WorldWideScience

Sample records for simple compact high

  1. A simple compact UHV and high magnetic field compatible inertial nanopositioner

    Science.gov (United States)

    Pang, Zongqiang; Li, Xiang; Xu, Lei; Rong, Zhou; Liu, Ruilan

    2015-01-01

    We present a novel simple piezoelectric nanopositioner which just has one piezoelectric scanner tube (PST) and one driving signal, using two short quartz rods and one BeCu spring which form a triangle to press the central shaft and can promise the nanopositioner's rigidity. Applying two pulse inverted voltage signals on the PST's outer and inner electrodes, respectively, according to the principle of piezoelectricity, the PST will elongate or contract suddenly while the central shaft will keep stationary for its inertance, so the central shaft will be sliding a distance relative to quartz rods and spring, and then withdraw the pulse voltages slowly, the central shaft will move upward or downward one step. The heavier of the central shaft, the better moving stability, so the nanopositioner has high output force. Due to its compactness and mechanical stability, it can be easily implanted into some extreme conditions, such as ultrahigh vacuum, ultralow temperature, and high magnetic field.

  2. Simple, compact, high brightness source for x-ray lithography and x-ray radiography

    International Nuclear Information System (INIS)

    Hawryluk, A.M.

    1986-01-01

    A simple, compact, high brightness x-ray source has recently been built. This source utilizes a commercially available, cylindrical geometry electron beam evaporator, which has been modified to enhance the thermal cooling to the anode. Cooling is accomplished by using standard, low-conductivity laboratory water, with an inlet pressure of less than 50 psi, and a flow rate of approx.0.3 gal/min. The anode is an inverted cone geometry for efficient cooling. The x-ray source has a measured sub-millimeter spot size (FWHM). The anode has been operated at 1 KW e-beam power (10 KV, 100 ma). Higher operating levels will be investigated. A variety of different x-ray lines can be obtained by the simple interchange of anodes of different materials. Typical anodes are made from easily machined metals, or materials which are vacuum deposited onto a copper anode. Typically, a few microns of material is sufficient to stop 10 KV electrons without significantly decreasing the thermal conductivity through the anode. The small size and high brightness of this source make it useful for step and repeat exposures over several square centimeter areas, especially in a research laboratory environment. For an aluminum anode, the estimated Al-K x-ray flux at 10 cms from the source is 70 μW/cm 2

  3. A simple scheme for injection and extraction in compact rings

    International Nuclear Information System (INIS)

    Xu, H. S.; Huang, W. H.; Tang, C. X.

    2014-01-01

    There has been great interest in building compact synchrotrons for various applications, for example, inverse Compton scattering X-ray sources. However, the beam injection and extraction in compact rings require careful design for the lack of space. In this paper, we propose a simple combined injection-extraction scheme exploiting the fringe field of existing dipole magnets instead of additional septum magnets. This scheme is illustrated by using the 4.8 m ring proposed for Tsinghua Thomson scattering X-ray source as an example. Particle tracking is applied to demonstrate the validity of this scheme

  4. On discretization of tori of compact simple Lie groups: II

    International Nuclear Information System (INIS)

    Hrivnák, Jiří; Motlochová, Lenka; Patera, Jiří

    2012-01-01

    The discrete orthogonality of special function families, called C- and S-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnák and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the results of Hrivnák and Patera are extended to two additional recently discovered families of special functions, called S s - and S l -functions. The main result is an explicit description of their pairwise discrete orthogonality within each family, when the functions are sampled on finite fragments F s M and F l M of a lattice in any dimension n ⩾ 2 and of any density controlled by M, and of the symmetry of the weight lattice of any compact simple Lie group with two different lengths of roots. (paper)

  5. Simple and compact expressions for neutrino oscillation probabilities in matter

    International Nuclear Information System (INIS)

    Minakata, Hisakazu; Parke, Stephen J.

    2016-01-01

    We reformulate perturbation theory for neutrino oscillations in matter with an expansion parameter related to the ratio of the solar to the atmospheric Δm"2 scales. Unlike previous works, we use a renormalized basis in which certain first-order effects are taken into account in the zeroth-order Hamiltonian. We show that the new framework has an exceptional feature that leads to the neutrino oscillation probability in matter with the same structure as in vacuum to first order in the expansion parameter. It facilitates immediate physical interpretation of the formulas, and makes the expressions for the neutrino oscillation probabilities extremely simple and compact. We find, for example, that the ν_e disappearance probability at this order is of a simple two-flavor form with an appropriately identified mixing angle and Δm"2. More generally, all the oscillation probabilities can be written in the universal form with the channel-discrimination coefficient of 0, ±1 or simple functions of θ_2_3. Despite their simple forms they include all order effects of θ_1_3 and all order effects of the matter potential, to first order in our expansion parameter.

  6. Compact Digital High Voltage Charger

    CERN Document Server

    Li, Ge

    2005-01-01

    The operation of classical resonant circuit developed for the pulse energizing is investigated. The HV pulse or generator is very compact by a soft switching circuit made up of IGBT working at over 30 kHZ. The frequencies of macro pulses andμpulses can be arbitrarily tuned below resonant frequency to digitalize the HV pulse power. Theμpulses can also be connected by filter circuit to get the HVDC power. The circuit topology is given and its novel control logic is analyzed by flowchart. The circuit is part of a system consisting of a AC or DC LV power supply, a pulse transformer, the pulse generator implemented by LV capacitor and leakage inductance of the transformer, a HV DC or pulse power supply and the charged HV capacitor of the modulators.

  7. "Compacted" procedures for adults' simple addition: A review and critique of the evidence.

    Science.gov (United States)

    Chen, Yalin; Campbell, Jamie I D

    2018-04-01

    We review recent empirical findings and arguments proffered as evidence that educated adults solve elementary addition problems (3 + 2, 4 + 1) using so-called compacted procedures (e.g., unconscious, automatic counting); a conclusion that could have significant pedagogical implications. We begin with the large-sample experiment reported by Uittenhove, Thevenot and Barrouillet (2016, Cognition, 146, 289-303), which tested 90 adults on the 81 single-digit addition problems from 1 + 1 to 9 + 9. They identified the 12 very-small addition problems with different operands both ≤ 4 (e.g., 4 + 3) as a distinct subgroup of problems solved by unconscious, automatic counting: These items yielded a near-perfectly linear increase in answer response time (RT) yoked to the sum of the operands. Using the data reported in the article, however, we show that there are clear violations of the sum-counting model's predictions among the very-small addition problems, and that there is no real RT boundary associated with addends ≤4. Furthermore, we show that a well-known associative retrieval model of addition facts-the network interference theory (Campbell, 1995)-predicts the results observed for these problems with high precision. We also review the other types of evidence adduced for the compacted procedure theory of simple addition and conclude that these findings are unconvincing in their own right and only distantly consistent with automatic counting. We conclude that the cumulative evidence for fast compacted procedures for adults' simple addition does not justify revision of the long-standing assumption that direct memory retrieval is ultimately the most efficient process of simple addition for nonzero problems, let alone sufficient to recommend significant changes to basic addition pedagogy.

  8. Permeability of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-12-01

    The object of the study was the water flow through the bentonite which is caused by hydraulic gradients. The study comprised laboratory tests and theoretical considerations. It was found that high bulk densities reduced the permeability to very low values. It was concluded that practically impervious conditions prevail when the gradients are low. Thus with a regional gradient of 10 -2 and a premeability of 10 -13 m/s the flow rate will not be higher than approximately 1 mm in 30 000 years. (G.B.)

  9. Compact high-current, subnanosecond electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shpak, V G; Shunajlov, S A; Ulmaskulov, M R; Yalandin, M I [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics; Pegel, I V [Russian Academy of Sciences, Tomsk (Russian Federation). High-Current Electronics Inst.; Tarakanov, V P [Russian Academy of Sciences, Moscow (Russian Federation). High-Temperature Inst.

    1997-12-31

    A compact subnanosecond, high-current electron accelerator producing an annular electron beam of duration up to 300 - 400 ps, energy about 250 keV, and current up to 1 kA has been developed to study transient processes in pulsed power microwave devices. The measuring and recording techniques used to experimentally investigate the dynamics of the beam current pulse and the transformation of the electron energy during the transportation of the beam in a longitudinal magnetic field are described. The experimental data obtained are compared with the predictions of a numerical simulation. (author). 6 figs., 5 refs.

  10. Exact solubility of Chern-Simons theory with compact simple gauge group

    International Nuclear Information System (INIS)

    Hayashi, Masahito

    1993-01-01

    We show that vacuum expectation values of Wilson loop operators in (2+1)-dimensional Chern-Simons theory satisfy algebraic equations. Interestingly enough, vacuum expectation values for unknotted Wilson loop operators in any representation of any compact and simple group are exactly computed by solving the equations. So-called 'skein relations', which give us algebraic equations among vacuum expectation values of different Wilson loop operators, are constructed. In our formalism, quantum group symmetry appears naturally. (orig.)

  11. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  12. Ultra high frequency induction welding of powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, U.; Gulsahin, I.

    2014-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  13. Tritium system for compact high field devices

    International Nuclear Information System (INIS)

    Roccella, M.; Bonizzoni, G.; Chiesa, P.; Ghezzi, F.; Nassi, M.; Pavesi, U.; Amedeo, P.; Boschetti, G.; Giffanti, F.; Moriggio, A.

    1988-01-01

    Some theoretical results and the current status of the work on a prototype plant for the Tritium cycle of compact high-field tokamaks (such as, Ignitor, CIT, etc.), using the SAES Getter St 707 getter material, are described in this report. The schematics and present status of the main subplants of the cycle are reported together with some experimental results demostrating the possibility of utilizing the St 707 material to purify the inert atmosphere of the glove-boxes and the secondary containment of the double-containment metal canalization which is to eventually house the various parts of the plant. Finally, as an example, the FTU machine, under construction at ENEA Frascati, has been taken as a reference, and theoretical evaluations are given for the inventory, permeation and release of the Tritium from the first wall and the thermal shieldes of such a tokamak

  14. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  15. Compact system for high-speed velocimetry using heterodyne techniques

    International Nuclear Information System (INIS)

    Strand, O. T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.

    2006-01-01

    We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is ∼5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies

  16. Simple arithmetic: not so simple for highly math anxious individuals.

    Science.gov (United States)

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  17. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  18. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    International Nuclear Information System (INIS)

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  19. Dynamic compaction with high energy of sandy hydraulic fills

    Directory of Open Access Journals (Sweden)

    Khelalfa Houssam

    2017-09-01

    Full Text Available A case study about the adoption of the dynamic compaction technique with high energy in a sandy hydraulic fill is presented. The feasibility of this technique to ensure the stability of the caisson workshop and to minimize the risk of liquefaction during manufacture. This Article is interested to establish diagnostic of dynamic compaction test, basing on the results of SPT tests and quality control as well as the details of work of compaction and the properties of filling materials. A theory of soil response to a high-energy impact during dynamic compaction is proposed.

  20. Ultra-high gradient compact accelerator developments

    NARCIS (Netherlands)

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    Continued development of relatively compact, although not quite 'table-top', lasers with peak powers in the range up to 100 TW has enabled laser-plasma-based acceleration experiments with amazing gradients of up to 1 TV/m. In order to usefully apply such gradients to 'controlled' acceleration,

  1. Iterative solution of high order compact systems

    Energy Technology Data Exchange (ETDEWEB)

    Spotz, W.F.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  2. A simple, compact, and rigid piezoelectric step motor with large step size

    Science.gov (United States)

    Wang, Qi; Lu, Qingyou

    2009-08-01

    We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, and any direction operability. Although tested in room temperature, it is believed to work in low temperatures, owing to its loose operation conditions and large step size. The motor is implemented with a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollow shaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in one direction and recover simultaneously will move the shaft in the opposite direction, and vice versa.

  3. Compact High Performance Spectrometers Using Computational Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy Research Company (ERCo), in collaboration with CoVar Applied Technologies, proposes the development of high throughput, compact, and lower cost spectrometers...

  4. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  5. A high-power compact regenerative amplifier FEL

    International Nuclear Information System (INIS)

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-01-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  6. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  7. Influences of the Air in Metal Powder High Velocity Compaction

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2017-01-01

    Full Text Available During the process of metal powder high velocity impact compaction, the air is compressed sharply and portion remains in the compacts. In order to study the Influences, a discrete density volleyball accumulation model for aluminium powder was established with the use of ABAQUS. Study found that the powder porosity air obstruct the pressing process because remaining air reduced strength and density of the compacts in the current high-speed pressing (V≤100m/s. When speed further increased (V≥100m/s, the temperature of the air increased sharply, and was even much higher than the melting point of the material. When aluminium powder was compressed at a speed of 200m/s, temperatures of air could reach 2033 K, far higher than the melting point of 877 K. Increased density of powders was a result of local softening and even melt adhesive while air between particles with high temperature and pressure flowed past.

  8. Methods of making high performance compacts and products

    International Nuclear Information System (INIS)

    Fey, M.G.; Iyer, N.C.; Male, A.T.; Lovic, W.R.

    1990-01-01

    This patent describes a method of forming a pressed, dense compact. It comprises: providing a compactable particulate combination of: Class 1 metals selected from the group consisting of Ag, Cu, Al, and mixtures thereof, with material selected from the class consisting of CdO, SnO, SnO 2 , C, Co, Ni, Fe, Cr, Cr 3 C 2 , Cr 7 C 3 , W, WC, W 2 C, WB, Mo, Mo 2 C, MoB, Mo 2 B, TiC, TiN, TiB 2 , Si, SiC, Si 3 N 4 , and mixtures thereof; uniaxially pressing the particulate combination to provide a compact; placing at least one compact in an open pan; evacuating air from the pan; sealing the open top portion of the pan; stacking the pans next to each other, with plates having a high electrical resistance disposed between each pan so that the pans and plates alternate with each other, where a layer of thermally conductive, granular, pressure transmitting material is disposed between each pan and plate, which granular material acts to provide heat transfer and uniform mechanical loading to the compacts in the pans upon subsequent pressing; placing the stack in a press, passing an electrical current through the pans and high electrical resistance plates to cause a heating effect on the compacts in the pans, and uniaxial pressing the alternating pans and plates; cooling and releasing pressure on the alternating pans and plates; and separating the pans from the plates and the compacts from the pans

  9. Progress of compact Marx generators high power microwave source

    International Nuclear Information System (INIS)

    Liu Jinliang; Fan Xuliang; Bai Guoqiang; Cheng Xinbing

    2012-01-01

    The compact Marx generators, which can operate at a certain repetition frequency with small size, light weight, and high energy efficiency, are widely used in narrowband, wideband and ultra-wideband high power microwave (HPM) sources. This type of HPM source based on compact Marx generators is a worldwide research focus in recent years, and is important trend of development. The developments of this type of HPM source are described systemically in this paper. The output parameters and structural characteristics are reviewed, and the trends of development are discussed. This work provides reference and evidence for us to master the status of the HPM source based on compact Marx generators correctly and to explore its technical routes scientifically. (authors)

  10. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  11. Confinement and heating of high beta plasma with emphasis on compact toroids. Compact toroid research

    International Nuclear Information System (INIS)

    Vlases, G.C.; Pietrzyk, Z.A.

    1984-11-01

    Two older projects associated with very high energy density plasmas, specifically the High Density Field Reversed Configuration and the Liner Plasma Compression Experiment, have been completed. Attention has been turned to compact toroid experiments of more conventional density, and three experiments have been initiated. These include the Coaxial Slow Source Experiment, the Variable Length FRC Experiment, and Variable Angle CthetaP Experiment. In each case, the project was begun in order to provide basic plasma physics information on specific unresolved issues of progammatic importance to the national CT Program

  12. The compact mirrors with high pressure plasmas

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Bagryansky, P.A.; Ivanov, A.A.; Lizunov, A.A.; Murakhtin, S.V.; Prikhodko, V.V.; Collatz, S.; Noack, K.

    2004-01-01

    The gas dynamic trap (GDP) experimental facility at the Budker Institute Novosibirsk is a long axial-symmetric mirror system with a high mirror ratio variable in the range of 12.5 - 100 for the confinement of a two-component plasma. One component is a collisional plasma with ion and electron temperatures up to 100 eV and density up to 10 14 cm -3 . The second component is the population of high-energetic fast ions with energies of 2-18 keV and a density up to 10 13 cm -3 which is produced by neutral beam injection (NBI). GDP is currently undergoing an upgrade whose first stage is the achievement of the synthesized hot ion plasmoid experiment (SHIP). This experiment aims at the investigation of plasmas and at the knowledge of plasma parameters that have never been achieved before in magnetic mirrors. The paper presents the physical concept of the SHIP experiment, the results of numerical pre-calculations and draws conclusions regarding possible scenarios of experiments. The simulation of a maximal NBI power regime with hydrogen injection gave a fast ion density of 1.2*10 14 cm -3 with a mean energy of 14 keV. The calculation of the deuterium injection regime with 2 MW NBI power gave a maximal fast ion density of 1.9*10 14 cm -3 with a beam energy of 9 keV. The calculation of an experimental scenario with reduced magnetic field resulted in a maximal β-value of 62%, so this regime is recommended for the study of high-β effects in plasmas confined in axial-symmetric mirrors

  13. Effective High-Frequency Permeability of Compacted Metal Powders

    Science.gov (United States)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  14. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  15. Optimizing High Performance Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Raymond A Yonathan

    2017-01-01

    Full Text Available This paper’s objectives are to learn the effect of glass powder, silica fume, Polycarboxylate Ether, and gravel to optimizing composition of each factor in making High Performance SCC. Taguchi method is proposed in this paper as best solution to minimize specimen variable which is more than 80 variations. Taguchi data analysis method is applied to provide composition, optimizing, and the effect of contributing materials for nine variable of specimens. Concrete’s workability was analyzed using Slump flow test, V-funnel test, and L-box test. Compressive and porosity test were performed for the hardened state. With a dimension of 100×200 mm the cylindrical specimens were cast for compressive test with the age of 3, 7, 14, 21, 28 days. Porosity test was conducted at 28 days. It is revealed that silica fume contributes greatly to slump flow and porosity. Coarse aggregate shows the greatest contributing factor to L-box and compressive test. However, all factors show unclear result to V-funnel test.

  16. High-gradient compact linear accelerator

    Science.gov (United States)

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  17. Gas migration characteristics of highly compacted bentonite ore

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  18. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  19. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  20. Simple, high current, antimony ion source

    International Nuclear Information System (INIS)

    Sugiura, H.

    1979-01-01

    A simple metal ion source capable of producing a continuous, uncontaminated, high current beam of Sb ions is presented. It produced a total ion current of 200 μA at 1 kV extraction voltage. A discharge occurred in the source at a pressure of 6 x 10 -4 Torr. The ion current extracted from the source increased with the 3/2 power of the extraction voltage. The perveance of the source and ion density in the plasma were 8 x 10 -9 and 1.8 x 10 11 cm -3 , respectively

  1. Durability properties of high volume fly ash self compacting concretes

    Energy Technology Data Exchange (ETDEWEB)

    P. Dinakar; K.G. Babu; Manu Santhanam [Indian Institute of Technology, Chennai (India). Building Technology Division

    2008-11-15

    This paper presents an experimental study on the durability properties of self compacting concretes (SCCs) with high volume replacements of fly ash. Eight fly ash self compacting concretes of various strength grades were designed at desired fly ash percentages of 0, 10, 30, 50, 70 and 85%, in comparison with five different mixtures of normal vibrated concretes (NCs) at equivalent strength grades. The durability properties were studied through the measurement of permeable voids, water absorption, acid attack and chloride permeation. The results indicated that the SCCs showed higher permeable voids and water absorption than the vibrated normal concretes of the same strength grades. However, in acid attack and chloride diffusion studies the high volume fly ash SCCs had significantly lower weight losses and chloride ion diffusion.

  2. High energy density fusing using the Compact Torus

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1989-01-01

    My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs

  3. Monitoring of homogeneity of fuel compacts for high-temperature reactors

    International Nuclear Information System (INIS)

    Mottet, P.; Guery, M.; Chegne, J.

    Apparatus using either gamma transmission or gamma scintillation spectrometry (with NaI(Tl) detector) was developed for monitoring the homogeneity of distribution of fissile and fertile particles in fuel compacts for high-temperature reactors. Three methods were studied: Longitudinal gamma transmission which gives a total distribution curve of heavy metals (U and Th); gamma spectrometry with a well type scintillator, which rapidly gives the U and Th count rates per fraction of compact; and longitudinal gamma spectrometry, giving axial distribution curves for uranium and thorium; apparatus with four scintillators and optimization of the parameters for the measurement, permitting significantly decreasing the duration of the monitoring. These relatively simple procedures should facilitate the industrial monitoring of high-temperature reactor fuel

  4. Fringe-tunable electrothermal Fresnel mirror for use in compact and high-speed diffusion sensor.

    Science.gov (United States)

    Kiuchi, Yuki; Taguchi, Yoshihiro; Nagasaka, Yuji

    2017-01-23

    This paper reports the development of an electrothermal microelectromechanical systems (MEMS) mirror with serpentine shape actuators. A micro Fresnel mirror with fringe-spacing tunability is required to realize a compact and high-speed diffusion sensor for biological samples whose diffusion coefficient changes significantly because of a conformational change. In this case, the measurement time-constant is dependent on the fringe-spacing and diffusion coefficient of the sample. In this study, a fringe-tunable MEMS mirror with an actuation voltage less than 10 V was developed. The characteristics of the fabricated mirror were investigated experimentally. A high-visibility optical interference fringe was successfully demonstrated using both an ultranarrow-linewidth solid-state laser and a low-cost compact laser diode. The experimental results demonstrated a distinct possibility of developing a measurement device using only simple and low-voltage optical components.

  5. Realization of compact, passively-cooled, high-flux photovoltaic prototypes

    Science.gov (United States)

    Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland

    2005-08-01

    The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.

  6. High temperature effects on compact-like structures

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, E.E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2016-08-15

    In this work we investigate the transition from kinks to compactons at high temperatures. We deal with a family of models, described by a real scalar field with standard kinematics, controlled by a single parameter, real and positive. The family of models supports kink-like solutions, and the solutions tend to become compact when the parameter increases to larger and larger values. We study the one-loop corrections at finite temperature, to see how the thermal effects add to the effective potential. The results suggest that the symmetry is restored at very high temperatures. (orig.)

  7. Self compacting concrete incorporating high-volumes of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Bouzoubaa, N. [Natural Resources Canada, Ottawa, ON (Canada). International Centre for Sustainable Development of Cement and Concrete; Lachemi, M. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Civil Engineering

    2004-07-01

    Self-compacting concrete (SCC) is now widely used in reinforced concrete structures. Fine materials such as fly ash ensure that the concrete has the necessary properties of high fluidity and cohesiveness. An experimental study was conducted in which 9 SCC mixtures and one control concrete were produced in order to evaluate SCC made with high-volumes of fly ash. The content of the cementitious materials remained constant at 400 kg/cubic metre, but the ratio of water to cementitious material ranged from 0.35 to 0.45. The viscosity and stability of the fresh concrete was determined for self-compacting mixtures of 40, 50 and 60 per cent Class F fly ash. The compressive strength and drying shrinkage were also determined for the hardened concretes. Results showed that the SCCs developed a 28-day compressive strength ranging from 26 to 48 MPa. It was concluded that high-volumes of Class F fly ash could offer the following advantages to an SCC: reduced construction time and labour cost; eliminate the need for vibration; reduce noise pollution; improve the filling capacity of highly congested structural members; and, ensure good structural performance. 19 refs., 8 tabs., 2 figs.

  8. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    International Nuclear Information System (INIS)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-01

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented

  9. Compact high-field superconducting quadrupole magnet with holmium poles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, D.B.; Kraus, R.H. Jr.; Lobb, C.T.; Menzel, M.T. (Los Alamos National Lab., NM (United States)); Walstrom, P.L. (Grumman Space Systems, Los Alamos, NM (United States))

    1992-03-15

    A compact high-field superconducting quadrupole magnet was designed and built with poles made of the rare-earth metal holmium. The magnet is intended for use in superconducting coupled-cavity linear accelerators where compact high-field quadrupoles are needed, but where the use of permanent magnets is ruled out because of trapped-flux losses. The magnet has a clear bore diameter of 1.8 cm, outside diameter of 11 cm, length of 11 cm, and pole tip length of 6 cm. The effect of using holmium, a material with a higher saturation field than iron, was investigated by replacing poles made of iron with identical poles made of holmium. The magnet was operated at a temperature of 4.2 K and reached a peak quadrupole field gradient of 355 T/m, a 10% increase over the same magnet with iron poles. This increase in performance is consistent with calculations based on B-H curves that were measured for holmium at 4.2 K. (orig.).

  10. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  11. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  12. A simple model of gas flow in a porous powder compact

    Energy Technology Data Exchange (ETDEWEB)

    Shugard, Andrew D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-04-01

    This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.

  13. The coupled process laboratory test of highly compacted bentonite

    International Nuclear Information System (INIS)

    Shen Zhenyao; Li Guoding; Li Shushen; Wang Chengzu

    2004-01-01

    Highly compacted bentonite blocks have been heated and hydrated in the laboratory in order to simulate the thermo-hydro-mechanical (THM) coupled processes of buffer material in a high-level radioactive waste (HLW) repository. The experiment facility, which is composed of experiment barrel, heated system, high pressure water input system, temperature measure system, water content measure system and swelling stress system, is introduced in this paper. The steps of the THM coupled experiment are also given out in detail. There are total 10 highly compacted bentonite blocks used in this test. Experimental number 1-4 are the tests with the heater and the hydrated process, which temperature distribution vs. time and final moisture distribution are measured. Experimental number 5-8 are the tests with the heater and without the hydrated process, which temperature distribution vs. time and final moisture distribution are measured. Experimental number 9-10 are the tests with the heater and the hydrated process, which temperature distribution vs. time, final moisture distribution and the swelling stress distribution at some typical points vs. time are measured. The maximum test time is nearly 20 days and the minimum test time is only 8 hours. The results show that the temperature field is little affected by hydration process and stress condition, but moisture transport and stress distribution are a little affected by the thermal gradient. The results also show that the water head difference is the mainly driving force of hydration process and the swelling stress is mainly from hydration process. It will great help to understand better about heat and mass transfer in porous media and the THM coupled process in actual HLW disposal. (author)

  14. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  15. Communication: Simple liquids' high-density viscosity

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  16. Communication: Simple liquids' high-density viscosity.

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C

    2018-02-28

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  17. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  18. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  19. Upgrade of the compact neutron spectrometer for high flux environments

    Science.gov (United States)

    Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.

    2018-03-01

    In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.

  20. A compact, all solid-state LC high voltage generator.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  1. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  2. New generation of compact high power disk lasers

    Science.gov (United States)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  3. Evolution of highly compact binary stellar systems in globular clusters

    International Nuclear Information System (INIS)

    Krolik, J.H.; Meiksin, A.; Joss, P.C.

    1984-01-01

    We have calculated the secular evolution of a highly compact binary stellar system, composed of a collapsed object and a low-mass secondary star, in the core of a globular cluster. The binary evolves under the combined influences of (i) gravitational radiation losses from the system, (ii) the evolution of the secondary star, (iii) the resultant gradual mass transfer, if any, from the secondary to the collapsed object, and (iv) occasional encounters with passing field stars. We calculate all these effects in detail, utilizing some simplifying approximations appropriate to low-mass secondaries. The times of encounters with field stars, and the initial parameter specifying those encounters, were chosen by use of a Monte Carlo technique; the subsequent gravitational interactions were calculated utilzing a three-body integrator, and the changes in the binary orbital parmeters were thereby determined. We carried out a total of 20 such evolutionary calculations for each of two cluster core densities (1 and 3 x 10 3 stars pc -3 ). Each calculation was continued until the binary was disrupted or until 2 x 10 10 yr had elapsed

  4. Stress/strain/time properties of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-05-01

    In this paper, a recently developed creep theory based on statistical mechanics has been used to analyze a number of experimental creep curves, the conclusion being that the creep behavior of dense MX-80 bentonite is in agreement with the physical model, and that the average bond strength is within the hydrogen bond region. The latter conclusion thus indicates that interparticle displacements leading to macroscopic creep takes place in interparticle and intraparticle water lattices. These findings were taken as a justification to apply the creep theory to a prediction of the settlement over a one million year period. It gave an estimated settlement of 1 cm at maximum, which is of no practical significance. The thixotropic and viscous properties of highly compacted bentonite present certain difficulties in the determination and evaluation of the stress/strain/time parameters that are required for ordinary elastic and elasto-plastic analyses. Still, these parameters could be sufficiently well identified to allow for a preliminary estimation of the stresses induced in the metal canisters by slight rock displacements. The analysis, suggests that a 1 cm rapid shear perpendicular to the axes of the canisters can take place without harming them. (author)

  5. Selfinjection of highly compacted bentonite into rock joints

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-02-01

    When radioactive waste is disposed in bore holes in rocks there will be some space between rock and canister. Other investigations have suggested that the space could be filled with highly compacted bentonite. In this report it is discussed if open joints formed or widened in the surrounding rock after the deposition will be sealed by self-injecting bentonite. Bentonite in contact with water will swell. The flow pattern and properties of the swelling bentonite, the permeability of the extruded bentonite and the viscosity of the extruded bentonite have been investigated. The following statements are done. In the narrow joints that can possibly be opened by various processes, the rate of bentonite extrusion will be very slow except for the first few centimeter move, which may take place in a few mounths. The swelling pressure of the extruded bentonite will decrease rapidly with the distance from the deposition hole. The loss of bentonite extruded through the narrow joints will be negligible. In the outer part of the bentonite zone there will be a successive transition to a very soft, dilute bentonite suspension. It will consist of fairly large particle aggregates which will be stuck where the joint width decreases

  6. Supernovae-generated high-velocity compact clouds

    Science.gov (United States)

    Yalinewich, A.; Beniamini, P.

    2018-05-01

    Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.

  7. Water uptake, migration and swelling characteristics of unsaturated and saturated, highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-09-01

    The report presents the results of a number of laboratory tests and field observations to form the basis of a physical and mathematical model that can be used for predicting water uptake and swelling in highly compacted bentonite components of an actual deposition plant. The clay buffer masses have been suggested as barriers in the Swedish KBS concepts. Two commercially available bentonites were used for the production of samples. The rate of water uptake suggests a mathematical model based on a simple diffusion equation. The rate is determined by the access of water and thousands of years may pass before saturation is obtained. The rate of swelling is governed by the negative pore pressure and the permeability. There is reasonable agreement with field observations. The observed swelling potential of old smectite-rich clays has offered the evidence. (G.B.)

  8. Low-profile high-voltage compact gas switch

    International Nuclear Information System (INIS)

    Goerz, D.A.; Wilson, M.J.; Speer, R.D.

    1997-01-01

    This paper discusses the development and testing of a low-profile, high-voltage, spark-gap switch designed to be closely coupled with other components into an integrated high-energy pulsed-power source. The switch is designed to operate at 100 kV using SF6 gas pressurized to less than 0.7 MPa. The volume of the switch cavity region is less than 1.5 cm3, and the field stress along the gas-dielectric interface is as high as 130 kV/cm. The dielectric switch body has a low profile that is only I -cm tall at its greatest extent and nominally 2-mm thick over most of its area. This design achieves a very low inductance of less than 5 nH, but results in field stresses exceeding 500 kV/cm in the dielectric material. Field modeling was done to determine the appropriate shape for the highly stressed insulator and electrodes, and special manufacturing techniques were employed to mitigate the usual mechanisms that induce breakdown and failure in solid dielectrics. Static breakdown tests verified that the switch operates satisfactorily at 100 kV levels. The unit has been characterized with different shaped electrodes having nominal gap spacings of 2.0, 2.5, and 3.0 mm. The relationship between self-break voltage and operating pressure agrees well with published data on gas properties, accounting for the field enhancements of the electrode shapes being used. Capacitor discharge tests in a low inductance test fixture exhibited peak currents up to 25 kA with characteristic frequencies of the ringdown circuit ranging from 10 to 20 MHz. The ringdown waveforms and scaling of measured parameters agree well with circuit modeling of the switch and test fixture. Repetitive operation has been demonstrated at moderate rep-rates up to 15 Hz, limited by the power supply being used. Preliminary tests to evaluate lifetime of the compact switch assembly have been encouraging. In one case, after more than 7,000 high-current ringdown tests with approximately 30 C of total charge transferred, the

  9. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  10. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  11. Compact Beamformer Design with High Frame Rate for Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-04-01

    Full Text Available In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The compactness is acquired by employing receive synthetic aperture, harmonic imaging, time sharing and linear interpolation. Besides that, multi-beams method is used to improve the frame rate of the ultrasound imaging system. Online dynamic configuration is employed to expand system’s flexibility to two kinds of transducers with multi-scanning modes. The design is verified on a prototype scanner board. Simulation results have shown that on-chip memories can be saved and the frame rate can be improved on the case of 64 effective channels which will meet the requirement of real-time application.

  12. Novel, compact, and simple ND:YVO4 laser with 12 W of CW optical output power and good beam quality

    Science.gov (United States)

    Zimer, H.; Langer, B.; Wittrock, U.; Heine, F.; Hildebrandt, U.; Seel, S.; Lange, R.

    2017-11-01

    We present first, promising experiments with a novel, compact and simple Nd:YVO4 slab laser with 12 W of 1.06 μm optical output power and a beam quality factor M2 2.5. The laser is made of a diffusion-bonded YVO4/Nd:YVO4 composite crystal that exhibits two unique features. First, it ensures a one-dimensional heat removal from the laser crystal, which leads to a temperature profile without detrimental influence on the laser beam. Thus, the induced thermo-optical aberrations to the laser field are low, allowing power scaling with good beam quality. Second, the composite crystal itself acts as a waveguide for the 809 nm pump-light that is supplied from a diode laser bar. Pump-light shaping optics, e.g. fast- or slow-axis collimators can be omitted, reducing the complexity of the system. Pump-light redundancy can be easily achieved. Eventually, the investigated slab laser might be suitable for distortion-free high gain amplification of weak optical signals.

  13. Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells

    International Nuclear Information System (INIS)

    Hu Fangyi; Xia Yujing; Guan Zisheng; Yin Xiong; He Tao

    2012-01-01

    Highlights: ► ZnO compact layer is prepared via simple electrochemical method at low temperature. ► Compact layer can effectively block electron transfer from TCO to electrolyte. ► DSC PCE is improved by 17% when ZnO compact layer is introduced. ► Plastic DSCs with ZnO compact layer show a PCE of 3.29% under AM1.5 100 mW cm −2 . ► The above efficiency is comparable to that with high temperature sintering step. - Abstract: ZnO compact layer has been fabricated on transparent conducting oxide glass and plastic polymer substrates at low temperature via electrodeposition. The results of dark current and cyclic voltammetric measurements demonstrate that the compact layer can effectively reduce the short circuit from transparent conducting oxide to electrolyte in dye-sensitized ZnO solar cells, leading to an increase of open-circuit photovoltage and fill factor of the devices and, thereby, the power conversion efficiency. The resultant plastic dye-sensitized ZnO solar cell presents an efficiency of 3.29% under illumination of 100 mW cm −2 , AM 1.5G. This indicates that electrodeposition is a viable method to fabricate ZnO compact layer for high performance flexible devices.

  14. Development of a high-pressure compaction system for non-combustible solid waste

    International Nuclear Information System (INIS)

    Yogo, S.; Hata, T.; Torita, K.; Yamamoto, K.; Karita, Y.

    1989-01-01

    In recent years, nuclear power plants in Japan have been in search of a means to reduce the volume of non-combustible solid wastes and therefore the application of a high-pressure compaction system has been in demand. Most non-combustible solid wastes have been packed in 200-litre drums for storage and the situation requires a high-pressure compaction system designed exclusively for 200-litre drums. The authors have developed a high-pressure compaction system which compresses 200-litre drums filled with non-combustible solid wastes and packs them into new woo-litre drums efficiently. This paper reports the outline of this high-pressure compaction system and the results of the full-scale verification tests

  15. Foldable Compactly Stowable Extremely High Power Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a high performance solar array system that has game-changing performance metrics in terms of ultra-compact stowage...

