the TOXSWA simulation model

    NARCIS (Netherlands)

    Adriaanse, P.I.


    The TOXSWA model describes the fate of pesticides entering field ditches by spray drift, atmospheric deposition, surface run-off, drainage or leaching. It considers four processes: transport, transformation, sorption and volatilization. Analytical andnumerical solutions corresponded well. A sample

  9. In-vitro mapping of E-fields induced near pacemaker leads by simulated MR gradient fields

    Directory of Open Access Journals (Sweden)

    Mendoza Gonzalo G


    Full Text Available Abstract Background Magnetic resonance imaging (MRI of patients with implanted cardiac pacemakers is generally contraindicated but some clinicians condone scanning certain patients. We assessed the risk of inducing unintended cardiac stimulation by measuring electric fields (E induced near lead tips by a simulated MRI gradient system. The objectives of this study are to map magnetically induced E near distal tips of leads in a saline tank to determine the spatial distribution and magnitude of E and compare them with E induced by a pacemaker pulse generator (PG. Methods We mapped magnetically induced E with 0.1 mm resolution as close as 1 mm from lead tips. We used probes with two straight electrodes (e.g. wire diameter of 0.2 mm separated by 0.9 mm. We generated magnetic flux density (B with a Helmholtz coil throughout 0.6% saline in a 24 cm diameter tank with (dB/dt of 1 T/sec (1 kHz sinusoidal waveform. Separately, we measured E near the tip of leads when connected to a PG set to a unipolar mode. Measurements were non-invasive (not altering the leads or PG under study. Results When scaled to 30 T/s (a clinically relevant value, magnetically-induced E exceeded the E produced by a PG. The magnetically-induced E only occurred when B was coincident with or within 15 msec of implantable pacemaker's pulse. Conclusions Potentially hazardous situations are possible during an MR scan due to gradient fields. Unintended stimulation can be induced via abandoned leads and leads connected to a pulse generator with loss of hermetic seal at the connector. Also, pacemaker-dependent patients can receive drastically altered pacing pulses.

  10. CFD simulation of contrail formation in the near field of a commercial aircraft: Effect of fuel sulfur content

    Directory of Open Access Journals (Sweden)

    J.C. Khou


    Full Text Available Aircraft contrails may contribute to the global radiative forcing. In this context, the investigation of contrail formation in the near field of an aircraft may be helpful in developing strategies to reduce undesirable impacts. In this study, three-dimensional Reynolds-Averaged Navier-Stokes (RANS simulations of contrails produced by commercial aircraft during cruise flights were performed. A realistic geometry (herein a Boeing 737 was taken into account, including the engine core and bypass flows, which allows several parametrical studies and avoids using parameterizations to describe the plume's dilution. The objective was to simulate the early development of contrails in a fresh plume whose dilution was obtained with a spatial simulation of jet/vortex interaction. A coupling was carried out with a chemical and a microphysical model implemented in the numerical simulation code CEDRE to simulate particle growth using an Eulerian approach. The implemented microphysics model can simulate water condensation onto soot particles, taking into account their activation by adsorption of sulfur species. Our simulations show that sulfur dioxide is converted into sulfur trioxide and sulfuric acid at a rate of conversion close to 3 %, which is in good agreement with other studies. Ice-crystal growth was faster when the fuel sulfur content (FSC increased, allowing a visible contrail to appear earlier. These promising results confirm in situ observations and highlight the model's ability to simulate typical plume chemistry and complex microphysics/chemistry interactions coupled with detailed jet/vortex dynamics.

  11. Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field

    Directory of Open Access Journals (Sweden)

    Zhang Yong


    Full Text Available This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAl melt under two electric fields. FEM (Finite Element Method and APDL (ANSYS Parametric Design Language were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAl melt to flow stronger than what the sinusoidal electric field does.

  12. Validating empirical force fields for molecular-level simulation of cellulose dissolution (United States)

    The calculations presented here, which include dynamics simulations using analytical force fields and first principles studies, indicate that the COMPASS force field is preferred over the Dreiding and Universal force fields for studying dissolution of large cellulose structures. The validity of thes...

  13. A phase-field simulation study of irregular grain boundary migration during recrystallization

    DEFF Research Database (Denmark)

    Moelans, N.; Zhang, Yubin; Godfrey, A.


    We present simulation results based on a phase-field model that describes the migration of recrystallization boundaries into spatially varying deformation energy fields. Energy fields with 2-dimensional variations representing 2 sets of dislocation boundaries lying at equal, but opposite, angles...

  14. Modelling of fault reactivation and fault slip in producing gas fields using a slip-weakening friction law.

    NARCIS (Netherlands)

    Wassing, B.B.T., Buijze, L., Orlic, B.


    Geomechanical numerical simulations were conducted to analyze the stability of faults during gas production. A FLAC3D model of a fault intersecting a producing gas reservoir was developed which incorporates the fully dynamic behavior of the fault and surrounding rock mass, and a fault frictional

  15. Field Trial Testing of an Electricity-Producing Portable Biomass Cooking Stove in Rural Malawi


    Robinson, Anthony; O'SHAUGHNESSY, SEAMUS


    PUBLISHED A novel off - grid electricity - producing device has been designed for integration with biomass - fuelled improved cooking stoves commonly in use in the developing world. The device operates on the thermoelectric principle whereby small amounts of electricity can be produced in response to a temperature difference across a thermoelectric generator, or TEG. The energy produced by the integrated g enerator can be used for direct ...

  16. Establishment of an interplanetary magnetic field simulation laboratory (United States)

    Erdös, Géza; Lemperger, István; Lichtenberger, János; Németh, Zoltán; Szabó, Henriett; Veres, Miklós; Wesztergom, Viktor


    The main goal of the project is to establish an electromagnetic clean laboratory in the Széchenyi István Geophysical Observatory of the Hungarian Academy of Sciences (Nagycenk Geophysical Observatory, IAGA code: NCK). The local DC-ULF range geomagnetic field is to be reduced in the focus chamber of the Lab by means of active compensation and passive shielding techniques. The Laboratory provides unique opportunity to an extremly low level. Main goals: • to implement the electromagnetic conditions of interplanetary space environment, facilitating the development of the so called SERF magnetometer, • to model certain space physics phenomena, • to calibrate search coils applied in the space technology for magnetospheric and/or interplanetary magnetic field measurements on satellites • to perform biophysical test experiments • and also carrying out material science experiments like alloy production technologies in zero magnetic field environment.

  17. Two Simulated-Smog Atmospheres with Different Chemical Compositions Produce Contrasting Mutagenicity in Salmonella. (United States)

    Ozone (O3), particulate matter (PM), and nitrogen dioxide (NO2) are criteria pollutants used to evaluate air quality. Using a 14.3-m3 Teflon-lined smog chamber with 120 UV bulbs to simulate solar radiation, we generated 2 simulated-smog atmospheres (SSA-1 & SSA-2) with differ...

  18. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.


    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and

  19. Numerical Simulation of Temperature Field in Selective Laser Sintering


    Zhang, Jian; Li, Deying; Li, Jianyun; Zhao, Longzhi


    International audience; The laser sintering process of multi-component powder W/Cu is simulated by ANSYS software based on the factors of radiation, convection and thermal physical parameters on temperature. The laser power and scanning velocity which are the key process parameters to affect directly in sintering molding are studied in paper. The results show that when the scanning velocity is constant, the sintering depth is rising with the increase of laser power; In addition, when the lase...

  20. Phase field simulations of ice crystal growth in sugar solutions

    NARCIS (Netherlands)

    Sman, Van Der R.G.M.


    We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make

  1. Computer Simulation Model Of Available Field Workday For Nsukka ...

    African Journals Online (AJOL)

    Information on available field workdays (AFW) for agricultural operations in general and tillage operation in particular is required for optimum management and scheduling of operations. This data vary from place to depending on the weather, soil and crop types. Agro meteorological Data and actual AFW for tillage operation ...

  2. Fourier Simulation of a Non-Isotropic Wind Field Model

    DEFF Research Database (Denmark)

    Mann, J.; Krenk, S.

    Realistic modelling of three dimensional wind fields has become important in calculation of dynamic loads on same spatially extended structures, such as large bridges, towers and wind turbines. For some structures the along wind component of the of the turbulent flow is important while for others...

  3. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects


    Pall, Martin L


    The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gat...

  4. A study by computer simulation of the generation and evolution of the Earth`s magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.A.; Hollerbach, R.; Roberts, P.H.


    Until recently very little has been known about the maintenance of the Earth`s magnetic field. The general consensus was that some type of convective motion edits in the Earth`s liquid iron alloy core that is affected by rotational forces in a way that continually generates new magnetic field to replace that which diffuses away. Magnetic-field reversals and secular variation have long been measured but no theory existed to explain these phenomena. To gain an understanding of the basic physical mechanisms of the ``geodynamo,`` we produced the first self-consistent computer simulation of convection and magnetic field generation in a rotating three-dimensional spherical fluid shell as an anologue to the Earth`s convective dynamo. This is a final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  5. Laser focus accelerator by relativistic self-focusing and high electric fields in double layers of nonlinear force produced cavitons

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J.; Eliezer, S.; Farley, F.J.M.; Goldsworthy, M.P.; Green, F.; Hora, H.; Kelly, J.C.; Lalousis, P.; Luther-Davies, B.; Stening, R.J.


    The laser focus accelerator with relativistic self-focusing for achieving Z-separated heavy ions of energies beyond 10 GeV was studied experimentally, in detailed numerical work and estimations on intense muon sources, heavy nuclear collisions and generation of new isotopes are on the way. The recently detected inverted double layers in the nonlinear (ponderomotive) force produced cavitons with 10/sup 9/ V/cm nearly static field can be used for electron acceleration. An upgraded present days Antares system with 20 phase-optimized steps should arrive at TeV electrons. The spontaneous high magnetic fields should produce highly directed non-Z-separated ion bunches where the E x B mechanism of Forslund and Brackbill with thermally created electric fields can be improved drastically by nonlinear force generated fields. Further studies were on acceleration by relativistic Doppler shift and by the transverse free electron laser.

  6. Paul trap experiment to simulate intense nonneutral beam propagation through a periodic focusing field configuration

    CERN Document Server

    Davidson, R C; Majeski, R; Qin, H; Shvets, G


    This paper describes the design concept for a compact Paul trap experimental configuration that fully simulates the collective processes and nonlinear transverse dynamics of an intense charged particle beam that propagates over large distances through a periodic quadrupole magnetic field. To summarize, a long nonneutral plasma column (L>=r sub p) is confined axially by applied DC voltages V[circ]=const. on end cylinders at z=+-L, and transverse confinement is provided by segmented cylindrical electrodes (at radius r sub w) with applied oscillatory voltages +-V sub 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact experimental facility. The nominal operating parameters in the experimental design are: barium ions (A=137); plasma column length 2L=2 m; wall radius r sub w =10...

  7. Toward 2-D and 3-D simulations of core-collapse supernovae with magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, John C [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093 (United States); Bruenn, Stephen W [Department of Physics, Florida Atlantic University, Boca Raton, FL 33432 (United States)


    We describe a code development and integration effort aimed at producing a numerical tool suitable for exploring the effects of stellar rotation and magnetic fields in a neutrino-driven core-collapse supernova environment. A one-dimensional, multi-energy group, flux-limited neutrino diffusion module (MGFLD) has been integrated with ZEUS-MP, a multidimensional, parallel gas hydrodynamics and magnetohydrodynamics code. With the neutrino diffusion module, ZEUS-MP can simulate the core-collapse, bounce, and explosion of a stellar progenitor in two and three space dimensions in which multidimensional hydrodynamics are coupled to 1-D neutrino transport in a ray-by-ray approximation. This paper describes the physics capabilities of the code and the technique for implementing the serial MGFLD module for parallel execution in a multi-dimensional simulation. Because the development and debugging of the integrated code is not yet complete, we provide a current status report of the effort and identify outstanding issues currently under investigation.

  8. A Simulation of the Effects of Receive Field Contrast on Motion-Corrected EPI Time Series

    CERN Document Server

    Sheltraw, D


    The receive field of MRI imparts an image contrast which is spatially fixed relative to the receive coil. If motion correction is used to correct subject motion occurring during an EPI time series then the receiver contrast will effectively move relative to the subject and produce temporal modulations in the image amplitude. This effect, which we will call the RFC-MoCo effect, may have consequences in the analysis and interpretation of fMRI results. There are many potential causes of motion-related noise and systematic error in EPI time series and isolating the RFC-MoCo effect would be difficult. Therefore, we have undertaken a simulation of this effect to better understand its severity. The simulations examine this effect for a receive-only single-channel 16-leg birdcage coil and a receive-only 12-channel phased array. In particular we study: (1) The effect size; (2) Its consequences to the temporal correlations between signals arising at different spatial locations (spatial-temporal correlations) as is ofte...

  9. Using numerical simulations to study the ICM metallicity fields in clusters and groups (United States)

    Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.


    Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.

  10. Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow. (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki


    Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and pressure fields by applying feedback signals of artificial body forces based on differences of Doppler velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined by theoretical analysis, and a pressure compensation method was devised. When the divergence of the feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm to validate results of the theoretical analysis and the proposed pressure compensation method. The ability of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However, by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of blood flow. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment (United States)


    seismic moment Mo=2.0×1012 Nm. Several simulations were run to investigate the effect of source time function, velocity variations, and surface...Vp= 5000m /s, Vs=2900 m/s and density=2.5 g/cm3 produced the same results as simulations with a Gaussian source time function and a seismic moment Mo

  12. Visualizing and Measuring the Temperature Field Produced by Medical Diagnostic Ultrasound Using Thermography (United States)

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.


    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and…

  13. Neural network simulation of the industrial producer price index dynamical series


    Soshnikov, L. E.


    This paper is devoted the simulation and forecast of dynamical series of the economical indicators. Multilayer perceptron and Radial basis function neural networks have been used. The neural networks model results are compared with the econometrical modeling.

  14. Transducer models in the ultrasound simulation program FIELD II and their accuracy

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Bæk, David


    The FIELD II simulation program can be used for simulating any kind of linear ultrasound fields. The program is capable of describing multi-element transducers used with any kind of excitation, apodization, and focusing. The program has been widely used in both academia and by commercial ultrasound...... companies for investigation novel transducer geometries and advanced linear imaging schemes. The program models transducer geometries using a division of the transducer elements into either rectangles, triangles, or bounding lines. The precision of the simulation and the simulation time is intimately linked...... through the choice of the fundamental elements. The rectangular elements use a far-field approximation, whereas the two other methods use the full analytic solution, leading to a higher precision at the price of a slower simulation time. The talk will describe the different compromises and solutions...

  15. Validating coronal magnetic field reconstruction methods using solar wind simulations and synthetic imagery (United States)

    Pinto, Rui; Rouillard, Alexis; Génot, Vincent; Amari, Tahar; Buchlin, Eric; Arge, Nick; Sasso, Clementina; Andretta, Vincenzo; Bemporad, Alessandro


    We present an ongoing effort within the ESA Modeling and Data Analysis Working Group (MADAWG) to determine automatically the magnetic connectivity between the solar surface and any point in interplanetary space. The goal is to produce predictions of the paths and propagation delays of plasma and energetic particle propagation. This is a key point for the data exploitation of the Solar Orbiter and Solar Probe Plus missions, and for establishing connections between remote and in-situ data. The background coronal magnetic field is currently determined via existing surface magnetograms and PFSS extrapolations, but the interface is ready to include different combinations of coronal field reconstruction methods (NLFFF, Solar Models), wind models (WSA, MULTI-VP), heliospheric models (Parker spiral, ENLIL, EUHFORIA). Some model realisations are also based on advanced magnetograms based on data assimilation techniques (ADAPT) and the HELCATS catalogue of simulations. The results from the different models will be combined in order to better assess the modelling uncertainties. The wind models provide synthetic white-light and EUV images which are compared to coronographic imagery, and the heliospheric models provide estimations of synthetic in-situ data wich are compared to spacecraft data. A part of this is work (wind modelling) is supported by the FP7 project #606692 (HELCATS).

  16. Pollutant Removal and Hydraulic Reduction Performance of Field Grassed Swales during Runoff Simulation Experiments

    National Research Council Canada - National Science Library

    Terry Lucke; Mohamed Ansaf Kachchu Mohamed; Neil Tindale


      Four different field swales were tested in this study, using 24 standardised synthetic runoff simulation experiments to evaluate their performance in removing Total Suspended Solids (TSS), Total Nitrogen (TN...

  17. MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction

    Directory of Open Access Journals (Sweden)

    Romanova M. M.


    Full Text Available We review recent axisymmetric and three-dimensional (3D magnetohydrodynamic (MHD numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.

  18. Computational physics an introduction to Monte Carlo simulations of matrix field theory

    CERN Document Server

    Ydri, Badis


    This book is divided into two parts. In the first part we give an elementary introduction to computational physics consisting of 21 simulations which originated from a formal course of lectures and laboratory simulations delivered since 2010 to physics students at Annaba University. The second part is much more advanced and deals with the problem of how to set up working Monte Carlo simulations of matrix field theories which involve finite dimensional matrix regularizations of noncommutative and fuzzy field theories, fuzzy spaces and matrix geometry. The study of matrix field theory in its own right has also become very important to the proper understanding of all noncommutative, fuzzy and matrix phenomena. The second part, which consists of 9 simulations, was delivered informally to doctoral students who are working on various problems in matrix field theory. Sample codes as well as sample key solutions are also provided for convenience and completness. An appendix containing an executive arabic summary of t...

  19. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations (United States)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele


    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, I.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  20. Asymmetry of the ion diffusion region Hall electric and magnetic fields during guide field reconnection: observations and comparison with simulations. (United States)

    Eastwood, J P; Shay, M A; Phan, T D; Øieroset, M


    In situ measurements of magnetic reconnection in the Earth's magnetotail are presented showing that even a moderate guide field (20% of the reconnecting field) considerably distorts ion diffusion region structure. The Hall magnetic and electric fields are asymmetric and shunted away from the current sheet; an appropriately scaled particle-in-cell simulation is found to be in excellent agreement with the data. The results show the importance of correctly accounting for the effects of the magnetic shear when attempting to identify and study magnetic reconnection diffusion regions in nature.

  1. General relativistic weak-field limit and Newtonian N-body simulations (United States)

    Fidler, Christian; Tram, Thomas; Rampf, Cornelius; Crittenden, Robert; Koyama, Kazuya; Wands, David


    We show how standard Newtonian N-body simulations can be interpreted in terms of the weak-field limit of general relativity by employing the recently developed Newtonian motion gauge. Our framework allows the inclusion of radiation perturbations and the non-linear evolution of matter. We show how to construct the weak-field metric by combining Newtonian simulations with results from Einstein-Boltzmann codes. We discuss observational effects on weak lensing and ray tracing, identifying important relativistic corrections.

  2. Range Detection of the Extremely Low-Frequency Magnetic Field Produced by Laptop's AC Adapter (United States)

    Brodić, Darko; Amelio, Alessia


    Human exposure to extremely low frequency magnetic field represents a risk to their health. This paper takes into consideration the level of an extremely low-frequency magnetic field between 30 and 300 Hz emitted by an AC laptop adapter. The experiment consists of testing 17 different AC adapters for laptops. During the testing, laptops are operated in a normal operating conditions as well as under heavy load. The magnetic field measurement is conducted in the area around the AC adapter. Obtained data is evaluated according to the critical level of the magnetic field proposed by safety standards. Furthermore, data is classified by a K-medians method in order to determine the critical levels of the magnetic field exposure in the nearby area of the AC adapter. Obtained classifications are evaluated according to safety standards, giving a critical analysis of magnetic field areas at risk. Due to emission of a very strong magnetic field in certain areas, a recommendation for safety use of the AC adapter is proposed.

  3. Selection of candidate wells and optimization of conformance treatment design in the Barrancas Field using a 3D conformance simulator

    Energy Technology Data Exchange (ETDEWEB)

    Crosta, Dante; Elitseche, Luis [Repsol YPF (Argentina); Gutierrez, Mauricio; Ansah, Joe; Everett, Don [Halliburton Argentina S.A., Buenos Aires (Argentina)


    Minimizing the amount of unwanted water production is an important goal at the Barrancas field. This paper describes a selection process for candidate injection wells that is part of a pilot conformance project aimed at improving vertical injection profiles, reducing water cut in producing wells, and improving ultimate oil recovery from this field. The well selection process is based on a review of limited reservoir information available for this field to determine inter-well communications. The methodology focuses on the best use of available information, such as production and injection history, well intervention files, open hole logs and injectivity surveys. After the candidate wells were selected and potential water injection channels were identified, conformance treatment design and future performance of wells in the selected pilot area were evaluated using a new 3 -D conformance simulator, developed specifically for optimization of the design and placement of unwanted fluid shut-off treatments. Thus, when acceptable history match ing of the pilot area production was obtained, the 3 -D simulator was used to: evaluate the required volume of selected conformance treatment fluid; review expected pressures and rates during placement;. model temperature behavior; evaluate placement techniques, and forecast water cut reduction and incremental oil recovery from the producers in this simulated section of the pilot area. This paper outlines a methodology for selecting candidate wells for conformance treatments. The method involves application of several engineering tools, an integral component of which is a user-friendly conformance simulator. The use of the simulator has minimized data preparation time and allows the running of sensitivity cases quickly to explore different possible scenarios that best represent the reservoir. The proposed methodology provides an efficient means of identifying conformance problems and designing optimized solutions for these individual

  4. fire in the field: simulating the threshold of galaxy formation (United States)

    Fitts, Alex; Boylan-Kolchin, Michael; Elbert, Oliver D.; Bullock, James S.; Hopkins, Philip F.; Oñorbe, Jose; Wetzel, Andrew; Wheeler, Coral; Faucher-Giguère, Claude-André; Kereš, Dušan; Skillman, Evan D.; Weisz, Daniel R.


    We present a suite of 15 cosmological zoom-in simulations of isolated dark matter haloes, all with masses of Mhalo ≈ 1010 M⊙ at z = 0, in order to understand the relationship among halo assembly, galaxy formation and feedback's effects on the central density structure in dwarf galaxies. These simulations are part of the Feedback in Realistic Environments (fire) project and are performed at extremely high resolution (mbaryon = 500 M⊙, mdm = 2500 M⊙). The resultant galaxies have stellar masses that are consistent with rough abundance matching estimates, coinciding with the faintest galaxies that can be seen beyond the virial radius of the Milky Way (M*/M⊙ ≈ 105 - 107). This non-negligible spread in stellar mass at z = 0 in haloes within a narrow range of virial masses is strongly correlated with central halo density or maximum circular velocity Vmax, both of which are tightly linked to halo formation time. Much of this dependence of M* on a second parameter (beyond Mhalo) is a direct consequence of the Mhalo ˜ 1010 M⊙ mass scale coinciding with the threshold for strong reionization suppression: the densest, earliest-forming haloes remain above the UV-suppression scale throughout their histories while late-forming systems fall below the UV-suppression scale over longer periods and form fewer stars as a result. In fact, the latest-forming, lowest-concentration halo in our suite fails to form any stars. Haloes that form galaxies with M⋆ ≳ 2 × 106 M⊙ have reduced central densities relative to dark-matter-only simulations, and the radial extent of the density modifications is well-approximated by the galaxy half-mass radius r1/2. Lower-mass galaxies do not modify their host dark matter haloes at the mass scale studied here. This apparent stellar mass threshold of M⋆ ≈ 2 × 106 - 2 × 10- 4 Mhalo is broadly consistent with previous work and provides a testable prediction of fire feedback models in Λcold dark matter.

  5. Simulation study of 'perfect lens' for near-field nanolithography (United States)

    Guo, Xiaowei; Dong, Qiming; Liu, Yong


    The near-field perfect lens (NFPL) in imaging chrome gratings is investigated by using finite difference time domain (FDTD) method. The surface plasmon focused effect in and beneath the NFPL layer is demonstrated. The effects of the grating parameters and NFPL permittivity on image fidelity are explored. It is found that the excitation of surface plasmons results in frequency-increased images at large duty cycles and small imaginary part of NFPL permittivities. It is also shown that maximum intensity distributions on image plane occur at some specified pitches and duty cycles. The physics mechanisms are presented to explain these phenomena.

  6. The inception of pulsed discharges in air: simulations in background fields above and below breakdown (United States)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute


    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  7. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. (United States)

    Harilal, S S; Tillack, M S; O'Shay, B; Bindhu, C V; Najmabadi, F


    The dynamics and confinement of laser-created plumes expanding across a transverse magnetic field have been investigated. 1.06 microm, 8 ns pulses from a neodymium-doped yttrium aluminum garnet laser were used to create an aluminum plasma which was allowed to expand across a 0.64 T magnetic field. Fast photography, emission spectroscopy, and time of flight spectroscopy were used as diagnostic tools. Changes in plume structure and dynamics, enhanced emission and ionization, and velocity enhancement were observed in the presence of the magnetic field. Photographic studies showed that the plume is not fully stopped and diffuses across the field. The temperature of the plume was found to increase due to Joule heating and adiabatic compression. The time of flight studies showed that all of the species are slowed down significantly. A multiple peak temporal distribution was observed for neutral species.

  8. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper


    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  9. Applicability of Simplified Simulation Models for Perforation-Mediated Modified Atmosphere Packaging of Fresh Produce

    Directory of Open Access Journals (Sweden)

    Min-Ji Kwon


    Full Text Available The comprehensive mass balances of differential equations involving gas diffusion and hydraulic convection through package perforation, gas permeation through polymeric film, and produce respiration have commonly been used to predict the atmosphere of perforated fresh produce packages. However, the predictions often suffer from instability, and to circumvent this problem, a simplified diffusion model that omits the convective gas transfer and empirical models based on experimental mass transfer data have been developed and investigated previously by several researchers. This study investigated the potential and limitations of the simplified diffusion model and two empirical models for predicting the atmosphere in perforated produce packages. The simplified diffusion model satisfactorily estimated the atmosphere inside the perforated packages of fresh produce under the aerobic conditions examined. Published empirical models of the mass transfer coefficients of the perforation seem to be valid only for the measured conditions and thus should be used carefully for that specific purpose.

  10. Comparison of numerical simulations and laboratory studies of shock waves and cavitation bubble growth produced by optical breakdown in water

    Energy Technology Data Exchange (ETDEWEB)

    Chapyak, E.J.; Godwin, R.P. [Los Alamos National Lab., NM (United States); Vogel, A. [Medizinisches Laserzentrum Luebeck GmbH (Germany)


    In numerical calculations of idealized bubble dynamics test problems, Los Alamos computational tools perform well. A realistic equation of state must be used and geometrical features must be carefully modeled to simulate experiments accurately. In this work, we compare numerical simulations taking these features into account with experiments performed at the Medizinisches Laserzentrum Lubeck. We compare the measured and calculated positions of the shock front and of the bubble wall as a function of time in the laser optical breakdown of water produced by 30-ps 1-mJ Nd:YAG laser pulses.

  11. Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications. (United States)

    Bordelon, David E; Goldstein, Robert C; Nemkov, Valentin S; Kumar, Ananda; Jackowski, John K; DeWeese, Theodore L; Ivkov, Robert


    In this paper, we describe a modified solenoid coil that efficiently generates high amplitude alternating magnetic fields (AMF) having field uniformity (≤10%) within a 125-cm3 volume of interest. Two-dimensional finite element analysis (2D-FEA) was used to design a coil generating a targeted peak AMF amplitude along the coil axis of ~100 kA/m (peak-to-peak) at a frequency of 150 kHz while maintaining field uniformity to >90% of peak for a specified volume. This field uniformity was realized by forming the turns from cylindrical sections of copper plate and by adding flux concentrating rings to both ends of the coil. Following construction, the field profile along the axes of the coil was measured. An axial peak field value of 95.8 ± 0.4 kA/m was measured with 650 V applied to the coil and was consistent with the calculated results. The region of axial field uniformity, defined as the distance over which field ≥90% of peak, was also consistent with the simulated results. We describe the utility of such a device for calorimetric measurement of nanoparticle heating for cancer therapy and for magnetic fluid hyperthermia in small animal models of human cancer.

  12. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine


    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  13. Far-Field Testing Method of Spurious Emission Produced by HF RFID

    Directory of Open Access Journals (Sweden)

    Nikola Gvozdenovic


    Full Text Available We present measurements of spurious emission produced by high-frequency radio frequency identification (HF RFID using carrier frequency of 13.56 MHz. HF RFID tags produce unwanted emission due to rectification and more generally due to nonlinearity of analog front end. Depending on the conducting material of an HF RFID coil and surrounding dielectric material, the coil behaves as more or less good antenna on some harmonic frequencies. Exact characterization and analysis of unwanted emission is important from the security perspective as well as from the perspective of interference with other systems. Consequently we measured the harmonics produced in the integrated circuitry and characterized radiation properties of the antenna. Finally we present the measurements of the spurious emission performed in a Gigahertz Transverse Electromagnetic (GTEM cell.

  14. Two Simulated-Smog Atmospheres with Different Chemical Compositions Produce Contrasting Mutagenicity in Salmonella** (United States)

    Ozone (O3), particulate matter (PM), and nitrogen dioxide (NO2) are criteria pollutants used to evaluate air quality. Using EPA’s Mobile Reaction Chamber (MRC), we generated 2 simulated-smog atmospheres (SSA-1 & SSA-2) with different concentrations of these criteria pol...

  15. Planetary-scale streak structures produced in a high-resolution simulation of Venus atmosphere (United States)

    Kashimura, H.; Sugimoto, N.; Takagi, M.; Matsuda, Y.; Ohfuchi, W.; Enomoto, T.; Nakajima, K.; Ishiwatari, M.; Sato, T. M.; Hashimoto, G. L.; Satoh, T.; Takahashi, Y. O.; Hayashi, Y.-Y.


    Planetary-scale streak structures captured by the IR2 camera onboard AKATSUKI was reproduced in a high-resolution simulation of Venus Atmosphere. We have found that the streak structures are extending from the polar vortices and synchronized in both hemispheres. Our experiments suggest that a low-stability layer is a key for forming the planetary-scale streak structures.

  16. Plasmonic Antennas Nanocoupler for Telecom Range: Simulation, Fabrication and Near-Field Characterization

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei


    We report simulation, fabrication and, for the first time, full amplitude-phase near-field optical characterization in telecom range of the compact and efficient plasmonic nanoantenna based couplers. Near-field data allowed characterizing the subwavelength slot waveguide’s propagation losses...

  17. Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow (United States)

    Cantillon-Murphy, P.; Wald, L. L.; Adalsteinsson, E.; Zahn, M.


    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s -1. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors ( ˜1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002-0.01 solid volume fraction) and nanoparticle radii (1-10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the

  18. Quantum chemistry based force field for simulations of HMX

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.D.; Bharadwaj, R.K. [Univ. of Utah, Salt Lake City, UT (United States)


    The molecular geometries and conformational energies of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 1,3-dimethyl-1,3-dinitro methyldiamine (DDMD) and have been determined from high-level quantum chemistry calculations and have been used in parametrizing a classical potential function for simulations of HMX. Geometry optimizations for HMX and DDMD and rotational energy barrier searches for DDMD were performed at the B3LYP/6-311G** level, with subsequent single-point energy calculations at the MP2/6-311G** level. Four unique low-energy conformers were found for HMX, two whose conformational geometries correspond closely to those found in HMX polymorphs from crystallographic studies and two additional, lower energy conformers that are not seen in the crystalline phases. For DDMD, three unique low-energy conformers, and the rotational energy barriers between them, were located. In parametrizing the classical potential function for HMX, nonbonded repulsion/dispersion parameters, valence parameters, and parameters describing nitro group rotation and out-of-plane distortion at the amine nitrogen were taken from the previous studies of dimethylnitramine. Polar effects in HMX and DDMD were represented by sets of partial atomic charges that reproduce the electrostatic potential and dipole moments for the low-energy conformers of these molecules as determined from the quantum chemistry wave functions. Parameters describing conformational energetics for the C-N-C-N dihedrals were determined by fitting the classical potential function to reproduce relative conformational energies in HMX as found from quantum chemistry. The resulting potential was found to give a good representation of the conformer geometries and relative conformer energies in HMX and a reasonable description of the low-energy conformers and rotational energy barriers in DDMD.

  19. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare


    ) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

  20. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten


    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  1. Simulation of radio emission from air showers in atmospheric electric fields


    Buitink, S.


    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are acceler- ated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the ...

  2. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields (United States)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Pohl, M.; hide


    Using our new 3-D relativistic particle-in-cell (PIC) code, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value as predicted by hydrodynamic compression. Behind the bow shock, in the jet shock, strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. In order to go beyond the standard synchrotron model used in astrophysical objects we have used PIC simulations and calculated radiation based on first principles. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the technique to calculate emission from electrons based on simulations with a small system. We obtain spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger system may generate a jitter/synchrotron spectrum.

  3. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    CERN Document Server

    Jamali, J; Moini, R; Sadeghi, H


    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper.

  4. The use of Tecnomatix software to simulate the manufacturing flows in an industrial enterprise producing hydrostatic components (United States)

    Petrila, S.; Brabie, G.; Chirita, B.


    The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.

  5. Field Validity of Heart Rate Variability Metrics Produced by QRSTool and CMetX (United States)

    Hibbert, Anita S.; Weinberg, Anna; Klonsky, E. David


    Interest in heart rate variability (HRV) metrics as markers of physiological and psychological health continues to grow beyond those with psychophysiological expertise, increasing the importance of developing suitable tools for researchers new to the field. Allen, Chambers, and Towers (2007) developed QRSTool and CMetX software as simple,…

  6. Analysis of Magnetic Field Intensity and Induced Current under Live Working Based on Charge Simulation Method

    Directory of Open Access Journals (Sweden)

    Luo Yuanxiang


    Full Text Available To the problem that safety distance is insufficient for 500 kV substation live working, a magnetic field analysis method for overhead line bus is given based on the charge simulation method. In the method, charge is calculated firstly, and the space field intensity distribution calculation is completed by overlying charge. The space field intensity distribution rule is carried out based on the appropriate analysis, and space field intensity distribution rule of substation is obtained. Then according to the calculation formula of inducing current, the human body induction current under a substation busbar is simulated based on MATLAB. The simulation results have a certain guidance function for actual live working.

  7. [Dynamic simulation of ammonia- and nitrate N leakage from paddy field under different N supply]. (United States)

    Li, Jin-Wen; Zhong, Sheng; Wang, Mi; Yang, Jing-Ping; Xu, Wei


    By using self-designed lysimeters, the dynamic changes of ammonia- and nitrate N leakage from the plowpan of paddy field under different N supply were studied, aimed to understand the N leakage loss from paddy field during rice growth period. A dynamic model was built to simulate the N translocation and transformation in rice plant, soil, and water by Vensim software. The data from the field experiment with N fertilization rates of 0, 75, 150, 225, 300, and 375 kg x hm(-2) in Yuhang district, Hangzhou City in 2003 were used for calibrating the model, and the data from the field experiment in 2007 were utilized for validating the model. The simulated N concentrations in the leakage fitted well with the observed data, suggesting that the simulated results were reliable and the model was applicable.

  8. 3D CFD simulations of trailing suction hopper dredger plume mixing: comparison with field measurements. (United States)

    de Wit, Lynyrd; Talmon, A M; van Rhee, C


    A 3D computational fluid dynamics (CFD) model is used to simulate mixing of an overflow plume within 400 m from a trailing suction hopper dredger (TSHD). The simulations are compared with new field measurements. It is the first time simulations of overflow dredging plumes are compared in such detail to field measurements this close to a TSHD. Seven cases with a large variety in overflow flux and plume characteristics are used. Measured maximum suspended sediment concentrations (SSC) vary between 30 and 500 mg/l and fluxes vary between 0.7% and 20% of the total overflow flux; the CFD model has, subject to the limitations of the field data, been shown to reproduce this in a satisfactory way. The model gives better understanding of important near field processes, which helps to assess the frequency, duration and intensity of stresses like turbidity and sedimentation needed to find the environmental impact of dredging projects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [Optimization of electrode location and size on simulation in electric field distribution of atrial defibrillation]. (United States)

    Wang, Cong; Yang, Shengjun; Zheng, Yi; Wu, Xiaomei; Wang, Qunshan; Wei, Daming


    A distributed simulation method of electric field based on the atrial defibrillation of the heart modeling and finite element solution is proposed in this study. In order to solve the problem that ordinary clinical trials could not measure the actual distribution of the defibrillation electric field in the heart accurately, this method provides a research tool for electrical defibrillation. A complete atrial anatomical structure in the heart model is used in the research, the finite element method is proceeded to solve; Three parameters: defibrillation threshold voltage, the high field strength rate and the defibrillation threshold energy are set to evaluate the effect of defibrillation. The heart electric field distributions of transvenous atrial defibrillation with different electrode locations or sizes are simulated. The simulation results and the reported results match fairly well, which initially verify the feasibility of this method.

  10. CFD Simulation of the distribution of ClO2 in fresh produce to improve safety (United States)

    The shelf life of fresh-cut produce may be prolonged with the injection of bactericide gases like chlorine dioxide (ClO2). A comparative study has been conducted by modeling the injection of three different gases, CO2, ClO2 and N2 inside a PET clamshell containers commonly use to package fresh produ...

  11. Validation of a Previously Developed Geospatial Model That Predicts the Prevalence of Listeria monocytogenes in New York State Produce Fields (United States)

    Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin


    Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. PMID:26590280

  12. Using meshes to change the characteristics of simulated rainfall produced by spray nozzles

    Directory of Open Access Journals (Sweden)

    Sílvia C.P. Carvalho


    Full Text Available Rainfall simulators have been used for many years contributing to the understanding of soil and water conservation processes. Nevertheless, rainfall simulators’ design and operation might be rather demanding for achieving specific rainfall intensity distributions and drop characteristics and are still open for improvement. This study explores the potential of combining spray nozzle simulators with meshes to change rainfall characteristics, namely drop properties (drop diameters and fall speeds. A rainfall simulator laboratory set-up was prepared that enabled the incorporation of different wire meshes beneath the spray nozzles. The tests conducted in this exploratory work included different types of spray nozzles, mesh materials (plastic and steel, square apertures and wire thicknesses, and positions of the meshes in relation to the nozzles. Rainfall intensity and drop size distribution and fall speed were analysed. Results showed that the meshes combined with nozzles increased the mean rainfall intensity on the 1 m2 control plot below the nozzle and altered the rain drops’ properties, by increasing the mass-weighted mean drop diameter, for example.

  13. Three-dimensional simulation of the electromagnetic ion/ion beam instability: cross field diffusion

    Directory of Open Access Journals (Sweden)

    H. Kucharek


    Full Text Available In a system with at least one ignorable spatial dimension charged particles moving in fluctuating fields are tied to the magnetic field lines. Thus, in one-and two-dimensional simulations cross-field diffusion is inhibited and important physics may be lost. We have investigated cross-field diffusion in self-consistent 3-D magnetic turbulence by fully 3-dimensional hybrid simulation (macro-particle ions, massless electron fluid. The turbulence is generated by the electromagnetic ion/ion beam instability. A cold, low density, ion beam with a high velocity stream relative to the background plasma excites the right-hand resonant instability. Such ion beams may be important in the region of the Earth's foreshock. The field turbulence scatters the beam ions parallel as well as perpendicular to the magnetic field. We have determined the parallel and perpendicular diffusion coefficient for the beam ions in the turbulent wave field. The result compares favourably well (within a factor 2 with hard-sphere scattering theory for the cross-field diffusion coefficient. The cross-field diffusion coefficient is larger than that obtained in a static field with a Kolmogorov type spectrum and similar total fluctuation power. This is attributed to the resonant behaviour of the particles in the fluctuating field.

  14. A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields. (United States)

    Manz, B; Benecke, M; Volke, F


    A new portable, pocket-size NMR probe based on a novel permanent magnet arrangement is presented. It is based on a Halbach-type magnet design which mimics the field of a spherical dipole by using cylindrical bar and ring magnets. The magnet system is made up of only three individual magnets, and most field calculations and optimisations can be performed analytically. A prototype system has been built using a set of small, off the shelf commercially available permanent magnets. Proton linewidths of 50 ppm FWHM could be achieved at a field strength of 1T. Calculations show that with custom-sized permanent magnets, linewidths of less than 1 ppm can be achieved over sample volumes of up to 1 mm3, which would in theory enable chemical shift resolved proton spectroscopy on mass-limited samples. But even with the achieved linewidth of 50 ppm, this can be a useful portable sensor for small amounts of liquid samples with restricted molecular mobility, like gels, polymers or high viscosity liquids.

  15. Fusion core start-up, ignition and burn simulations of reversed-field pinch (RFP) reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yuh-Yi


    A transient reactor simulation model is developed to investigate and simulate the start-up, ignition and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determines the minimum value of plasma current required to achieve ignition. An optimized start-up to ignition and burn path can be obtained by passing through the saddle point. The simulation code is used to study and optimize the start-up scenario. In the simulations of the TITAN RFP reactor, the OH-driven superconducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. This results in the modification of superconducting EF coils and the addition of a set of EF trim coils. The design of the EF coil system is performed with the simulation code subject to the optimization of trim-coil power and current. In addition, the trim-coil design is subject to the constraints of vertical-field stability index and maintenance access. A power crowbar is also needed to prevent the superconducting EF coils from generating excessive vertical field. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy current are also presented. 145 refs., 37 figs., 2 tabs.

  16. Laboratory simulation of charge exchange-produced X-ray emission from comets. (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A


    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  17. Application research of computational mass-transfer differential equation in MBR concentration field simulation. (United States)

    Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan


    After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.

  18. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z


    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  19. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim (Norway)


    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  20. Polyethylene wear debris produced in a knee simulator model: effect of crosslinking and counterface material. (United States)

    Williams, Paul A; Brown, Cindy M; Tsukamoto, Riichro; Clarke, Ian C


    Polyethylene (PE) debris has been well studied in clinical retrievals and laboratory wear simulations of total hip replacements. However, little is known about PE debris from total knee replacements. In this study, we investigated the effects of crosslinking PE bearings and alternate counterface material. Mildly (35 kGy) and highly (70 kGy) crosslinked PE were studied in combination with CoCr and zirconia femoral counterfaces. Wear debris was isolated and its morphology characterized. Except for changes in PE debris size with the zirconia bearings, there were no morphological changes greater than 10%. The average submicron volume fraction decreased from about 65% to 45% with both increased crosslinking and changing counterface material from CoCr to zirconia. The averaged number of generated particles decreased by approximately fourfold with increased crosslinking and threefold with changing counterface material from CoCr to zirconia. This showed that the degree of PE crosslinking and the choice of counterface material were important factors in the PE wear debris production in total knee simulator replacements. (c) 2009 Wiley Periodicals, Inc.

  1. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping


    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

  2. GEOFLOW: simulation of convection in a spherical shell under central force field

    Directory of Open Access Journals (Sweden)

    P. Beltrame


    Full Text Available Time-dependent dynamical simulations related to convective motion in a spherical gap under a central force field due to the dielectrophoretic effect are discussed. This work is part of the preparation of the GEOFLOW-experiment which is planned to run in a microgravity environment. The goal of this experiment is the simulation of large-scale convective motion in a geophysical or astrophysical framework. This problem is new because of, on the one hand, the nature of the force field (dielectrophoretic effect and, on another hand, the high degree of symmetries of the system, e.g. the top-bottom reflection. Thus, the validation of this simulation with well-known results is not possible. The questions concerning the influence of the dielectrophoretic force and the possibility to reproduce the theoretically expected motions in the astrophysical framework, are open. In the first part, we study the system in terrestrial conditions: the unidirectional Earth's force is superimposed on the central dielectrophoretic force field to compare with the laboratory experiments during the development of the equipment. In the second part, the GEOFLOW-experiment simulations in weightless conditions are compared with theoretical studies in the astrophysical framework's, in the first instance a fluid under a self-gravitating force field. We present complex time-dependent dynamics, where the dielectrophoretic force field causes significant differences in the flow compared to the case that does not involve this force field.

  3. Predicting Juno's Possible Internal Field and Secular Variation Models Based on Numerical Dynamo Simulations (United States)

    Wicht, J.; Holme, R. T.; Gastine, T.; Duarte, L.


    We use numerical simulations to model Jupiter's internal dynamo and to predict the information Juno's magnetometer may reveal about the internal magnetic field and dynamics. The simulations were performed with the MHD code MagIC, cover 99% of Jupiter's radius below the one bar level, and use an electrical conductivity profile that includes the metallic inner as well as the molecular outer hydrogen layer. Surface magnetic fields closely resemble known magnetic field models. The flow is dominated by a realistic prograde equatorial jet but lacks multiple mid to high latitude jets which, according to our simulations, seem incompatible with a Jupiter like magnetic field. Using the Juno mission trajectory and assuming an isotropic measurement error of 100 nT we could recover the numerical model field to spheric harmonic degree 18, and secular variation (SV) perhaps to degree 5. The field shows characteristic bands where the equatorial jet reaches down to higher conductivities and promotes a secondary local dynamo effect. The presence of these bands as well as the SV caused by zonal flow advection may offer important clues on the depth of the zonal jets. The form of the spectrum can provide additional information on the general depth of the dynamo region: The numerical simulations suggest that dynamo action starts at the radius where the magnetic Reynolds number, the ratio of Ohmic dissipation time to convective turnover time, exceeds about 50. This roughly agrees with the depth where the magnetic power spectrum is white for spherical harmonics degrees beyond four.

  4. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Borodziuk, S. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gus' kov, S. Yu. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); National Research Nuclear University (Moscow Eng. Phys. Institute) (Russian Federation); Dudzak, R.; Dostal, J.; Krousky, E.; Ullschmied, J.; Hrebicek, J.; Medrik, T.; Golasowski, J.; Pfeifer, M.; Skala, J. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Institute of Physics ASCR, Prague (Czech Republic); Demchenko, N. N. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Korneev, Ph. [National Research Nuclear University (Moscow Eng. Phys. Institute) (Russian Federation); Kalal, M. [Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Institute of Plasma Physics ASCR, Prague (Czech Republic); Renner, O.; Smid, M. [Institute of Physics ASCR, Prague (Czech Republic); Pisarczyk, P. [Warsaw University of Technology, ICS, Warsaw (Poland)


    The first space-time resolved spontaneous magnetic field (SMF) measurements realized on Prague Asterix Laser System are presented. The SMF was generated as a result of single laser beam (1.315 μm) interaction with massive planar targets made of materials with various atomic numbers (plastic and Cu). Measured SMF confirmed azimuthal geometry and their maximum amplitude reached the value of 10 MG at the laser energy of 250 J for both target materials. It was demonstrated that spatial distributions of these fields are associated with the character of the ablative plasma expansion which clearly depends on the target material. To measure the SMF, the Faraday effect was employed causing rotation of the vector of polarization of the linearly polarized diagnostic beam. The rotation angle was determined together with the phase shift using a novel design of a two-channel polaro-interferometer. To obtain sufficiently high temporal resolution, the polaro-interferometer was irradiated by Ti:Sa laser pulse with the wavelength of 808 nm and the pulse duration of 40 fs. The results of measurements were compared with theoretical analysis.

  5. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation (United States)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.


    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  6. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui


    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  7. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse


    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  8. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt


    A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...... with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 d...

  9. Near-field diffraction from amplitude diffraction gratings: theory, simulation and results (United States)

    Abedin, Kazi Monowar; Rahman, S. M. Mujibur


    We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.

  10. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform. (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui


    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Norovirus transmission between hands, gloves, utensils, and fresh produce during simulated food handling. (United States)

    Rönnqvist, M; Aho, E; Mikkelä, A; Ranta, J; Tuominen, P; Rättö, M; Maunula, L


    Human noroviruses (HuNoVs), a leading cause of food-borne gastroenteritis worldwide, are easily transferred via ready-to-eat (RTE) foods, often prepared by infected food handlers. In this study, the transmission of HuNoV and murine norovirus (MuNoV) from virus-contaminated hands to latex gloves during gloving, as well as from virus-contaminated donor surfaces to recipient surfaces after simulated preparation of cucumber sandwiches, was inspected. Virus transfer was investigated by swabbing with polyester swabs, followed by nucleic acid extraction from the swabs with a commercial kit and quantitative reverse transcription-PCR. During gloving, transfer of MuNoV dried on the hand was observed 10/12 times. HuNoV, dried on latex gloves, was disseminated to clean pairs of gloves 10/12 times, whereas HuNoV without drying was disseminated 11/12 times. In the sandwich-preparing simulation, both viruses were transferred repeatedly to the first recipient surface (left hand, cucumber, and knife) during the preparation. Both MuNoV and HuNoV were transferred more efficiently from latex gloves to cucumbers (1.2% ± 0.6% and 1.5% ± 1.9%) than vice versa (0.7% ± 0.5% and 0.5% ± 0.4%). We estimated that transfer of at least one infective HuNoV from contaminated hands to the sandwich prepared was likely to occur if the hands of the food handler contained 3 log10 or more HuNoVs before gloving. Virus-contaminated gloves were estimated to transfer HuNoV to the food servings more efficiently than a single contaminated cucumber during handling. Our results indicate that virus-free food ingredients and good hand hygiene are needed to prevent HuNoV contamination of RTE foods. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Corrosion Behavior of Carbon Steel in Synthetically Produced Oil Field Seawater

    Directory of Open Access Journals (Sweden)

    Subir Paul


    Full Text Available The life of offshore steel structure in the oil production units is decided by the huge corrosive degradation due to SO42-, S2−, and Cl−, which normally present in the oil field seawater. Variation in pH and temperature further adds to the rate of degradation on steel. Corrosion behavior of mild steel is investigated through polarization, EIS, XRD, and optical and SEM microscopy. The effect of all 3 species is huge material degradation with FeSx and FeCl3 and their complex as corrosion products. EIS data match the model of Randle circuit with Warburg resistance. Addition of more corrosion species decreases impedance and increases capacitance values of the Randle circuit at the interface. The attack is found to be at the grain boundary as well as grain body with very prominent sulphide corrosion crack.

  13. Transient Simulation of a Rotating Conducting Cylinder in a Transverse Magnetic Field (United States)


    UNCLASSIFIED UNCLASSIFIED AD-E403 795 Technical Report ARMET-TR-15078 TRANSIENT SIMULATION OF A ROTATING CONDUCTING CYLINDER IN...TITLE AND SUBTITLE TRANSIENT SIMULATION OF A ROTATING CONDUCTING CYLINDER IN A TRANSVERSE MAGNETIC FIELD 5a. CONTRACT NUMBER 5b. GRANT NUMBER...vector detected within the projectile are affected by the spinning of the projectile. To study this, transient finite element analyses were conducted to

  14. Design of field flattening filters for a high-power bremsstrahlung converter by full Monte Carlo simulation (United States)

    Van Laere, K.; Mondelaers, W.


    To compensate for off-axis dose reduction, biconical-shaped Pb field flattening filters were constructed for a specific high-power static TaC bremsstrahlung target configuration, at end-point energies 5 and 10 MeV. The filter design was optimized by full Monte Carlo simulation. The absolute dose calculation was compared to experimental ionization and Fricke measurements. Spectral data were analysed and the influence of incident electron beam parameters (diameter, oblique incidence) was simulated. With the constructed filtered set-up we are able to produce any required γ-dose rate up to a maximum value of 35 kGy/h in a water phantom at SSD 25 cm. The accomplished homogeneity at this distance is better than a few per cent over a surface of 25 cm diameter perpendicular to the beam axis, for both energies.

  15. New beam-tracking simulation code using bulk-to-point calculation technique for space charge fields (United States)

    Mizuno, A.


    A new two-dimensional beam-tracking simulation code for electron injectors using a bulk-to-point calculation technique for space charge fields was developed. The calculated space charge fields are produced not by a point charge but by a hollow cylinder that has a volume. Each tracked electron is a point charge. This bulk-to-point calculation technique for space charge fields is based on that used in the multiple beam envelope equations, which were developed by the author. The multiple beam envelope equations are a set of differential equations for investigating the beam dynamics of electron injectors and can be used to calculate bunched beam dynamics with high accuracy. However, there is one limitation. The bunched beam is assumed to be an ensemble of several segmentation pieces in both the transverse and longitudinal directions. In this bunch model, each longitudinal segmentation slice in a bunch must not warp; consequently, the accuracy of the calculated emittance is reduced in the case of a highly charged beam for calculations of a typical rf gun injector system. This limitation is related to the calculation model of longitudinal space charge fields. In the newly developed beam-tracking simulation code, the space charge field calculation scheme is upgraded and the limitation has been overcome. Therefore, the applicable range is extended while maintaining the high accuracy of emittance calculations. Simultaneously, the calculation time is markedly shortened because the emittance dependence on the segmentation number is extremely weak. In this paper, several examples of beam dynamics that cannot be calculated accurately using the multiple beam envelope equations are demonstrated using the new beam-tracking simulation code. The accuracy of the calculated emittance is also discussed.

  16. Analysis, simulation, and experimental studies of YAG and CO2 laser-produced plasma for EUV lithography sources (United States)

    Hassanein, A.; Sizyuk, V.; Harilal, S. S.; Sizyuk, T.


    Efficient laser systems are essential for the realization of high volume manufacturing in extreme ultraviolet lithography (EUVL). Solid-state Nd:YAG lasers usually have lower efficiency and source suppliers are alternatively investigating the use of high power CO2 laser systems. However, CO2 laser-produced plasmas (LPP) have specific characteristics and features that should be taken into account when considering them as the light source for EUVL. The analysis of recent experimental and theoretical work showed significant differences in the properties of plasma plumes produced by CO2 and the Nd:YAG lasers including EUV radiation emission, source formation, debris generation, and conversion efficiency. The much higher reflectivity of CO2 laser from liquid, vapor, and plasma of a tin target results in the production of optically thinner plumes with higher velocity and in a better formation of plasma properties (temperature and density values) towards more efficient EUV source. However, the spikes in the temporal profiles of current CO2 laser will additionally affect the properties of the produced plasma. We have developed unique combination of state-of-the-art experimental facilities (CMUXE Laboratory) and advanced computer simulation (HEIGHTS) package for studying and optimizing various lasers, discharge produced plasmas (DPP), and target parameters as well as the optical collection system regarding EUV lithography. In this work, detailed characteristics of plasmas produced by CO2 and Nd:YAG lasers were analyzed and compared both experimentally and theoretically for optimizing EUV from LPP sources. The details of lower overheating of plasma produced by CO2 laser are given with time and explain how to utilize the high reflectivity of such lasers in plasmas produced in different target geometries to significantly enhance the conversion efficiency of EUV radiation.

  17. Reconnection and Associated Flares in Global Relativistic Jets Containing Helical Magnetic Fields with PIC Simulations (United States)

    Nishikawa, Ken-Ichi; Hartmann, Dieter; Mizuno, Yosuke; Niemiec, Jacek; Dutan, Ioana; Kobzar, Oleh; Gomez, Jose; Meli, Athina; POHL, Martin


    In the study of relativistic jets one of the key open questions is their interaction with theenvironment on the microscopic level. Here, we study the initial evolution of both electron–proton and electron–positron relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI) using a larger jet radius. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the electron-proton jet simulation a recollimation-like instability occurs near the center of jet. In the electron-positron jet simulation mixed kinetic instabilities grow and the jet electrons are accelerated. The evolution of electron-ion jets will be investigated with different mass ratios. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields. We will investigate mechanisms of flares possibly due to reconnection.

  18. Simulations On Pair Creation In Collision Of γ-Beams Produced With High Intensity Lasers (United States)

    Jansen, Oliver; Ribeyre, Xavier; D'Humieres, Emmanuel; Jaquier, Sophie; Tikhonchuk, Vladimir


    Direct production of electron-positron pairs in two photon collisions, the Breit-Wheeler process, is one of the most basic processes in the universe. However, this process has never been directly observed in the laboratory due to the lack of high intensity γ sources. For a feasibility study and for the optimisation of experimental set-ups we developed a high-performance tree-code. Different possible set-ups with MeV photon sources were discussed and compared using collision detection for huge number of particles in a quantum-electrodynamic regime. For this we implemented bounding volume hierarchies in a tree-like code structure. We applied this code on the question whether the Texas Petawatt laser could produce a significant number of pairs within the framework of the NSF project National Science Foundation under Grant No. 1632777.

  19. X-ray emission simulation from hollow atoms produced by high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Zhidkov, A. [Japan Atomic Energy Research Inst., Kansai Research Establishment, Neyagawa, Osaka (Japan); Suto, Keiko [Nara Women' s Univ., Graduate School of Human Culture, Nara (Japan); Kagawa, Takashi [Nara Women' s Univ., Department of Physics, Nara (Japan)


    We theoretically study the x-ray emission from hollow atoms produced by collisions of multiply charged ions accelerated by a short pulse laser with a solid or foil. By using the multistep-capture-and-loss (MSCL) model a high conversion efficiency to x-rays in an ultrafast atomic process is obtained. It is also proposed to apply this x-ray emission process to the x-ray source. For a few keV x-rays this x-ray source has a clear advantage. The number of x-ray photons increases as the laser energy becomes larger. For a laser energy of 10 J, the number of x-ray photons of 3x10{sup 11} is estimated. (author)

  20. An overview of the ENEA activities in the field of coupled codes NPP simulation

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, C.; Negrenti, E.; Sepielli, M. [ENEA Casaccia Research Center, Santa Maria di Galeria, 00123, Rome (Italy); Del Nevo, A. [ENEA Brasimone Research Center, Camugnano, 40032 (Italy)


    In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark and the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)

  1. A verification study and trend analysis of simulated boundary layer wind fields over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lindenberg, Janna


    Simulated wind fields from regional climate models (RCMs) are increasingly used as a surrogate for observations which are costly and prone to homogeneity deficiencies. Compounding the problem, a lack of reliable observations makes the validation of the simulated wind fields a non trivial exercise. Whilst the literature shows that RCMs tend to underestimate strong winds over land these investigations mainly relied on comparisons with near surface measurements and extrapolated model wind fields. In this study a new approach is proposed using measurements from high towers and a robust validation process. Tower height wind data are smoother and thus more representative of regional winds. As benefit this approach circumvents the need to extrapolate simulated wind fields. The performance of two models using different downscaling techniques is evaluated. The influence of the boundary conditions on the simulation of wind statistics is investigated. Both models demonstrate a reasonable performance over flat homogeneous terrain and deficiencies over complex terrain, such as the Upper Rhine Valley, due to a too coarse spatial resolution ({proportional_to}50 km). When the spatial resolution is increased to 10 and 20 km respectively a benefit is found for the simulation of the wind direction only. A sensitivity analysis shows major deviations of international land cover data. A time series analysis of dynamically downscaled simulations is conducted. While the annual cycle and the interannual variability are well simulated, the models are less effective at simulating small scale fluctuations and the diurnal cycle. The hypothesis that strong winds are underestimated by RCMs is supported by means of a storm analysis. Only two-thirds of the observed storms are simulated by the model using a spectral nudging approach. In addition ''False Alarms'' are simulated, which are not detected in the observations. A trend analysis over the period 1961 - 2000 is conducted

  2. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach (United States)

    Nabert, Christian; Othmer, Carsten; Glassmeier, Karl-Heinz


    The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD) simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms) magnetosheath data to estimate Earth's dipole moment.

  3. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge. (United States)

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo


    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H]+ caused by proton transfer from hydronium ion H3O+, except for benzene, toluene and n-hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A·+ and/or dehydride analyte [A-H]+, according to the nature of analytes used. The formation of A·+ without fragment ions could be explained by the electron tunneling via high electric fields 108 V/m at the tip of the corona needle. The dehydride analytes [A-H]+ observed in the mass spectra of n-hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e., the proton donor to form [A+H]+ and the hydride acceptor to form [A-H]+.

  4. Maximum Likelihood Calibration of the UNRES Force Field for Simulation of Protein Structure and Dynamics. (United States)

    Krupa, Paweł; Hałabis, Anna; Żmudzińska, Wioletta; Ołdziej, Stanisław; Scheraga, Harold A; Liwo, Adam


    By using the maximum likelihood method for force-field calibration recently developed in our laboratory, which is aimed at achieving the agreement between the simulated conformational ensembles of selected training proteins and the corresponding ensembles determined experimentally at various temperatures, the physics-based coarse-grained UNRES force field for simulations of protein structure and dynamics was optimized with seven small training proteins exhibiting a variety of secondary and tertiary structures. Four runs of optimization, in which the number of optimized force-field parameters was gradually increased, were carried out, and the resulting force fields were subsequently tested with a set of 22 α-, 12 β-, and 12 α + β-proteins not used in optimization. The variant in which energy-term weights, local, and correlation potentials, side-chain radii, and anisotropies were optimized turned out to be the most transferable and outperformed all previous versions of UNRES on the test set.

  5. Simulating the dual-peak excitation pattern produced by bipolar stimulation of a cochlear implant: effects on speech intelligibility. (United States)

    Mesnildrey, Quentin; Macherey, Olivier


    Several electrophysiological and psychophysical studies have shown that the spatial excitation pattern produced by bipolar stimulation of a cochlear implant (CI) can have a dual-peak shape. The perceptual effects of this dual-peak shape were investigated using noise-vocoded CI simulations in which synthesis filters were designed to simulate the spread of neural activity produced by various electrode configurations, as predicted by a simple cochlear model. Experiments 1 and 2 tested speech recognition in the presence of a concurrent speech masker for various sets of single-peak and dual-peak synthesis filters and different numbers of channels. Similarly as results obtained in real CIs, both monopolar (MP, single-peak) and bipolar (BP + 1, dual-peak) simulations showed a plateau of performance above 8 channels. The benefit of increasing the number of channels was also lower for BP + 1 than for MP. This shows that channel interactions in BP + 1 become especially deleterious for speech intelligibility when a simulated electrode acts both as an active and as a return electrode for different channels because envelope information from two different analysis bands are being conveyed to the same spectral location. Experiment 3 shows that these channel interactions are even stronger in wide BP configuration (BP + 5), likely because the interfering speech envelopes are less correlated than in narrow BP + 1. Although the exact effects of dual- or multi-peak excitation in real CIs remain to be determined, this series of experiments suggest that multipolar stimulation strategies, such as bipolar or tripolar, should be controlled to avoid neural excitation in the vicinity of the return electrodes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comparison of mean properties of simulated convection in a cloud-resolving model with those produced by cumulus parameterization

    Energy Technology Data Exchange (ETDEWEB)

    Dudhia, J.; Parsons, D.B. [National Center for Atmospheric Research, Boulder, CO (United States)


    An Intensive Observation Period (IOP) of the Atmospheric Radiation Measurement (ARM) Program took place at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site from June 16-26, 1993. The National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model (MM5) has been used to simulate this period on a 60-km domain with 20- and 6.67-km nests centered on Lamont, Oklahoma. Simulations are being run with data assimilation by the nudging technique to incorporate upper-air and surface data from a variety of platforms. The model maintains dynamical consistency between the fields, while the data correct for model biases that may occur during long-term simulations and provide boundary conditions. For the work reported here the Mesoscale Atmospheric Prediction System (MAPS) of the National Ocean and Atmospheric Administration (NOAA) 3-hourly analyses were used to drive the 60-km domain while the inner domains were unforced. A continuous 10-day period was simulated.

  7. Improving development planning in a natural gas storage field through simulation-optimization uncertainty analyses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, V M


    This is the second of two papers describing the application of simulation-optimization methods to a gas storage field development planning problem. The first paper began by giving a detailed description of the field and earlier efforts to model the effects of selected field development options on the field's productivity. It then outlined the basic steps required to apply a combination of artificial neural networks (ANNs) and the genetic algorithm (GA) to explore a much larger universe of field development planning options. Familiarity with the contents of the first paper is a prerequisite for understanding the material presented in this second paper. The optimized solutions to the planning problem presented in the first paper were based on a deterministic, ''best guess'' view of the field's reservoir properties. However, practical field development planning dictates that at least some of the uncertainties associated with these properties be taken into account. This second paper describes procedures and presents results showing how the ANN-GA approach to optimization can be extended to accommodate three sources of uncertainty pertinent to the field being studied: (1) Alternative hypotheses regarding the permeabilities in a key region of the field; (2) Uncertainty regarding the likely success of remediating existing wells; (3) Risks associated with siting new wells in relatively unknown regions of the field. The first two sources involve physical properties (permeabilities and skin factors, respectively) that are embedded in the simulation of the reservoir response and, therefore, require substantial changes to the knowledge base of simulations. The third source of uncertainty is examined simply by making changes to the objective functions driving the optimization. To streamline the presentation of results, only one of the two injection/withdrawal scenarios described in the first paper is included here, namely the 30-day peak service at

  8. Electric field simulations and electric dipole investigations at the KATRIN main spectrometer


    Hilk, Daniel Franz Rudolf


    This thesis deals with the development of high-accuracy electric field simulation methods and experimental background investigations with the electric dipole method for the KATRIN experiment. Both fields of work are of crucial importance to obtain the targeted background level of 10 mcps for the investigation of the absolute neutrino mass scale with a sensitivity of 200 meV/c² at 90% C.L.

  9. Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields (United States)

    Greiner, Maximilian; Elts, Ekaterina; Schneider, Julian; Reuter, Karsten; Briesen, Heiko


    The CHARMM, general Amber and OPLS force fields are evaluated for their suitability in simulating the molecular dynamics of the dissolution of the hydrophobic, small-molecule active pharmaceutical ingredients aspirin, ibuprofen, and paracetamol in aqueous media. The force fields are evaluated by comparison with quantum chemical simulations or experimental references on the basis of the following capabilities: accurately representing intra- and intermolecular interactions, appropriately reproducing crystal lattice parameters, adequately describing thermodynamic properties, and the qualitative description of the dissolution behavior. To make this approach easily accessible for evaluating the dissolution properties of novel drug candidates in the early stage of drug development, the force field parameter files are generated using online resources such as the SWISS PARAM servers, and the software packages ACPYPE and Maestro. All force fields are found to reproduce the intermolecular interactions with a reasonable degree of accuracy, with the general Amber and CHARMM force fields showing the best agreement with quantum mechanical calculations. A stable crystal bulk structure is obtained for all model substances, except for ibuprofen, where the reproductions of the lattice parameters and observed crystal stability are considerably poor for all force fields. The heat of solution used to evaluate the solid-to-solution phase transitions is found to be in qualitative agreement with the experimental data for all combinations tested, with the results being quantitatively optimum for the general Amber and CHARMM force fields. For aspirin and paracetamol, stable crystal-water interfaces were obtained. The (100), (110), (011) and (001) interfaces of aspirin or paracetamol and water were simulated for each force field for 30 ns. Although generally expected as a rare event, in some of the simulations, dissolution is observed at 310 K and ambient pressure conditions.