  16. Pump-Fed, Compact, High Performance Green Propulsion System for Secondary Payloads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its micropump-fed propulsion technology to the development of a low cost, compact, low tank pressure, high performance LPM-103S...

  17. The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, P. S.; Cavdar, U.

    2015-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra-High Frequency Induction Sintering (UHFIS) was reviewed for different environments. The three different environments: atmosphere, argon and vacuum were applied to the PM compacts. Iron based PM compacts were sintered at 1120 degree centigrade for a total of 550 seconds by using induction sintering machines with 2.8 kW power and 900 kHz frequency. Micro structural properties, densities, roughness and micro hardness values were obtained for all environments. The results were compared with each other. (Author)

  18. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel

    2009-01-01

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in ∼ sun yr -1 , and each clump converts into stars in ∼0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z ∼ 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z ∼ 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  19. Highly Compact MIMO Antenna System for LTE/ISM Applications

    Directory of Open Access Journals (Sweden)

    Lingsheng Yang

    2015-01-01

    Full Text Available Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO antenna system for LTE2300 (used in Asia and Africa and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λ at 2.20 GHz. Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.

  20. LLW disposal wasteform preparation in the UK: the role of high force compaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. F.; Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1991-07-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg.

  1. LLW disposal wasteform preparation in the UK: the role of high force compaction

    International Nuclear Information System (INIS)

    Johnson, L. F.; Fearnley, I. G.

    1991-01-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg

  2. The progenitors of the compact early-type galaxies at high redshift

    International Nuclear Information System (INIS)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Cassata, Paolo; Tundo, Elena; Conselice, Christopher J.; Wiklind, Tommy; Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton; Hathi, Nimish; Huang, Kuang-Han; Kocevski, Dale

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10 10 M ☉ ) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  3. The progenitors of the compact early-type galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Cassata, Paolo [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Tundo, Elena; Conselice, Christopher J. [The School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Wiklind, Tommy [Joint ALMA Observatory, ESO, Santiago (Chile); Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wuyts, Stijn [Max-Planck-Institut für Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Boulevard, Baltimore, MD 21218 (United States); Hathi, Nimish [Carnegie Observatories, Pasadena, CA 91101 (United States); Huang, Kuang-Han [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Kocevski, Dale, E-mail: ccwillia@astro.umass.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); and others

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10{sup 10} M {sub ☉}) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  4. Hulls and structural material waste conditioning by high pressure compaction

    International Nuclear Information System (INIS)

    Frotscher, H.

    1991-01-01

    Since 1986 KfK is developing a conditioning process. Main subjects of the investigations were the development of the production technique and the planning of the most important equipments of the process under remote conditions. The process is based on an extensive program of experiments. Inactive bulks of hulls and structural material components were compacted using maximum axial pressure load of about 300 MPa. The product density as function of press force was experimentally determinated. The mechanical loads of the press and tools were estimated for the design of these equipments. The hydraulic press consists a horizontal four-cylinder press. The maximum force of the press is 25 MN. The main advantage is the modular design of the press which is open on all sides. Especially the free accessibility from top is ensured. The report also represents relevant radiological data of the alternative product. Co-60 is the dominating activity of the product due to the effects of the heat production. An amount of 10 kg hull waste or 25 kg top and bottom pieces of the spent fuel assemblies per package is already beyond the Co-60 limit of the KONRAD regulations. The nuclear thermal power of a filled container is approximately sixty times lower compared with a vitrified HLW-container. Since the product shows thermal stability beyond 200 0 C, this it is suited for a combined disposal together with vitrified HLW-containers in salt bore holes of a geological disposal. The preliminary cost evaluation is based on a reprocessing throughput of 500 t HM per year and volume reduction factor of 5.3. Accordingly there are produced 300 waste packages with hulls only or 625 units with hulls and top and bottom pieces which require 1.6 or 2.3 millions DM respectively

  5. Modelling and validation of a simple and compact wide upper stop band ultra-wideband bandpass filter

    Directory of Open Access Journals (Sweden)

    Somdotta Roy Choudhury

    2014-09-01

    Full Text Available A compact ultra-wideband (UWB bandpass filter (BPF is proposed based on end coupled microstrip transmission line, defected ground structure and defected microstrip structure. The experimental filter shows a fractional bandwidth of 110% at a centre frequency, with two observable transmission zeros (attenuation poles at 2.1 and 11.7 GHz. Measured results exhibit an UWB passband from 3.02 to 10.6 GHz with mid-band insertion loss of 1.8 dB and group delay variation <0.45 ns. The BPF achieves a wide stopband with < −18 dB attenuation up to 20 GHz.

  6. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  7. Compact, Lightweight, High Voltage Propellant Isolators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TA&T, Inc. proposes an enabling fabrication process for high voltage isolators required in high power solar electric and nuclear electric propulsion (SEP and...

  8. Investigation of the existence of self compacting properties in high performance concrete through experimental tests

    Directory of Open Access Journals (Sweden)

    Heitor H. Yoshida

    2007-03-01

    Full Text Available The self compacting concrete is characterized by its capacity to flow inside the formwork filling it exclusively by the force of the gravity with adequate cohesion and viscosity in such a way that segregation does not occur. One of its characteristic is the presence of fines which provide the necessary cohesion,and grains with maximum diameter of 20 mm. This work presents some procedures and experimental methods that make it possible to evaluate self compacting properties of high performance concrete. First, a bibliographical review on the subject was carried out, and later, the equipment used for the accomplishment of the assays were manufactured, in order to verify the properties related to the self compacting concrete: cohesion, viscosity and segregation. As for the work, two concretes were produced with Portland ARI Cement, thick sand, stone powder, sand 0, superplasticizer made of ether-carboxilate chains that differentiate from each other for the presence of active silica in one of them and fly ash in the other. Based on the results, it was verified whether the high performance concrete had self compacting characteristics. In this case, both were considered positive. It was also analyzed the behavior of these concretes in their hardened state by means of the compressive strength test. The Self Compacting Concrete has many advantages such as: reduction in the number of employees, shorter construction period, the non-use of the vibrator and the filling of formworks with high density of… or of complex geometry.

  9. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    International Nuclear Information System (INIS)

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  10. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  11. Compact, High Accuracy CO2 Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  12. Compact, High Accuracy CO2 Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  13. A compact 100 kV high voltage glycol capacitor.

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Feng, Jiahuai

    2015-01-01

    A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.

  14. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    International Nuclear Information System (INIS)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J.; Trump, Jonathan R.; Dekel, Avishai; Kassin, Susan A.; Koekemoer, Anton M.; Kocevski, Dale D.; Van der Wel, Arjen; Pérez-González, Pablo G.; Pacifici, Camilla; Simons, Raymond; Campbell, Randy D.; Goodrich, Bob; Kassis, Marc; Ceverino, Daniel; Finkelstein, Steven L.

    2014-01-01

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M ☉ yr –1 and masses of log(M/M ☉ ) ∼10.8. Their high integrated gas velocity dispersions of σ int =230 −30 +40 km s –1 , as measured from emission lines of Hα and [O III], and the resultant M * -σ int relation and M * -M dyn all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M * /M dyn ) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13 −13 +17 %), and present larger σ int than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  15. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J. [University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Trump, Jonathan R. [Pennsylvania State University, University Park, State College, PA 16802 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kassin, Susan A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kocevski, Dale D. [University of Kentucky, Lexington, KY 40506 (United States); Van der Wel, Arjen [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pérez-González, Pablo G. [Universidad Complutense de Madrid, Avda. de Sneca, 2 Ciudad Universitaria, E-28040 Madrid (Spain); Pacifici, Camilla [Yonsei University Observatory, Yonsei University 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Simons, Raymond [Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2683 (United States); Campbell, Randy D.; Goodrich, Bob; Kassis, Marc [W. M. Keck Observatory, California Association for Research in Astronomy, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Ceverino, Daniel [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain); Finkelstein, Steven L. [The University of Texas at Austin, Austin, TX 78712 (United States); and others

    2014-11-10

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  16. The fate of high redshift massive compact galaxies in dense environments

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Tobias; /Zurich, ETH; Mayer, Lucio; /Zurich U.; Carollo, Marcella; /Zurich, ETH; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  17. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  18. Los Alamos compact toroid, fast-liner, and high-density Z-pinch programs

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.; Sherwood, A.R.; Hammel, J.E.

    1981-03-01

    The Compact Toroid (CT) and High Density Z-Pinch (HDZP) are two of the plasma configurations presently being studied at Los Alamos. The purpose of these two programs, plus the recently terminated (May 1979) Fast Liner (FL) program, is summarized in this section along with a brief description of the experimental facilities. The remaining sections summarize the recent results and the experimental status.

  19. Compact high-efficiency vortex beam emitter based on a silicon photonics micro-ring

    DEFF Research Database (Denmark)

    Li, Shimao; Ding, Yunhong; Guan, Xiaowei

    2018-01-01

    Photonic integrated devices that emit vortex beam carrying orbital angular momentum are becoming key components for multiple applications. Here we propose and demonstrate a high-efficiency vortex beam emitter based on a silicon micro-ring resonator integrated with a metal mirror. Such a compact...

  20. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Ye, W.M., E-mail: ye_tju@tongji.edu.cn [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, The Ministry of Education, Shanghai 200092 (China); Zhang, Y.W.; Chen, B.; Zheng, Z.J.; Chen, Y.G. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Cui, Y.J. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Ecole des Ponts ParisTech, UR Navier/CERMES 77455 (France)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Heating induced volumetric change of GMZ01 bentonite depends on suction. Black-Right-Pointing-Pointer Suction has significant influence on compressibility. Black-Right-Pointing-Pointer Temperature has slight influence on compressibility. - Abstract: In this paper, an oedometer with suction and temperature control was developed. Mechanical compaction tests have been performed on the highly compacted GMZ01 bentonite, which has been recognized as potential buffer/backfill material for construction of Chinese high-level radioactive waste (HLW) geological repository, under conditions of suction ranging from 0 to 110 MPa, temperature from 20 to 80 Degree-Sign C and vertical pressure from 0.1 to 80 MPa. Based on the test results, suction and temperature effects on compressibility parameters are investigated. Results reveal that: (1) at high suctions, heating induced an expansion, while contraction is induced by heating at low suctions. The thermal expansion coefficient of GMZ01 bentonite measured is 1 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}; (2) with increasing suction, the elastic compressibility {kappa} and the plastic compressibility {lambda}(s) of the highly compacted GMZ01 bentonite decrease, while the pre-consolidation pressure increases markedly; (3) with increasing temperature, the elastic compressibility of compacted GMZ01 bentonite changes insignificantly, while the plastic compressibility {lambda}(s) slightly decreases and the yield surface tends to shrink.

  1. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control

    International Nuclear Information System (INIS)

    Ye, W.M.; Zhang, Y.W.; Chen, B.; Zheng, Z.J.; Chen, Y.G.; Cui, Y.J.

    2012-01-01

    Highlights: ► Heating induced volumetric change of GMZ01 bentonite depends on suction. ► Suction has significant influence on compressibility. ► Temperature has slight influence on compressibility. - Abstract: In this paper, an oedometer with suction and temperature control was developed. Mechanical compaction tests have been performed on the highly compacted GMZ01 bentonite, which has been recognized as potential buffer/backfill material for construction of Chinese high-level radioactive waste (HLW) geological repository, under conditions of suction ranging from 0 to 110 MPa, temperature from 20 to 80 °C and vertical pressure from 0.1 to 80 MPa. Based on the test results, suction and temperature effects on compressibility parameters are investigated. Results reveal that: (1) at high suctions, heating induced an expansion, while contraction is induced by heating at low suctions. The thermal expansion coefficient of GMZ01 bentonite measured is 1 × 10 −4 °C −1 ; (2) with increasing suction, the elastic compressibility κ and the plastic compressibility λ(s) of the highly compacted GMZ01 bentonite decrease, while the pre-consolidation pressure increases markedly; (3) with increasing temperature, the elastic compressibility of compacted GMZ01 bentonite changes insignificantly, while the plastic compressibility λ(s) slightly decreases and the yield surface tends to shrink.

  2. Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmoo [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Agency for Defense Development, Yuseong, P.O. Box 35, Yuseong-gu, Daejeon 34186, Republic of Korea. (Korea, Republic of); Lee, Dongju [Korea Atomic Energy Research Institute, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Hwang, Jaewon [Samsung Electronics, 129 Samsung-ro, Youngtong-gu, Suwon 16677 (Korea, Republic of); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Hong, Soon Hyung, E-mail: shhong@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-04-15

    The present study has investigated the consolidation behaviors of tantalum powders during compaction and sintering, and the characteristics of sintered components. For die compaction, the densification behaviors of the powders are simulated by finite element analyses based on the yield function proposed by Shima and Oyane. Accordingly, the green density distribution for coarser particles is predicted to be more uniform because they exhibits higher initial relative tap density owing to lower interparticle friction. It is also found that cold isostatic pressing is capable of producing higher dense compacts compared to the die pressing. However, unlike the compaction behavior, the sintered density of smaller particles is found to be higher than those of coarser ones owing to their higher specific surface area. The maximum sintered density was found to be 0.96 of theoretical density where smaller particles were pressed isostatically at 400 MPa followed by sintering at 2000 °C. Moreover, the effects of processing conditions on grain size and texture were also investigated. The average grain size of the sintered specimen is 30.29 μm and its texture is less than 2 times random intensity. Consequently, it is concluded that the higher pressure compaction technique is beneficial to produce high dense and texture-free tantalum components compared to hot pressing and spark plasma sintering. - Highlights: • Higher Ta density is obtained from higher pressure and sintering temperature. • High compaction method enables P/M Ta to achieve the density of 16.00 g·cm{sup −3}. • A P/M Ta component with fine microstructure and random orientation is developed.

  3. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    Science.gov (United States)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  5. Application of dynamic compaction technology for high performance and precision powder products

    International Nuclear Information System (INIS)

    Lee, Chang Kyu; Lee, Jung Gu; Lee, Min Ku; Uhm, Young Rang; Park, Jin Ju; Lee, Gyeong Ja; Hong, Soon Jik

    2011-06-01

    The automation technology of magnetic pulsed compaction (MPC) has been developed for mass production of high performance powder products by dynamic compaction method. The pulse power equipment in MPC system has been modified for improved lifetime and productivity, so the modified one can produce high-density compacts at a rate of 10 times/min with semipermanent lifetime. Using this modified pulse power equipment, two types of automated MPC apparatus were constructed, which are operated by mechanical and hydraulic driving systems, respectively. By repeated compaction operations at a rate of 5 times/min, durability and productivity of these automated apparatus have been proven to be suitable for mass production. In addition, the lifetime of mold and punch for MPC has been improved by optimizing design and material as well as employing new lubrication system. By applying such automated MPC apparatus, detailed mass production technologies have been developed for several powder products such as diamond drilling segments, ceramic targets for optical coating, silver coins for water disinfection and small powder products for automobile. The developed powder products showed improved performance as compared to commercial ones, so they will be mass-produced industrially before long

  6. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    Directory of Open Access Journals (Sweden)

    Jiyoon Nam

    2016-01-01

    Full Text Available We demonstrate a compact amorphous silicon (a-Si solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.

  7. Introducing a novel gravitation-based high-velocity compaction analysis method for pharmaceutical powders.

    Science.gov (United States)

    Tanner, Timo; Antikainen, Osmo; Ehlers, Henrik; Yliruusi, Jouko

    2017-06-30

    With modern tableting machines large amounts of tablets are produced with high output. Consequently, methods to examine powder compression in a high-velocity setting are in demand. In the present study, a novel gravitation-based method was developed to examine powder compression. A steel bar is dropped on a punch to compress microcrystalline cellulose and starch samples inside the die. The distance of the bar is being read by a high-accuracy laser displacement sensor which provides a reliable distance-time plot for the bar movement. In-die height and density of the compact can be seen directly from this data, which can be examined further to obtain information on velocity, acceleration and energy distribution during compression. The energy consumed in compact formation could also be seen. Despite the high vertical compression speed, the method was proven to be cost-efficient, accurate and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The study of development of welded compact plate heat exchanger for high temperature and pressure

    International Nuclear Information System (INIS)

    Park, Jae Hong; Lim, Hyug; Kim, Jung Kyu; Cho, Sung Youl; Kwon, Oh Boong

    2009-01-01

    In view of space saving, the design of more compact heat exchangers is relatively important. Also, to meet the demand for saving energy and resources today, manufacturers are trying to enhance efficiency and reduce the size and weight of heat exchangers. Over the past decade, there has been tremendous advancement in the manufacturing technology of high efficiency heat exchangers. This has allowed the use of smaller and high performance heat exchangers. Consequently, the use of smaller and high performance heat exchanger becomes popular in the design of heat exchangers. Welded compact plate heat exchanger is used in high temperature and pressure. In the design of heat exchanger, it is necessary to understand the heat transfer characteristics, so performance data are provided to help design of this type heat exchanger.

  9. Development of Dynamic Compaction Technology for Ultra High Strength Powder Products

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, M. K.; Uhm, Y. R.; Park, J. J.; Lee, J. G.; Ivanov, V. V.; Hong, S. J.

    2007-04-01

    A synthesis of ultra fine powder and its compaction have been considered as a new generation and high value added technology in various industrial fields such as automobile, machine tool, electronic chip, sensor and catalyst because of its special characteristics of high toughness, strength and wear resistance which are not shown in conventional process. In this study, ultra hard and fine powders, such as Fe-Si, CuNi and Al 2 O 3 , have been fabricated by the pulsed wire evaporation (PWE) method and mechanical alloying (MA) method. In addition, with ultra hard and fine powders, the magnetic core, diamond tool and water jet nozzle with high density were made by a uniaxial dynamic compaction for the purpose of the real industrial application

  10. Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions

    Science.gov (United States)

    Gordon, Dan; Gordon, Rachel; Turkel, Eli

    2015-09-01

    We consider several compact high order absorbing boundary conditions (ABCs) for the Helmholtz equation in three dimensions. A technique called "the gradient method" (GM) for ABCs is also introduced and combined with the high order ABCs. GM is based on the principle of using directional derivatives in the direction of the wavefront propagation. The new ABCs are used together with the recently introduced compact sixth order finite difference scheme for variable wave numbers. Experiments on problems with known analytic solutions produced very accurate results, demonstrating the efficacy of the high order schemes, particularly when combined with GM. The new ABCs are then applied to the SEG/EAGE Salt model, showing the advantages of the new schemes.

  11. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  12. Raman spectroscopy on simple molecular systems at very high density

    International Nuclear Information System (INIS)

    Schiferl, D.; LeSar, R.S.; Moore, D.S.

    1988-01-01

    We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoretical understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs

  13. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    Science.gov (United States)

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or

  14. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn

    2008-01-01

    The indirect hydrogen storage capabilities of Mg(NH3)(6)Cl-2, Ca(NH3)(6)Cl-2, Mn(NH3)(6)Cl-2, and Ni(NH3)(6)Cl-2 are investigated. All four metal ammine chlorides can be compacted to solid tablets with densities of at least 95% of the crystal density. This gives very high indirect hydrogen...

  15. Compact, Low-Power, and High-Speed Graphene-Based Integrated Photonic Modulator Technology

    Science.gov (United States)

    2017-11-02

    Compact, Low-Power, and High-Speed Graphene- Based Integrated Photonic Modulator Technology The views, opinions and/or findings contained in this...Graphene-Based Integrated Photonic Modulator Technology Report Term: 0-Other Email: sorger@gwu.edu Distribution Statement: 1-Approved for public release...which is an all-time record at Georgia Tech. Protocol Activity Status: Technology Transfer: Nothing to Report PARTICIPANTS: Person Months Worked

  16. Rearranging the lenslet array of the compact passive interference imaging system with high resolution

    Science.gov (United States)

    Liu, Gang; Wen, Desheng; Song, Zongxi

    2017-10-01

    With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.

  17. A compact, high resolution Michelson interferometer for atmospheric spectroscopy in the near ultraviolet

    Science.gov (United States)

    Sander, Stanley P.; Cageao, Richard P.; Friedl, Randall R.

    1993-01-01

    A new, compact Fourier Transform Michelson interferometer (FTUV) with an apodized resolving power greater than 300,000 at 300 nm, high throughput and wide spectral coverage has been developed. The objectives include atmospheric spectroscopy (direct solar absorption and solar scattering) and laboratory spectroscopy of transient species. In this paper, we will briefly describe the prototype FTUV instrument and the results of preliminary laboratory investigations of OH and ClO spectra in emission and absorption.

  18. HIGH-QUALITY SELF-COMPACTING CONCRETE WITH COAL BURNING WASTE

    Directory of Open Access Journals (Sweden)

    Voronin Viktor Valerianovich

    2018-01-01

    Full Text Available Subject: nowadays self-compacting concretes (SCC, the use of which requires no additional compaction, have become widespread for use in densely-reinforced structures and hard-to-reach places. In self-compacting concretes, finely-ground admixtures-microfillers are widely used for controlling technological properties. Their introduction into the concrete mix allows us to obtain more dense structure of concrete. The influence of micro-fillers on water consumption and plasticity of concrete mix, on kinetics of strength gain rate, heat release and corrosion resistance is also noticeable. Research objectives: the work focuses on the development of composition of self-compacting concrete with assigned properties with the use of fly ash based on coal burning waste, optimized with the help of experimental design method in order to clarify the influence of ash and cement quantity, sand size on strength properties. Materials and methods: pure Portland cement CEM I 42.5 N was used as a binder. Crushed granite of fraction 5…20 mm was used as coarse aggregate, coarse quartz sand with the fineness modulus of 2.6 and fine sand with the fineness modulus of 1.4 were used as fillers. A superplasticizer BASF-Master Glenium 115 was used as a plasticizing admixture. The fly ash from Cherepetskaya thermal power plant was used as a filler. The study of strength and technological properties of self-compacting concrete was performed by using standard methods. Results: we obtained three-factor quadratic dependence of strength properties on the content of ash, cement and fraction of fine filler in the mix of fine fillers. Conclusions: introduction of micro-filler admixture based on the fly ash allowed us to obtain a concrete mix with high mobility, fluidity and self-compaction property. The obtained concrete has high strength characteristics, delayed strength gain rate due to replacement of part of the binder with ash. Introduction of the fly ash increases degree of

  19. A Simple Method for High-Lift Propeller Conceptual Design

    Science.gov (United States)

    Patterson, Michael; Borer, Nick; German, Brian

    2016-01-01

    In this paper, we present a simple method for designing propellers that are placed upstream of the leading edge of a wing in order to augment lift. Because the primary purpose of these "high-lift propellers" is to increase lift rather than produce thrust, these props are best viewed as a form of high-lift device; consequently, they should be designed differently than traditional propellers. We present a theory that describes how these props can be designed to provide a relatively uniform axial velocity increase, which is hypothesized to be advantageous for lift augmentation based on a literature survey. Computational modeling indicates that such propellers can generate the same average induced axial velocity while consuming less power and producing less thrust than conventional propeller designs. For an example problem based on specifications for NASA's Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) flight demonstrator, a propeller designed with the new method requires approximately 15% less power and produces approximately 11% less thrust than one designed for minimum induced loss. Higher-order modeling and/or wind tunnel testing are needed to verify the predicted performance.

  20. Simple, parallel, high-performance virtual machines for extreme computations

    International Nuclear Information System (INIS)

    Chokoufe Nejad, Bijan; Ohl, Thorsten; Reuter, Jurgen

    2014-11-01

    We introduce a high-performance virtual machine (VM) written in a numerically fast language like Fortran or C to evaluate very large expressions. We discuss the general concept of how to perform computations in terms of a VM and present specifically a VM that is able to compute tree-level cross sections for any number of external legs, given the corresponding byte code from the optimal matrix element generator, O'Mega. Furthermore, this approach allows to formulate the parallel computation of a single phase space point in a simple and obvious way. We analyze hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are introduced with this method. Our implementation of a VM can run faster than the corresponding native, compiled code for certain processes and compilers, especially for very high multiplicities, and has in general runtimes in the same order of magnitude. By avoiding the tedious compile and link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order corrections that are currently out of reach could be evaluated with a VM given enough computing power.

  1. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    Science.gov (United States)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  2. Los Alamos Compact Toroid, fast liner, and High-Density Z-Pinch programs

    International Nuclear Information System (INIS)

    Linford, R.K.; Hammel, J.E.; Sherwood, H.R.

    1982-01-01

    The compact Toroid and High Density Z-Pinch are two of the plasma configurations presently being studied at Los Alamos. This paper summarizes these two programs along with the recently terminated Fast Liner Program. Included in this discussion is an analysis of compact Toroid formation techniques showing the tearing and reconnection of the fields that separate the spheromak from the radial fields of the coaxial source, and the final equilibrium state of the elongated FRC in the theta-pinch coil. In addition the typical dimensions of the geometry of the Fast Liner experiments are delineated Z-pinch and electrode assembly is displayed as is a graphic of the temporal behavior of the current required for radial equilibrium. Spheromak is examined in terms of formation, gross stability, and equilibrium and field reversed configuration is discussed in terms of gross stability, equilibrium, and confinement scaling

  3. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  4. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H; Blackstone, R [Stichting Energieonderzoek Centrum Nederland, Petten; Loelgen, R

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10/sup 21/ n cm/sup -2/ DNE in the temperature range 600 to 1200/sup 0/C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material.

  5. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    International Nuclear Information System (INIS)

    Veringa, H.; Blackstone, R.; Loelgen, R.

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10 21 n cm -2 DNE in the temperature range 600 to 1200 0 C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material. (author)

  6. A systematic search for dwarf counterparts to ultra compact high velocity clouds

    Science.gov (United States)

    Bennet, Paul; Sand, David J.; Crnojevic, Denija; Strader, Jay

    2015-01-01

    Observations of the Universe on scales smaller than typical, massive galaxies challenge the standard Lambda Cold Dark Matter paradigm for structure formation. It is thus imperative to discover and characterize the faintest dwarf galaxy systems, not just within the Local Group, but in relatively isolated environments as well in order to properly connect them with models of structure formation. Here we report on a systematic search of public ultraviolet and optical archives for dwarf galaxy counterparts to so-called Ultra Compact High Velocity Clouds (UCHVCs), which are compact, isolated HI sources recently found in the Galactic Arecibo L-band Feed Array-HI (GALFA-HI) and Arecibo Legacy Fast ALFA (ALFALFA-HI) surveys. Our search has uncovered at least three strong dwarf galaxy candidates, and we present their inferred star formation rate and structural properties here.

  7. Properties of Fresh and Hardened High Strength Steel Fibres Reinforced Self-Compacted Concrete

    Directory of Open Access Journals (Sweden)

    Saad Ali Al-Ta'an

    2016-10-01

    Full Text Available Fresh and hardened properties of high strength steel fibrous self-compacted concrete were studied in this investigation. One reference high strength self-compacted concrete mix is used, with five percent (by weight of cement silica fume and eight percent of the cement replaced by limestone powder. Three steel fibres percentages by volume of concrete are used (0.4, 0.8, and 1.2. The used steel fibres were a shelled Harex type with irregular cross-section, equivalent diameter of 0.9278 mm, and 32 mm long. Super plasticizer was used to improve the workability and flow ability of the mixes. The test results showed that the presence of steel fibres decrease the flow ability, and increase the time of spreading, segregation, and passing ability of the fresh concrete. For the fibres percentages used, the fresh properties were within the recommended specifications for the self-compacted concrete. The test results showed an early strength development rate more than that for plain normal concrete due to the presence of the fine materials. As for normal concrete, the test results showed also that the increase in the splitting strength is more than the increase in the compressive strength due to the presence of the steel fibres. The brittle mode of failure of the plain unreinforced specimens changed to a ductile one due to the presence of the steel fibres.

  8. Engineering and physics of high-power-density, compact, reversed-field-pinch fusion reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Krakowski, R.A.; Schultz, K.R.; Steiner, D.

    1989-01-01

    The technical feasibility and key developmental issues of compact, high-power-density Reversed-Field-Pinch (RFP) reactors are the primary results of the TITAN RFP reactor study. Two design approaches emerged, TITAN-I and TITAN-II, both of which are steady-state, DT-burning, circa 1000 MWe power reactors. The TITAN designs are physically compact and have a high neutron wall loading of 18 MW m 2 . Detailed analyses indicate that: a) each design is technically feasible; b) attractive features of compact RFP reactors can be realized without sacrificing the safety and environmental potential of fusion; and c) major features of this particular embodiment of the RFP reactor are retained in a design window of neutron wall loading ranging from 10 to 20 MW/m 2 . A major product of the TITAN study is the identification and quantification of major engineering and physics requirements for this class of RFP reactors. These findings are the focus of this paper. (author). 26 refs.; 4 figs.; 1 tab

  9. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures

    Directory of Open Access Journals (Sweden)

    Snehasis Tripathy

    2017-07-01

    Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of

  10. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    Science.gov (United States)

    Liu, Bo; Braiman, Yehuda

    2018-05-01

    We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  11. Target-space duality between simple compact Lie groups and Lie algebras under the Hamiltonian formalism. Pt. 1. Remnants of duality at the classic level

    International Nuclear Information System (INIS)

    Alvarez, O.; Liu Chienhao

    1996-01-01

    It has been suggested that a possible classical remnant of the phenomenon of target-space duality (T-duality) would be the equivalence of the classical string Hamiltonian systems. Given a simple compact Lie group G with a bi-invariant metric and a generating function Γ suggested in the physics literature, we follow the above line of thought and work out the canonical transformation Φ generated by Γ together with an Ad-invariant metric and a B-field on the associated Lie algebra g of G so that G and g form a string target-space dual pair at the classical level under the Hamiltonian formalism. In this article, some general features of this Hamiltonian setting are discussed. We study properties of the canonical transformation Φ including a careful analysis of its domain and image. The geometry of the T-dual structure on g is lightly touched. We leave the task of tracing back the Hamiltonian formalism at the quantum level to the sequel of this paper. (orig.). With 4 figs

  12. Encoding technique for high data compaction in data bases of fusion devices

    International Nuclear Information System (INIS)

    Vega, J.; Cremy, C.; Sanchez, E.; Portas, A.; Dormido, S.

    1996-01-01

    At present, data requirements of hundreds of Mbytes/discharge are typical in devices such as JET, TFTR, DIII-D, etc., and these requirements continue to increase. With these rates, the amount of storage required to maintain discharge information is enormous. Compaction techniques are now essential to reduce storage. However, general compression techniques may distort signals, but this is undesirable for fusion diagnostics. We have developed a general technique for data compression which is described here. The technique, which is based on delta compression, does not require an examination of the data as in delayed methods. Delta values are compacted according to general encoding forms which satisfy a prefix code property and which are defined prior to data capture. Several prefix codes, which are bit oriented and which have variable code lengths, have been developed. These encoding methods are independent of the signal analog characteristics and enable one to store undistorted signals. The technique has been applied to databases of the TJ-I tokamak and the TJ-IU torsatron. Compaction rates of over 80% with negligible computational effort were achieved. Computer programs were written in ANSI C, thus ensuring portability and easy maintenance. We also present an interpretation, based on information theory, of the high compression rates achieved without signal distortion. copyright 1996 American Institute of Physics

  13. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    Science.gov (United States)

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  14. A highly segmented and compact liquid argon calorimeter for the LHC the TGT calorimeter

    CERN Document Server

    Berger, C; Geulig, H; Pierschel, G; Siedling, R; Tutas, J; Wlochal, M; Wotschack, J; Cheplakov, A P; Eremeev, R V; Feshchenko, A; Gavrishchuk, O P; Kazarinov, Yu M; Khrenov, Yu V; Kukhtin, V V; Ladygin, E; Obudovskij, V; Shalyugin, A N; Tolmachev, V T; Volodko, A G; Geweniger, C; Hanke, P; Kluge, E E; Krause, J; Putzer, A; Tittel, K; Wunsch, M; Bán, J; Bruncko, Dusan; Kriván, F; Kurca, T; Murín, P; Sándor, L; Spalek, J; Aderholz, Michael; Brettel, H; Dydak, Friedrich; Fent, J; Huber, J; Hajduk, L; Jakobs, K; Kiesling, C; Oberlack, H; Schacht, P; Stiegler, U; Bogolyubsky, M Yu; Chekulaev, S V; Kiryunin, A E; Kurchaninov, L L; Levitsky, M S; Maximov, V V; Minaenko, A A; Moiseev, A M; Semenov, P A; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter is proposed as an R&D project for an LHC calorimeter with full rapidity coverage. The proposed ``Thin Gap Turbine'' (TGT) calorimeter offers uniform energy response and constant energy resolution independent of the production angle of the impinging particle and of its impact position at the calorimeter. An important aspect of the project is the development of electronics for fast signal processing matched to the short charge collection time in the TGT read-out cell. The system aspects of the integration of a high degree of signal processing into the liquid argon would be investigated.

  15. Very High Temperature Test of Alloy617 Compact Heat Exchanger in Helium Experimental Loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Soo; Park, Byung-Ha; Kim, Eung-Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Intermediate Heat eXchanger (IHX) is a key-challenged high temperature component which determines the efficiency and the economy of VHTR system. Heat generated in the VHTR fuel block is transferred from the VHTR to the intermediate loop through IHX. In the present, the shell-helical tube heat exchanger is generally used as IHX of the helium cooled reactor. Recently, a Printed Circuit Heat Exchanger (PCHE) is one of the candidates for the IHX in a VHTR because its operation temperature and pressure are larger than any other compact heat exchanger types. These test results show that there is no problem in operation of HELP at the very high temperature experimental condition and the alloy617 compact heat exchanger can be operated in the very high temperature condition above 850℃. In the future, the high temperature structural analysis will be studied to estimate the thermal stress during transient and thermal shock condition. The conditions and evaluation standard for the alloy 617 diffusion bonding will be minutely studied to fabricate the large-scale PCHE for the high temperature condition.

  16. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    International Nuclear Information System (INIS)

    Jonsen, P.; Haeggblad, H.-A.

    2007-01-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments

  17. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    Science.gov (United States)

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  18. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  19. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  20. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  1. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    International Nuclear Information System (INIS)

    Lin, M-W; Jovanovic, I

    2014-01-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented. (paper)

  2. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  3. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  4. Studying the compactibility of the VT22 high-strength alloy powder obtained by the PREP method

    Science.gov (United States)

    Kryuchkov, D. I.; Berezin, I. M.; Nesterenko, A. V.; Zalazinsky, A. G.; Vichuzhanin, D. I.

    2017-12-01

    Compression curves are plotted for VT22 high-strength alloy powder under conditions of uniaxial compression at room temperature. The density of the compacted briquette at the loading and unloading stages is determined. It is demonstrated that strong interparticle bonds are formed in the area of the action of shear deformation. The results are supposed to be used to identify the flow model of the material studied and to perform the subsequent numerical modeling of the compaction process.

  5. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  6. Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence

    Energy Technology Data Exchange (ETDEWEB)

    Remy, L.; Cheymol, G. [CEA, French Nuclear Energy Commission, Nuclear Energy Division, DPC/SEARS/LISL Bat 467 CEA Saclay 91191 Gif/Yvette Cedex (France); Gusarov, A. [SCK.CEN - Belgian Nuclear Research center, Boeretang 200 2400 Mol (Belgium); Morana, A.; Marin, E.; Girard, S. [Universite de Saint-Etienne, Laboratoire Hubert Curien, UMR CNRS5516, 18, rue du Pr. Lauras, F-42000 Saint-Etienne (France)

    2015-07-01

    In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensor design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison

  7. Compact mode-locked diode laser system for high precision frequency comparisons in microgravity

    Science.gov (United States)

    Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.

    2017-11-01

    Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.

  8. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  9. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  10. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  11. Bloch surface wave structures for high sensitivity detection and compact waveguiding

    Science.gov (United States)

    Khan, Muhammad Umar; Corbett, Brian

    2016-01-01

    Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.

  12. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    Science.gov (United States)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  13. High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure

    Science.gov (United States)

    Zhang, Yunshan; Zhang, Weigang; Chen, Lei; Zhang, Yanxin; Wang, Song; Yan, Tieyi

    2018-05-01

    An ultra-high sensitivity fiber liquid level sensor based on wavelength demodulation is proposed and demonstrated. The sensor is composed of a segment of multimode fiber and a large aperture hollow-core fiber assisted by a fiber Bragg grating (FBG). Interference occurs due to core mismatching and different modes with different effective refractive indices. The experimental results show that the liquid level sensitivity of the sensor is 1.145 nm mm‑1, and the linearity is up to 0.996. The dynamic temperature compensation of the sensor can be achieved by cascading an FBG. Considering the high sensitivity and compact structure of the sensor, it can be used for real-time intelligent monitoring of tiny changes in liquid level.

  14. A compact and high efficiency GAGG well counter for radiocesium concentration measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Ogata, Yoshimune

    2014-07-01

    After the Fukushima nuclear disaster, social concern about radiocesium ({sup 137}Cs and {sup 134}Cs) contamination in food increased. However, highly efficient instruments that can measure low level radioactivity are quite expensive and heavy. A compact, lightweight, and reliable radiation detector that can inexpensively monitor low level radiocesium is highly desired. We developed a compact and highly efficient radiocesium detector to detect ∼32 keV X-rays from radiocesium instead of high energy gamma photons. A 1-mm thick GAGG scintillator was selected to effectively detect ∼32 keV X-rays from {sup 137}Cs to reduce the influence of ambient radiation. Four sets of 25 mm×25 mm×1 mm GAGG plates, each of which was optically coupled to a triangular-shaped light guide, were optically coupled to a photomultiplier tube (PMT) to form a square-shaped well counter. Another GAGG plate was directly optically coupled to the PMT to form its bottom detector. The energy resolution of the GAGG well counter was 22.3% FWHM for 122 keV gamma rays and 32% FWHM for ∼32 keV X-rays. The counting efficiency for the X-rays from radiocesium (mixture of {sup 137}Cs and {sup 134}Cs) was 4.5%. In measurements of the low level radiocesium mixture, a photo-peak of ∼32 keV X-rays can clearly be distinguished from the background. The minimum detectable activity (MDA) was estimated to be ∼100 Bq/kg for 1000 s measurement. The results show that our developed GAGG well counter is promising for the detection of radiocesium in food.

  15. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 angstrom) x-rays of 10-ps pulse duration, with a flux of ∼ 10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table-top'' LSS of monochromatic gamma radiation may become feasible

  16. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0 2 laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photon/sec level, after the ongoing ATF C0 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table- top'' LSS of monochromatic gamma radiation may become feasible

  17. Contribution of High-Mass Black Holes to Mergers of Compact Binaries

    International Nuclear Information System (INIS)

    Bethe, H.A.; Brown, G.E.

    1999-01-01

    We consider the merging of compact binaries consisting of a high-mass black hole and a neutron star. From stellar evolutionary calculations that include mass loss, we estimate that a zero-age main sequence (ZAMS) mass of approx-gt 80 M circle-dot is necessary before a high-mass black hole can result from a massive O star progenitor. We first consider how Cyg X-1, with its measured orbital radius of ∼17 R circle-dot , might evolve. Although this radius is substantially less than the initial distance of two O stars, it is still so large that the resulting compact objects will merge only if an eccentricity close to unity results from a high kick velocity of the neutron star in the final supernova explosion. We estimate the probability of the necessary eccentricity to be ∼1%; i.e., 99% of the time the explosion of a Cyg X-1 endash type object will end as a binary of compact stars, which will not merge in Hubble time (unless the orbit is tightened in common envelope evolution, which we discuss later). Although we predict ∼7 massive binaries of Cyg X-1 type, we argue that only Cyg X-1 is narrow enough to be observed, and that only Cyg X-1 has an appreciable chance of merging in Hubble time. This gives us a merging rate of ∼3x10 -8 yr -1 in the galaxy, the order of magnitude of the merging rate found by computer-driven population syntheses, if extrapolated to our mass limit of 80 M circle-dot ZAMS mass for high-mass black hole formation. Furthermore, in both our calculation and in those of population syntheses, almost all of the mergings involve an eccentricity close to unity in the final explosion of the O star. From this first part of our development we obtain only a negligible contribution to our final results for mergers, and it turns out to be irrelevant for our final results. In our main development, instead of relying on observed binaries, we consider the general evolution of binaries of massive stars. The critical stage is when the more massive star A has

  18. On barrier performance of high compaction bentonite in facilities of disposing high level radioactive wastes in formation

    International Nuclear Information System (INIS)

    Ikeda, Hidefumi; Komada, Hiroya

    1989-01-01

    As for the method of disposing high level radioactive wastes generated in the reprocessing of spent fuel, at present formation disposal is regarded as most promising. The most important point in this formation disposal is to prevent the leak of radioactive nuclides within the disposal facilities into bedrocks and their move to the zone of human life. As the method of formation disposal, the canisters containing high level radioactive wastes are placed in the horizontal or vertical holes for disposal dug from horizontal tunnels which are several hundreds m underground, and the tunnels and disposal holes are filled again. For this filling material, the barrier performance to prevent and retard the leak of radioactive nuclides out of the disposal facilities is expected, and the characteristics of low water permeability, the adsorption of nuclides and long term stability are required. However, due to the decay heat of wastes just after the disposal, high temperature and drying condition arises, and this must be taken in consideration. The characteristics required for filling materials and the selection of the materials, the features and classification of bentonite, the properties of high compaction bentonite, and the move of water, heat and nuclides in high compaction bentonite are reported.(Kako, I.)

  19. Compact High Resolution SANS using very cold neutrons (VCN-SANS)

    International Nuclear Information System (INIS)

    Kennedy, S.; Yamada, M.; Iwashita, Y.; Geltenbort, P.; Bleuel, M.; Shimizu, H.

    2011-01-01

    SANS (Small Angle Neutron Scattering) is a popular method for elucidation of nano-scale structures. However science continually challenges SANS for higher performance, prompting exploration of ever-more exotic and expensive technologies. We propose a compact high resolution SANS, using very cold neutrons, magnetic focusing lens and a wide-angle spherical detector. This system will compete with modern 40 m pinhole SANS in one tenth of the length, matching minimum Q, Q-resolution and dynamic range. It will also probe dynamics using the MIEZE method. Our prototype lens (a rotating permanent-magnet sextupole), focuses a pulsed neutron beam over 3-5 nm wavelength and has measured SANS from micelles and polymer blends. (authors)

  20. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    International Nuclear Information System (INIS)

    O’Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Kim, C.; Shaner, M.; Asadoor, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R.; Bhawal, A.; Gong, P.; Lottarini, A.; Minenkov, Y.; Murphy, C.

    2014-01-01

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems

  1. Significantly High Modulation Efficiency of Compact Graphene Modulator Based on Silicon Waveguide.

    Science.gov (United States)

    Shu, Haowen; Su, Zhaotang; Huang, Le; Wu, Zhennan; Wang, Xingjun; Zhang, Zhiyong; Zhou, Zhiping

    2018-01-17

    We theoretically and experimentally demonstrate a significantly large modulation efficiency of a compact graphene modulator based on a silicon waveguide using the electro refractive effect of graphene. The modulation modes of electro-absorption and electro-refractive can be switched with different applied voltages. A high extinction ratio of 25 dB is achieved in the electro-absorption modulation mode with a driving voltage range of 0 V to 1 V. For electro-refractive modulation, the driving voltage ranges from 1 V to 3 V with a 185-pm spectrum shift. The modulation efficiency of 1.29 V · mm with a 40-μm interaction length is two orders of magnitude higher than that of the first reported graphene phase modulator. The realisation of phase and intensity modulation with graphene based on a silicon waveguide heralds its potential application in optical communication and optical interconnection systems.

  2. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    Science.gov (United States)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  3. High-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap

    International Nuclear Information System (INIS)

    Robbins, D.L.; Chen, H.; Beiersdorfer, P.; Faenov, A.Ya.; Pikuz, T.A.; May, M.J.; Dunn, J.; Smith, A.J.

    2004-01-01

    A compact high-resolution (λ/Δλ≅10 000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured

  4. A compact spectrum splitting concentrator for high concentration photovoltaics based on the dispersion of a lens

    Science.gov (United States)

    He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.

    2018-06-01

    Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.

  5. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Rodionov, A. V.; Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Shaner, M.; Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street Pasadena, California 91105 (United States); Sobacchi, E. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Dergachev, V.; DeSalvo, R., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientfica 1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia)

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  6. Applications of high energy neutralized ion beams to a compact torus

    International Nuclear Information System (INIS)

    Rostoker, N.; Katzenstein, J.

    1986-01-01

    Pulsed ion beams can be produced with ion diodes and Marx generators. The technology exists to produce high energy beams efficiently. A neutralized ion beam has an equal number of co-moving electrons. The resultant beam is electrically neutral, has no net current and can be transported across a magnetic field if the current density is sufficiently large. Preliminary experimental results have been obtained on injecting a neutralized proton beam into a small tokamak. To illuminate the physical processes involved in injection and trapping an experiment has been designed for TEXT. Possible applications to a compact torus include plasma heating, current maintenance and non-equilibrium reactors that do not require ignition. Each application is discussed and comparisons are made with other methods. (author)

  7. Immersed boundary method combined with a high order compact scheme on half-staggered meshes

    International Nuclear Information System (INIS)

    Księżyk, M; Tyliszczak, A

    2014-01-01

    This paper presents the results of computations of incompressible flows performed with a high-order compact scheme and the immersed boundary method. The solution algorithm is based on the projection method implemented using the half-staggered grid arrangement in which the velocity components are stored in the same locations while the pressure nodes are shifted half a cell size. The time discretization is performed using the predictor-corrector method in which the forcing terms used in the immersed boundary method acts in both steps. The solution algorithm is verified based on 2D flow problems (flow in a lid-driven skewed cavity, flow over a backward facing step) and turns out to be very accurate on computational meshes comparable with ones used in the classical approaches, i.e. not based on the immersed boundary method.

  8. Preparation of ultra-thin and high-quality WO{sub 3} compact layers and comparision of WO{sub 3} and TiO{sub 2} compact layer thickness in planar perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun; Wang, Yanqing; Li, Mingqian

    2016-06-15

    In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.

  9. Ultra-compact high velocity clouds in the ALFALFA HI survey: Candidate Local Group galaxies?

    Science.gov (United States)

    Adams, Elizabeth Ann Kovenz

    The increased sensitivity and spatial resolution of the ALFALFA HI survey has resulted in the detection of ultra-compact high velocity clouds (UCHVCs). These objects are good candidates to represent low mass gas-rich galaxies in the Local Group and Local Volume with stellar populations that are too faint to be detected in extant optical surveys. This idea is referred to as the "minihalo hypothesis". We identify the UCHVCs within the ALFALFA dataset via the use of a 3D matched filtering signal identification algorithm. UCHVCs are selected based on a compact size ( 120 km s-1) and isolation. Within the 40% complete ALFALFA survey (alpha.40), 59 UCHVCs are identified; 19 are in a most-isolated subset and are the best galaxy candidates. Due to the presence of large HVC complexes in the fall sky, most notably the Magellanic Stream, the association of UCHVCs with existing structure cannot be ruled out. In the spring sky, the spatial and kinematic distribution of the UCHVCs is consistent with simulations of dark matter halos within the Local Group. In addition, the HI properties of the UCHVCs (if placed at 1 Mpc) are consistent with both theoretical and observational predictions for low mass gas-rich galaxies. Importantly, the HI properties of the UCHVCs are consistent with those of two recently discovered low mass gas-rich galaxies in the Local Group and Local Volume, Leo T and Leo P. Detailed follow-up observations are key for addressing the minihalo hypothesis. High resolution HI observations can constrain the environment of a UCHVC and offer evidence for a hosting dark matter halo through evidence of rotation support and comparison to theoretical models. Observations of one UCHVC at high resolution (15'') reveal the presence of a clumpy HI distribution, similar to both low mass galaxies and circumgalactic compact HVCs. An extended envelope containing ˜50% of the HI flux is resolved out by the array configuration; observations at lower spatial resolution can recover

  10. Selection for the compactness of highly expressed genes in Gallus gallus

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2010-05-01

    (n = 1105, and compared the first intron length and the average intron length between highly expressed genes (top 5% expressed genes and weakly expressed genes (bottom 5% expressed genes. We found that the first intron length and the average intron length in highly expressed genes are not different from that in weakly expressed genes. We also made a comparison between ubiquitously expressed genes and narrowly expressed somatic genes with similar expression levels. Our data demonstrated that ubiquitously expressed genes are less compact than narrowly expressed genes with the similar expression levels. Obviously, these observations can not be explained by mutational bias hypotheses either. We also found that the significant trend between genes' compactness and expression level could not be affected by local mutational biases. We argued that the selection of economy model is most likely one to explain the relationship between gene expression and gene characteristics in chicken genome. Conclusion Natural selection appears to favor the compactness of highly expressed genes in chicken genome. This observation can be explained by the selection of economy model. Reviewers This article was reviewed by Dr. Gavin Huttley, Dr. Liran Carmel (nominated by Dr. Eugene V. Koonin and Dr. Araxi Urrutia (nominated by Dr. Laurence D. Hurst.

  11. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique

    Directory of Open Access Journals (Sweden)

    Igor Bogachev

    2015-11-01

    Full Text Available Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  12. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique.

    Science.gov (United States)

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10-15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  13. Study of the high energy emission of accreting compact objects with SPI/INTEGRAL

    International Nuclear Information System (INIS)

    Droulans, R.

    2011-01-01

    The study of the high energy emission is essential for understanding the radiative processes inherent to accretion flows onto compact objects (black holes and neutron stars). The X/γ-ray continuum of these systems is successfully interpreted in terms of two components. The first component corresponds to blackbody emission from a geometrically thin optically thick accretion disk while the second component is generally associated to Compton scattering of the thermal disk flux off hot electrons. Despite considerable advances throughout the years, the heating mechanisms as well as the structure of the hot Comptonizing plasma remain poorly understood. In order to shed light on the physical processes that govern the innermost regions of the accretion flow, we take advantage of the data archive accumulated by the SPI instrument, a high energy spectrometer (20 keV - 8 MeV) developed at the CESR (now IRAP, Toulouse, France) for the INTEGRAL mission. Above 150 keV, SPI combines a unique spectral resolution with unequalled sensitivity, being thus an ideal tool to study the high energy emission of accreting compact objects. The thesis manuscript reports on the results of timing and spectral studies of three particular systems. First, I address the high energy emission of the enigmatic micro-quasar GRS 1915+105, a source characterized by colossal luminosity and strong chaotic variability in X-rays. On a timescale of about one day, the photon index of the 20 - 200 keV spectrum varies between 2.7 and 3.5; at higher energies (≥150 keV), SPI unveils the systematic presence of an additional emission component, extending without folding energy up to ∼ 500 keV. Second, I study the high energy emission of GX 339-4, a source whose spectral properties are representative of black hole transients. The spectrum of the luminous hard state of this system shows a variable high energy tail (≥150 keV), with significant flux changes on a short timescale (several hours). I explain the

  14. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    International Nuclear Information System (INIS)

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data

  15. High-performance self-compacting concrete with the use of coal burning waste

    Science.gov (United States)

    Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor

    2017-10-01

    Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.

  16. High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure

    Directory of Open Access Journals (Sweden)

    Xiaowei Wu

    2017-05-01

    Full Text Available A Compact Linear Collider prototype traveling-wave accelerator structure fabricated at Tsinghua University was recently high-gradient tested at the High Energy Accelerator Research Organization (KEK. This X-band structure showed good high-gradient performance of up to 100  MV/m and obtained a breakdown rate of 1.27×10^{−8} per pulse per meter at a pulse length of 250 ns. This performance was similar to that of previous structures tested at KEK and the test facility at the European Organization for Nuclear Research (CERN, thereby validating the assembly and bonding of the fabricated structure. Phenomena related to vacuum breakdown were investigated and are discussed in the present study. Evaluation of the breakdown timing revealed a special type of breakdown occurring in the immediately succeeding pulse after a usual breakdown. These breakdowns tended to occur at the beginning of the rf pulse, whereas usual breakdowns were uniformly distributed in the rf pulse. The high-gradient test was conducted under the international collaboration research program among Tsinghua University, CERN, and KEK.

  17. Optoacoustic diagnostic modality: from idea to clinical studies with highly compact laser diode-based systems

    Science.gov (United States)

    Esenaliev, Rinat O.

    2017-09-01

    Optoacoustic (photoacoustic) diagnostic modality is a technique that combines high optical contrast and ultrasound spatial resolution. We proposed using the optoacoustic technique for a number of applications, including cancer detection, monitoring of thermotherapy (hyperthermia, coagulation, and freezing), monitoring of cerebral blood oxygenation in patients with traumatic brain injury, neonatal patients, fetuses during late-stage labor, central venous oxygenation monitoring, and total hemoglobin concentration monitoring as well as hematoma detection and characterization. We developed and built optical parametric oscillator-based systems and multiwavelength, fiber-coupled highly compact, laser diode-based systems for optoacoustic imaging, monitoring, and sensing. To provide sufficient output pulse energy, a specially designed fiber-optic system was built and incorporated in ultrasensitive, wideband optoacoustic probes. We performed preclinical and clinical tests of the systems and the optoacoustic probes in backward mode for most of the applications and in forward mode for the breast cancer and cerebral applications. The high pulse energy and repetition rate allowed for rapid data acquisition with high signal-to-noise ratio from cerebral blood vessels, such as the superior sagittal sinus, central veins, and peripheral veins and arteries, as well as from intracranial hematomas. The optoacoustic systems were capable of automatic, real-time, continuous measurements of blood oxygenation in these blood vessels.

  18. AN EFFICIENT, COMPACT, AND VERSATILE FIBER DOUBLE SCRAMBLER FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath; Ramsey, Lawrence; Levi, Eric; Schwab, Christian; Hearty, Fred [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); MacDonald, Nick, E-mail: shalverson@psu.edu, E-mail: aur17@psu.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2015-06-10

    We present the design and test results of a compact optical fiber double-scrambler for high-resolution Doppler radial velocity instruments. This device consists of a single optic: a high-index n ∼ 2 ball lens that exchanges the near and far fields between two fibers. When used in conjunction with octagonal fibers, this device yields very high scrambling gains (SGs) and greatly desensitizes the fiber output from any input illumination variations, thereby stabilizing the instrument profile of the spectrograph and improving the Doppler measurement precision. The system is also highly insensitive to input pupil variations, isolating the spectrograph from telescope illumination variations and seeing changes. By selecting the appropriate glass and lens diameter the highest efficiency is achieved when the fibers are practically in contact with the lens surface, greatly simplifying the alignment process when compared to classical double-scrambler systems. This prototype double-scrambler has demonstrated significant performance gains over previous systems, achieving SGs in excess of 10,000 with a throughput of ∼87% using uncoated Polymicro octagonal fibers. Adding a circular fiber to the fiber train further increases the SG to >20,000, limited by laboratory measurement error. While this fiber system is designed for the Habitable-zone Planet Finder spectrograph, it is more generally applicable to other instruments in the visible and near-infrared. Given the simplicity and low cost, this fiber scrambler could also easily be multiplexed for large multi-object instruments.

  19. 250 kV 6 mA compact Cockcroft-Walton high-voltage power supply

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhan-Wen; Su, Xiao-Dong; Wei, Zhen; Huang, Zhi-Wu; Miao, Tian-You; Su, Tong-Ling [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Lu, Xiao-Long; Wang, Jun-Run; Yao, Ze-En, E-mail: zeyao@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-08-15

    A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of the output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.

  20. A simple, tunable, and highly sensitive radio-frequency sensor.

    Science.gov (United States)

    Cui, Yan; Sun, Jiwei; He, Yuxi; Wang, Zheng; Wang, Pingshan

    2013-08-05

    We report a radio frequency (RF) sensor that exploits tunable attenuators and phase shifters to achieve high-sensitivity and broad band frequency tunability. Three frequency bands are combined to enable sensor operations from ∼20 MHz to ∼38 GHz. The effective quality factor ( Q eff ) of the sensor is as high as ∼3.8 × 10 6 with 200  μ l of water samples. We also demonstrate the measurement of 2-proponal-water-solution permittivity at 0.01 mole concentration level from ∼1 GHz to ∼10 GHz. Methanol-water solution and de-ionized water are used to calibrate the RF sensor for the quantitative measurements.

  1. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    International Nuclear Information System (INIS)

    Waldmann, Ole; Ludewigt, Bernhard

    2010-01-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5 · 10 11 n/s for D-T and ∼ 1 · 10 10 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60 · 6 mm 2 ) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm 2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  2. A reliable and consistent production technology for high volume compacted graphite iron castings

    Directory of Open Access Journals (Sweden)

    Liu Jincheng

    2014-07-01

    Full Text Available The demands for improved engine performance, fuel economy, durability, and lower emissions provide a continual challenge for engine designers. The use of Compacted Graphite Iron (CGI has been established for successful high volume series production in the passenger vehicle, commercial vehicle and industrial power sectors over the last decade. The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes, in China and globally. The production window range for stable CGI is narrow and constantly moving. Therefore, any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings. The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity, without risking the formation of flake graphite. The technology is currently being used in high volume Chinese foundry production. The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.

  3. High-mass twins & resolution of the reconfinement, masquerade and hyperon puzzles of compact star interiors

    International Nuclear Information System (INIS)

    Blaschke, David; Alvarez-Castillo, David E.

    2016-01-01

    We aim at contributing to the resolution of three of the fundamental puzzles related to the still unsolved problem of the structure of the dense core of compact stars (CS): (i) the hyperon puzzle: how to reconcile pulsar masses of 2 M ⊙ with the hyperon softening of the equation of state (EoS); (ii) the masquerade problem: modern EoS for cold, high density hadronic and quark matter are almost identical; and (iii) the reconfinement puzzle: what to do when after a deconfinement transition the hadronic EoS becomes favorable again? We show that taking into account the compositeness of baryons (by excluded volume and/or quark Pauli blocking) on the hadronic side and confining and stiffening effects on the quark matter side results in an early phase transition to quark matter with sufficient stiffening at high densities which removes all three present-day puzzles of CS interiors. Moreover, in this new class of EoS for hybrid CS falls the interesting case of a strong first order phase transition which results in the observable high mass twin star phenomenon, an astrophysical observation of a critical endpoint in the QCD phase diagram

  4. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    Science.gov (United States)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  5. Performance of compact TES arrays with integrated high-fill-fraction X-ray absorbers

    International Nuclear Information System (INIS)

    Lindeman, Mark A.; Bandler, Simon; Brekosky, Regis P.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Kelley, Richard L.; Saab, Tarek; Stahle, Caroline K.; Talley, D.J.

    2004-01-01

    We have recently produced and tested two-dimensional arrays of Mo/Au transition-edge-sensor (TES) calorimeters with Bi/Cu absorbers. The arrays represent a significant step towards meeting the specifications of NASA's Constellation-X mission. The calorimeters are compactly spaced within 5x5 arrays of 250 μm square pixels necessary for an angular resolution of 5 arcsec. Lithographically produced absorbers hang over the substrate and wiring between the TESs for high filling fraction and high quantum efficiency. We designed the calorimeters with heat capacities and thermal couplings such that X-rays produce pulses with fall times of approximately 300 μs to allow relatively high count rates with low dead time. We read out up to four of the pixels simultaneously. The arrays demonstrated very good energy resolution (5 eV at 1.5 keV and 7 eV at 6 keV) and little crosstalk between neighboring pixels

  6. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  7. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    Science.gov (United States)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  8. Simple processing of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Hamammu, I.M.; Ibrahim, K.

    2006-01-01

    Cost effective photovoltaic devices have been an area research since the development of the first solar cells, as cost is the major factor in their usage. Silicon solar cells have the biggest share in the photovoltaic market, though silicon os not the optimal material for solar cells. This work introduces a simplified approach for high efficiency silicon solar cell processing, by minimizing the processing steps and thereby reducing cost. The suggested procedure might also allow for the usage of lower quality materials compared to the one used today. The main features of the present work fall into: simplifying the diffusion process, edge shunt isolation and using acidic texturing instead of the standard alkaline processing. Solar cells of 17% efficiency have been produced using this procedure. Investigations on the possibility of improving the efficiency and using less quality material are still underway

  9. High-intensity positive beams extracted from a compact double-chamber ion source

    International Nuclear Information System (INIS)

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-01-01

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission

  10. A compact high-gradient 25 MeV 17 GHz RF linac for free-electron laser research

    International Nuclear Information System (INIS)

    Danly, B.G.; Chen, S.C.; Kreischer, K.E.

    1995-01-01

    A new compact high-gradient (60 MeV/m) high-frequency (17.136 GHz) RF linac is presently under construction by Haimson Research Corp. (HRC) for installation at the MIT Plasma Fusion Center in the High-Gradient Accelerator and High Power Microwave Laboratory. This accelerator will utilize an existing traveling-wave relativistic klystron (TWRK) which is now operation at MIT with 25 MW power, 67 dB gain, and 52% efficiency at 17.136 GHz

  11. Interaction of a spheromak-like compact toroid with a high beta spherical tokamak plasma

    International Nuclear Information System (INIS)

    Hwang, D.Q.; McLean, H.S.; Baker, K.L.; Evans, R.W.; Horton, R.D.; Terry, S.D.; Howard, S.; Schmidt, G.L.

    2000-01-01

    Recent experiments using accelerated spheromak-like compact toroids (SCTs) to fuel tokamak plasmas have quantified the penetration mechanism in the low beta regime; i.e. external magnetic field pressure dominates plasma thermal pressure. However, fusion reactor designs require high beta plasma and, more importantly, the proper plasma pressure profile. Here, the effect of the plasma pressure profile on SCT penetration, specifically, the effect of diamagnetism, is addressed. It is estimated that magnetic field pressure dominates penetration even up to 50% local beta. The combination of the diamagnetic effect on the toroidal magnetic field and the strong poloidal field at the outer major radius of a spherical tokamak will result in a diamagnetic well in the total magnetic field. Therefore, the spherical tokamak is a good candidate to test the potential trapping of an SCT in a high beta diamagnetic well. The diamagnetic effects of a high beta spherical tokamak discharge (low aspect ratio) are computed. To test the penetration of an SCT into such a diamagnetic well, experiments have been conducted of SCT injection into a vacuum field structure which simulates the diamagnetic field effect of a high beta tokamak. The diamagnetic field gradient length is substantially shorter than that of the toroidal field of the tokamak, and the results show that it can still improve the penetration of the SCT. Finally, analytic results have been used to estimate the effect of plasma pressure on penetration, and the effect of plasma pressure was found to be small in comparison with the magnetic field pressure. The penetration condition for a vacuum field only is reported. To study the diamagnetic effect in a high beta plasma, additional experiments need to be carried out on a high beta spherical tokamak. (author)

  12. High pressure chemistry of red phosphorus by photoactivated simple molecules

    Science.gov (United States)

    Ceppatelli, Matteo; Bini, Roberto; Fanetti, Samuele; Caporali, Maria; Peruzzini, Maurizio

    2013-06-01

    High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In particular the photoactivation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photoactivators in HP conditions. Here we report a study on the HP photoinduced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using DAC and SAC. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occured in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).

  13. High performance inboard shield design for the compact TIBER-II test reactor: Appendix A-2

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Sviatoslavsky, I.N.

    1987-01-01

    The compactness of the TIBER-II reactor has placed a premium on the design of a high performance inboard shield to protect the inner legs of the toroidal field (TF) coils. The available space for shield is constrained to 48 cm and the use of tungsten is mandatory to protect the magnet against the 1.53 MW/m 2 neutron wall loading. The primary requirement for the shield is to limit the fast neutron fluence to 10 19 n/cm 2 . In an optimization study, the performance of various candidate materials for protecting the magnet was examined. The optimum shield consists of a 40 cm thick W layer, followed by an 8 cm thick H 2 O/LiNO 3 layer. The mechanical design of the shield calls for tungsten blocks within SS stiffened panels. All the coolant channels are vertical with more of them in the front where there is a high heat load. The coolant pressure is 0.2 MPa and the maximum structural surface temperature is 0 C. The effects of the detailed mechanical design of the shield and the assembly gaps between the shield sectors on the damage in the magnet were analyzed and peaking factors of ∼2 were found at the hot spots. 2 refs., 6 figs., 2 tabs

  14. Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Jian Zhou; Yonglin Kang; Xinping Mao

    2008-01-01

    Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti mieroalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S>2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.

  15. Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization

    Science.gov (United States)

    Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc

    2018-02-01

    Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.

  16. A Compact, Light-weight, Reliable and Highly Efficient Heat Pump for, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — RTI proposes to develop an efficient, reliable, compact and lightweight heat pump for space applications. The proposed effort is expected to lead to (at the end of...

  17. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop the prototype of a compact single-frequency mode one longitudinal and one transverse mode laser...

  18. Compact multichannel high-resolution micro-electro-mechanical systems-based interrogator for Fiber Bragg grating sensing

    DEFF Research Database (Denmark)

    Ganziy, Denis; Rose, Bjarke; Bang, Ole

    2017-01-01

    We propose a novel type of compact high-resolution multichannel micro-electro-mechanical systems (MEMS)-based interrogator, where we replace the linear detector with a digital micromirror device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used...

  19. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    Science.gov (United States)

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

  20. Regimes of pulsed formation of a compact plasma configuration with a high energy input

    Energy Technology Data Exchange (ETDEWEB)

    Romadanov, I. V.; Ryzhkov, S. V., E-mail: svryzhkov@bmstu.ru [Bauman Moscow State Technical University (Russian Federation)

    2015-10-15

    Results of experiments on the formation of a compact toroidal magnetic configuration at the Compact Toroid Challenge setup are presented. The experiments were primarily aimed at studying particular formation stages. Two series of experiments, with and without an auxiliary capacitor bank, were conducted. The magnetic field was measured, its time evolution and spatial distribution over the chamber volume were determined, and its influence on the formation regimes was investigated.

  1. Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements

    Science.gov (United States)

    Korablev, Oleg I.; Bertaux, Jean-Loup; Vinogradov, Imant I.; Kalinnikov, Yurii K.; Nevejans, D.; Neefs, E.; Le Barbu, T.; Durry, G.

    2017-11-01

    A new concept of a high-resolution near-IR spectrometer consisting of an echelle grating combined with an acousto-optic tunable filter (AOTF) for separation of diffraction orders, is developed for space-borne studies of planetary atmospheres. A compact design with no moving parts within the mass budget of 3-5 kg allows to reach the resolving power λ/Δλ of 20000-30000. Only a small piece of spectrum in high diffraction orders can be measured at a time, but thanks to flexibility of the AOTF electrical tuning, such pieces of spectrum can be measured randomly and rapidly within the spectral range. This development can be used for accurate measurements of important atmospheric gases, such as CO2 in terrestrial atmosphere, isotopic ratios and minor gases. A spectrometer, based on this principle, SOIR (Solar Occultation InfraRed) is being built for Venus Express (2005) ESA mission. Instruments based on this principle have high potential for the studies of the Earth, in particular for measurements of isotopes of water in the lower atmosphere, either in solar occultation profiling (tangent altitude <10 km), or observing solar glint for integral quantities of the components. Small size of hardware makes them ideal for micro-satellites, which are now agile enough to provide necessary pointing for solar occultation or glint observations. Also, the atmosphere of Mars has never been observed at local scales with such a high spectral resolution. A laboratory prototype consisting of 275-mm echelle spectrometer with Hamamatsu InGaAs 512-pixel linear array and the AOTF has demonstrated λ/Δλ≍30000 in the spectral range of 1-1.7 μm. The next set up, covering the spectral ranges of 1-1.7 μm and 2.3-4.3 μm, and the Venus Express SOIR are briefly discussed.

  2. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    Science.gov (United States)

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  4. High-Quality Ultra-Compact Grid Layout of Grouped Networks.

    Science.gov (United States)

    Yoghourdjian, Vahan; Dwyer, Tim; Gange, Graeme; Kieffer, Steve; Klein, Karsten; Marriott, Kim

    2016-01-01

    Prior research into network layout has focused on fast heuristic techniques for layout of large networks, or complex multi-stage pipelines for higher quality layout of small graphs. Improvements to these pipeline techniques, especially for orthogonal-style layout, are difficult and practical results have been slight in recent years. Yet, as discussed in this paper, there remain significant issues in the quality of the layouts produced by these techniques, even for quite small networks. This is especially true when layout with additional grouping constraints is required. The first contribution of this paper is to investigate an ultra-compact, grid-like network layout aesthetic that is motivated by the grid arrangements that are used almost universally by designers in typographical layout. Since the time when these heuristic and pipeline-based graph-layout methods were conceived, generic technologies (MIP, CP and SAT) for solving combinatorial and mixed-integer optimization problems have improved massively. The second contribution of this paper is to reassess whether these techniques can be used for high-quality layout of small graphs. While they are fast enough for graphs of up to 50 nodes we found these methods do not scale up. Our third contribution is a large-neighborhood search meta-heuristic approach that is scalable to larger networks.

  5. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  6. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadhassani, Mohammad, E-mail: mmh356@yahoo.com [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Jumaat, Mohd Zamin; Jameel, Mohammed [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Badiee, Hamid [Department of Civil Engineering, University of Kerman (Iran, Islamic Republic of); Arumugam, Arul M.S. [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ductility decreased with increase in tensile reinforcement ratio. Black-Right-Pointing-Pointer The width of the load point and the support point influences premature failure. Black-Right-Pointing-Pointer Load-deflection relationship is linear till 85% of the ultimate load. Black-Right-Pointing-Pointer The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load-deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  7. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  8. Formation of S0s via disc accretion around high-redshift compact ellipticals

    Science.gov (United States)

    Diaz, Jonathan; Bekki, Kenji; Forbes, Duncan A.; Couch, Warrick J.; Drinkwater, Michael J.; Deeley, Simon

    2018-06-01

    We present hydrodynamical N-body models which demonstrate that elliptical galaxies can transform into S0s by acquiring a disc. In particular, we show that the merger with a massive gas-rich satellite can lead to the formation of a baryonic disc around an elliptical. We model the elliptical as a massive, compact galaxy which could be observed as a `red nugget' in the high-z universe. This scenario contrasts with existing S0 formation scenarios in the literature in two important ways. First, the progenitor is an elliptical galaxy whereas scenarios in the literature typically assume a spiral progenitor. Secondly, the physical conditions underlying our proposed scenario can exist in low-density environments such as the field, in contrast to scenarios in the literature which typically address dense environments like clusters and groups. As a consequence, S0s in the field may be the most likely candidates to have evolved from elliptical progenitors. Our scenario also naturally explains recent observations which indicate that field S0s may have older bulges than discs, contrary to cluster S0s which seem to have older discs than bulges.

  9. A high resolution animal PET scanner using compact PS-PMT detectors

    International Nuclear Information System (INIS)

    Watanabe, M.; Okada, H.; Shimizu, K.; Omura, T.

    1996-01-01

    A new high resolution PET scanner dedicated to animal studies has been designed, built and tested. The system utilizes 240 block detectors, each of which consists of a new compact position-sensitive photomultiplier tube (PS-PMT) and an 8 x 4 BGO array. A total number of 7,680 crystals (480 per ring) are positioned to form a 508 mm diameter of 16 detector rings with 7.2 mm pitch and 114 mm axial field of view (FOV). The system is designed to perform activation studies using a monkey in a sitting position. The data can be acquired in either 2D or 3D mode, where the slice collimators are retracted in 3D mode. The transaxial resolution is 2.6 mm FWHM at the center of the FOV, and the average axial resolution on the axis of the ring is 3.3 mm FWHM in the direct slice and 3.2 mm FWHM in the cross slice. The scatter fraction, sensitivity and count rate performance were evaluated for a 10 cm diameter cylindrical phantom. The total system sensitivity is 2.3 kcps/kBq/ml in 2D mode and 22.8 kcps/kBq/ml in 3D mode. The noise equivalent count rate with 3D mode is equivalent to that with 2D mode at five times higher radioactivity level. The applicable imaging capabilities of the scanner was demonstrated by animal studies with a monkey

  10. Compact high-sensitivity potentiometer for detection of low ion concentrations in liquids

    Science.gov (United States)

    Balevicius, Z.; Lescinskas, R.; Celiesiute, R.; Stirke, A.; Balevicius, S.; Kersulis, S.; Bleizgys, V.; Maciuleviciene, R.; Ramanavicius, A.; Zurauskiene, N.