  10. Temporally Resolved Ion Fluorescence Measurements of the Interaction of a Field-Parallel Laser Produced Plasma and an Ambient Magnetized Plasma (United States)

    Dorst, R. S.; Heuer, P. V.; Bondarenko, A. S.; Shaffer, D. B.; Contantin, G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Weidl, M.; Winske, D.; Niemann, C.


    We present measurements of the collisionless coupling between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP was created by focusing the Raptor laser (400J, 40ns) on a planar plastic target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of Californa, Los Angeles. The resulting ablated material moved parallel to the background magnetic field, interacting with the ambient plasma along the full 17m length of the LAPD. A high temporal and spectral resolution monochrometer measured fluorescence from debris and ambient ions to deter- mine the debris velocity distribution by charge state and study the fast electron precursor to the LPP. Measurements are compared to hybrid simulations of quasi-parallel shocks.

  11. Computational Flow Dynamic Simulation of Micro Flow Field Characteristics Drainage Device Used in the Process of Oil-Water Separation

    Directory of Open Access Journals (Sweden)

    Guangya Jin


    Full Text Available Aqueous crude oil often contains large amounts of produced water and heavy sediment, which seriously threats the safety of crude oil storage and transportation. Therefore, the proper design of crude oil tank drainage device is prerequisite for efficient purification of aqueous crude oil. In this work, the composition and physicochemical properties of crude oil samples were tested under the actual conditions encountered. Based on these data, an appropriate crude oil tank drainage device was developed using the principle of floating ball and multiphase flow. In addition, the flow field characteristics in the device were simulated and the contours and streamtraces of velocity magnitude at different nine moments were obtained. Meanwhile, the improvement of flow field characteristics after the addition of grids in crude oil tank drainage device was validated. These findings provide insights into the development of effective selection methods and serve as important references for oil-water separation process.

  12. Combining simulation, instructor-produced videos, and online discussions to stimulate critical thinking in nursing students. (United States)

    Guhde, Jacqueline


    Combining the use of several different types of technology enables an instructor to develop teaching methods to address a specific problem area that students encounter and can greatly affect student learning. This article discusses a program that was developed that utilized SimMan, instructor-produced videos, and online discussion to stimulate critical thinking in beginning-level nursing students. The goal was to make the student aware of the importance of an initial thorough assessment of a client. This is especially difficult since new students are focused on learning the skills and have not had enough clinical experience to appreciate the importance of assessment. The first two videos show a nurse who makes a very incomplete assessment of the client and misses important observations. This leads to the patient (SimMan) going into respiratory distress. The third video demonstrates a complete assessment. The students viewed and discussed the first two videos online. After the third video, students posted their own reflections of this activity including what they learned and how this would change their behavior. The outcome showed an increased awareness of the importance of assessment. Instructors observed a change in behavior, which included early assessment of the client.

  13. Assessing Patterns of Alcohol Taxes Produced by Various Types of Excise Tax Methods--A Simulation Study. (United States)

    Sornpaisarn, Bundit; Kaewmungkun, Chuthaporn; Rehm, Jürgen


    To examine patterns of tax burdens produced by specific, ad valorem, and various types of combination taxations. One hundred unique hypothetical alcoholic beverages were mathematically simulated based on the amount of ethanol and perceived-qualities contained. Second, beverages were assigned values of various costs and tax rates, and third, patterns of tax burden were assessed per unit of ethanol produced by each type of tax method. Different tax methods produced different tax burdens per unit of ethanol for different alcoholic beverages. The tax burden produced by the ad valorem tax resulted in a lower tax burden for low perceived-quality alcoholic beverages. The specific tax method showed the same tax burden for both low and high perceived-quality alcoholic beverages. However, high perceived-quality beverages benefited from a lower tax burden per beverage price. Lastly, the combination tax method resulted in a lower tax burden for medium perceived-quality alcoholic beverages. Under the oligopoly market, ad valorem taxation encourages consumption of low perceived-quality beverages; specific taxation encourages consumption of high perceived-quality beverages; and combination tax methods encourage consumption of medium perceived-quality beverages. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  14. Influence of magnetic field on laser-produced barium plasmas: Spectral and dynamic behaviour of neutral and ionic species

    Energy Technology Data Exchange (ETDEWEB)

    Raju, Makaraju Srinivasa; Gopinath, Pramod, E-mail: [Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547 (India); Singh, R. K.; Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)


    The expansion dynamics and spectral behaviour of plasma produced by a Nd:YAG laser (λ=1.064 μm, pulse width: 8 ns) from barium target and expanding in 0.45 T transverse magnetic field in vacuum (10⁻⁵Torr pressure) are investigated using time-of-flight optical emission spectroscopy. The experiments are carried out at various laser fluences from 12 to 31 J/cm². The temporal profiles of neutral (Ba I 553.5 and 577.7 nm) lines are temporally broadened, while that of ionic (Ba II 413.0 and 455.4 nm) lines show strong confinement in the presence of a magnetic field. In the absence of magnetic field, the temporal profile of Ba I 553.5 nm is exactly reproduced by fitting with two Shifted Maxwell Boltzmann (SMB) Distribution components, while in the presence of a magnetic field the profile could only be fitted with three components. The field enhanced and field induced SMB components of neutral profile are correlated with populations of ground state, metastable states, and long-lived Rydberg states present in the barium plasma, while SMB components of ionic lines are explained on the basis of the presence of super-elastic collisions among the excited species in the plasma. The spatial variation of electron temperature and temporal variation of electron density are deduced and correlated to the different collisional processes in the barium plasma. The ionic profiles show efficient confinement in the presence of a magnetic field at higher fluences.

  15. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants

    Directory of Open Access Journals (Sweden)

    James P. Ewen


    Full Text Available For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i accurately predict important properties of long-chain, linear molecules; and (ii reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP, allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-tom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are

  16. Order Effects of Learning with Modeling and Simulation Software on Field-Dependent and Field-Independent Children's Cognitive Performance: An Interaction Effect (United States)

    Angeli, Charoula; Valanides, Nicos; Polemitou, Eirini; Fraggoulidou, Elena


    The study examined the interaction between field dependence-independence (FD/I) and learning with modeling software and simulations, and their effect on children's performance. Participants were randomly assigned into two groups. Group A first learned with a modeling tool and then with simulations. Group B learned first with simulations and then…

  17. Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields (United States)

    Meher, B. R.; Satish Kumar, M. V.; Bandyopadhyay, Pradipta


    The effect of polarization in biomolecular force field is investigated by performing Molecular Dynamics (MD) simulation of HIV-protease by using two AMBER force fields, namely ff99 (non-polarizable) and ff02 (polarizable). The results of simulation show that the overall structural fluctuation of HIV-protease is reduced in the polarizable simulation. Comparison with the NMR order parameters with the calculated values shows that although some residues are less flexible in the ff02 simulation, the dynamics of two β-hairpins (flaps), the most flexible part of the protein, is relatively insensitive to the effect of polarization. The flap-active site distance, a measure of flap opening, is distinctly more in the non-polarizable simulation. The water count and radial distribution functions are investigated near a representative residue of three types — charged, polar and hydrophobic. Both water count and radial distribution function differ significantly near the charged residue (catalytic Asp25) between the force fields. However, the water movement is similar near the polar (Ser37) and hydrophobic (Ile85) residues. The preliminary results of this investigation show that polarization is likely to influence both global and specific local motions of protein and solvent.

  18. Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Chiranjit [Department of Microbiology, Ohio State University, 484 West 12" t" h Avenue, Columbus, OH 43210 (United States); Jones, F. Sandy; Bigham, Jerry M. [School of Environment and Natural Resources, Ohio State University, 2021 Coffey Road, Columbus, OH 43210 (United States); Tuovinen, Olli H., E-mail: [Department of Microbiology, Ohio State University, 484 West 12" t" h Avenue, Columbus, OH 43210 (United States)


    were used to oxidize Fe{sup 2+} in the absence of K{sup +} and NH{sub 4}{sup +}. • Schwertmannite was the only solid phase formed under those conditions. • Ag{sup +} added to spent media precipitated additional Fe(III) as argentojarosite. • Ag{sup +} added to reference schwertmannite suspension also produced argentojarosite. • Precipitates were analyzed for Munsell color, surface area and XRD properties.

  19. Visualization of the cavitation bubbles produced by a clinical shock wave field using a micropulse LED light (United States)

    Kang, Gwansuk; Huh, Jung Sik; Choi, Min Joo


    Extracorporeal shock wave therapy employs intense shock waves that produce cavitation bubbles understood to play an important role in therapeutic effects. This study considers shock-wave-induced cavitation bubbles, expected to be closely associated with treated therapeutic regions. A simple optical method was devised to visualize the cavitation bubbles under micropulse LED light illumination and to capture an afterimage of the bubbles for their entire lifetime from formation to collapse. The optical images of the cavitation bubbles produced by a clinical shock wave therapeutic device were shown to preserve the characteristics of the focusing shock wave field. The similarity of the characteristics may enable the cavitation cloud image to provide the intensity and location of shock wave irradiation for the clinical quality assurance of therapeutic devices. Further research that includes the dynamic effects in the static images of cavitation bubbles is suggested.

  20. Simulation, Fabrication and Near-Field Characterization of Nanoantenna Couplers for Telecom Range

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Vladimir A.; Malureanu, Radu


    We report a modified bow - tie antenna for light coupling to subwavelength plasmonic slot waveguide . Its effective area is 15 times larger than that of the bare waveguide terminatio n at the wavelength 1.55 μm . We demonstrate numerical simulation, fabrication and , for the first time, full ampl...... amplitude - phase near - field optical characterization of nanocoupler in telecom range ....

  1. Flow dynamics at a river confluence on Mississippi River: field measurement and large eddy simulation (United States)

    Le, Trung; Khosronejad, Ali; Bartelt, Nicole; Woldeamlak, Solomon; Peterson, Bonnie; Dewall, Petronella; Sotiropoulos, Fotis; Saint Anthony Falls Laboratory, University of Minnesota Team; Minnesota Department of Transportation Team


    We study the dynamics of a river confluence on Mississippi River branch in the city of Minneapolis, Minnesota, United States. Field measurements by Acoustic Doppler Current Profiler using on-board GPS tracking were carried out for five campaigns in the summer of 2014 and 2015 to collect both river bed elevation data and flow fields. Large Eddy Simulation is carried out to simulate the flow field with the total of 100 million grid points for the domain length of 3.2 km. The simulation results agree well with field measurements at measured cross-sections. The results show the existence of wake mode on the mixing interface of two branches near the upstream junction corner. The mutual interaction between the shear layers emanating from the river banks leading to the formation of large scale energetic structures that leads to ``switching'' side of the flow coherent structures. Our result here is a feasibility study for the use of eddy-resolving simulations in predicting complex flow dynamics in medium-size natural rivers. This work is funded by Minnesota Dept. Transportation and Minnesota Institute of Supercomputing.

  2. GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy (United States)

    Yamanaka, Akinori; Aoki, Takayuki; Ogawa, Satoi; Takaki, Tomohiro


    The phase-field simulation for dendritic solidification of a binary alloy has been accelerated by using a graphic processing unit (GPU). To perform the phase-field simulation of the alloy solidification on GPU, a program code was developed with computer unified device architecture (CUDA). In this paper, the implementation technique of the phase-field model on GPU is presented. Also, we evaluated the acceleration performance of the three-dimensional solidification simulation by using a single NVIDIA TESLA C1060 GPU and the developed program code. The results showed that the GPU calculation for 5763 computational grids achieved the performance of 170 GFLOPS by utilizing the shared memory as a software-managed cache. Furthermore, it can be demonstrated that the computation with the GPU is 100 times faster than that with a single CPU core. From the obtained results, we confirmed the feasibility of realizing a real-time full three-dimensional phase-field simulation of microstructure evolution on a personal desktop computer.

  3. RPA Field Simulations:Dilemma Training for Legal and Ethical Decision Making (United States)


    RPA Field Simulations: Dilemma -Training for Legal and Ethical Decision-Making Professor Wilbur Scott Dept of...composite scenarios were developed incorporating best features, i.e., “ ethically challenging” moments: wicked dilemmas * cadets were...Impact on Ethics and Law of Armed Conflicts” University of Zurich 6-7 November 2015 BACKGROUND  4th year cadets in Behavioral

  4. General relativistic weak-field limit and Newtonian N-body simulations

    DEFF Research Database (Denmark)

    Fidler, Christian; Tram, Thomas; Rampf, Cornelius


    We show how standard Newtonian N-body simulations can be interpreted in terms of the weak-field limit of general relativity by employing the recently developed Newtonian motion gauge. Our framework allows the inclusion of radiation perturbations and the non-linear evolution of matter. We show how...

  5. Numerical Simulations, Mean Field Theory and Modulational Stability Analysis of Thermohaline Intrusions (United States)


    the temporal and spatial variability of the ocean circulation (Schmitt, 2003). This signifies that these thermohaline intrusions cannot be ignored...still calculating the net effects of double diffusion via crude parameterizations, the study showed that the thermohaline circulations in the model...SIMULATIONS, MEAN FIELD THEORY AND MODULATIONAL STABLITY ANALYSIS OF THERMOHALINE INTRUSIONS by Mark A. Hebert September 2011 Thesis Advisor

  6. Studies on the survival of Ascaris suum eggs under laboratory and simulated field conditions

    NARCIS (Netherlands)

    Gaasenbeek, C.P.H.; Borgsteede, F.H.M.


    A series of four experiments was carried out to study the survival of Ascaris suum eggs: in a pig slurry unit on a farm, in the laboratory under anaerobic conditions and different relative humidities (rH), and under simulated field conditions. Survival of eggs in the pig slurry unit was 20% after

  7. Characterizing the variability in chemical composition of flowback and produced waters - results from lab and field studies (United States)

    Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.; Schmid, Franziska E.; Zhu, Yaling; Lipińska, Olga; Konieczyńska, Monika


    The huge volumes and unknown composition of flowback and produced waters cause major public concerns about the environmental and social compatibility of hydraulic fracturing and the exploitation of gas from unconventional reservoirs. Flowback and produced waters contain not only residues of fracking additives but also chemical species that are dissolved from the target shales themselves. Shales are a heterogeneous mixture of minerals, organic matter, and formation water and little is actually understood about the fluid-rock interactions occurring during hydraulic fracturing of the shales and their effects on the chemical composition of flowback and produced water. To overcome this knowledge gap, interactions of different shales with different artificial stimulation fluids were studied in lab experiments under ambient and elevated temperature and pressure conditions. These lab experiments showed clearly that fluid-rock interactions change the chemical composition of the initial stimulation fluid and that geochemistry of the fractured shale is relevant for understanding flowback water composition. In addition, flowback water samples were taken after hydraulic fracturing of one horizontal well in Pomeranian region, Poland and investigated for their chemical composition. With this presentation, results from lab and field studies will be presented and compared to decipher possible controls on chemical compositions of flowback and produced water.

  8. Numerical simulation of positive streamer development in thundercloud field enhanced near raindrops

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.


    electric field in a vicinity of hydrometeors. To test the idea, we carry out numerical simulations of positive streamer development around charged water drops at air pressure typical at thundercloud altitudes and at different background fields, drop sizes and charges. With real drop sizes and charges......As the threshold field strength for the breakdown in air significantly exceeds the maximum measured thundercloud strength 3 kV/cm/atm, the problem of lightning initiation remains unclear. According to the popular idea, lightning can be initiated from streamer discharges developed in the enhanced...

  9. Austenite Grain Growth in Peritectic Solidified Carbon Steels Analyzed by Phase-Field Simulation (United States)

    Ohno, Munekazu; Tsuchiya, Shingo; Matsuura, Kiyotaka


    The formation of coarse columnar grains (CCGs) in the as-cast austenite structure of peritectic carbon steels is a serious problem in continuous casting processes. Recently, it was elucidated that the formation of CCGs is ascribed to a discontinuous grain growth. Furthermore, the critical condition for the discontinuous growth to occur was elicited on the basis of phase-field simulations and a theory of grain growth. In this study, by means of the phase-field simulations, the detailed investigation is carried out for the grain coarsening of the as-cast austenite structure. It is demonstrated in the two-dimensional simulations that the coarsest grain structure emerges by the discontinuous growth in the vicinity of the critical condition. In addition, a model for predicting the upper limit of grain size during the discontinuous growth is proposed. The model successfully describes the experimental result with reasonable accuracy.

  10. Simulations of multi-contrast x-ray imaging using near-field speckles

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Herzen, Julia; Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany)


    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  11. S-matrix theory of two-electron momentum distribution produced by double ionization in intense laser fields. (United States)

    Becker, A; Faisal, F


    Recently observed momentum distribution of doubly charged recoil-ions of atoms produced by femtosecond infrared laser pulses is analyzed using the so-called intense-field many-body S-matrix theory. Observed characteristics of the momentum distributions, parallel and perpendicular to the polarization axis, are reproduced by the theory. It is shown that correlated energy-sharing between the two electrons in the intermediate state and their 'Volkov-dressing' in the final state, can explain the origin of these characteristics.

  12. Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System. (United States)

    Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi


    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system.

  13. Analytical solutions and particle simulations of cross-field plasma sheaths

    Energy Technology Data Exchange (ETDEWEB)

    Gerver, M.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Plasma Fusion Center); Parker, S.E.; Theilhaber, K. (California Univ., Berkeley, CA (USA). Electronics Research Lab.)


    Particles simulations have been made of an infinite plasma slab, bounded by absorbing conducting walls, with a magnetic field parallel to the walls. The simulations have been either 1-D, or 2-D, with the magnetic field normal to the simulation plane. Initially, the plasma has a uniform density between the walls, and there is a uniform source of ions and electrons to replace particles lost to the walls. In the 1-D case, there is no diffusion of the particle guiding centers, and the plasma remains uniform in density and potential over most of the slab, with sheaths about a Debye length wide where the potential rises to the wall potential. In the 2-D case, the density profile becomes parabolic, going almost to zero at the walls, and there is a quasineutral presheath in the bulk of the plasma, in addition to sheaths near the walls. Analytic expressions are found for the density and potential profiles in both cases, including, in the 2-D case, the magnetic presheath due to finite ion Larmor radius, and the effects of the guiding center diffusion rate being either much less than or much grater than the energy diffusion rate. These analytic expressions are shown to agree with the simulations. A 1-D simulation with Monte Carlo guiding center diffusion included gives results that are good agreement with the much more expensive 2-D simulation. 17 refs., 10 figs.

  14. Combining cell-based hydrodynamics with hybrid particle-field simulations: efficient and realistic simulation of structuring dynamics. (United States)

    Sevink, G J A; Schmid, F; Kawakatsu, T; Milano, G


    We have extended an existing hybrid MD-SCF simulation technique that employs a coarsening step to enhance the computational efficiency of evaluating non-bonded particle interactions. This technique is conceptually equivalent to the single chain in mean-field (SCMF) method in polymer physics, in the sense that non-bonded interactions are derived from the non-ideal chemical potential in self-consistent field (SCF) theory, after a particle-to-field projection. In contrast to SCMF, however, MD-SCF evolves particle coordinates by the usual Newton's equation of motion. Since collisions are seriously affected by the softening of non-bonded interactions that originates from their evaluation at the coarser continuum level, we have devised a way to reinsert the effect of collisions on the structural evolution. Merging MD-SCF with multi-particle collision dynamics (MPCD), we mimic particle collisions at the level of computational cells and at the same time properly account for the momentum transfer that is important for a realistic system evolution. The resulting hybrid MD-SCF/MPCD method was validated for a particular coarse-grained model of phospholipids in aqueous solution, against reference full-particle simulations and the original MD-SCF model. We additionally implemented and tested an alternative and more isotropic finite difference gradient. Our results show that efficiency is improved by merging MD-SCF with MPCD, as properly accounting for hydrodynamic interactions considerably speeds up the phase separation dynamics, with negligible additional computational costs compared to efficient MD-SCF. This new method enables realistic simulations of large-scale systems that are needed to investigate the applications of self-assembled structures of lipids in nanotechnologies.

  15. Bacillus cereus NVH 0500/00 Can Adhere to Mucin but Cannot Produce Enterotoxins during Gastrointestinal Simulation (United States)

    Tsilia, Varvara; Kerckhof, Frederiek-Maarten; Heyndrickx, Marc


    Adhesion to the intestinal epithelium could constitute an essential mechanism of Bacillus cereus pathogenesis. However, the enterocytes are protected by mucus, a secretion composed mainly of mucin glycoproteins. These may serve as nutrients and sites of adhesion for intestinal bacteria. In this study, the food poisoning bacterium B. cereus NVH 0500/00 was exposed in vitro to gastrointestinal hurdles prior to evaluation of its attachment to mucin microcosms and its ability to produce nonhemolytic enterotoxin (Nhe). The persistence of mucin-adherent B. cereus after simulated gut emptying was determined using a mucin adhesion assay. The stability of Nhe toward bile and pancreatin (intestinal components) in the presence of mucin agar was also investigated. B. cereus could grow and simultaneously adhere to mucin during in vitro ileal incubation, despite the adverse effect of prior exposure to a low pH or intestinal components. The final concentration of B. cereus in the simulated lumen at 8 h of incubation was 6.62 ± 0.87 log CFU ml−1. At that point, the percentage of adhesion was approximately 6%. No enterotoxin was detected in the ileum, due to either insufficient bacterial concentrations or Nhe degradation. Nevertheless, mucin appears to retain B. cereus and to supply it to the small intestine after simulated gut emptying. Additionally, mucin may play a role in the protection of enterotoxins from degradation by intestinal components. PMID:26497468

  16. Analysis and Simulation of Generating Terahertz Surface Waves in Laser-Assisted Field Emission (United States)

    Hagmann, Mark; Kumar, Gagan; Pandey, Shashank; Nahata, Ajay


    When the radiation from two lasers is focused on a field emission diode the electric field from the radiation is superimposed on the applied DC field, and the nonlinear dependence of the emitted current on the electric field causes the current to oscillate at the difference frequency for the two lasers. Finite Difference-Time Domain simulations and analytical solutions for a paraboloidal model of the field emission tip show that the current oscillations create a transverse-magnetic (TM) surface wave on the tip. The analytical solution for the TM fields in paraboloidal coordinates consists of products of regular and irregular Coulomb wave functions. The width of the tip is much smaller than the skin depth so interior and exterior solutions are required and a summation of the products is required to satisfy the boundary conditions at the surface of the tip. The simulations are consistent with the analytical solution and show that there is a quasi-stationary region near the apex, a transition region where the surface waves are formed, and the far-field where the waves propagate outward on the tip.

  17. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.


    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  18. A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids. (United States)

    Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Li, Guohui


    In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.

  19. The field line map approach for simulations of magnetically confined plasmas

    CERN Document Server

    Stegmeir, Andreas; Maj, Omar; Hallatschek, Klaus; Lackner, Karl


    In the presented field line map approach the simulation domain of a tokamak is covered with a cylindrical grid, which is Cartesian within poloidal planes. Standard finite-difference methods can be used for the discretisation of perpendicular (w.r.t.~magnetic field lines) operators. The characteristic flute mode property $\\left(k_{\\parallel}\\ll k_{\\perp}\\right)$ of structures is exploited computationally by a grid sparsification in the toroidal direction. A field line following discretisation of parallel operators is then required, which is achieved via a finite difference along magnetic field lines. This includes field line tracing and interpolation or integration. The main emphasis of this paper is on the discretisation of the parallel diffusion operator. Based on the support operator method a scheme is constructed which exhibits only very low numerical perpendicular diffusion. The schemes are implemented in the new code GRILLIX, and extensive benchmarks are presented which show the validity of the approach ...

  20. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study (United States)

    Wang, XiaoLiang; Li, JiaChun


    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  1. Optimization of cylindrical textile organic field effect transistors using TCAD simulation tool (United States)

    Louris, E.; Stefanakis, D.; Priniotakis, G.; Van Langenhove, L.; Tassis, D.


    We used a commercial TCAD tool in order to simulate a cylindrical Textile Organic Field Effect Transistor (TOFET) and study the impact of different critical region sizes in its electrical characteristics. The simulation was based on models and parameters similar to those of previous simulations in Organic Thin Film Transistors. We have seen that it is potentially feasible to build transistors which can operate in low voltages by using typical materials. Even if some of the selected typical materials have to be replaced by others more suitable for practical use in the textile industry, the simulation is a good starting point for estimating the device typical operation and parameters. By optimizing critical region sizes of the device we conclude that the device should have an active layer thickness below 100 nm, channel length around 10μm and gate oxide thickness as small as possible (300 nm or less), in order to have optimum transistor performance.

  2. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment (United States)

    Farmer, W. A.; Koning, J. M.; Strozzi, D. J.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O. S.; Rosen, M. D.


    We present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the "Biermann battery" mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the field is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ωeτei≲1 , where Ωe=e B /mec and τei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high-Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P2/P0 by ˜20 % . This indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.

  3. Effects of self-generated magnetic fields on hohlraum simulation at NIF (United States)

    Farmer, W. A.; Strozzi, D. J.; Hinkel, D. E.; Rosen, M. D.; Jones, O. S.; Koning, J. M.; Marinak, M. M.


    Non-parallel density and pressure gradients that develop during matter ablation on a laser irradiated target lead to self-generated magnetic fields through the well-known Biermann-battery effect. For laser intensities present during ICF relevant scenarios on NIF, megagauss fields can develop. The presence of large magnetic fields leads to a non-negligible Hall parameter, defined as the product of the electron cyclotron frequency and the electrion-ion collision time. When the Hall parameter is of order unity or greater, a significant reduction in the cross-field heat flux occurs. Large magnetic fields are limited by the inclusion of the Nernst term, which advects the magnetic fields in the direction of the heat flux (or from the ablation front into the denser wall). This advection combined with resistive diffusion of the magnetic field limits the strength of the self-generated field within the hohlraum. We report changes in simulation results obtained when using the MHD package in the radiation-hydrodynamics code, HYDRA, which models the evolutions of the magnetic fields. This work was supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Kinetic simulation technique for plasma flow in strong external magnetic field (United States)

    Ebersohn, Frans H.; Sheehan, J. P.; Gallimore, Alec D.; Shebalin, John V.


    A technique for the kinetic simulation of plasma flow in strong external magnetic fields was developed which captures the compression and expansion of plasma bound to a magnetic flux tube as well as forces on magnetized particles within the flux tube. This quasi-one-dimensional (Q1D) method resolves a single spatial dimension while modeling two-dimensional effects. The implementation of this method in a Particle-In-Cell (PIC) code was verified with newly formulated test cases which include two-particle motion and particle dynamics in a magnetic mirror. Results from the Q1D method and fully two dimensional simulations were compared and error analyses performed verifying that the Q1D model reproduces the fully 2D results in the correct regimes. The Q1D method was found to be valid when the hybrid Larmor radius was less than 10% of the magnetic field scale length for magnetic field guided plasma expansions and less than 1% of the magnetic field scale length for a plasma in a converging-diverging magnetic field. The simple and general Q1D method can readily be incorporated in standard 1D PIC codes to capture multi-dimensional effects for plasma flow along magnetic fields in parameter spaces currently inaccessible by fully kinetic methods.

  5. Conformal fields in prostate radiotherapy: A comparison between measurement, calculation and simulation

    Directory of Open Access Journals (Sweden)

    Seied R Mahdavi


    Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.

  6. Measurement and numerical simulation of high intensity focused ultrasound field in water (United States)

    Lee, Kang Il


    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  7. Isolation of Listeria monocytogenes in a salami producing plant in Piedmont: use of pulsed field gel electrophoresis to trace contaminations

    Directory of Open Access Journals (Sweden)

    Annalisa Costa


    Full Text Available The ability of Listeria monocytogenes to survive in different environments and establish persistent contaminations is an important issue for food producers. This study aimed to assess the environmental contamination level in an Italian salami producing plant and to identify possible sources of contamination using pulsed field gel electrophoresis (PFGE on L. monocytogenes isolates obtained from environmental (n=54 and meat samples (n=9 collected over 9 months. Detection of L. monocytogenes was performed using the UNI EN ISO 11290-1 procedure and every isolate was characterised with PFGE, using AscI and ApaI restriction enzymes. The environmental detection frequencies were constant both in the first (22% and the second (27% visit, thus suggesting the presence of strains adapted to the processing plant. Equipments can represent a reservoir of L. monocytogenes from which it can spread into the whole producing plant. The reservoir was documented by PFGE results which showed several persistent strains. Moreover, PFGE proved the cross-contamination between surfaces and semiprocessed products like pastes, which furthermore have been contaminated by L. monocytogenes in 100% of samples in the first two visits and in 33% in the last visit. This study gave evidence that detection methods and PFGE characterisation can be effective tools to detect possible sources and routes of contamination.

  8. Simulation supported field study of environmental tobacco smoke leakage from smoking rooms in 19 Dutch pubs

    NARCIS (Netherlands)

    Jacobs, P.; Opperhuizen, A.


    Environmental tobacco smoke (ETS) is produced during smoking and smoldering of tobacco products. This field study has measured how much ETS is leaking from smoking rooms into smoke free areas in 19 Dutch cafes. Nicotine, 3-EP and PM2,5 have been used as tracer compounds for ETS. The use of smoking

  9. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources (United States)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.


    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  10. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields (United States)

    Lee, M.W.; Meuwly, M.


    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  11. First Results from Detailed Electric and Magnetic Field Measurements of the Interaction of a Laser-Produced and Ambient Plasma (United States)

    Schaeffer, D. B.; Hofer, L. R.; Heuer, P. V.; Constantin, C. G.; Bondarenko, A. S.; Everson, E. T.; Clark, S. E.; Gekelman, W.; Niemann, C.


    Utilizing high-repetition lasers combined with a high-repetition ambient plasma allows for detailed 3D scans of the interaction of the laser-produced and ambient plasmas. We present the first results from experiments combining a newly-commissioned high-repetition (1 Hz) laser with the 1 Hz ambient plasma of the Large Plasma Device (LAPD) at the University of California, Los Angeles. The laser (20 J, 14 ns) was focused on a cylindrical plastic target embedded in the ambient LAPD plasma, resulting in an ablated debris-plasma that expanded perpendicular to the background magnetic field. The debris-ambient plasma interaction was studied with 3-axis magnetic flux probes, mounted on a 3D motion drive for detailed, high-resolution planar scans both along and perpendicular to the background field. Measurements were also taken using filtered fast-gate (ns) imaging, emissive Langmuir probes, and emissive spectroscopy. The results show that the debris ions are de-energized inside the diamagnetic cavity, while the ambient ions are accelerated through laminar electric fields.

  12. Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Michael Allen [Univ. of California, Davis, CA (United States)


    An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere`s law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods.

  13. Field Test and Simulation of a 400 kV Cross-Bonded Cable System

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella; Gustavsen, Bjørn; Bak, Claus Leth


    This paper discusses cable modeling for long high voltage AC underground cables. In investigating the possibility of using long cables instead of overhead lines, the simulation results must be trustworthy. Therefore, model validation is of great importance. This paper gives a benchmark case...... for measurements on a 400 kV cable system with cross bonded sheaths. The paper describes in detail the modeling procedure for the cable system and compares simulation results with the transient field test results. It is shown that although the main characteristics of the waveforms are well reproduced...

  14. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. (United States)

    Pall, Martin L


    The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca(2+) /calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca(2+) -mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca(2+) /calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects. © 2013 The Author. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular

  15. The effect of organic matter on CCN properties of particles produced in laboratory simulations of bubble bursting (United States)

    King, S.; Rosenoern, T.; Nilsson, D.; Bilde, M.


    In this study, we measure the submicron size distributions and cloud condensation nucleus properties of aerosol particles produced from a laboratory system that simulates particle formation from bubble bursting. The experimental method consists of a plunging water jet into a stainless steel tank filled with 10 L of artificial seawater, with and without added organic compounds. The tank is equipped with a water pump that can be set at variable speeds. Preliminary results from size distribution measurements agree with previous studies, in that the number concentration and size of particles produced depend on the water jet flux. Observations of cloud condensation nucleus (CCN) activity are also affected by the water pump speed. The CCN activity of artificial seawater, at a salinity of 35‰ and with no added organic compounds, is similar to that of pure sodium chloride. Addition of as much as 1 g/L of D-mannitol does not considerably alter the particle size distribution, nor does it alter the observed CCN activity. Addition of less than 5 mg/L of the surfactant sodium dodecyl sulfate leads to shifts in size distribution roughly similar to those from published results, in which other methods of simulating bubble bursting were used. The growing use of experimental methods for the reproduction of bubble bursting in aerosol laboratories gives us reason to explore possible differences in the properties of particles generated from similar systems. Comparisons between observations from the above-mentioned 10-L tank and those from a larger tank filled with approximately 100 L of identical artificial seawater will also be presented.