    2018-04-01

    The compact potentiometer, based on an electronic circuit protected from electrostatic and electromagnetic interference, was developed for the measurement of low ion concentrations in liquids. The electronic circuit of the potentiometer, consisting of analogous and digital parts, enables the measurement of fA currents. This makes it possible to perform reliable measurements of ion concentrations in liquids that are as small as 10-8-10-7M. The instrument was tested using electrodes that were selective for tetraphenylphosphonium (TPP+) ions. It was demonstrated that the characteristic response time of the potentiometer electronic circuit to changes in the concentration of these ions in a liquid was in the order of 10 s. An investigation of TPP+ absorption by baker yeast has shown that this device can be successfully used for long term (several hours) measurements with zero signal drift, which was about 1 μV/s. Finally, due to the small dimensions of the electronic circuit (7.5 × 2 × 1.5 cm), this potentiometer can be easily installed at a large apparatus in the laboratory condition (≈25 °C), such as high pulsed electrical generators of magnetic fields that are used in electroporation studies of biological cells.

  11. Development of a compact generator for gigawatt, nanosecond high-voltage pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lin, E-mail: zhoulin-2003@163.com; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, P.O. Box 919-226, Mianyang 621999 (China)

    2016-03-15

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  12. Performances of a Compact, High-Power WB Source with Circular Polarization

    Science.gov (United States)

    Delmote, P.; Pinguet, S.; Bieth, F.

    This paper presents the design and the performances of an embedded high-power microwave (HPM) wideband source, developed and built at the French-German Research Institute of Saint-Louis. The system was intended for dual use, homeland security, and military applications. It is powered by a 400 kV compact Marx generator with specificities in coaxial design and low energy. The slow monopolar signal from the Marx is sharpened using a pulse-forming stage, made of a switching module pressurized with nitrogen, followed by a monopulse-to-monocycle converter. The duration and rise times of this signal could be adjusted by varying the pressure and space between electrodes. Repetitive operations were performed up to 100 Hz during 10 s without a gas flow. Two kinds of antennas can be connected to the source. The first one is a TEM horn, with an optional dielectric lens, that radiates a vertically polarized UWB short pulse. The second one is a nine-turn helix, working in Kraus monopolar axial mode and radiating a circularly polarized wideband signal along the main axis. A dedicated conical reflector increases its directivity and bandwidth. The whole source is designed to be embedded inside an aluminum trailer, powered by batteries and remote controlled through an optical fiber.

  13. A compact, high efficiency contra-rotating generator suitable for wind turbines in the urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Booker, J.D. [Department of Mechanical Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Mellor, P.H.; Wrobel, R.; Drury, D. [Department of Electrical and Electronic Engineering, University of Bristol, Bristol (United Kingdom)

    2010-09-15

    This paper is concerned with the design, development and performance testing of a permanent magnet (PM) generator for wind turbine applications in urban areas. The radially interacting armature windings and magnet array are carried on direct drive, contra-rotating rotors, resulting in a high torque density and efficiency. This topology also provides improved physical and mechanical characteristics such as compactness, low starting torque, elimination of gearboxes, low maintenance, low noise and vibration, and the potential for modular construction. The design brief required a 50 kW continuous rated prototype generator, with a relative speed at the air-gap of 500 rpm. A test rig has been instrumented to give measurements of the mechanical input (torque and speed) and electrical output (voltage, current and power) of the generator, as well as temperature readings from inside the generator using a wireless telemetry device. Peak power output was found to be 48 kW at a contra-rotating speed of 500 rpm, close to the design target, with an efficiency of 94%. It is anticipated that the generator will find application in a wide range of wind turbine designs suited to the urban environment, e.g. types sited on the top of buildings, as there is growing interest in providing quiet, low cost, clean electricity at point of use. (author)

  14. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity

    Science.gov (United States)

    Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas

    2018-03-01

    A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.

  15. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    International Nuclear Information System (INIS)

    Mohammadhassani, Mohammad; Jumaat, Mohd Zamin; Jameel, Mohammed; Badiee, Hamid; Arumugam, Arul M.S.

    2012-01-01

    Highlights: ► Ductility decreased with increase in tensile reinforcement ratio. ► The width of the load point and the support point influences premature failure. ► Load–deflection relationship is linear till 85% of the ultimate load. ► The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load–deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  16. Microwave Imaging Sensor Using Compact Metamaterial UWB Antenna with a High Correlation Factor

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-07-01

    Full Text Available The design of a compact metamaterial ultra-wideband (UWB antenna with a goal towards application in microwave imaging systems for detecting unwanted cells in human tissue, such as in cases of breast cancer, heart failure and brain stroke detection is proposed. This proposed UWB antenna is made of four metamaterial unit cells, where each cell is an integration of a modified split ring resonator (SRR, capacitive loaded strip (CLS and wire, to attain a design layout that simultaneously exhibits both a negative magnetic permeability and a negative electrical permittivity. This design results in an astonishing negative refractive index that enables amplification of the radiated power of this reported antenna, and therefore, high antenna performance. A low-cost FR4 substrate material is used to design and print this reported antenna, and has the following characteristics: thickness of 1.6 mm, relative permeability of one, relative permittivity of 4.60 and loss tangent of 0.02. The overall antenna size is 19.36 mm × 27.72 mm × 1.6 mm where the electrical dimension is 0.20 λ × 0.28 λ × 0.016 λ at the 3.05 GHz lower frequency band. Voltage Standing Wave Ratio (VSWR measurements have illustrated that this antenna exhibits an impedance bandwidth from 3.05 GHz to more than 15 GHz for VSWR < 2 with an average gain of 4.38 dBi throughout the operating frequency band. The simulations (both HFSS and computer simulation technology (CST and the measurements are in high agreement. A high correlation factor and the capability of detecting tumour simulants confirm that this reported UWB antenna can be used as an imaging sensor.

  17. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

  18. Compact high efficiency, light weight 200-800 MHz high power RF source

    International Nuclear Information System (INIS)

    Shrader, M.B.; Preist, D.H.

    1985-01-01

    There has long been a need for a new more efficient less bulky high power RF power source to drive accelerators in the 200 to 800 MHz region. Results on a recent 5-year EIMAC sponsored R and D program which have lead to the introduction of the Klystrode for UHF television and troposcatter applications indicate that at power levels of 1MW or more efficiencies in excess of 75% can be obtained at 450 MHz. Efficiencies of this order coupled with potential size and weight parameters which are a fraction of those of existing high power UHF generators open up new applications which heretofore would have been impractical if not impossible. Measurements at 470 MHz on existing Klystrodes are given. Projected operating conditions for a 1MW 450 MHz Klystrode having an overall length of 60 inches and a total tube, circuit, and magnet weight of 250 pounds is presented

  19. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  20. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  1. Small Valdivia compact spaces

    CERN Document Server

    Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk

    2005-01-01

    We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.

  2. Study on the properties of the fuel compact for High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Lee, Chung-yong; Lee, Sung-yong; Choi, Min-young; Lee, Seung-jae; Jo, Young-ho; Lee, Young-woo; Cho, Moon-sung

    2015-01-01

    High Temperature Gas-cooled Reactors (HTGR), one of the Gen-IV reactors, have been using the fuel element which is manufactured by the graphite matrix, surrounding Tristructural-isotropic (TRISO)-coated Uranium particles. Factors with these characteristics effecting on the matrix of fuel compact are chosen and their impacts on the properties are studied. The fuel elements are considered with two types of concepts for HTGR, which are the block type reactor and the pebble bed reactor. In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength with the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and the two kinds of candidate binder (Phenol and Polyvinyl butyral) were chosen and mixed with each other, formed and heated to measure mechanical properties. The objective of this research is to optimize the materials and composition of the mixture and the forming process by evaluating the mechanical properties before/after carbonization and heat treatment. From the mechanical test results, the mechanical properties of graphite pellets was related to the various conditions such as the contents and kinds of binder, the kinds of graphite and the heat treatments. In the result of the compressive strength and Vicker's hardness, the 10 wt% phenol binder added R+S graphite pellet was relatively higher mechanical properties than other pellets. The contents of Phenol binder, the kinds of graphite powder and the temperature of carbonization and heat treatment are considered important factors for the properties. To optimize the mechanical properties of fuel elements, the role of binders and the properties of graphites will be investigated as

  3. Post-acceleration of laser driven protons with a compact high field linac

    Science.gov (United States)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  4. High-throughput spectrometer designs in a compact form-factor: principles and applications

    Science.gov (United States)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  5. Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2016-09-01

    Full Text Available In this paper, small printed urn-shape triple notch ultra-wideband (UWB monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz, WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz, and X-band downlink satellite system (7.25–7.75 GHz and other multiple wireless services as close range radar (8–12 GHz in X-band & satellite communication (12–18 GHz in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz. In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

  6. High β experiment and confinement regimes in a compact helical system

    International Nuclear Information System (INIS)

    Matsuoka, K.; Okamura, S.; Nishimura, K.; Tsumori, K.; Akiyama, R.; Yamada, H.; Sakakibara, S.; Lazaros, A.; Xu, J.; Ida, K.; Tanaka, K.; Morisaki, T.; Morita, S.; Arimoto, H.; Fujiwara, M.; Idei, H.; Iguchi, H.; Kaneko, O.; Kawamoto, T.; Kubo, S.; Kuroda, T.; Motojima, O.; Ozaki, T.; Pustovitov, V.D.; Sagara, A.; Takahashi, C.; Toi, K.; Watari, T.; Yamada, I.

    1995-01-01

    A volume-averaged equilibrium β value left angle β eq right angle of 2.14% is achieved in a compact helical system using two neutral beam lines with balanced injection and intense wall conditioning with Ti gettering. This value is the highest β value realized so far in helical systems. Reheat mode, where the stored energy increases after turn-off of a strong gas puff, is employed in the experiment. Discharge conditions are as follows: B t =0.61T; beam power through the port, 1.1MW (coinjection) and 0.8MW (counterinjection); line-averaged electron density n e =6.5x10 13 cm -3 . Amplitudes of magnetic fluctuations integrated over the frequency range from 3kHz to 100kHz become saturated at left angle β eq right angle higher than 1%. Dominant coherent modes are m/n=2/1 and 1/1 when left angle β eq right angle is lower and higher respectively than 1%. Dependence of the energy confinement time τ E on n e (up to 8x10 13 cm -3 ) and B t (from 0.6 to 1.8T) is also studied in this high β experiment. When the density increases τ E degrades compared with the LHD scaling; the density dependence exhibits Bohm-like behaviour. On the contrary, τ E scales as B ∼0.75 t , which is rather close to the LHD scaling (gyro-Bohm-like behaviour). ((orig.))

  7. High-Temperature, Wirebondless, Ultra-Compact Wide Bandgap Power Semiconductor Modules for Space Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon carbide (SiC) and other wide band-gap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and...

  8. A compact broadband high efficient X-band 9-watt PHEMT MMIC high-power amplifier for phased array radar applications

    NARCIS (Netherlands)

    Hek, A.P. de; Hunneman, P.A.H.; Demmler, M.; Hulsmann, A.

    1999-01-01

    ln this paper the development and measurement results of a compact broadband 9-Watt high efficient X-band high-power amplifier are discussed. The described amplifier has the following state-of-the art performance: an average ouput power of 9 Watt, a gain of 20 dB and an average Power Added

  9. Compact pulse topology for adjustable high-voltage pulse generation using an SOS diode

    NARCIS (Netherlands)

    Driessen, A.B.J.M.; Heesch, van E.J.M.; Huiskamp, T.; Beckers, F.J.C.M.; Pemen, A.J.M.

    2014-01-01

    In this paper, a compact circuit topology is presented for pulsed power generation with a semiconductor opening switch (SOS). Such circuits require the generation of a fast forward current through the diode, followed by a reverse current that activates the recovery process. In general, magnetic

  10. A preliminary feasibility study of passive in-core thermionic reactors for highly compact space nuclear power systems

    International Nuclear Information System (INIS)

    Parlos, A.G.; Khan, E.U.; Frymire, R.; Negron, S.; Thomas, J.K.; Peddicord, K.L.

    1991-01-01

    Results of a preliminary feasibility study on a new concept for a highly compact space reactor power systems are presented. Notwithstanding the preliminary nature of the present study, the results which include a new space reactor configuration and its associated technologies indicate promising avenues for the devleopment of highly compact space reactors. The calculations reported in this study include a neutronic design trade-off study using a two-dimensioinal neutron transport model, as well as a simplified one-dimensional thermal analysis of the reactor core. In arriving at the most desirable configuration, various options have been considered and analyzed, and their advantages/disadvantages have been compared. However, because of space limitation, only the most favorable reactor configuration is presented in this summary

  11. Development of a Compact High Altitude Imager and Sounding Radiometer (CHAISR)

    Science.gov (United States)

    Choi, R. K. Y.; Min, S.; Cho, Y. J.; Kim, K. H.; Ha, J. C.; Joo, S. W.

    2017-12-01

    Joint Civilian-Military Committee, under Advisory Council on Science and Technology, Korea, has approved a technology demonstration project for developing a lightweight HALE UAV (High-Altitude, Long Endurance). It aims to operate at lower stratosphere, i.e. altitude of 16 20 km, offering unique observational platform to atmospheric research community as pseudo-satellite. NIMS (National Institute of Meteorological Sciences, Korea) is responsible for a payload for atmospheric science, a Compact High Altitude Imager and Sounding Radiometer (CHAISR) to demonstrate scientific observations at lower stratosphere in the interest of improving numerical weather prediction model. CHAISR consists of three microwave radiometers (MWR) with 16 channel, and medium resolution cameras operating in a visible and infrared spectrum. One of the technological challenges for CHAISR is to accommodate those instruments within 50 W of power consumption. CHAISR will experience temperature up to -75°C, while pressure as low as 50 hPa at operational altitude. It requires passive thermal control of the payload to keep electronic subsystems warm enough for instrument operation with minimal power available. Safety features, such as payload power management and thermal control, are considered with minimal user input. Three radiometers measure atmospheric brightness temperature at frequency at around 20, 40, and 50 GHz. Retrieval process yields temperature and humidity profiles with cross track scan along the flight line. Estimated total weight of all radiometer hardware, from the antennas to data acquisition system, is less than 0.8 kg and a maximum power consumption is 15.2 W. With not enough power for blackbody calibration target, radiometers use zenith sky view at lower stratosphere as an excellent calibration target for a conventional tipping-curve calibration. Spatial distributions of clouds from visible and surface temperature from thermal cameras are used as additional information for

  12. High school physics teacher forms of thought about simple electric circuits

    International Nuclear Information System (INIS)

    Kucukozer, H.

    2005-01-01

    According to some researches on students and on science teachers, they have same conceptual difficulties about simple electric circuits and these affect their further learning or/and teaching. [2], [5], [8], [9], [11], [13]. The main aim of this study was to investigate in-service high school physics teachers form of thought about simple electric circuits. In this purpose a test that was developed by Kucukozer [7], contains eight questions related to simple electric circuits was applied to in-service physics teachers (25 subjects) in various Anatolian Teacher High School in Turkey. After analyzing and evaluating of their data, it was found that, the physics teachers have conceptual difficulties about simple electric circuits, especially the concepts about source of stationary current and current usage

  13. ULTRA-COMPACT HIGH VELOCITY CLOUDS AS MINIHALOS AND DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Faerman, Yakov; Sternberg, Amiel [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978 (Israel); McKee, Christopher F., E-mail: yakovfae@post.tau.ac.il [Department of Physics and Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States)

    2013-11-10

    We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 10{sup 4} K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ∼10{sup 7} M{sub ☉} within the central 300 pc (independent of total halo mass), consistent with the 'Strigari mass scale' observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d ∼> 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s{sup –1}), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M{sub 300} = 8 (± 0.2) × 10{sup 6} M{sub ☉} best fits the observed H I profile. We derive an upper limit of P{sub HIM} ∼< 150 cm{sup –3} K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.

  14. arXiv Gravitational Wave Signatures of Highly Compact Boson Star Binaries

    CERN Document Server

    Palenzuela, Carlos; Bezares, Miguel; Cardoso, Vitor; Lehner, Luis; Liebling, Steven

    2017-11-30

    Solitonic boson stars are stable objects made of a complex scalar field with a compactness that can reach values comparable to that of neutron stars. A recent study of the collision of identical boson stars produced only nonrotating boson stars or black holes, suggesting that rotating boson stars may not form from binary mergers. Here we extend this study to include an analysis of the gravitational waves radiated during the coalescence of such a binary, which is crucial to distinguish these events from other binaries with LIGO and Virgo observations. Our studies reveal that the remnant’s gravitational wave signature is mainly governed by its fundamental frequency as it settles down to a nonrotating boson star, emitting significant gravitational radiation during this post-merger state. We calculate how the waveforms and their post-merger frequencies depend on the compactness of the initial boson stars and estimate analytically the amount of energy radiated after the merger.

  15. Flow Field Dynamics in a High-g Ultra-Compact Combustor

    Science.gov (United States)

    2016-12-01

    Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...exceeded 10%, more than double the accepted state -of-the- art value of 5%. By way of a 2D CFD optimization, the ID of the centerbody was modified to create... States . 14. ABSTRACT The Ultra Compact Combustor (UCC) presents a novel solution to the advancement of aircraft gas turbine engine performance. A

  16. High-pressure gas-breakthrough apparatus and a procedure for determining the gas-breakthrough pressure of compacted clay

    International Nuclear Information System (INIS)

    Hume, H.B.

    1997-08-01

    Gas may be produced in a nuclear fuel waste disposal vault. Given that the vault will be sealed with clay-based materials, the fate of the gas is uncertain. Therefore, an instrument was previously built to measure the pressure required to pass gas through compacted clay materials (a gas-breakthrough apparatus). However, the 10 MPa pressure limit of the apparatus was insufficient to test compacted buffer material at the density proposed in the Canadian concept for nuclear fuel waste disposal. Therefore, a high-pressure (50 Wa) gas-breakthrough apparatus was designed, constructed and installed. This report describes the components of the apparatus and the materials and procedures that are used for the gas-breakthrough tests. (author)

  17. Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit.

    Science.gov (United States)

    Ma, Y G; Lan, L; Zhong, S M; Ong, C K

    2011-10-24

    In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America

  18. Application of a Compact High-Definition Exoscope for Illumination and Magnification in High-Precision Surgical Procedures.

    Science.gov (United States)

    Krishnan, Kartik G; Schöller, Karsten; Uhl, Eberhard

    2017-01-01

    The basic necessities for surgical procedures are illumination, exposure, and magnification. These have undergone transformation in par with technology. One of the recent developments is the compact magnifying exoscope system. In this report, we describe the application of this system for surgical operations and discuss its advantages and pitfalls. We used the ViTOM exoscope mounted on the mechanical holding arm. The following surgical procedures were conducted: lumbar and cervical spinal canal decompression (n = 5); laminotomy and removal of lumbar migrated disk herniations (n = 4); anterior cervical diskectomy and fusion (n = 1); removal of intraneural schwannomas (n = 2); removal of an acute cerebellar hemorrhage (n = 1); removal of a parafalcine atypical cerebral hematoma caused by a dural arteriovenous fistula (n = 1); and microsutures and anastomoses of a nerve (n = 1), an artery (n = 1), and veins (n = 2). The exoscope offered excellent, magnified, and brilliantly illuminated high-definition images of the surgical field. All surgical operations were successfully completed. The main disadvantage was the adjustment and refocusing using the mechanical holding arm. The time required for the surgical operation under the exoscope was slightly longer than the times required for a similar procedure performed using an operating microscope. The magnifying exoscope is an effective and nonbulky tool for surgical procedures. In visualization around the corners, the exoscope has better potential than a microscope. With technical and technologic modifications, the exoscope might become the next generation in illumination, visualization, exposure, and magnification for high-precision surgical procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Choi, Heuijoo; Lee, Jong Youl

    2016-01-01

    Highlights: • The thermal conductivities were measured under various disposal conditions. • They were significantly influenced by the water content and dry density. • They were not sensitive to the temperature and the anisotropic structure. • A new model of thermal conductivity was proposed for the thermal analysis. - Abstract: Bentonite buffer is one of the major barrier components of a high-level radioactive waste (HLW) repository, and the thermal conductivity of the bentonite buffer is a key parameter for the thermal performance assessment of the HLW repository. This study measured the thermal conductivity of compacted bentonite as a buffer material and investigated its dependence upon various disposal conditions: the dry density, water content, anisotropic structure of the compacted bentonite, and temperature. The measurement results showed that the thermal conductivity was significantly influenced by the water content and dry density of the compacted bentonite, while there was not a significant variation with respect to the temperature. The anisotropy of the thermal conductivity had a negligible variation for an increasing dry density. The present study also proposed a geometric mean model of thermal conductivity which best fits the experimental data.

  20. Ureteropelvic junction obstruction and ureteral strictures treated by simple high-pressure balloon dilation

    DEFF Research Database (Denmark)

    Osther, P J; Geertsen, U; Nielsen, H V

    1998-01-01

    The long-term results of simple high-pressure balloon dilation in the treatment of ureteropelvic junction obstruction (UPJO) and ureteral strictures were evaluated. A total of 77 consecutive patients were treated: 40 had UPJO and 37 ureteral strictures. The etiology of the obstruction included...... years, success was achieved in only 25% of cases. There were no major complications. It was concluded that simple high-pressure balloon dilation is a safe and reasonably effective technique for the management of most ureteral strictures and congenital UPJO with symptom debut in adult life. Balloon...

  1. Simple PVT quantitative method of Kr under high pure N2 condition

    International Nuclear Information System (INIS)

    Li Xuesong; Zhang Zibin; Wei Guanyi; Chen Liyun; Zhai Lihua

    2005-01-01

    A simple PVT quantitative method of Kr in the high pure N 2 was studied. Pressure, volume and temperature of the sample gas were measured by three individual methods to obtain the sum sample with food uncertainty. The ratio of Kr/N 2 could measured by GAM 400 quadrupole mass spectrometer. So the quantity of Kr could be calculated with the two measured data above. This method can be suited for quantitative analysis of other simple composed noble gas sample with high pure carrying gas. (authors)

  2. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    International Nuclear Information System (INIS)

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Yao, Jianquan; Zheng, Yi; Wang, Tongtong

    2015-01-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO 4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz. (paper)

  3. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Science.gov (United States)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  4. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Tatsuya Saito

    2018-04-01

    Full Text Available We developed Fe/FeSiAl soft magnetic powder cores (SMCs for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (∼20 kHz. We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  5. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  6. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  7. Fresh and hardened properties of binary blend high strength self compacting concrete

    Directory of Open Access Journals (Sweden)

    S.S. Vivek

    2017-06-01

    Full Text Available Self compacting concrete (SCC made a remarkable impact on the concrete construction industry because of its innovative nature. Assessment of optimal ratio between chemical and mineral admixtures plays a vital role in developing SCC. In the present work three different mineral admixtures were used as partial substitute in different proportions to cement to produce SCC with a characteristic compressive strength of 60 MPa. All the three types of SCC were investigated for its fresh and hardened properties. From the results, 50% GGBFS, 10% SF and 20% MK were found to the optimum values as partial substitute to cement.

  8. Compact, low-cost, and high-resolution interrogation unit for optical sensors

    International Nuclear Information System (INIS)

    Kiesel, Peter; Schmidt, Oliver; Mohta, Setu; Johnson, Noble; Malzer, Stefan

    2006-01-01

    Compact wavelength detectors that resolve wavelength changes in the subpicometer range over a broad spectral range are presented. A photodiode array or position sensor device is coated with a linear variable filter that converts the wavelength of the incident light into a spatial intensity distribution. The centroid of the spatial distribution is determined by a differential readout of the two elements of the photodiode array or the position sensor device. The device can interrogate any optical sensor that produces a wavelength shift in response to a stimulus. The potential of this device was tested by interrogating fiber-Bragg-grating sensors

  9. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    Science.gov (United States)

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  10. Candidate high-z protoclusters among the Planck compact sources, as revealed by Herschel-SPIRE

    Science.gov (United States)

    Greenslade, J.; Clements, D. L.; Cheng, T.; De Zotti, G.; Scott, D.; Valiante, E.; Eales, S.; Bremer, M. N.; Dannerbauer, H.; Birkinshaw, M.; Farrah, D.; Harrison, D. L.; Michałowski, M. J.; Valtchanov, I.; Oteo, I.; Baes, M.; Cooray, A.; Negrello, M.; Wang, L.; van der Werf, P.; Dunne, L.; Dye, S.

    2018-05-01

    By determining the nature of all the Planck compact sources within 808.4 deg2 of large Herschel surveys, we have identified 27 candidate protoclusters of dusty star-forming galaxies (DSFGs) that are at least 3σ overdense in either 250, 350, or 500 μm sources. We find roughly half of all the Planck compact sources are resolved by Herschel into multiple discrete objects, with the other half remaining unresolved by Herschel. We find a significant difference between versions of the Planck catalogues, with earlier releases hosting a larger fraction of candidate protoclusters and Galactic cirrus than later releases, which we ascribe to a difference in the filters used in the creation of the three catalogues. We find a surface density of DSFG candidate protoclusters of (3.3 ± 0.7) × 10-2 sources deg-2, in good agreement with previous similar studies. We find that a Planck colour selection of S857/S545 1. Our candidate protoclusters are a factor of 5 times brighter at 353 GHz than expected from simulations, even in the most conservative estimates. Further observations are needed to confirm whether these candidate protoclusters are physical clusters, multiple protoclusters along the line of sight, or chance alignments of unassociated sources.

  11. Simple heuristic derivation of some charge-transfer probabilities at asymptotically high incident velocities

    International Nuclear Information System (INIS)

    Spruch, L.; Shakeshaft, R.

    1984-01-01

    For asymptotically high incident velocities we provide simple, heuristic, almost classical, derivations of the cross section for forward charge transfer, and of the ratio of the cross section for capture to the elastic-scattering cross section for the projectile scattered through an angle close to π/3

  12. Two simple ansaetze for obtaining exact solutions of high dispersive nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Palacios, Sergio L.

    2004-01-01

    We propose two simple ansaetze that allow us to obtain different analytical solutions of the high dispersive cubic and cubic-quintic nonlinear Schroedinger equations. Among these solutions we can find solitary wave and periodic wave solutions representing the propagation of different waveforms in nonlinear media

  13. High precision simple interpolation asynchronous FIFO based on ACEX1K30 for HIRFL-CSRe

    International Nuclear Information System (INIS)

    Li Guihua; Qiao Weimin; Jing Lan

    2008-01-01

    High precision simple interpolation asynchronous FIFO of HIRFL-CSRe was developed based on the ACEX1K30 FPGA in VHDL Hardware Description language. The FIFO runs in FPGA of DSP module of HIRFL-CSRe. The input data of FIFO is from DSP data bus and the output data is to DAC data bus. It's kernel adopts double buffer ping-pong mode and it can implement simple interpolation inside FPGA. The module can control out- put data time delay in 40 ns. The experimental results indicate that this module is practical and accurate to HIRFL-CSRe. (authors)

  14. A compact 133Xe gas dispenser

    International Nuclear Information System (INIS)

    Hawkins, T.; Harris, R.

    1977-01-01

    A dispenser for 133 Xe gas is described which is compact and simple to use, allowing the xenon to be dispensed from it shipping ampoule to suitable multi-dose injection vials in a controlled manner and with a high degree of operator safety. The apparatus has no joints and only a single rubber teat, minimizing the risks of adsorption and leakage. A scaled drawing of the dispenser is shown. (U.K.)

  15. Highly Compact Accelerator-Driven Subcritical Assembly for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Jasmina Vujic; William Kastenberg; Ehud Greenspan; Ka-Ngo Leung

    2006-01-01

    A novel, highly compact, fusion neutron source (CNS) based on a coaxial electrostatic accelerator is under development at the Lawrence Berkeley National Laboratory. This source is designed to generate up to ∼1012 D-D n/s. This source intensity is an order of magnitude too small for Boron Neutron Capture Therapy (BNCT) applications. The objective of this project is to assess the feasibility of using a small, safe and inexpensive subcritical fission assembly to multiply the fusion neutrons by a factor of (ge)30. The overall design objective is to get a treatment time for deep seated rain tumors that does not significantly increase beyond one hour when the effective multiplication factor of the SCM is k eff = 0.98. There are two major parts to this study: the optimization of the Sub-Critical Multiplier (SCM) and the optimization of the Beam Shaping Assembly (BSA), including the reflector for both subsystems. The SCM optimization objective is to maximize the current of neutrons that leak out from the SCM in the direction of the patient, without exceeding the maximum permissible k eff . Minimizing the required uranium inventory is another objective. SCM design variables considered include the uranium enrichment level in the range not exceeding 20% 235U (for proliferation concerns), SCM geometry and dimensions, fuel thickness and moderator thickness. The objective of the BSA optimization is to maximize the tumor dose rate using the optimal SCM while maintaining a tumor-to-normal tissue dose ratio of at least 20 to 12.5 (corresponding to the tumor control dose and to the healthy tissue dose limit). The BSA design variables include its shape, dimensions and composition. The reflector optimization is, in fact, an integral part of the SCM optimization and of the BSA optimization. The reflector design variables are composition and thickness. The study concludes that it is not quite feasible to achieve the project objective. Nevertheless, it appears feasible to develop a

  16. Interim report on the assessment of engineering issues for compact high-field ignition devices

    International Nuclear Information System (INIS)

    Flanagan, C.A.

    1986-04-01

    The engineering issues addressed at the workshop included the overall configuration, layout, and assembly; limiter and first-wall energy removal; magnet system structure design; fabricability; repairability; and costs. In performing the assessment, the primary features and characteristics of each concept under study were reviewed as representative of this class of ignition device. The emphasis was to understand the key engineering areas of concern for this class of device and deliberately not attempt to define an optimum design or to choose a best approach. The assessment concluded that compact ignition tokamaks, as represented by the three concepts under study, are feasible. A number of critical engineering issues were identified, and all appear to have tractable solutions. The engineering issues appear quite challenging, and to obtain increased confidence in the apparent design solutions requires completion of the next level of design detail, complemented by appropriate development programs and testing

  17. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  18. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste

    International Nuclear Information System (INIS)

    Liu, X.; Ye, G.; De Schutter, G.; Yuan, Y.; Taerwe, L.

    2008-01-01

    With the increasing application of self-compacting concrete (SCC) in construction and infrastructure, the fire spalling behavior of SCC has been attracting due attention. In high performance concrete (HPC), addition of polypropylene fibers (PP fibers) is widely used as an effective method to prevent explosive spalling. Hence, it would be useful to investigate whether the PP fibers are also efficient in SCC to avoid explosive spalling. However, no universal agreement exists concerning the fundamental mechanism of reducing the spalling risk by adding PP fiber. For SCC, the reduction of flowability should be considered when adding a significant amount of fibres. In this investigation, both the micro-level and macro-level properties of pastes with different fiber contents were studied in order to investigate the role of PP fiber at elevated temperature in self-compacting cement paste samples. The micro properties were studied by backscattering electron microscopy (BSE) and mercury intrusion porosimetry (MIP) tests. The modification of the pore structure at elevated temperature was investigated as well as the morphology of the PP fibers. Some macro properties were measured, such as the gas permeability of self-compacting cement paste after heating at different temperatures. The factors influencing gas permeability were analyzed. It is shown that with the melting of PP fiber, no significant increase in total pore volume is obtained. However, the connectivity of isolated pores increases, leading to an increase of gas permeability. With the increase of temperature, the addition of PP fibers reduces the damage of cement pastes, as seen from the total pore volume and the threshold pore diameter changes. From this investigation, it is concluded that the connectivity of pores as well as the creation of micro cracks are the major factors which determine the gas permeability after exposure to high temperatures. Furthermore, the connectivity of the pores acts as a dominant factor

  19. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  20. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  1. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single-exploded-wire discharges on Gamble-II suggest a common nonthermal-production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission. (author). 3 figs., 10 refs

  2. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single- exploded-wire discharges on Gamble-II suggest a common nonthermal- production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly- collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission

  3. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    Science.gov (United States)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  4. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Directory of Open Access Journals (Sweden)

    S. Busold

    2013-10-01

    Full Text Available Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 10^{9} particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  5. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  6. Advantage of using high strength self compacting concrete for precast product

    Science.gov (United States)

    Murdono, Ferryandy; Agustin, Winda; Soeprapto, Gambiro; Sunarso, Mukhlis

    2017-11-01

    According to the development in the world of construction, the need for precast concrete also increases. Now the day there are many products with narrow range reinforcement and difficult dimensions. The ordinary concrete is difficult to pour in a mold with narrow range reinforcement inside without vibrator because the concrete can't fill in the gaps between the bars. SCC (Self Compacting Concrete) is a concrete that precast concrete industry needs to. The using of SCC also supports the green construction through the cement reducing and reducing the use of vibrator that requires not less energy. This research is using EFNARC standard as a condition of admission SCC (filling ability, passing ability, segregation resistance), and performed well against the application of the product by the production of Railway Sleeper without using a vibrator. The results of this study, the LB-2 and LB-3 qualified as SCC and compressive strength is expected that greater than 70 MPa, as well as products quality, is equal to standard and can be mass produced with the efficiency of the price of concrete up to 11%.

  7. Development of a compact scintillator-based high-resolution Compton camera for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, A., E-mail: daphne3h-aya@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Koide, A.; Sueoka, K.; Iwamoto, Y.; Taya, T. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Ohsuka, S. [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka (Japan)

    2017-02-11

    The Compton camera, which shows gamma-ray distribution utilizing the kinematics of Compton scattering, is a promising detector capable of imaging across a wide range of energy. In this study, we aim to construct a small-animal molecular imaging system in a wide energy range by using the Compton camera. We developed a compact medical Compton camera based on a Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG) scintillator and multi-pixel photon counter (MPPC). A basic performance confirmed that for 662 keV, the typical energy resolution was 7.4 % (FWHM) and the angular resolution was 4.5° (FWHM). We then used the medical Compton camera to conduct imaging experiments based on a 3-D imaging reconstruction algorithm using the multi-angle data acquisition method. The result confirmed that for a {sup 137}Cs point source at a distance of 4 cm, the image had a spatial resolution of 3.1 mm (FWHM). Furthermore, we succeeded in producing 3-D multi-color image of different simultaneous energy sources ({sup 22}Na [511 keV], {sup 137}Cs [662 keV], and {sup 54}Mn [834 keV]).

  8. Compact Diplexer with High Isolation based on Novel Symmetric Double Spiral Resonators

    Science.gov (United States)

    Le, Ru; Wensheng, Chi; Yaqing, Liu; Haidong, Yang

    2016-03-01

    In this paper, the electromagnetic characteristics of the reported miniaturized bandpass filter (BPF) in reference are investigated deeply, and then a planar compact diplexer centred at 1.86/2.16 GHz is designed by using a T-junction to connect the reported BPFs. For verification, the designed diplexer are fabricated and measured. The measured and simulated results of the diplexer are in good agreement with each other, showing that the measured 3-dB bandwidth for the two passbands are 6.45 % (1.79-1.91 GHz) at 1.86 GHz and 6.94 % (2.08-2.23 GHz) at 2.16 GHz with return losses better than 20 dB. Moreover, the insertion losses of the two passbands are less than 0.7 and 0.9 dB, and the isolations are higher than 48 and 36 dB, respectively. Besides, compared with the diplexers reported in recent references, this one has more superior performances.

  9. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    International Nuclear Information System (INIS)

    Huang Li; Wu Xin; Huang Guo-Qing; Mei Li-Jie

    2017-01-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically. (paper)

  10. A Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for High-Molecular-Weight DNA Extraction.

    Science.gov (United States)

    Zhang, Ye; Zhang, Yi; Burke, Jeffrey M; Gleitsman, Kristin; Friedrich, Sarah M; Liu, Kelvin J; Wang, Tza-Huei

    2016-12-01

    An inexpensive, magnetic thermoplastic nanomaterial is developed utilizing a hierarchical layering of micro- and nanoscale silica lamellae to create a high-surface-area and low-shear substrate capable of capturing vast amounts of ultrahigh-molecular-weight DNA. Extraction is performed via a simple 45 min process and is capable of achieving binding capacities up to 1 000 000 times greater than silica microparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of repressing of briquettes at high hydrostatic pressures on fine structure of carbide fraction in compacts and sintered BK10 alloy

    International Nuclear Information System (INIS)

    Chernyj, Yu.F.; Mikhajlenko, G.P.; Labinskaya, N.G.; Vangengeim, S.D.; Fal'kovskij, V.A.; Lavrukhina, L.I.

    1977-01-01

    The effect was studied of the repressing at high hydrostatic pressures of preforms of hard alloy powder mixture with different degree of fineness on changes in fine structure of the carbide phase of compacts and the VK10 sintered alloy. X-ray diffraction method was used. Sufficient widening of diffraction lines of the WC phase in compacts and in a sintered alloy with the increase in hydrostatic pressure testifies to the fact of the production of more inperfect carbide substructure mainly due to fragmentation subgrains. The effect of processing pressure manifests itself to a greater extent in compacts of the coarse-ground mixture; in the sintered alloy the repressing pressure effect ''is being smoothed'' to some extent. The density of dislocation in the compacts and the sintered alloy were evaluated quantatively depending on the hydrostatic pressure values during processing of preforms

  12. Fabrication of High-performance Sm-Fe-N isotropic bulk magnets by a combination of High-pressure compaction and current sintering

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kenta, E-mail: k-takagi@aist.go.jp [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Nakayama, Hiroyuki; Ozaki, Kimihiro; Kobayashi, Keizo [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan)

    2012-04-15

    TbCu{sub 7}-type Sm-Fe-N coarse powders in the flake form were consolidated without a bonding medium using a low-thermal-load process of current sintering combined with high-pressure compression. When compacted at 1.2 GPa, the relative density of the powder was increased by 80% with close stacking of the flake particles. Although the subsequent current heating was only briefly performed at a low temperature of 400 Degree-Sign C to avoid decomposition, the compact was consolidated into a rigid bulk in which the particles were bonded at the atomic level. Finally, by using cyclic compaction, this process produced bulk magnets with a density of 92% that exhibited the highest maximum energy product (BH)max of 16.2 MGOe, which surpasses that of conventional isotropic Sm-Fe-N bond magnets. - Highlights: Black-Right-Pointing-Pointer We conduct a consolidation of Sm{sub 1}Fe{sub 7}N bulk magnets without thermal decomposition. Black-Right-Pointing-Pointer Rapid current sintering with high-pressure compaction is used as a low-thermal-load process. Black-Right-Pointing-Pointer In this process, sintering occurs at a temperature of 400 Degree-Sign C, which is below the decomposition point. Black-Right-Pointing-Pointer As a result, bulk magnets with a density of over 92% are obtained without decomposition. Black-Right-Pointing-Pointer These magnets exhibit the highest (BH)max (16.2 MGOe) among isotropic Sm-Fe-N magnets.

  13. The diffusion coefficient for 239Pu, 241Am, 99Tc and 137Cs in highly compacted buffer materials

    International Nuclear Information System (INIS)

    Zhou Kanghan; Li Guoding

    1998-01-01

    Based on one-dimension diffusion model, the diffusion coefficients of Pu, Am, Tc and Cs in highly compacted sodium-bentonite generally used as buffer materials in geologic disposal system for high-level radioactive waste have been determined at room temperature in the atmosphere of nitrogen. The results show that the diffusion coefficients of Am, Pu and Tc and about 10 -13 ∼10 -15 m 2 /s, and that of Cs about 10 -12 m 2 /s. The diffusion coefficients of these elements decrease with the increasing of the dry density of buffer materials. From the relationship of diffusion coefficient, retardation coefficient and dry density of bentonite, it has been concluded that Am and Pu transfer predominately by diffusion in solid phase, however, Cs and Tc by diffusion in pore water

  14. Conceptual design of compact heavy-ion inertial fusion driver with an r.f. LINAC with high acceleration rate

    International Nuclear Information System (INIS)

    Hattori, T.; Sasa, K.; Okamura, M.; Ito, T.; Tomizawa, H.; Katayose, T.; Hayashizaki, N.; Yoshida, T.; Isokawa, K.; Aoki, M.; Fujita, N.; Okada, M.

    1996-01-01

    The interdigital-H-type (IH) linear accelerator (LINAC) is well known for its high shunt impedance at low and medium particle velocities. Therefore, it can be used to operate efficiently with a high acceleration gradient. The IH LINAC cavity is able to generate 10 MV m -1 (average acceleration gradient) with focusing of the particles by a superconducting solenoid and quadrupole. The LINAC can accelerate particles with a charge to mass ratio (q/A) greater than 1/250 from 0.3 MeV a.m.u. -1 . In a compact heavy-ion inertial fusion driver design, the total effective length of the IH LINAC cavities is about 1250 m. (orig.)

  15. Design of compact dispersion interferometer with a high efficiency nonlinear crystal and a low power CO2 laser

    Science.gov (United States)

    Akiyama, T.; Yoshimura, S.; Tomita, K.; Shirai, N.; Murakami, T.; Urabe, K.

    2017-12-01

    When the electron density of a plasma generated in high pressure environment is measured by a conventional interferometer, the phase shifts due to changes of the neutral gas density cause significant measurement errors. A dispersion interferometer, which measures the phase shift that arises from dispersion of medium between the fundamental and the second harmonic wavelengths of laser light, can suppress the measured phase shift due to the variations of neutral gas density. In recent years, the CO2 laser dispersion interferometer has been applied to the atmospheric pressure plasmas and its feasibility has been demonstrated. By combining a low power laser and a high efficiency nonlinear crystal for the second harmonic component generation, a compact dispersion interferometer can be designed. The optical design and preliminary experiments are conducted.

  16. R and D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    International Nuclear Information System (INIS)

    Piot, P.; Brau, C.A.; Gabella, W.E.; Choi, B.K.; Jarvis, J.D.; Mendenhall, M.H.; Lewellen, J.W.; Mihalcea, D.

    2012-01-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B ∼ 10 12 photons.(mm-mrd) -2 .(0.1% BW) -1 .s -1 is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  17. A COMPACT HIGH VELOCITY CLOUD NEAR THE MAGELLANIC STREAM: METALLICITY AND SMALL-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Nimisha [Ecole Polytechnique, Route de Saclay, F-91128 Palaiseau (France); Fox, Andrew J.; Tumlinson, Jason; Thom, Christopher; Ely, Justin [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Westmeier, Tobias [ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)

    2015-02-10

    The Magellanic Stream (MS) is a well-resolved gaseous tail originating from the Magellanic Clouds. Studies of its physical properties and chemical composition are needed to understand its role in Galactic evolution. We investigate the properties of a compact HVC (CHVC 224.0-83.4-197) lying close on the sky to the MS to determine whether it is physically connected to the Stream and to examine its internal structure. Our study is based on analysis of HST/COS spectra of three QSOs (Ton S210, B0120-28, and B0117-2837) all of which pass through this single cloud at small angular separation (≲0.°72), allowing us to compare physical conditions on small spatial scales. No significant variation is detected in the ionization structure from one part of the cloud to the other. Using Cloudy photoionization models, toward Ton S210 we derive elemental abundances of [C/H] = –1.21 ± 0.11, [Si/H] = –1.16 ± 0.11, [Al/H] = –1.19 ± 0.17, and [O/H] = –1.12 ± 0.22, which agree within 0.09 dex. The CHVC abundances match the 0.1 solar abundances measured along the main body of the Stream. This suggests that the CHVC (and by extension the extended network of filaments to which it belongs) has an origin in the MS. It may represent a fragment that has been removed from the Stream as it interacts with the gaseous Galactic halo.

  18. Compaction of cereal grain

    OpenAIRE

    Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.

    2013-01-01

    We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.

  19. A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films

    International Nuclear Information System (INIS)

    Liu, Haitao; Zeng, Xiaofei; Kong, Xiangrong; Bian, Shuguang; Chen, Jianfeng

    2012-01-01

    Highlights: ► A simple two-step method without further surface modification step was employed. ► ITO nanoparticles were easily to be uniformly dispersed in polymer matrix. ► ITO/polymer nanocomposite film had high transparency and UV/IR blocking properties. - Abstract: Transparent functional indium tin oxide (ITO)/polymer nanocomposite films were fabricated via a simple approach with two steps. Firstly, the functional monodisperse ITO nanoparticles were synthesized via a facile nonaqueous solvothermal method using bifunctional chemical agent (N-methyl-pyrrolidone, NMP) as the reaction solvent and surface modifier. Secondly, the ITO/acrylics polyurethane (PUA) nanocomposite films were fabricated by a simple sol-solution mixing method without any further surface modification step as often employed traditionally. Flower-like ITO nanoclusters with about 45 nm in diameter were mono-dispersed in ethyl acetate and each nanocluster was assembled by nearly spherical nanoparticles with primary size of 7–9 nm in diameter. The ITO nanoclusters exhibited an excellent dispersibility in polymer matrix of PUA, remaining their original size without any further agglomeration. When the loading content of ITO nanoclusters reached to 5 wt%, the transparent functional nanocomposite film featured a high transparency more than 85% in the visible light region (at 550 nm), meanwhile cutting off near-infrared radiation about 50% at 1500 nm and blocking UV ray about 45% at 350 nm. It could be potential for transparent functional coating materials applications.

  20. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications.

    Science.gov (United States)

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-11

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  1. Simple laser-driven, metal photocathodes as cold, high-current electron sources

    International Nuclear Information System (INIS)

    Saunders, J.D.; Ringler, T.J.; Builta, L.A.; Kauppila, T.J.; Moir, D.C.; Downey, S.W.

    1987-01-01

    Recent developments in excimer laser design have made near ultraviolet light intensities of several MWcm 2 possible in unfocused beams. These advances and recent experiments indicate that high-current, simple-metal photoemissive electron guns are now feasible. Producing more than 50 Acm 2 of illuminated cathode surface, the guns could operate at vacuums of 10 -6 torr with no complicated system components inside the vacuum enclosure. The electron beam produced by such photoemission guns would have very low emittance and high brightness. This beam would also closely follow the temporal characteristics of the laser pulse, making fast risetime, ultrashort electron beam pulses possible

  2. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation, Comparison and Optimization of the Compact Recuperator for the High Temperature Gas-Cooled Reactor (HTGR) Helium Turbine System

    International Nuclear Information System (INIS)

    Hao Haoran; Yang Xiaoyong; Wang Jie; Ye Ping; Yu Xiaoli; Zhao Gang

    2014-01-01

    Helium turbine system is a promising method to covert the nuclear power generated by the High Temperature Gas Cooled Reactor (HTGR) into electricity with inherent safety, compact configuration and relative high efficiency. And the recuperator is one of the key components for the HTGR helium turbine system. It is used to recover the exhaust heat out of turbine and pass it to the helium from high pressure compressor, and hence increase the cycle’s efficiency dramatically. On the other hand, the pressure drop within the recuperator will reduce the cycle efficiency, especially on low pressure side of recuperator. It is necessary to optimize the design of recuperator to achieve better performance of HTGR helium turbine system. However, this optimization has to be performed with the restriction of the size of the pressure vessel which contains the power conversion unit. This paper firstly presents an analysis to investigate the effects of flow channel geometry, recuperator’s power and size on heat transfer and pressure drop. Then the relationship between the recuperator design and system performance is established with an analytical model, followed by the evaluations of the current recuperator designs of GT-MHR, GTHTR300 and PBMR, in which several effective technical measures to optimize the recuperator are compared. Finally it is found that the most important factors for optimizing recuperator design, i.e. the cross section dimensions and tortuosity of flow channel, which can also be extended to compact intermediate heat exchangers. It turns out that a proper optimization can increase the cycle’s efficiency by 1~2 percentage, which could also raise the economy and competitiveness of future commercial HTGR plants. (author)

  4. Note: Compact high voltage pulse transformer made using a capacitor bank assembled in the shape of primary.

    Science.gov (United States)

    Shukla, Rohit; Banerjee, Partha; Sharma, Surender K; Das, Rashmita; Deb, Pankaj; Prabaharan, T; Das, Basanta; Adhikary, Biswajit; Verma, Rishi; Shyam, Anurag

    2011-10-01

    The experimental results of an air-core pulse transformer are presented, which is very compact (capacitor bank that is fabricated in such a way that the capacitor bank with its switch takes the shape of single-turn rectangular shaped primary of the transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 μS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads.

  5. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV

    Directory of Open Access Journals (Sweden)

    S. Busold

    2014-03-01

    Full Text Available We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 10^{9} particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E_{0} at FWHM. A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf field is applied via a rf cavity for energy compression at a synchronous phase of -90  deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  6. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  7. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  8. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  9. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    Science.gov (United States)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2015-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  10. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    International Nuclear Information System (INIS)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P.

    2013-01-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s –1 , median angular diameters of 10', and median velocity widths of 23 km s –1 . We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of ∼1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of ∼10 5 -10 6 M ☉ , H I diameters of ∼2-3 kpc, and indicative dynamical masses within the H I extent of ∼10 7 -10 8 M ☉ , similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.

  11. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P., E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States)

    2013-05-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s{sup -1}, median angular diameters of 10', and median velocity widths of 23 km s{sup -1}. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of {approx}1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of {approx}10{sup 5}-10{sup 6} M{sub Sun }, H I diameters of {approx}2-3 kpc, and indicative dynamical masses within the H I extent of {approx}10{sup 7}-10{sup 8} M{sub Sun }, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.

  12. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre Autonagar, Vishakapatnam 530012 (India)

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  13. A simple identification method for spore-forming bacteria showing high resistance against γ-rays

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko; Sone, Koji; Kobayashi, Toshikazu

    1993-01-01

    A simple identification method was developed for spore-forming bacteria which are highly resistant against γ-rays. Among 23 species of Bacillus studied, the spores of Bacillus megaterium, B. cereus, B. thuringiensis, B. pumilus and B. aneurinolyticus showed high resistance against γ-rays as compared with other spores of Bacillus species. Combination of the seven kinds of biochemical tests, namely, the citrate utilization test, nitrate reduction test, starch hydrolysis test, Voges-Proskauer reaction test, gelatine hydrolysis test, mannitol utilization test and xylose utilization test showed a characteristic pattern for each species of Bacillus. The combination pattern of each the above tests with a few supplementary test, if necessary, was useful to identify Bacillus species showing high radiation resistance against γ-rays. The method is specific for B. megaterium, B. thuringiensis and B. pumilus, and highly selective for B. aneurinolyticus and B. cereus. (author)

  14. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  15. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-28

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  16. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  17. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  18. Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways

    Science.gov (United States)

    Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia

    2018-06-01

    The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.

  19. Determination of Urine Albumin by New Simple High-Performance Liquid Chromatography Method.

    Science.gov (United States)

    Klapkova, Eva; Fortova, Magdalena; Prusa, Richard; Moravcova, Libuse; Kotaska, Karel

    2016-11-01

    A simple high-performance liquid chromatography (HPLC) method was developed for the determination of albumin in patients' urine samples without coeluting proteins and was compared with the immunoturbidimetric determination of albumin. Urine albumin is important biomarker in diabetic patients, but part of it is immuno-nonreactive. Albumin was determined by high-performance liquid chromatography (HPLC), UV detection at 280 nm, Zorbax 300SB-C3 column. Immunoturbidimetric analysis was performed using commercial kit on automatic biochemistry analyzer COBAS INTEGRA ® 400, Roche Diagnostics GmbH, Manheim, Germany. The HLPC method was fully validated. No significant interference with other proteins (transferrin, α-1-acid glycoprotein, α-1-antichymotrypsin, antitrypsin, hemopexin) was found. The results from 301 urine samples were compared with immunochemical determination. We found a statistically significant difference between these methods (P = 0.0001, Mann-Whitney test). New simple HPLC method was developed for the determination of urine albumin without coeluting proteins. Our data indicate that the HPLC method is highly specific and more sensitive than immunoturbidimetry. © 2016 Wiley Periodicals, Inc.

  20. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  1. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  2. Rapid and simple preparation of rhodamine 6G loaded HY zeolite for highly selective nitrite detection

    Science.gov (United States)

    Viboonratanasri, Duangkamon; Pabchanda, Suwat; Prompinit, Panida

    2018-05-01

    In this study, a simple, rapid and relatively less toxic method for rhodamine 6G dye adsorption on hydrogen-form Y-type zeolite for highly selective nitrite detection was demonstrated. The adsorption behavior was described by Langmuir isotherm and the adsorption process reached the equilibrium promptly within a minute. The developed test papers characterized by fluorescence technique display high sensing performance with wide working range (0.04-20.0 mg L-1) and high selectivity. The test papers show good reproducibility with relative standard deviation (RSD) of 7% for five replicated determinations of 3 mg L-1 of nitrite. The nitrite concentration determined by using the test paper was in the same range as using ion chromatography within a 95% confidence level. The test papers offer advantages in terms of low cost and practical usage enabling them to be a promising candidate for nitrite sensor in environmental samples, food, and fertilizers.

  3. Influence of high volumes of ultra-fine additions on self-compacting concrete[ACI SP-239

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, R. [Naples Univ., Naples (Italy). Faculty of Engineering; Colangelo, F. [Naples Univ., Naples (Italy). Dept. of Technologies; Caputo, D.; Liguori, B. [Naples Univ., Naples (Italy). Dept. of Materials and Production Engineering

    2006-07-01

    The addition of fine minerals can reduce water demand and increase the slump characteristics of concrete. This paper examined the influence of high volumes of ultra-fine fly ash, raw fly ash, silica fume and natural zeolites on the properties of self-compacting concrete (SCC). Three samples of SCC were prepared using various mineral additions to determine normal slump and J-ring slump flows of fresh concrete as well as the compressive strength and elastic modulus properties of hardened concrete. Cement and crushed limestone natural aggregates were used. The fly ash, silica fume and natural zeolites were subjected to wet high energy milling. The rotating speed, milling time, water-to-solid ratio, and size of milling media were optimized to obtain powders with varying qualities. Results of the study showed that values for the normal slump flow ranged between 604 and 785 mm, while the differences with the J-ring slump flow were less than 30 mm. The samples were then tested to evaluate the mechanical properties of the hardened concrete after 7 and 28 curing days. The modulus of elasticity and compressive strength showed improvements in the concretes containing the ultra-fine fly ash. No segregation phenomena were observed in the case of the cylindrical column specimens. It was concluded that all the specimens provided environmentally sustainable, high workability concretes which can be successfully prepared with the addition of high volumes of minerals. 17 refs., 5 tabs., 6 figs.

  4. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    Science.gov (United States)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  5. Affordable, Lightweight, Compactly Stowable, High Strength / Stiffness Lander Solar Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system specifically for NASA's future Lander and sample return...

  6. Affordable, Lightweight, Compactly Stowable, High Strength / Stiffness Lander Solar Array, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system specifically for NASA's future Lander and sample return...

  7. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator

    International Nuclear Information System (INIS)

    Reijonen, J.; Leung, K.-N.; Firestone, R.B.; English, J.A.; Perry, D.L.; Smith, A.; Gicquel, F.; Sun, M.; Bandong, B.; Garabedian, G.; Revay, Zs.; Szentmiklosi, L.; Molnar, G.

    2003-01-01

    Various types of neutron generator systems have been designed and tested at the Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory. These generators are based on a D-D fusion reaction. These high power D-D neutron generators can provide neutron fluxes in excess of the current state of the art D-T neutron generators, without the use of pre-loaded targets or radioactive tritium gas. Safe and reliable long-life operations are the typical features of these D-D generators. All of the neutron generators developed in the Plasma and Ion Source Technology Group are utilizing powerful RF-induction discharge to generate the deuterium plasma. One of the advantages of using the RF-induction discharge is it's ability to generate high fraction of atomic ions from molecular gases, and the ability to generate high plasma densities for high extractable ion current from relatively small discharge volume

  8. FDM-HAWK, A High Performance Compact Modular Solar Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Developing a next generation high performance solar array with significant reduction in size and weight will result in improved NASA mission capabilities at lower...

  9. A High-Efficiency Compact SiC-based Power Converter System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Wide-bandgap SiC semiconductors have been recently investigated for use in power devices, because of their potential capabilities of operating at high power...

  10. Compact High Power 3D LiDAR System for (UAS) Unmanned Aircraft Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Eotron has introduced a high performance 3D Time-of-Flight Laser illumination source based on its patented silicon packaging technology originally developed to...

  11. Compact beamforming in medical ultrasound scanners

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev

    2003-01-01

    for high-quality imaging is large, and compressing it leads to better compactness of the beamformers. The existing methods for compressing and recursive generation of focusing data, along with original work in the area, are presented in Chapter 4. The principles and the performance limitations...... quality is comparable to that of the very good scanners currently on the market. The performance results have been achieved with the use of a simple oversampled converter of second order. The use of a higher order oversampled converter will allow higher pulse frequency to be used while the high dynamic...... channels, and even more channels are necessary for 3-dimensional (3D) diagnostic imaging. On the other hand, there is a demand for inexpensive portable devices for use outside hospitals, in field conditions, where power consumption and compactness are important factors. The thesis starts...

  12. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    Science.gov (United States)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  13. Compact RGBY light sources with high luminance for laser display applications

    Science.gov (United States)

    Paschke, Katrin; Blume, Gunnar; Werner, Nils; Müller, André; Sumpf, Bernd; Pohl, Johannes; Feise, David; Ressel, Peter; Sahm, Alexander; Bege, Roland; Hofmann, Julian; Jedrzejczyk, Daniel; Tränkle, Günther

    2018-02-01

    Watt-class visible laser light with a high luminance can be created with high-power GaAs-based lasers either directly in the red spectral region or using single-pass second harmonic generation (SHG) for the colors in the blue-yellow spectral region. The concepts and results of red- and near infrared-emitting distributed Bragg reflector tapered lasers and master oscillator power amplifier systems as well as their application for SHG bench-top experiments and miniaturized modules are presented. Examples of these high-luminance light sources aiming at different applications such as flying spot display or holographic 3D cinema are discussed in more detail. The semiconductor material allows an easy adaptation of the wavelength allowing techniques such as six-primary color 3D projection or color space enhancement by adding a fourth yellow color.

  14. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  15. Compact cross-sections of mild and high-strength steel hollow-section beams

    NARCIS (Netherlands)

    Pavlovic, M.; Veljkovic, M.

    2017-01-01

    The Eurocode 3 rules for the high-strength steel (HSS: fy > 460 MPa) limit the analysis of beams to elastic global analysis and grades up to S700. In order to fully exploit the potential to design lightweight and sustainable steel structures, plastic analysis and the use of higher

  16. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  17. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  18. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    Science.gov (United States)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  19. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    Science.gov (United States)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  20. High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow

    Science.gov (United States)

    Savel'ev, A. D.

    2018-02-01

    On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.

  1. A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools

    Science.gov (United States)

    Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan

    2016-03-01

    Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.

  2. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    Science.gov (United States)

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of 82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

  3. Magnetohydodynamics stability of compact stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-01

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 minus k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta (approximately 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current

  4. Research of Workflow Efficiency in HighEnthalpy Air Flow Compact Generators

    Directory of Open Access Journals (Sweden)

    V. Yu. Aleksandrov

    2015-01-01

    Full Text Available To test the combustion chambers (CC of high-speed ramjet engine (ramjet it is necessary to create the inlet conditions as realistic as possible, including the stagnation temperature T0, the Mach number M0, and the total airflow pressure p0. To achieve T0 = 1000 ... 2000 K is possible using a high-enthalpy airflow generator (HAG providing the fired air-heating and oxygen balance compensation.Due to strict weight and size restrictions imposed by the test conditions of the ramjet CC and bench equipment, there is a need to reduce HAG size and weight. For small HAG the relevant tasks are to organize effective workflow and ensure combustion stability, which can be solved directly at the developmental testing stage.The characteristic criterion of the workflow efficiency in HAG is the completed physicochemical combustion processes of the working fluid components. This is due to the fact that in the testing process a possible after-burning component of the working fluid in the flow path of the ramjet CC has a significant impact on the studied characteristics of the engine, thereby having a detrimental effect on the quality of the experiment.The examination of the workflow efficiency in HAG showed that the use of hydrogen as a fuel allows us to achieve a high degree of completing the physicochemical processes and reaching the specified conditions at the CC inlet to the ramjet under test. The use of hydrocarbon fuels reduces the completion degree of the workflow process in HAG and is accompanied by the development of pressure pulsations.The data obtained can be used when developing various HAGs, including those intended for testing the CC of ramjets for the prospective aircrafts.

  5. A multithreaded and GPU-optimized compact finite difference algorithm for turbulent mixing at high Schmidt number using petascale computing

    Science.gov (United States)

    Clay, M. P.; Yeung, P. K.; Buaria, D.; Gotoh, T.

    2017-11-01

    Turbulent mixing at high Schmidt number is a multiscale problem which places demanding requirements on direct numerical simulations to resolve fluctuations down the to Batchelor scale. We use a dual-grid, dual-scheme and dual-communicator approach where velocity and scalar fields are computed by separate groups of parallel processes, the latter using a combined compact finite difference (CCD) scheme on finer grid with a static 3-D domain decomposition free of the communication overhead of memory transposes. A high degree of scalability is achieved for a 81923 scalar field at Schmidt number 512 in turbulence with a modest inertial range, by overlapping communication with computation whenever possible. On the Cray XE6 partition of Blue Waters, use of a dedicated thread for communication combined with OpenMP locks and nested parallelism reduces CCD timings by 34% compared to an MPI baseline. The code has been further optimized for the 27-petaflops Cray XK7 machine Titan using GPUs as accelerators with the latest OpenMP 4.5 directives, giving 2.7X speedup compared to CPU-only execution at the largest problem size. Supported by NSF Grant ACI-1036170, the NCSA Blue Waters Project with subaward via UIUC, and a DOE INCITE allocation at ORNL.

  6. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  7. R and D toward a compact high-brilliance X-ray source based on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; Brau, C. A.; Gabella, W. E.; Choi, B. K.; Jarvis, J. D.; Lewellen, J. W.; Mendenhall, M. H.; Mihalcea, D. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States) and Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235 (United States) and Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Physics Department and Combat Systems, Naval Postgraduate School, Monterey, CA 93943 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States)

    2012-12-21

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B{approx} 10{sup 12} photons.(mm-mrd){sup -2}. (0.1% BW){sup -1}.s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  8. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    Science.gov (United States)

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  9. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    Science.gov (United States)

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  10. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    Science.gov (United States)

    McLean, II, William; Miller, Philip E.; Horton, James A.

    1995-01-01

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  11. Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity

    DEFF Research Database (Denmark)

    Jersie-Christensen, Rosa R.; Sultan, Abida; Olsen, Jesper V

    2016-01-01

    The traditional sample preparation workflow for mass spectrometry (MS)-based phosphoproteomics is time consuming and usually requires multiple steps, e.g., lysis, protein precipitation, reduction, alkylation, digestion, fractionation, and phosphopeptide enrichment. Each step can introduce chemical...... artifacts, in vitro protein and peptide modifications, and contaminations. Those often result in sample loss and affect the sensitivity, dynamic range and accuracy of the mass spectrometric analysis. Here we describe a simple and reproducible phosphoproteomics protocol, where lysis, denaturation, reduction......, and alkylation are performed in a single step, thus reducing sample loss and increasing reproducibility. Moreover, unlike standard cell lysis procedures the cell harvesting is performed at high temperatures (99 °C) and without detergents and subsequent need for protein precipitation. Phosphopeptides are enriched...

  12. A simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis

    Directory of Open Access Journals (Sweden)

    Polyana Kelly Martins

    2015-06-01

    Full Text Available The production and use of sugarcane in Brazil is very important for bioenergy production and is recognized as one of the most efficient in the world. In our laboratory, Setaria viridis is being tested as a model plant for sugarcane. S. viridis has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements that make it suitable for use as a model system. We report a highly efficient protocol for Agrobacterium-mediated genetic transformation of S. viridis. The optimization of several steps in tissue culture allowed the rapid regeneration of plants and increased the rate of transformation up to 29%. This protocol could become a powerful tool for functional genomics in sugarcane.

  13. A simple-architecture fibered transmission system for dissemination of high stability 100 MHz signals

    Science.gov (United States)

    Bakir, A.; Rocher, C.; Maréchal, B.; Bigler, E.; Boudot, R.; Kersalé, Y.; Millo, J.

    2018-05-01

    We report on the development of a simple-architecture fiber-based frequency distribution system used to transfer high frequency stability 100 MHz signals. This work is focused on the emitter and the receiver performances that allow the transmission of the radio-frequency signal over an optical fiber. The system exhibits a residual fractional frequency stability of 1 × 10-14 at 1 s integration time and in the low 10-16 range after 100 s. These performances are suitable to transfer the signal of frequency references such as those of a state-of-the-art hydrogen maser without any phase noise compensation scheme. As an application, we demonstrate the dissemination of such a signal through a 100 m long optical fiber without any degradation. The proposed setup could be easily extended for operating frequencies in the 10 MHz-1 GHz range.

  14. Model-based design evaluation of a compact, high-efficiency neutron scatter camera

    Science.gov (United States)

    Weinfurther, Kyle; Mattingly, John; Brubaker, Erik; Steele, John

    2018-03-01

    pillar dimensions, scintillator material (EJ-204, EJ-232Q and stilbene), and photodetector (MCP-PM vs. SiPM) response vs. time. We demonstrate that the most precise estimates of incident neutron direction and energy can be obtained using a combination of scintillator material with high luminosity and a photodetector with a narrow impulse response. Specifically, we conclude that an SVSC-PiPS constructed using EJ-204 (a high luminosity plastic scintillator) and an MCP-PM will produce the most precise estimates of incident neutron direction and energy.

  15. A simple and rapid method for high-resolution visualization of single-ion tracks

    Directory of Open Access Journals (Sweden)

    Masaaki Omichi

    2014-11-01

    Full Text Available Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA-N, N’-methylene bisacrylamide (MBAAm blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  16. A simple and rapid method for high-resolution visualization of single-ion tracks

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Masaaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Center for Collaborative Research, Anan National College of Technology, Anan, Tokushima 774-0017 (Japan); Choi, Wookjin; Sakamaki, Daisuke; Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Tsukuda, Satoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Sugimoto, Masaki [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Institute, Gunma, Gunma 370-1292 (Japan)

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  17. Single-phase highly densified SrBi{sub 2}Ta{sub 2}O{sub 9} compacts produced by high-pressure sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Altair Soria; Souza, Ricson Rocha de; Sousa, Vania Caldas de, E-mail: altair@if.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: The development of high-performance lead-free piezoelectric ceramics is an important scientific and technological challenge, as environmental and health issues have imposed restrictions to the use of lead zirconate titanates, the most employed material in ferroelectric devices [1]. Strontium bismuth tantalate (SBT),SrBi{sub 2}Ta{sub 2}O{sub 9}, is an interesting alternative ferroelectric material as its polarization can be modified at low voltages and it shows limited polarization switching fatigue. However, the production of highly densified single-phase bulk SBT by conventional sintering procedures is strongly compromised by stoichiometric changes due to bismuth loss. In this work, high-pressure sintering has been exploited as an alternative procedure to obtain SBT highly-densified single-phase compacts. Using toroidal-type high-pressure chambers, samples were produced by reaction sintering of BiTaO{sub 4} and SrCO{sub 3} powders, mixed in the stoichiometric ratio corresponding to SrBi{sub 2}Ta{sub 2}O{sub 9}, at pressures of 2.5 GPa and 7.7 GPa, and temperatures up to 1250°C, during 10 min. X-ray diffraction and scanning electron microscopy associated to energy-dispersive X-ray spectroscopy were used to follow the phase composition and the microstructure evolution as a function of the processing conditions. A single-phase SBT compact, with a relative density of 93% and a homogeneous microstructure, was produced by sintering at 2.5 GPa/900°C [2]. References: [1] K. Panda, J. Mater. Sci. 44, 5049-5062 (2009). [2] Ricson R.Souza, Rejane K. Kirchner, Jose R. Jurado, Altair S. Pereira, Vania C. Sousa. Journal of Solid State Chemistry 233, 259-268 (2016). (author)

  18. Compact streak camera for the shock study of solids by using the high-pressure gas gun

    Science.gov (United States)

    Nagayama, Kunihito; Mori, Yasuhito

    1993-01-01

    For the precise observation of high-speed impact phenomena, a compact high-speed streak camera recording system has been developed. The system consists of a high-pressure gas gun, a streak camera, and a long-pulse dye laser. The gas gun installed in our laboratory has a muzzle of 40 mm in diameter, and a launch tube of 2 m long. Projectile velocity is measured by the laser beam cut method. The gun is capable of accelerating a 27 g projectile up to 500 m/s, if helium gas is used as a driver. The system has been designed on the principal idea that the precise optical measurement methods developed in other areas of research can be applied to the gun study. The streak camera is 300 mm in diameter, with a rectangular rotating mirror which is driven by an air turbine spindle. The attainable streak velocity is 3 mm/microsecond(s) . The size of the camera is rather small aiming at the portability and economy. Therefore, the streak velocity is relatively slower than the fast cameras, but it is possible to use low-sensitivity but high-resolution film as a recording medium. We have also constructed a pulsed dye laser of 25 - 30 microsecond(s) in duration. The laser can be used as a light source of observation. The advantage for the use of the laser will be multi-fold, i.e., good directivity, almost single frequency, and so on. The feasibility of the system has been demonstrated by performing several experiments.

  19. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Claussen, M. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801 (United States); Kurtz, S.; Carrasco-González, C.; Rodríguez, L. F.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090, México (Mexico); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Ellingsen, S. P. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  20. The effects of ZrO2 nanoparticles on physical and mechanical properties of high strength self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In this work, strength assessments and coefficient of water absorption of high performance self compacting concrete containing different amounts of ZrO2 nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding ZrO2 nanoparticles in the cement paste up to 4.0 wt. (%. ZrO2 nanoparticles, as a result of increased crystalline Ca(OH2 amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, ZrO2 nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that ZrO2 nanoparticles could improve mechanical and physical properties of the concrete specimens.

  1. Exploring the Physics Limitations of Compact High Gradient Accelerating Structures Simulations of the Electron Current Spectrometer Setup in Geant4

    CERN Document Server

    Van Vliet, Philine Julia

    2017-01-01

    The high field gradient of 100 MV/m that will be applied to the accelerator cavities of the Compact Linear Collider (CLIC), gives rise to the problem of RF breakdowns. The field collapses and a plasma of electrons and ions is being formed in the cavity, preventing the RF field from penetrating the cavity. Electrons in the plasma are being accelerated and ejected out, resulting in a breakdown current up to a few Amp`eres, measured outside the cavities. These breakdowns lead to luminosity loss, so reducing their amount is of great importance. For this, a better understanding of the physics behind RF breakdowns is needed. To study these breakdowns, the XBox 2 test facility has a spectrometer setup installed after the RF cavity that is being conditioned. For this report, a simulation of this spectrometer setup has been made using Geant4. Once a detailed simulation of the RF field and cavity has been made, it can be connected to this simulation of the spectrometer setup and used to recreate the data that has b...

  2. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    International Nuclear Information System (INIS)

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-01-01

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10 8 n/s was obtained at a pulsed discharge of -51 kV, 7.3 A

  3. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    Science.gov (United States)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  4. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution

    Directory of Open Access Journals (Sweden)

    M. Müller

    2014-11-01

    Full Text Available Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS for airborne measurements of volatile organic compounds (VOCs. The new instrument resolves isobaric ions with a mass resolving power (m/Δm of ~1000, provides accurate m/z measurements (Δm < 3 mDa, records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS-based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, α total monoterpenes, aromatic VOCs (benzene, toluene, xylenes and ketones (acetone, methyl ethyl ketone range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements of abundant VOCs in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1 km, which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical- and horizontal-resolution in situ data of VOCs and ammonia for the validation of satellite retrievals and chemistry transport models.