  16. FDTD simulations of near-field mediated semiconductor molecular optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dai; Sakrow, Marcus; Mihaljevic, Josip; Meixner, Alfred J. [Institute of Physical and Theoretical Chemistry, University Tuebingen, Auf der Morgenstelle 8, Tuebingen (Germany)


    The optical properties of molecules can be dramatically altered when they are in a close proximity of an excited metal antenna. In order to get insight into how the antenna generated near-field influences the optical properties of low quantum yield molecules, we carried out FDTD simulations of a sharp laser-illuminated Au tip approaching to a semiconductor thin film. The time-averaged field distribution between the semiconductor thin film and the tip antenna is calculated regarding to different distances. Our calculation demonstrates that the coupling between the localized plasmon at the tip apex and semiconductor polariton can be achieved building up a distance-dependent high field enhancement. Our experimental results show that such a high field strength enhances not only the excitation process by a factor of 104, but alters the radiative: non-radiative decay rate giving approx. 15 times stronger photoluminescence emission.

  17. Integrated simulation of magnetic-field-assist fast ignition laser fusion

    CERN Document Server

    Johzaki, T; Sunahara, A; Sakagami, Y Sentoku H; Hata, M; Taguchi, T; Mima, K; Kai, Y; Ajimi, D; Endo, T; Yogo, A; Arikawa, Y; Fujioka, S; Shiraga, H; Azechi, H


    To enhance the core heating efficiency in fast ignition laser fusion, the concept of relativistic electron beam guiding by external magnetic fields was evaluated by integrated simulations for FIREX class targets. For the cone-attached shell target case, the core heating performance is deteriorated by applying magnetic fields since the core is considerably deformed and the most of the fast electrons are reflected due to the magnetic mirror formed through the implosion. On the other hand, in the case of cone-attached solid ball target, the implosion is more stable under the kilo-tesla-class magnetic field. In addition, feasible magnetic field configuration is formed through the implosion. As the results, the core heating efficiency becomes double by magnetic guiding. The dependence of core heating properties on the heating pulse shot timing was also investigated for the solid ball target.

  18. A time-series analysis of the 20th century climate simulations produced for the IPCC's Fourth Assessment Report.

    Directory of Open Access Journals (Sweden)

    Francisco Estrada

    Full Text Available In this paper evidence of anthropogenic influence over the warming of the 20th century is presented and the debate regarding the time-series properties of global temperatures is addressed in depth. The 20th century global temperature simulations produced for the Intergovernmental Panel on Climate Change's Fourth Assessment Report and a set of the radiative forcing series used to drive them are analyzed using modern econometric techniques. Results show that both temperatures and radiative forcing series share similar time-series properties and a common nonlinear secular movement. This long-term co-movement is characterized by the existence of time-ordered breaks in the slope of their trend functions. The evidence presented in this paper suggests that while natural forcing factors may help explain the warming of the first part of the century, anthropogenic forcing has been its main driver since the 1970's. In terms of Article 2 of the United Nations Framework Convention on Climate Change, significant anthropogenic interference with the climate system has already occurred and the current climate models are capable of accurately simulating the response of the climate system, even if it consists in a rapid or abrupt change, to changes in external forcing factors. This paper presents a new methodological approach for conducting time-series based attribution studies.

  19. Simulation

    CERN Document Server

    Ross, Sheldon


    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  20. Enviromental behavior of sulfentrazone and fipronil in a Brazilian clayey latosol: field experiment and simulation

    Directory of Open Access Journals (Sweden)

    Rômulo Penna Scorza Júnior


    Full Text Available There has been an urgent need to assess pesticide environmental behavior under Brazilian field conditions and to evaluate the risks associated to its use in agriculture. Besides a qualitative and quantitative interpretation of field experiments to acquire understanding about pesticide environmental behaviour, field experiments are important to test pesticide fate models. Environmental behaviour of fipronil and sulfentrazone in a sugarcane area in Dourados, MS, was evaluated until 257 days after application. Moreover, the PEARL model was tested to simulate the fate of these two pesticides in the field. Soil samples for pesticide residue quantification and water content were taken at 0-10, 10-30, 30-50, 50-70 and 70-100 cm depth. There was a fast dissipation of both pesticides at soil surface within 15 days after application and their leaching was not beyond 30 cm depth. Dissipation and leaching satisfactory simulations for both pesticides were achieved only after calibration of half-life values or using a reduced initial dose. This study shows that fast dissipation of pesticides in the field can be an important process to consider when assessing the environmental behavior of pesticides in Brazil.

  1. Active tower damping and pitch balancing - design, simulation and field test (United States)

    Duckwitz, Daniel; Shan, Martin


    The tower is one of the major components in wind turbines with a contribution to the cost of energy of 8 to 12% [1]. In this overview the load situation of the tower will be described in terms of sources of loads, load components and fatigue contribution. Then two load reduction control schemes are described along with simulation and field test results. Pitch Balancing is described as a method to reduce aerodynamic asymmetry and the resulting fatigue loads. Active Tower Damping is reducing the tower oscillations by applying appropiate pitch angle changes. A field test was conducted on an Areva M5000 wind turbine.

  2. Simulation of electrical and thermal fields in a multimode microwave oven using software written in C++ (United States)

    Abrudean, C.


    Due to multiple reflexions on walls, the electromagnetic field in a multimode microwave oven is difficult to estimate analytically. This paper presents a C++ program that calculates the electromagnetic field in a resonating cavity with an absorbing payload, uses the result to calculate heating in the payload taking its properties into account and then repeats. This results in a simulation of microwave heating, including phenomena like thermal runaway. The program is multithreaded to make use of today’s common multiprocessor/multicore computers.

  3. Penelope simulations of photon calibration fields at the LMIV-IPEN, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kakoi, Adelia Aparecida Yuka; Heredia, Eduardo; Xavier, Marcos; Rodrigues Junior, Orlando; Cardoso, Joaquim C.S., E-mail: adelia@usp.b, E-mail: jcardoso@ipen.b, E-mail: rodrijr@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    In this article, the photon spectra of Eu-152 reference photon field of the detection system at LMIV-IPEN is presented, which was calculated by means of Monte Carlo simulations by using the computer transport code Penelope. The contributions from scattered photons to the spectra of the fields have been determined with regard to the quantities photon fluence. The mean photon energies calculated with respect to the mentioned quantity are listed. Differences in the design of the sources and their influence on the spectra are discussed. The dependence of the scattered photon component from the energy was examined by feeding the Penelope code with monoenergetic photons of different energies. (author)

  4. Sustainable numerical scheme for molecular dynamics simulation of the dusty plasmas in an external magnetic field (United States)

    Dzhumagulova, K. N.; Ramazanov, T. S.


    The method, which allows one to carry out computer simulation of a system of charged particles in a strong external homogeneous magnetic field with a time step that is independent on the Larmor oscillation time, was generalized for the case of the presence of the surrounding background for the moving particles. Correctly taking into account a strong magnetic field and friction force, which both depend on the particles velocities, we obtained solution resistant to a change in the time step within the second-order Velocity Verlet propagation scheme.

  5. Useful Field of View in Simulated Driving: Reaction Times and Eye Movements of Drivers

    Directory of Open Access Journals (Sweden)

    Yasuhiro Seya


    Full Text Available To examine the spatial distribution of a useful field of view (UFOV in driving, reaction times (RTs and eye movements were measured in simulated driving. In the experiment, a normal or mirror-reversed letter “E” was presented on driving images with different eccentricities and directions from the current gaze position. The results showed significantly slower RTs in the upper and upper left directions than in the other directions. The RTs were significantly slower in the left directions than in the right directions. These results suggest that the UFOV in driving may be asymmetrical among the meridians in the visual field.

  6. Electromagnetic field simulation and crack analysis of electromagnetic forming of Magnesium alloy tube


    Wang, Z. F.; Piao, F. X.; Wang, Z.Y.; Cui, J.Z.; Ma, M. X.


    The AZ31 magnesium alloy tube was used for electromagnetic forming experiment of three kinds of input voltages. The stress-strain state of tube forming was analyzed. It was shown that the cause of oblique crack of tube was σr of axial inhomogeneous distribution and σz, and the cause of longitudinal crack was σr and σè of inhomogeneous distribution in circumferential direction. Moreover, the electromagnetic field and force field during electromagnetic forming was simulated by ANSYS software. T...

  7. Simulation of the pressure field near a jet by randomly distributed vortex rings (United States)

    Fung, Y. T.; Liu, C. H.; Gunzburger, M. D.


    Fluctuations of the pressure field in the vicinity of a jet are simulated numerically by a flow model consisting of axially symmetric vortex rings with viscous cores submerged in a uniform stream. The time interval between the shedding of successive vortices is taken to be a random variable with a probability distribution chosen to match that from experiments. It is found that up to 5 diameters downstream of the jet exit, statistics of the computed pressure field are in good agreement with experimental results. Statistical comparisons are provided for the overall sound pressure level, the peak amplitude, and the Strouhal number based on the peak frequency of the pressure signals.

  8. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    Directory of Open Access Journals (Sweden)

    Rehmani Muhammad


    Full Text Available Abstract To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time.

  9. Simulation of future global warming scenarios in rice paddies with an open-field warming facility. (United States)

    Rehmani, Muhammad Ishaq Asif; Zhang, Jingqi; Li, Ganghua; Ata-Ul-Karim, Syed Tahir; Wang, Shaohua; Kimball, Bruce A; Yan, Chuan; Liu, Zhenghui; Ding, Yanfeng


    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time.

  10. Phase-field simulation study of the migration of recrystallization boundaries

    DEFF Research Database (Denmark)

    Moelans, Nele; Godfrey, Andy; Zhang, Yubin


    amplitudes, however, the velocity scales with the maximum of the deformation energy density along the variation, resulting in a considerably larger velocity than that obtained from standard recrystallization models. The shape of the migrating grain boundary greatly depends on the local characteristics......We present simulation results based on a phase-field model that describes the local migration of recrystallization boundaries into varying deformation energy fields. An important finding from the simulations is that the overall migration rate of the recrystallization front can be considerably...... affected by the variations in the deformed microstructure, resulting in two regimes. For variations with low amplitude, the overall boundary velocity scales with the average stored deformation energy density. This behavior is in agreement with generally accepted theories of recrystallization. For larger...

  11. Simulations of Cold Electroweak Baryogenesis: quench from portal coupling to new singlet field (United States)

    Mou, Zong-Gang; Saffin, Paul M.; Tranberg, Anders


    We compute the baryon asymmetry generated from Cold Electroweak Baryogenesis, when a dynamical Beyond-the-Standard-Model scalar singlet field triggers the spinodal transition. Using a simple potential for this additional field, we match the speed of the quench to earlier simulations with a "by-hand" mass flip. We find that for the parameter subspace most similar to a by-hand transition, the final baryon asymmetry shows a similar dependence on quench time and is of the same magnitude. For more general parameter choices the Higgs-singlet dynamics can be very complicated, resulting in an enhancement of the final baryon asymmetry. Our results validate and generalise results of simulations in the literature and open up the Cold Electroweak Baryogenesis scenario to further model building.

  12. A Monte Carlo simulation for the field theory with quartic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sergio Mittmann dos [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio Grande do Sul (IFRS), Porto Alegre, RS (Brazil)


    Full text: In the work [1-S. M. Santos, B. E. J. Bodmann and A. T. Gomez, Um novo metodo computacional para a teoria de campos na rede: resultados preliminares, IV Escola do Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, 2002; and 2-S. M. Santos and B. E. J. Bodmann, Simulacao na rede de teorias de campos quanticos, XXVIII Congresso Nacional de Matematica Aplicada e Computacional (CNMAC), Sao Paulo, 2005], a computational method on the lattice was elaborated for the problem known as scalar field theory with quartic interaction (for instance, see: J. R. Klauder, Beyound conventional quantization, Cambridge: Cambridge University Press, 2000). This one introduced an algorithm, which allows the simulation of a given field theory and is independent of the lattice spacing, by redefining the fields and the parameters (the mass m and the coupling constant g). This kind of approach permits varying the dimension of the lattice without changing the computational complexity of the algorithm. A simulation was made using the Monte Carlo method, where the renormalized mass m{sub R}, the renormalized coupling constant g{sub R} and the two point correlation function were determined with success. In the present work, the genuine computational method is used for new simulations. Now, the Monte Carlo method is not used just for the simulation of the algorithm, like in [1, 2], but also for defining the adjust parameters (the mass and the coupling constant), introduced ad hoc in [1, 2]. This work presents the first simulations' outcomes, where best results that [1, 2] were determined, for the renormalized mass and the renormalized coupling constant. (author)

  13. The pattern of the electromagnetic field emitted by mobile phones in motor vehicle driving simulators

    Directory of Open Access Journals (Sweden)

    Piotr Politański


    Full Text Available Introduction: The paper reports the results of the determinations of UMTS EMF distributions in the driver's cab of motor vehicle simulators. The results will serve as the basis for future research on the influence of EMF emitted by mobile phones on driver physiology. Materials and Methods: Two motor vehicle driving simulators were monitored, while an EMF source was placed at the driver's head or on the dashboard of the motor vehicle driving simulator. For every applied configuration, the maximal electric field strength was measured, as were the values at 16 points corresponding to chosen locations on a driver's or passenger's body. Results: When the power was set for the maximum (49 mW, a value of 27 V/m was measured in the vicinity of the driver's head when the phone was close to the head. With the same power, when the phone was placed on the dashboard, the measured maximum was 15.2 V/m in the vicinity of the driver's foot. Similar results were obtained for the passenger. Significant perturbations in EMF distribution and an increase in electric field strength values in the motor vehicle driving simulator were also observed in comparison to free space measurements, and the electric field strength was up to 3 times higher inside the simulator. Conclusions: This study can act as the basis of future studies concerning the influence of the EMF emitted by mobile phones on the physiology of the driver. Additionally, the authors postulate that it is advisable to keep mobile phones at a distance from the head, i.e. use, whenever possible, hands-free kits to reduce EMF exposure, both for drivers and passengers.

  14. Numerical Simulation and Field Observations of Erosional Riverbanks: a Case Study on Uji River, Japan. (United States)

    Alyeldien, A.; Takebayashi, H.; Fujita, M.


    Retreat of left bank of Uji River at 43.0km is numerically simulated and the results are compared with the field observations, Fig. (1). Water level data were measured at ten observation holes normal to the left bank at 43.0km from January to September, 2011, Fig.(2). In addition, data of river stage, flow rate, and rainfall were measured during the same period, Fig. (3). Riverbank retreat distance was obtained from satellite images by Google Earth, Fig. (4). Numerical simulations for riverbanks are done by coupling three sub-models FERB-Model, (Fluvial Erosion of RiverBanks), seepage flow, and bank stability. The three models are vertical 2-D models based on the finite element method with moving boundaries. The response of riverbank to the oscillated water level in Uji River and the consequent groundwater table is simulated. Simulation cases with and without seepage flow are considered and the results are discussed. Simulation results showed 1) the bank retreat distance during the observation period, 2) the trend of factor of safety through time, 3) the amount of sediment that transported by fluvial erosion. During the 7 months of simulation period, two failure events took place at 22nd May and 1st July. The simulated retreat distance for the bank top line was about 1.8 meters in 7 months (equivalent to 2.1 m/year). While the average erosion rate as measured from satellite images is about 4.0 m/year. The reason why our simulation underestimates the bank retreat rate may return to neglecting the effect of tension cracks and vegetation roots which are thought to be of important effect. One more reason is that our model doesn't consider flow in curved channel. This research is supported by SOUSEI Project: Program for Risk Information on Climate Change.

  15. Wetting of polymer liquids: Monte Carlo simulations and self-consistent field calculations

    CERN Document Server

    Müller, M


    Using Monte Carlo simulations and self-consistent field (SCF) theory we study the surface and interface properties of a coarse grained off-lattice model. In the simulations we employ the grand canonical ensemble together with a reweighting scheme in order to measure surface and interface free energies and discuss various methods for accurately locating the wetting transition. In the SCF theory, we use a partial enumeration scheme to incorporate single-chain properties on all length scales and use a weighted density functional for the excess free energy. The results of various forms of the density functional are compared quantitatively to the simulation results. For the theory to be accurate, it is important to decompose the free energy functional into a repulsive and an attractive part, with different approximations for the two parts. Measuring the effective interface potential for our coarse grained model we explore routes for controlling the equilibrium wetting properties. (i) Coating of the substrate by an...

  16. TCAD Simulations of graphene field-effect transistors based on the quantum capacitance effect (United States)

    Hafsi, Bilel; Boubaker, Aïmen; Ismaïl, Naoufel; Kalboussi, Adel; Lmimouni, Kamal


    In this paper, the results of a comparative study between experimental measurements and technology computer-aided design (TCAD) simulations of graphene field-effect transistors (GFET) are presented. Our simulations were performed to study the electrical properties of few-layer graphene, and the physical approach to the simulation tools is described by using the basics of band theory, Poisson's equation, the continuity equation and the drift diffusion equations that are suitable for devices with small active regions. A correct formulation of the carrier density was performed to take into account the quantum capacitance. The modeled current was compared to the measured results for a prototype and was shown to be accurate and to have a predictive behavior.

  17. Effects of broken solenoidal condition of magnetic field in MHD simulation for large helical device plasmas (United States)

    Takado, W.; Matsumoto, Y.; Watanabe, K. Y.; Tomioka, S.; Oikawa, S.


    We studied the effects of the broken solenoidal condition of a magnetic field in linear magnetohydrodynamics (MHD) simulations based on a real coordinate system for Large Helical Device plasmas. Artificial errors of various orders in this condition were introduced into linear MHD simulations and compared. Spurious Fourier modes were observed to be dominant because of the error in the condition. We suggested a criterion, which is expressed as the condition that the ratio of the error force to the Lorentz force is much smaller than 100%, for estimating an acceptable limit of the solenoidal condition error through the simulation results. The effects of a large error in the condition of the analysis of a specified single-mode instability were investigated in addition. Adding a large error in the condition resulted in certain undesirable modes becoming dominant, whereas the desirable mode did not dominate. Thus, a large error in the condition can be harmful to analysis with a focus on specified modes.

  18. Simulation and experiment on transient temperature field of a magnetorheological clutch for vehicle application (United States)

    Wang, Daoming; Zi, Bin; Zeng, Yishan; Qian, Sen; Qian, Jun


    The unpredictable power fluctuation due to severe heating has been demonstrated to be a critical bottleneck technique restricting the application of magnetorheological (MR) clutches in vehicle industry. The aim of this study is to introduce a low-cost transient simulation approach for evaluating the heat build-up and dissipation of a liquid-cooled MR vehicle clutch. This paper firstly performs a detailed description of the developed MR clutch in terms of operation principle, material selection and configuration. Subsequently, transient temperature simulations are carried out under various conditions to reveal the distribution, variation and impact factors of the transient temperature field. Following these, an experimental setup is established for heating tests of the clutch prototype. Experimental results concerning the temperature variation of magnetorheological fluids and the maximum allowable transient slip power of the clutch prototype are presented, which in return verify the correctness and feasibility of the simulation.

  19. Mathematical Simulation of Flows In the Field of the Flow Separation (United States)

    Kartasheva, Marina A.; Kartashev, Alexander L.


    The modern space vehicles intended for flight in the space and returns to the Earth, operate in conditions of the considerable gas dynamic and heat loads. At designing of a thermal protection of space vehicle it is necessary to determine gas dynamic properties of streamlining of the vehicle, that calculate thermal effects on devices of its construction. For solution of a considered task it is carried out mathematical simulation of gas-dynamic properties of separation base field of space vehicle.

  20. Molecular Dynamics Simulations of HMX Crystal Polymorphs Using a Flexible Molecule Force Field (United States)

    Bedrov, Dmitry; Smith, Grant D.; Sewell, Thomas D.


    Molecular dynamics simulations using a recently developed quantum chemistry-based atomistic force field [J. Phys. Chem. B 103 (1999) 3570] were performed in order to obtain unit cell parameters, coefficients of thermal expansion, and heats of sublimation for the three pure crystal polymorphs of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The predictions for β-, α-, and δ-HMX showed good agreement with the available experimental data.

  1. Desert Rats 2011 Mission Simulation: Effects of Microgravity Operational Modes on Fields Geology Capabilities (United States)

    Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.


    Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.

  2. Statistical simulation of the energy spectra of field-emission electrons (United States)

    Egorov, N. V.; Antonov, A. Yu.; Demchenko, N. S.


    Random energies of electrons that escape from the source in the course of field emission are simulated using energy spectra. A relationship of the random values of total energy and the energy related to the normal (with respect to surface) component of momentum is established. A family of quadrature formulas needed for the integration of the distribution density of particles is analyzed. A hypothesis on the compliance of selected random energies with desired distribution laws is statistically tested.

  3. Differences in simulated fire spread over Askervein Hill using two advanced wind models and a traditional uniform wind field (United States)

    Jason Forthofer; Bret Butler


    A computational fluid dynamics (CFD) model and a mass-consistent model were used to simulate winds on simulated fire spread over a simple, low hill. The results suggest that the CFD wind field could significantly change simulated fire spread compared to traditional uniform winds. The CFD fire spread case may match reality better because the winds used in the fire...

  4. Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery (United States)

    Khomenko, E.; Vitas, N.; Collados, M.; de Vicente, A.


    The magnetic fields of the quiet Sun cover at any time more than 90% of its surface and their magnetic energy budget is crucial to explain the thermal structure of the solar atmosphere. One of the possible origins of these fields is the action of the local dynamo in the upper convection zone of the Sun. Existing simulations of the local solar dynamo require an initial seed field and sufficiently high spatial resolution in order to achieve the amplification of the seed field to the observed values in the quiet Sun. Here we report an alternative model of seeding based on the action of the Bierman battery effect. This effect generates a magnetic field due to the local imbalances in electron pressure in the partially ionized solar plasma. We show that the battery effect self-consistently creates from zero an initial seed field of a strength of the order of micro G, and together with dynamo amplification allows the generation of quiet Sun magnetic fields of a similar strength to those from solar observations.

  5. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  6. Metabolic changes in four beat gaited horses after field marcha simulation. (United States)

    Wanderley, E K; Manso Filho, H C; Manso, H E C C C; Santiago, T A; McKeever, K H


    Mangalarga-Marchador is a popular 4-gaited Brazilian horse breed; however, there is little information about their metabolic and physiological response to exercise. To measure physiological and metabolic responses of the Mangalarga-Marchador to a simulated marcha field test and to compare these responses between 2 types of marcha gaits (picada and batida). Thirteen horses were used in the study and randomly assigned to either the picada or batida gait for the simulated marcha field test (speed ∼ 3.2 m/s; 30 min; load ∼ 80 kg). Included body composition, heart rate (HR), respiratory rate (RR), glucose (GLUC), lactate (LACT), packed cell volume (PCV), total plasma protein (TPP), albumin, urea, creatinine, total and HDL cholesterol, triglycerides, creatine kinase, alanine, glutamate and glutamine (GLN). Measurements were obtained pretest (control/fasting), immediately after simulation (T(0)), and 15 (T(15)), 30 (T(30)) and 240 (T(240)) min after the simulation. Lactate (LACT) was measured at T(0), T(15) and T(30). Data were analysed using ANOVA, Tukey's test and t tests with significance set at P marcha types and time of sampling for HR, RF, PCV, and [LACT] (P marcha horses, with some degree of dehydration during recovery period. Also, it was demonstrated that picada horses spend more energy when compared with batida horses at the the same speed. Batida horses spend less energy when compared with picada horses, which will need special attention in their training and nutritional management. © 2010 EVJ Ltd.

  7. Design and Simulation of the Recirculating Crossed-Field Planar Amplifier (United States)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Simon, David; Lau, Yue Ying; Gilgenbach, Ronald; Hoff, Brad


    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is a high power microwave device adapted from the Recirculating Planar Magnetron1, developed at the University of Michigan. A travelling-wave, rectangular, meander-line design has been developed in simulation that amplifies a 1.3 MW signal at 3 GHz to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulation also shows that the RPCFA is zero-drive stable, e.g., output of any appreciable power is dependent on the presence of an input RF signal. The amplifier was designed to be driven by the Michigan Electron Long Beam Accelerator (MELBA), which is currently configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. Taking these parameters into consideration, a slow wave structure, cathode, and housing were designed using the finite element frequency domain code Ansys HFSS. The cold tube characteristics and RF field structures were then verified using the particle in cell code, MAGIC. Hot tube simulations on MAGIC were also run to calculate the RPCFA's performance, including gain and efficiency. Future work will include building a prototype RPCFA, cold testing, and performing experiments to verify the hot tube simulations. This work was supported by the AFOSR Grant FA9550-15-1-0097.


    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Helen; Pudritz, Ralph [Origins Institute, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Klassen, Mikhail; Pillsworth, Samantha, E-mail: [Department of Physics and Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada)


    We use numerical simulations of turbulent cluster-forming regions to study the nature of dense filamentary structures in star formation. Using four hydrodynamic and magnetohydrodynamic simulations chosen to match observations, we identify filaments in the resulting column density maps and analyze their properties. We calculate the radial column density profiles of the filaments every 0.05 Myr and fit the profiles with the modified isothermal and pressure-confined isothermal cylinder models, finding reasonable fits for either model. The filaments formed in the simulations have similar radial column density profiles to those observed. Magnetic fields provide additional pressure support to the filaments, making “puffier” filaments less prone to fragmentation than in the pure hydrodynamic case, which continue to condense at a slower rate. In the higher density simulations, the filaments grow faster through the increased importance of gravity. Not all of the filaments identified in the simulations will evolve to form stars: some expand and disperse. Given these different filament evolutionary paths, the trends in bulk filament width as a function of time, magnetic field strength, or density are weak, and all cases are reasonably consistent with the finding of a constant filament width in different star-forming regions. In the simulations, the mean FWHM lies between 0.06 and 0.26 pc for all times and initial conditions, with most lying between 0.1 to 0.15 pc; the range in FWHMs is however, larger than seen in typical Herschel analyses. Finally, the filaments display a wealth of substructure similar to the recent discovery of filament bundles in Taurus.

  9. Tomography based numerical simulation of the demagnetizing field in soft magnetic composites (United States)

    Arzbacher, S.; Amann, P.; Weidenfeller, B.; Loerting, T.; Ostermann, A.; Petrasch, J.


    The magneto-static behaviour of soft magnetic composites (SMCs) is investigated using tomography based direct numerical simulation. The microgeometry crucially affects the magnetic properties of the composite since a geometry dependent demagnetizing field is established inside the composite, which lowers the magnetic permeability. We determine the magnetic field information inside the SMC using direct numerical simulation of the magnetic field based on high resolution micro-computed tomography data of the SMC's microstructure as well as artificially generated data made of statistically homogeneous systems of identical fully penetrable spheres and prolate spheroids. Quasi-static electromagnetic behaviour and linear material response are assumed. The 3D magnetostatic Maxwell equations are solved using Whitney finite elements. Simulations show that clustering and percolation behaviour determine the demagnetizing factor of SMCs rather than the particle shape. The demagnetizing factor correlates with the slope of a 2-point probability function at its origin, which is related to the specific surface area of the SMC. Comparison with experimental results indicates that the relatively low permeability of SMCs cannot be explained by demagnetizing effects alone and suggests that the permeability of SMC particles has to be orders of magnitude smaller than the bulk permeability of the particle material.

  10. Tomography based numerical simulation of the demagnetizing field in soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Arzbacher, S.; Petrasch, J., E-mail: [illwerke vkw Professorship for Energy Efficiency, Vorarlberg University of Applied Sciences, Hochschulstraße 1, 6850 Dornbirn (Austria); Amann, P. [Department of Physics, Stockholm University, AlbaNova University Center, 10691 Stockholm (Sweden); Weidenfeller, B. [Institute of Electrochemistry, Clausthal University of Technology, Arnold-Sommerfeld-Straße 6, 38678 Clausthal-Zellerfeld (Germany); Loerting, T. [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria); Ostermann, A. [Department of Mathematics, University of Innsbruck, Technikerstraße 13, 6020 Innsbruck (Austria)


    The magneto-static behaviour of soft magnetic composites (SMCs) is investigated using tomography based direct numerical simulation. The microgeometry crucially affects the magnetic properties of the composite since a geometry dependent demagnetizing field is established inside the composite, which lowers the magnetic permeability. We determine the magnetic field information inside the SMC using direct numerical simulation of the magnetic field based on high resolution micro-computed tomography data of the SMC's microstructure as well as artificially generated data made of statistically homogeneous systems of identical fully penetrable spheres and prolate spheroids. Quasi-static electromagnetic behaviour and linear material response are assumed. The 3D magnetostatic Maxwell equations are solved using Whitney finite elements. Simulations show that clustering and percolation behaviour determine the demagnetizing factor of SMCs rather than the particle shape. The demagnetizing factor correlates with the slope of a 2-point probability function at its origin, which is related to the specific surface area of the SMC. Comparison with experimental results indicates that the relatively low permeability of SMCs cannot be explained by demagnetizing effects alone and suggests that the permeability of SMC particles has to be orders of magnitude smaller than the bulk permeability of the particle material.

  11. Numerical simulation of flow and heat transfer of continous cast steel slab under traveling magnetic field

    Directory of Open Access Journals (Sweden)

    Gong Haijun


    Full Text Available A unified numerical model for simulating solidification transport phenomena (STP of steel slab in electromagnetic continuous casting (EMCC process was developed. In order to solve the multi-physics fields coupled problem conveniently, the complicated bidirectional coupled process between EM and STP was simplified as a unidirectional one, and a FEM/FVM-combined numerical simulation technique was adopted. The traveling magnetic fields (TMFs applied to the EMCC process were calculated using the ANSYS11.0 software, and then the EM-data output by ANSYS were converted to FVM-format using a data-format conversion program developed previously. Thereafter, the governing equations were solved using a pressure-based Direct-SIMPLE algorithm. The simulation results of the STP in CC-process show that, due to the influences of Lorentz force and Joule heat, the two strong circulating flows and the temperature field can be obviously damped and changed once TMF with one pair of poles (1-POPs or 2-POPs is applied, which would accordingly improve the quality of casting. It was found in the present research that the integrated actions of 2-POPs TMF are superior to 1-POPs. All the computations indicate that the present numerical model of EM-STP as well as the FEM/FVM-combined technique is successful.

  12. RadFET dose response in the CHARM mixed-field: FLUKA MC simulations

    Directory of Open Access Journals (Sweden)

    Marzo Matteo


    Full Text Available This paper focuses on Monte Carlo simulations aimed at calculating the dose response of the RadFET dosimeter, when exposed to the complex CHARM mixed-fields, at CERN. We study how the dose deposited in the gate oxide (SiO2 of the RadFET is affected by the energy threshold variation in the Monte Carlo simulations as well as the materials and sizes of scoring volumes. Also the characteristics of the input spectra will be taken into account and their impact on the final simulated dose will be studied. Dose variation as a function of the position of the RadFET in the test facility will be then examined and comparisons with experimental results will be shown. The contribution to the total dose due to all particles of the mixed-field, under different target-shielding configurations, is finally presented, aiming at a complete characterization of the RadFETs dose response in the CHARM mixed-fields.

  13. RadFET dose response in the CHARM mixed-field: FLUKA MC simulations

    Directory of Open Access Journals (Sweden)

    Marzo M.


    Full Text Available This paper focuses on Monte Carlo simulations aiming at calculating the dose response of the Rad- FET dosimeter, when exposed to the complex CHARM mixed-fields, at CERN. We study how the dose deposited in the Gate Oxide (SiO2 of the RadFET is a_ected by the energy threshold variation in the Monte Carlo simulations as well as the materials and sizes of scoring volumes. Also the characteristics of the input spectra will be taken into account and their impact on the final simulated dose will be studied. Dose variation as a function of the position of the RadFET in the test facility will be then examined and comparisons with experimental results will be shown. The contribution to the total dose due to every single particles of the mixed-field, under di_erent target-shielding configurations, will be finally presented, aiming at a complete characterization of the RadFETs dose response in the CHARM mixed-fields.

  14. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations. (United States)

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele


    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  15. Site-specific uniform hazard spectrum in Eastern Turkey based on simulated ground motions including near-field directivity and detailed site effects (United States)

    Azari Sisi, Aida; Askan, Ayşegül; Erberik, Murat Altuğ


    In this study, stochastic earthquake catalog of the Erzincan region in Turkey is generated based on synthetic ground motions. Monte Carlo simulation method is used to identify the spatial and temporal distribution of events. Ground motion time histories are generated using stochastic simulation methodology. Annual exceedance rate of each ground motion amplitude is calculated through statistical distribution of the complete set of ground motions. The results are compared with classical probabilistic seismic hazard analysis (PSHA). Classical PSHA generally produces larger spectral amplitudes than the proposed study due to wide range of aleatory variability. The effects of near-field forward directivity and detailed site response are also investigated on the results.

  16. Simulation of the time-variable gravity field by means of coupled geophysical models

    Directory of Open Access Journals (Sweden)

    Th. Gruber


    Full Text Available Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA to initiate a study on ''Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites''. The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field

  17. Simulation of remanent dose rates and benchmark measurements at the CERN-EU high energy reference field facility

    CERN Document Server

    Roesler, S; Donjoux, Y; Mitaroff, Angela


    A new approach is presented for the calculation of remanent dose rates from induced radioactivity with the FLUKA Monte-Carlo code. It is based on an explicit calculation of isotope production followed by the transport of photons, positrons, and electrons from the radioactive decay to the point of interest. The approach is benchmarked with a measurement in which samples of different materials were irradiated by the stray radiation field produced by interactions of high-energy hadrons in a copper target. Remanent dose rates were measured at different cooling times with a NaI scintillator-based survey instrument. The results of the simulations are generally in good agreement with the measurements. The method is applied to the prediction of remanent dose rates around the beam cleaning insertions of the LHC. 10 Refs.