  5. IMPLEMENTATION OF SIMPLE ADDITIVE WEIGHTING (SAW METHODE IN DETERMINING HIGH SCHOOL STUDENT’S INTEREST

    Directory of Open Access Journals (Sweden)

    Prind Triajeng Pungkasanti

    2017-09-01

    Full Text Available The Ministry of Research, Technology, and Higher Education of Republic of Indonesia has set a regulation about curriculum applied in education field named Kurikulum 2013. One of the subsections in the Kurikulum 2013 regulates all requirements of majoring in high school. High school students determine their major based on Kurrikulum 2013 as they are on the 10th grade. The purpose of the majoring in education is to allow children development based on their skills and interests, because before, majoring have been done based on scores obtained. The main problem is the majoring requirements considered are admission test score and Junior High School National Test score. Both scores are not sufficient enough to determine the students major therefore academic aptitude test score is required. In term of weighting, the school has not been imposed the weighting system so the scores obtained is the average of admission test score and national test score. Based on the issue above, a solution required to solve the issue using a method. Method used in this research is Simple Additive Weighting (SAW, wherein this methode is looking for the weighted sum of performance rate on every alternative of atributes. This research provides the information about which potential students is suitable to enter the science major and social major so this results can be used as consideration of school decisions.

  6. LASL Compact Torus Program

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Bartsch, R.R.

    1981-01-01

    The Compact Torus (CT) concept includes any axisymmetric toroidal plasma configuration, which does not require the linking of any material through the hole in the torus. Thus, the magnet coils, vacuum vessel, etc., have a simple cylindrical or spherical geometry instead of the toroidal geometry required for Tokamaks and RFP's. This simplified geometry results in substantial engineering advantages in CT reactor embodiments while retaining the good confinement properties afforded by an axisymmetric toroidal plasma-field geometry. CT's can be classified into three major types by using the ion gyro radius rho/sub i/ and the magnitude of the maximum toroidal field B/sub tm/

  7. Compact magnetic fusin reactor concepts

    International Nuclear Information System (INIS)

    Chung, K.M.

    1984-01-01

    Compact, high-power-density approaches to fusion power represent alternatives to main-line fusion concepts, Tokamaks and mirrors. If technological issues are resolved, theses approaches would yield small, low-cost fusion power plants. This survey reviews the principal physics and technology employed by leading compact magnetic fusion plants. (Author)

  8. A simple high-performance liquid chromatographic practical approach for determination of flurbiprofen

    Directory of Open Access Journals (Sweden)

    Muhammad Akhlaq

    2011-01-01

    Full Text Available A simple, rapid, sensitive, and specific high-performance liquid chromatography (HPLC assay for flurbiprofen has been developed and validated practically. The chromatography was conducted using Gemini C18 column (5 μm; 4.6 mm × 250 mm, Phenomenex, California, USA. The mobile phase containing disodium hydrogen phosphate solution (30 mM pH 7.0 and acetonitrile (50:50; and the isocratic flow rate of 1.0 ml/min were used in the current study. Detection was made at 247 nm. The calibration curve was linear (r ≥ 0.9996 over the concentration range of 5-50 mm/ml. Mean percentage (% recovery ± % relative standard deviation (RSD ranged from 97.07 ± 0.008 to 103.66 ± 0.013. Within-day and between-day precision were also in acceptable range of 98.83 ± 0.004 to 104.56 ± 0.009. In order to confirm the practical applicability of the method developed, flurbiprofen controlled release matrix tablets were subjected to the dissolution studies and the release rate was analyzed. The reported HPLC for flurbiprofen provides several advantages of simplicity, high specificity, accuracy, and very short run-cycle time. It is suggested that the method should be used for the routine quality control analysis of flurbiprofen pure drug and its dosage forms.

  9. High Operating Voltage Supercapacitor Using PPy/AC Composite Electrode Based on Simple Dipping Method

    Directory of Open Access Journals (Sweden)

    Kyoungho Kim

    2015-01-01

    Full Text Available As various wearable devices are emerging, self-generated power sources, such as piezoelectric generators, triboelectric generators, and thermoelectric generators, are of interest. To adapt self-generated power sources for application devices, a supercapacitor is necessary because of the short generation times (1–10 ms and low generated power (1–100 μW of self-generated power sources. However, to date, supercapacitors are too large to be adapted for wearable devices. There have been many efforts to reduce the size of supercapacitors by using polypyrrole (PPy for high energy supercapacitor electrodes. However, these supercapacitors have several disadvantages, such as a low operating voltage due to the use of an aqueous electrolyte, and complex manufacturing methods, such as the hydrogel and aerosol methods. In particular, the low operating voltage (~1.0 V is a significant issue because most electronic components operate above 3.0 V. In this study, we successfully demonstrated the high operating voltage (3.0 V of a supercapacitor using a PPy/activated carbon (AC composite electrode based on the chemical polymerization of the PPy by simple dipping. In addition, a twofold enhancement of its energy density was achieved compared with conventional supercapacitors using AC electrodes.

  10. A simple model for prediction postpartum PTSD in high-risk pregnancies.

    Science.gov (United States)

    Shlomi Polachek, Inbal; Dulitzky, Mordechai; Margolis-Dorfman, Lilia; Simchen, Michal J

    2016-06-01

    This study aimed to examine the prevalence and possible antepartum risk factors of complete and partial post-traumatic stress disorder (PTSD) among women with complicated pregnancies and to define a predictive model for postpartum PTSD in this population. Women attending the high-risk pregnancy outpatient clinics at Sheba Medical Center completed the Edinburgh Postnatal Depression Scale (EPDS) and a questionnaire regarding demographic variables, history of psychological and psychiatric treatment, previous trauma, previous childbirth, current pregnancy medical and emotional complications, fears from childbirth, and expected pain. One month after delivery, women were requested to repeat the EPDS and complete the Post-traumatic Stress Diagnostic Scale (PDS) via telephone interview. The prevalence rates of postpartum PTSD (9.9 %) and partial PTSD (11.9 %) were relatively high. PTSD and partial PTSD were associated with sadness or anxiety during past pregnancy or childbirth, previous very difficult birth experiences, preference for cesarean section in future childbirth, emotional crises during pregnancy, increased fear of childbirth, higher expected intensity of pain, and depression during pregnancy. We created a prediction model for postpartum PTSD which shows a linear growth in the probability for developing postpartum PTSD when summing these seven antenatal risk factors. Postpartum PTSD is extremely prevalent after complicated pregnancies. A simple questionnaire may aid in identifying at-risk women before childbirth. This presents a potential for preventing or minimizing postpartum PTSD in this population.

  11. A Simple Test Tube-Based ELISA Experiment for the High-School Classroom*

    Science.gov (United States)

    Brokaw, Ann; Cobb, Brian A.

    2010-01-01

    Immunology is gaining prominence both in the media as well as on the Advanced Placement (AP) exam in Biology. One of the challenges of teaching modern biological topics such as immunology and biochemistry in the high-school setting is the increased reliance on expensive technology in the research world. To begin to bridge this widening gap, we devised an experiment using a novel macroscale enzyme-linked immunosorbent assay that is suitable for AP-level high-school biology classrooms as well as entry-level collegiate laboratories. This novel method does not require a plate reader for data analysis, but instead relies on more common and inexpensive equipment such as a clinical test tube centrifuge and a simple test tube spectrophotometer. The experimental plan focuses on students measuring antibody concentrations in “unknown” samples and includes the collection and analysis of a standard curve using reagents prepared by the instructor. Students will be introduced to enzyme action, quantitative laboratory technique, antibodies, and the immune system, with the overall goal being to explore and highlight the inherent connections within the fields of biochemistry and immunology. PMID:20689684

  12. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E c , below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E c . These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production

  13. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  14. Compact high-speed MWIR spectrometer applied to monitor CO2 exhaust dynamics from a turbojet engine

    Science.gov (United States)

    Linares-Herrero, R.; Vergara, G.; Gutiérrez Álvarez, R.; Fernández Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano Ramírez, A.; Montojo, M. T.; Archilla, V.; Jiménez, A.; Mercader, D.; González, A.; Entero, A.

    2013-05-01

    Dfgfdg Due to international environmental regulations, aircraft turbojet manufacturers are required to analyze the gases exhausted during engine operation (CO, CO2, NOx, particles, unburned hydrocarbons (aka UHC), among others).Standard procedures, which involve sampling the gases from the exhaust plume and the analysis of the emissions, are usually complex and expensive, making a real need for techniques that allow a more frequent and reliable emissions measurements, and a desire to move from the traditional gas sampling-based methods to real time and non-intrusive gas exhaust analysis, usually spectroscopic. It is expected that the development of more precise and faster optical methods will provide better solutions in terms of performance/cost ratio. In this work the analysis of high-speed infrared emission spectroscopy measurements of plume exhaust are presented. The data was collected during the test trials of commercial engines carried out at Turbojet Testing Center-INTA. The results demonstrate the reliability of the technique for studying and monitoring the dynamics of the exhausted CO2 by the observation of the infrared emission of hot gases. A compact (no moving parts), high-speed, uncooled MWIR spectrometer was used for the data collection. This device is capable to register more than 5000 spectra per second in the infrared band ranging between 3.0 and 4.6 microns. Each spectrum is comprised by 128 spectral subbands with aband width of 60 nm. The spectrometer operated in a passive stand-off mode and the results from the measurements provided information of both the dynamics and the concentration of the CO2 during engine operation.

  15. Quantification of the compactibility of pharmaceutical powders

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2006-01-01

    The purpose of this study is to investigate and to quantify the compactibility of pharmaceutical powders by a simple linear relationship between the diametral compressive strength of tablets and the applied compaction pressure. The mechanical strength of the tablets is characterized as the crushing...

  16. Temperature effect on mechanical and tribological characterization of Mg-SiC nanocomposite fabricated by high rate compaction

    Science.gov (United States)

    Majzoobi, G. H.; Rahmani, K.; Atrian, A.

    2018-01-01

    In this paper, dynamic compaction is employed to produce Mg-SiC nanocomposite samples using a mechanical drop hammer. Different volume fractions of SiC nano reinforcement and magnesium (Mg) micron-size powder as the matrix are mechanically milled and consolidated at different temperatures. It is found that with the increase of temperature the sintering requirements is satisfied and higher quality samples are fabricated. The density, hardness, compressive strength and the wear resistance of the compacted specimens are characterized in this work. It was found that by increasing the content of nano reinforcement, the relative density of the compacted samples decreases, whereas, the micro-hardness and the strength of the samples enhance. Furthermore, higher densification temperatures lead to density increase and hardness reduction. Additionally, it is found that the wear rate of the nanocomposite is increased remarkably by increasing the SiC nano reinforcement.

  17. Limits to the use of highly compacted bentonite as a deterrent for microbially influenced corrosion in a nuclear fuel waste repository

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter

    2010-01-01

    Highly compacted bentonite-based sealing materials are being developed for use in future geological repositories for nuclear fuel waste. Such materials would ensure a diffusion-controlled hydrology and additionally form a sorption barrier against radionuclide migration after container breach. Due to some inherent physical characteristics, such as low water activity (a w ), small pores and high swelling pressure, an additional role of highly compacted bentonite may be the elimination of significant microbial activity near used fuel containers, which would reduce the occurrence of microbially influenced corrosion (MIC) to insignificant levels. Several recent studies have examined the indigenous microbial populations in compacted bentonite and the factors that control microbial activity in such environments. Laboratory experiments with Wyoming MX-80 bentonite plugs, compacted to dry densities (DD's) of 0.8 to 2.0 g/cm 3 , and infiltrated with sterile distilled deionised water were carried out. At DD's of 0.8 and 1.3 g/cm 3 , culturability of heterotrophic aerobic bacteria increased by up to four orders of magnitude above back-ground levels. Anaerobic heterotrophic bacteria and SRB did not increase significantly above background levels in any of the tests. At higher DD's all culturability remained at, or fell below, the background levels. However, even at the highest DD tested, some culturability remained and viability was only mildly affected by high DD's. Therefore, the potential for increased microbial activity exist if a substantial reduction in DD of bentonite were to occur in a repository. The microbes that survive in dry as-purchased or highly compacted bentonite appear to be largely spore-forming organisms. Chi Fru and Athar (2008) studied the bacterial colonization of compacted MX-80 bentonite from the surrounding granitic groundwater population, at various temperature ranges. Results suggested that high temperature rather than high DD

  18. A robust, simple genotyping-by-sequencing (GBS approach for high diversity species.

    Directory of Open Access Journals (Sweden)

    Robert J Elshire

    Full Text Available Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs. This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM and barley (Oregon Wolfe Barley recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.

  19. Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Muda, R; Lewis, E; O' Keeffe, S; Dooly, G; Clifford, J, E-mail: razali.muda@ul.i [Optical Fibre Sensors Research Centre, Electronic and Computer Engineering Department, University of Limerick (Ireland)

    2009-07-01

    A novel and highly compact optical fibre based sensor system for measurement of high concentrations CO{sub 2} gas emissions in modern automotive exhaust is presented. The sensor system works based on the principle of open-path direct absorption spectroscopy in the mid-infrared wavelength range. The sensor system, which comprises low cost components and is compact in design, is well suited for applications in monitoring CO{sub 2} emissions from the exhaust of automotive vehicles. The sensor system utilises calcium fluoride (CaF{sub 2}) lenses and a narrow band pass (NBP) filter for detection of CO{sub 2} gas. The response of the sensor to high concentrations of CO{sub 2} gas is presented and the result is compared with that of a commercial flue gas analyser. The sensor shows response times of 5.2s and demonstrates minimal susceptibility to cross interferences of other gases present in the exhaust system.

  20. SU-E-T-267: Development of the Compact Graphite Calorimetry System for the High Energy Photon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. C.; Kim, I. J.; Kim, J. H.; Yi, C. Y. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-06-15

    Purpose: Graphite calorimeter systems are used for the absolute photon dosimetry. But many electronics are demanded in order to measure the tiny temperature changes. Minimizing the control system is needed to make a portable graphite calorimeter. Methods: A Domen-type graphite calorimetry system is constructing to measure the absorbed dose of the high energy photon beam. The graphite calorimeter divided into three parts, Core, Jacket, and Shield. In order to measure the temperature rising of the core due to the radiation accurately, the temperatures of the jacket and the shield should be controlled properly. A commercial temperature controller (Model 350, Lake Shore Cryogenics) was used to minimize the size of control system for making a portable graphite calorimetry system at the cost of the measurement uncertainty. The PID control of the jacket is conducted by the software (LabView) and Model 350 maintain the temperature of shield. Results: Our design value of the heat deposition power in the core is 0.04 mW for the dose rate of 3 Gy/min where the temperature sensitivity of the graphite is 1.4 mK/Gy. While the residuals of the Steinhart-hart equation fitting for the core thermistor were less than 0.1 mK, the temperature resolution of Model 350 is 1 mK. The temperature of the shield was kept within the 5 mK when the room temperature variation was about 0.5 K. Conclusion: The resolution of Model 350 for the temperature measurement and control is not good enough as the control system for the compact graphite calorimetry system. But The performance of Model 350 is good enough to maintain the temperature of the shield constantly. The Model 350 will be replaced by the AC resistance bridge (Model 372, Lake Shore Cryogenics) for the core temperature measurement and the jacket control.

  1. Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, Thulium fiber laser

    Science.gov (United States)

    Hardy, Luke A.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    Previous Thulium fiber laser lithotripsy (TFL) studies were limited to a peak power of 70 W (35 mJ / 500 μs), requiring operation in dusting mode with low pulse energy (35 mJ) and high pulse rate (300 Hz). In this study, a novel, compact, air-cooled, TFL capable of operating at up to 500 W peak power, 50 W average power, and 2000 Hz, was tested. The 1940-nm TFL was used with pulse duration (500 μs), average power (10 W), and fiber (270- μm-core) fixed, while pulse energy and pulse rate were changed. A total of 23 large uric acid (UA) stones and 16 large calcium oxalate monohydrate (COM) stones were each separated into 3 modes (Group 1-"Dusting"- 33mJ/300Hz; Group 2-"Fragmentation"-200mJ/50Hz; Group 3-"Dual mode"-Fragmentation then Dusting). The fiber was held manually in contact with stone on a 2-mm-mesh sieve submerged in a flowing saline bath. UA ablation rates were 2.3+/-0.8, 2.3+/-0.2, and 4.4+/-0.8 mg/s and COM ablation rates were 0.4+/-0.1, 1.0+/-0.1, and 0.9+/-0.4 mg/s, for Groups 1, 2, and 3. Dual mode provided 2x higher UA ablation rates than other modes. COM ablation threshold is 3x higher than UA, so dusting provided lower COM ablation rates than other modes. Future studies will explore higher average laser power than 10 W for rapid TFL ablation of large stones.

  2. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Landi, G. T.; Romero, S. A.; Santos, A. D. [Departamento de Fisica dos Materiais e Mecanica, Laboratorio de Materiais Magneticos, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)

    2010-03-15

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  3. Simple Quantification of Pentosidine in Human Urine and Plasma by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ji Sang Lee

    2017-01-01

    Full Text Available Pentosidine is an advanced glycation end-product (AGE and fluorescent cross-link compound. A simple high-performance liquid chromatographic (HPLC method was developed for the detection and quantification of pentosidine in human urine and plasma. The mobile phase used a gradient system to improve separation of pentosidine from endogenous peaks, and chromatograms were monitored by fluorescent detector set at excitation and emission wavelengths of 328 and 378 nm, respectively. The retention time for pentosidine was 24.3 min and the lower limits of quantification (LLOQ in human urine and plasma were 1 nM. The intraday assay precisions (coefficients of variation were generally low and found to be in the range of 5.19–7.49% and 4.96–8.78% for human urine and plasma, respectively. The corresponding values of the interday assay precisions were 9.45% and 4.27%. Accuracies (relative errors ranged from 87.9% to 115%. Pentosidine was stable in a range of pH solutions, human urine, and plasma. In summary, this HPLC method can be applied in future preclinical and clinical evaluation of pentosidine in the diabetic patients.

  4. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    International Nuclear Information System (INIS)

    Landi, G. T.; Romero, S. A.; Santos, A. D.

    2010-01-01

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  5. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture.

    Science.gov (United States)

    DeQuach, Jessica A; Mezzano, Valeria; Miglani, Amar; Lange, Stephan; Keller, Gordon M; Sheikh, Farah; Christman, Karen L

    2010-09-27

    The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.

  6. A Simple Semaphore Signaling Technique for Ultra-High Frequency Spacecraft Communications

    Science.gov (United States)

    Butman, S.; Satorius, E.; Illott, P.

    2005-11-01

    For planetary lander missions such as the upcoming Phoenix mission to Mars, the most challenging phase of the spacecraft-to-ground communications is during the critical phase termed entry, descent, and landing (EDL). At 8.4 GHz (X-band), the signals received by the largest Deep Space Network (DSN) antennas can be too weak for even 1 bit per second (bps) and therefore not able to communicate critical information to Earth. Fortunately, the lander's ultra-high frequency (UHF) link to an orbiting relay can meet the EDL requirements, but the data rate needs to be low enough to fit the capability of the UHF link during some or all of EDL. On Phoenix, the minimum data rate of the as-built UHF radio is 8 kbps and requires a signal level at the Odyssey orbiter of at least minus 120 dBm. For lower signaling levels, the effective data rate needs to be reduced, but without incurring the cost of rebuilding and requalifying the equipment. To address this scenario, a simple form of frequency-shift keying (FSK) has been devised by appropriately programming the data stream that is input to the UHF transceiver. This article describes this technique and provides performance estimates. Laboratory testing reveals that input signal levels at minus 140 dBm and lower can routinely be demodulated with the proposed signaling scheme, thereby providing a 20-dB and greater margin over the 8-kbps threshold.

  7. Fast and simple high-capacity quantum cryptography with error detection

    Science.gov (United States)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-04-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  8. A Simple and Sensitive High-Content Assay for the Characterization of Antiproliferative Therapeutic Antibodies.

    Science.gov (United States)

    Stengl, Andreas; Hörl, David; Leonhardt, Heinrich; Helma, Jonas

    2017-03-01

    Monoclonal antibodies (mAbs) have become a central class of therapeutic agents in particular as antiproliferative compounds. Their often complex modes of action require sensitive assays during early, functional characterization. Current cell-based proliferation assays often detect metabolites that are indicative of metabolic activity but do not directly account for cell proliferation. Measuring DNA replication by incorporation of base analogues such as 5-bromo-2'-deoxyuridine (BrdU) fills this analytical gap but was previously restricted to bulk effect characterization in enzyme-linked immunosorbent assay formats. Here, we describe a cell-based assay format for the characterization of antiproliferative mAbs regarding potency and mode of action in a single experiment. The assay makes use of single cell-based high-content-analysis (HCA) for the reliable quantification of replicating cells and DNA content via 5-ethynyl-2'-deoxyuridine (EdU) and 4',6-diamidino-2-phenylindole (DAPI), respectively, as sensitive measures of antiproliferative mAb activity. We used trastuzumab, an antiproliferative therapeutic antibody interfering with HER2 cell surface receptor-mediated growth signal transduction, and HER2-overexpressing cell lines BT474 and SKBR3 to demonstrate up to 10-fold signal-to-background (S/B) ratios for treated versus untreated cells and a shift in cell cycle profiles indicating antibody-induced cell cycle arrest. The assay is simple, cost-effective, and sensitive, providing a cell-based format for preclinical characterization of therapeutic mAbs.

  9. Simple Exact Algorithm for Transistor Sizing of Low-Power High-Speed Arithmetic Circuits

    Directory of Open Access Journals (Sweden)

    Tooraj Nikoubin

    2010-01-01

    Full Text Available A new transistor sizing algorithm, SEA (Simple Exact Algorithm, for optimizing low-power and high-speed arithmetic integrated circuits is proposed. In comparison with other transistor sizing algorithms, simplicity, accuracy, independency of order and initial sizing factors of transistors, and flexibility in choosing the optimization parameters such as power consumption, delay, Power-Delay Product (PDP, chip area or the combination of them are considered as the advantages of this new algorithm. More exhaustive rules of grouping transistors are the main trait of our algorithm. Hence, the SEA algorithm dominates some major transistor sizing metrics such as optimization rate, simulation speed, and reliability. According to approximate comparison of the SEA algorithm with MDE and ADC for a number of conventional full adder circuits, delay and PDP have been improved 55.01% and 57.92% on an average, respectively. By comparing the SEA and Chang's algorithm, 25.64% improvement in PDP and 33.16% improvement in delay have been achieved. All the simulations have been performed with 0.13 m technology based on the BSIM3v3 model using HSpice simulator software.

  10. Fast and simple high-capacity quantum cryptography with error detection.

    Science.gov (United States)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A

    2017-04-13

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  11. Simple Fourier optics formalism for high-angular-resolution systems and nulling interferometry.

    Science.gov (United States)

    Hénault, François

    2010-03-01

    Reviewed are various designs of advanced, multiaperture optical systems dedicated to high-angular-resolution imaging or to the detection of exoplanets by nulling interferometry. A simple Fourier optics formalism applicable to both imaging arrays and nulling interferometers is presented, allowing their basic theoretical relationships to be derived as convolution or cross-correlation products suitable for fast and accurate computation. Several unusual designs, such as a "superresolving telescope" utilizing a mosaicking observation procedure or a free-flying, axially recombined interferometer are examined, and their performance in terms of imaging and nulling capacity are assessed. In all considered cases, it is found that the limiting parameter is the diameter of the individual telescopes. A final section devoted to nulling interferometry shows an apparent superiority of axial versus multiaxial recombining schemes. The entire study is valid only in the framework of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance subapertures are optically conjugated with their associated exit pupils.

  12. Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository

    Science.gov (United States)

    Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter

    Recent studies have suggested that microbial activity in highly compacted bentonite (⩾1600 kg/m 3) is severely suppressed. Therefore, it appears that the dry density of emplaced bentonite barriers in a geological repository for nuclear waste may be tailored such that a microbiologically unfavorable environment can be created adjacent to used fuel containers. This would ensure that microbiologically influenced corrosion is a negligible contributor to the overall corrosion process. However, this premise is valid only as long as the emplaced bentonite maintains a uniform high dry density (⩾1600 kg/m 3) because it has been shown that high dry density only suppresses microbial activity but not necessarily eliminates the viable microbial population in bentonite. In a repository, a reduction in the dry density of highly compacted bentonite may occur at a number of interface locations, such as placement gaps, contact regions with materials of different densities and contact points with water-carrying fractures in the rock. Experiments were carried out in our laboratory to examine the effects of a reduction in dry density (from 1600 kg/m 3 to about 1000 kg/m 3) on the recovery of microbial culturability in compacted bentonite. Results showed that upon expansion of compacted bentonite into a void, the resulting reduction in dry density stimulated or restored culturability of indigenous microbes. In a repository this would increase the possibility of in situ activity, which might be detrimental for the longevity of waste containers. Reductions in dry density, therefore, should be minimized or eliminated by adequate design and placement methods of compacted bentonite. Materials compliance models can be used to determine the required as-placed dry densities of bentonite buffer and gap fillings to achieve specific targets for long-term equilibrium dry densities for various container placement room designs. Locations where flowing fractures could be in contact with highly

  13. Highly efficient silver patterning without photo-resist using simple silver precursors

    International Nuclear Information System (INIS)

    Byun, Younghun; Hwang, Eoc-Chae; Lee, Sang-Yun; Lyu, Yi-Yeol; Yim, Jin-Heong; Kim, Jin-Young; Chang, Seok; Pu, Lyong Sun; Kim, Ji Man

    2005-01-01

    Highly efficient method for silver patterning without photo-resist was developed by using high photosensitive organo-silver precursors, which were prepared by a simple reaction of silver salts and excess of amines. The FT-IR and GC-MS spectra were recorded depending on UV exposure time, for (n-PrNH 2 )Ag(NO 3 ).0.5MeCN and (n-PrNH 2 )Ag(NO 2 ).0.5MeCN, to understand the photolysis mechanism. The results indicate not only dissociation of coordinated amine and acetonitrile, but also decomposition of corresponding anion upon UV irradiation. When a precursor thin film was exposed to broadband UV irradiation, a partially reduced and insoluble silver species were formed within several minutes. After development, the irradiated areas were treated with a reducing agent to obtain pure metallic patterns. Subsequently, annealing step was followed at 100-350 deg. C to increase the adhesion of interface and cohesion of silver particles. The line resolution of 5 μm was obtained by the present silver precursors. Film thickness was also controllable from 50 to 250 nm by repetition of the above procedure. The average electrical conductivity was in the range of 3-43 Ω cm, measured by four-point probe technique. AES depth profile of the silver pattern thus obtained showed carbon and oxygen contents are less than 1% through the whole range. Even though sulfur contaminant exists on the surface, it was believed that nearly pure silver pattern was generated

  14. Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.

  15. High-stability Ti{sup 4+} precursor for the TiO{sub 2} compact layer of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Qinghua; Cong, Shan; Wang, Hao; Wang, Yun; Dai, Xiao; Zhao, Jie; Sun, Yinghui; Lou, Yanhui; Zou, Guifu, E-mail: zouguifu@suda.edu.cn

    2015-11-30

    Graphical abstract: - Highlights: • We developed an aqueous polymer-assisted deposition method to improve the chemical stability of the TiCl{sub 4} aqueous solution. • The Ti{sup 4+} is encapsulated by the polymer can maintain their initial performances for several months. • The film is dense, smooth and uniform, preparing by this method. • The power conversion efficiency of the DSSC based on P-TiO{sub 2} compact film is about 12.5% higher than that based on H-TiO{sub 2}. - Abstract: A compact layer (blocking layer) can effectively block the direct contact between the fluorine-doped tin oxide (FTO) glass substrate and electrolyte in dye-sensitized solar cells (DSSCs). The TiCl{sub 4} hydrolysis has been widely adopted for preparing the TiO{sub 2} compact layer (H-TiO{sub 2}). However, the TiCl{sub 4} aqueous solution is unstable for its high reactivity. To improve the chemical stability of TiCl{sub 4} aqueous solution, the Ti{sup 4+} is encapsulated by the polymer, polyethyleneimine (PEI). Experimentals show that the Ti-PEI precursor solution can maintain their initial performances for several months. The resulting TiO{sub 2} film (P-TiO{sub 2}) grown by the Ti-PEI precursor is dense, smooth and uniform without any visible and detectable cracks or voids. The P-TiO{sub 2} compact layer is even denser than the H-TiO{sub 2} compact layer, suggesting reducing the electron recombination and prolonging the electron lifetime in dye-sensitized solar cells. Indeed, the electron lifetime of the DSSC based on the P-TiO{sub 2} is 13.15 ms, which is longer than the 10.83 ms based on H-TiO{sub 2}. Meanwhile, the power conversion efficiency of the DSSC based on P-TiO{sub 2} compact film is about 12.5% higher than that based on H-TiO{sub 2}. Therefore, this encapsulation technology can not only improve the stability of the metal ions solution but also meet a large-scale fabrication demand of the TiO{sub 2} compact layer in future DSSCs.

  16. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    polynomial function approach, splines with limited support and neural network models are ... for thin streamlined bodies, the normal force and pitching moment .... eter, a simple point vortex over an infinite plate is used to derive some results.

  17. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl, E-mail: cekdahl@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-06-15

    A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. The approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.

  18. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.

    Science.gov (United States)

    Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W

    2011-10-01

    We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.

  19. THE EFFECT OF SINGLE AND HYBRID FIBRES ON FIBRE REINFORCED SELF COMPACTING CONCRETE PRODUCED WITH HIGH LEVEL OF FLY ASH USAGE

    OpenAIRE

    BOZKURT, Nusret; YAZICIOĞLU, Salih; GÖNEN, Tahir

    2013-01-01

    The aim of this paper is to present results of investigation carried out on fresh and mechanical properties of Fibre Reinforced Self Compacting Concrete (FRSCC) produced with fly ash which is an industrial waste material. Concrete industry is an important one between the industry branches for sustainability. In this study, high level of fly ash was used to reduce Portland Cement (PC) consumption as well as CO2 emission through the use of that waste material. For this purpose, a control Self C...

  20. Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances

    DEFF Research Database (Denmark)

    Wu, Zhong Shuai; Yang, Sheng; Zhang, Lili

    2015-01-01

    Micro-supercapacitors (MSCs) hold great promise as highly competitive miniaturized power sources satisfying the increased demand in microelectronics; however, simultaneously achieving high areal and volumetric capacitances is still a great challenge. Here we demonstrated the designed construction...... of binder-free, electrically conductive, nanoporous activated graphene (AG) compact films for high-performance MSCs. The binder-free AG films are fabricated by alternating deposition of electrochemically exfoliated graphene (EG) and nanoporous AG with a high specific surface area of 2920 m2/g, and then dry...

  1. Application of experiential learning model using simple physical kit to increase attitude toward physics student senior high school in fluid

    Science.gov (United States)

    Johari, A. H.; Muslim

    2018-05-01

    Experiential learning model using simple physics kit has been implemented to get a picture of improving attitude toward physics senior high school students on Fluid. This study aims to obtain a description of the increase attitudes toward physics senior high school students. The research method used was quasi experiment with non-equivalent pretest -posttest control group design. Two class of tenth grade were involved in this research 28, 26 students respectively experiment class and control class. Increased Attitude toward physics of senior high school students is calculated using an attitude scale consisting of 18 questions. Based on the experimental class test average of 86.5% with the criteria of almost all students there is an increase and in the control class of 53.75% with the criteria of half students. This result shows that the influence of experiential learning model using simple physics kit can improve attitude toward physics compared to experiential learning without using simple physics kit.

  2. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  3. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  4. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact......This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance...

  5. Investigation of high resolution compact gamma camera module based on a continuous scintillation crystal using a novel charge division readout method

    International Nuclear Information System (INIS)

    Dai Qiusheng; Zhao Cuilan; Qi Yujin; Zhang Hualin

    2010-01-01

    The objective of this study is to investigate a high performance and lower cost compact gamma camera module for a multi-head small animal SPECT system. A compact camera module was developed using a thin Lutetium Oxyorthosilicate (LSO) scintillation crystal slice coupled to a Hamamatsu H8500 position sensitive photomultiplier tube (PSPMT). A two-stage charge division readout board based on a novel subtractive resistive readout with a truncated center-of-gravity (TCOG) positioning method was developed for the camera. The performance of the camera was evaluated using a flood 99m Tc source with a four-quadrant bar-mask phantom. The preliminary experimental results show that the image shrinkage problem associated with the conventional resistive readout can be effectively overcome by the novel subtractive resistive readout with an appropriate fraction subtraction factor. The response output area (ROA) of the camera shown in the flood image was improved up to 34%, and an intrinsic spatial resolution better than 2 mm of detector was achieved. In conclusion, the utilization of a continuous scintillation crystal and a flat-panel PSPMT equipped with a novel subtractive resistive readout is a feasible approach for developing a high performance and lower cost compact gamma camera. (authors)

  6. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    International Nuclear Information System (INIS)

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-01-01

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  7. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sherrell, Darren A., E-mail: darren.sherrell@diamond.ac.uk; Foster, Andrew J.; Hudson, Lee; Nutter, Brian; O’Hea, James [Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 ODE (United Kingdom); Nelson, Silke [SLAC National Laboratory, Menlo Park, CA 94025 (United States); Paré-Labrosse, Olivier; Oghbaey, Saeed [University of Toronto, 80 St George St, Toronto, ON M5S 1A8 (Canada); Miller, R. J. Dwayne [University of Toronto, 80 St George St, Toronto, ON M5S 1A8 (Canada); and Hamburg Centre for Ultrafast Imaging, CFEL Building 99, Luruper Chaussee 149, Hamburg 22761 (Germany); Owen, Robin L., E-mail: darren.sherrell@diamond.ac.uk [Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 ODE (United Kingdom)

    2015-10-06

    A portable sample viewing and alignment system is described which provides fast and reliable motion positioning for fixed target arrays at synchrotrons and free-electron laser sources. The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. The setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.

  8. A simple interpolation for high and low momentum transfers in QCD

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Roditi, I.

    1982-01-01

    It is shown that a simple rational approximation for the function β(g) of the renormalization group provides a useful expansion parameter for the perturbative regime in QCD and, simultaneously, allows for confinement the functional integral approximation to this problem. (Author) [pt

  9. Examining the Simple View of Reading Model for United States High School Spanish Students

    Science.gov (United States)

    Sparks, Richard; Patton, Jon

    2016-01-01

    The Simple View of Reading (SVR) model, which posits that reading comprehension is the product of word decoding and language comprehension that make independent contributions to reading skill, has been found to explain the acquisition of first language (L1) reading and second language (L2) reading in young English language learners (ELLs).…

  10. Observation of lens aberrations for high resolution electron microscopy II: Simple expressions for optimal estimates

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, W. Owen, E-mail: wos1@cam.ac.uk

    2015-04-15

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. - Highlights: • Optimal estimators for CTEM lens aberrations are more accurate and/or use fewer observations. • Estimators have been found for defocus, astigmatism, three-fold astigmatism, coma and spherical aberration. • Estimators have been found relying on diffractogram shape, image shift and diffractogram orientation only, for a variety of beam tilts. • The standard error for each estimator has been found.

  11. Characteristics of a Bulk High-Critical Temperature Superconductor Fabricated by the Shock Compaction Method: Possible Use as a Highly Sensitive Magnetic Sensor

    International Nuclear Information System (INIS)

    Fujita, H; Maeji, Y; Yamagata, K; Itoh, M; Kezuka, H; Kikuchi, M; Atou, T; Kawasaki, M; Fukuoka, K

    2006-01-01

    A magnetic sensor, constructed of bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO), was fabricated by use of the shock compaction method, employing a propellant gun-system, and then sintered under through use of an electronic furnace. The specimen as a magnetic sensor was maintained in the superconducting state at 77.4 K, under a current density J of approximately 40 A/cm 2 in the absence of an excitation magnetic field B ex . The superconducting state was then broken and the specimen exposed to a B ex value of 40x10 -4 T. That is, the resistance R meas of the specimen occurred when exposed to 40x10 -4 T under a constant J of 40 A/cm 2 . The magnetic sensitivity S of the specimen was approximately 13 %/(10 -4 T) over the range of measurement of the magnetic field B meas from 0 to ±5x10 -4 T, under a constant 40x10 -4 T for the value of B ex , being approximately 13 times greater than that of a giant magnetoresistance (GMR) sensor. It was, consequently, determined that it was possible to apply the bulk BPSCCO specimen as a highly sensitive magnetic sensor

  12. Characteristics of a Bulk High-Critical Temperature Superconductor Fabricated by the Shock Compaction Method: Possible Use as a Highly Sensitive Magnetic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Maeji, Y [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Yamagata, K [Relia. Eval. Technol. Center, Nitto Denko Corp., Onomichi, Hiroshima 722-0212 (Japan); Itoh, M [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Kezuka, H [Faculty of Bionics, Tokyo University of Technol., Hachioji, Tokyo 192-0982 (Japan); Kikuchi, M [Kansen Fukushi Research Center, Tohoku Fukushi University Sendai, Miyagi 989-3201 (Japan); Atou, T [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Kawasaki, M [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Fukuoka, K [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan)

    2006-06-01

    A magnetic sensor, constructed of bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO), was fabricated by use of the shock compaction method, employing a propellant gun-system, and then sintered under through use of an electronic furnace. The specimen as a magnetic sensor was maintained in the superconducting state at 77.4 K, under a current density J of approximately 40 A/cm{sup 2} in the absence of an excitation magnetic field B{sub ex}. The superconducting state was then broken and the specimen exposed to a B{sub ex} value of 40x10{sup -4} T. That is, the resistance R{sub meas} of the specimen occurred when exposed to 40x10{sup -4} T under a constant J of 40 A/cm{sup 2}. The magnetic sensitivity S of the specimen was approximately 13 %/(10{sup -4} T) over the range of measurement of the magnetic field B{sub meas} from 0 to {+-}5x10{sup -4} T, under a constant 40x10{sup -4} T for the value of B{sub ex}, being approximately 13 times greater than that of a giant magnetoresistance (GMR) sensor. It was, consequently, determined that it was possible to apply the bulk BPSCCO specimen as a highly sensitive magnetic sensor.

  13. Laboratory determination of migration of Eu(III) in compacted bentonite–sand mixtures as buffer/backfill material for high-level waste disposal

    International Nuclear Information System (INIS)

    Zhou, Lang; Zhang, Huyuan; Yan, Ming; Chen, Hang; Zhang, Ming

    2013-01-01

    For the safety assessment of geological disposal of high-level radioactive waste (HLW), the migration of Eu(III) through compacted bentonite–sand mixtures was measured under expected repository conditions. Under the evaluated conditions, advection and dispersion is the dominant migration mechanism. The role of sorption on the retardation of migration was also evaluated. The hydraulic conductivities of compacted bentonite–sand mixtures were K=2.07×10 −10 –5.23×10 −10 cm/s, The sorption and diffusion of Eu(III) were examined using a flexible wall permeameter for a solute concentration of 2.0×10 −5 mol/l. The effective diffusion coefficients and apparent diffusion coefficients of Eu(III) in compacted bentonite–sand mixtures were in the range of 1.62×10 –12 –4.87×10 –12 m 2 /s, 1.44×10 –14 –9.41×10 –14 m 2 /s, respectively, which has a very important significance to forecast the relationship between migration length of Eu(III) in buffer/backfill material and time and provide a reference for the design of buffer/backfill material for HLW disposal in China. - Highlights: • The migration progress of Eu(III) in compacted bentonite–sand mixtures was researched. • The hydraulic conductivity of cominpacted bentonite–sand mixtures was measured. • The migration length of Eu(III) in buffer/backfill material after a certain period of time was forecasted

  14. CHICSi - a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. II. Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, P.; Avdeichikov, V.; Carlen, L.; Jakobsson, B. E-mail: bo.jakobsson@kosufy.lu.se; Siwek, A.; Veldhuizen, E.J. van; Westerberg, L.; Whitlow, H.J

    2003-03-11

    We describe the detectors for identification of charged particles and fragments in CHICSi, a large solid angle multi-telescope system mounted inside an ultra-high vacuum (UHV), cluster-jet target chamber. CHICSi performs nuclear reaction experiments at storage rings. The telescopes consist of a first very thin, 10-14 {mu}m Si detector, a second 300 {mu}m (or possibly 500 {mu}m) ion implanted Si detector supplemented by a 6 mm GSO(Ce) scintillator read out by a photodiode (PD) or by a third 300 {mu}m Si detector. The telescopes provide full charge separation up to Z=17 and mass resolution up to A=9 in the energy range 0.7-60A MeV. The thin p-i-n diode detector, etched out from a 280 {mu}m Si wafer, and the GSO/PD detector, both exclusively developed for CHICSi, provide an energy resolution {<=}8%, while the standard 300 {mu}m detectors have {<=}2% energy resolution. Radiation stability of the Si detectors is confirmed up to an integrated flux of 10{sup 10} alpha particles. The GSO detector has 70% light collection efficiency with the optical coupling to the PD a simple open, 0.2 mm, gap. A new method, developed to perform absolute energy calibration for the GSO/PD detector is presented.

  15. CHICSi - a compact ultra-high vacuum compatible detector system for nuclear reaction experiments at storage rings. II. Detectors

    International Nuclear Information System (INIS)

    Golubev, P.; Avdeichikov, V.; Carlen, L.; Jakobsson, B.; Siwek, A.; Veldhuizen, E.J. van; Westerberg, L.; Whitlow, H.J.

    2003-01-01

    We describe the detectors for identification of charged particles and fragments in CHICSi, a large solid angle multi-telescope system mounted inside an ultra-high vacuum (UHV), cluster-jet target chamber. CHICSi performs nuclear reaction experiments at storage rings. The telescopes consist of a first very thin, 10-14 μm Si detector, a second 300 μm (or possibly 500 μm) ion implanted Si detector supplemented by a 6 mm GSO(Ce) scintillator read out by a photodiode (PD) or by a third 300 μm Si detector. The telescopes provide full charge separation up to Z=17 and mass resolution up to A=9 in the energy range 0.7-60A MeV. The thin p-i-n diode detector, etched out from a 280 μm Si wafer, and the GSO/PD detector, both exclusively developed for CHICSi, provide an energy resolution ≤8%, while the standard 300 μm detectors have ≤2% energy resolution. Radiation stability of the Si detectors is confirmed up to an integrated flux of 10 10 alpha particles. The GSO detector has 70% light collection efficiency with the optical coupling to the PD a simple open, 0.2 mm, gap. A new method, developed to perform absolute energy calibration for the GSO/PD detector is presented

  16. Production of ethanol at high temperatures in the fermentation of Jerusalem artichoke juice and a simple medium by Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, M.F.; Correia, I.S.; Novais, J.M.

    1987-01-01

    Temperatures as high as 36 degrees C and 40 degrees C did not negatively affect the ethanol productivity of Jerusalem artichoke (J.a.) juice batch fermentation and the final concentrations of ethanol were close to those produced at lower temperatures. At higher process temperatures (36-40 degrees C), ethanol toxicity in Kluyveromyces marxianus was less important during the fermentation of J.a. juice as compared with a simple medium. In simple medium, the heat-sticking of fermentation was observed and the percentage of unfermented sugars steeply increased from 28 degrees C up to 40 degrees C. (Refs. 13).

  17. Comparison between uniaxially and isostatically compacted bentonite

    International Nuclear Information System (INIS)

    Kalbantner, P.; Sjoeblom, R.; Boergesson, Lennart

    2001-12-01

    The purpose of the present report is to provide the Swedish Nuclear Fuel and Waste Management Company (SKB) with the knowledge base needed for their selection of reference method for manufacturing of bentonite blocks. The purpose is also to provide support for the direction of the further development work. Three types of blocks are compared in the present report: uniaxially compacted medium high blocks, isostatically compacted medium high blocks, isostatically compacted high blocks. The analyses is based on three process systems relating to the sequence of excavation of bentonite-transport-powder preparation-compaction-handling and emplacement of bentonite blocks. The need for further knowledge has been identified and documented in conjunction with these analyses. The comparison is primarily made with regard to the criteria safety/risk, quality/ technique and economy. It is carried out through identification of issues of significance and subsequent analysis and evaluation as well as more formally in a simplified AHP (AHP = Analytical Hierarchic Process). The result of the analyses is that the isostatic technique is applicable for the production of high as well as medium size blocks. The pressed blocks are assessed to fulfil the basic requirements with a very large margin. The result of the analyses is also that the uniaxial technique is applicable for the preparation of medium size blocks, which are assessed to fulfil the basic requirements with a large margin. The need for development and process control is assessed to be somewhat higher for the uniaxial technique. One example is the friction against the walls of the die during the compaction, including the significance of this friction for the development of stresses and discontinuities in the block. These results support a selection of the isostatic technique as the reference technique as it provides flexibility in the choice of block height. The uniaxial technique can form a second alternative if medium high

  18. Real-time high-resolution PC-based system for measurement of errors on compact disks

    Science.gov (United States)

    Tehranchi, Babak; Howe, Dennis G.

    1994-10-01

    Hardware and software utilities are developed to directly monitor the Eight-to-Fourteen (EFM) demodulated data bytes at the input of a CD player's Cross-Interleaved Reed-Solomon Code (CIRC) block decoder. The hardware is capable of identifying erroneous data with single-byte resolution in the serial data stream read from a Compact Disc by a CDD 461 Philips CD-ROM drive. In addition, the system produces graphical maps that show the physical location of the measured errors on the entire disc, or via a zooming and planning feature, on user selectable local disc regions.

  19. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    International Nuclear Information System (INIS)

    Deufel, Christopher L; Furutani, Keith M

    2014-01-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions. (paper)

  20. Ultimate stress increase in unbonded tendons in post-tensioned indeterminate I-beams cast with high strength normal and self compacting concrete

    Directory of Open Access Journals (Sweden)

    Yousef Askari Dolatabad

    2018-06-01

    Full Text Available The use of un-bonded tendons is prevalent in post-tensioned concrete structures. Equations for prediction of stress in un-bonded tendons of post-tensioned normal (vibrating concrete flexural members have been given in various codes. They are based on experience and don’t account all of important parameters such as concrete strength (normal and high strength and its type (vibrating and non-vibrating concrete. Since self-compacting concrete (SCC is nearly a new innovation therefore, understanding the implementation of this type of non-vibrating concrete on the ultimate unbonded tendon stress is critical. For this aim, in this paper there are presented experimental results of six continuous un-bonded post-tensioned I-beams in two groups were casted and monitored by different electrical strain gauges. In the first tested group, the beams (UPN1-12, UPN1-18, UPN1-22 were consisting of high strength normal concrete (HSNC where as in the second group (UPS1-12, UPS1-18, UPS1-22 high strength self-compacting concrete (HSSCC were tested. The variables included the type of concrete and percentage of bounded non-prestressed steel. Experimental monitored results of ultimate stress increase in unbonded tendons are compared with predicted equations of different researchers and standards. It was found that, the proposed equation is in better agreement with the test results. The results of standard error of estimate Sy/x, indicates that for two types of HSCs, the ACI 318-2011 provides better estimates than AASHTO-2010 model whereas this model provides better estimates than BS 8110-97. Keywords: Post-tensioned, Unbonded tendons, Stress increase, High strength normal and self-compacting concrete, Continuous beams

  1. Compact ignition experiments

    International Nuclear Information System (INIS)

    Angelini, A.; Coppi, B.; Nassi, M.

    1992-01-01

    This paper reports on high magnetic field experiments which can be designed to investigate D-T ignition conditions based on present-day experimental results and theoretical understanding of plasma phenomena. The key machine elements are: large plasma currents, compact dimensions, tight aspect ratios, moderate elongations and significant triangularities of the plasma column. High plasma densities, strong ohmic heating, the needed degree of energy confinement, good plasma purity and robust stability against ideal and resistive instabilities can be achieved simultaneously. The Ignitor design incorporates all these characteristics and involves magnet technology developments, started with the Alcator experiment, that use cryogenically cooled normal conductors

  2. Powder metallurgy Al–6Cr–2Fe–1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    International Nuclear Information System (INIS)

    Dám, Karel; Vojtěch, Dalibor; Průša, Filip

    2013-01-01

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 °C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 °C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  3. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  4. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  5. Diverse Formation Mechanisms for Compact Galaxies

    Science.gov (United States)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  6. A simple and convenient set-up for high-temperature Brillouin light scattering

    International Nuclear Information System (INIS)

    Guerette, Michael; Huang Liping

    2012-01-01

    An emulated platelet geometry (or reflection-induced platelet geometry) is employed to collect photons scattered from both longitudinal and transverse acoustic waves travelling within a bulk transparent sample sitting on a reflective Pt plate. Temperature of the sample was controlled with a Linkam TS1500 optical furnace (maximum temperature of 1500 °C). This simple and convenient set-up allows a full determination of elastic constants of transparent materials in situ as a function of temperature from Brillouin light scattering. Structural information can be gained at the same time by guiding the scattered light into a Raman spectrometer using a flipping mirror or a beam splitter. We will demonstrate the applications of this set-up in transparent inorganic glasses, but it can be easily extended to any other transparent materials, either crystalline or amorphous in nature. (paper)

  7. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  8. Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors.

    Science.gov (United States)

    Tang, Huaichao; Yang, Cheng; Lin, Ziyin; Yang, Quanhong; Kang, Feiyu; Wong, Ching Ping

    2015-05-28

    Here we report an electrostatic spray deposition method to prepare three-dimensional porous graphene electrodes for supercapacitor applications. The symmetric supercapacitor exhibits excellent specific capacitance (366 F g(-1) at 1 A g(-1) in 6 M KOH) and long cycle life (108% capacitance retention up to 40 000 cycles). Moreover, the energy densities of the organic and aqueous electrolyte based supercapacitors reach 22.9 and 8.1 Wh kg(-1) when the power densities are 119.2 and 15.4 kW kg(-1), respectively. Compared with the previously reported graphene based supercapacitors, the improved properties could be attributed to the excellent three-dimensional open porous electrode structure, which is favorable for the ion diffusion and electron transport. In addition, this method provides a simple electrode-fabrication route without the involvement of conducting additives and binders. It may find vast applications in thin and miniaturized energy storage scenarios.

  9. Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid

    DEFF Research Database (Denmark)

    Roed, Lisa Anita; Niss, Kristine; Jakobsen, Bo

    2015-01-01

    The frequency dependent specific heat has been measured under pressure for the molecular glass forming liquid 5-polyphenyl-4-ether in the viscous regime close to the glass transition. The temperature and pressure dependences of the characteristic time scale associated with the specific heat...... is compared to the equivalent time scale from dielectric spectroscopy performed under identical conditions. It is shown that the ratio between the two time scales is independent of both temperature and pressure. This observation is non-trivial and demonstrates the existence of specially simple molecular...... liquids in which different physical relaxation processes are both as function of temperature and pressure/density governed by the same underlying “inner clock.” Furthermore, the results are discussed in terms of the recent conjecture that van der Waals liquids, like the measuredliquid, comply...

  10. A new simple and cheap, high-resolution planar optode imaging system: Application to oxgen and pH sensing

    DEFF Research Database (Denmark)

    Larsen, Morten; Borisov, Sergey M.; Gunwald, Björn

    2011-01-01

    A simple, high resolution colormetric planar optode imaging approach is presented. The approach is simple and inexpensive yet versatile, and can be used to study the two-dimensional distribution and dynamics of a range of analytes. The imaging approach utilizes the inbuilt color filter of standard...... commercial digital single lens reflex cameras to simultaneously record different colors (red, green, and blue) of luminophore emission light using only one excitation light source. Using the ratio between the intensity of the different colors recorded in a single image analyte concentrations can...... be calculated. The robustness of the approach is documented by obtaining high resolution data of O2 and pH distributions in marine sediments using easy synthesizable sensors. The sensors rely on the platinum(II)octaethylporphyrin (PtOEP) and lipophilic 8-Hydroxy-1,3,6-pyrenetrisulfonic acid trisodium (HPTS...

  11. A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing

    DEFF Research Database (Denmark)

    Larsen, M.; Borisov, S. M.; Grunwald, B.

    2011-01-01

    A simple, high resolution colormetric planar optode imaging approach is presented. The approach is simple and inexpensive yet versatile, and can be used to study the two-dimensional distribution and dynamics of a range of analytes. The imaging approach utilizes the inbuilt color filter of standard...... commercial digital single lens reflex cameras to simultaneously record different colors (red, green, and blue) of luminophore emission light using only one excitation light source. Using the ratio between the intensity of the different colors recorded in a single image analyte concentrations can...... be calculated. The robustness of the approach is documented by obtaining high resolution data of O-2 and pH distributions in marine sediments using easy synthesizable sensors. The sensors rely on the platinum(II) octaethylporphyrin (PtOEP) and lipophilic 8-Hydroxy-1,3,6-pyrenetrisulfonic acid trisodium (HPTS...

  12. Development of the high-power THz spectroscopy and imaging systems on the basis of an S-band compact electron LINAC

    International Nuclear Information System (INIS)

    Kuroda, R.; Taira, Y.; Tanaka, M.; Toyokawa, H.; Yamada, K.; Kumaki, M.; Tachibana, M.; Sakaue, K.; Washio, M.

    2014-01-01

    The high-power terahertz time-domain spectroscopy (THz-TDS) and imaging systems have been developed on the basis of an S-band compact electron linac at AIST. Such high-power THz source is strongly expected for inspection of dangerous materials in the homeland security field. The high-power THz radiations are generated in two methods with the high-brightness ultra-short electron bunch. One is THz coherent synchrotron radiation (THz-CSR) for THz imaging applications. The other is THz coherent transition radiation (THz-CTR) for the THz spectroscopy. The THz-CTR time-domain spectroscopy (TDS) has been constructed with the EO sampling method and demonstrated in freq. range between 0.1-2 THz. The absorption measurements of drug samples have been successfully performed in atmosphere. In this symposium, we will describe details of the THz-CTR-TDS and imaging experiments and a future plan of the THz applications. (author)

  13. From simple to complex and backwards. Chemical reactions under very high pressure

    International Nuclear Information System (INIS)

    Bini, Roberto; Ceppatelli, Matteo; Citroni, Margherita; Schettino, Vincenzo

    2012-01-01

    Highlights: ► High pressure reactivity of several molecular systems. ► Reaction kinetics and dynamics in high density conditions. ► Key role of optical pumping and electronic excitation. ► Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  14. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  15. Targeted and untargeted high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes.

    Science.gov (United States)

    Barnaba, Chiara; Dellacassa, Eduardo; Nicolini, Giorgio; Giacomelli, Mattia; Roman Villegas, Tomas; Nardin, Tiziana; Larcher, Roberto

    2017-08-01

    Vitis vinifera is one of the most widespread grapevines around the world representing the raw material for high quality wine production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generated much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids have not been well defined, particularly for the simple phenols profile. The dynamic of these phenols in wines, where the glycosylated forms can be transformed into the free ones during winemaking, also raises an increasing health interest by their role as antoxidants in wine consumers. In this work an on-line SPE clean-up device, to reduce matrix interference, was combined with ultra-high liquid chromatography-high resolution mass spectrometry in order to increase understanding of the phenolic composition of hybrid grape varieties. Specifically, the phenolic composition of 4 hybrid grape varieties (red, Cabernet Cantor and Prior; white, Muscaris and Solaris) and 2 European grape varieties (red, Merlot; white, Chardonnay) was investigated, focusing on free and glycosidically bound simple phenols and considering compound distribution in pulp, skin, seeds and wine. Using a targeted approach 53 free simple phenols and 7 glycosidic precursors were quantified with quantification limits ranging from 0.001 to 2mgKg -1 and calibration R 2 of 0.99 for over 86% of compounds. The untargeted approach made it possible to tentatively identify 79 glycosylated precursors of selected free simple phenols in the form of -hexoside (N=30), -pentoside (21), -hexoside-hexoside (17), -hexoside-pentoside (4), -pentoside-hexoside (5) and -pentoside-pentoside (2) derivatives on the basis of accurate mass, isotopic pattern and MS/MS fragmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A Simple Engineering Analysis of Solar Particle Event High Energy Tails and Their Impact on Vehicle Design

    Science.gov (United States)

    Singleterry, Robert C., Jr.; Walker, Steven A.; Clowdsley, Martha S.

    2016-01-01

    The mathematical models for Solar Particle Event (SPE) high energy tails are constructed with several di erent algorithms. Since limited measured data exist above energies around 400 MeV, this paper arbitrarily de nes the high energy tail as any proton with an energy above 400 MeV. In order to better understand the importance of accurately modeling the high energy tail for SPE spectra, the contribution to astronaut whole body e ective dose equivalent of the high energy portions of three di erent SPE models has been evaluated. To ensure completeness of this analysis, simple and complex geometries were used. This analysis showed that the high energy tail of certain SPEs can be relevant to astronaut exposure and hence safety. Therefore, models of high energy tails for SPEs should be well analyzed and based on data if possible.

  17. High strain rate superplasticity in an Al–Mg–Sc–Zr alloy processed via simple rolling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengjia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Pan, Qinglin, E-mail: csupql@163.com [Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083 (China); Shi, Yunjia; Sun, Xue; Xiang, Hao [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2017-02-27

    The superplastic behavior of Al–Mg–Sc–Zr samples with standard gauge size (18 mm by 6 mm) were prepared using simple rolling and were tested in the temperature range from 450 °C to 525 °C at strain rates ranging from 1.67×10{sup –3} s{sup −1} to 1×10{sup –1} s{sup −1}. With proper deformation parameters, the Al–Mg–Sc–Zr alloy has an elongation to failure much higher than 300% and the maximum elongation is 740%. The Microstructure and dislocation substructure investigation using optical microscopy (OM) and transmission electron microscopy (TEM) revealed a dynamic recrystallization in it. The grain size and activation energy on the deformation mechanisms of superplastic is discussed. Results also show that these nano-scale Al{sub 3}(Sc{sub 1−x}Zr{sub x}) particles play an important role in the superplastic process. Al{sub 6}FeMn particles were found to induce the formation and growth of cavities, which can lead to the fracture of specimens.

  18. Novel surgical performance evaluation approximates Standardized Incidence Ratio with high accuracy at simple means.

    Science.gov (United States)

    Gabbay, Itay E; Gabbay, Uri

    2013-01-01

    Excess adverse events may be attributable to poor surgical performance but also to case-mix, which is controlled through the Standardized Incidence Ratio (SIR). SIR calculations can be complicated, resource consuming, and unfeasible in some settings. This article suggests a novel method for SIR approximation. In order to evaluate a potential SIR surrogate measure we predefined acceptance criteria. We developed a new measure - Approximate Risk Index (ARI). "Number Needed for Event" (NNE) is the theoretical number of patients needed "to produce" one adverse event. ARI is defined as the quotient of the group of patients needed for no observed events Ge by total patients treated Ga. Our evaluation compared 2500 surgical units and over 3 million heterogeneous risk surgical patients that were induced through a computerized simulation. Surgical unit's data were computed for SIR and ARI to evaluate compliance with the predefined criteria. Approximation was evaluated by correlation analysis and performance prediction capability by Receiver Operating Characteristics (ROC) analysis. ARI strongly correlates with SIR (r(2) = 0.87, p 0.9) 87% sensitivity and 91% specificity. ARI provides good approximation of SIR and excellent prediction capability. ARI is simple and cost-effective as it requires thorough risk evaluation of only the adverse events patients. ARI can provide a crucial screening and performance evaluation quality control tool. The ARI method may suit other clinical and epidemiological settings where relatively small fraction of the entire population is affected. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  19. A simple subcritical chromatographic test for an extended ODS high performance liquid chromatography column classification.

    Science.gov (United States)

    Lesellier, Eric; Tchapla, Alain

    2005-12-23

    This paper describes a new test designed in subcritical fluid chromatography (SFC) to compare the commercial C18 stationary phase properties. This test provides, from a single analysis of carotenoid pigments, the absolute hydrophobicity, the silanol activity and the steric separation factor of the ODS stationary phases. Both the choice of the analytical conditions and the validation of the information obtained from the chromatographic measurements are detailed. Correlations of the carotenoid test results with results obtained from other tests (Tanaka, Engelhard, Sander and Wise) performed both in SFC and HPLC are discussed. Two separation factors, calculated from the retention of carotenoid pigments used as probe, allowed to draw a first classification diagram. Columns, which present identical chromatographic behaviors are located in the same area on this diagram. This location can be related to the stationary phase properties: endcapping treatments, bonding density, linkage functionality, specific area or silica pore diameter. From the first classification, eight groups of columns are distinguished. One group of polymer coated silica, three groups of polymeric octadecyl phases, depending on the pore size and the endcapping treatment, and four groups of monomeric stationary phases. An additional classification of the four monomeric groups allows the comparison of these stationary phases inside each group by using the total hydrophobicity. One hundred and twenty-nine columns were analysed by this simple and rapid test, which allows a comparison of columns with the aim of helping along their choice in HPLC.

  20. High-Resolution Mapping of Yield Curve Shape and Evolution for Porous Rock: The Effect of Inelastic Compaction on Porous Bassanite

    Science.gov (United States)

    Bedford, John D.; Faulkner, Daniel R.; Leclère, Henri; Wheeler, John

    2018-02-01

    Porous rock deformation has important implications for fluid flow in a range of crustal settings as compaction can increase fluid pressure and alter permeability. The onset of inelastic strain for porous materials is typically defined by a yield curve plotted in differential stress (Q) versus effective mean stress (P) space. Empirical studies have shown that these curves are broadly elliptical in shape. Here conventional triaxial experiments are first performed to document (a) the yield curve of porous bassanite (porosity ≈ 27-28%), a material formed from the dehydration of gypsum, and (b) the postyield behavior, assuming that P and Q track along the yield surface as inelastic deformation accumulates. The data reveal that after initial yield, the yield surface cannot be perfectly elliptical and must evolve significantly as inelastic strain is accumulated. To investigate this further, a novel stress-probing methodology is developed to map precisely the yield curve shape and subsequent evolution for a single sample. These measurements confirm that the high-pressure side of the curve is partly composed of a near-vertical limb. Yield curve evolution is shown to be dependent on the nature of the loading path. Bassanite compacted under differential stress develops a heterogeneous microstructure and has a yield curve with a peak that is almost double that of an equal porosity sample that has been compacted hydrostatically. The dramatic effect of different loading histories on the strength of porous bassanite highlights the importance of understanding the associated microstructural controls on the nature of inelastic deformation in porous rock.

  1. Discrimation among different kind of surface defects on Compact Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    2003-01-01

    Compact Disc players have problems playing discs with surface defects such as scratches and finger prints. The problem is that handling normal disturbances such as mechanical shocks etc, require a high bandwidth of the controllers which keep the Optical Pick-Up focused and radial tracked on the i......Compact Disc players have problems playing discs with surface defects such as scratches and finger prints. The problem is that handling normal disturbances such as mechanical shocks etc, require a high bandwidth of the controllers which keep the Optical Pick-Up focused and radial tracked...... on the information track on the disc. In order for the controllers to handle the surface defects it is required that they are non-sensitive to the frequency contents of the defect, since a defect can be viewed as a disturbance on the measurements. A simple solution to this problem is to decrease the controller...

  2. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

    DEFF Research Database (Denmark)

    Chen, T.; Han, Z. H.; Liu, J. J.

    2014-01-01

    We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...... exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can...

  3. A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy.

    Science.gov (United States)

    Hansen, K; Reckleben, C; Diehl, I; Klär, H

    2008-05-01

    A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm 2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-K α ) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%.

  4. IMPLEMENTATION OF SIMPLE ADDITIVE WEIGHTING (SAW) METHODE IN DETERMINING HIGH SCHOOL STUDENT’S INTEREST

    OpenAIRE

    Prind Triajeng Pungkasanti

    2017-01-01

    The Ministry of Research, Technology, and Higher Education of Republic of Indonesia has set a regulation about curriculum applied in education field named Kurikulum 2013. One of the subsections in the Kurikulum 2013 regulates all requirements of majoring in high school. High school students determine their major based on Kurrikulum 2013 as they are on the 10th grade. The purpose of the majoring in education is to allow children development based on their skills and interests, because before, ...

  5. The effect of TiO{sub 2} nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of)

    2010-12-15

    Research highlights: {yields} TiO{sub 2} nanoparticles effects on self-compacting concrete. {yields} Strength assessments. {yields} Water permeability. {yields} Thermal properties. {yields} Pore structure. {yields} Microstructure evaluations. - Abstract: In this work, strength assessments and coefficient of water absorption of high performance self-compacting concrete containing different amounts of TiO{sub 2} nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding TiO{sub 2} nanoparticles in the cement paste up to 4.0 wt%. TiO{sub 2} nanoparticles, as a result of increased crystalline Ca(OH){sub 2} amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, TiO{sub 2} nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that TiO{sub 2} nanoparticles could improve mechanical and physical properties of the concrete specimens.

  6. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2010-01-01

    Research highlights: → TiO 2 nanoparticles effects on self-compacting concrete. → Strength assessments. → Water permeability. → Thermal properties. → Pore structure. → Microstructure evaluations. - Abstract: In this work, strength assessments and coefficient of water absorption of high performance self-compacting concrete containing different amounts of TiO 2 nanoparticles have been investigated. The results indicate that the strength and the resistance to water permeability of the specimens are improved by adding TiO 2 nanoparticles in the cement paste up to 4.0 wt%. TiO 2 nanoparticles, as a result of increased crystalline Ca(OH) 2 amount especially at the early age of hydration, could accelerate C-S-H gel formation and hence increase the strength of the concrete specimens. In addition, TiO 2 nanoparticles are able to act as nanofillers and recover the pore structure of the specimens by decreasing harmful pores. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that TiO 2 nanoparticles could improve mechanical and physical properties of the concrete specimens.

  7. Soft Functional Silicone Elastomers with High Dielectric Permittivty: Simple Additives vs. Cross-Linked Synthesized Copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    Though dielectric elastomers (DEs) have many favorable properties, the issue of high driving voltages limits the commercial viability of the technology. Improved actuation at lower voltages can be obtained by decreasing the Young’s modulus and/or decreasing the dielectric permittivity of the elas......Though dielectric elastomers (DEs) have many favorable properties, the issue of high driving voltages limits the commercial viability of the technology. Improved actuation at lower voltages can be obtained by decreasing the Young’s modulus and/or decreasing the dielectric permittivity...... of the elastomer. A decrease in Young’s modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE whereas addition of high permittivity fillers such as metal oxides often increases Young’s modulus such that improved actuation is not accomplished. New soft...... silicone elastomers with high dielectric permittivity were prepared through the use of chloropropyl-functional silicones. One method was through the synthesis of modular cross-linkable chloropropyl-functional copolymers that allow for a high degree of chemical freedom such that a tuneable silicone...

  8. Junior High School Students’ Perception about Simple Environmental Problem as an Impact of Problem based Learning

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2017-09-01

    Environmental problem is a real problem that occur in student’s daily life. Junior high school students’ perception about environmental problem is interesting to be investigated. The major aim of this study is to explore junior high school students’ perception about environmental problems around them and ways to solve the problem. The subject of this study is 69 Junior High School Students from two Junior High School in Bandung. This study use two open ended question. The core of first question is environmental problem around them (near school or house). The core of second question is the way to prevent or to solve the problem. These two question are as an impact of problem based learning in science learning. There are two major findings in this study. The first finding, based on most students’ perception, plastic waste cause an environmental problem. The second finding, environmental awareness can be a solution to prevent environmental pollution. The third finding, most student can classify environmental pollution into land, water and air pollution. We can conclude that Junior High School Students see the environmental problem as a phenomenon and teacher can explore environmental problem to guide the way of preventing and resolving environmental problem.

  9. A SIMPLE ANALYSIS OF THE PROPAGATING ACOUSTOELECTRIC HIGH-FIELD DOMAIN

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    1968-01-01

    An analytical treatment of the uniformly propagating acoustoelectric high-field domain is presented in the limit of zero diffusion. Expressions for the electron density and the acoustic energy density as functions of the electric field are given. The domain velocity is determined. ©1968 The Ameri......An analytical treatment of the uniformly propagating acoustoelectric high-field domain is presented in the limit of zero diffusion. Expressions for the electron density and the acoustic energy density as functions of the electric field are given. The domain velocity is determined. ©1968...

  10. Simple syntheses of 3-substituted indoles and their application for high yield 14C-labelling

    International Nuclear Information System (INIS)

    Schallenberg, J.; Meyer, E.

    1983-01-01

    Methods are described which allow the synthesis of several plant indole alkaloids and their metabolites at different scales. Compounds synthesized include gramine (1) (3-dimethylaminomethylindole) which is directly derived from indole, while its biosynthetic precursors 3-aminomethylindole (3) and 3-methylaminomethylindole (2) as well as indole3-carboxylic acid (7) are synthesized via indole-3-aldehyde (6). Slight changes of the experimental conditions allow syntheses with high yields not only at the molar but also at the μmolar level. This is extremely useful when isotope labelled compounds of high specific radioactivity are required for studies of plant metabolism. (orig.)

  11. A Wide-Band High-Gain Compact SIS Receiver Utilizing a 300-μW SiGe IF LNA

    Science.gov (United States)

    Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.

    2017-06-01

    Low-power low-noise amplifiers integrated with superconductor-insulator-superconductor (SIS) mixers are required to enable implementation of large-scale focal plane arrays. In this work, a 220-GHz SIS mixer has been integrated with a high-gain broad-band low-power IF amplifier into a compact receiver module. The low noise amplifier (LNA) was specifically designed to match to the SIS output impedance and contributes less than 7 K to the system noise temperature over the 4-8 GHz IF frequency range. A receiver noise temperature of 30-45 K was measured for a local oscillator frequency of 220 GHz over an IF spanning 4-8 GHz. The LNA power dissipation was only 300-μW. To the best of the authors' knowledge, this is the lowest power consumption reported for a high-gain wide-band LNA directly integrated with an SIS mixer.

  12. Photosynthesis in Chromera velia represents a simple system with high efficiency.

    Directory of Open Access Journals (Sweden)

    Antonietta Quigg

    Full Text Available Chromera velia (Alveolata is a close relative to apicomplexan parasites with a functional photosynthetic plastid. Even though C. velia has a primitive complement of pigments (lacks chlorophyll c and uses an ancient type II form of RuBISCO, we found that its photosynthesis is very efficient with the ability to acclimate to a wide range of irradiances. C. velia maintain similar maximal photosynthetic rates when grown under continual light-limited (low light or light-saturated (high light conditions. This flexible acclimation to continuous light is provided by an increase of the chlorophyll content and photosystem II connectivity under light limited conditions and by an increase in the content of protective carotenoids together with stimulation of effective non-photochemical quenching under high light. C. velia is able to significantly increase photosynthetic rates when grown under a light-dark cycle with sinusoidal changes in light intensity. Photosynthetic activities were nonlinearly related to light intensity, with maximum performance measured at mid-morning. C. velia efficiently acclimates to changing irradiance by stimulation of photorespiration and non-photochemical quenching, thus avoiding any measurable photoinhibition. We suggest that the very high CO(2 assimilation rates under sinusoidal light regime are allowed by activation of the oxygen consuming process (possibly chlororespiration that maintains high efficiency of RuBISCO (type II. Despite the overall simplicity of the C. velia photosynthetic system, it operates with great efficiency.

  13. When Langmuir is too simple: H-2 dissociation on Pd(111) at high coverage

    DEFF Research Database (Denmark)

    Lopez, Nuria; Lodziana, Zbigniew; Illas, F.

    2004-01-01

    Recent experiments of H-2 adsorption on Pd(111) [T. Mitsui et al., Nature (London) 422, 705 (2003)] have questioned the classical Langmuir picture of second order adsorption kinetics at high surface coverage requiring pairs of empty sites for the dissociative chemisorption. Experiments find that ...

  14. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties

    Science.gov (United States)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-01

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  15. A simple method to fabricate electrochemical sensor systems with predictable high-redox amplification

    NARCIS (Netherlands)

    Straver, M.G.; Odijk, Mathieu; Olthuis, Wouter; van den Berg, Albert

    2012-01-01

    In this paper an easy to fabricate SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling effect. By varying the length of the microfluidic entrance channel, a diffusion barrier is created for non-cycling

  16. A Simple Test Tube-Based ELISA Experiment for the High-School Classroom

    Science.gov (United States)

    Brokaw, Ann; Cobb, Brian A.

    2009-01-01

    Immunology is gaining prominence both in the media as well as on the Advanced Placement (AP) exam in Biology. One of the challenges of teaching modern biological topics such as immunology and biochemistry in the high-school setting is the increased reliance on expensive technology in the research world. To begin to bridge this widening gap, we…

  17. Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case

    Institute of Scientific and Technical Information of China (English)

    BAIYong-Qiang; LIUZhen; PEIMing; ZHENGZhu-Jun

    2003-01-01

    In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems in high-dhnensjonal space. With uniform mesh, we find that, the numerical scheme derived from finite element method can keep a preserved multisymplectic structure.