  18. A scaling model for plasma columns produced by CO2 laser-induced breakdown in a solenoidal field (United States)

    Ahlborn, B.; Vlases, G. C.; Pietrzyk, Z. A.


    An analytical model is derived for the plasma cylinder produced by a long pulse (approximately microsec) CO2 laser of power p(l) (watts) which is incident upon neutral hydrogen imbedded in a strong axial magnetic field. Under certain conditions the leading edge of the plasma propagates away from the laser as an optical detonation, where the leading shock front fully ionizes the background gas, and the inverse bremsstrahlung absorption zone immediately behind it is equivalent to the chemical energy release zone in an ordinary detonation. The front velocity is V(od) = (3E(i)/m) to the 1/2 power, where E(i) is the ionization (and dissociation) energy. This velocity is in agreement with experiments and with certain stability considerations. Radial expansion takes place immediately behind the detonation front and reduces the density to about 1/3 of the initial filling gas density. Far behind the leading edge, the laser-produced plasma acquires an equilibrium radius and steady pressure, density, and temperature determined by a balance between laser energy absorption and conduction and radiation losses. The density profile maintains a shallow minimum on axis.

  19. Random-field Ising model: Insight from zero-temperature simulations

    Directory of Open Access Journals (Sweden)

    P.E. Theodorakis


    Full Text Available We enlighten some critical aspects of the three-dimensional (d=3 random-field Ising model (RFIM from simulations performed at zero temperature. We consider two different, in terms of the field distribution, versions of model, namely a Gaussian RFIM and an equal-weight trimodal RFIM. By implementing a computational approach that maps the ground-state of the system to the maximum-flow optimization problem of a network, we employ the most up-to-date version of the push-relabel algorithm and simulate large ensembles of disorder realizations of both models for a broad range of random-field values and systems sizes V=LxLxL, where L denotes linear lattice size and Lmax=156. Using as finite-size measures the sample-to-sample fluctuations of various quantities of physical and technical origin, and the primitive operations of the push-relabel algorithm, we propose, for both types of distributions, estimates of the critical field hmax and the critical exponent ν of the correlation length, the latter clearly suggesting that both models share the same universality class. Additional simulations of the Gaussian RFIM at the best-known value of the critical field provide the magnetic exponent ratio β/ν with high accuracy and clear out the controversial issue of the critical exponent α of the specific heat. Finally, we discuss the infinite-limit size extrapolation of energy- and order-parameter-based noise to signal ratios related to the self-averaging properties of the model, as well as the critical slowing down aspects of the algorithm.

  20. Aacsfi-PSC. Advanced accelerator concepts for strong field interaction simulated with the Plasma-Simulation-Code

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, Hartmut [Munich Univ. (Germany). Chair for Computational and Plasma Physics


    Since the installation of SuperMUC phase 2 the 9216 nodes of phase 1 are more easily available for large scale runs allowing for the thin foil and AWAKE simulations. Besides phase 2 could be used in parallel for high throughput of the ion acceleration simulations. Challenging to our project were the full-volume checkpoints required by PIC that strained the I/O-subsystem of SuperMUC to its limits. New approaches considered for the next generation system, like burst buffers could overcome this bottleneck. Additionally, as the FDTD solver in PIC is strongly bandwidth bound, PSC will benefit profoundly from high-bandwidth memory (HBM) that most likely will be available in future HPC machines. This will be of great advantage as in 2018 phase II of AWAKE should begin, with a longer plasma channel further increasing the need for additional computing resources. Last but not least, it is expected that our methods used in plasma physics (many body interaction with radiation) will be more and more adapted for medical diagnostics and treatments. For this research field we expect centimeter sized volumes with necessary resolutions of tens of micro meters resulting in boxes of >10{sup 12} voxels (100-200 TB) on a regular basis. In consequence the demand for computing time and especially for data storage and data handling capacities will also increase significantly.

  1. Three-dimensional MHD simulation of interplanetary magnetic field changes at 1 AU as a consequence of simulated solar flares

    Directory of Open Access Journals (Sweden)

    C.-C. Wu


    Full Text Available A fully three-dimensional (3D, time-dependent, MHD interplanetary global model (3D IGM has been used, for the first time, to study the relationship between different forms of solar activity and transient variations of the north-south component, Bz, of the interplanetary magnetic field (IMF at 1 AU. One form of solar activity, the flare, is simulated by using a pressure pulse at different locations near the solar surface and observing the simulated IMF evolution of Bθ (=–Bz at 1 AU. Results show that, for a given pressure pulse, the orientation of the corresponding transient variation of Bz has a strong relationship to the location of the pressure pulse and the initial conditions of the IMF. Two initial IMF conditions are considered: a unipolar Archimedean spiral with outward polarity and a flat heliospheric current sheet (HCS with outward polarity in the northern hemisphere and which gradually reverses polarity in the solar equatorial plane to inward polarity in the southern heliospheric hemisphere. The wave guide effect of the HCS is also demonstrated.

  2. Three-dimensional MHD simulation of interplanetary magnetic field changes at 1 AU as a consequence of simulated solar flares

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    Full Text Available A fully three-dimensional (3D, time-dependent, MHD interplanetary global model (3D IGM has been used, for the first time, to study the relationship between different forms of solar activity and transient variations of the north-south component, Bz, of the interplanetary magnetic field (IMF at 1 AU. One form of solar activity, the flare, is simulated by using a pressure pulse at different locations near the solar surface and observing the simulated IMF evolution of Bθ (=–Bz at 1 AU. Results show that, for a given pressure pulse, the orientation of the corresponding transient variation of Bz has a strong relationship to the location of the pressure pulse and the initial conditions of the IMF. Two initial IMF conditions are considered: a unipolar Archimedean spiral with outward polarity and a flat heliospheric current sheet (HCS with outward polarity in the northern hemisphere and which gradually reverses polarity in the solar equatorial plane to inward polarity in the southern heliospheric hemisphere. The wave guide effect of the HCS is also demonstrated.

  3. On the decay of strong magnetization in global disc simulations with toroidal fields (United States)

    Fragile, P. Chris; Sądowski, Aleksander


    Strong magnetization in accretion discs could resolve a number of outstanding issues related to stability and state transitions in low-mass X-ray binaries. However, it is unclear how real discs become strongly magnetized and, even if they do, whether they can remain in such a state. In this paper, we address the latter issue through a pair of global disc simulations. Here, we only consider cases of initially purely toroidal magnetic fields contained entirely within a compact torus. We find that over only a few tens of orbital periods, the magnetization of an initially strongly magnetized disc, Pmag/Pgas ≥ 10, drops to ≲ 0.1, similar to the steady-state value reached in initially weakly magnetized discs. This is consistent with recent shearing box simulations with initially strong toroidal fields, the robust conclusion being that strongly magnetized toroidal fields cannot be locally self-sustaining. These results appear to leave net poloidal flux or extended radial fields as the only avenues for establishing strongly magnetized discs, ruling out the thermal collapse scenario.

  4. Feasibility of non-linear simulation for Field II using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt


    -padding is applied to enlarge the source plane to a (4N - 1) times (4N - 1) matrix to overcome artifacts in terms of the circular convolution. The source plane covering an area of 9 times 9 mm2 with N = 61 samples along both side, is 0.05 mm away from a 5 MHz planar piston transducer, which is simulated by Field II...... this procedure is to find the accuracy of the approach for linear propagation, where the result can be validated using Field II simulations. The ASA calculations are carried out by 3D fast Fourier transform using Matlab, where lambda=2 is chosen as the spatial sampling rate to reduce aliasing errors. Zero....... To determine the accuracy, different sampling intervals and zero-paddings are compared and the errors are calculated with Field II as a reference. It can be seen that zero-padding with 4N - 1 and lambda=2 sampling can both reduce the errors from 25.7% to 12.9% for the near-field and from 18.1% to 5...

  5. The numerical simulation on ionospheric perturbations in electric field before large earthquakes

    Directory of Open Access Journals (Sweden)

    S. F. Zhao


    Full Text Available Many observational results have shown electromagnetic abnormality in the ionosphere before large earthquakes. The theoretical simulation can help us to understand the internal mechanism of these anomalous electromagnetic signals resulted from seismic regions. In this paper, the horizontal and vertical components of electric and magnetic field at the topside ionosphere are simulated by using the full wave method that is based on an improved transfer matrix method in the lossy anisotropic horizontally stratified ionosphere. Taken account into two earthquakes with electric field perturbations recorded by the DEMETER satellite, the numerical results reveal that the propagation and penetration of ULF (ultra-low-frequency electromagnetic waves into the ionosphere is related to the spatial distribution of electron and ion densities at different time and locations, in which the ion density has less effect than electron density on the field intensity. Compared with different frequency signals, the minimum values of electric and magnetic field excited by earthquakes can be detected by satellite in current detection capability have also been calculated, and the lower frequency wave can be detected easier.

  6. Simulation of interplanetary magnetic field B{sub y} penetration into the magnetotail

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiuling [Center for Educational Technology, Peking University, Beijing 100871 (China); State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao; Liu, Zhenxing [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)


    Based on our global 3D magnetospheric MHD simulation model, we investigate the phenomena and physical mechanism of the B{sub y} component of the interplanetary magnetic field (IMF) penetrating into the magnetotail. We find that the dayside reconnected magnetic field lines move to the magnetotail, get added to the lobe fields, and are dragged in the IMF direction. However, the B{sub y} component in the plasma sheet mainly originates from the tilt and relative slippage of the south and north lobes caused by plasma convection, which results in the original B{sub z} component in the plasma sheet rotating into a B{sub y} component. Our research also shows that the penetration effect of plasma sheet B{sub y} from the IMF B{sub y} during periods of northward IMF is larger than that during periods of southward IMF.

  7. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser (United States)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.


    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  8. On the Nature of High Field Charge Transport in Reinforced Silicone Dielectrics: Experiment and Simulation

    CERN Document Server

    Huang, Yanhui


    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field, and were compared with properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial to determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails, and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  9. Electromagnetic Simulation of the Near-Field Distribution around a Wind Farm

    Directory of Open Access Journals (Sweden)

    Shang-Te Yang


    Full Text Available An efficient approach to compute the near-field distribution around and within a wind farm under plane wave excitation is proposed. To make the problem computationally tractable, several simplifying assumptions are made based on the geometry problem. By comparing the approximations against full-wave simulations at 500 MHz, it is shown that the assumptions do not introduce significant errors into the resulting near-field distribution. The near fields around a 3×3 wind farm are computed using the developed methodology at 150 MHz, 500 MHz, and 3 GHz. Both the multipath interference patterns and the forward shadows are predicted by the proposed method.

  10. Electric conductivity in electrolyte solution under external electromagnetic field by nonequilibrium molecular dynamics simulation. (United States)

    Yang, LiJun; Huang, KaMa


    Nonequilibrium molecular dynamics (NMD) simulations are performed to investigate the effects of an external electromagnetic (E/M) field on NaCl electrolyte solutions at different temperatures using the SPC/E model. The electromagnetic wave propagates in the z-axis direction with a frequency of 2.45 GHz, and the intensity of the E/M field is 3 x 10(4) V/m. The results indicate that as the concentration of the electrolyte solution increased, the diffusion coefficient and the ionic mobility gradually decreased, but the electric conductivity gradually increased. In addition, all three of them will be increased when the temperature is increased. But their value will be reduced when the electromagnetic field is applied.

  11. A simulation study on image reconstruction in magnetic particle imaging with field-free-line encoding

    CERN Document Server

    Murase, Kenya


    The purpose of this study was to present image reconstruction methods for magnetic particle imaging (MPI) with a field-free-line (FFL) encoding scheme and to propose the use of the maximum likelihood-expectation maximization (ML-EM) algorithm for improving the image quality of MPI. The feasibility of these methods was investigated by computer simulations, in which the projection data were generated by summing up the Fourier harmonics obtained from the MPI signals based on the Langevin function. Images were reconstructed from the generated projection data using the filtered backprojection (FBP) method and the ML-EM algorithm. The effects of the gradient of selection magnetic field (SMF), the strength of drive magnetic field (DMF), the diameter of magnetic nanoparticles (MNPs), and the number of projection data on the image quality of the reconstructed images were investigated. The spatial resolution of the reconstructed images became better with increasing gradient of SMF and with increasing diameter of MNPs u...

  12. Evidence of magnetic field switch-off in Particle In Cell simulations of collisionless magnetic reconnection with guide field (United States)

    Innocenti, M. E.; Goldman, M. V.; Newman, D. L.; Markidis, S.; Lapenta, G.


    The long term evolution of large domain Particle In Cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: towards a Petschek-like configuration (Gosling 2007) or towards multiple X points (Eriksson et al. 2014). In the simulations presented here and described in [Innocenti2015*], a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminding of Petschek's switch-off then ensues. Switch-off is obtained through a slow shock / rotational discontinuity (SS/RD) compound structure, with the rotation discontinuity downstreamthe slow shock. Two external slow shocks located in correspondence of the separatrices reduce the in plane tangential component of the magnetic field, but not to zero. Two transitions reminding of rotational discontinuities in the internal part of the exhausts then perform the final switch-off. Both the slow shocks and the rotational discontinuities are characterized as such through the analysis of their Rankine-Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust that prevented switch off in [Liu2012]. Compound SS/RD structures, with the RD located downstream the SS, have been observed in both the solar wind and the magnetosphere in Wind and Geotail data respectively [Whang1998, Whang2004]. Ion trajectiories across the SS/RD structure are followed and the kinetic origin of the SS/RD structure is investigated. * Innocenti, Goldman, Newman, Markidis, Lapenta, Evidence of magnetic field switch-off in collisionless magnetic reconnection, accepted in Astrophysical Journal Letters, 2015 Acknowledgements: NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of

  13. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, W. A.; Koning, J. M.; Strozzi, D. J.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O. S.; Rosen, M. D.


    We present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the field is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ωeτei≲1Ωeτei≲1, where Ωe=eB/mecΩe=eB/mec and τei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high-Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P2/P0P2/P0 by ~20%. This indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.

  14. Simulation and optimization of the magnetic field in an electroplated copper micro-coil (United States)

    Matar, Maher; Al-Halhouli, Alaaldeen T.; Büttgenbach, Stephanus; Dietzel, Andreas H.


    This work aims at simulating and optimizing the magnetic field intensity in different electroplated copper micro-coil designs that can be integrated in a recently developed electromagnetic micro-pump. The results of this study will be used in fabricating new optimized micro-coil designs that may enhance the performance of the developed synchronous micro-pump (i.e., the maximum back pressures and flow rates). The synchronous micro-pump concept depends on managing the movement of two magnets in an annular fluidic channel. Magnet rotation is achieved by sequentially activating a set of planar micro-coils to repel or attract the first magnet (traveling magnet) through the channel, while the second one is anchored between the inlet and the outlet ports. At the end of each pumping cycle, the magnets exchange their anchored and traveling functions. To achieve the maximum back pressure and flow rate (highest performance) in such micro-pump, higher magnetic fields without exceeding the material temperature limitation are required. The stronger the magnetic fields that can be generated, the higher the hydraulic power that can the pump deliver. This study presents extensive numerical simulations using the commercial software package COMSOL and presents also optimizations for the effect of the main micro-coil parameters on the generated magnetic field: coil wire width and height, the coil turns offset distance, the effect of including an iron core inside the coil area, and the number of coil turns. The main analyzed results are: the normal magnetic flux contours at the top (upper) surface of the coil - where the permanent magnets rotate in the micro-pump channel -, the distribution of the magnetic field streams and the area averaging of the magnetic field intensity all over the micro-coil sector.

  15. Phase-field simulation of solidification dendritic segregation in Ti-45Al alloy

    Directory of Open Access Journals (Sweden)

    Yu-tuo Zhang


    Full Text Available The microstructures and mechanical properties of TiAl alloys are directly linked to micro-segregation which cannot be avoided during solidification. So a thorough understanding of the micro-segregation should be a great help to further enhance the mechanical properties of the cast products. Theoretical analysis and experiments have been used to predict the micro-segregation, but it is very difficult to observe and determine the dendritic segregation in the micro region. Phase-field method has been employed for the simulation of dendritic growth. However, due to the complicated quasi-sub regular solution model for Ti-45Al(at.% alloy, the classic phase-field models have difficulty to deal with the free energy. In this work, a phase-field model by linking thermodynamic calculation was used to simulate solidification dendritic segregation of Ti-45Al alloy for Liquid→Liquid+β(Ti. The free energies of solid phase and liquid phase for Ti-45Al alloy were calculated by Thermo-Calc and then coupled with the phase-field equations. The simulation results show the dendritic morphology and Al content variations between liquid and growing solid phase for Ti-45Al alloy. With the growth of the β(Ti, dendritic segregation is formed in the liquid and solid phases due to the solute partitioning and rejection into the liquid. As a result, the dendrite arms are depleted of Al element, while the inter-dendrites are enriched. The dendritic tip growth velocity decreases with the progress of solidification, whereas the segregation ratio increases.

  16. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator (United States)

    Puchalska, Monika; Sihver, Lembit


    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  17. How is overland flow produced under intermittent rain? An analysis using plot-scale rainfall simulation on dryland soils (United States)

    Dunkerley, David


    The characteristic intermittency of rainfall includes temporary cessations (hiatuses), as well as periods of very low intensity within more intense events. To understand how these characteristics of rainfall affect overland flow production, rainfall simulations involving repeated cycles of on-off intermittency were carried out on dryland soils in arid western New South Wales, Australia. Periods of rain (10 mm/h) and no-rain were applied in alternation with cycle times from 3 min to 25 min, in experiments lasting 1-1.5 h. Results showed that intermittency could delay the onset of runoff by more than 30 min, reduce the runoff ratio, reduce the peak runoff rate, and reduce the apparent event infiltration rate by 30-45%. When hiatuses in rainfall were longer than 15-20 min, runoff that had resulted from prior rain ceased completely before the recommencement of rain. Results demonstrate that if rainfall intermittency is not accounted for, estimates of infiltrability based on runoff plot data can be systematically in error. Despite the use of intermittent rain, the episodic occurrence of runoff could be predicted successfully by fitting multiple affine Horton infiltration equations, whose changing f0 and Kf coefficients, but uniform values of fc, reflected the redistribution of soil moisture and the change in the infiltrability f during hiatuses in rainfall. The value of fc varied little among the fitted equations, so constituting an affine set of relationships. This new approach provides an alternative to the use of steady-state methods that are common in rainfall simulation experiments and which typically yield only an estimate of fc. The new field results confirm that intermittency affects infiltration and runoff depths and timing at plot scale and on intra-event timescales. Additional work on other soil types, and at other spatial and temporal scales, is needed to test the generality of these findings.

  18. Phase-field model simulation of ferroelectric/antiferroelectric materials microstructure evolution under multiphysics loading (United States)

    Zhang, Jingyi

    Ferroelectric (FE) and closely related antiferroelectric (AFE) materials have unique electromechanical properties that promote various applications in the area of capacitors, sensors, generators (FE) and high density energy storage (AFE). These smart materials with extensive applications have drawn wide interest in the industrial and scientific world because of their reliability and tunable property. However, reliability issues changes its paradigms and requires guidance from detailed mechanism theory as the materials applications are pushed for better performance. A host of modeling work were dedicated to study the macro-structural behavior and microstructural evolution in FE and AFE material under various conditions. This thesis is focused on direct observation of domain evolution under multiphysics loading for both FE and AFE material. Landau-Devonshire time-dependent phase field models were built for both materials, and were simulated in finite element software Comsol. In FE model, dagger-shape 90 degree switched domain was observed at preexisting crack tip under pure mechanical loading. Polycrystal structure was tested under same condition, and blocking effect of the growth of dagger-shape switched domain from grain orientation difference and/or grain boundary was directly observed. AFE ceramic model was developed using two sublattice theory, this model was used to investigate the mechanism of energy efficiency increase with self-confined loading in experimental tests. Consistent results was found in simulation and careful investigation of calculation results gave confirmation that origin of energy density increase is from three aspects: self-confinement induced inner compression field as the cause of increase of critical field, fringe leak as the source of elevated saturation polarization and uneven defects distribution as the reason for critical field shifting and phase transition speed. Another important affecting aspect in polycrystalline materials is the

  19. Simulation and measurement of log-periodic antenna and double ridged guide horn antenna for optimized field uniformity

    NARCIS (Netherlands)

    Mandaris, Dwi; Leferink, Frank


    Three basic types of antennas have been designed and simulated for field calibration, i.e. field homogeneity or uniformity, and power efficiency. The objective is to develop the best antenna in terms of field uniformity and power efficiency. Experiments have been performed according to IEC 61000-4-3

  20. Statistics of Waveform and Envelope Fields: Theory, Simulations and Initial Applications to TRICE Data (United States)

    Cairns, I. H.; Li, B.; Labelle, J.; Kletzing, C. A.; Robinson, P. A.


    Plasma waves in space are almost invariably bursty and widely variable in amplitude, motivating statistical approaches such as stochastic growth theory. Recent wave experiments on rockets moving through Earth's auroral regions, as well as the STEREO and Wind spacecraft, have sufficient time resolution to measure the waveform as well as the envelope field. Typically, however, experiments measure the envelope field averaged over long times compared with the wave period. Four sets of new contributions are presented. First, analytic theory is used to predict the distribution of waveform fields for a single mode with known distribution of envelope fields. The distribution P(log Ew) of waveform fields Ew is shown to be proportional to the rectified field Ewa with a ≍ 1.0 for a number of special cases of the distribution P(log Ee) of envelope field Ee. This form arises due to P(log Ew) being proportional to an integral over P(log Ee) that has a square-root singularity in Ee2. Numerical calculations confirm and extend this prediction to wide range of envelope distributions. Second, ensembles of stochastically-driven waves are simulated and the distributions P(log Ew) and P(log Ee) calculated. While small differences exist between the case of a single mode and multiple modes, it is found in general that the results are independent of the product of the wave frequency and decorrelation time. Of importance here is that the distributions P(log Ew) are found to be power-law with index ≍ 1.0 at low Ew, consistent with the analytic prediction. Moreover, the envelope distribution is found to be well fit by the form P(log Ee) ∝ Ee2 exp(- Ee2 / Eth2). This form applies to one- dimensional thermal waves and now, unexpectedly, also to waves driven stochastically near marginal stability. Third, initial calculations show that averaging (boxcar and sliding averages, whether linear or logarithmic) over multiple wave periods leads to both the envelope and waveform distributions being

  1. On the alignment of PNe and local magnetic field at the Galactic centre: magnetohydrodynamical numerical simulations (United States)

    Falceta-Gonçalves, D.; Monteiro, H.


    For the past decade, observations of the alignment of planetary nebulae (PNe) symmetries with respect to the Galactic disc have led to conflicting results. Recently, the first direct observational evidence for a real alignment between PNe and local interstellar magnetic fields in the central part of the Galaxy (b Motivated by the recent discovery, we studied the role of the interstellar magnetic field on the dynamical evolution of a planetary nebula by means of an analytical model and from 3D magnetohydrodynamical numerical simulations. In our models, the nebula is the result of a short-time event of mass ejection with its surrounding medium. The nebula asphericity is assumed to be due to an intrinsic shaping mechanism, dominated by the latitude-dependent asymptotic giant branch wind, and not the interstellar medium field. We test under what conditions typical ejecta would have their dynamics severely modified by an interstellar magnetic field. We found that uniform fields of > 100 μG are required in order to be dynamically dominant. This is found to occur only at later evolutionary stages, therefore, being unable to change the general morphology of the nebula. However, the symmetry axis of bipolar and elliptical nebulae end up aligned to the external field. This result can explain why different samples of PNe result in different conclusions regarding the alignment of PNe. Objects located at high Galactic latitudes, or at large radii, should present no preferential alignment with respect to the Galactic plane. PNe located at the Galactic centre and low latitudes would, on the other hand, be preferentially aligned to the disc. Finally, we present synthetic polarization maps of the nebulae to show that the polarization vectors, as well as the field lines at the expanding shell, are not uniform even in the strongly magnetized case, indicating that polarization maps of nebulae are not adequate in probing the orientation, or intensity, of the dominant external field.

  2. Escherichia coli transfer from simulated wildlife feces to lettuce during foliar irrigation: A field study in the Northeastern United States. (United States)

    Weller, Daniel L; Kovac, Jasna; Kent, David J; Roof, Sherry; Tokman, Jeffrey I; Mudrak, Erika; Kowalcyk, Barbara; Oryang, David; Aceituno, Anna; Wiedmann, Martin


    Wildlife intrusion has been associated with pathogen contamination of produce. However, few studies have examined pathogen transfer from wildlife feces to pre-harvest produce. This study was performed to calculate transfer coefficients for Escherichia coli from simulated wildlife feces to field-grown lettuce during irrigation. Rabbit feces inoculated with a 3-strain cocktail of non-pathogenic E. coli were placed in a lettuce field 2.5-72 h before irrigation. Following irrigation, the E. coli concentration on the lettuce was determined. After exclusion of an outlier with high E. coli levels (Most Probable Number = 5.94*10 8 ), the average percent of E. coli in the feces that transferred to intact lettuce heads was 0.0267% (Standard Error [SE] = 0.0172). Log-linear regression showed that significantly more E. coli transferred to outer leaves compared to inner leaves (Effect = 1.3; 95% Confidence Interval = 0.4, 2.1). Additionally, the percent of E. coli that transferred from the feces to the lettuce decreased significantly with time after fecal placement, and as the distance between the lettuce and the feces, and the lettuce and the sprinklers increased. These findings provide key data that may be used in future quantitative risk assessments to identify potential intervention strategies for reducing food safety risks associated with fresh produce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Streamwise-body-force-model for rapid simulation combining internal and external flow fields

    Directory of Open Access Journals (Sweden)

    Cui Rong


    Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.

  4. A p-version embedded model for simulation of concrete temperature fields with cooling pipes

    Directory of Open Access Journals (Sweden)

    Sheng Qiang


    Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.

  5. Testing the Effect of Cropping Practices on Soil Erosion Rates - Application of Field Rainfall Simulator (United States)

    Dostál, Tomáš; Zumr, David; Krása, Josef; Kavka, Petr; Strouhal, Luděk


    C factor, the protection effect of the vegetation cover, is a key parameter which is introduced in the basic empirical soil erosion relationships (e.g. USLE). The C factor values for various crops in various grow stages are usually estimated based on the catalogue values. As these values often do not fit to the observed data from the plot experiments or do not represent actually grown crops, we decided to validate and extend the database. We present a methodology and primary results of tens of the field rainfall simulation experiments conducted on several agricultural crops with different BBCH. The rainfall simulations were done with the mobile field rainfall simulator of the Czech Technical University. The tested plots of the size 2 x 8,7 m were repeatedly exposed to the artificial rainfalls with intensity of 60 mm/h and duration of 30 to 60 minutes. The experiments were always performed twice on a bare soil and twice on the vegetated plots (to mimic dry and wet initial soil conditions). The tests were done on several slopes in the Czech Republic, the soils were mostly Cambisols with various organic matter content and stoniness. Based on the results we will be able to correct and validate the C factor values for the currently most widely grown crops in the conditions of the Central Europe. The presentation is funded by Ministry of Agriculture of the Czech Republic (research project QJ1530181) and an internal student CTU grant.

  6. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy. (United States)

    Du, Yongxing; Zhang, Lingze; Sang, Lulu; Wu, Daocheng


    In this paper, an Archimedean planar spiral antenna for the application of thermotherapy was designed. This type of antenna was chosen for its compact structure, flexible application and wide heating area. The temperature field generated by the use of this Two-armed Spiral Antenna in a muscle-equivalent phantom was simulated and subsequently validated by experimentation. First, the specific absorption rate (SAR) of the field was calculated using the Finite Element Method (FEM) by Ansoft's High Frequency Structure Simulation (HFSS). Then, the temperature elevation in the phantom was simulated by an explicit finite difference approximation of the bioheat equation (BHE). The temperature distribution was then validated by a phantom heating experiment. The results showed that this antenna had a good heating ability and a wide heating area. A comparison between the calculation and the measurement showed a fair agreement in the temperature elevation. The validated model could be applied for the analysis of electromagnetic-temperature distribution in phantoms during the process of antenna design or thermotherapy experimentation.

  7. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations. (United States)

    Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald


    Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.

  8. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility. (United States)

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B


    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  9. Field-theoretic simulations of block copolymer nanocomposites in a constant interfacial tension ensemble (United States)

    Koski, Jason P.; Riggleman, Robert A.


    Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (n V γ T ) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our n V γ T approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the n V γ T ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

  10. Field experiment and numerical simulation of point source irrigation with multiple tracers. (United States)

    Selim, Tarek; Bouksila, Fethi; Hamed, Yasser; Berndtsson, Ronny; Bahri, Akissa; Persson, Magnus


    Dyes like Brilliant Blue have similar adsorptive behaviour as some organic contaminants, e.g., pesticides. Bromide ions, on the other hand, move much like NO3-N (fertilizer) in soil. Consequently, by using these two tracers, it is possible to in a general way mimic how organic contaminants and fertilizers may move through soils. Three plots with sandy soil in semiarid Tunisia were irrigated during three successive hours using a single irrigation dripper and high-saline solution (10.50 dS m-1) containing dye and bromide. Fifteen hours after cease of infiltration, horizontal 5 cm trenches were dug in the soil and dye pattern, bromide concentration, and soil water content were recorded. Preferential flow occurred to some degree, however, it did not dominate the solute transport process. Therefore, drip irrigation can be recommended to improve plant culture for a better water and soil nutrient adsorption. Numerical simulation using HYDRUS-2D/3D was performed to replicate the field experiments. Observed soil water contents before and after infiltration were used to run an inverse parameter estimation procedure to identify soil hydraulic parameters. It was found that for both field experiments and numerical simulations the mobility of bromide is different from the mobility of dye. The dye was retarded approximately twice by volume as compared to bromide. The simulation results support the use of HYDRUS-2D/3D as a rapid and labor saving tool for investigating tracers' mobility in sandy soil under point source irrigation.

  11. Design and simulation of a sensor for heliostat field closed loop control (United States)

    Collins, Mike; Potter, Daniel; Burton, Alex


    Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.

  12. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqing


    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For


    Directory of Open Access Journals (Sweden)

    D. S. Yarymbash


    Full Text Available Purpose. Development of new effective approach for the realization of three-dimensional mathematical model of transient electrical and magnetic fields in induction motors, which based on their design features, the nonlinearity of the electrical and magnetic properties of the active and structural materials, which provides adequacy or high simulation accuracy. Research methods. Numerical simulation of the conjugate spatial transient electrical and magnetic fields of the induction motor in the mode of short-circuit, with the help of methods of the theory of electromagnetic fields, finite element, theory of electrical machines and electrical circuits. The obtained results. Theoretical researches and simulation results, which based on numerical realization of the finite element method of three-dimensional mathematical model of the induction motor are obtained. Theoretical researches indicate the features of electrical and magnetic processes of AC power conversion in a short circuit mode. In the area of the coil ends of the low power asynchronous motor it is allocated to 12,5% of the total energy of its magnetic field, which is mainly localized in the active part of the stator, the rotor and the air gap. In the central area of the active part of the induction motor, the length is up to 60% of the total length of the stator and rotor core, the magnetic field has plane-parallel form, but is transformed into zones of coil ends of the stator windings, and near of its core end. The features of the magnetic field and energy distribution, which have a significant effect on the parameters of a short-circuit of small power induction motor and its operating modes are defined. Scientific novelty. The regularities of the distribution of the induction and magnetic field energy in the short-circuit mode and their quantitative relation for active zone and the area of the coil ends of the stator windings of the low-power asynchronous motors are defined. Practical

  14. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from L1 and L5 (United States)

    Petrie, G. J. D.; Bertello, L.; Pevtsov, A. A.


    In solar physics and space weather research, full-disk photospheric magnetograms are routinely used to map the full solar surface in near-real-time, and coronal field models are extrapolated from these data. One major shortcoming of this approach is that, at present, the magnetograms can only be taken from the Earth's direction. Thus data immediately eastward of the sub-Earth point in synoptic maps are around three weeks old, missing much active-region evolution and leading to inaccuracies in the models. A new magnetograph at L5 would update the synoptic maps at this critical location east of central meridian and would provide a more accurate, up-to-date picture of the global photospheric and coronal field. We demonstrate the value of L5 observations by simulating the construction of synoptic magnetograms from both L1 and L5 directions using past near-real-time data from two observatories: the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) and Global Oscillation Network Group (GONG). We extrapolate potential-field source-surface (PFSS) coronal field models and compare their open-field and streamer distributions to coronal observations from the Solar Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA).

  15. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.


    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  16. Methodology and application of high performance electrostatic field simulation in the KATRIN experiment (United States)

    Corona, Thomas

    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to make a direct, model independent measurement of the electron neutrino mass. The experimental apparatus employs strong ( O[T]) magnetostatic and (O[10 5 V/m]) electrostatic fields in regions of ultra high (O[10-11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near the endpoint of tritium beta-decay. The electrostatic fields in KATRIN are formed by multiscale electrode geometries, necessitating the development of high performance field simulation software. To this end, we present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We describe an implementation of these techniques for high performance computing environments in the software KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application of KEMField and KGeoBag to KATRIN's spectrometer and detector sections, and demonstrate its use in furthering several of KATRIN's scientific goals. Finally, we present the results of a measurement designed to probe the electrostatic profile of KATRIN's main spectrometer in comparison to simulated results.

  17. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field" Simulator. (United States)

    Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R


    We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.

  18. Molecular Dynamics Simulations of CO2 Molecules in ZIF-11 Using Refined AMBER Force Field

    Directory of Open Access Journals (Sweden)

    W. Wongsinlatam


    Full Text Available Nonbonding parameters of AMBER force field have been refined based on ab initio binding energies of CO2–[C7H5N2]− complexes. The energy and geometry scaling factors are obtained to be 1.2 and 0.9 for ε and σ parameters, respectively. Molecular dynamics simulations of CO2 molecules in rigid framework ZIF-11, have then been performed using original AMBER parameters (SIM I and refined parameters (SIM II, respectively. The site-site radial distribution functions and the molecular distribution plots simulations indicate that all hydrogen atoms are favored binding site of CO2 molecules. One slight but notable difference is that CO2 molecules are mostly located around and closer to hydrogen atom of imidazolate ring in SIM II than those found in SIM I. The Zn-Zn and Zn-N RDFs in free flexible framework simulation (SIM III show validity of adapting AMBER bonding parameters. Due to the limitations of computing resources and times in this study, the results of flexible framework simulation using refined nonbonding AMBER parameters (SIM IV are not much different from those obtained in SIM II.

  19. Beneficial Effects of Spatial Remapping for Reading With Simulated Central Field Loss. (United States)

    Gupta, Anshul; Mesik, Juraj; Engel, Stephen A; Smith, Rebecca; Schatza, Mark; Calabrèse, Aurélie; van Kuijk, Frederik J; Erdman, Arthur G; Legge, Gordon E


    People with central field loss (CFL) lose information in the scotomatous region. Remapping is a method to modify images to present the missing information outside the scotoma. This study tested the hypothesis that remapping improves reading performance for subjects with simulated CFL. Circular central scotomas, with diameters ranging from 4° to 16°, were simulated in normally sighted subjects using an eye tracker on either a head-mounted display (HMD) (experiments 1, 2) or a traditional monitor (experiment 3). In the three experiments, reading speed was measured for groups of 7, 11, and 13 subjects with and without remapping of text. Remapping increased reading speed in all three experiments. On the traditional monitor, it increased reading speed by 34% (8°), 38% (12°), and 35% (16°). In the two HMD experiments, remapping increased reading speed only for the largest scotoma size, possibly due to latency of updating of the simulated scotoma. Remapping significantly increased reading speed in simulated CFL subjects. Additional testing should examine the efficacy of remapping for reading and other visual tasks for patients with advanced CFL.

  20. Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier (United States)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad


    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.

  1. The impact of monovalent ion force field model in nucleic acids simulations. (United States)

    Noy, Agnes; Soteras, Ignacio; Luque, F Javier; Orozco, Modesto


    Different classical models for monovalent ions (typically used to neutralize proteins or nucleic acids) are available in the literature and are widely used in molecular dynamics simulations without a great knowledge of their quality, consistency with the macromolecular force field and impact on the global simulation results. In this paper the ability of several of the most popular ion models to reproduce both quantum mechanics and experimental results is examined. Artefacts due to the use of incorrect ion models in molecular dynamics simulations of concentrated solutions of NaCl and KCl in water and of a short DNA duplex in 500 mM aqueous solutions of NaCl and KCl have been analyzed. Our results allow us to discuss the robustness and reliability of different ion models and to highlight the source of potential errors arising from non-optimal models. However, it is also found that the structural and dynamic characteristics of DNA (as an example of a heavily charged macromolecule) in near-physiological conditions are quite independent of the ion model used, providing support to most already-published simulations of macromolecules.

  2. Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac. (United States)

    St Aubin, J; Santos, D M; Steciw, S; Fallone, B G


    Linac-magnetic resonance (MR) systems have been proposed in order to achieve realtime image guided radiotherapy. The design of a new linac-MR system with the in-line 6 MV linac generating x-rays along the symmetry axis of an open MR imager is outlined. This new design allows for a greater MR field strength to achieve better quality images while reducing hot and cold spots in treatment planning. An investigation of linac's performance in the longitudinal fringe magnetic fields of the MR imager is given. The open MR imager fringe magnetic field was modeled using the analytic solution of the magnetic field generated from current carrying loops. The derived solution was matched to the magnetic fringe field isolines provided for a 0.5 T open MR imager through Monte Carlo optimization. The optimized field solution was then added to the previously validated 6 MV linac simulation to quantify linac's performance in the fringe magnetic field of a 0.5 T MR imager. To further the investigation, linac's performance in large fringe fields expected from other imagers was investigated through the addition of homogeneous longitudinal fields. The Monte Carlo optimization of the analytic current loop solution provided good agreement with the magnetic fringe field isolines supplied by the manufacturer. The range of magnetic fields the linac is expected to experience when coupled to the 0.5 T MR imager was determined to be from 0.0022 to 0.011 T (as calculated at the electron gun cathode). The effect of the longitudinal magnetic field on the electron beam was observed to be only in the electron gun. The longitudinal field changed the electron gun optics, affecting beam characteristics, such as a slight increase in the injection current and beam diameter, and an increasingly nonlaminar transverse phase space. Although the target phase space showed little change in its energy spectrum from the altered injection phase space, a reduction in the target current and spatial distribution peak

  3. Statistical simulation of ensembles of precipitation fields for data assimilation applications (United States)

    Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald


    The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated

  4. Bounding box framework for efficient phase field simulation of grain growth in anisotropic systems

    CERN Document Server

    Vanherpe, L; Blanpain, B; Vandewalle, S


    A sparse bounding box algorithm is extended to perform efficient phase field simulations of grain growth in anisotropic systems. The extended bounding box framework allows to attribute different properties to different grain boundary types of a polycrystalline microstructure and can be combined with explicit, implicit or semi-implicit time stepping strategies. To illustrate the applicability of the software, the simulation results of a case study are analysed. They indicate the impact of a misorientation dependent boundary energy formulation on the evolution of the misorientation distribution of the grain boundary types and on the individual growth rates of the grains as a function of the number of grain faces. (C) 2011 Elsevier B.V. All rights reserved.

  5. PReFerSim: fast simulation of demography and selection under the Poisson Random Field model. (United States)

    Ortega-Del Vecchyo, Diego; Marsden, Clare D; Lohmueller, Kirk E


    The Poisson Random Field (PRF) model has become an important tool in population genetics to study weakly deleterious genetic variation under complicated demographic scenarios. Currently, there are no freely available software applications that allow simulation of genetic variation data under this model. Here we present PReFerSim, an ANSI C program that performs forward simulations under the PRF model. PReFerSim models changes in population size, arbitrary amounts of inbreeding, dominance and distributions of selective effects. Users can track summaries of genetic variation over time and output trajectories of selected alleles. PReFerSim is freely available at: CONTACT: klohmueller@ucla.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  6. Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates of Bacillus cereus and Bacillus weihenstephanensis. (United States)

    Castiaux, Virginie; N'guessan, Elise; Swiecicka, Izabela; Delbrassinne, Laurence; Dierick, Katelijne; Mahillon, Jacques


    Bacillus cereus is an important foodborne pathogen causing diarrhoea, emesis and in, rare cases, lethal poisonings. The emetic syndrome is caused by cereulide, a heat-stable toxin. Originally considered as a rather homogenous group, the emetic strains have since been shown to display some diversity, including the existence of two clusters of mesophilic B. cereus and psychrotolerant B. weihenstephanensis. Using pulsed-field gel electrophoresis (PFGE) analysis, this research aimed to better understand the diversity and spatio-temporal occurrence of emetic strains originating from environmental or food niches vs. those isolated from foodborne cases. The diversity was evaluated using a set of 52 B. cereus and B. weihenstephanensis strains isolated between 2000 and 2011 in ten countries. PFGE analysis could discriminate 17 distinct profiles (pulsotypes). The most striking observations were as follows: (1) more than one emetic pulsotype can be observed in a single outbreak; (2) the number of distinct isolates involved in emetic intoxications is limited, and these potentially clonal strains frequently occurred in successive and independent food poisoning cases; (3) isolates from different countries displayed identical profiles; and (4) the cereulide-producing psychrotolerant B. weihenstephanensis were, so far, only isolated from environmental niches. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Plasmodium-specific molecular assays produce uninterpretable results and non-Plasmodium spp. sequences in field-collected Anopheles vectors. (United States)

    Harrison, Genelle F; Foley, Desmond H; Rueda, Leopoldo M; Melanson, Vanessa R; Wilkerson, Richard C; Long, Lewis S; Richardson, Jason H; Klein, Terry A; Kim, Heung-Chul; Lee, Won-Ja


    The Malaria Research and Reference Reagent Resource-recommended PLF/UNR/VIR polymerase chain reaction (PCR) was used to detect Plasmodium vivax in Anopheles spp. mosquitoes collected in South Korea. Samples that were amplified were sequenced and compared with known Plasmodium spp. by using the Basic Local Alignment Search Tool/n and the National Center for Biotechnology Information Basic Local Alignment Search Tool/n tools. Results show that the primers PLF/UNR/VIR used in this PCR can produce uninterpretable results and non-specific sequences in field-collected mosquitoes. Three additional PCRs (PLU/VIV, specific for 18S small subunit ribosomal DNA; Pvr47, specific for a nuclear repeat; and GDCW/PLAS, specific for the mitochondrial marker, cytB) were then used to find a more accurate and interpretable assay. Samples that were amplified were again sequenced. The PLU/VIV and Pvr47 assays showed cross-reactivity with non-Plasmodium spp. and an arthropod fungus (Zoophthora lanceolata). The GDCW/PLAS assay amplified only Plasmodium spp. but also amplified the non-human specific parasite P. berghei from an Anopheles belenrae mosquito. Detection of P. berghei in South Korea is a new finding.

  8. The role of packaging size on contamination rates during simulated presentation to a sterile field.

    Directory of Open Access Journals (Sweden)

    Tony Trier

    Full Text Available The objective of this study was to assess the impact of package size on the contact between medical devices and non-sterile surfaces (i.e. the hands of the practitioner and the outside of the package during aseptic presentation to a simulated sterile field. Rationale for this objective stems from the decades-long problem of hospital-acquired infections. This work approaches the problem from a unique perspective, namely packaging size.Randomized complete block design with subsampling.Research study conducted at professional conferences for surgical technologists and nursing professionals.Ninety-seven healthcare providers, primarily surgical technologists and nurses.Participants were gloved and asked to present the contents of six pouches of three different sizes to a simulated sterile field. The exterior of pouches and gloves of participants were coated with a simulated contaminant prior to each opening trial. After presentation to the simulated sterile field, the presence of the contaminant on package contents was recorded as indicative of contact with non-sterile surfaces and analyzed in a binary fashion using a generalized linear mixed model.Recruited subjects were 26-64 years of age (81 females, 16 males, with 2.5-44 years of professional experience. Results indicated a significant main effect of pouch size on contact rate of package contents (P = 0.0108, whereby larger pouches induced greater rates of contact than smaller pouches (estimates±SEM: 14.7±2.9% vs. 6.0±1.7%, respectively.This study utilized novel methodologies which simulate contamination in aseptic presentation. Results of this work indicate that increased contamination rates are associated with larger pouches when compared to smaller pouches. The results add to a growing body of research which investigate packaging's role in serving as a pathway for product contamination during aseptic presentation. Future work should investigate other packaging design factors (e

  9. Measured and simulated electron thermal transport in the Madisom symmetric torus reversed field pinch (United States)

    Rodrigue Mbombo, Brice

    New high time resolution measurements of the evolution of the electron temperature profile through a sawtooth event in high current reversed-field pinch (RFP) discharges in the Madison Symmetric Torus (MST) have been made using the enhanced capabilities of the multipoint, multi-pulse Thomson scattering system. Using this and other data, the electron thermal diffusion chie determined and is found to vary by orders of magnitude over the course of the sawtooth cycle. This experimental data is compared directly to simulations run at experimentally relevant parameters. This includes zero beta, single fluid, nonlinear, resistive magnetohydrodynamic (MHD) simulations run with the aspect ratio, resistivity profile, and Lundquist number (S ˜ 4 x 106) of high current RFP discharges in MST. These simulations display MHD activity and sawtooth like behavior similar to that observed in the MST. This includes both the sawtooth period and the duration of the sawtooth crash. The radial shape of the magnetic mode amplitudes, scaled to match edge measurements made in MST, are then used to compute the expected level of thermal diffusion due to parallel losses along diffusing magnetic field lines, chiMD = upsilon∥Dmag. The evolution of the Dmag profile was determined for over 20 sawteeth so that the ensemble averaged evolution could be compared to the sawtooth ensembled data from MST. The resulting comparison to the measured chi e shows that chiMD is larger than chi e at most times. However, if electrons are trapped in a magnetic well, they cannot carry energy along the diffusing magnetic field lines, reducing the thermal transport. Accounting for trapped particles brings chi MD to within uncertainty of chie in the mid radius at most times throughout the sawtooth cycle. In the core, the measured chie is greater than chi MD leading up to and including the sawtooth crash, suggesting other transport mechanisms are important at these times. Additionally, in a simulation including

  10. Computer simulations of triboelectrification of particles and their trajectories in DC electric fields (United States)

    Puliyala, Srivathsa Kumar Reddy

    This study aims to gain a fundamental understanding of the physics of triboelectri- cal charging of solid particles and the separation of the charged particles under an exter- nal DC electric field by computer simulations. A condenser model is used to implement charging mechanism and a soft sphere model is used to account for the Hertzian contact mechanics. The governing nondimensional parameters of the problem are identified and a parametric study is performed to investigate their effects on the charging efficiency and separation. The study finds relevance in a host of technologically important processes, such as recycling of plastic wastes, seed cleaning in agricultural industry and separation of coal from impurities in mining.

  11. Numerical simulations of flow field in the target region of accelerator-driven subcritical reactor system

    CERN Document Server

    Chen Hai Yan


    Numerical simulations of flow field were performed by using the PHOENICS 3.2 code for the proposed spallation target of accelerator-driven subcritical reactor system (ADS). The fluid motion in the target is axisymmetric and is treated as a 2-D steady-state problem. A body-fitted coordinate system (BFC) is then chosen and a two-dimensional mesh of the flow channel is generated. Results are presented for the ADS target under both upward and downward flow, and for the target with diffuser plate installed below the window under downward flow

  12. Simulated behaviour of field-assisted ionisation in the theory of Synthetic Poole Frenkel effect


    Pillonnet, A.; Ongaro, R.


    A simulation is made of the behaviour of dc-current versus electric field when use is made of a new approach of Poole and Poole-Frenkel (PF) theories, we designated as Synthetic Poole Frenkel (SPF) effect (Ongaro and Pillonnet, in IEE Proc. PtA 138, 127-37). Quantitative illustration shows that our SPF approach succeeds fairly well in joining in a unique formulation the early Poole and PF approaches, which appear then as limiting cases. However, it is stressed that difficulties can be expecte...

  13. Impacts of using an ensemble Kalman filter on air quality simulations along the California-Mexico border region during Cal-Mex 2010 field campaign. (United States)

    Bei, Naifang; Li, Guohui; Meng, Zhiyong; Weng, Yonghui; Zavala, Miguel; Molina, L T


    The purpose of this study is to investigate the impact of using an ensemble Kalman filter (EnKF) on air quality simulations in the California-Mexico border region on two days (May 30 and June 04, 2010) during Cal-Mex 2010. The uncertainties in ozone (O3) and aerosol simulations in the border area due to the meteorological initial uncertainties were examined through ensemble simulations. The ensemble spread of surface O3 averaged over the coastal region was less than 10ppb. The spreads in the nitrate and ammonium aerosols are substantial on both days, mostly caused by the large uncertainties in the surface temperature and humidity simulations. In general, the forecast initialized with the EnKF analysis (EnKF) improved the simulation of meteorological fields to some degree in the border region compared to the reference forecast initialized with NCEP analysis data (FCST) and the simulation with observation nudging (FDDA), which in turn leading to reasonable air quality simulations. The simulated surface O3 distributions by EnKF were consistently better than FCST and FDDA on both days. EnKF usually produced more reasonable simulations of nitrate and ammonium aerosols compared to the observations, but still have difficulties in improving the simulations of organic and sulfate aerosols. However, discrepancies between the EnKF simulations and the measurements were still considerably large, particularly for sulfate and organic aerosols, indicating that there are still ample rooms for improvement in the present data assimilation and/or the modeling systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field. (United States)

    Ma, Xiaojian; Huang, Biao; Wang, Guoyu; Fu, Xiaoying; Qiu, Sicong


    The objective of this paper is to propose an immersed boundary lattice Boltzmann method (IB-LBM) considering the ultrasonic effect to simulate red blood cell (RBC) aggregation and deformation in ultrasonic field. Numerical examples involving the typical streamline, normalized out-of-plane vorticity contours and vector fields in pure plasma under three different ultrasound intensities are presented. Meanwhile, the corresponding transient aggregation behavior of RBCs, with special emphasis on the detailed process of RBC deformation, is shown. The numerical results reveal that the ultrasound wave acted on the pure plasma can lead to recirculation flow, which contributes to the RBCs aggregation and deformation in microvessel. Furthermore, increasing the intensity of the ultrasound wave can significantly enhance the aggregation and deformation of the RBCs. And the formation of the RBCs aggregation leads to the fluctuated and dropped vorticity value of plasma in return. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. LICHEM: A QM/MM program for simulations with multipolar and polarizable force fields. (United States)

    Kratz, Eric G; Walker, Alice R; Lagardère, Louis; Lipparini, Filippo; Piquemal, Jean-Philip; Andrés Cisneros, G


    We introduce an initial implementation of the LICHEM software package. LICHEM can interface with Gaussian, PSI4, NWChem, TINKER, and TINKER-HP to enable QM/MM calculations using multipolar/polarizable force fields. LICHEM extracts forces and energies from unmodified QM and MM software packages to perform geometry optimizations, single-point energy calculations, or Monte Carlo simulations. When the QM and MM regions are connected by covalent bonds, the pseudo-bond approach is employed to smoothly transition between the QM region and the polarizable force field. A series of water clusters and small peptides have been employed to test our initial implementation. The results obtained from these test systems show the capabilities of the new software and highlight the importance of including explicit polarization. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Two-flow simulation of the natural light field within a canopy of submerged aquatic plants (United States)

    Ackleson, S. G.; Klemas, V.


    A two-flow model is developed to simulate a light field composed of both collimated and diffuse irradiance within natural waters containing a canopy of bottom-adhering plants. To account for the effects of submerging a canopy, the transmittance and reflectance terms associated with each plant structure (leaves, stems, fruiting bodies, etc.) are expressed as functions of the ratio of the refractive index of the plant material to the refractive index of the surrounding media and the internal transmittance of the plant stucture. Algebraic solutions to the model are shown to yield plausible physical explanations for unanticipated variations in volume reflectance spectra. The effect of bottom reflectance on the near-bottom light field is also investigated. These indicate that within light-limited submerged aquatic plant canopies, substrate reflectance may play an important role in determining the amount of light available to the plants and, therefore, canopy productivity.

  17. Application of simulated lidar scanning patterns to constrained Gaussian turbulence fields for load validation

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand


    of this study, we assess the influence of the proposed method on the statistical uncertainty in wind turbine extreme and fatigue loads. The main conclusion is that introducing lidar measurements as turbulence constraints in load simulations may bring significant reduction in load and energy production...... uncertainty, not accounting for any additional uncertainty from real measurements. The constrained turbulence method is most efficient for prediction of energy production and loads governed by the turbulence intensity and the thrust force, while for other load components such as tower base side-to-side moment...... generated Gaussian turbulence fields in compliance with the Mann model for neutral stability. The expected efficiency of various scanning patterns is estimated by means of the explained variance associated with the constrained field. A numerical study is made using the HAWC2 aeroelastic software, whereby...

  18. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morales, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    We propose a method of implementing projected wave functions for second-quantized auxiliary-field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. As such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.

  19. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    R. Remis


    Full Text Available In this paper we present an electric field volume integral equation approach to simulate surface plasmon propagation along metal/dielectric interfaces. Metallic objects embedded in homogeneous dielectric media are considered. Starting point is a so-called weak-form of the electric field integral equation. This form is discretized on a uniform tensor-product grid resulting in a system matrix whose action on a vector can be computed via the fast Fourier transform. The GMRES iterative solver is used to solve the discretized set of equations and numerical examples, illustrating surface plasmon propagation, are presented. The convergence rate of GMRES is discussed in terms of the spectrum of the system matrix and through numerical experiments we show how the eigenvalues of the discretized volume scattering operator are related to plasmon propagation and the medium parameters of a metallic object.

  20. Bringing simulation to engineers in the field: a Web 2.0 approach. (United States)

    Haines, Robert; Khan, Kashif; Brooke, John


    Field engineers working on water distribution systems have to implement day-to-day operational decisions. Since pipe networks are highly interconnected, the effects of such decisions are correlated with hydraulic and water quality conditions elsewhere in the network. This makes the provision of predictive decision support tools (DSTs) for field engineers critical to optimizing the engineering work on the network. We describe how we created DSTs to run on lightweight mobile devices by using the Web 2.0 technique known as Software as a Service. We designed our system following the architectural style of representational state transfer. The system not only displays static geographical information system data for pipe networks, but also dynamic information and prediction of network state, by invoking and displaying the results of simulations running on more powerful remote resources.

  1. Predictive simulations and optimization of nanowire field-effect PSA sensors including screening

    KAUST Repository

    Baumgartner, Stefan


    We apply our self-consistent PDE model for the electrical response of field-effect sensors to the 3D simulation of nanowire PSA (prostate-specific antigen) sensors. The charge concentration in the biofunctionalized boundary layer at the semiconductor-electrolyte interface is calculated using the propka algorithm, and the screening of the biomolecules by the free ions in the liquid is modeled by a sensitivity factor. This comprehensive approach yields excellent agreement with experimental current-voltage characteristics without any fitting parameters. Having verified the numerical model in this manner, we study the sensitivity of nanowire PSA sensors by changing device parameters, making it possible to optimize the devices and revealing the attributes of the optimal field-effect sensor. © 2013 IOP Publishing Ltd.

  2. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science


    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  3. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.


    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD) and plumber\\'s nightmare phase (P) were spontaneously formed in the range of homopolymer volume fraction simulated via coarse-grained molecular dynamics. To the best of our knowledge, this is the first time that such phases have been obtained in continuum-space molecular simulations of DBC systems. Though tentative phase boundaries were delineated via free-energy calculations, macrophase separation could not be satisfactorily assessed within the framework of particle-based simulations. Therefore, SCFT was used to explore the DBC/homopolymer phase diagram in more detail, showing that although in many cases two-phase coexistence of a DBC-rich phase and a homopolymer-rich phase does precede the stability of complex bicontinuous phases the DD phase can be stable in a relatively wide region of the phase diagram. Whereas the P phase was always metastable with respect to macrophase separation under the thermodynamic conditions explored with SCFT, it was sometimes nearly stable, suggesting that full stability could be achieved in other unexplored regions of parameter space. Moreover, even the predicted DD- and P-phase metastability regions were located significantly far from the spinodal line, suggesting that these phases could be observed in experiments as "long-lived" metastable phases under those conditions. This conjecture is also consistent with large-system molecular dynamics simulations that showed that the time scale of mesophase formation is much faster than that of macrophase separation. © 2009 American Chemical Society.

  4. Mapping substructure in the HST Frontier Fields cluster lenses and in cosmological simulations (United States)

    Natarajan, Priyamvada; Chadayammuri, Urmila; Jauzac, Mathilde; Richard, Johan; Kneib, Jean-Paul; Ebeling, Harald; Jiang, Fangzhou; van den Bosch, Frank; Limousin, Marceau; Jullo, Eric; Atek, Hakim; Pillepich, Annalisa; Popa, Cristina; Marinacci, Federico; Hernquist, Lars; Meneghetti, Massimo; Vogelsberger, Mark


    We map the lensing-inferred substructure in the first three clusters observed by the Hubble Space Telescope Frontier Fields (HSTFF) Initiative: Abell 2744 (z = 0.308), MACSJ 0416, (z = 0.396) and MACSJ 1149 (z = 0.543). Statistically resolving dark matter subhaloes down to ˜10^{9.5} M_{⊙}, we compare the derived subhalo mass functions (SHMFs) to theoretical predictions from analytical models and with numerical simulations in a Lambda cold dark matter (LCDM) cosmology. Mimicking our observational cluster member selection criteria in the HSTFF, we report excellent agreement in both amplitude and shape of the SHMF over four decades in subhalo mass (10^{9-13} M_{⊙}). Projection effects do not appear to introduce significant errors in the determination of SHMFs from simulations. We do not find evidence for a substructure crisis, analogous to the missing satellite problem in the Local Group, on cluster scales, but rather excellent agreement of the count-matched HSTFF SHMF down to Msubhalo/Mhalo ˜ 10-5. However, we do find discrepancies in the radial distribution of subhaloes inferred from HSTFF cluster lenses compared to determinations from simulated clusters. This suggests that although the selected simulated clusters match the HSTFF sample in mass, they do not adequately capture the dynamical properties and complex merging morphologies of these observed cluster lenses. Therefore, HSTFF clusters are likely observed in a transient evolutionary stage that is presently insufficiently sampled in cosmological simulations. The abundance and mass function of dark matter substructure in cluster lenses continues to offer an important test of the LCDM paradigm, and at present we find no tension between model predictions and observations.

  5. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery (United States)

    Douch, Karim; Wu, Hu; Schubert, Christian; Müller, Jürgen; Pereira dos Santos, Franck


    The prospects of future satellite gravimetry missions to sustain a continuous and improved observation of the gravitational field have stimulated studies of new concepts of space inertial sensors with potentially improved precision and stability. This is in particular the case for cold-atom interferometry (CAI) gradiometry which is the object of this paper. The performance of a specific CAI gradiometer design is studied here in terms of quality of the recovered gravity field through a closed-loop numerical simulation of the measurement and processing workflow. First we show that mapping the time-variable field on a monthly basis would require a noise level below 5mE /√{Hz } . The mission scenarios are therefore focused on the static field, like GOCE. Second, the stringent requirement on the angular velocity of a one-arm gradiometer, which must not exceed 10-6 rad/s, leads to two possible modes of operation of the CAI gradiometer: the nadir and the quasi-inertial mode. In the nadir mode, which corresponds to the usual Earth-pointing satellite attitude, only the gradient Vyy , along the cross-track direction, is measured. In the quasi-inertial mode, the satellite attitude is approximately constant in the inertial reference frame and the 3 diagonal gradients Vxx,Vyy and Vzz are measured. Both modes are successively simulated for a 239 km altitude orbit and the error on the recovered gravity models eventually compared to GOCE solutions. We conclude that for the specific CAI gradiometer design assumed in this paper, only the quasi-inertial mode scenario would be able to significantly outperform GOCE results at the cost of technically challenging requirements on the orbit and attitude control.

  6. Source identification of N2O produced during simulated wastewater treatment under different oxygen conditions using stable isotopic analysis

    Directory of Open Access Journals (Sweden)

    T Azzaya


    Full Text Available Nitrous oxide (N2O, a potent greenhouse gas which is important in climate change, is predicted to be the most dominant ozone depleting substance. It is mainly produced by oxidation of hydroxylamine (NH2OH or reduction of nitrite (NO2- during microbiological processes such as nitrification and denitrification. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrification in WWTP. We investigated the N2O production mechanisms during batch experiments that simulate wastewater treatment with activated sludge under various dissolved oxygen (DO concentrations by stable isotope analysis. About 125mL of water was sampled from 30L incubation chamber for several times during the incubation, and concentration and isotopomer ratios of N2O and N-containing species were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS. Ammonium (NH4+ consumption was accompanied by increment of nitrite (NO2-, and at the same time dissolved N2O concentration gradually increased to 4850 and 5650 nmol kg-1, respectively, during the four-hour incubation when DO concentrations were 0.2 and 0.5 mg L-1. Observed low SP values (0.2-8.9‰ at DO-0.2 mg L-1, -5.3-6.3‰ at DO-0.5 mg L-1, -1.0-8.3‰ at DO-0.8 mg L-1 in N2O and relationship of nitrogen isotope ratios between N2O and its potential substrates (NH4+, NO3- suggested that N2O produced under the aerobic condition derived mainly from NO2- reduction by ammonia-oxidizing bacteria (nitrifier–denitrification.DOI: Journal of Chemistry  15 (41, 2014, p4-10  

  7. 3D MHD simulations of magnetic field evolution and radio polarization of barred galaxies (United States)

    Kulesza-Żydzik, B.; Kulpa-Dybeł, K.; Otmianowska-Mazur, K.; Soida, M.; Urbanik, M.


    Aims: We study numerically the large-scale gas and magnetic field evolution of barred galaxies in the gravitational potential of a disk, bulge, halo, and bar. We solve non-linear MHD equations including the back-reaction of the magnetic field to the gas. We do not take into account any dynamo process. Methods: We apply the numerical MHD code to calculate the model of the galaxy in three dimensions. We construct realistic maps of high-frequency (Faraday rotation free) polarized radio emission on the basis of the simulated magnetic fields. The polarization model includes the effects of projection and limited resolution. Results: The main result is that our modeled polarization maps resemble the radio polarization structures observed in barred galaxies. The modeled polarization B-vectors distribution along the bar and between spiral arms resembles the observed topology of the magnetic field in barred galaxies. Our calculations for several different rotational velocities and sound speeds give the same result we got in our previous earlier published model. The reason of this behaviour is the dynamical evolution of the bar that causes gas to form spiral waves going radially outward. A gaseous spiral arms in turn generates magnetic ones, which live much longer in the inter-arm disk space than the gaseous pattern.

  8. Higher Order Geometrical Modeling and Higher Order Field/Current Modeling in FEM, MoM, and PO Simulations

    National Research Council Canada - National Science Library

    Notaros, Branislav M; Ilic, Milan M; Djordjevic, Miroslav


    ...), method of moments (MoM), and physical optics (PO). The simulations combine higher order geometrical modeling and higher order field/current modeling, which is referred to as double-higher-order modeling...

  9. Geohydrology and simulations of ground-water flow at Verona well field, Battle Creek, Michigan, 1988 (United States)

    Lynch, E.A.; Grannemann, N.G.


    Public water supply for the city of Battle Creek, Mich. is withdrawn from the Marshall Sandstone through wells at the Verona well field. Analysis of borehole acoustic televiewer, gamma, and single-point-resistance logs from wells in Bailey Park, near the well field, indicates 12 fracture zones in the Marshall Sandstone. Further interpretation of flow-meter and temperature logs from the same wells indicates that the fracture zones are locally interconnected but appear to remain isolated over a lateral distance of 3,000 feet. Organic chemicals were detected in water samples collected from water-supply wells in the Verona well field in 1981. In 1985, six water-supply wells were converted to purge wells to intercept organic chemicals and divert them from the remaining water-supply wells. Removal of these wells from service resulted in a water-supply shortage. A proposal in which an alternative purge system could be installed so that wells that are out of service may be reactivated was examined. A ground-water-flow model developed for this study indicates that, under the current purge configuration, most water from contaminant-source areas either is captured by purge wells or flows to the Battle Creek River. Some water, however, is captured by three water-supply wells. Model simulations indicate that with the addition of eight purge wells, the well field would be protected from contamination, most water from the contaminant-source areas would be captured by the purge system, and only a small portion would flow to the Battle Creek River. In an effort to augment the city's water supply, the potential for expansion of the Verona well field to the northeast also was investigated. Because of the addition of three municipal wells northeast of the well field, some water from the site of a gasoline spill may be captured by two water-supply wells. Ground water in the area northeast of Verona well field contains significantly lower concentrations of iron, manganese, and calcium

  10. Numerical simulation for influence of pulse width on the temperature field of unidirectional carbon fiber (United States)

    Yuan, Boshi; Jin, Guangyong; Wei, Zhi; Wang, Di; Ma, Yao


    The unidirectional carbon fiber material is commonly used in the Carbon Fiber Reinforced Plastics (CFRP). The COMSOL Multiphysics finite element analysis software was utilized in this paper. And the 3D anisotropy model, which based on heat conduction equation, was established to simulate the temperature field of the carbon fiber irradiated by pulse laser. The research focused on the influences of the laser width on the material temperature field. The thermal analysis results indicated that during the process of irradiation, the temperature field distribution of the carbon fiber was different from the distribution of laser spot on the surface. The incident laser is Gauss laser, but the temperature field distribution presented oval. It resulted from the heat transfer coefficient of carbon fiber was different in the axial and in the radial. The temperature passed along the fiber axial faster than the radial. Under the condition of the laser energy density constant, and during the laser irradiation time, the depth of the carbon fiber temperature field increased with the pulse width increasing, and the area of the carbon fiber temperature field increased with the pulse width increasing, However, the temperature of the laser irradiated center showed a trend of decrease with the increasing of pulse width. The results showed that when the laser affection was constant, the laser energy affected on the carbon fiber per unit time was increased with the decrease of the pulse width. Due to the limits of the heat transfer coefficient of the material and laser irradiation time, the energy was injected in carbon fiber within a short time. With the reducing of the heat conduction area, the depth and the area of the temperature field would be also decreased. With the increase of pulse width, the time of energy injected in carbon fiber was increased, and the laser energy affected on the carbon fiber per unit time was decrease. With the heat conduction area increasing, the depth and

  11. Relationship between parallel faults and stress field in rock mass based on numerical simulation (United States)

    Imai, Y.; Mikada, H.; Goto, T.; Takekawa, J.


    Parallel cracks and faults, caused by earthquakes and crustal deformations, are often observed in various scales from regional to laboratory scales. However, the mechanism of formation of these parallel faults has not been quantitatively clarified, yet. Since the stress field plays a key role to the nucleation of parallel faults, it is fundamentally to investigate the failure and the extension of cracks in a large-scale rock mass (not with a laboratory-scale specimen) due to mechanically loaded stress field. In this study, we developed a numerical simulations code for rock mass failures under different loading conditions, and conducted rock failure experiments using this code. We assumed a numerical rock mass consisting of basalt with a rectangular shape for the model. We also assumed the failure of rock mass in accordance with the Mohr-Coulomb criterion, and the distribution of the initial tensile and compressive strength of rock elements to be the Weibull model. In this study, we use the Hamiltonian Particle Method (HPM), one of the particle methods, to represent large deformation and the destruction of materials. Out simulation results suggest that the confining pressure would have dominant influence for the initiation of parallel faults and their conjugates in compressive conditions. We conclude that the shearing force would provoke the propagation of parallel fractures along the shearing direction, but prevent that of fractures to the conjugate direction.

  12. A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model (United States)

    Jiang, Yongyue; Li, Li; Zhao, Zhijiang


    Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.

  13. Self-consistent field theory simulations of polymers on arbitrary domains

    Energy Technology Data Exchange (ETDEWEB)

    Ouaknin, Gaddiel, E-mail: [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Laachi, Nabil; Delaney, Kris [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Materials, University of California, Santa Barbara, CA 93106-5050 (United States); Gibou, Frederic [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Department of Computer Science, University of California, Santa Barbara, CA 93106-5110 (United States)


    We introduce a framework for simulating the mesoscale self-assembly of block copolymers in arbitrary confined geometries subject to Neumann boundary conditions. We employ a hybrid finite difference/volume approach to discretize the mean-field equations on an irregular domain represented implicitly by a level-set function. The numerical treatment of the Neumann boundary conditions is sharp, i.e. it avoids an artificial smearing in the irregular domain boundary. This strategy enables the study of self-assembly in confined domains and enables the computation of physically meaningful quantities at the domain interface. In addition, we employ adaptive grids encoded with Quad-/Oc-trees in parallel to automatically refine the grid where the statistical fields vary rapidly as well as at the boundary of the confined domain. This approach results in a significant reduction in the number of degrees of freedom and makes the simulations in arbitrary domains using effective boundary conditions computationally efficient in terms of both speed and memory requirement. Finally, in the case of regular periodic domains, where pseudo-spectral approaches are superior to finite differences in terms of CPU time and accuracy, we use the adaptive strategy to store chain propagators, reducing the memory footprint without loss of accuracy in computed physical observables.

  14. Simulation of the flow field and tumbling dynamics of multiply flagellated bacterium (United States)

    Larson, Ronald; Watari, Nobuhiko


    To study the hydrodynamics of swimming of multi-flagellated bacteria, such as Escherichia coli, we develop a simulation method using a bead-spring model to account for the hydrodynamic and the mechanical interactions between multiple flagella and the cell body, the reversal of the rotation of a flagellum in a tumble and associated polymorphic transformations of the flagellum. This simulation reproduces the experimentally observed behaviors of E. coli, namely, a three-dimensional random-walk trajectory in run-and-tumble motion and steady clockwise swimming near a wall. Here we show using a modeled cell that the polymorphic transformation of flagellum in a tumble facilitates the reorientation of the cell, and that the time-averaged flow field near a cell in a run has double-layered helical streamlines. Moreover, the instantaneous flow field, which is strongly time-dependent, is more than 10-fold larger in magnitude than the time-averaged flow, large enough to affect the migration behavior of surrounding chemoattractants, with the Peclet number for these molecules being larger than one near a swimming cell.

  15. Simulation on Temperature Field of Radiofrequency Lesions System Based on Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, D; Qian, Z; Li, W [Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Qian, L, E-mail: [College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210046 (China)


    This paper mainly describes the way to get the volume model of damaged region according to the simulation on temperature field of radiofrequency ablation lesion system in curing Parkinson's disease based on finite element method. This volume model reflects, to some degree, the shape and size of the damaged tissue during the treatment with all tendencies in different time or core temperature. By using Pennes equation as heat conduction equation of radiofrequency ablation of biological tissue, the author obtains the temperature distribution field of biological tissue in the method of finite element for solving equations. In order to establish damage models at temperature points of 60 deg. C, 65 deg. C, 70 deg. C, 75 deg. C, 80 deg. C, 85 deg. C and 90 deg. C while the time points are 30s, 60s, 90s and 120s, Parkinson's disease model of nuclei is reduced to uniform, infinite model with RF pin at the origin. Theoretical simulations of these models are displayed, focusing on a variety of conditions about the effective lesion size on horizontal and vertical. The results show the binary complete quadratic non-linear joint temperature-time models of the maximum damage diameter and maximum height. The models can comprehensively reflect the degeneration of target tissue caused by radio frequency temperature and duration. This lay the foundation for accurately monitor of clinical RF treatment of Parkinson's disease in the future.

  16. Numerical simulation of the flow field in a dense-media cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Li-juan Shen; Yan-feng Hu; Jian-zhong Chen; Peng Zhang; Hua-zhen Dai [China University of Mining & Technology, Xuzhou (China). School of Chemical Engineering and Technology


    An analytical study of the flow and pressure fields inside a small-diameter dense-media cyclone is presented. The simulations were done with the help of the CFD software FLUENT. The following conclusions were reached: the tangential velocity tends to increase when moving from the center toward the exterior. The velocity then begins to decrease when the maximum velocity point is reached. The velocity field divides into two different sections; an inner swirling zone and an outer swirling zone. The axial velocity points down at the wall and gradually decreases toward the bottom. Continuing toward the bottom, the axial velocity passes through zero and then gradually increases in the opposite direction. In the cyclone's central zone, the pressure is negative and the suction of air allows an air column to be formed therein. At the center of the radial negative zone the pressure drops to its lowest value phenomenon that has been verified by theoretical analysis. Some discrepancies between the observed data and the simulated data are noted when an analysis in made on a cyclone operating with either fresh water only or with water with added heavy particles. 11 refs., 4 figs., 1 tab.

  17. Temperature Dependence of Electrical Characteristics of Carbon Nanotube Field-Effect Transistors: A Quantum Simulation Study

    Directory of Open Access Journals (Sweden)

    Ali Naderi


    Full Text Available By developing a two-dimensional (2D full quantum simulation, the attributes of carbon nanotube field-effect transistors (CNTFETs in different temperatures have been comprehensively investigated. Simulations have been performed by employing the self-consistent solution of 2D Poisson-Schrödinger equations within the nonequilibrium Green's function (NEGF formalism. Principal characteristics of CNTFETs such as current capability, drain conductance, transconductance, and subthreshold swing (SS have been investigated. Simulation results present that as temperature raises from 250 to 500 K, the drain conductance and on-current of the CNTFET improved; meanwhile the on-/off-current ratio deteriorated due to faster growth in off-current. Also the effects of temperature on short channel effects (SCEs such as drain-induced barrier lowering (DIBL and threshold voltage roll-off have been studied. Results show that the subthreshold swing and DIBL parameters are almost linearly correlated, so the degradation of these parameters has the same origin and can be perfectly influenced by the temperature.

  18. Three-dimensional simulation of square jets in cross-flow:the near field flow structure (United States)

    Hwang, Robert R.; Sau, Amalendu; Sheu, Tony W. H.


    Direct numerical simulations are performed to predict the three-dimensional unsteady flow interaction around a square jet issuing normal to a cross-flow. The near field flow features investigated here include, the presence of a horseshoe vortex system originating upstream of the jet orifice, a sequence of instability induced shear layer rollers formed around the front side of the jet, and the inception process of the counter rotating vortex pair from the folded lateral jet shear. The issue of origin of the counter rotating votex pair and its evolution process starting from inception has been investigated to a complete detail. The results obtained from the present simulation also confirm the fact that the upright wake vortices, which form downstream of the jet orifice, actually originate on the cross-flow boundary layer where they spiral in and lift away from the wall shear layer. Moreover, the near-wall flow topology as extracted from the simulated data is observed to be closely consistent with the existing experimental findings.

  19. Numerical simulations of motion-insensitive diffusion imaging based on the distant dipolar field effects. (United States)

    Lin, Tao; Sun, Huijun; Chen, Zhong; You, Rongyi; Zhong, Jianhui


    Diffusion weighting in MRI is commonly achieved with the pulsed-gradient spin-echo (PGSE) method. When combined with spin-warping image formation, this method often results in ghosts due to the sample's macroscopic motion. It has been shown experimentally (Kennedy and Zhong, MRM 2004;52:1-6) that these motion artifacts can be effectively eliminated by the distant dipolar field (DDF) method, which relies on the refocusing of spatially modulated transverse magnetization by the DDF within the sample itself. In this report, diffusion-weighted images (DWIs) using both DDF and PGSE methods in the presence of macroscopic sample motion were simulated. Numerical simulation results quantify the dependence of signals in DWI on several key motion parameters and demonstrate that the DDF DWIs are much less sensitive to macroscopic sample motion than the traditional PGSE DWIs. The results also show that the dipolar correlation distance (d(c)) can alter contrast in DDF DWIs. The simulated results are in good agreement with the experimental results reported previously.

  20. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps (United States)

    Robertson, James; Martin, Eleanor; Cox, Ben; Treeby, Bradley E.


    High intensity transcranial focused ultrasound is an FDA approved treatment for essential tremor, while low-intensity applications such as neurostimulation and opening the blood brain barrier are under active research. Simulations of transcranial ultrasound propagation are used both for focusing through the skull, and predicting intracranial fields. Maps of the skull acoustic properties are necessary for accurate simulations, and can be derived from medical images using a variety of methods. The skull maps range from segmented, homogeneous models, to fully heterogeneous models derived from medical image intensity. In the present work, the impact of uncertainties in the skull properties is examined using a model of transcranial propagation from a single element focused transducer. The impact of changes in bone layer geometry and the sound speed, density, and acoustic absorption values is quantified through a numerical sensitivity analysis. Sound speed is shown to be the most influential acoustic property, and must be defined with less than 4% error to obtain acceptable accuracy in simulated focus pressure, position, and volume. Changes in the skull thickness of as little as 0.1 mm can cause an error in peak intracranial pressure of greater than 5%, while smoothing with a 1 \\text{m}{{\\text{m}}3} kernel to imitate the effect of obtaining skull maps from low resolution images causes an increase of over 50% in peak pressure. The numerical results are confirmed experimentally through comparison with sonications made through 3D printed and resin cast skull bone phantoms.

  1. On an efficient and effective Intelligent Transportation System (ITS) using field and simulation data (United States)

    Ekedebe, Nnanna; Chen, Zhijiang; Xu, Guobin; Lu, Chao; Yu, Wei


    Intelligent transportation system (ITS) applications are expected to provide a more efficient, effective, reliable, and safe driving experience, which can minimize road traffic congestion resulting in a better traffic flow management. To efficiently manage traffic flows, in this paper, we compare the effectiveness of two well-known vehicle routing algorithms: the Dijkstra's shortest path algorithm and the A* (Astar) algorithm in terms of the total travel time and the travel distance. To this end, we built a generic ITS test-bed and created several real-world driving scenarios using field and simulation data to evaluate the performance of these two routing algorithms. The dataset used in our simulation is six weeks traffic volume data from 08/01/2012 to 09/27/2012 in the Maryland (MD)/Washington DC and Virginia (VA) area. Our simulation data shows that an increase in network size results in scalability problems as the efficiency and effectiveness of these algorithms diminishes in larger road networks with greater traffic volume densities, flow rates, and congested conditions. In addition, the imprecision of the road network increases as the network size and the traffic volume density increases. Our study shows that the ability of these vehicular routing algorithms to adaptively route traffic depends on the size and type of road networks, and the current roadway conditions.

  2. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment (United States)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam


    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  3. Advances in continuum kinetic and gyrokinetic simulations of turbulence on open-field line geometries (United States)

    Hakim, Ammar; Shi, Eric; Juno, James; Bernard, Tess; Hammett, Greg


    For weakly collisional (or collisionless) plasmas, kinetic effects are required to capture the physics of micro-turbulence. We have implemented solvers for kinetic and gyrokinetic equations in the computational plasma physics framework, Gkeyll. We use a version of discontinuous Galerkin scheme that conserves energy exactly. Plasma sheaths are modeled with novel boundary conditions. Positivity of distribution functions is maintained via a reconstruction method, allowing robust simulations that continue to conserve energy even with positivity limiters. We have performed a large number of benchmarks, verifying the accuracy and robustness of our code. We demonstrate the application of our algorithm to two classes of problems (a) Vlasov-Maxwell simulations of turbulence in a magnetized plasma, applicable to space plasmas; (b) Gyrokinetic simulations of turbulence in open-field-line geometries, applicable to laboratory plasmas. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  4. Numerical simulation of stress field for laser thermal loading on piston (United States)

    Liu, Xiu-Bo; Pang, Ming; Zhang, Zhen-Guo; Tan, Jian-Song; Zhu, Gang-Xian; Wang, Ming-Di


    To investigate the laser thermal loading on diesel engine piston, the employed Gaussian laser beam was transformed into concentric multi-circular patterns of specific intensity distributions with the aid of diffractive optical elements (DOEs), the time duration of laser thermal loading was controlled by computer with air cooling on the top surface of piston, and water cooling of oil tunnel and bottom surface of piston. Numerical simulation model of stress field of laser thermal action was established with the consideration of experimental conditions and the temperature dependent of thermal physical properties of the piston materials. Results show that the stress fluctuation rate at the concave pit site of top surface of piston is larger than that of laser irradiated region due to concave pit region near oil tunnel. Meanwhile, the regions of concave pit, oil tunnel and inner chamber near the top surface of piston are most vulnerable sites to form thermal cracks due to their direct contact with the cooling medium. Results of experimental and numerical simulation have good agreement, which validates the numerical simulation mode.

  5. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX. (United States)

    Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam


    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Statistical Evaluations of Microphysics Fields From Observations and Simulations of Tropical Cyclones (United States)

    Rogers, R.; Black, M.; Chen, S.


    There are many factors that determine tropical cyclone intensity and rainfall, such as the magnitude and direction of vertical shear of the environmental wind, upper oceanic temperature structure, and low- and mid- level environmental relative humidity. Ultimately, though, intensity and rainfall are dependent on the magnitude and distribution of the release of latent heat within the core of the storm. The ability to accurately predict these fields is quite challenging, however, and improving our understanding and forecasting of intensity and rainfall remains an elusive goal for the operational and research communities. Its importance is underscored by the fact that the improvement in forecast skill for tropical cyclone intensity has significantly lagged behind that for track, while standardized techniques for evaluating tropical cyclone rainfall are only now being developed. The primary means by which forecasts of intensity and rainfall can be improved is through the use of numerical models. Continuing increases in computer power have enabled cloud-scale (grid length O(1 km)), three- dimensional simulations of tropical cyclones to become practically commonplace. Such high resolution obviates the need for the parameterization of deep convection, a traditional source of uncertainty in determining latent heating profiles. While convective parameterization is avoided at this resolution, the necessity of parameterizing other processes, such as hydrometeor production, conversion, and fallout, fluxes of heat, moisture, and momentum from the ocean to the atmosphere, and subgrid-scale turbulent mixing, remains. These parameterizations also have uncertainties and deficiencies that may contribute to errors in tropical cyclone intensity and rainfall forecasts. What is needed is a method for evaluating tropical cyclone simulations by comparing them to an extensive set of observations of microphysics fields, including hydrometeor concentrations, radar reflectivity, and vertical

  7. Development and Field Testing of a Model to Simulate a Demonstration of Le Chatelier's Principle Using the Wheatstone Bridge Circuit. (United States)

    Vickner, Edward Henry, Jr.

    An electronic simulation model was designed, constructed, and then field tested to determine student opinion of its effectiveness as an instructional aid. The model was designated as the Equilibrium System Simulator (ESS). The model was built on the principle of electrical symmetry applied to the Wheatstone bridge and was constructed from readily…

  8. Process-oriented Simulation of Runoff Generation on Arable Fields Using a Physically Based Hydrological Model (United States)

    Winter, F.; Disse, M.


    In Germany, aside from technical flood protection and forecasting, modern flood protection strategies include distributed flood control measures. On arable fields these measures comprise of increasing infiltration ability due to different tillage practices such as conservational tillage or no-tillage. Tillage practices have a significant effect on the runoff generation process. Bare soils are prone to forming soil crusts during extreme rainfall events especially on Loessial soils that are abundant in Central European landscapes, and soil crusts promote surface runoff and erosion. Due to the impact of raindrops, the topsoil aggregates are broken and form a layer of a few millimeters to centimeters with very low hydraulic conductivity. One way to describe this process is by using a modified Horton infiltration equation. WaSiM-ETH is a physically based hydrological modeling system developed by SCHULLA (1997) to analyze the spatial and temporal distributed flow processes in complex catchments. In order to investigate the effect of soil crusts on runoff generation on arable fields, WaSiM-ETH was extended by adding a silting module which is able to simulate the process of soil crust formation. It has been shown that sprinkler experiments could be simulated more efficiently with the model extension than with the simulation of runoff generation according to the Mualem-van-Genuchten parameterization. This effect is extended to a lower mesoscale agricultural catchment for a number of different high intensity storm events. Finally, scenario setups show the potential of surface water retention for different tillage practices. Literature: SCHULLA, J. (1997): Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen von Klimaänderungen, Dissertation, ETH Zürich, 161. S. (in German)

  9. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation (United States)

    Janssen, A M; Rampersad, S M; Lucka, F; Lanfer, B; Lew, S; Aydin, Ü; Wolters, C H; Stegeman, D F; Oostendorp, T F


    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation (TMS). One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between the CSF and GM (Thielscher et al. 2011; Bijsterbosch et al. 2012), or by resizing the whole brain (Wagner et al. 2008). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images (MRI), was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location. PMID:23787706

  10. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation. (United States)

    Janssen, A M; Rampersad, S M; Lucka, F; Lanfer, B; Lew, S; Aydin, U; Wolters, C H; Stegeman, D F; Oostendorp, T F


    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation. One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between cerebrospinal fluid (CSF) and grey matter (Thielscher et al 2011 NeuroImage 54 234-43, Bijsterbosch et al 2012 Med. Biol. Eng. Comput. 50 671-81), or by resizing the whole brain (Wagner et al 2008 Exp. Brain Res. 186 539-50). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images, was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location.

  11. High-fidelity simulation in the nonmedical domain: practices and potential transferable competencies for the medical field

    Directory of Open Access Journals (Sweden)

    Carron PN


    Full Text Available Pierre-Nicolas Carron, Lionel Trueb, Bertrand YersinEmergency Service, University Hospital Center, Lausanne, SwitzerlandAbstract: Simulation is a promising pedagogical tool in the area of medical education. High-fidelity simulators can reproduce realistic environments or clinical situations. This allows for the practice of teamwork and communication skills, thereby enhancing reflective reasoning and experiential learning. Use of high-fidelity simulators is not limited to the medical and aeronautical fields, but has developed in a large number of nonmedical organizations as well. The techniques and pedagogical tools which have evolved through the use of nonmedical simulations serve not only as teaching examples but also as avenues which can help further the evolution of the concept of high-fidelity simulation in the field of medicine. This paper presents examples of high-fidelity simulations in the military, maritime, and aeronautical fields. We compare the implementation of high-fidelity simulation in the medical and nonmedical domains, and discuss the possibilities and limitations of simulators in medicine, based on recent nonmedical applications.Keywords: high-fidelity simulation, crew resource management, experiential learning

  12. Simulating maize yield and bomass with spatial variability of soil field capacity (United States)

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.


    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  13. The impact of simulated motion blur on lesion detection performance in full-field digital mammography. (United States)

    Abdullah, Ahmed K; Kelly, Judith; Thompson, John D; Mercer, Claire E; Aspin, Rob; Hogg, Peter


    Motion blur is a known phenomenon in full-field digital mammography, but the impact on lesion detection is unknown. This is the first study to investigate detection performance with varying magnitudes of simulated motion blur. 7 observers (15 ± 5 years' reporting experience) evaluated 248 cases (62 containing malignant masses, 62 containing malignant microcalcifications and 124 normal cases) for 3 conditions: no blurring (0 mm) and 2 magnitudes of simulated blurring (0.7 and 1.5 mm). Abnormal cases were biopsy proven. Mathematical simulation was used to provide a pixel shift in order to simulate motion blur. A free-response observer study was conducted to compare lesion detection performance for the three conditions. The equally weighted jackknife alternative free-response receiver operating characteristic was used as the figure of merit. Test alpha was set at 0.05 to control probability of Type I error. The equally weighted jackknife alternative free-response receiver operating characteristic analysis found a statistically significant difference in lesion detection performance for both masses [F(2,22) = 6.01, p = 0.0084] and microcalcifications [F(2,49) = 23.14, p motion blur caused a statistically significant reduction in lesion detection performance. These false-negative decisions could have implications for clinical practice. Advances in knowledge: This research demonstrates for the first time that motion blur has a negative and statistically significant impact on lesion detection performance in digital mammography.

  14. A comparison of plotless density estimators using Monte Carlo simulation on totally enumerated field data sets

    Directory of Open Access Journals (Sweden)

    Sugihara Robert T


    Full Text Available Abstract Background Plotless density estimators are those that are based on distance measures rather than counts per unit area (quadrats or plots to estimate the density of some usually stationary event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance measures between events and from random points to events to derive an estimate of density. The error and bias of these estimators for the various spatial patterns found in nature have been examined using simulated populations only. In this study we investigated eight plotless density estimators to determine which were robust across a wide range of data sets from fully mapped field sites. They covered a wide range of situations including animal damage to rice and corn, nest locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied to sample the data sets, and in all cases the error of the estimate (measured as relative root mean square error was reduced with increasing sample size. The method of calculation and ease of use in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in their original published forms, although the variable area transect (VAT and ordered distance methods have been the subjects of optimization studies. Results An estimator that was a compound of three basic distance estimators was found to be robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can be used either with the basic distance formula or the formula used with the Kendall-Moran estimator in which case a reduction in error may be gained for sample sizes less than 25, however, there is no improvement for larger sample sizes. The variable area transect (VAT method performed moderately well, is easy to use in the field, and its calculations easy to undertake. Conclusion Plotless density estimators can provide an estimate of density in situations where it

  15. Study of the flow field past dimpled aerodynamic surfaces: numerical simulation and experimental verification (United States)

    Binci, L.; Clementi, G.; D’Alessandro, V.; Montelpare, S.; Ricci, R.


    This work presents the study of the flow field past of dimpled laminar airfoil. Fluid dynamic behaviour of these elements has been not still deeply studied in the scientific community. Therefore Computational Fluid-Dynamics (CFD) is here used to analyze the flow field induced by dimples on the NACA 64-014A laminar airfoil at Re = 1.75 · 105 at α = 0°. Reynolds Averaged Navier–Stokes (RANS) equations and Large-Eddy Simulations (LES) were compared with wind tunnel measurements in order to evaluate their effectiveness in the modeling this kind of flow field. LES equations were solved using a specifically developed OpenFOAM solver adopting an L–stable Singly Diagonally Implicit Runge–Kutta (SDIRK) technique with an iterated PISO-like procedure for handling pressure-velocity coupling within each RK stage. Dynamic Smagorinsky subgrid model was employed. LES results provided good agreement with experimental data, while RANS equations closed with \\[k-ω -γ -\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] approach overstimates laminar separation bubble (LSB) extension of dimpled and un–dimpled configurations. Moreover, through skin friction coefficient analysis, we found a different representation of the turbulent zone between the numerical models; indeed, with RANS model LSB seems to be divided in two different parts, meanwhile LES model shows a LSB global reduction.

  16. Coupled electric fields in photorefractive driven liquid crystal hybrid cells - theory and numerical simulation (United States)

    Moszczyński, P.; Walczak, A.; Marciniak, P.


    In cyclic articles previously published we described and analysed self-organized light fibres inside a liquid crystalline (LC) cell contained photosensitive polymer (PP) layer. Such asymmetric LC cell we call a hybrid LC cell. Light fibre arises along a laser beam path directed in plane of an LC cell. It means that a laser beam is parallel to photosensitive layer. We observed the asymmetric LC cell response on an external driving field polarization. Observation has been done for an AC field first. It is the reason we decided to carry out a detailed research for a DC driving field to obtain an LC cell response step by step. The properly prepared LC cell has been built with an isolating layer and garbage ions deletion. We proved by means of a physical model, as well as a numerical simulation that LC asymmetric response strongly depends on junction barriers between PP and LC layers. New parametric model for a junction barrier on PP/LC boundary has been proposed. Such model is very useful because of lack of proper conductivity and charge carriers of band structure data on LC material.

  17. Surface drag effects on simulated wind fields in high-resolution atmospheric forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo Sun; Lim, Jong Myoung; Ji, Young Yong [Environmental Radioactivity Assessment Team,Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Hye Yum [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton (United States); Hong, Jin Kyu [Yonsei University, Seoul (Korea, Republic of)


    It has been reported that the Weather Research and Forecasting (WRF) model generally shows a substantial over prediction bias at low to moderate wind speeds and winds are too geostrophic (Cheng and Steenburgh 2005), which limits the application of WRF model in the area that requires the accurate surface wind estimation such as wind-energy application, air-quality studies, and radioactive-pollutants dispersion studies. The surface drag generated by the subgrid-scale orography is represented by introducing a sink term in the momentum equation in their studies. The purpose of our study is to evaluate the simulated meteorological fields in the high-resolution WRF framework, that includes the parameterization of subgrid-scale orography developed by Mass and Ovens (2010), and enhance the forecast skill of low-level wind fields, which plays an important role in transport and dispersion of air pollutants including radioactive pollutants. The positive bias in 10-m wind speed is significantly alleviated by implementing the subgrid-scale orography parameterization, while other meteorological fields including 10-m wind direction are not changed. Increased variance of subgrid- scale orography enhances the sink of momentum and further reduces the bias in 10-m wind speed.

  18. Simulation of Strain Induced Pseudomagnetic Fields in Graphene Suspended on MEMS Chevron Actuators (United States)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    Graphene has been shown to withstand remarkable levels of mechanical strain an order of magnitude larger than bulk crystalline materials. This exceptional stretchability of graphene allows for the direct tuning of fundamental material properties, as well as for the investigation of novel physics such as generation of strain induced pseudomagnetic fields. However, current methods for strain such as polymer elongation or pressurized wells do not integrate well into devices. We propose microelectromechanical (MEMS) Chevron actuators as a reliable platform for applying strain to graphene. In addition to their advantageous controllable output force, low input power and ease of integration into existing technologies, MEMS allow for different strain orientations to optimize pseudomagnetic field generation in graphene. Here, we model nonuniform strain in suspended graphene on Chevron actuators using COMSOL Multiphysics. By simulating the deformation of the graphene geometry under the device actuation, we explore the pseudomagnetic field map induced by numerically calculating the components of the strain tensor. Our models provide the theoretical framework with which experimental analysis is compared, and optimize our MEMS designs for further exploration of novel physics in graphene. The authors would like to thank NSF DMR 1411008 for their support on this project.

  19. An alternative approach to field-aligned coordinates for plasma turbulence simulations

    CERN Document Server

    Ottaviani, M A


    Turbulence simulation codes can exploit the flute-like nature of plasma turbulence to reduce the effective number of degrees of freedom necessary to represent fluctuations. This can be achieved by employing magnetic coordinates of which one is aligned along the magnetic field. This work presents an approach in which the position along the field lines is identified by the toroidal angle, rather than the most commonly used poloidal angle. It will be shown that this approach has several advantages. Among these, periodicity in both angles is retained. This property allows moving to an equivalent representation in Fourier space with a reduced number of toroidal components. It will be shown how this duality can be exploited to transform conventional codes that use a spectral representation on the magnetic surface into codes with a field-aligned coordinate. It is also shown that the new approach can be generalised to get rid of magnetic coordinates in the poloidal plane altogether, for a large class of models. Tests...

  20. Test of Shi et al. Method to Infer the Magnetic Reconnection Geometry from Spacecraft Data: MHD Simulation with Guide Field and Antiparallel Kinetic Simulation (United States)

    Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.


    When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient

  1. Wormholes propagation for fractured-vuggy formation: Laboratory tests, numerical simulation and field application

    Directory of Open Access Journals (Sweden)

    Fei Liu


    Full Text Available The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs. While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transportations and reactions. Alveolate dissolved pores, krast caves, and natural fissures are the major reservoir spaces for the Sinian dolomite formation in the Anyue gas field of the Sichuan Basin. There were four categories of formation, which are matrix dominated, inter-breccia dissolved pore dominated, dissolved pore and cave dominated, and fissure and cave dominated, based on the development intensity and connectedness of caves and fissures. The caves and fissures make the wormhole formation and propagation particularly complicated. Firstly, the 3-D topological structure of dissolved pores, vugs, fissures and throats inside cores is quantitatively scanned by CT imaging technology for its feature of vivid and damage-free. Secondly, 3-D patterns of wormhole are obtained with CT scanning after core flooding by acid. Additionally, the pore-throat network model is reconstructed with digital cores technology. Then, the size and ratio of pore and throat before and after core flooding by acid is analyzed and the absolute permeability of pore scale flow is numerically simulated to understand the fundamental influence of pores and vugs distribution and connectedness on wormhole propagation. Lastly, the wormhole pattern gained by CT scanning and simulating with two-scale model is compared. Meanwhile, the corrected two-scale model is utilized to simulate the wormhole propagation for matrix acidizing and acid fracturing of Sinian fractured-vuggy dolomite in Anyue gas field, Sichuan Basin. The optimized injection rate and volume were in agreement with the characteristic matrix acidizing operating curve, which indicates that the two-scale model was suitable for matrix acidizing optimization design of such formations. In addition, the simulated

  2. On magnetic field amplification and particle acceleration near non-relativistic astrophysical shocks: particles in MHD cells simulations (United States)

    van Marle, Allard Jan; Casse, Fabien; Marcowith, Alexandre


    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and suprathermal particles. Such interaction is depicted by combining a grid-based magnetohydrodynamics description of the thermal fluid with particle in cell techniques devoted to the dynamics of suprathermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider in this study non-relativistic shocks with various Alfvénic Mach numbers and magnetic field obliquity. We recover all the features of both magnetic field amplification and particle acceleration from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell-hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger time-scales than in the parallel case. We show that in our simulations, the suprathermal particles are experiencing acceleration thanks to a pre-heating process of the particle similar to a shock drift acceleration leading to the corrugation of the shock front. Such oscillations of the shock front and the magnetic field locally help the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  3. PENTrack—a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, W., E-mail: [Technical University of Munich, James-Franck-Str. 1, 85748 Garching (Germany); Kikawa, T. [TRIUMF, 4004 Wesbrook Mall, Vancouver (Canada); Losekamm, M.J.; Paul, S. [Technical University of Munich, James-Franck-Str. 1, 85748 Garching (Germany); Picker, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver (Canada); Simon Fraser University, 8888 University Drive, Burnaby (Canada)


    Modern precision experiments trapping low-energy particles require detailed simulations of particle trajectories and spin precession to determine systematic measurement limitations and apparatus deficiencies. We developed PENTrack, a tool that allows to simulate trajectories of ultracold neutrons and their decay products—protons and electrons—and the precession of their spins in complex geometries and electromagnetic fields. The interaction of ultracold neutrons with matter is implemented with the Fermi-potential formalism and diffuse scattering using Lambert and microroughness models. The results of several benchmark simulations agree with STARucn v1.2, uncovered several flaws in Geant4 v10.2.2, and agree with experimental data. Experiment geometry and electromagnetic fields can be imported from commercial computer-aided-design and finite-element software. All simulation parameters are defined in simple text files allowing quick changes. The simulation code is written in C++ and is freely available at (

  4. PENTrack-a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries (United States)

    Schreyer, W.; Kikawa, T.; Losekamm, M. J.; Paul, S.; Picker, R.


    Modern precision experiments trapping low-energy particles require detailed simulations of particle trajectories and spin precession to determine systematic measurement limitations and apparatus deficiencies. We developed PENTrack, a tool that allows to simulate trajectories of ultracold neutrons and their decay products-protons and electrons-and the precession of their spins in complex geometries and electromagnetic fields. The interaction of ultracold neutrons with matter is implemented with the Fermi-potential formalism and diffuse scattering using Lambert and microroughness models. The results of several benchmark simulations agree with STARucn v1.2, uncovered several flaws in Geant4 v10.2.2, and agree with experimental data. Experiment geometry and electromagnetic fields can be imported from commercial computer-aided-design and finite-element software. All simulation parameters are defined in simple text files allowing quick changes. The simulation code is written in C++ and is freely available at

  5. Stretching DNA by electric field and flow field in microfluidic devices: An experimental validation to the devices designed with computer simulations. (United States)

    Lee, Cheng-Han; Hsieh, Chih-Chen


    We examined the performance of three microfluidic devices for stretching DNA. The first device is a microchannel with a contraction, and the remaining two are the modifications to the first. The modified designs were made with the help of computer simulations [C. C. Hsieh and T. H. Lin, Biomicrofluidics 5(4), 044106 (2011) and C. C. Hsieh, T. H. Lin, and C. D. Huang, Biomicrofluidics 6, 044105 (2012)] and they were optimized for operating with electric field. In our experiments, we first used DC electric field to stretch DNA. However, the experimental results were not even in qualitative agreement with our simulations. More detailed investigation revealed that DNA molecules adopt a globular conformation in high DC field and therefore become more difficult to stretch. Owing to the similarity between flow field and electric field, we turned to use flow field to stretch DNA with the same devices. The evolution patterns of DNA conformation in flow field were found qualitatively the same as our prediction based on electric field. We analyzed the maximum values, the evolution and the distributions of DNA extension at different Deborah number in each device. We found that the shear and the hydrodynamic interaction have significant influence on the performance of the devices.

  6. Analysis and Simulations of Near-Field Ground Motion from Source Physics Experiments (spe) (United States)

    Vorobiev, O.; Xu, H.; Lomov, I.; Herbold, E. B.; Glenn, L. A.; Antoun, T.


    This work is focused on analysis of near-field measurements (up to 50-70 m from the source) recorded during Source Physics Experiments SPE1, SPE2 and SPE3 in a granitic formation (the Climax Stock) at the Nevada National Security Site (NNSS). The explosive source used in these experiments is a sensitized heavy ANFO (SHANFO) with a well characterized equation of state. The first event, SPE1, had a yield of 0.1 ton, and was detonated at a 55 m depth of burial in a spherical cavity of about 0.3 m radius. SPE2 and SPE3 had an explosive yield of 1 ton, and they were both detonated in the same cavity at a depth of burial of 45 meters. One of the main goals of these experiments was to investigate the possible mechanisms of shear wave generation in the nonlinear source region. Another objective, relating specifically to the SPE2-SPE3 sequence, was to investigate the effect of damage from one explosion on the response of the medium to a second explosion of the same yield and at the same location as the first explosion. Comparison of the results from SPE2 and SPE3 show some interesting trends. . At the shot level, and at deeper locations, the data from SPE3 seem to agree quite well with SPE2 data, indicating that damage from SPE2 had little to no effect on the response of the medium at these locations. On the other hand, SPE3 data consistently show delay in arrival times as well as reduced wave amplitudes both at 50 ft (16 m) depth and at the ground surface, indicating that above the shot horizon damage from SPE2 had a perceptible effect on the SPE3 near field motions. The quality of the near field data at some gages from the SPE1 and SPE2 events is somewhat questionable, with orientation uncertainties making it difficult to ascertain with confidence the extent to which shear wave generation in the source region affected near field motions. New gages were strategically added to the SPE3 test bed to provide the data needed to address this issue and verify previous

  7. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.


    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  8. The use of total simulator training in transitioning air-carrier pilots: A field evaluation (United States)

    Randle, R. J., Jr.; Tanner, T. A.; Hamerman, J. A.; Showalter, T. H.


    A field study was conducted in which the performance of air carrier transitioning pilots who had landing training in a landing maneuver approved simulator was compared with the performance of pilots who had landing training in the aircraft. Forty-eight trainees transitioning to the B-727 aircraft and eighty-seven trainees transitioning to the DC-10 were included in the study. The study results in terms of both objectively measured performance indicants and observer and check-pilot ratings did not demonstrate a clear distinction between the two training groups. The results suggest that, for these highly skilled transitioning pilots, a separate training module in the aircraft may be of dubious value.

  9. Indoor environment and energy consumption optimization using field measurements and building energy simulation

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Chasapis, Kleanthis; Gazovic, Libor


    Modern buildings are usually equipped with advanced climate conditioning systems to ensure comfort of their occupants. However, analysis of their actual operation usually identifies large potential for improvements with respect to their efficiency. Present study investigated potential...... for improvements in an existing office building – a Town Hall of Viborg, Denmark. Thorough field measurements of indoor environment and occupant satisfaction survey were conducted to identify and describe indoor environmental quality problems. Collected data were also used to calibrate computer simulation model......, which was used for optimization of building’s performance. Proposed optimization scenarios bring 21-37% reduction on heating consumption and thermal comfort improvement by 7-12%. The approach (procedure) can help to optimize building operation and shorten the adjustment period....

  10. Semiquantitative Decision Tools for FMD Emergency Vaccination Informed by Field Observations and Simulated Outbreak Data

    DEFF Research Database (Denmark)

    Willeberg, Preben; AlKhamis, Mohammad; Boklund, Anette


    We present two simple, semiquantitative model-based decision tools, based on the principle of first 14 days incidence (FFI). The aim is to estimate the likelihood and the consequences, respectively, of the ultimate size of an ongoing FMD epidemic. The tools allow risk assessors to communicate...... timely, objectively, and efficiently to risk managers and less technically inclined stakeholders about the potential of introducing FMD suppressive emergency vaccination. To explore the FFI principle with complementary field data, we analyzed the FMD outbreaks in Argentina in 2001, with the 17 affected...... provinces as the units of observation. Two different vaccination strategies were applied during this extended epidemic. In a series of 5,000 Danish simulated FMD epidemics, the numbers of outbreak herds at day 14 and at the end of the epidemics were estimated under different control strategies. To simplify...

  11. Towards Regional Lunar Gravity Fields Using Lunar Prospector Extended Mission Data - Simulations and Results (United States)

    Goossens, S.; Visser, P.; Floberghagen, R.; Koop, R.; Ambrosius, B.


    Until this date, the lunar gravimetric inverse problem has mainly been posed as a global problem, solving for gravity fields over the whole of the Moon. The asymmetric sampling of the force field requires that some sort of regularisation be applied in order to have a meaningful global solution that does not provide spurious information on the far side. On one hand these global solutions work very well in terms of overall orbit quality and consistency, despite the fact that roughly one half of the surface lacks sampling. On the other hand, excellently sampled regions cannot be determined at maximum spatial resolution without affecting too much the solution on the far side, which in itself is highly unstable. Since the Lunar Prospector mission, there are many of such excellently sampled regions on the near side of the Moon. In order to exhaust the information present in the tracking data of this satellite, regional methods for solving the gravity field of well-sampled areas become interesting. We present a method to extract regional gravity information from Doppler and Range tracking of the Lunar Prospector spacecraft. The method incorporates the GEODYN II software package for tracking data processing and orbit determination, and a software package to analyse the residuals from the orbit determination process, and to transform these residuals into gravity anomalies on the lunar surface by means of a Stokes method. Simulations will show how well a gravity signal in the residuals can be recovered. Results from orbit determination using 20 days of Lunar Prospector Extended Mission data will be shown, to demonstrate the readiness of the method to process real-life satellite data. With missions in the future such as SELENE, which will provide the first global tracking data set of the Moon ever, global and regional methods to solve for gravity field products will remain equally of interest, since they both can give complementary insight into the low and high resolution

  12. Determination of Watershed Infiltration and Erosion Parameters from Field Rainfall Simulation Analyses

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer


    Full Text Available Realistic modeling of infiltration, runoff and erosion processes from watersheds requires estimation of the effective hydraulic conductivity (Km of the hillslope soils and how it varies with soil tilth, depth and cover conditions. Field rainfall simulation (RS plot studies provide an opportunity to assess the surface soil hydraulic and erodibility conditions, but a standardized interpretation and comparison of results of this kind from a wide variety of test conditions has been difficult. Here, we develop solutions to the combined set of time-to-ponding/runoff and Green– Ampt infiltration equations to determine Km values from RS test plot results and compare them to the simpler calculation of steady rain minus runoff rates. Relating soil detachment rates to stream power, we also examine the determination of “erodibility” as the ratio thereof. Using data from over 400 RS plot studies across the Lake Tahoe Basin area that employ a wide range of rain rates across a range of soil slopes and conditions, we find that the Km values can be determined from the combined infiltration equation for ~80% of the plot data and that the laminar flow form of stream power best described a constant “erodibility” across a range of volcanic skirun soil conditions. Moreover, definition of stream power based on laminar flows obviates the need for assumption of an arbitrary Mannings “n” value and the restriction to mild slopes (<10%. The infiltration equation based Km values, though more variable, were on average equivalent to that determined from the simpler calculation of steady rain minus steady runoff rates from the RS plots. However, these Km values were much smaller than those determined from other field test methods. Finally, we compare RS plot results from use of different rainfall simulators in the basin and demonstrate that despite the varying configurations and rain intensities, similar erodibilities were determined across a range of

  13. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation. (United States)

    Liu, Mei; Gao, Hong; Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin


    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm). The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  14. Molecular dynamics simulation of the zero-field splitting fluctuations in aqueous Ni(II) (United States)

    Odelius, Michael; Ribbing, Carl; Kowalewski, Jozef


    The fluctuations in the zero-field splitting (ZFS) of the electronic ground state of the Ni(II) ion in aqueous solution have been studied through a combination of ab initio quantum chemistry calculations, including spin-orbit coupling, and molecular dynamics (MD) simulations. The ab initio calculations for the hexa-aquo Ni(II) complex have been used to generate an expression for the ZFS as a function of the distortions of the idealized Th symmetry of the complex along the normal modes of Eg and T2g symmetries. The MD simulations provide a 200 ps trajectory of motions in the system consisting of a Ni(II) ion and 255 water molecules, which is analyzed in detail in terms of both the structure and the dynamics in the solvation sphere around the ion. The time correlation function (TCF) for the ZFS interaction has been computed and analyzed. It is found that the mean square amplitude of the ZFS is about 5.2 cm-1, which is about twice the estimates based on the model-dependent analysis of the proton spin relaxation in the aqueous Ni(II) solution. The decay of the ZFS TCF is found to occur on a subpicosecond time scale, which is much faster than earlier proposals. It is also interesting to note, for comparison with theoretical models, that the ZFS tensor is far from cylindrical and that the normal modes of Eg och T2g symmetry both contribute to its fluctuations.

  15. Emission characteristics of PBDEs during flame-retardant plastics extruding process: field investigation and laboratorial simulation. (United States)

    Deng, Chao; Li, Ying; Li, Jinhui; Chen, Yuan; Li, Huafen


    Though mechanical recycling of WEEE plastics is supposed to be a promising method, PBDEs release and the resulting contamination during its processing remain unclear yet. The distribution of PBDEs pollution in production lines was investigated from two flame-retardant plastic modification plants in Southern China. This was followed by laboratory simulation experiments to characterize the emission processes. PBDEs concentrations ranged from 37 to 31,305 ng/L in cooling water and from 40,043 to 216,653 ng/g dry wt in solid samples taken during the field investigation. In the laboratory simulation, concentrations ranged from 146 to 433 ng/L in cooling water and from 411,436 to 747,516 ng/Nm3 in flue gas. All samples were dominated by BDE-209 among the congeners. Temperatures and impurities in plastic substrate can significantly affect PBDEs release. Special attention should be paid to the risks of water directly discharge from the cooling system, especially for the biological sludge and sediments, as well as flue gas emissions to the environment.

  16. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, N., E-mail: [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gao, X. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); He, W.H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cui, M.H.; Pang, L.L.; Zhu, Y.B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)


    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from −2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along 〈1 1 1〉 direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to 〈1 1 1〉 has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  17. Numerical simulation and comparative analysis of flow field in axial blood pumps. (United States)

    Peng, Yuhua; Wu, Yaqin; Tang, Xiaoying; Liu, Weifeng; Chen, Duanduan; Gao, Tianxin; Xu, Yong; Zeng, Yanjun


    The objective study was to estimate the rheological properties and physiological compatibility of the blood pump by simulating the internal flow field of the blood pump. In this study we use computational fluid dynamics method to simulate and analyse two models of axial blood pumps with a three-blade diffuser and a six-blade diffuser, named pump I and pump II, respectively, and to compare the flow patterns of these two kinds of blood pumps while both of them satisfy the conditions of the normal human blood differential pressure and blood flow. Results indicate that (i) the high shear force occurs between the diffuser and the rotor in which the crucial place leads to haemolysis and (ii) under the condition of 100 mmHg pressure head and 5 l/min flow rate, the difference between the two kinds of blood pumps, as far as the haemolytic performance is concerned, is notable. The haemolysis index of the two pumps is 0.32% and 0.2%. In conclusion, the performance of the blood pump is influenced by the diffusers' blade number. Pump II performed better than pump I, which can be the basic model for blood pump option.

  18. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation (United States)

    Wang, D.; Gao, N.; Wang, Z. G.; Gao, X.; He, W. H.; Cui, M. H.; Pang, L. L.; Zhu, Y. B.


    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from -2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  19. A Boussinesq-type model simulating wave and wave-induced current fields (United States)

    Klonaris, Georgios; Memos, Constantine


    A two-dimensional high order Boussinesq-type model is developed able to simulate wave propagation in the coastal zone. The model reproduces very accurately the linear dispersion up to the traditional limit of deep water, kd ≈ 3, and it is derived to embed enhanced nonlinear characteristics compared to its weakly nonlinear counterparts. In particular the description of the nonlinear amplitude dispersion is improved over the entire depth range. In order to form an integrated tool the model was extended to the surf and swash zones. The model is also capable of estimating satisfactorily the wave-induced depth-averaged current field. Due to its nonlinear character, this estimation is possible without the need to decouple the wave and current motion as imposed by the traditional spitting method. This capability is of great importance, not only because of the saving of computational time, but also because the wave-current interaction can be also taken into account. In addition, the undertow effect is included in the cross-shore current computations. The model's response to the wave-current interaction is checked through the simulation of a demanding test including a rip channel. In addition, both 1DH and 2DH model's versions were validated against a variety of experimental tests including plane beaches and submerged bars. The agreement, in general, is found fairly good and most of the nearshore phenomena are adequately described.

  20. Azimuthal cement evaluation with an acoustic phased-arc array transmitter: numerical simulations and field tests (United States)

    Che, Xiao-Hua; Qiao, Wen-Xiao; Ju, Xiao-Dong; Wang, Rui-Jia


    We developed a novel cement evaluation logging tool, named the azimuthally acoustic bond tool (AABT), which uses a phased-arc array transmitter with azimuthal detection capability. We combined numerical simulations and field tests to verify the AABT tool. The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing. With larger channeling size in the circumferential direction, the amplitude difference of the casing wave at different azimuths becomes more evident. The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing—cement interface, and can visualize the size, depth, and azimuth of channeling. In the case of good casing—cement bonding, the AABT can further evaluate the cement bond quality at the cement—formation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.

  1. Numerical simulation of velocity and temperature fields in natural circulation loop (United States)

    Sukomel, L. A.; Kaban’kov, O. N.


    Low flow natural circulation regimes are realized in many practical applications and the existence of the reliable engineering and design calculation methods of flows driven exclusively by buoyancy forces is an actual problem. In particular it is important for the analysis of start up regimes of passive safety systems of nuclear power plants. In spite of a long year investigations of natural circulation loops no suitable predicting recommendations for heat transfer and friction for the above regimes have been proposed for engineering practice and correlations for forced flow are commonly used which considerably overpredicts the real flow velocities. The 2D numerical simulation of velocity and temperature fields in circular tubes for laminar flow natural circulation with reference to the laboratory experimental loop has been carried out. The results were compared with the 1D modified model and experimental data obtained on the above loop. The 1D modified model was still based on forced flow correlations, but in these correlations the physical properties variability and the existence of thermal and hydrodynamic entrance regions are taken into account. The comparison of 2D simulation, 1D model calculations and the experimental data showed that even subject to influence of liquid properties variability and entrance regions on heat transfer and friction the use of 1D model with forced flow correlations do not improve the accuracy of calculations. In general, according to 2D numerical simulation the wall shear stresses are mainly affected by the change of wall velocity gradient due to practically continuous velocity profiles deformation along the whole heated zone. The form of velocity profiles and the extent of their deformation in its turn depend upon the wall heat flux density and the hydraulic diameter.

  2. CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. (United States)

    Patel, Sandeep; Brooks, Charles L


    A first-generation fluctuating charge (FQ) force field to be ultimately applied for protein simulations is presented. The electrostatic model parameters, the atomic hardnesses, and electronegativities, are parameterized by fitting to DFT-based charge responses of small molecules perturbed by a dipolar probe mimicking a water dipole. The nonbonded parameters for atoms based on the CHARMM atom-typing scheme are determined via simultaneously optimizing vacuum water-solute geometries and energies (for a set of small organic molecules) and condensed phase properties (densities and vaporization enthalpies) for pure bulk liquids. Vacuum solute-water geometries, specifically hydrogen bond distances, are fit to 0.19 A r.m.s. error, while dimerization energies are fit to 0.98 kcal/mol r.m.s. error. Properties of the liquids studied include bulk liquid structure and polarization. The FQ model does indeed show a condensed phase effect in the shifting of molecular dipole moments to higher values relative to the gas phase. The FQ liquids also appear to be more strongly associated, in the case of hydrogen bonding liquids, due to the enhanced dipolar interactions as evidenced by shifts toward lower energies in pair energy distributions. We present results from a short simulation of NMA in bulk TIP4P-FQ water as a step towards simulating solvated peptide/protein systems. As expected, there is a nontrivial dipole moment enhancement of the NMA (although the quantitative accuracy is difficult to assess). Furthermore, the distribution of dipole moments of water molecules in the vicinity of the solutes is shifted towards larger values by 0.1-0.2 Debye in keeping with previously reported work. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 25: 1-15, 2004

  3. A study in the computation time required for the inclusion of strain field effects in Bloch-wave simulations of TEM diffraction contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Dulong, B.J. [Department of Physics, Acadia University, Wolfville, N.S., B4P 2R6 (Canada); Haynes, R.D. [Department of Mathematics and Statistics, Acadia University, Wolfville, N.S., B4P 2R6 (Canada); Robertson, M.D. [Department of Physics, Acadia University, Wolfville, N.S., B4P 2R6 (Canada)], E-mail:


    As transmission electron microscopy (TEM) imaging techniques continue to become more quantitative, interpretation of the experimental images demands that accurate image simulations be computed incorporating all important aspects of the image including: compositional, crystallographic and microscope effects, as well as contrast due to strain fields arising from stresses created by lattice misfit or defects. Incorporation of the effects of strain fields in the simulation of diffraction-contrast TEM images in the Bloch-wave formalism requires the integration of a system of first-order differential equations in order to modify the excitation amplitudes and produce contrast in the image. This integration is computationally demanding with the time for integration scaling as the cube of the number of beams included in the calculation. In order to investigate the computational requirements of the integration, a variety of numerical integration packages were evaluated with respect to timing and accuracy in the simulation of quantum dot, spherical inclusion and screw dislocation images. It was determined that a class of Adams-multistep methods can provide a decrease in computation time ranging from 2 to 4 as compared to the standard Runge-Kutta 4(5) approach depending on the simulation conditions.

  4. A study in the computation time required for the inclusion of strain field effects in Bloch-wave simulations of TEM diffraction contrast images. (United States)

    Dulong, B J; Haynes, R D; Robertson, M D


    As transmission electron microscopy (TEM) imaging techniques continue to become more quantitative, interpretation of the experimental images demands that accurate image simulations be computed incorporating all important aspects of the image including: compositional, crystallographic and microscope effects, as well as contrast due to strain fields arising from stresses created by lattice misfit or defects. Incorporation of the effects of strain fields in the simulation of diffraction-contrast TEM images in the Bloch-wave formalism requires the integration of a system of first-order differential equations in order to modify the excitation amplitudes and produce contrast in the image. This integration is computationally demanding with the time for integration scaling as the cube of the number of beams included in the calculation. In order to investigate the computational requirements of the integration, a variety of numerical integration packages were evaluated with respect to timing and accuracy in the simulation of quantum dot, spherical inclusion and screw dislocation images. It was determined that a class of Adams-multistep methods can provide a decrease in computation time ranging from 2 to 4 as compared to the standard Runge-Kutta 4(5) approach depending on the simulation conditions.

  5. Characterization of Aβ Monomers through the Convergence of Ensemble Properties among Simulations with Multiple Force Fields. (United States)

    Rosenman, David J; Wang, Chunyu; García, Angel E


    Amyloid β (Aβ) monomers represent a base state in the pathways of aggregation that result in the fibrils and oligomers implicated in the pathogenesis of Alzheimer's disease (AD). The structural properties of these intrinsically disordered peptides remain unclear despite extensive experimental and computational investigations. Further, there are mutations within Aβ that change the way the peptide aggregates and are known to cause familial AD (FAD). Here, we analyze the ensembles of different isoforms (Aβ42 and Aβ40) and mutants (E22Δ, D23N, E22K, E22G, and A2T in Aβ40) of Aβ generated with all-atom replica exchange molecular dynamics (REMD) simulations on the μs/replica time scale. These were run using three different force field/water model combinations: OPLS-AA/L and TIP3P ("OPLS"), AMBER99sb-ILDN and TIP4P-Ew ("ILDN"), as well as CHARMM22* and TIP3SP ("CHARMM"). Despite fundamental changes in simulation parameters, we find that the resulting ensembles demonstrate a strong convergence in structural properties. In particular, antiparallel contacts between L17-A21 and A30-L34 are prevalent in ensembles of Aβ40, directly forming β sheets in the OPLS and ILDN combinations. A21-A30 commonly forms an interceding region that rarely interacts with the rest of the peptide. Further, Aβ42 contributes new β hairpin motifs involving V40-I41 in both OPLS and ILDN. However, the structural flexibility of the central region and the electrostatic interactions that characterize it are notably different between the different conditions. Further, for OPLS, each of the FAD mutations disrupts central bend character and increases the polymorphism of antiparallel contacts across the central region. However, the studied mutations in the ILDN set primarily encourage more global contacts involving the N-terminus and the central region, and promote the formation of new β topologies that may seed different aggregates involved in disease phenotypes. These differences aside, the

  6. Flow Field Simulation and Noise Control of a Twin-Screw Engine-Driven Supercharger

    Directory of Open Access Journals (Sweden)

    Tao Wang


    Full Text Available With the advantages of good low-speed torque capability and excellent instant response performance, twin-screw superchargers have great potential in the automobile market, but the noise of these superchargers is the main factor that discourages their use. Therefore, it is important to study their noise mechanism and methods of reducing it. This study included a transient numerical simulation of a twin-screw supercharger flow field with computational fluid dynamics software and an analysis of the pressure field of the running rotor. The results showed that overcompression was significant in the compression end stage of the supercharger, resulting in a surge in airflow to a supersonic speed and the production of shock waves that resulted in loud noise. On the basis of these findings, optimization of the supercharger is proposed, including expansion of the supercharger exhaust orifice and creation of a slot along the direction of the rotor spiral normal line at the exhaust port, so as to reduce the compression end pressure, improve the exhaust flow channel, and weaken the source of the noise. Experimental results showed that the noise level value of the improved twin-screw supercharger was significantly lower at the same speed than the original model, with an average decrease of about 5 dB (A.

  7. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei N [Los Alamos National Laboratory; Espy, Michelle A [Los Alamos National Laboratory; Kraus, Robert H [Los Alamos National Laboratory; Sayukov, Igor M [Los Alamos National Laboratory; Schultz, Larry J [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory; Wurden, Caroline J [Los Alamos National Laboratory


    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.

  8. Development of reactive force fields using ab initio molecular dynamics simulation minimally biased to experimental data (United States)

    Chen, Chen; Arntsen, Christopher; Voth, Gregory A.


    Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.

  9. Simulation of Dust Charging and Shielding in the Presence of a Magnetic Field (United States)

    Fichtl, Chris; Delzanno, Gian Luca; Lapenta, Giovanni


    We explore the charging of a dust particle immersed in a plasma in the presence of a magnetic field. The dust particle charges due to the flowing electrons and ions within the plasma and is allowed to emit electrons via thermionic emission and photoemission. Several parameters are obtained and compared with basic simulations without the magnetic field using the 2-D, 3-V DEMOCRITUS code developed at LANL. Next we look at the effect of this dust particle charging in the presence of another dust particle. Delzanno, et al. [1] showed that for a thermionically emitting particle immersed in a plasma, an attractive potential well can form. This leads to the attraction of particles with like charges, such as another dust grain. We explore the attractive forces between two particles as a function of their separation. If the attractive potential well is deep enough, the two particles will combine, thereby creating macro-particles. We study this in an astrophysical sense, looking at this phenomenon as a possible source of galactic formation. [1] G.L. Delzanno, G. Lapenta, and M. Rosenberg, Phys. Rev. Lett. 92 (3), 035002 (2004)

  10. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Versteeg, R.; Slater, L.; LaBrecque, D.


    Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO{sub 3} and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO{sub 3} as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO{sub 3} dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO{sub 3} forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO{sub 3} precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.

  11. Simulation of the Impacts of Urbanization on Winter Meteorological Fields over the Pearl River Delta Region

    Directory of Open Access Journals (Sweden)

    Naixing Luo


    Full Text Available The influences of urbanization on weather in Guangdong Province, China, were studied using the Weather Research and Forecasting model from 31 December 2009 through 3 January 2010. Model outputs were compared with extensive monitoring of meteorological data to examine the simulation ability. Model results between tests (with and without land-use change show that the urbanization had major effects on meteorological fields across nearly the entire Pearl River Delta region and particularly in urban areas. Studied fields (wind speed, temperature, precipitation, and sensible and latent heat fluxes were affected by the urbanization of the PRD region. The major influences occurred in urban areas, where wind speeds decreased greatly, while the daytime surface upward sensible heat flux clearly increased. Unlike the sensible heat flux, the latent heat flux had a nonmonotonic increase or decrease. As a consequence of the two heat fluxes, 2-m temperature varied with location and time. Change of precipitation was complex. The main rain band became more concentrated, while precipitation decreased upwind of the urban area and increased downwind.

  12. Experiments and numerical simulations of flow field and heat transfer coefficients inside an autoclave model (United States)

    Ghamlouch, T.; Roux, S.; Bailleul, J.-L.; Lefèvre, N.; Sobotka, V.


    Today's aerospace industrial first priority is the quality improvement of the composite material parts with the reduction of the manufacturing time in order to increase their quality/cost ratio. A fabrication method that could meet these specifications especially for large parts is the autoclave curing process. In fact the autoclave molding ensures the thermal control of the composite parts during the whole curing cycle. However the geometry of the tools as well as their positioning in the autoclave induce non uniform and complex flows around composite parts. This heterogeneity implies non-uniform heat transfers which can directly impact on part quality. One of the main challenges is therefore to describe the flow field inside an autoclave as well as the convective heat transfer from the heated pressurized gas to the composite part and the mold. For this purpose, and given the technical issues associated with instrumentation and measurements in actual autoclaves, an autoclave model was designed and then manufactured based on similarity laws. This tool allows the measurement of the flow field around representative real industrial molds using the PIV technique and the characterization of the heat transfer thanks to thermal instrumentation. The experimental results are then compared with those derived from numerical simulations using a commercial RANS CFD code. This study aims at developing a semi-empirical approach for the prediction of the heat transfer coefficient around the parts and therefore predicts its thermal history during the process with a view of optimization.

  13. Application of Large Eddy Simulation in the process of the Multi-Physics Field Coupling in a Combustion Chamber

    Directory of Open Access Journals (Sweden)

    Xu Rang-Shu


    Full Text Available Numerical simulation is the main method to solve turbulence problems. As one of the three methods which are commonly used in large-eddy simulation model (LES is the most effective and promising research method. The basic idea of large-eddy simulation is that the large scale turbulent motion is directly simulated and we use the sub-grid scale model to simulate small-scale turbulent motion. Continuing alternative load exists in aero-engine combustion chamber during operation. This coupling phenomenon is an important reason to the combustion chamber fatigue failure. In this paper, the large-eddy simulation methods are described and applied in researching aero-engine combustion chamber multi-physics field coupling analysis. By comparing with the experimental results we verify the feasibility of this method and there is great significance of actual project.

  14. Evaluation of the Effect of Magnetic Field on PET Spatial Resolution and Contrast Recovery Using Clinical PET Scanners and EGSnrc Simulations (United States)

    Cheng, Ju-Chieh (Kevin); Boellaard, Ronald; Laforest, Richard


    We describe an evaluation of the effect of the magnetic field on the PET spatial resolution and contrast recovery for short and long range positron emitters using experimental phantoms scanned on clinical PET/CT and PET/MR scanners as well as using electron transport simulations. A 22Na (a short range positron emitter) point source surrounded by Lucite, a 68Ga (a relatively long range positron emitter) line source surrounded by water, and a 68Ga contrast phantom with various sphere sizes were scanned on Siemens' Biograph-mMR (magnetic field strength: 3 Tesla) and Biograph-40 (no magnetic field). The electron transport simulations were performed from 0T to 11T for 22Na, 68Ga, and 15O for the point source, line source, and the contrast phantom. It was observed that the magnetic field has very small effect ( ) on the resolution of short range nuclides such as 22Na based on both simulation and experimental results as expected. For long range nuclides such as 68Ga slight improvements in spatial resolution and contrast recovery were observed on the plane perpendicular to the direction of the magnetic field from phantom experiments and simulations with 3T magnetic field for the human scanner. The degree of improvement is proportional to the positron range of the nuclides as well as the strength of the magnetic field, and it saturates at 7T for all nuclides used in this study according to simulation results. For the plane parallel to the direction of the magnetic field, worse resolution and better contrast recovery were observed due to more positron annihilations deposited along the direction of the magnetic field (i.e. re-distribution of positrons). With regard to the results obtained from the simulations for a scanner with better intrinsic resolution (2 mm PSF), the improvement in FWHM saturates at a higher field strength ( ) as compared to that for a human scanner (4.7 mm PSF). However, worse FWHM was observed in all directions at 3T as compared to that at 0T due to re

  15. Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations. (United States)

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo


    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

  16. On magnetic field amplification and particle acceleration near non-relativistic collisionless shocks: Particles in MHD Cells simulations (United States)

    Casse, F.; van Marle, A. J.; Marcowith, A.


    We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description of the thermal fluid with particle-in-cell techniques devoted to the dynamics of supra-thermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider non-relativistic super-Alfénic shocks with various magnetic field obliquity. We recover all the features from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell and hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger timescales than in the parallel case. We show that in our oblique shock simulations the streaming of supra-thermal particles induces a corrugation of the shock front. Such oscillations of both the shock front and the magnetic field then locally helps the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.

  17. Models of field-aligned currents needful to simulate the substorm variations of the electric field and other parameters observed by EISCAT

    Directory of Open Access Journals (Sweden)

    M. A. Volkov


    Full Text Available We have used the global numerical model of the coupled ionosphere-thermosphere-protonosphere system to simulate the electric-field, ion- and electron-temperature and -concentration variations observed by EISCAT during the substorm event of 25 March 1987. In our previous studies we adopted the model input data for field-aligned currents and precipitating electron fluxes to obtain an agreement between observed and modelled ionospheric variations. Now, we have calculated the field-aligned currents needful to simulate the substrom variations of the electric field and other parameters observed by EISCAT. The calculations of the field-aligned currents have been performed by means of numerical integration of the time-dependent continuity equation for the cold magnetospheric electrons. This equation was added to the system of the modelling equations including the equation for the electric-field potential to be solved jointly. In this case the inputs of the model are the spatial and time variations of the electric-field potential at the polar-cap boundaries and those of the cold magnetospheric electron concentration which have been adopted to obtain the agreement between the observed and modelled ionospheric variations for the substorm event of 25 March 1987. By this means it has been found that during the active phase of the substorm the current wedge is formed. It is connected with the region of the decreased cold magnetospheric electron content travelling westwards with a velocity of about 1 km s–1 at ionospheric levels.

  18. Relations between the crude protein content and the amino acid profile of organically produced field beans (Vicia faba L.) and field peas (Pisum sativum L.)


    Witten, Stephanie; Aulrich, Karen


    In Organic Farming, grain legumes are important protein feedstuffs. There are hints indicating that the amino acid (AA) profile is affected by factors associated with varying crude protein (CP) contents of crops. The knowledge on this relationship between CP and AA profile needs to be extended to optimize feeding strategies for monogastrics as well as the selection of cultivars and varieties in fodder crop cultivation. Therefore, samples of 67 field beans (Vicia faba L.) and 86 field peas (Pi...

  19. Streaming flows produced by oscillating interface of magnetic fluid adsorbed on a permanent magnet in alternating magnetic field (United States)

    Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.


    This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.

  20. Discrete and continuum simulations of near-field ground motion from Source Physics Experiments (SPE) (Invited) (United States)

    Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.


    algorithm. It is also suitable for evaluating the bounds of possible shear motion due to uncertainties in the joints distribution. Details of this uncertainty quantification study are presented in a separate abstract (Vorobiev, In the present work using both the continuum and the discrete approaches we study the effects of the surface spall, in-situ stress and joint orientation on the observed near-field motion. Three dimensional numerical simulations are performed for different burial depths and yields to investigate scalability of both radial and shear motions. The motion calculated in the near-field is then propagated into a far field. Results of the far field study are presented in an accompanied work (Pitarka, et al). This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.