  18. High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties.

    Science.gov (United States)

    Yeom, Da-Young; Jeon, Woojin; Tu, Nguyen Dien Kha; Yeo, So Young; Lee, Sang-Soo; Sung, Bong June; Chang, Hyejung; Lim, Jung Ah; Kim, Heesuk

    2015-05-05

    For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets with desirable electrical properties can be prepared by the simultaneous reduction and boron-doping of graphene oxide (GO) at a high annealing temperature. B-doped graphene nanoplatelets prepared at 1000 °C show a maximum boron concentration of 6.04 ± 1.44 at %, which is the highest value among B-doped graphenes prepared using various methods. With well-mixed GO and g-B2O3 as the dopant, highly uniform doping is achieved for potentially gram-scale production. In addition, as a proof-of-concept, highly B-doped graphene nanoplatelets were used as an electrode of an electrochemical double-layer capacitor (EDLC) and showed an excellent specific capacitance value of 448 F/g in an aqueous electrolyte without additional conductive additives. We believe that B-doped graphene nanoplatelets can also be used in other applications such as electrocatalyst and nano-electronics because of their reliable and controllable electrical properties regardless of the outer environment.

  19. Evaluation of Simple and Inexpensive High-Throughput Methods for Phytic Acid Determination

    DEFF Research Database (Denmark)

    Raboy, Victor; Johnson, Amy; Bilyeu, Kristin

    2017-01-01

    High-throughput/low-cost/low-tech methods for phytic acid determination that are sufficiently accurate and reproducible would be of value in plant genetics, crop breeding and in the food and feed industries. Variants of two candidate methods, those described by Vaintraub and Lapteva (Anal Biochem...... and legume flours regardless of endogenous phytic acid levels or matrix constituents....

  20. Structure and properties of simple molecular systems at very high density

    International Nuclear Information System (INIS)

    LeSar, R.

    1989-01-01

    The use of computer simulations in the study of molecular systems at very high density is reviewed. Applications to the thermodynamics of dense fluid nitrogen and phase transitions in solid oxygen are presented. The effects of changes in the atomic electronic structure on the equation of state of very dense helium are discussed. 19 refs., 2 figs

  1. A Simple Demonstration of the High-Temperature Electrical Conductivity of Glass

    Science.gov (United States)

    Chiaverina, Chris

    2014-01-01

    We usually think of glass as a good electrical insulator; this, however, is not always the case. There are several ways to show that glass becomes conducting at high temperatures, but the following approach, devised by Brown University demonstration manager Gerald Zani, may be one of the simplest to perform.

  2. Investigation into the behaviour of highly compacted dry low-level radioactive waste under repository conditions. Task 3 characterization of radioactive waste forms a series of final reports (1985-89) no 12

    International Nuclear Information System (INIS)

    Field, S.N.; Wang, J.

    1991-01-01

    Supercompaction is a process in which drums containing low-level radioactive waste are compressed at a high axial pressure of up to 70 MPa, resulting in a significant saving in the volume of a repository built to store such waste. Recent practice of supercompaction is to compact waste which has been placed in a sealed primary container, typically a 200-litre steel drum. During the process of compaction the drum is squashed with its contents into a flat pellet; and the compaction ratio can reach as high as 20:1. Although the compaction of radioactive waste has long been a popular means for reducing its storage volume, there is virtually no available information as to the physical or chemical characteristics of such compacted wastes. The primary objective of this project has been to investigate the physical and some of the chemical characteristics of such supercompacted pellets. All the work was carried out on full-scale 200-litre drums of simulated, but non-radioactive, waste. The compaction ratio reached in this study ranged from 5 to 21, depending on the type of waste. Upon completion of compaction, all drums exhibited a tendency to expand. The magnitude of ultimate expansion for dry storage was of the order of 1 mm only, whereas under wet storage conditions values were up to about 10 mm. As the presence of moisture can significantly increase the expansion of compacted waste drums or stress developed due to restraint, it is recommended that the waste repository be made water/vapour-tight

  3. A phenomenological model for the structure-composition relationship of the high Tc cuprates based on simple chemical principles

    International Nuclear Information System (INIS)

    Alarco, J.A.; Talbot, P.C.

    2012-01-01

    A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d 8 and d 9 ) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.

  4. A simple approach for producing highly efficient DNA carriers with reduced toxicity based on modified polyallylamine

    Energy Technology Data Exchange (ETDEWEB)

    Oskuee, Reza Kazemi [Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Dosti, Fatemeh [School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Gholami, Leila [Targeted Drug Delivery Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Malaekeh-Nikouei, Bizhan, E-mail: malaekehb@mums.ac.ir [Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2015-04-01

    Nowadays gene delivery is a topic in many research studies. Non-viral vectors have many advantages over viral vectors in terms of safety, immunogenicity and gene carrying capacity but they suffer from low transfection efficiency and high toxicity. In this study, polyallylamine (PAA), the cationic polymer, has been modified with hydrophobic branches to increase the transfection efficiency of the polymer. Polyallylamine with molecular weights of 15 and 65 kDa was selected and grafted with butyl, hexyl and decyl acrylate at percentages of 10, 30 and 50. The ability of the modified polymer to condense DNA was examined by ethidium bromide test. The complex of modified polymer and DNA (polyplex) was characterized for size, zeta potential, transfection efficiency and cytotoxicity in Neuro2A cell lines. The results of ethidium bromide test showed that grafting of PAA decreased its ability for DNA condensation but vectors could still condense DNA at moderate and high carrier to DNA ratios. Most of polyplexes had particle size between 150 and 250 nm. The prepared vectors mainly showed positive zeta potential but carriers composed of PAA with high percentage of grafting had negative zeta potential. The best transfection activity was observed in vectors with hexyl acrylate chain. Grafting of polymer reduced its cytotoxicity especially at percentages of 30 and 50. The vectors based of PAA 15 kDa had better transfection efficiency than the vectors made of PAA 65 kDa. In conclusion, results of the present study indicated that grafting PAA 15 kDa with high percentages of hexyl acrylate can help to prepare vectors with better transfection efficiency and less cytotoxicity. - Highlights: • The modified polyallylamine was synthesized as a gene carrier. • Modification of polyallylamine (15 kDa) with high percentages of hexyl acrylate improved transfection activity remarkably. • Grafting of polymer with acrylate derivatives reduced polymer cytotoxicity especially at percentages of

  5. Compact silicon photonic resonance-sssisted variable optical attenuator.

    Science.gov (United States)

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-11-28

    A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

  6. Multimegajoule laser project: new compact multipass laser design

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1985-01-01

    A simple laser design that has the fewest laser components of all fusion systems that the authors have studied and that packs closely, thus minimizing space requirements is shown. The Advanced Laser Program objectives are determined by the requirements of the subsystems. The requirements consists of the following elements: high damage thresholds on reflectors; AR layers and dichroic coatings; high-efficiency amplifiers; low-cost production of laser glass, pulse power, and optical elements; and special optical elements, such as an effective phase conjugator and isolator. The combination of a compact architecture and lower-cost, higher-performance components can lead to significant reduction in overall system cost

  7. High-resolution observations of low-luminosity gigahertz-peaked spectrum and compact steep-spectrum sources

    Science.gov (United States)

    Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.

    2018-06-01

    We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.

  8. Near Field sorption Data Bases for Compacted MX-80 Bentonite for Performance Assessment of a High-Level Radioactive Waste Repository in Opalinus Clay Host Rock

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.; Baeyens, B

    2003-08-01

    Bentonites of various types and compacted forms are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Nagra is currently considering an Opalinus clay (OPA) formation in the Zuercher Weinland as a potential location for a high-level radioactive waste repository. A compacted MX-80 bentonite is foreseen as a potential backfill material. Performance assessment studies will be performed for this site and one of the requirements for such an assessment are sorption data bases (SDB) for the bentonite near-field. The purpose of this report is to describe the procedures used to develop the SDB. One of the pre-requisites for developing a SDB is a water chemistry for the compacted bentonite porewater. For a number of reasons mentioned in the report, and discussed in more detail elsewhere, this is not a straightforward task. There are considerable uncertainties associated with the major ion concentrations and in particular with the system pH and Eh. The MX-80 SDB was developed for a reference bentonite porewater (pH = 7.25) which was calculated using the reference OPA porewater. In addition, two further SDBs are presented for porewaters calculated at pH values of 6.9 and 7.9 corresponding to lower and upper bound values calculated for the range of groundwater compositions anticipated for the OPA host rock. 'In house' sorption isotherm data were measured for Cs(I), Ni(II), Eu(III), Th(IV), Se(IV) and 1(-1) on the 'as received' MX-80 material equilibrated with a simulated porewater composition. Complementary 'in house' sorption edge and isotherm measurements on conditioned Na/Ca montmorillonites were also available for many of these radionuclides. These data formed the core of the SDB. Nevertheless, some of the required sorption data still had to be obtained from the open literature. An important part of this report is concerned with describing selection procedures and the modifications

  9. A simple, high-yield, apparatus for NEG coating of vacuum beamline elements

    International Nuclear Information System (INIS)

    Ron, G; Oort, R; Lee, D

    2010-01-01

    Non-Evaporable Getter (NEG) materials are extremely useful in vacuum systems for achieving Ultra High Vacuum. Recently, these materials have been used to coat the inner surfaces of vacuum components, acting as an internal, passive, vacuum pump. We have constructed a low cost apparatus, which allows coating of very small diameter vacuum tubes, used as differential pumping stages. Despite the relative ease of construction, we are routinely able to achieve high coating yields. We further describe an improvement to our system, which is able to achieve the same yield, at an even lower complexity by using an easily manufactured permanent magnet arrangement. The designs described are extendible to virtually any combination of length and diameter of the components to be coated.

  10. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw

    2016-01-01

    elastomer matrix, with high dielectric permittivity and a low Young's modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.......Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combination...

  11. A simple high performance liquid chromatography method for analyzing paraquat in soil solution samples.

    Science.gov (United States)

    Ouyang, Ying; Mansell, Robert S; Nkedi-Kizza, Peter

    2004-01-01

    A high performance liquid chromatography (HPLC) method with UV detection was developed to analyze paraquat (1,1'-dimethyl-4,4'-dipyridinium dichloride) herbicide content in soil solution samples. The analytical method was compared with the liquid scintillation counting (LSC) method using 14C-paraquat. Agreement obtained between the two methods was reasonable. However, the detection limit for paraquat analysis was 0.5 mg L(-1) by the HPLC method and 0.05 mg L(-1) by the LSC method. The LSC method was, therefore, 10 times more precise than the HPLC method for solution concentrations less than 1 mg L(-1). In spite of the high detection limit, the UC (nonradioactive) HPLC method provides an inexpensive and environmentally safe means for determining paraquat concentration in soil solution compared with the 14C-LSC method.

  12. Visualization of intracranial vessel anatomy using high resolution MRI and a simple image fusion technique

    International Nuclear Information System (INIS)

    Nasel, C.

    2005-01-01

    A new technique for fusion and 3D viewing of high resolution magnetic resonance (MR) angiography and morphological MR sequences is reported. Scanning and image fusion was possible within 20 min on a standard 1.5 T MR-scanner. The procedure was successfully performed in 10 consecutive cases with excellent visualization of wall and luminal aspects of the intracranial segments of the internal carotid artery, the vertebrobasilar system and the anterior, middle and posterior cerebral artery

  13. Highly-Expressive Spaces of Well-Behaved Transformations: Keeping It Simple

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan

    We propose novel finite-dimensional spaces of Rn → Rn transformations, n ∈ {1, 2, 3}, derived from (continuously-defined) parametric stationary velocity fields. Particularly, we obtain these transformations, which are diffeomorphisms, by fast and highly-accurate integration of continuous piecewise...... transformations). Its applications include, but are not limited to: unconstrained optimization over monotonic functions; modeling cumulative distribution functions or histograms; time warping; image registration; landmark-based warping; real-time diffeomorphic image editing....

  14. Intracerebrally recorded high frequency oscillations: Simple visual assessment versus automated detection

    Czech Academy of Sciences Publication Activity Database

    Pail, M.; Halámek, Josef; Daniel, P.; Kuba, R.; Tyrlíková, I.; Chrastina, J.; Jurák, Pavel; Rektor, I.; Brázdil, M.

    2013-01-01

    Roč. 124, č. 10 (2013), s. 1935-1942 ISSN 1388-2457 R&D Projects: GA ČR GAP103/11/0933; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : High frequency oscillations * Spikes * Ripples * Temporal lobe epilepsy * Extratemporal lobe epilepsy * Seizure onset zone * Epileptogenic zone Subject RIV: FH - Neurology Impact factor: 2.979, year: 2013

  15. Visualization of intracranial vessel anatomy using high resolution MRI and a simple image fusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Nasel, C. [Division of Neuroradiology, Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, A-1090 Vienna (Austria)]. E-mail: christian.nasel@perfusion.at

    2005-04-01

    A new technique for fusion and 3D viewing of high resolution magnetic resonance (MR) angiography and morphological MR sequences is reported. Scanning and image fusion was possible within 20 min on a standard 1.5 T MR-scanner. The procedure was successfully performed in 10 consecutive cases with excellent visualization of wall and luminal aspects of the intracranial segments of the internal carotid artery, the vertebrobasilar system and the anterior, middle and posterior cerebral artery.

  16. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques

    Directory of Open Access Journals (Sweden)

    Bashar S. Mohammed

    2018-06-01

    Full Text Available The major problems related to roller compacted concrete (RCC pavement are high rigidity, lower tensile strength which causes a tendency of cracking due to thermal or plastic shrinkage, flexural and fatigue loads. Furthermore, RCC pavement does not support the use of dowel bars or reinforcement due to the way it is placed and compacted, these also aided in cracking and consequently increased maintenance cost. To address these issues, high volume fly ash (HVFA RCC pavement was developed by partially replacing 50% cement by volume with fly ash. Crumb rubber was used as a partial replacement to fine aggregate in HVFA RCC pavement at 0%, 10%, 20%, and 30% replacement by volume. Nano silica was added at 0%, 1%, 2% and 3% by weight of cementitious materials to improve early strength development in HVFA RCC pavement and mitigate the loss of strength due to the incorporation of crumb rubber. The nondestructive technique using the rebound hammer test (RHT and ultrasonic pulse velocity (UPV were used to evaluate the effect of crumb rubber and nano silica on the performance of HVFA RCC pavement. The results showed that the use of HVFA as cement replacement decreases both the unit weight, compressive strength, rebound number (RN. Furthermore, the unit weight, compressive strength, RN, UPV and dynamic modulus of elasticity of HVFA RCC pavement all decreases with increase in crumb rubber content and increases with the addition of nano-silica. Combined UPV-RN (SonReb models for predicting the 28 days strength of HVFA RCC pavement based on combining UPV and RN were developed using multivariable regression (double power, bilinear, and double exponential models. The exponential combined SonReb model is the most suitable for predicting the compressive strength of HVFA RCC pavement using UPV and RN as the independent variable with better predicting ability, higher correlation compared to the single variable models. Keywords: Crumb rubber, High volume fly ash, Nano

  17. Prediction for swelling characteristics of compacted bentonite

    International Nuclear Information System (INIS)

    Komine, H.; Ogata, N.

    1996-01-01

    Compacted bentonites are attracting greater attention as back-filling (buffer) materials for high-level nuclear waste repositories. For this purpose, it is very important to quantitatively evaluate the swelling characteristics of compacted bentonite. New equations for evaluating the relationship between the swelling deformation of compacted bentonite and the distance between two montmorillonite layers are derived. New equations for evaluating the ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of compacted bentonite, are proposed. Furthermore, a prediction method for the swelling characteristics of compacted bentonite is presented by combining the new equations with the well-known theoretical equations of repulsive and attractive forces between two montmorillonite layers. The applicability of this method was investigated by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites. (author) 31 refs., 8 tabs., 12 figs

  18. High linearity current communicating passive mixer employing a simple resistor bias

    International Nuclear Information System (INIS)

    Liu Rongjiang; Guo Guiliang; Yan Yuepeng

    2013-01-01

    A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB. (semiconductor integrated circuits)

  19. A simple highly accurate field-line mapping technique for three-dimensional Monte Carlo modeling of plasma edge transport

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kisslinger, J.

    2005-01-01

    The paper presents a new simple and accurate numerical field-line mapping technique providing a high-quality representation of field lines as required by a Monte Carlo modeling of plasma edge transport in the complex magnetic boundaries of three-dimensional (3D) toroidal fusion devices. Using a toroidal sequence of precomputed 3D finite flux-tube meshes, the method advances field lines through a simple bilinear, forward/backward symmetric interpolation at the interfaces between two adjacent flux tubes. It is a reversible field-line mapping (RFLM) algorithm ensuring a continuous and unique reconstruction of field lines at any point of the 3D boundary. The reversibility property has a strong impact on the efficiency of modeling the highly anisotropic plasma edge transport in general closed or open configurations of arbitrary ergodicity as it avoids artificial cross-field diffusion of the fast parallel transport. For stellarator-symmetric magnetic configurations, which are the standard case for stellarators, the reversibility additionally provides an average cancellation of the radial interpolation errors of field lines circulating around closed magnetic flux surfaces. The RFLM technique has been implemented in the 3D edge transport code EMC3-EIRENE and is used routinely for plasma transport modeling in the boundaries of several low-shear and high-shear stellarators as well as in the boundary of a tokamak with 3D magnetic edge perturbations

  20. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    Science.gov (United States)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  1. Compact Infrasonic Windscreen

    Science.gov (United States)

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  2. A simple method for the investigation of the high temperature plasticity of metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chinh, N.Q. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Juhasz, A. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Tasnadi, P. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Kovacs, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary))

    1993-11-01

    The indentation creep test is a powerful and quick method for the investigation of the high temperature plasticity of various materials. During creep test a small cylindrical punch is pressed at constant loads into the surface of the sample and the penetration depth is registered as a function of testing time. On the basis of the creep curves taken at various temperatures and loads the strain rate sensitivity and the activation energy of the steady-state creep process can be determined. The main advantage of this test is that it needs only a small amount of testing material. In this paper the usefullness of this method illustrated by some results obtained on superplastic and non superplastic Al alloys. The indentation results are compared with tensile data obtained on the same materials. (orig.).

  3. Two novel compact toroidal concepts with Stellarator features

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-07-01

    Two novel compact toroidal concepts are presented. One is the Stellarator-Spheromak (SSP) and another is the Extreme-Low-Aspect-Ratio Stellarator (ELARS). An SSP device represents a hybrid between a spherical stellarator (SS) and a spheromak. This configuration retains the main advantages of spheromaks ans has a potential for improving the spheromak concept regarding its main problems. The MHD equilibrium in an SSP with very high β of the confined plasma is demonstrated. Another concept, ELARS, represents an extreme limit of the SS approach, and considers devices with stellarator features and aspect ratios A ∼ 1. We have succeeded in finding ELARS configurations with extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and good particle transport characteristics

  4. SCREENING FOR SIMPLE MYOPIA AMONG HIGH SCHOOL CHILDREN IN HYDERABAD CITY

    Directory of Open Access Journals (Sweden)

    Vundi Krishna

    2016-03-01

    Full Text Available BACKGROUND Refractive error is one of the most common causes of visual impairment around the world and the second leading cause of treatable blindness. Due to the high magnitude of uncorrected refractive errors, myopia is considered as one of the important public health problems, especially in the urban population in India. It has been given high priority under the National Programme for Control of Blindness. AIM The aim of the present study is to know the prevalence of myopia and assess the degree of myopia among school going children. SETTINGS AND DESIGN Cross-sectional study done for one year. METHODS AND MATERIAL Age group of children 13-15 years, a total of 1600 were included in the study. Refractive error was tested using Snellen’s chart, Pin hole test, Occluder, Retinoscope. Statistical Analysis was done using the Epi Info version 7. RESULTS The prevalence of refractive errors was more in private schools (28.6% than in government schools (23%. It was observed that myopia was the major refractive error (89.8% among total refractive errors, followed by astigmatism (6.1% and hypermetropia (4.1%. In myopic children, both eyes were involved in 71.5%, right eye alone in 16.4%. Only 60% (478 and 98.4% (788 have undergone eye checkups yearly once, 36% and 0.3% didn’t have eye checkups so far in private and government schools respectively. CONCLUSION We conclude that prevalence of refractive errors more in private schools than government schools and myopia is the major among refractive errors. In most of them both the eyes are involved. Bitot’s spots were more in government schools, suggesting the need of vitamin A supplementation.

  5. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics

    Science.gov (United States)

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-01

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics.As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity

  6. Non-Doped Sky-Blue OLEDs Based on Simple Structured AIE Emitters with High Efficiencies at Low Driven Voltages.

    Science.gov (United States)

    Islam, Amjad; Zhang, Dongdong; Peng, Ruixiang; Yang, Rongjuan; Hong, Ling; Song, Wei; Wei, Qiang; Duan, Lian; Ge, Ziyi

    2017-09-05

    Blue organic light-emitting diodes (OLEDs) are necessary for flat-panel display technologies and lighting applications. To make more energy-saving, low-cost and long-lasting OLEDs, efficient materials as well as simple structured devices are in high demand. However, a very limited number of blue OLEDs achieving high stability and color purity have been reported. Herein, three new sky-blue emitters, 1,4,5-triphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEI), 1-(4-methoxyphenyl)-4,5-diphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEMeOPhI) and 1-phenyl-2,4,5-tris(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (3TPEI), with a combination of imidazole and tetraphenylethene groups, have been developed. High photoluminescence quantum yields are obtained for these materials. All derivatives have demonstrated aggregation-induced emission (AIE) behavior, excellent thermal stability with high decomposition and glass transition temperatures. Non-doped sky-blue OLEDs with simple structure have been fabricated employing these materials as emitters and realized high efficiencies of 2.41 % (4.92 cd A -1 , 2.70 lm W -1 ), 2.16 (4.33 cd A -1 , 2.59 lm W -1 ) and 3.13 % (6.97 cd A -1 , 4.74 lm W -1 ) for TPEI, TPEMeOPhI and 3TPEI, with small efficiency roll-off. These are among excellent results for molecules constructed from the combination of imidazole and TPE reported so far. The high performance of a 3TPEI-based device shows the promising potential of the combination of imidazole and AIEgen for synthesizing efficient electroluminescent materials for OLED devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Strong density of a class of simple operators

    International Nuclear Information System (INIS)

    Somasundaram, S.; Mohammad, N.

    1991-08-01

    An algebra of simple operators has been shown to be strongly dense in the algebra of all bounded linear operators on function spaces of a compact (not necessarily abelian) group. Further, it is proved that the same result is also true for L 2 (G) if G is a locally compact (not necessarily compact) abelian group. (author). 6 refs

  8. Influence of temporary organic bond nature on the properties of compacts and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ditts, A., E-mail: ditts@tpu.ru; Revva, I., E-mail: revva@tpu.ru; Pogrebenkov, V.; Kosolapov, A. [National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050 (Russian Federation); Galashov, E. [Novosibirsk State University, 2, Pirogova Str., 630090, Novosibirsk (Russian Federation); Nepochatov, Y. [Holding JSC “NEVZ-Soyuz”, 220, Krasny Avenue, Novosibirsk, 634050 (Russian Federation)

    2016-01-15

    This work contains results of investigation of obtaining high thermally conductive ceramics from commercial powders of aluminum nitride and yttrium oxide by the method of monoaxial compaction of granulate. The principal scheme of preparation is proposed and technological properties of granulate are defined. Compaction conditions for simple items to use as heat removal in microelectronics and power electrical engineering have been established. Investigations of thermophysical properties of obtained ceramics and its structure by the XRD and SEM methods have been carried out. Ceramics with thermal conductivity from 172 to 174 W/m·K has been obtained as result of this work.

  9. Popular heavy particle beam cancer therapeutic system (3). Development of high efficiency compact incident system-2. Great success of beam test of new APF-IH type DTL

    International Nuclear Information System (INIS)

    Yamamoto, Kazuo; Iwata, Yoshiyuki

    2006-01-01

    High efficiency compact incident system consists of an electron cyclotron resonance (ECR) ion source, a radio frequency quadrupole (RFQ) linear accelerator and an interdigital H-mode (IH) drift tube linear accelerator (DTL). IH type DTL and alternating phase focusing (APF) method is explained. Its special features, production, and beam test are reported. The electric field generation method, outline of the APF method, drift tube, IH type DTL, distribution of electric field and voltage, set up of beam test, ECR ion source and incident line, the inside structure of the RFQ type linear accelerator and the APF-IH type DTL, matching Q lens section, beam, emittance, measurement results of momentum dispersion are illustrated. (S.Y.)

  10. Design of a high-magnification and low-aberration compact catadioptric telescope for the Advanced Virgo gravitational-wave interferometric detector

    International Nuclear Information System (INIS)

    Buy, C; Barsuglia, M; Tacca, M; Genin, E; Gouaty, R

    2017-01-01

    Advanced Virgo is a major upgrade of the Virgo gravitational-wave detector, aiming to increase its sensitivity by an order of magnitude. Among the main modifications of the instrument, the size of the laser beam inside the central area has been roughly doubled. Consequently, the input/output optics systems have been re-designed. Due to the overall Advanced Virgo optical scheme, high-magnification and compact telescopes are needed. These telescopes also have to fulfill stringent requirements in terms of aberrations, separation of secondary beams and scattered light. In this paper we describe the design of the Advanced Virgo telescopes and their estimated performances in terms of tuning capability and optical properties. (paper)

  11. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  12. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  13. On framed simple Lie groups

    OpenAIRE

    MINAMI, Haruo

    2016-01-01

    For a compact simple Lie group $G$, we show that the element $[G, \\mathcal{L}] \\in \\pi^S_*(S^0)$ represented by the pair $(G, \\mathcal{L})$ is zero, where $\\mathcal{L}$ denotes the left invariant framing of $G$. The proof relies on the method of E. Ossa [Topology, 21 (1982), 315–323].

  14. Interactive Light Stimulus Generation with High Performance Real-Time Image Processing and Simple Scripting

    Directory of Open Access Journals (Sweden)

    László Szécsi

    2017-12-01

    Full Text Available Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software, which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.

  15. High pressure chemistry of red phosphorus by photo-activated simple molecules

    International Nuclear Information System (INIS)

    Ceppatelli, M; Bini, R; Caporali, M; Peruzzini, M; Fanetti, S

    2014-01-01

    High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In addition the photo-activation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photo-activators in HP conditions. Here we report a study on the HP photo-induced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using membrane Diamond (DAC) and Sapphire (SAC) anvil cells. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occurred in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2–1.5 GPa).

  16. Profitability of simple stationary technical trading rules with high-frequency data of Chinese Index Futures

    Science.gov (United States)

    Chen, Jing-Chao; Zhou, Yu; Wang, Xi

    2018-02-01

    Technical trading rules have been widely used by practitioners in financial markets for a long time. The profitability remains controversial and few consider the stationarity of technical indicators used in trading rules. We convert MA, KDJ and Bollinger bands into stationary processes and investigate the profitability of these trading rules by using 3 high-frequency data(15s,30s and 60s) of CSI300 Stock Index Futures from January 4th 2012 to December 31st 2016. Several performance and risk measures are adopted to assess the practical value of all trading rules directly while ADF-test is used to verify the stationarity and SPA test to check whether trading rules perform well due to intrinsic superiority or pure luck. The results show that there are several significant combinations of parameters for each indicator when transaction costs are not taken into consideration. Once transaction costs are included, trading profits will be eliminated completely. We also propose a method to reduce the risk of technical trading rules.

  17. A simple but highly effective approach to evaluate the prognostic performance of gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Maud H W Starmans

    Full Text Available BACKGROUND: Highly parallel analysis of gene expression has recently been used to identify gene sets or 'signatures' to improve patient diagnosis and risk stratification. Once a signature is generated, traditional statistical testing is used to evaluate its prognostic performance. However, due to the dimensionality of microarrays, this can lead to false interpretation of these signatures. PRINCIPAL FINDINGS: A method was developed to test batches of a user-specified number of randomly chosen signatures in patient microarray datasets. The percentage of random generated signatures yielding prognostic value was assessed using ROC analysis by calculating the area under the curve (AUC in six public available cancer patient microarray datasets. We found that a signature consisting of randomly selected genes has an average 10% chance of reaching significance when assessed in a single dataset, but can range from 1% to ∼40% depending on the dataset in question. Increasing the number of validation datasets markedly reduces this number. CONCLUSIONS: We have shown that the use of an arbitrary cut-off value for evaluation of signature significance is not suitable for this type of research, but should be defined for each dataset separately. Our method can be used to establish and evaluate signature performance of any derived gene signature in a dataset by comparing its performance to thousands of randomly generated signatures. It will be of most interest for cases where few data are available and testing in multiple datasets is limited.

  18. Skin and scales of teleost fish: Simple structure but high performance and multiple functions

    Science.gov (United States)

    Vernerey, Franck J.; Barthelat, Francois

    2014-08-01

    Natural and man-made structural materials perform similar functions such as structural support or protection. Therefore they rely on the same types of properties: strength, robustness, lightweight. Nature can therefore provide a significant source of inspiration for new and alternative engineering designs. We report here some results regarding a very common, yet largely unknown, type of biological material: fish skin. Within a thin, flexible and lightweight layer, fish skins display a variety of strain stiffening and stabilizing mechanisms which promote multiple functions such as protection, robustness and swimming efficiency. We particularly discuss four important features pertaining to scaled skins: (a) a strongly elastic tensile behavior that is independent from the presence of rigid scales, (b) a compressive response that prevents buckling and wrinkling instabilities, which are usually predominant for thin membranes, (c) a bending response that displays nonlinear stiffening mechanisms arising from geometric constraints between neighboring scales and (d) a robust structure that preserves the above characteristics upon the loss or damage of structural elements. These important properties make fish skin an attractive model for the development of very thin and flexible armors and protective layers, especially when combined with the high penetration resistance of individual scales. Scaled structures inspired by fish skin could find applications in ultra-light and flexible armor systems, flexible electronics or the design of smart and adaptive morphing structures for aerospace vehicles.

  19. High pressure chemistry of red phosphorus by photo-activated simple molecules

    Science.gov (United States)

    Ceppatelli, M.; Fanetti, S.; Bini, R.; Caporali, M.; Peruzzini, M.

    2014-05-01

    High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In addition the photo-activation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photo-activators in HP conditions. Here we report a study on the HP photo-induced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using membrane Diamond (DAC) and Sapphire (SAC) anvil cells. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occurred in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).

  20. Interactive Light Stimulus Generation with High Performance Real-Time Image Processing and Simple Scripting.

    Science.gov (United States)

    Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter

    2017-01-01

    Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.

  1. Soil compaction and growth of woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  2. Soil compaction and growth of woody plants

    International Nuclear Information System (INIS)

    Kozlowski, T.T.

    1999-01-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  3. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  4. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  5. Compact toroid refueling of reactors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  6. Convergent Polishing: A Simple, Rapid, Full Aperture Polishing Process of High Quality Optical Flats & Spheres

    Science.gov (United States)

    Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan

    2014-01-01

    Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745

  7. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    Science.gov (United States)

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  8. High-dose biotin therapy leading to false biochemical endocrine profiles: validation of a simple method to overcome biotin interference.

    Science.gov (United States)

    Piketty, Marie-Liesse; Prie, Dominique; Sedel, Frederic; Bernard, Delphine; Hercend, Claude; Chanson, Philippe; Souberbielle, Jean-Claude

    2017-05-01

    High-dose biotin therapy is beneficial in progressive multiple sclerosis (MS) and is expected to be adopted by a large number of patients. Biotin therapy leads to analytical interference in many immunoassays that utilize streptavidin-biotin capture techniques, yielding skewed results that can mimic various endocrine disorders. We aimed at exploring this interference, to be able to remove biotin and avoid misleading results. We measured free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), parathyroid homrone (PTH), 25-hydroxyvitamin D (25OHD), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, C-peptide, cortisol (Roche Diagnostics assays), biotin and its main metabolites (liquid chromatography tandem mass spectrometry) in 23 plasmas from MS patients and healthy volunteers receiving high-dose biotin, and in 39 biotin-unsupplemented patients, before and after a simple procedure (designated N5) designed to remove biotin by means of streptavidin-coated microparticles. We also assayed fT4, TSH and PTH in the 23 high-biotin plasmas using assays not employing streptavidin-biotin binding. The biotin concentration ranged from 31.7 to 1160 µg/L in the 23 high-biotin plasmas samples. After the N5 protocol, the biotin concentration was below the detection limit in all but two samples (8.3 and 27.6 μg/L). Most hormones results were abnormal, but normalized after N5. All results with the alternative methods were normal except two slight PTH elevations. In the 39 biotin-unsupplemented patients, the N5 protocol did not affect the results for any of the hormones, apart from an 8.4% decrease in PTH. We confirm that most streptavidin-biotin hormone immunoassays are affected by high biotin concentrations, leading to a risk of misdiagnosis. Our simple neutralization method efficiently suppresses biotin interference.

  9. High-resolution gamma-ray measurement systems using a compact electro- mechanically cooled detector system and intelligent software

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Neufeld, K.W.

    1995-01-01

    Obtaining high-resolution gamma-ray measurements using high-purity germanium (HPGe) detectors in the field has been of limited practicality due to the need to use and maintain a supply of liquid nitrogen (LN 2 ). This same constraint limits high-resolution gamma measurements in unattended safeguards or treaty Verification applications. We are developing detectors and software to greatly extend the applicability of high-resolution germanium-based measurements for these situations

  10. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  11. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  12. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    "Revised to reflect modern pharmaceutical compacting techniques, this Second Edition guides pharmaceutical engineers, formulation scientists, and product development and quality assurance personnel...

  13. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  14. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  15. A compact electron gun using field emitter array

    International Nuclear Information System (INIS)

    Asakawa, M.R.; Ikeda, A.; Miyabe, N.; Yamaguchi, S.; Kusaba, M.; Tsunawaki, Y.

    2008-01-01

    A compact electron gun using field emitter array has been developed. With a simple triode configuration consisting of FEA, mid-electrode and anode electrode, the electron gun produces a parallel beam with a diameter of 0.5 mm. This electron gun is applicable for compact radiation sources such as Cherenkov free-electron lasers

  16. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  17. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics.

    Science.gov (United States)

    Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon

    2018-01-22

    The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.

  18. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  19. High Contrast Coherent Population Trapping Resonances in Cs Vapour Cells with a Simple-Architecture Laser System

    International Nuclear Information System (INIS)

    Liu, Xiaochi

    2013-01-01

    This thesis reports the development of a simple-architecture laser system resonant at 895 nm used for the detection of high-contrast coherent population trapping (CPT) resonances in Cs vapor cells. The laser system combines a distributed feedback-diode (DFB) laser, a pigtailed Mach-Zehnder intensity electro-optic modulator (EOM) driven at 4.596 GHz for the generation of optical sidebands frequency-split by 9.192 GHz and a Michelson delay-line system to produce a bi-chromatic optical field that alternates between right and left circular polarization. This polarization pumping scheme, first proposed by Happer's group in Princeton on K atoms, allows to optically pump a maximum number of Cs atoms into the 0-0 magnetic field insensitive clock transition. Advanced noise reduction techniques were implemented in order to stabilize the laser power, the optical carrier suppression at the output of the EOM and the DFB laser frequency. Using this system, we demonstrated the detection of CPT resonances with a contrast of 80% in cm-scale Cs vapor cells. This contrast was measured to be increased until a saturation effect with the laser power at the expense of the CPT line broadening. To circumvent this issue, we proposed with a simple setup Ramsey spectroscopy of CPT resonances in vapor cells to combine high-contrast and narrow line width of the CPT resonances. In this setup, the EOM is used both for optical sidebands generation and light switch to produce Ramsey interaction. Ramsey fringes of 166 Hz line width with a contrast better than 30% were detected with this setup. This laser system will be in a near future devoted to be used for the development of a high-performance CPT-based atomic clock. (author)

  20. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I., E-mail: isoltani@mit.edu; Youcef-Toumi, K.

    2014-11-15

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube.