WorldWideScience

Sample records for similar switching properties

  1. Verifying different-modality properties for concepts produces switching costs.

    Science.gov (United States)

    Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W

    2003-03-01

    According to perceptual symbol systems, sensorimotor simulations underlie the representation of concepts. It follows that sensorimotor phenomena should arise in conceptual processing. Previous studies have shown that switching from one modality to another during perceptual processing incurs a processing cost. If perceptual simulation underlies conceptual processing, then verifying the properties of concepts should exhibit a switching cost as well. For example, verifying a property in the auditory modality (e.g., BLENDER-loud) should be slower after verifying a property in a different modality (e.g., CRANBERRIES-tart) than after verifying a property in the same modality (e.g., LEAVES-rustling). Only words were presented to subjects, and there were no instructions to use imagery. Nevertheless, switching modalities incurred a cost, analogous to the cost of switching modalities in perception. A second experiment showed that this effect was not due to associative priming between properties in the same modality. These results support the hypothesis that perceptual simulation underlies conceptual processing.

  2. A self-similar model for conduction in the plasma erosion opening switch

    International Nuclear Information System (INIS)

    Mosher, D.; Grossmann, J.M.; Ottinger, P.F.; Colombant, D.G.

    1987-01-01

    The conduction phase of the plasma erosion opening switch (PEOS) is characterized by combining a 1-D fluid model for plasma hydrodynamics, Maxwell's equations, and a 2-D electron-orbit analysis. A self-similar approximation for the plasma and field variables permits analytic expressions for their space and time variations to be derived. It is shown that a combination of axial MHD compression and magnetic insulation of high-energy electrons emitted from the switch cathode can control the character of switch conduction. The analysis highlights the need to include additional phenomena for accurate fluid modeling of PEOS conduction

  3. Analysis of aceismatic properties of switch boards

    International Nuclear Information System (INIS)

    Tabuchi, Yoji; Nishikawa, Atsushi

    1986-01-01

    Recently, in order to limit the disaster at the time of earthquakes to the minimum, the aseismatic properties of electric facilities have been regarded as important. By the development and spread of CAE simulation and experimental modal analysis, aseismatic analysis has become feasible also in design section. Taking an example of the switch boards of rigid construction, which have been used mainly for nuclear power plants, the analysis of the aseismatic properties is explained. In the switch boards of rigid construction, the probability of causing resonance behavior due to earthquakes is decreased by making the structure rigid, thus the aseismatic properties are heightened. In the switch boards of rigid construction, the primary natural frequency is heightened usually to above 20 Hz considering earthquake movement and the response of buildings (in the range from 0.5 to 10 Hz). Since the switch boards of rigid construction can be treated as a rigid body in the examination of structural strength, generally static analysis is carried out. The dimensions and weight tend to be large for increasing the rigidity. In most cases, standard equipment can be adopted if the fixing is made strong. The modal analysis of the natural vibration, static stress analysis and time history response analysis were carried out by finite element method. Also the vibration test on a large vibration table was made. The results are reported. (Kako, I.)

  4. Output regulation control for switched stochastic delay systems with dissipative property under error-dependent switching

    Science.gov (United States)

    Li, L. L.; Jin, C. L.; Ge, X.

    2018-01-01

    In this paper, the output regulation problem with dissipative property for a class of switched stochastic delay systems is investigated, based on an error-dependent switching law. Under the assumption that none subsystem is solvable for the problem, a sufficient condition is derived by structuring multiple Lyapunov-Krasovskii functionals with respect to multiple supply rates, via designing error feedback regulators. The condition is also established when dissipative property reduces to passive property. Finally, two numerical examples are given to demonstrate the feasibility and efficiency of the present method.

  5. Effect of vegetation switch on soil chemical properties

    Czech Academy of Sciences Publication Activity Database

    Iwashima, N.; Masunaga, T.; Fujimaki, R.; Toyota, Ayu; Tayasu, I.; Hiura, T.; Kaneko, N.

    2012-01-01

    Roč. 58, č. 6 (2012), s. 783-792 ISSN 0038-0768 Institutional support: RVO:60077344 Keywords : earthworm * litter * nutrient cycling * soil chemical properties * vegetation switch Subject RIV: EH - Ecology, Behaviour Impact factor: 0.889, year: 2012

  6. Heterodiazocines: Synthesis and Photochromic Properties, Trans to Cis Switching within the Bio-optical Window.

    Science.gov (United States)

    Hammerich, Melanie; Schütt, Christian; Stähler, Cosima; Lentes, Pascal; Röhricht, Fynn; Höppner, Ronja; Herges, Rainer

    2016-10-04

    Diazocines, bridged azobenzenes, exhibit superior photophysical properties compared to parent azobenzenes such as high switching efficiencies, quantum yields, and particularly switching wavelengths in the visible range. Synthesis, however, proceeds with low yields, and derivatives are difficult to prepare. We now present two heterodiazocines which are easier to synthesize, and the general procedures should also provide facile access to derivatives. Moreover, both compounds can be switched with light in the far-red (650 nm). Accessibility and photophysical properties make them ideal candidates for applications such as photoswitchable drugs and functional materials.

  7. Switching Phenomena in a System with No Switches

    Science.gov (United States)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  8. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    Science.gov (United States)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  9. Preparation, optical properties and 1 Multiplication-Sign 2 polymeric thermo-optic switch of polyurethane-urea

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Fengxian, E-mail: fxqiuchem@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Cao, Zhijuan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Cao, Guorong; Guan, Yijun; Shen, Qiang [Department of Physics, Jiangsu University, Zhenjiang 212013 (China); Wang, Qing; Yang, Dongya [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-08-15

    A polyurethane-urea (PUU) containing azo chromophore, polyether polyol (NJ-220) and isophorone diisocyanate (IPDI) was prepared. The structure, thermal property and mechanical properties of obtained PUU were characterized and measured by the UV-visible spectroscopy, Fourier transform infrared, Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The refractive index (n) of PUU was determined at different temperature and wavelength (532 nm, 650 nm and 850 nm) using attenuated total reflection (ATR) technique, and the thermo-optic coefficients (dn/dT) were -5.3643 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}, -5.2500 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1} and -4.6071 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}, respectively. Using the Charge Coupled Device (CCD) digital imaging devices, transmission loss of PUU was measured and the value was 0.659 dB cm{sup -1}. A 1 Multiplication-Sign 2 polymeric thermo-optic switch based on the thermo-optic effect of PUU film was proposed. With branching angle of 0.143 Degree-Sign and the finite difference beam propagation method (FD-BPM), the polymeric thermo-optic switch was simulated. The result showed that the power consumption of the thermo-optic switch could be only 0.72 mW, and the response time of the switch was about 3.0 ms. The obtained PUU has a significant improvement in reducing the power consumption and response time compared with those of the normal polymeric thermo-optic switches. -- Highlights: Black-Right-Pointing-Pointer Preparation and structural characterization of a novel azo polyurethane-urea (PUU). Black-Right-Pointing-Pointer The mechanical performance and thermal property of PUU film. Black-Right-Pointing-Pointer The thermo-optic property, transmission loss and dispersion property of PUU. Black-Right-Pointing-Pointer Proposed a new 1 Multiplication-Sign 2 polymeric thermo-optic switch.

  10. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin

    2014-01-01

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  11. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers

    International Nuclear Information System (INIS)

    Baek, Hyunhee; Cho, Jinhan; Lee, Chanwoo; Lim, Kwang-il

    2012-01-01

    The properties of enzymes, which can cause reversible changes in currents through redox reactions in solution, are of fundamental and practical importance in bio-electrochemical applications. These redox properties of enzymes are often associated with their charge-trap sites. Here, we demonstrate that reversible changes in resistance in dried lysozyme (LYS) films can be generated by an externally applied voltage as a result of charge trap/release. Based on such changes, LYS can be used as resistive switching active material for nonvolatile memory devices. In this study, cationic LYS and anionic poly(styrene sulfonate) (PSS) layers were alternately deposited onto Pt-coated silicon substrates using a layer-by-layer assembly method. Then, top electrodes were deposited onto the top of LYS/PSS multilayers to complete the fabrication of the memory-like device. The LYS/PSS multilayer devices exhibited typical resistive switching characteristics with an ON/OFF current ratio above 10 2 , a fast switching speed of 100 ns and stable performance. Furthermore, the insertion of insulating polyelectrolytes (PEs) between the respective LYS layers significantly enhanced the memory performance of the devices showing a high ON/OFF current ratio of ∼10 6 and low levels of power consumption. (paper)

  12. Resistive switching properties and physical mechanism of europium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei; Zou, Changwei [School of Physical Science and Technology, Lingnan Normal University, Zhanjiang (China); Bao, Dinghua [State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou (China)

    2017-09-15

    A forming-free resistive switching effect was obtained in Pt/Eu{sub 2}O{sub 3}/Pt devices in which the Eu{sub 2}O{sub 3} thin films were fabricated by a chemical solution deposition method. The devices show unipolar resistive switching with excellent switching parameters, such as high resistance ratio (10{sup 7}), stable resistance values (read at 0.2 V), low reset voltage, good endurance, and long retention time (up to 10{sup 4} s). On the basis of the analysis of the current-voltage (I-V) curves and the resistance-temperature dependence, it can be concluded that the dominant conducting mechanisms were ohmic behavior and Schottky emission at low resistance state and high resistance state, respectively. The resistive switching behavior could be explained by the formation and rupture of conductive filament, which is related to the abundant oxygen vacancies generated in the deposition process. This work demonstrates the great potential opportunities of Eu{sub 2}O{sub 3} thin film in resistive switching memory applications, which might possess distinguished properties. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Reversible switching of fluorophore property based on intrinsic conformational transition of adenylate kinase during its catalytic cycle.

    Science.gov (United States)

    Fujii, Akira; Hirota, Shun; Matsuo, Takashi

    2013-07-17

    Adenylate kinase shows a conformational transition (OPEN and CLOSED forms) during substrate binding and product release to mediate the phosphoryl transfer between ADP and ATP/AMP. The protein motional characteristics will be useful to construct switching systems of fluorophore properties caused by the catalytic cycle of the enzyme. This paper demonstrates in situ reversible switching of a fluorophore property driven by the conformational transition of the enzyme. The pyrene-conjugated mutant adenylate kinase is able to switch the monomer/excimer emission property of pyrene on addition of ADP or P(1)P(5)-di(adenosine-5')pentaphosphate (Ap5A, a transition state analog). The observation under the dilute condition (~0.1 μM) indicates that the emission spectral change was caused by the motion of a protein molecule and not led by protein-protein interactions through π-π stacking of pyrene rings. The switching can be reversibly conducted by using hexokinase-coupling reaction. The fashion of the changes in emission intensities at various ligand concentrations is different between ADP, Mg(2+)-bound ADP, and Mg(2+)-bound Ap5A. The emission property switching is repeatable by a sequential addition of a substrate in a one-pot process. It is proposed that the property of a synthetic molecule on the enzyme surface is switchable in response to the catalytic cycle of adenylate kinase.

  14. Modality Switching in a Property Verification Task: An ERP Study of What Happens When Candles Flicker after High Heels Click.

    Science.gov (United States)

    Collins, Jennifer; Pecher, Diane; Zeelenberg, René; Coulson, Seana

    2011-01-01

    The perceptual modalities associated with property words, such as flicker or click, have previously been demonstrated to affect subsequent property verification judgments (Pecher et al., 2003). Known as the conceptual modality switch effect, this finding supports the claim that brain systems for perception and action help subserve the representation of concepts. The present study addressed the cognitive and neural substrate of this effect by recording event-related potentials (ERPs) as participants performed a property verification task with visual or auditory properties in key trials. We found that for visual property verifications, modality switching was associated with an increased amplitude N400. For auditory verifications, switching led to a larger late positive complex. Observed ERP effects of modality switching suggest property words access perceptual brain systems. Moreover, the timing and pattern of the effects suggest perceptual systems impact the decision-making stage in the verification of auditory properties, and the semantic stage in the verification of visual properties.

  15. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P., E-mail: ss_zhaop@ujn.edu.c [School of Science, University of Jinan, Jinan 250022 (China); Liu, D.S. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Department of Physics, Jining University, Qufu 273155 (China); Wang, P.J.; Zhang, Z. [School of Science, University of Jinan, Jinan 250022 (China); Fang, C.F.; Ji, G.M. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-02-15

    By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.

  16. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch

    International Nuclear Information System (INIS)

    Zhao, P.; Liu, D.S.; Wang, P.J.; Zhang, Z.; Fang, C.F.; Ji, G.M.

    2011-01-01

    By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.

  17. Enhancement of resistive switching properties in Al2O3 bilayer-based atomic switches: multilevel resistive switching

    Science.gov (United States)

    Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun

    2018-06-01

    Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (105) with better endurance (∼2000 cycles) and longer data retention (104 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.

  18. Demonstration of Ultra-Fast Switching in Nano metallic Resistive Switching Memory Devices

    International Nuclear Information System (INIS)

    Yang, Y.

    2016-01-01

    Interdependency of switching voltage and time creates a dilemma/obstacle for most resistive switching memories, which indicates low switching voltage and ultra-fast switching time cannot be simultaneously achieved. In this paper, an ultra-fast (sub-100 ns) yet low switching voltage resistive switching memory device (“nano metallic ReRAM”) was demonstrated. Experimental switching voltage is found independent of pulse width (intrinsic device property) when the pulse is long but shows abrupt time dependence (“cliff”) as pulse width approaches characteristic RC time of memory device (extrinsic device property). Both experiment and simulation show that the onset of cliff behavior is dependent on physical device size and parasitic resistance, which is expected to diminish as technology nodes shrink down. We believe this study provides solid evidence that nano metallic resistive switching memory can be reliably operated at low voltage and ultra-fast regime, thus beneficial to future memory technology.

  19. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    Science.gov (United States)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  20. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    Science.gov (United States)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  1. Ferroelectric switching of elastin

    Science.gov (United States)

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  2. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    Science.gov (United States)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on

  3. Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol

    Science.gov (United States)

    Wang, Juan; Sun, Qingying; Feng, Enmin

    2012-11-01

    A nonlinear autonomous switching system is proposed to describe the coupled fed-batch fermentation with the pH as the feedback parameter. We prove the non-Zeno behaviors of the switching system and some basic properties of its solution, including the existence, uniqueness, boundedness and regularity. Numerical simulation is also carried out, which reveals that the proposed system can describe the factual fermentation process properly.

  4. Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems

    Science.gov (United States)

    Medford, June; Prasad, Ashok

    2014-01-01

    Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102

  5. Electron collisions in gas switches

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1989-01-01

    Many technologies rely on the conduction/insulation properties of gaseous matter for their successful operation. Many others (e.g., pulsed power technologies) rely on the rapid change (switching or modulation) of the properties of gaseous matter from an insulator to a conductor and vice versa. Studies of electron collision processes in gases aided the development of pulsed power gas switches, and in this paper we shall briefly illustrate the kind of knowledge on electron collision processes which is needed to optimize the performance of such switching devices. To this end, we shall refer to three types of gas switches: spark gap closing, self-sustained diffuse discharge closing, and externally-sustained diffuse discharge opening. 24 refs., 15 figs., 2 tabs

  6. Facile synthesis and electrical switching properties of V{sub 2}O{sub 3} powders

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Haining; Liu, Dongqing, E-mail: dongqingliu@ymail.com; Cheng, Haifeng; Yang, Lixiang; Zhang, Chaoyang; Zheng, Wenwei

    2017-03-15

    Highlights: • Single crystal uniform V{sub 2}O{sub 3} powders have been synthesized without additional surfactant. • Powders were obtained in only 6 h. • Powders exhibit reversible phase transition properties. • Powders have excellent electrical switching properties with resistance changes as large as 10{sup 4}. - Abstract: V{sub 2}O{sub 3} powders were synthesized with mercaptoacetic acid (C{sub 2}H{sub 4}O{sub 2}S) as reducing agent and stabilizer via a facile hydrothermal approach. The crystalline structure, surface morphology, valence state of the derived V{sub 2}O{sub 3} powders were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy. It was found that the ratio and reaction time played a duel role in the formation and morphology of the V{sub 2}O{sub 3} powders. The metal-insulator transition properties of V{sub 2}O{sub 3} powders were studied by the differential scanning calorimetry curve and variable temperature Raman spectra. The change in electrical resistance due to the metal-insulator transition was measured from 80 to 240 K using physical property measurement system. The results showed V{sub 2}O{sub 3} samples had excellent electrical switching properties with resistance changes as large as 10{sup 4}. This simple and fast synthesis approach makes the V{sub 2}O{sub 3} powders easily accessible for exploring their fundamental properties and potential applications in novel electronic devices.

  7. Tuning and switching the hypersonic phononic properties of elastic impedance contrast nanocomposites.

    Science.gov (United States)

    Sato, Akihiro; Pennec, Yan; Shingne, Nitin; Thurn-Albrecht, Thomas; Knoll, Wolfgang; Steinhart, Martin; Djafari-Rouhani, Bahram; Fytas, George

    2010-06-22

    Anodic aluminum oxide (AAO) containing arrays of aligned cylindrical nanopores infiltrated with polymers is a well-defined model system for the study of hypersound propagation in polymer nanocomposites. Hypersonic phononic properties of AAO/polymer nanocomposites such as phonon localization and anisotropic sound propagation can be tailored by adjusting elastic contrast and density contrast between the components. Changes in density and elastic properties of the component located in the nanopores induced by phase transitions allow reversible modification of the phononic band structure and mode switching. As example in case, the crystallization and melting of poly(vinylidene difluoride) inside AAO was investigated.

  8. Avalanche photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.; Wilson, M. J.; Hofer, W. W.

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV to 35 kV and rise times of 300 to 500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10(exp 3) to over 10(exp 5). Switches with two very different physical configurations and with two different illumination wavelengths (1.06 micrometer, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation.

  9. Avalanche photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  10. Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches

    Science.gov (United States)

    Cooper, James A.

    1986-01-01

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  11. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  12. Controllability of multi-agent systems with periodically switching topologies and switching leaders

    Science.gov (United States)

    Tian, Lingling; Zhao, Bin; Wang, Long

    2018-05-01

    This paper considers controllability of multi-agent systems with periodically switching topologies and switching leaders. The concept of m-periodic controllability is proposed, and a criterion for m-periodic controllability is established. The effect of the duration of subsystems on controllability is analysed by utilising a property of analytic functions. In addition, the influence of switching periods on controllability is investigated, and an algorithm is proposed to search for the fewest periods to ensure controllability. A necessary condition for m-periodic controllability is obtained from the perspective of eigenvectors of the subsystems' Laplacian matrices. For a system with switching leaders, it is proved that switching-leader controllability is equivalent to multiple-leader controllability. Furthermore, both the switching order and the tenure of agents being leaders have no effect on the controllability. Some examples are provided to illustrate the theoretical results.

  13. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  14. Power requirements reducing of FBG based all-optical switching

    Science.gov (United States)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  15. Non-switching to switching transferring mechanism investigation for Ag/SiO x /p-Si structure with SiO x deposited by HWCVD

    Science.gov (United States)

    Liu, Yanhong; Wang, Ruoying; Li, Zhongyue; Wang, Song; Huang, Yang; Peng, Wei

    2018-04-01

    We proposed and fabricated an Ag/SiO x /p-Si sandwich structure, in which amorphous SiO x films were deposited through hot wire chemical vapor deposition (HWCVD) using tetraethylorthosilicate (TEOS) as Si and O precursor. Experimental results indicate that the I–V properties of this structure transfer from non-switching to switching operation as the SiO x deposition temperature increased. The device with SiO x deposited at high deposition temperature exhibits typical bipolar switching properties, which can be potentially used in resistive switching random accessible memory (RRAM). The transferring mechanism from non-switching to switching can be ascribed to the change of structural and electronic properties of SiO x active layer deposited at different temperatures, as evidenced by analyzing FTIR spectrum and fitting its I–V characteristics curves. This work demonstrates a safe and practicable low-temperature device-grade SiO x film deposition technology by conducting HWCVD from TEOS.

  16. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method.

    Science.gov (United States)

    Hu, Wei; Zou, Lilan; Chen, Xinman; Qin, Ni; Li, Shuwei; Bao, Dinghua

    2014-04-09

    We report on highly uniform resistive switching properties of amorphous InGaZnO (a-IGZO) thin films. The thin films were fabricated by a low temperature photochemical solution deposition method, a simple process combining chemical solution deposition and ultraviolet (UV) irradiation treatment. The a-IGZO based resistive switching devices exhibit long retention, good endurance, uniform switching voltages, and stable distribution of low and high resistance states. Electrical conduction mechanisms were also discussed on the basis of the current-voltage characteristics and their temperature dependence. The excellent resistive switching properties can be attributed to the reduction of organic- and hydrogen-based elements and the formation of enhanced metal-oxide bonding and metal-hydroxide bonding networks by hydrogen bonding due to UV irradiation, based on Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and Field emission scanning electron microscopy analysis of the thin films. This study suggests that a-IGZO thin films have potential applications in resistive random access memory and the low temperature photochemical solution deposition method can find the opportunity for further achieving system on panel applications if the a-IGZO resistive switching cells were integrated with a-IGZO thin film transistors.

  17. Properties of a GaAs Single Electron Path Switching Node Device Using a Single Quantum Dot for Hexagonal BDD Quantum Circuits

    International Nuclear Information System (INIS)

    Nakamura, Tatsuya; Abe, Yuji; Kasai, Seiya; Hasegawa, Hideki; Hashizume, Tamotsu

    2006-01-01

    A new single electron (SE) binary-decision diagram (BDD) node device having a single quantum dot connected to three nanowire branches through tunnel barriers was fabricated using etched AlGaAs/GaAs nanowires and nanometer-sized Schottky wrap gates (WPGs), and their operation was characterized experimentally, for the hexagonal BDD quantum circuit. Fabricated devices showed clear and steep single electron pass switching by applying only an input voltage signal, which was completely different from switching properties in the previous SE BDD node devices composed of two single electron switches. As the possible switching mechanism, the correlation between the probabilities of tunnelling thorough a single quantum dot in exit branches was discussed

  18. Switching between the mode-locking and Q-switching modes in two-section QW lasers upon a change in the absorber properties due to the Stark effect

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiyev, I. M., E-mail: idris.intop@mail.ru; Buyalo, M. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Gubenko, A. E. [Innolume GmbH (Germany); Egorov, A. Yu.; Usikova, A. A.; Il’inskaya, N. D.; Lyutetskiy, A. V.; Zadiranov, Yu. M.; Portnoi, E. L. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-06-15

    The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section of the saturable absorber, which is sufficient for compensation of the applied bias.

  19. Switching between the mode-locking and Q-switching modes in two-section QW lasers upon a change in the absorber properties due to the Stark effect

    International Nuclear Information System (INIS)

    Gadzhiyev, I. M.; Buyalo, M. S.; Gubenko, A. E.; Egorov, A. Yu.; Usikova, A. A.; Il’inskaya, N. D.; Lyutetskiy, A. V.; Zadiranov, Yu. M.; Portnoi, E. L.

    2016-01-01

    The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section of the saturable absorber, which is sufficient for compensation of the applied bias.

  20. Exploring modality switching effects in negated sentences: Further evidence for grounded representations

    Directory of Open Access Journals (Sweden)

    Lea eHald

    2013-02-01

    Full Text Available Theories of embodied cognition (e.g., Perceptual Symbol Systems Theory; Barsalou, 1999, 2009 suggest that modality-specific simulations underlie the representation of concepts. Supporting evidence comes from modality switch costs: Participants are slower to verify a property in one modality (e.g., auditory, BLENDER-loud after verifying a property in a different modality (e.g., gustatory, CRANBERRIES-tart compared to the same modality (e.g., LEAVES-rustling, Pecher, Zeelenberg, & Barsalou, 2003. Similarly, modality switching costs lead to a modulation of the N400 effect in event related potentials (ERPs (Collins, Pecher, Zeelenberg, & Coulson, 2011; Hald, Marshall, Janssen, & Garnham, 2011. This effect of modality switching has also been shown to interact with the veracity of the sentence (Hald, et al., 2011. The current event-related potentials study (ERPs further explores the role of modality match/mismatch on the processing of veracity as well as negation (sentences containing not. Our results indicate a modulation in the ERP based on modality and veracity, plus an interaction. The evidence supports the idea that modality-specific simulations occur during language processing, and furthermore suggest that these simulations alter the processing of negation.

  1. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  2. Analytical Performance Evaluation of Different Switch Solutions

    Directory of Open Access Journals (Sweden)

    Francisco Sans

    2013-01-01

    Full Text Available The virtualization of the network access layer has opened new doors in how we perceive networks. With this virtualization of the network, it is possible to transform a regular PC with several network interface cards into a switch. PC-based switches are becoming an alternative to off-the-shelf switches, since they are cheaper. For this reason, it is important to evaluate the performance of PC-based switches. In this paper, we present a performance evaluation of two PC-based switches, using Open vSwitch and LiSA, and compare their performance with an off-the-shelf Cisco switch. The RTT, throughput, and fairness for UDP are measured for both Ethernet and Fast Ethernet technologies. From this research, we can conclude that the Cisco switch presents the best performance, and both PC-based switches have similar performance. Between Open vSwitch and LiSA, Open vSwitch represents a better choice since it has more features and is currently actively developed.

  3. Nanoelectromechanical switch operating by tunneling of an entire C-60 molecule

    DEFF Research Database (Denmark)

    Danilov, Andrey V.; Hedegård, Per; Golubev, Dimitrii S.

    2008-01-01

    (i) the relative contribution of tunneling, current induced heating and thermal fluctuations to the switching mechanism, (ii) the voltage dependent energy barrier (similar to 100-200 meV) separating the two states of the switch and (iii) the switching attempt frequency, omega(0) corresponding to a 2......We present a solid state single molecule electronic device where switching between two states with different conductance happens predominantly by tunneling of an entire C-60 molecule. This conclusion is based on a novel statistical analysis of similar to 10(5) switching events. The analysis yields...

  4. Uncertainty in microscale gas damping: Implications on dynamics of capacitive MEMS switches

    International Nuclear Information System (INIS)

    Alexeenko, Alina; Chigullapalli, Sruti; Zeng Juan; Guo Xiaohui; Kovacs, Andrew; Peroulis, Dimitrios

    2011-01-01

    Effects of uncertainties in gas damping models, geometry and mechanical properties on the dynamics of micro-electro-mechanical systems (MEMS) capacitive switch are studied. A sample of typical capacitive switches has been fabricated and characterized at Purdue University. High-fidelity simulations of gas damping on planar microbeams are developed and verified under relevant conditions. This and other gas damping models are then applied to study the dynamics of a single closing event for switches with experimentally measured properties. It has been demonstrated that although all damping models considered predict similar damping quality factor and agree well for predictions of closing time, the models differ by a factor of two and more in predicting the impact velocity and acceleration at contact. Implications of parameter uncertainties on the key reliability-related parameters such as the pull-in voltage, closing time and impact velocity are discussed. A notable effect of uncertainty is that the nominal switch, i.e. the switch with the average properties, does not actuate at the mean actuation voltage. Additionally, the device-to-device variability leads to significant differences in dynamics. For example, the mean impact velocity for switches actuated under the 90%-actuation voltage (about 150 V), i.e. the voltage required to actuate 90% of the sample, is about 129 cm/s and increases to 173 cm/s for the 99%-actuation voltage (of about 173 V). Response surfaces of impact velocity and closing time to five input variables were constructed using the Smolyak sparse grid algorithm. The sensitivity analysis showed that impact velocity is most sensitive to the damping coefficient whereas the closing time is most affected by the geometric parameters such as gap and beam thickness. - Highlights: → We examine stochastic non-linear response of a microsystem switch subject to multiple input uncertainties. → Sample devices have been fabricated and device

  5. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  6. Chiroptical Molecular Switches 1; Principles and Syntheses.

    NARCIS (Netherlands)

    Lange, Ben de; Jager, Wolter F.; Feringa, Bernard

    1992-01-01

    The concept and the synthesis of the basic molecules for a chiroptical molecular switch are described. This molecular switch is based on photochemical interconversion of two bistable forms of chiral sterically overcrowded olefins. A large variety of these alkenes with different properties have been

  7. Equilibrium switching and mathematical properties of nonlinear interaction networks with concurrent antagonism and self-stimulation

    International Nuclear Information System (INIS)

    Rabajante, Jomar Fajardo; Talaue, Cherryl Ortega

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Properties of n-dimensional decision model of competitive interaction networks. •Graphical technique for component-wise and steady state stability analysis. •Search for parameter conditions that control equilibrium switching. •Illustrations of multi-stable systems and repressilators. -- Abstract: Concurrent decision-making model (CDM) of interaction networks with more than two antagonistic components represents various biological systems, such as gene interaction, species competition and mental cognition. The CDM model assumes sigmoid kinetics where every component stimulates itself but concurrently represses the others. Here we prove generic mathematical properties (e.g., location and stability of steady states) of n-dimensional CDM with either symmetric or asymmetric reciprocal antagonism between components. Significant modifications in parameter values serve as biological regulators for inducing steady state switching by driving a temporal state to escape an undesirable equilibrium. Increasing the maximal growth rate and decreasing the decay rate can expand the basin of attraction of a steady state that contains the desired dominant component. Perpetually adding an external stimulus could shut down multi-stability of the system which increases the robustness of the system against stochastic noise. We further show that asymmetric interaction forming a repressilator-type network generates oscillatory behavior

  8. If You Stay, It Might Be Easier: Switch Costs from Comprehension to Production in a Joint Switching Task

    Science.gov (United States)

    Gambi, Chiara; Hartsuiker, Robert J.

    2016-01-01

    Switching language is costly for bilingual speakers and listeners, suggesting that language control is effortful in both modalities. But are the mechanisms underlying language control similar across modalities? In this study, we attempted to answer this question by testing whether bilingual speakers incur a cost when switching to a different…

  9. Unique Piezoelectric Properties of the Monoclinic Phase in Pb (Zr ,Ti )O3 Ceramics: Large Lattice Strain and Negligible Domain Switching

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-01

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  10. Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O_{3} Ceramics: Large Lattice Strain and Negligible Domain Switching.

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-15

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200  pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  11. Streamer model for high voltage water switches

    International Nuclear Information System (INIS)

    Sazama, F.J.; Kenyon, V.L. III

    1979-01-01

    An electrical switch model for high voltage water switches has been developed which predicts streamer-switching effects that correlate well with water-switch data from Casino over the past four years and with switch data from recent Aurora/AMP experiments. Preclosure rounding and postclosure resistive damping of pulseforming line voltage waveforms are explained in terms of spatially-extensive, capacitive-coupling of the conducting streamers as they propagate across the gap and in terms of time-dependent streamer resistance and inductance. The arc resistance of the Casino water switch and of a gas switch under test on Casino was determined by computer fit to be 0.5 +- 0.1 ohms and 0.3 +- 0.06 ohms respectively, during the time of peak current in the power pulse. Energy lost in the water switch during the first pulse is 18% of that stored in the pulseforming line while similar energy lost in the gas switch is 11%. The model is described, computer transient analyses are compared with observed water and gas switch data and the results - switch resistance, inductance and energy loss during the primary power pulse - are presented

  12. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization

    Directory of Open Access Journals (Sweden)

    Thijs Roebroek

    2017-09-01

    Full Text Available Reversibly switchable fluorescent proteins (RSFPs enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties.

  13. Switching Schools: Reconsidering the Relationship Between School Mobility and High School Dropout

    Science.gov (United States)

    Gasper, Joseph; DeLuca, Stefanie; Estacion, Angela

    2014-01-01

    Youth who switch schools are more likely to demonstrate a wide array of negative behavioral and educational outcomes, including dropping out of high school. However, whether switching schools actually puts youth at risk for dropout is uncertain, since youth who switch schools are similar to dropouts in their levels of prior school achievement and engagement, which suggests that switching schools may be part of the same long-term developmental process of disengagement that leads to dropping out. Using data from the National Longitudinal Survey of Youth 1997, this study uses propensity score matching to pair youth who switched high schools with similar youth who stayed in the same school. We find that while over half the association between switching schools and dropout is explained by observed characteristics prior to 9th grade, switching schools is still associated with dropout. Moreover, the relationship between switching schools and dropout varies depending on a youth's propensity for switching schools. PMID:25554706

  14. Bipolar resistive switching properties of Hf{sub 0.5}Zr{sub 0.5}O{sub 2} thin film for flexible memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhipeng; Zhu, Jun; Zhou, Yunxia; Liu, Xingpeng [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu (China)

    2018-01-15

    An Au/Ni/Hf{sub 0.5}Zr{sub 0.5}O{sub 2}/Au flexible memory device fabricated on a polyethylene terephthalate substrate was studied for flexible resistive random access memory applications. A typical bipolar resistive switching behavior was revealed with an OFF/ON ratio of approximately 15. The reproducibility and uniformity were investigated using 100 repetitive write/erase cycles. The retention property did not degrade for up to 5 x 10{sup 4} s, and the resistive switching properties did not degrade even under bending conditions, which indicated good mechanical flexibility. The current-voltage characteristics of the memory device show a Poole-Frenkel emission conduction mechanism in the high-voltage region in the high-resistance state, while in the low-voltage region, the Ohmic contact and space charge limit current responded to the low-resistance state and high-resistance state, respectively. Combined with the conductance mechanism, the resistive switching behavior is attributed to conductive filaments forming and rupturing due to oxygen vacancies migrating under the external driving electric field. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    Science.gov (United States)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  16. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  17. Two-magnon bound state causes ultrafast thermally induced magnetisation switching

    Science.gov (United States)

    Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.

    2013-01-01

    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110

  18. VO2(B conversion to VO2(A and VO2(M and their oxidation resistance and optical switching properties

    Directory of Open Access Journals (Sweden)

    Zhang Yifu

    2016-03-01

    Full Text Available Vanadium dioxide VO2 has been paid in recent years increasing attention because of its various applications, however, its oxidation resistance properties in air atmosphere have rarely been reported. Herein, VO2(B nanobelts were transformed into VO2(A and VO2(M nanobelts by hydrothermal route and calcination treatment, respectively. Then, we comparatively studied the oxidation resistance properties of VO2(B, VO2(A and VO2(M nanobelts in air atmosphere by thermo-gravimetric analysis and differential thermal analysis (TGA/DTA. It was found that the nanobelts had good thermal stability and oxidation resistance below 341 °C, 408 °C and 465 °C in air, respectively, indicating that they were stable in air at room temperature. The fierce oxidation of the nanobelts occurred at 426, 507 and 645 °C, respectively. The results showed that the VO2(M nanobelts had the best thermal stability and oxidation resistance among the others. Furthermore, the phase transition temperatures and optical switching properties of VO2(A and VO2(M were studied by differential scanning calorimetry (DSC and variable temperature infrared spectra. It was found that the VO2(A and VO2(M nanobelts had outstanding thermochromic character and optical switching properties.

  19. Effect of texturing on polarization switching dynamics in ferroelectric ceramics

    Science.gov (United States)

    Zhukov, Sergey; Genenko, Yuri A.; Koruza, Jurij; Schultheiß, Jan; von Seggern, Heinz; Sakamoto, Wataru; Ichikawa, Hiroki; Murata, Tatsuro; Hayashi, Koichiro; Yogo, Toshinobu

    2016-01-01

    Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2-3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.

  20. Charge transport through molecular switches

    International Nuclear Information System (INIS)

    Jan van der Molen, Sense; Liljeroth, Peter

    2010-01-01

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  1. Charge transport through molecular switches

    Energy Technology Data Exchange (ETDEWEB)

    Jan van der Molen, Sense [Kamerlingh Onnes Laboratorium, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Liljeroth, Peter, E-mail: molen@physics.leidenuniv.n [Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, PO Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-07

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  2. Chromatic interocular-switch rivalry.

    Science.gov (United States)

    Christiansen, Jens H; D'Antona, Anthony D; Shevell, Steven K

    2017-05-01

    Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses.

  3. Characterization of self-similarity properties of turbulence in magnetized plasmas

    International Nuclear Information System (INIS)

    Scipioni, A.; Rischette, P.; Bonhomme, G.; Devynck, P.

    2008-01-01

    The understanding of turbulence in magnetized plasmas and its role in the cross field transport is still greatly incomplete. Several previous works reported on evidences of long-time correlations compatible with an avalanche-type of radial transport. Persistence properties in time records have been deduced from high values of the Hurst exponent obtained with the rescaled range R/S analysis applied to experimental probe data acquired in the edge of tokamaks. In this paper the limitations of this R/S method, in particular when applied to signals having mixed statistics are investigated, and the great advantages of the wavelets decomposition as a tool to characterize the self-similarity properties of experimental signals are highlighted. Furthermore the analysis of modified simulated fractional Brownian motions (fBm) and fractional Gaussian noises (fGn) allows us to discuss the relationship between high values of the Hurst exponent and long range correlations. It is shown that for such simulated signals with mixed statistics persistence at large time scales can still reflect the self-similarity properties of the original fBm and do not imply the existence of long range correlations, which are destroyed. It is thus questionable to assert the existence of long range correlations for experimental signals with non-Gaussian and mixed statistics just from high values of the Hurst exponent.

  4. Proceedings of the switched power workshop

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1988-01-01

    These proceedings contain most of the presentations given at a workshop on the current state of research in techniques for switched power acceleration. The proceedings are divided, as was the workshop itself, into two parts. Part 1, contains the latest results from a number of groups active in switched power research. The major topic here is a method for switching externally supplied power onto a transmission line. Advocates for vacuum photodiode switching, solid state switching, gas switching, and synthetic pulse generation are all presented. Other important areas of research described in this section concern: external electrical and laser pulsing systems; the properties of the created electromagnetic pulse; structures used for transporting the electromagnetic pulse to the region where the electron beam is located; and possible applications. Part 2 of the proceedings considers the problem of designing a high brightness electron gun using switched power as the power source. This is an important first step in demonstrating the usefulness of switched power techniques for accelerator physics. In addition such a gun could have immediate practical importance for advanced acceleration studies since the brightness could exceed that of present sources by several orders of magnitude. I would like to take this opportunity to thank Kathleen Tuohy and Patricia Tuttle for their assistance in organizing and running the workshop. Their tireless efforts contribute greatly to a very productive meeting

  5. Erasing the Epigenetic Memory and Beginning to Switch—The Onset of Antigenic Switching of var Genes in Plasmodium falciparum

    Science.gov (United States)

    Fastman, Yair; Noble, Robert; Recker, Mario; Dzikowski, Ron

    2012-01-01

    Antigenic variation in Plasmodium falciparum is regulated by transcriptional switches among members of the var gene family, each expressed in a mutually exclusive manner and encoding a different variant of the surface antigens collectively named PfEMP1. Antigenic switching starts when the first merozoites egress from the liver and begin their asexual proliferation within red blood cells. By erasing the epigenetic memory we created parasites with no var background, similar to merozoites that egress from the liver where no var gene is expressed. Creating a null-var background enabled us to investigate the onset of antigenic switches at the early phase of infection. At the onset of switching, var transcription pattern is heterogeneous with numerous genes transcribed at low levels including upsA vars, a subtype that was implicated in severe malaria, which are rarely activated in growing cultures. Analysis of subsequent in vitro switches shows that the probability of a gene to turn on or off is not associated with its chromosomal position or promoter type per se but on intrinsic properties of each gene. We concluded that var switching is determined by gene specific associated switch rates rather than general promoter type or locus associated switch rates. In addition, we show that fine tuned reduction in var transcription increases their switch rate, indicating that transcriptional perturbation can alter antigenic switching. PMID:22461905

  6. Conductive polymer switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-σ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layout. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-σ film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to reversibly modulate the magnitude of J c , the superconducting critical current. Thus, a new type of molecule switch for controlling superconductivity is demonstrated

  7. Subnanosecond, high-voltage photoconductive switching in GaAs

    Science.gov (United States)

    Druce, Robert L.; Pocha, Michael D.; Griffin, Kenneth L.; O'Bannon, Jim

    1991-03-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating highpower microwaves (HPM) and for high reprate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanchelike mode (the optical pulse only controls switch closing) . Operating in the unear mode we have observed switch closing times of less than 200 Ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lockon modes high fields are switched with lower laser pulse energies resulting in higher efficiencies but with measurable switching delay and jitter. We are currently investigating both large area (1 cm2) and small area 1 mm2) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1. 06 tim.

  8. Tuning the resistive switching properties of TiO2-x films

    Science.gov (United States)

    Ghenzi, N.; Rozenberg, M. J.; Llopis, R.; Levy, P.; Hueso, L. E.; Stoliar, P.

    2015-03-01

    We study the electrical characteristics of TiO2-x-based resistive switching devices fabricated with different oxygen/argon flow ratio during the oxide thin film sputtering deposition. Upon minute changes in this fabrication parameter, three qualitatively different device characteristics were accessed in the same system, namely, standard bipolar resistive switching, electroforming-free devices, and devices with multi-step breakdown. We propose that small variations in the oxygen/ argon flow ratio result in relevant changes of the oxygen vacancy concentration, which is the key parameter determining the resistive switching behavior. The coexistence of percolative or non-percolative conductive filaments is also discussed. Finally, the hypothesis is verified by means of the temperature dependence of the devices in low resistance state.

  9. Single-Molecule Rotational Switch on a Dangling Bond Dimer Bearing.

    Science.gov (United States)

    Godlewski, Szymon; Kawai, Hiroyo; Kolmer, Marek; Zuzak, Rafał; Echavarren, Antonio M; Joachim, Christian; Szymonski, Marek; Saeys, Mark

    2016-09-27

    One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices.

  10. Switching of chirality by light

    NARCIS (Netherlands)

    Feringa, B.L.; Schoevaars, A.M; Jager, W.F.; de Lange, B.; Huck, N.P.M.

    1996-01-01

    Optically active photoresponsive molecules are described by which control of chirality is achieved by light. These chiroptical molecular switches are based on inherently dissymmetric overcrowded alkenes and the synthesis, resolution and dynamic stereochemical properties are discussed. Introduction

  11. Fundamental statistical features and self-similar properties of tagged networks

    International Nuclear Information System (INIS)

    Palla, Gergely; Farkas, Illes J; Pollner, Peter; Vicsek, Tamas; Derenyi, Imre

    2008-01-01

    We investigate the fundamental statistical features of tagged (or annotated) networks having a rich variety of attributes associated with their nodes. Tags (attributes, annotations, properties, features, etc) provide essential information about the entity represented by a given node, thus, taking them into account represents a significant step towards a more complete description of the structure of large complex systems. Our main goal here is to uncover the relations between the statistical properties of the node tags and those of the graph topology. In order to better characterize the networks with tagged nodes, we introduce a number of new notions, including tag-assortativity (relating link probability to node similarity), and new quantities, such as node uniqueness (measuring how rarely the tags of a node occur in the network) and tag-assortativity exponent. We apply our approach to three large networks representing very different domains of complex systems. A number of the tag related quantities display analogous behaviour (e.g. the networks we studied are tag-assortative, indicating possible universal aspects of tags versus topology), while some other features, such as the distribution of the node uniqueness, show variability from network to network allowing for pin-pointing large scale specific features of real-world complex networks. We also find that for each network the topology and the tag distribution are scale invariant, and this self-similar property of the networks can be well characterized by the tag-assortativity exponent, which is specific to each system.

  12. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.

    1986-01-01

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  13. The Atlas load protection switch

    CERN Document Server

    Davis, H A; Dorr, G; Martínez, M; Gribble, R F; Nielsen, K E; Pierce, D; Parsons, W M

    1999-01-01

    Atlas is a high-energy pulsed-power facility under development to study materials properties and hydrodynamics experiments under extreme conditions. Atlas will implode heavy liner loads (m~45 gm) with a peak current of 27-32 MA delivered in 4 mu s, and is energized by 96, 240 kV Marx generators storing a total of 23 MJ. A key design requirement for Atlas is obtaining useful data for 95601130f all loads installed on the machine. Materials response calculations show current from a prefire can damage the load requiring expensive and time consuming replacement. Therefore, we have incorporated a set of fast-acting mechanical switches in the Atlas design to reduce the probability of a prefire damaging the load. These switches, referred to as the load protection switches, short the load through a very low inductance path during system charge. Once the capacitors have reached full charge, the switches open on a time scale short compared to the bank charge time, allowing current to flow to the load when the trigger pu...

  14. A versatile cis-acting inverter module for synthetic translational switches.

    Science.gov (United States)

    Endo, Kei; Hayashi, Karin; Inoue, Tan; Saito, Hirohide

    2013-01-01

    Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.

  15. Subnanosecond, high voltage photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L. (Lawrence Livermore National Lab., CA (USA)); O' Bannon, B.J. (Rockwell International Corp., Anaheim, CA (USA))

    1990-01-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating high-power microwaves (HPM) and for high rep-rate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanche-like mode (the optical pulse only controls switch closing). Operating in the linear mode, we have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lock-on modes, high fields are switched with lower laser pulse energies, resulting in higher efficiencies; but with measurable switching delay and jitter. We are currently investigating both large area (1 cm{sup 2}) and small area (<1 mm{sup 2}) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 {mu}m.

  16. Econophysics — complex correlations and trend switchings in financial time series

    Science.gov (United States)

    Preis, T.

    2011-03-01

    This article focuses on the analysis of financial time series and their correlations. A method is used for quantifying pattern based correlations of a time series. With this methodology, evidence is found that typical behavioral patterns of financial market participants manifest over short time scales, i.e., that reactions to given price patterns are not entirely random, but that similar price patterns also cause similar reactions. Based on the investigation of the complex correlations in financial time series, the question arises, which properties change when switching from a positive trend to a negative trend. An empirical quantification by rescaling provides the result that new price extrema coincide with a significant increase in transaction volume and a significant decrease in the length of corresponding time intervals between transactions. These findings are independent of the time scale over 9 orders of magnitude, and they exhibit characteristics which one can also find in other complex systems in nature (and in physical systems in particular). These properties are independent of the markets analyzed. Trends that exist only for a few seconds show the same characteristics as trends on time scales of several months. Thus, it is possible to study financial bubbles and their collapses in more detail, because trend switching processes occur with higher frequency on small time scales. In addition, a Monte Carlo based simulation of financial markets is analyzed and extended in order to reproduce empirical features and to gain insight into their causes. These causes include both financial market microstructure and the risk aversion of market participants.

  17. Structure and Properties of Hydrophobic Aggregation Hydrogel with Chemical Sensitive Switch

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2017-01-01

    Full Text Available Hydrogels with chemical sensitive switch have control release properties in special environments. A series of polyacrylamide-octadecyl methacrylate hydrogels crosslinked by N,N′-bis (acryloyl cystamine were synthesized as potential chemical sensitive system. When this hydrogel encounters dithiothreitol it can change its quality. The properties of the hydrogels were characterized by infrared spectroscopy, contact angle, and scanning electron microscopy. The water absorption of the hydrogel has the maximum value of 475%, when the content of octadecyl methacrylate is 5 wt%. The amount of weight loss was changed from 34.6% to 17.2%, as the content of octadecyl methacrylate increased from 3 wt% to 9.4 wt%. At the same time, the stress of the hydrogel decreased from 67.01% to 47.61%; the strength of the hydrogel reaches to the maximum 0.367 Mpa at 7 wt% octadecyl methacrylate. The increasing content of octadecyl methacrylate from 3 wt% to 9.4 wt% can enhance the hydrophobicity of the hydrogel; the contact angle of water to hydrogel changed from 14.10° to 19.62°. This hydrogel has the porous structure which permits loading of oils into the gel matrix. The functionalities of the hydrogel make it have more widely potential applications in chemical sensitive response materials.

  18. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  19. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.; Mukhopadhyay, Sukrit; Shiring, Stephen B.; Risko, Chad; Bredas, Jean-Luc

    2014-01-01

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  20. Realization of the Switching Mechanism in Resistance Random Access Memory™ Devices: Structural and Electronic Properties Affecting Electron Conductivity in a Hafnium Oxide-Electrode System Through First-Principles Calculations

    Science.gov (United States)

    Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio

    2013-01-01

    The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.

  1. Stability of Randomly Switched Diffusions

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Leth, John-Josef; Gholami, Mehdi

    2012-01-01

    This paper provides a sufficient criterion for ε-moment stability (boundedness) and ergodicity for a class of systems comprising a finite set of diffusions among which switching is governed by a continuous time Markov chain. Stability/instability properties for each separate subsystem are assumed...

  2. The gradual nature of threshold switching

    International Nuclear Information System (INIS)

    Wimmer, M; Salinga, M

    2014-01-01

    The recent commercialization of electronic memories based on phase change materials proved the usability of this peculiar family of materials for application purposes. More advanced data storage and computing concepts, however, demand a deeper understanding especially of the electrical properties of the amorphous phase and the switching behaviour. In this work, we investigate the temporal evolution of the current through the amorphous state of the prototypical phase change material, Ge 2 Sb 2 Te 5 , under constant voltage. A custom-made electrical tester allows the measurement of delay times over five orders of magnitude, as well as the transient states of electrical excitation prior to the actual threshold switching. We recognize a continuous current increase over time prior to the actual threshold-switching event to be a good measure for the electrical excitation. A clear correlation between a significant rise in pre-switching-current and the later occurrence of threshold switching can be observed. This way, we found experimental evidence for the existence of an absolute minimum for the threshold voltage (or electric field respectively) holding also for time scales far beyond the measurement range. (paper)

  3. A switched state feedback law for the stabilization of LTI systems.

    Energy Technology Data Exchange (ETDEWEB)

    Santarelli, Keith R.

    2009-09-01

    Inspired by prior work in the design of switched feedback controllers for second order systems, we develop a switched state feedback control law for the stabilization of LTI systems of arbitrary dimension. The control law operates by switching between two static gain vectors in such a way that the state trajectory is driven onto a stable n - 1 dimensional hyperplane (where n represents the system dimension). We begin by briefly examining relevant geometric properties of the phase portraits in the case of two-dimensional systems to develop intuition, and we then show how these geometric properties can be expressed as algebraic constraints on the switched vector fields that are applicable to LTI systems of arbitrary dimension. We then derive necessary and sufficient conditions to ensure stabilizability of the resulting switched system (characterized primarily by simple conditions on eigenvalues), and describe an explicit procedure for designing stabilizing controllers. We then show how the newly developed control law can be applied to the problem of minimizing the maximal Lyapunov exponent of the corresponding closed-loop state trajectories, and we illustrate the closed-loop transient performance of these switched state feedback controllers via multiple examples.

  4. Friendship-based partner switching promotes cooperation in heterogeneous populations

    Science.gov (United States)

    Chen, Wei; Wu, Te; Li, Zhiwu; Wang, Long

    2016-02-01

    The forming of human social ties tends to be with similar individuals. This study concentrates on the emergence of cooperation among heterogeneous populations. A simple model is proposed by considering the impact of interplay between the evolution of strategies and that of social partnerships on cooperation dynamics. Whenever two individuals acquire the rewards by playing prisoner's dilemma game with each other, the friendship (friendship is quantified as the weight of a link) between the two individuals deepens. Individuals can switch off the social ties with the partners who are unfriendly and rewire to similar new ones. Under this partner switching mechanism, population structure is divided into several groups and cooperation can prevail. It is observed that the frequent tendency of partner switching can lead to the enhancement of cooperative behavior under the enormous temptation to defect. Moreover, the influence of discounting the relationship between different individuals is also investigated. Meanwhile, the cooperation prevails when the adjustment of friendships mainly depends on the incomes of selected individuals rather than that of their partners. Finally, it is found that too similar population fail to maximize the cooperation and there exists a moderate similarity that can optimize cooperation.

  5. Novel, Four-Switch, Z-Source Three-Phase Inverter

    DEFF Research Database (Denmark)

    Antal, Robert; Muntean, Nicolae; Boldea, Ion

    2010-01-01

    This paper presents a new z-source three phase inverter topology. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (one front-end diode, two inductors and two X connected capacitors). This new topology......, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. In contrast to standard four-switch three-phase inverter which operates at half dc input voltage the proposed four-switch z-source inverter, by self boosting, brings the output voltage at same (or higher......) value as in six switch standard three-phase inverter. The article presents the derivation of the equations describing the operation of the converter based on space vector analysis, validation through digital simulations in PSIM and preliminary experimental results on a laboratory setup with a dsPIC30F...

  6. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in ``avalanche`` mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into ``avalanche`` mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  7. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  8. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1990-01-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential of GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into an avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large are (1 sq cm) and small area (<1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs., 11 figs.

  9. Subnanosecond photoconductive switching in GaAs

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in 'avalanche' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into 'avalanche' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (less than 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300-1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on, and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation.

  10. Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    Science.gov (United States)

    Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen

    2016-08-01

    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.

  11. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wan

    2010-11-17

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO{sub 3} (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10{sup 4} times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO{sub x} layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the

  12. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    International Nuclear Information System (INIS)

    Shen, Wan

    2010-01-01

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO 3 (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10 4 times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO x layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the observation of

  13. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  14. Electrode erosion properties of gas spark switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2017-12-01

    Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.

  15. Similarity in the superconducting properties of chalcogenides, cuprate oxides and fullerides

    International Nuclear Information System (INIS)

    Tsendin, K.D.; Popov, B.P.; Denisov, D.V.

    2004-01-01

    The idea of Anderson pairs has been put forward for explanation of many extraordinary properties of chalcogenides glassy semiconductors. Recent decades made obvious that these pairs localized on the centers with negative effective correlation energy (negative-U centers) really exist in chalcogenides. If the concentration of negative-U centers is enough to create the pair band states, this can lead to superconductivity because Anderson pairs are Bose particles. In the present paper we show that several puzzling superconductivity properties of chalcogenides, high-temperature cuprate superconductors and fullerides are similar for these three groups of materials and can be naturally explained in the frame of negative-U centers model of superconductivity

  16. Recent advances in column switching sample preparation in bioanalysis.

    Science.gov (United States)

    Kataoka, Hiroyuki; Saito, Keita

    2012-04-01

    Column switching techniques, using two or more stationary phase columns, are useful for trace enrichment and online automated sample preparation. Target fractions from the first column are transferred online to a second column with different properties for further separation. Column switching techniques can be used to determine the analytes in a complex matrix by direct sample injection or by simple sample treatment. Online column switching sample preparation is usually performed in combination with HPLC or capillary electrophoresis. SPE or turbulent flow chromatography using a cartridge column and in-tube solid-phase microextraction using a capillary column have been developed for convenient column switching sample preparation. Furthermore, various micro-/nano-sample preparation devices using new polymer-coating materials have been developed to improve extraction efficiency. This review describes current developments and future trends in novel column switching sample preparation in bioanalysis, focusing on innovative column switching techniques using new extraction devices and materials.

  17. High voltage disconnect switch position monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Crampton, S W

    1983-08-01

    Unreliable position indication on high-voltage (HV) disconnect switches can result in equipment damage worth many times the cost of a disconnect switch. The benefits and limitations of a number of possible methods of reliably monitoring HV disconnect switches are assessed. Several methods of powering active devices at HV are noted. It is concluded that the most reliable way of monitoring switch position at reasonable cost would use a passive hermetically-sealed blade-position sensor located at HV, with a fibre-optic link between HV and ground. Separate sensors would be used for open and closed position indication. For maximum reliability the fibre-optic link would continue into the relay building. A passive magnetically actuated fibre-optic sensor has been built which demonstrates the feasibility of the concept. The sensor monitors blade position relative to the jaws in three dimensions with high resolution. A design for an improved passive magneto-optic sensor has significantly lower optical losses, allowing a single fibre-optic loop and 3 sensors to monitor closure of all phases of a disconnect switch. A similar loop would monitor switch opening. The improved sensor has a solid copper housing to provide greater immunity to fault currents, and to protect it from the environment and from physical damage. Two methods of providing a protected path for fibre-optics passing from HV to ground are proposed, one using a hollow porcelain switch-support insulator and the other using an additional small-diameter polymer insulator with optical fibres imbedded in its fibreglass core. A number of improvements are recommended which can be made to existing switches to increase their reliability. 16 refs., 13 figs., 1 tab.

  18. Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene

    Science.gov (United States)

    Rodríguez-González, Rogelio; Rodríguez-Vargas, Isaac; Díaz-Guerrero, Dan Sidney; Gaggero-Sager, Luis Manuel

    2016-01-01

    We investigate the transmission properties of quasiperiodic or aperiodic structures based on graphene arranged according to the Cantor sequence. In particular, we have found self-similar behaviour in the transmission spectra, and most importantly, we have calculated the scalability of the spectra. To do this, we implement and propose scaling rules for each one of the fundamental parameters: generation number, height of the barriers and length of the system. With this in mind we have been able to reproduce the reference transmission spectrum, applying the appropriate scaling rule, by means of the scaled transmission spectrum. These scaling rules are valid for both normal and oblique incidence, and as far as we can see the basic ingredients to obtain self-similar characteristics are: relativistic Dirac electrons, a self-similar structure and the non-conservation of the pseudo-spin.

  19. Investigation of switching frequency variations and EMI properties in self-oscillating class D amplifiers

    OpenAIRE

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael A. E.

    2009-01-01

    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in these amplifiers is self-oscillation. A parameter of key interest in self-oscillating amplifiers is the switching frequency, which is known for its variation. Knowledge of switching frequency variations is of great importance with respect to electromagnetic interference (EMI). This paper will investigate, whether the switching frequenc...

  20. Contact materials for nanowire devices and nanoelectromechanical switches

    KAUST Repository

    Hussain, Muhammad Mustafa

    2011-02-01

    The impact of contact materials on the performance of nanostructured devices is expected to be signifi cant. This is especially true since size scaling can increase the contact resistance and induce many unseen phenomenon and reactions that greatly impact device performance. Nanowire and nanoelectromechanical switches are two emerging nanoelectronic devices. Nanowires provide a unique opportunity to control the property of a material at an ultra-scaled dimension, whereas a nanoelectromechanical switch presents zero power consumption in its off state, as it is physically detached from the sensor anode. In this article, we specifi cally discuss contact material issues related to nanowire devices and nanoelectromechanical switches.

  1. Nonvolatile Resistive Switching Memory Utilizing Cobalt Embedded in Gelatin

    Directory of Open Access Journals (Sweden)

    Cheng-Jung Lee

    2017-12-01

    Full Text Available This study investigates the preparation and electrical properties of Al/cobalt-embedded gelatin (CoG/ indium tin oxide (ITO resistive switching memories. Co. elements can be uniformly distributed in gelatin without a conventional dispersion procedure, as confirmed through energy dispersive X-ray analyzer and X-ray photoelectron spectroscopy observations. With an appropriate Co. concentration, Co. ions can assist the formation of an interfacial AlOx layer and improve the memory properties. High ON/OFF ratio, good retention capability, and good endurance switching cycles are demonstrated with 1 M Co. concentration, in contrast to 0.5 M and 2 M memory devices. This result can be attributed to the suitable thickness of the interfacial AlOx layer, which acts as an oxygen reservoir and stores and releases oxygen during switching. The Co. element in a solution-processed gelatin matrix has high potential for bio-electronic applications.

  2. Azo biphenyl polyurethane: Preparation, characterization and application for optical waveguide switch

    Science.gov (United States)

    Jiang, Yan; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong

    2018-01-01

    Azo waveguide polymers are of particular interest in the design of materials for applications in optical switch. The aim of this contribution was the synthesis and thermo-optic waveguide switch properties of azo biphenyl polyurethanes. A series of monomers and azo biphenyl polyurethanes (Azo BPU1 and Azo BPU2) were synthesized and characterized by FT-IR, UV-Vis spectroscopy and 1H NMR. The physical and mechanical properties of thin polymer films were measured. The refractive index and thermo-optic coefficient (dn/dT) of polymer films were investigated for TE (transversal electric) polarizations by ATR technique. The transmission loss of film was measured using the Charge Coupled Device digital imaging devices. The results showed the Azo BPU2 containing chiral azobenzene chromophore had higher dn/dT and lower transmission loss. Subsequently, a 1 × 2 Y-branch and 2 × 2 Mach-Zehnder optical switches based on the prepared polymers were designed and simulated. The results showed that the power consumption of all switches was less than 1.0 mW. Compared with 1 × 2 Y-branch optical switch, the 2 × 2 Mach-Zehnder optical switches based on the same polymer have the faster response time, which were about only 1.2 and 2.0 ms, respectively.

  3. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    Science.gov (United States)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  4. A genetic bistable switch utilizing nonlinear protein degradation.

    Science.gov (United States)

    Huang, Daniel; Holtz, William J; Maharbiz, Michel M

    2012-07-09

    Bistability is a fundamental property in engineered and natural systems, conferring the ability to switch and retain states. Synthetic bistable switches in prokaryotes have mainly utilized transcriptional components in their construction. Using both transcriptional and enzymatic components, creating a hybrid system, allows for wider bistable parameter ranges in a circuit. In this paper, we demonstrate a tunable family of hybrid bistable switches in E. coli using both transcriptional components and an enzymatic component. The design contains two linked positive feedback loops. The first loop utilizes the lambda repressor, CI, and the second positive feedback loop incorporates the Lon protease found in Mesoplasma florum (mf-Lon). We experimentally tested for bistable behavior in exponential growth phase, and found that our hybrid bistable switch was able to retain its state in the absence of an input signal throughout 40 cycles of cell division. We also tested the transient behavior of our switch and found that switching speeds can be tuned by changing the expression rate of mf-Lon. To our knowledge, this work demonstrates the first use of dynamic expression of an orthogonal and heterologous protease to tune a nonlinear protein degradation circuit. The hybrid switch is potentially a more robust and tunable topology for use in prokaryotic systems.

  5. Resistivity switching properties of Li-doped ZnO films deposited on LaB_6 electrode

    International Nuclear Information System (INIS)

    Igityan, A.; Kafadaryan, Y.; Aghamalyan, N.; Petrosyan, S.; Badalyan, G.; Vardanyan, V.; Nersisyan, M.; Hovsepyan, R.; Palagushkin, A.; Kryzhanovsky, B.

    2015-01-01

    Current–voltage (I–V) characteristics of Al/p-ZnO:Li/LaB_6 device, measured in voltage sweep mode, show unipolar resistive switching and monostable threshold switching (URS and MTS) for different bias voltage polarities. URS could be transformed to MTS by application of reverse bias voltage. With increasing number of cycles, URS is converted to bipolar resistive switching mode which is lost after certain number of cycles, and device turns into an ordinary resistor. Analysis of linear fitting I–V curves suggests that ohmic and space charge limited current laws are responsible for conductivity mechanism of Al/p-ZnO:Li/LaB_6 device. - Highlights: • Al/p-ZnO:Li/LaB_6 memristive device is fabricated using an e-beam evaporation technique. • Current–voltage (I–V) characteristics are studied. • Type of resistive switching mode depends on the bias voltage polarity and number of switching cycles. • Resistive switching in Al/ZnO:Li/LaB_6 has an interfacial effect. • Ohmic and SCLC laws are responsible for conductivity mechanism of resistive states.

  6. Chemical switches and logic gates based on surface modified semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Szacilowski; Wojciech, Macyk [Jagiellonian Univ., Dept. of Chemistry, Krakow (Poland)

    2006-02-15

    Photoelectrochemical properties of multicomponent photo-electrodes based on titanium dioxide and cadmium sulfide powders modified with hexacyanoferrate complexes have been examined. Photocurrent responses were recorded as functions of applied potential and photon energy. Surprisingly, the photocurrent can be switched between positive and negative values as a result of potential or photon energy changes. This new effect called Photo Electrochemical Photocurrent Switching (PEPS) opens a possibility of new chemical switches and logic gates construction. Boolean logic analysis and a tentative mechanism of the device are discussed. (authors)

  7. Research Update: Molecular electronics: The single-molecule switch and transistor

    Directory of Open Access Journals (Sweden)

    Kai Sotthewes

    2014-01-01

    Full Text Available In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  8. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder?

    Science.gov (United States)

    Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine

    2011-01-01

    The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD.

  9. Metabolomics coupled with similarity analysis advances the elucidation of the cold/hot properties of traditional Chinese medicines.

    Science.gov (United States)

    Jia, Yan; Zhang, Zheng-Zheng; Wei, Yu-Hai; Xue-Mei, Qin; Li, Zhen-Yu

    2017-08-01

    It recently becomes an important and urgent mission for modern scientific research to identify and explain the theory of traditional Chinese medicine (TCM), which has been utilized in China for more than four millennia. Since few works have been contributed to understanding the TCM theory, the mechanism of actions of drugs with cold/hot properties remains unclear. In the present study, six kinds of typical herbs with cold or hot properties were orally administered into mice, and serum and liver samples were analyzed using an untargeted nuclear magnetic resonance (NMR) based metabolomics approach coupled with similarity analysis. This approach was performed to identify and quantify changes in metabolic pathways to elucidate drug actions on the treated mice. Our results showed that those drugs with same property exerted similar effects on the metabolic alterations in mouse serum and liver samples, while drugs with different property showed different effects. The effects of herbal medicines with cold/hot properties were exerted by regulating the pathways linked to glycometabolism, lipid metabolism, amino acids metabolism and other metabolic pathways. The results elucidated the differences and similarities of drugs with cold/hot properties, providing useful information on the explanation of medicinal properties of these TCMs. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. Optically coupled cavities for wavelength switching

    Energy Technology Data Exchange (ETDEWEB)

    Costazo-Caso, Pablo A; Granieri, Sergio; Siahmakoun, Azad, E-mail: pcostanzo@ing.unlp.edu.ar, E-mail: granieri@rose-hulman.edu, E-mail: siahmako@rose-hulman.edu [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803 (United States)

    2011-01-01

    An optical bistable device which presents hysteresis behavior is proposed and experimentally demonstrated. The system finds applications in wavelength switching, pulse reshaping and optical bistability. It is based on two optically coupled cavities named master and slave. Each cavity includes a semiconductor optical amplifier (SOA), acting as the gain medium of the laser, and two pair of fiber Bragg gratings (FBG) which define the lasing wavelength (being different in each cavity). Finally, a variable optical coupler (VOC) is employed to couple both cavities. Experimental characterization of the system performance is made analyzing the effects of the coupling coefficient between the two cavities and the driving current in each SOA. The properties of the hysteretic bistable curve and switching can be controlled by adjusting these parameters and the loss in the cavities. By selecting the output wavelength ({lambda}{sub 1} or {lambda}{sub 2}) with an external filter it is possible to choose either the invert or non-invert switched signal. Experiments were developed employing both optical discrete components and a photonic integrated circuit. They show that for 8 m-long cavities the maximum switching frequency is about 500 KHz, and for 4 m-long cavities a minimum rise-time about 21 ns was measured. The switching time can be reduced by shortening the cavity lengths and using photonic integrated circuits.

  11. A Broadband Ultrathin Nonlinear Switching Metamaterial

    Directory of Open Access Journals (Sweden)

    E. Zarnousheh Farahani

    2017-05-01

    Full Text Available In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.

  12. Domain switching in single-phase multiferroics

    Science.gov (United States)

    Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

    2018-06-01

    Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It

  13. Inherently safe SNR shutdown system with Curie point controlled sensor/switch unit

    International Nuclear Information System (INIS)

    Mueller, K.; Norajitra, P.; Reiser, H.

    1987-02-01

    Inherent shutdown due to increase in the sodium temperature at the core outlet is triggered by interruption of the current supply to the electromagnet coupling of absorber elements via curie point controlled sensor/switch units. These switches are arranged above suitable fuel element positions and spatially independent of the shutdown elements. Compared with other similar systems very short response times are achieved. A prototype switch unit has already undergone extensive testing. These tests have confirmed that switching takes place in a very narrow temperature range. (orig./HP) [de

  14. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young's modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young's modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  15. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  16. Optical switching properties of VO2 films driven by using WDM-aligned lasers

    International Nuclear Information System (INIS)

    Tsai, K.Y.; Wu, F.-H.; Shieh, H.-P.D.; Chin, T.-S.

    2006-01-01

    Vanadium dioxide (VO 2 ) film had been demonstrated a high speed IR shutter driven by total optical modulation. However, it usually required a higher power heating laser of high power and precise optical systems to cover the probe beam on the sample with a heating beam of larger area. A new optical system, simply composed of wavelength division multiplexing (WDM), fiber lens or convex lens system, and a glass sheet with VO 2 thin film on it, was easily assembled to utilize VO 2 film as an IR shutter, implying the possibility to highly miniaturize the VO 2 -based optical shutter. A permanent low-transmittance (PLT) region forms on the film within the probe beam, resulting in a decrease in average power of the probe beam. Another ring-type switching area (switching ring) forms around the PLT region, resulting in the transmittance switching of the probe beam synchronously with the heating signal. VO 2 films can be switched with the highest rate of a continuous square heating signal of 3 mW at 120 kHz. A heating pulse of 0.7 ns and 13 mW can be used to stimulate an IR pulse with fiber lens

  17. Amphoteric Be in GaN: Experimental Evidence for Switching between Substitutional and Interstitial Lattice Sites

    Science.gov (United States)

    Tuomisto, Filip; Prozheeva, Vera; Makkonen, Ilja; Myers, Thomas H.; Bockowski, Michal; Teisseyre, Henryk

    2017-11-01

    We show that Be exhibits amphoteric behavior in GaN, involving switching between substitutional and interstitial positions in the lattice. This behavior is observed through the dominance of BeGa in the positron annihilation signals in Be-doped GaN, while the emergence of VGa at high temperatures is a consequence of the Be impurities being driven to interstitial positions. The similarity of this behavior to that found for Na and Li in ZnO suggests that this could be a universal property of light dopants substituting for heavy cations in compound semiconductors.

  18. New fast switches for the Tore Supra ohmic heating circuit

    International Nuclear Information System (INIS)

    Zunino, K.; Bruneth, J.; Cara, P.; Louart, A.; Santagiustina, A.; Emelyanova, I.; Filippov, F.; Mikailov, N.

    2003-01-01

    The Tore-Supra ohmic heating circuit is equipped with four fast make switches and one fast opening switch. After many years of operation, it became necessary to substitute this equipment by modern components with similar ratings. An extensive research has been undertaken to find fast switches able to withstand more than 2500 operations per year without maintenance, at a make current of 54 kA, a voltage of 12 kV and with a closing time of less than 15 ms. At the end of the investigation, it was decided to replace the old components by fast mechanical switches proposed by the Efremov Institute and based on a prototype developed for ITER. This paper presents the technical requirements and the characteristics of the switches and describes the operational experience gained with these components during operating campaigns of 2002 and 2003. (authors)

  19. Resistive Switching of Ta2O5-Based Self-Rectifying Vertical-Type Resistive Switching Memory

    Science.gov (United States)

    Ryu, Sungyeon; Kim, Seong Keun; Choi, Byung Joon

    2018-01-01

    To efficiently increase the capacity of resistive switching random-access memory (RRAM) while maintaining the same area, a vertical structure similar to a vertical NAND flash structure is needed. In addition, the sneak-path current through the half-selected neighboring memory cell should be mitigated by integrating a selector device with each RRAM cell. In this study, an integrated vertical-type RRAM cell and selector device was fabricated and characterized. Ta2O5 as the switching layer and TaOxNy as the selector layer were used to preliminarily study the feasibility of such an integrated device. To make the side contact of the bottom electrode with active layers, a thick Al2O3 insulating layer was placed between the Pt bottom electrode and the Ta2O5/TaOxNy stacks. Resistive switching phenomena were observed under relatively low currents (below 10 μA) in this vertical-type RRAM device. The TaOxNy layer acted as a nonlinear resistor with moderate nonlinearity. Its low-resistance-state and high-resistance-state were well retained up to 1000 s.

  20. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder?

    Directory of Open Access Journals (Sweden)

    Jutta eKray

    2012-01-01

    Full Text Available The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD include executive control functions such as inhibitory control, task switching, and working memory. In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal working memory as well as on fluid intelligence (reasoning. The children in both groups showed improvements in task switching, that is, a reduction of switching costs, but not in performing the single tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal working memory, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD.

  1. Magnetic elements for switching magnetization magnetic force microscopy tips

    International Nuclear Information System (INIS)

    Cambel, V.; Elias, P.; Gregusova, D.; Martaus, J.; Fedor, J.; Karapetrov, G.; Novosad, V.

    2010-01-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.

  2. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  3. Study of switching behavior of exchange-coupled nanomagnets by transverse magnetization metrology

    Science.gov (United States)

    Dey, Himadri S.; Csaba, Gyorgy; Bernstein, Gary H.; Porod, Wolfgang

    2017-05-01

    We investigate the static switching modes of nanomagnets patterned from antiferromagnetically exchange-coupled magnetic multilayers, and compare them to nanomagnets having only dipole coupling between the ferromagnetic layers. Vibrating sample magnetometry experiments, supported by micromagnetic simulations, reveal two distinct switching mechanisms between the exchange-coupled and only dipole-coupled nanomagnets. The exchange-coupled nanomagnets exhibit gradual switching of the layers, dictated by the strong antiferromagnetic exchange coupling present between the layers. However, the layers of the only dipole-coupled nanomagnets show abrupt nucleation/growth type switching. A comprehensive understanding of the switching modes of such layered and patterned systems can add new insight into the reversal mechanisms of similar systems employed for spintronic and magneto-logic device applications.

  4. Synchronization Between Two Different Switched Chaotic Systems By Switching Control

    Directory of Open Access Journals (Sweden)

    Du Li Ming

    2016-01-01

    Full Text Available This paper is concerned with the synchronization problem of two different switched chaotic systems, considering the general case that the master-slave switched chaotic systems have uncertainties. Two basic problems are considered: one is projective synchronization of switched chaotic systems under arbitrary switching; the other is projective synchronization of switched chaotic systems by design of switching when synchronization cannot achieved by using any subsystems alone. For the two problems, common Lyapunov function method and multiple Lyapunov function method are used respectively, an adaptive control scheme has been presented, some sufficient synchronization conditions are attainted, and the switching signal is designed. Finally, the numerical simulation is provide to show the effectiveness of our method.

  5. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  6. Graphene and its derivatives: switching ON and OFF.

    Science.gov (United States)

    Chen, Yu; Zhang, Bin; Liu, Gang; Zhuang, Xiaodong; Kang, En-Tang

    2012-07-07

    As the thinnest material ever known in the universe, graphene has been attracting tremendous amount of attention in both materials science and condensed-matter physics since its successful isolation a few years ago. This one-atom-thick two-dimensional pseudo-infinite nano-crystal consists of sp(2)-hybridized aromatic carbon atoms covalently packed into a continuous hexagonal lattice. Graphene exhibits a range of unique properties, viz., high three-dimensional aspect ratio and large specific surface area, superior mechanical stiffness and flexibility, remarkable optical transmittance, extraordinary thermal response and excellent electronic transport properties, promising its applications in the next generation electronics. To switch graphene and its derivatives between ON and OFF states in nanoelectronic memory devices, various techniques have been developed to manipulate the carbon atomic sheets via introducing the valence-conduction bandgap and to enhance their processability. In this article, we review the utilization of electrically, thermally and chemically modified graphene and its polymer-functionalized derivatives for switching and information storage applications. The challenges posed on the development of novel graphene materials and further enhancements of the device switching performance have also been discussed.

  7. A Switch Is Not a Switch: Syntactically-Driven Bilingual Language Control

    Science.gov (United States)

    Gollan, Tamar H.; Goldrick, Matthew

    2018-01-01

    The current study investigated the possibility that language switches could be relatively automatically triggered by context. "Single-word switches," in which bilinguals switched languages on a single word in midsentence and then immediately switched back, were contrasted with more complete "whole-language switches," in which…

  8. Ice Shaping Properties, Similar to That of Antifreeze Proteins, of a Zirconium Acetate Complex

    Science.gov (United States)

    Deville, Sylvain; Viazzi, Céline; Leloup, Jérôme; Lasalle, Audrey; Guizard, Christian; Maire, Eric; Adrien, Jérôme; Gremillard, Laurent

    2011-01-01

    The control of the growth morphologies of ice crystals is a critical issue in fields as diverse as biomineralization, medicine, biology, civil or food engineering. Such control can be achieved through the ice-shaping properties of specific compounds. The development of synthetic ice-shaping compounds is inspired by the natural occurrence of such properties exhibited by antifreeze proteins. We reveal how a particular zirconium acetate complex is exhibiting ice-shaping properties very similar to that of antifreeze proteins, albeit being a radically different compound. We use these properties as a bioinspired approach to template unique faceted pores in cellular materials. These results suggest that ice-structuring properties are not exclusive to long organic molecules and should broaden the field of investigations and applications of such substances. PMID:22028886

  9. Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex.

    Directory of Open Access Journals (Sweden)

    Sylvain Deville

    Full Text Available The control of the growth morphologies of ice crystals is a critical issue in fields as diverse as biomineralization, medicine, biology, civil or food engineering. Such control can be achieved through the ice-shaping properties of specific compounds. The development of synthetic ice-shaping compounds is inspired by the natural occurrence of such properties exhibited by antifreeze proteins. We reveal how a particular zirconium acetate complex is exhibiting ice-shaping properties very similar to that of antifreeze proteins, albeit being a radically different compound. We use these properties as a bioinspired approach to template unique faceted pores in cellular materials. These results suggest that ice-structuring properties are not exclusive to long organic molecules and should broaden the field of investigations and applications of such substances.

  10. Design and analysis of photonic optical switches with improved wavelength selectivity

    Science.gov (United States)

    Wielichowski, Marcin; Patela, Sergiusz

    2005-09-01

    Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.

  11. Helical EMG module with explosive current opening switches

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Vakhrushev, V.V.; Volkov, G.I.; Ivanov, V.A.; Fetisov, I.K.

    1990-01-01

    To carry out the experimental work to study plasma properties, electromagnetic sources with 10 6 to 10 8 J of stored energy delivered to the load in microsecond time, are required. Among the current electromagnetic storage devices, the explosive magnetic generators (EMG) are of the largest energy capacity. The disadvantages of this type of generators is relatively long time (ten of microseconds) of electromagnetic energy cumulation in the deformable circuit. To reduce the time of energy transfer to the load to a microsecond range the switching scheme is generally used, where the cumulation circuit and that of the load are separated and connected in parallel via a switching element (opening switch) providing generation of desired power. In this paper, some ways and means of designing opening switches to generate high current pulses have been investigated. The opening switches to generate high current pulses have been investigated. The opening switches which operation is based on mechanic destruction of the conductor using high explosive, have the highest and most reliable performance. The authors have explored the mechanic disruption of a thin conductor (foil), the technique based on throwing the foil at the ribbed barrier of electric insulator material. The report presents the data obtained in studying the operation of this type of opening switch having cylindrical shape, 200 mm in diameter and 200 mm long, designed for generation of 5.5 MA current pulse in the load

  12. Axis-switching of a micro-jet

    Science.gov (United States)

    Cabaleiro, Juan Martin; Aider, Jean-Luc

    2014-03-01

    In this study, it is shown that free microjets can undergo complex transitions similar to large-scale free jets despite relatively low Reynolds numbers. Using an original experimental method allowing for the 3D reconstruction of the instantaneous spatial organization of the microjet, the axis-switching of a micro-jet is observed for the first time. This is the first experimental evidence of such complex phenomena for free micro-jets. Combining these experimental results with Direct Numerical Simulations it is shown that the mechanism responsible for the axis-switching is the deformation of a micro-vortex ring due to induction by the corner vortices, as it occurs in large scale non-circular jets.

  13. Electro- and photochemical switching of dithienylethene self-assembled monolayers on gold electrodes

    DEFF Research Database (Denmark)

    Browne, W.R.; Kudernac, T.; Katsonis, N.

    2008-01-01

    forms of the dithienylethene SAMs is examined and found to be sensitive to the molecular structure of the switch. For the three dithienylethenes, the electrochemical behavior with respect to electrochemical ring opening/closing is retained in the SAMs. In contrast, a marked dependence on the nature...... of the anchoring group is observed upon immobilization in terms of the retention of the photochemical properties observed in solution. For the meta-thiophenol anchor both photochemical ring opening and closing are observed in the SAM, while for the thienyl-thiol-anchored switches the photochemically properties...

  14. Effect of thermal annealing on resistance switching characteristics of Pt/ZrO2/TiN stacks

    International Nuclear Information System (INIS)

    Kim, Jonggi; Lee, Kyumin; Kim, Yonjae; Na, Heedo; Ko, Dae-Hong; Sohn, Hyunchul; Lee, Sunghoon

    2013-01-01

    In this study, the effect of thermal annealing on both the physical properties and the resistive switching properties of ZrO 2 films deposited by atomic layer deposition (ALD) method were investigated for its potential application to non-volatile memory devices. The ZrO 2 films in the Pt/ZrO 2 /TiN structure exhibited unipolar and bipolar resistance switching behaviors depending on the nature of the bias applied to Pt top electrodes for the electro-forming process. For unipolar switching, the resistance of the high resistance state (HRS) was reduced with increasing annealing temperature, accompanied with the increase of metallic Zr in the annealed ZrO 2 films. In contrast, the HRS resistance in the bipolar switching was increased while the low resistance state (LRS) resistance was decreased with increasing annealing temperature, producing a greater change in resistance. SIMS and EDX showed that the thickness of interfacial TiO x N y layer between the ZrO 2 and the TiN bottom electrode was enlarged with annealing. The enlarged TiO x N y layer was expected to produce the reduction of LRS resistance with the increase of HRS resistance in the bipolar resistance switching. - Highlights: • Effect of thermal annealing on resistive switching of ZrO 2 was investigated. • Both unipolar and bipolar switching were shown in the Pt/ZrO 2 /TiN stack. • TiO x N y interface layer was enlarged with increasing annealing temperature. • TiO x N y interface plays an important role in resistive switching properties

  15. Fracture toughness properties of similar and dissimilar electron beam welds

    International Nuclear Information System (INIS)

    Kocak, M.; Junghans, E.

    1994-01-01

    The weldability aspects, tensile and Crack Tip Opening Displacement (CTOD) toughness properties of 9Cr1MoNbV (P91) martensitic steel with austenitic 316L steel were evaluated for electron beam (EB) welds on 35 mm thick pates. The effects of mechanical heterogeneity (mis-matching) at the vicinity of the crack tip of dissimilar three point bend specimens on the CTOD fracture toughness values was also discussed. The CTOD tests were performed on similar and dissimilar EB welds of austenitic and tempered martensitic P91 steels at room temperature. Dilution of austenitic with martensitic steel resulted in predominantly martensitic EB weld metal, exhibiting rather high yield strength and hardness. Nevertheless, the weld metal produced high CTOD toughness values due to the beneficial effect of the lower strength austenitic steel part of the specimen in which crack deviation occured (mis-match effect). The coarse grained HAZ of the P91 steel side exhibits extremely poor CTOD toughness properties in the as-welded condition at room temperature. The CTOD values obtained are believed to be representing the intrinsic property of this zone since the distance of the crack tip to the weaker austenitic steel part of the SENB specimens was too large to cause an effective stress relaxation at the crack tip. Further post weld heat treatment at 750 C for two hours improved the CTOD toughness marginally. (orig.)

  16. Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization.

    Science.gov (United States)

    Kempa, M; Kamba, S; Savinov, M; Maryško, M; Frait, Z; Vaněk, P; Tomczyk, M; Vilarinho, P M

    2010-11-10

    We investigated ceramics samples of solid solutions of [PbFe(2/3)W(1/3)O(3)](x)-[PbZr(0.53)Ti(0.47)O(3)](1 - x) (PFW(x)-PZT(1 - x), x = 0.2 and 0.3) by means of broad-band dielectric spectroscopy, differential scanning calorimetry and SQUID magnetometry. We did not confirm the observations of Kumar et al (2009 J. Phys.: Condens. Matter 21 382204), who reported on reversible suppression of ferroelectric polarization in polycrystalline PFW(x)-PZT(1 - x) thin films for magnetic fields above 0.5 T. We did not observe any change of ferroelectric polarization with external magnetic fields up to 3.2 T. Pirc et al (2009 Phys. Rev. B 79 214114) developed a theory explaining the reported large magnetoelectric effect in PFW(x)-PZT(1 - x), taking into account relaxor magnetic and relaxor ferroelectric properties of the system. Our data revealed classical ferroelectric properties below 525 K and 485 K in samples with x = 0.2 and 0.3, respectively. Moreover, paramagnetic behavior was observed down to 4.5 K instead of previously reported relaxor magnetic behavior. It seems that the reported switching-off of ferroelectric polarization in PFW(x)-PZT(1 - x) thin films is not an intrinsic property, but probably an effect of electrodes, interlayers, grain boundaries or second phases presented in polycrystalline thin films.

  17. Switching behavior of double-decker single molecule magnets on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  18. Similarity of satellite DNA properties in the order Rodentia

    Energy Technology Data Exchange (ETDEWEB)

    Mazrimas, J A; Hatch, F T

    1977-09-01

    We have characterized satellite DNAs from 9 species of kangaroo rat (Dipodomys) and have shown that the HS-..cap alpha.. and HS-..beta.. satellites, where present, are nearly identical in all species as to melting transition midpoint (Tm), and density in neutral CsCl, alkaline CsCl, and Cs/sub 2/SO/sub 4/-Ag/sup +/ gradients. However, the MS satellites exist in two internally similar classes. The satellite DNAs from three other rodents were characterized (densities listed are in neutral CsCl). The pocket gopher, Thomomys bottae, contains Th-..cap alpha.. (1.713 g/ml) and Th-..beta.. (1.703 g/ml). The guinea pig (Cavia porcellus) contains Ca-..cap alpha.., Ca-..beta.., and Ca-..gamma.. at densities of 1.706 g/ml, 1.704 g/ml, and 1.704 g/ml, respectively. The antelope ground squirrel (Ammospermophilus harrisi) contains Am-..cap alpha.., 1.708 g/ml, Am-..beta.., 1.717 g/ml, and Am-..gamma.., 1.707 g/ml. The physical and chemical properties of the alpha-satellites from the above four rodents representing four different families in two suborders of Rodentia were compared. They show nearly identical Tm, nucleoside composition of single strands, and single strand densities in alkaline CsCl. Similar comparisons on the second or third satellite DNAs from these rodents also indicate a close relationship to each other. Thus the high degree of similarity of satellite sequences found in such a diverse group of rodents suggests a cellular function that is subject to natural selection, and implies that these sequences have been conserved over a considerable span of evolutionary time since the divergence of these rodents about 50 million years ago.

  19. Similarity of satellite DNA properties in the order Rodentia

    Energy Technology Data Exchange (ETDEWEB)

    Mazrimas, J A; Hatch, F T

    1977-09-01

    Satellite DNAs from 9 species of kangaroo rat (Dipodomys) have been characterized and have shown that the HS-..cap alpha.. and HS-..beta.. satellites, where present, are nearly identical in all species as to melting transition midpoint (Tm), and density in neutral CsCl, alkaline CsCl, and Cs/sub 2/SO/sub 4/-Ag/sup +/ gradients. However, the MS satellites exist in two internally similar classes. The satellite DNAs from three other rodents were characterized (densities listed are in neutral CsCl). The pocket gopher, Thomomys bottae, contains Th-..cap alpha.. (1.713 g/ml) and Th..beta.. (1.703 g/ml). The guinea pig (Cavia porcellus) contains Ca-..cap alpha.., Ca-..beta.. and Ca-..gamma.. at densities of 1.706 g/ml, 1.704 g/ml and 1.704 g/ml, respectively. The antelope ground squirrel (Ammospermophilus harrisi) contains Am-..cap alpha.., 1.708 g/ml, Am-..beta.., 1.717 g/ml, and Am-..gamma.., 1.707 g/ml. The physical and chemical properties of the alpha-satellites from the above four rodents representing four different families in two suborders of Rodentia were compared. They show nearly identical Tm, nucleoside composition of single strands, and single strand densities in alkaline CsCl. Similar comparisons on the second or third satellite DNAs from these rodents also indicate a close relationship to each other. Thus the high degree of similarity of satellite sequences found in such a diverse group of rodents suggests a cellular function that is subject to natural selection, and implies that these sequences have been conserved over a considerable span of evolutionary time since the divergence of these rodents about 50 million years ago.

  20. Property transmission: an explanatory account of the role of similarity information in causal inference.

    Science.gov (United States)

    White, Peter A

    2009-09-01

    Many kinds of common and easily observed causal relations exhibit property transmission, which is a tendency for the causal object to impose its own properties on the effect object. It is proposed that property transmission becomes a general and readily available hypothesis used to make interpretations and judgments about causal questions under conditions of uncertainty, in which property transmission functions as a heuristic. The property transmission hypothesis explains why and when similarity information is used in causal inference. It can account for magical contagion beliefs, some cases of illusory correlation, the correspondence bias, overestimation of cross-situational consistency in behavior, nonregressive tendencies in prediction, the belief that acts of will are causes of behavior, and a range of other phenomena. People learn that property transmission is often moderated by other factors, but under conditions of uncertainty in which the operation of relevant other factors is unknown, it tends to exhibit a pervasive influence on thinking about causality. (c) 2009 APA, all rights reserved.

  1. Optimal control of switching time in switched stochastic systems with multi-switching times and different costs

    Science.gov (United States)

    Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian

    2017-08-01

    In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.

  2. Transient-Switch-Signal Suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  3. Is the phonological similarity effect in working memory due to proactive interference?

    Science.gov (United States)

    Baddeley, Alan D; Hitch, Graham J; Quinlan, Philip T

    2018-04-12

    Immediate serial recall of verbal material is highly sensitive to impairment attributable to phonological similarity. Although this has traditionally been interpreted as a within-sequence similarity effect, Engle (2007) proposed an interpretation based on interference from prior sequences, a phenomenon analogous to that found in the Peterson short-term memory (STM) task. We use the method of serial reconstruction to test this in an experiment contrasting the standard paradigm in which successive sequences are drawn from the same set of phonologically similar or dissimilar words and one in which the vowel sound on which similarity is based is switched from trial to trial, a manipulation analogous to that producing release from PI in the Peterson task. A substantial similarity effect occurs under both conditions although there is a small advantage from switching across similar sequences. There is, however, no evidence for the suggestion that the similarity effect will be absent from the very first sequence tested. Our results support the within-sequence similarity rather than a between-list PI interpretation. Reasons for the contrast with the classic Peterson short-term forgetting task are briefly discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Clustering promotes switching dynamics in networks of noisy neurons

    Science.gov (United States)

    Franović, Igor; Klinshov, Vladimir

    2018-02-01

    Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.

  5. Robust filtering and fault detection of switched delay systems

    CERN Document Server

    Wang, Dong; Wang, Wei

    2013-01-01

    Switched delay systems appear in a wide field of applications including networked control systems, power systems, memristive systems. Though the large amount of ideas with respect to such systems have generated, until now, it still lacks a framework to focus on filter design and fault detection issues which are relevant to life safety and property loss. Beginning with the comprehensive coverage of the new developments in the analysis and control synthesis for switched delay systems, the monograph not only provides a systematic approach to designing the filter and detecting the fault of switched delay systems, but it also covers the model reduction issues. Specific topics covered include: (1) Arbitrary switching signal where delay-independent and delay-dependent conditions are presented by proposing a linearization technique. (2) Average dwell time where a weighted Lyapunov function is come up with dealing with filter design and fault detection issues beside taking model reduction problems. The monograph is in...

  6. Dynamic behavior of HTSC opening switch models controlled by short over-critical current pulses

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Krastelev, E.G.; Voronin, V.S.

    1999-01-01

    We present results of experimental research of dynamical properties of thin films of YBa 2 Cu 3 O 7 HTSC-switch models under action of short overcritical current pulses to test this method of control of fast high-power opening switches for accelerator applications

  7. Dynamic state switching in nonlinear multiferroic cantilevers

    Science.gov (United States)

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Lofland, Samuel E.; Takeuchi, Ichiro

    2013-03-01

    We demonstrate read-write-read-erase cyclical mechanical-memory properties of all-thin-film multiferroic heterostructured Pb(Zr0.52Ti0.48) O3 / Fe0.7Ga0.3 cantilevers when a high enough voltage around the resonant frequency of the device is applied on the Pb(Zr0.52Ti0.48) O3 piezo-film. The device state switching process occurs due to the presence of a hysteresis loop in the piezo-film frequency response, which comes from the nonlinear behavior of the cantilever. The reference frequency at which the strain-mediated Fe0.7Ga0.3 based multiferroic device switches can also be tuned by applying a DC magnetic field bias that contributes to the increase of the cantilever effective stiffness. The switching dynamics is mapped in the phase space of the device measured transfer function characteristic for such high piezo-film voltage excitation, providing additional information on the dynamical stability of the devices.

  8. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing

    2009-02-11

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  9. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Flood, Amar H.; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  10. Trend Switching Processes in Financial Markets

    Science.gov (United States)

    Preis, Tobias; Stanley, H. Eugene

    For an intriguing variety of switching processes in nature, the underlying complex system abruptly changes at a specific point from one state to another in a highly discontinuous fashion. Financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("bubble collapse"), on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for very short time scales. Our analysis is based on a German DAX Future data base containing 13,991,275 transactions recorded with a time resolution of 10- 2 s. For a parallel analysis, we use a data base of all S&P500 stocks providing 2,592,531 daily closing prices. We ask whether these ubiquitous switching processes have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have features similar to those present in phase transitions. We find that the well-known catastrophic bubbles that occur on large time scales - such as the most recent financial crisis - are no outliers but in fact single dramatic representatives caused by the formation of upward and downward trends on time scales varying over nine orders of magnitude from the very large down to the very small.

  11. Three-Dimensionally Printed Micro-electromechanical Switches.

    Science.gov (United States)

    Lee, Yongwoo; Han, Jungmin; Choi, Bongsik; Yoon, Jinsu; Park, Jinhee; Kim, Yeamin; Lee, Jieun; Kim, Dae Hwan; Kim, Dong Myong; Lim, Meehyun; Kang, Min-Ho; Kim, Sungho; Choi, Sung-Jin

    2018-05-09

    Three-dimensional (3D) printers have attracted considerable attention from both industry and academia and especially in recent years because of their ability to overcome the limitations of two-dimensional (2D) processes and to enable large-scale facile integration techniques. With 3D printing technologies, complex structures can be created using only a computer-aided design file as a reference; consequently, complex shapes can be manufactured in a single step with little dependence on manufacturer technologies. In this work, we provide a first demonstration of the facile and time-saving 3D printing of two-terminal micro-electromechanical (MEM) switches. Two widely used thermoplastic materials were used to form 3D-printed MEM switches; freely suspended and fixed electrodes were printed from conductive polylactic acid, and a water-soluble sacrificial layer for air-gap formation was printed from poly(vinyl alcohol). Our 3D-printed MEM switches exhibit excellent electromechanical properties, with abrupt switching characteristics and an excellent on/off current ratio value exceeding 10 6 . Therefore, we believe that our study makes an innovative contribution with implications for the development of a broader range of 3D printer applications (e.g., the manufacturing of various MEM devices and sensors), and the work highlights a uniquely attractive path toward the realization of 3D-printed electronics.

  12. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities

    Energy Technology Data Exchange (ETDEWEB)

    Chitnumsub, Penchit; Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar [National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Amornwatcharapong, Watcharee [Mahidol University, Bangkok (Thailand); Pornthanakasem, Wichai [National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Chaiyen, Pimchai [Mahidol University, Bangkok (Thailand); Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree [National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand)

    2014-06-01

    The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme.

  13. The structure of Plasmodium falciparum serine hydroxymethyltransferase reveals a novel redox switch that regulates its activities

    International Nuclear Information System (INIS)

    Chitnumsub, Penchit; Ittarat, Wanwipa; Jaruwat, Aritsara; Noytanom, Krittikar; Amornwatcharapong, Watcharee; Pornthanakasem, Wichai; Chaiyen, Pimchai; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2014-01-01

    The crystal structure of P. falciparum SHMT revealed snapshots of an intriguing disulfide/sulfhydryl switch controlling the functional activity. Plasmodium falciparum serine hydroxymethyltransferase (PfSHMT), an enzyme in the dTMP synthesis cycle, is an antimalarial target because inhibition of its expression or function has been shown to be lethal to the parasite. As the wild-type enzyme could not be crystallized, protein engineering of residues on the surface was carried out. The surface-engineered mutant PfSHMT-F292E was successfully crystallized and its structure was determined at 3 Å resolution. The PfSHMT-F292E structure is a good representation of PfSHMT as this variant revealed biochemical properties similar to those of the wild type. Although the overall structure of PfSHMT is similar to those of other SHMTs, unique features including the presence of two loops and a distinctive cysteine pair formed by Cys125 and Cys364 in the tetrahydrofolate (THF) substrate binding pocket were identified. These structural characteristics have never been reported in other SHMTs. Biochemical characterization and mutation analysis of these two residues confirm that they act as a disulfide/sulfhydryl switch to regulate the THF-dependent catalytic function of the enzyme. This redox switch is not present in the human enzyme, in which the cysteine pair is absent. The data reported here can be further exploited as a new strategy to specifically disrupt the activity of the parasite enzyme without interfering with the function of the human enzyme

  14. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.

    Science.gov (United States)

    Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel

    2017-05-12

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.

  15. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  16. Computing the variations in the self-similar properties of the various gait intervals in Parkinson disease patients.

    Science.gov (United States)

    Manjeri Keloth, Sana; Arjunan, Sridhar P; Kumar, Dinesh

    2017-07-01

    This study has investigated the stride, swing, stance and double support intervals of gait for Parkinson's disease (PD) patients with different levels of severity. Self-similar properties of the gait signal were analyzed to investigate the changes in the gait pattern of the healthy and PD patients. To understand the self-similar property, detrended fluctuation analysis was performed. The analysis shows that the PD patients have less defined gait when compared to healthy. The study also shows that among the stance and swing phase of stride interval, the self-similarity is less for swing interval when compared to the stance interval of gait and decreases with the severity of gait. Also, PD patients show decreased self-similar patterns in double support interval of gait. This suggest that there are less rhythmic gait intervals and a sense of urgency to remain in support phase of gait by the PD patients.

  17. Evaluation of the Delivery QoS Characteristics of Gigabit Ethernet Switches

    CERN Document Server

    Beuran, Razvan; Davies, Neil; Dobinson, Robert W

    2004-01-01

    The event selection system for ATLAS is designed to perform real-time image processing on particle collision data equivalent to 2 TB/s. This data is filtered by a multi-level architecture, resulting in 200 GB/s of data analysed by a distributed system consisting of several thousand PCs and switches. As part of our ongoing work on this system, we performed tests on several Gigabit Ethernet switches manufactured by market leaders, using our custom-built test equipment. We analysed the implications of running network devices at, and just beyond, saturation while deploying service differentiation mechanisms. We quantified the quality degradation that traffic flows experienced when passing through switches. We focused on emergent properties in saturation, including fairness and fidelity to expectations. We discuss the ideals for switch behaviour and compare them against the observed behaviour of real implementations of differentiation mechanisms in switches. This creates a generic benchmark, which is independent o...

  18. Intentional preparation of auditory attention-switches: Explicit cueing and sequential switch-predictability.

    Science.gov (United States)

    Seibold, Julia C; Nolden, Sophie; Oberem, Josefa; Fels, Janina; Koch, Iring

    2018-06-01

    In an auditory attention-switching paradigm, participants heard two simultaneously spoken number-words, each presented to one ear, and decided whether the target number was smaller or larger than 5 by pressing a left or right key. An instructional cue in each trial indicated which feature had to be used to identify the target number (e.g., female voice). Auditory attention-switch costs were found when this feature changed compared to when it repeated in two consecutive trials. Earlier studies employing this paradigm showed mixed results when they examined whether such cued auditory attention-switches can be prepared actively during the cue-stimulus interval. This study systematically assessed which preconditions are necessary for the advance preparation of auditory attention-switches. Three experiments were conducted that controlled for cue-repetition benefits, modality switches between cue and stimuli, as well as for predictability of the switch-sequence. Only in the third experiment, in which predictability for an attention-switch was maximal due to a pre-instructed switch-sequence and predictable stimulus onsets, active switch-specific preparation was found. These results suggest that the cognitive system can prepare auditory attention-switches, and this preparation seems to be triggered primarily by the memorised switching-sequence and valid expectations about the time of target onset.

  19. Central Cross-Talk in Task Switching : Evidence from Manipulating Input-Output Modality Compatibility

    Science.gov (United States)

    Stephan, Denise Nadine; Koch, Iring

    2010-01-01

    Two experiments examined the role of compatibility of input and output (I-O) modality mappings in task switching. We define I-O modality compatibility in terms of similarity of stimulus modality and modality of response-related sensory consequences. Experiment 1 included switching between 2 compatible tasks (auditory-vocal vs. visual-manual) and…

  20. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    Science.gov (United States)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  1. Resistance switching at the nanometre scale in amorphous carbon

    International Nuclear Information System (INIS)

    Sebastian, Abu; Rossel, Christophe; Pozidis, Haralampos; Eleftheriou, Evangelos; Pauza, Andrew; Shelby, Robert M; RodrIguez, Arantxa Fraile

    2011-01-01

    The electrical transport and resistance switching mechanism in amorphous carbon (a-C) is investigated at the nanoscale. The electrical conduction in a-C thin films is shown to be captured well by a Poole-Frenkel transport model that involves nonisolated traps. Moreover, at high electric fields a field-induced threshold switching phenomenon is observed. The following resistance change is attributed to Joule heating and subsequent localized thermal annealing. We demonstrate that the mechanism is mostly due to clustering of the existing sp 2 sites within the sp 3 matrix. The electrical conduction behaviour, field-induced switching and Joule-heating-induced rearrangement of atomic order resulting in a resistance change are all reminiscent of conventional phase-change memory materials. This suggests the potential of a-C as a similar nonvolatile memory candidate material.

  2. Heavy-duty explosively operated pulsed opening and closing switches

    International Nuclear Information System (INIS)

    Peterson, D.R.; Price, J.H.; Upshaw, J.L.; Weldon, W.F.; Zowarka, R.C.; Gully, J.H.; Spann, M.L.

    1991-01-01

    This paper discusses improvements to heavy duty, explosively operated, opening and closing switches to reduce component cost, installation cost, and turnaround time without sacrificing reliability. Heavy duty opening and closing switches operated by small explosive charges (50 g or less) are essential to operation of the 60 MJ Balcones power supply. The six independent modules - a 10 MJ homopolar generator (HPG) and a 6 μH storage inductor - can be discharged sequentially, a valuable feature for shaping the current pulse delivered to loads such as high-energy railguns. Each delayed inductor must be isolated from the railgun circuit with a heavy duty closing switch capable of carrying megampere currents to millisecond duration. Similar closing switches are used to crowbar the railgun as the projectile approaches the muzzle: noise reduction, reduction of muzzle arc damage, and reduction of post-launch perturbation of projectile flight. The switches - both opening and closing - are characterized by microhm resistance in the closed state. Current is carried in metallic conductors. Metal-to-metal seams which carry current are maintained in uniform high pressure contact. Efficient switching is crucial to efficient conversion: rotor kinetic energy to stored inductive energy with ∼50% efficiency, stored inductive energy to projectile kinetic energy with ∼30% efficiency. The switches must operate with a precision and repeatability of 10 -5 s, readily achievable with explosives. The opening switches must be structurally and thermally capable of carrying megampere currents for more than 100 ms (∼10 5 C) and develop 10 kV upon opening, stay open for 10 - 2 s, and safely and reliably dissipate megajoules of inductive energy in the event of a fault, a failure of the switch to operate or an attempt to commutate into an open circuit

  3. label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs

    Directory of Open Access Journals (Sweden)

    Panagiotis Papastamoulis

    2016-02-01

    Full Text Available Label switching is a well-known and fundamental problem in Bayesian estimation of mixture or hidden Markov models. In case that the prior distribution of the model parameters is the same for all states, then both the likelihood and posterior distribution are invariant to permutations of the parameters. This property makes Markov chain Monte Carlo (MCMC samples simulated from the posterior distribution non-identifiable. In this paper, the label.switching package is introduced. It contains one probabilistic and seven deterministic relabeling algorithms in order to post-process a given MCMC sample, provided by the user. Each method returns a set of permutations that can be used to reorder the MCMC output. Then, any parametric function of interest can be inferred using the reordered MCMC sample. A set of user-defined permutations is also accepted, allowing the researcher to benchmark new relabeling methods against the available ones.

  4. Modality Switching Cost during Property Verification by 7 Years of Age

    Science.gov (United States)

    Ambrosi, Solene; Kalenine, Solene; Blaye, Agnes; Bonthoux, Francoise

    2011-01-01

    Recent studies in neuroimagery and cognitive psychology support the view of sensory-motor based knowledge: when processing an object concept, neural systems would re-enact previous experiences with this object. In this experiment, a conceptual switching cost paradigm derived from Pecher, Zeelenberg, and Barsalou (2003, 2004) was used to…

  5. Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis.

    Science.gov (United States)

    1982-02-01

    necesoy and Identir 6Y Week nuinber) Choice Models Similarity- Context Effects / I D in nce 4120. AGSTMCT (C- nt1 -u on ~ Oeee ld- It neceee and ideatif...the choices where the decoy was not chosen. In that sample, 63% of the 109 reversals ( CELLS b and d) were to the target and 372 to the competitor...switching from the target, thus merging the decoy and the competitor groups ( CELLS b, d and c). In that test, 59% switched to the target, while 41

  6. Photonic-crystal switch divider based on Ge2Sb2Te5 thin films.

    Science.gov (United States)

    Ma, Beijiao; Zhang, Peiqing; Wang, Hui; Zhang, Tengyu; Zeng, Jianghui; Zhang, Qian; Wang, Guoxiang; Xu, Peipeng; Zhang, Wei; Dai, Shixun

    2016-11-10

    A three-port phase-change photonic-crystal switch divider based on Ge2Sb2Te5 chalcogenide thin film was proposed. The chalcogenide material used was determined to have a high refractive index and fast phase-change speed by using laser radiation. The structure with a T-junction cavity was used to achieve three switch functions: switching "ON" in only one output port, switching "OFF" in both output ports, and dividing signals into two output ports. The transmission properties of the designed device at 2.0 μm were studied by the finite difference time domain method, which showed that the switch divider can achieve very high switching efficiency by optimizing T-junction cavity parameters. The scaling laws of photonic crystals revealed that the operating wavelength of the designed structure can be easily extended to another wavelength in the midinfrared region.

  7. The repetitive portion of the Xenopus IgH Mu switch region mediates orientation-dependent class switch recombination.

    Science.gov (United States)

    Zhang, Zheng Z; Pannunzio, Nicholas R; Lu, Zhengfei; Hsu, Ellen; Yu, Kefei; Lieber, Michael R

    2015-10-01

    Vertebrates developed immunoglobulin heavy chain (IgH) class switch recombination (CSR) to express different IgH constant regions. Most double-strand breaks for Ig CSR occur within the repetitive portion of the switch regions located upstream of each set of constant domain exons for the Igγ, Igα or Igϵ heavy chain. Unlike mammalian switch regions, Xenopus switch regions do not have a high G-density on the non-template DNA strand. In previous studies, when Xenopus Sμ DNA was moved to the genome of mice, it is able to support substantial CSR when it is used to replace the murine Sγ1 region. Here, we tested both the 2kb repetitive portion and the 4.6 kb full-length portions of the Xenopus Sμ in both their natural (forward) orientation relative to the constant domain exons, as well as the opposite (reverse) orientation. Consistent with previous work, we find that the 4.6 kb full-length Sμ mediates similar levels of CSR in both the forward and reverse orientations. Whereas, the forward orientation of the 2kb portion can restore the majority of the CSR level of the 4.6 kb full-length Sμ, the reverse orientation poorly supports R-looping and no CSR. The forward orientation of the 2kb repetitive portion has more GG dinucleotides on the non-template strand than the reverse orientation. The correlation of R-loop formation with CSR efficiency, as demonstrated in the 2kb repetitive fragment of the Xenopus switch region, confirms a role played by R-looping in CSR that appears to be conserved through evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Memory and threshold switching in thin film PMMA polymer

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1995-05-01

    Threshold switching between two impedance states have been observed at room temperature in a polymethylmethacrylate (PMMA) thin film sandwiched between two evaporated Al-metal electrodes. The cell's I-V characteristics were found to exhibit memory property. (author). 19 refs, 4 figs

  9. Auditory Multi-Stability: Idiosyncratic Perceptual Switching Patterns, Executive Functions and Personality Traits.

    Directory of Open Access Journals (Sweden)

    Dávid Farkas

    Full Text Available Multi-stability refers to the phenomenon of perception stochastically switching between possible interpretations of an unchanging stimulus. Despite considerable variability, individuals show stable idiosyncratic patterns of switching between alternative perceptions in the auditory streaming paradigm. We explored correlates of the individual switching patterns with executive functions, personality traits, and creativity. The main dimensions on which individual switching patterns differed from each other were identified using multidimensional scaling. Individuals with high scores on the dimension explaining the largest portion of the inter-individual variance switched more often between the alternative perceptions than those with low scores. They also perceived the most unusual interpretation more often, and experienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resiliency personality trait, which reflects a tendency for adaptive flexibility and experience seeking, was significantly positively related to this dimension. Taking these results together we suggest that this dimension may reflect the individual's tendency for exploring the auditory environment. Executive functions were significantly related to some of the variables describing global properties of the switching patterns, such as the average number of switches. Thus individual patterns of perceptual switching in the auditory streaming paradigm are related to some personality traits and executive functions.

  10. DESAIN DAN IMPLEMENTSI SOFT SWITCHING BOOST KONVERTER DENGAN SIMPLE AUXILLARY RESONANT SWITCH (SARC

    Directory of Open Access Journals (Sweden)

    Dimas Bagus Saputra

    2017-01-01

    Full Text Available Boost konverter merupakan penaik tegangan DC ke tegangan DC yang mempunyai tegangan output yang lebih tinggi dibanding inputnya. Penggunaan boost konverter diera modern semakin meningkat dan dibuat dengan dimensi yang lebih kecil, berat yang lebih ringan dan efisiensi yang lebih tinggi dibanding dengan boost konverter generasi terdahulu. Tetapi rugi-rugi periodik saat on/off meningkat. Untuk meraih kriteria tersebut, teknik hard switching boost konverter berevolusi menjadi teknik soft switching dengan menambah rangkaian simple auxiliary resonant circuit (SARC. Karena penambahan rangkaian SARC tersebut konverter bekerja pada kondisi zero-voltage switching switch (ZVS dan zero current switch (ZCS, sehingga saklar semikonduktor tidak bekerja secara hard switching lagi. Pada penelitian ini akan di desain dan diimplementaskan soft switching boost konverter dengan SARC. Kelebihan dari soft switching boost konverter dengan SARC adalah mempunyai efisiensi yang lebih tinggi dibanding dengan boost konverter konventional. Dari hasil implementasi menunjukkan konverter yang diajukan telah meraih zero voltage switch (ZVS. Sehingga boost konverter zero voltage switch (ZVS bisa diaplikasikan pada sistem power suplay yang membutuhkan efisiensi energi yang tinggi terutama pada daya yang tinggi.

  11. Observing others stay or switch - How social prediction errors are integrated into reward reversal learning.

    Science.gov (United States)

    Ihssen, Niklas; Mussweiler, Thomas; Linden, David E J

    2016-08-01

    Reward properties of stimuli can undergo sudden changes, and the detection of these 'reversals' is often made difficult by the probabilistic nature of rewards/punishments. Here we tested whether and how humans use social information (someone else's choices) to overcome uncertainty during reversal learning. We show a substantial social influence during reversal learning, which was modulated by the type of observed behavior. Participants frequently followed observed conservative choices (no switches after punishment) made by the (fictitious) other player but ignored impulsive choices (switches), even though the experiment was set up so that both types of response behavior would be similarly beneficial/detrimental (Study 1). Computational modeling showed that participants integrated the observed choices as a 'social prediction error' instead of ignoring or blindly following the other player. Modeling also confirmed higher learning rates for 'conservative' versus 'impulsive' social prediction errors. Importantly, this 'conservative bias' was boosted by interpersonal similarity, which in conjunction with the lack of effects observed in a non-social control experiment (Study 2) confirmed its social nature. A third study suggested that relative weighting of observed impulsive responses increased with increased volatility (frequency of reversals). Finally, simulations showed that in the present paradigm integrating social and reward information was not necessarily more adaptive to maximize earnings than learning from reward alone. Moreover, integrating social information increased accuracy only when conservative and impulsive choices were weighted similarly during learning. These findings suggest that to guide decisions in choice contexts that involve reward reversals humans utilize social cues conforming with their preconceptions more strongly than cues conflicting with them, especially when the other is similar. Copyright © 2016 The Authors. Published by Elsevier B

  12. Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches

    International Nuclear Information System (INIS)

    Bai, Byong Chol; Kang, Seok Chang; Im, Ji Sun; Lee, Se Hyun; Lee, Young-Seak

    2011-01-01

    Graphical abstract: The electrical properties of MWCNT-filled HDPE polymeric switches and their effect on oxyfluorination. Highlights: → Oxyfluorinated MWCNTs were used to reduce the PTC/NTC phenomenon in MWCNT-filled HDPE polymeric switches. → Electron mobility is difficult in MWCNT particles when the number of oxygen functional groups (C-O, C=O) increases by oxyfluorination. → A mechanism of improved electrical properties of oxyfluorinated MWCNT-filled HDPE polymeric switches was suggested. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) were embedded into high-density polyethylene (HDPE) to improve the electrical properties of HDPE polymeric switches. The MWCNT surfaces were modified by oxyfluorination to improve their positive temperature coefficient (PTC) and negative temperature coefficient (NTC) behaviors in HDPE polymeric switches. HDPE polymeric switches exhibit poor electron mobility between MWCNT particles when the number of oxygen functional groups is increased by oxyfluorination. Thus, the PTC intensity of HDPE polymeric switches was increased by the destruction of the electrical conductivity network. The oxyfluorination of MWCNTs also leads to weak NTC behavior in the MWCNT-filled HDPE polymeric switches. This result is attributed to the reduction of the mutual attraction between the MWCNT particles at the melting temperature of HDPE, which results from a decrease in the surface free energy of the C-F bond in MWCNT particles.

  13. Temperature induced Spin Switching in SmFeO3 Single Crystal

    Science.gov (United States)

    Cao, Shixun; Zhao, Huazhi; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2014-08-01

    The prospect of controlling the magnetization (M) of a material is of great importance from the viewpoints of fundamental physics and future applications of emerging spintronics. A class of rare-earth orthoferrites RFeO3 (R is rare-earth element) materials exhibit striking physical properties of spin switching and magnetization reversal induced by temperature and/or applied magnetic field. Furthermore, due to the novel magnetic, magneto-optic and multiferroic properties etc., RFeO3 materials are attracting more and more interests in recent years. We have prepared and investigated a prototype of RFeO3 materials, namely SmFeO3 single-crystal. And we report magnetic measurements upon both field cooling (FC) and zero-field cooling (ZFC) of the sample, as a function of temperature and applied magnetic field. The central findings of this study include that the magnetization of single-crystal SmFeO3 can be switched by temperature, and tuning the magnitude of applied magnetic field allows us to realize such spin switching even at room temperature.

  14. Fission yeast mating-type switching: programmed damage and repair

    DEFF Research Database (Denmark)

    Egel, Richard

    2005-01-01

    Mating-type switching in fission yeast follows similar rules as in budding yeast, but the underlying mechanisms are entirely different. Whilst the initiating double-strand cut in Saccharomyces cerevisiae requires recombinational repair for survival, the initial damage in Schizosaccharomyces pombe...

  15. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  16. Electrical switching and memory phenomena observed in redox-gradient dendrimer sandwich devices

    OpenAIRE

    Li, JianChang; Blackstock, Silas C.; Szulczewski, Greg J.

    2005-01-01

    We report on the fabrication of dendrimer sandwich devices with electrical switching and memory properties. The storage media is consisted of a redox-gradient dendrimer layer sandwiched in organic barrier thin films. The dendrimer layer acts as potential well where redox-state changes and consequent electrical transitions of the embedded dendrimer molecules are expected to be effectively triggered and retained, respectively. Experimental results indicated that electrical switching could be re...

  17. Low-profile high-voltage compact gas switch

    International Nuclear Information System (INIS)

    Goerz, D.A.; Wilson, M.J.; Speer, R.D.

    1997-01-01

    This paper discusses the development and testing of a low-profile, high-voltage, spark-gap switch designed to be closely coupled with other components into an integrated high-energy pulsed-power source. The switch is designed to operate at 100 kV using SF6 gas pressurized to less than 0.7 MPa. The volume of the switch cavity region is less than 1.5 cm3, and the field stress along the gas-dielectric interface is as high as 130 kV/cm. The dielectric switch body has a low profile that is only I -cm tall at its greatest extent and nominally 2-mm thick over most of its area. This design achieves a very low inductance of less than 5 nH, but results in field stresses exceeding 500 kV/cm in the dielectric material. Field modeling was done to determine the appropriate shape for the highly stressed insulator and electrodes, and special manufacturing techniques were employed to mitigate the usual mechanisms that induce breakdown and failure in solid dielectrics. Static breakdown tests verified that the switch operates satisfactorily at 100 kV levels. The unit has been characterized with different shaped electrodes having nominal gap spacings of 2.0, 2.5, and 3.0 mm. The relationship between self-break voltage and operating pressure agrees well with published data on gas properties, accounting for the field enhancements of the electrode shapes being used. Capacitor discharge tests in a low inductance test fixture exhibited peak currents up to 25 kA with characteristic frequencies of the ringdown circuit ranging from 10 to 20 MHz. The ringdown waveforms and scaling of measured parameters agree well with circuit modeling of the switch and test fixture. Repetitive operation has been demonstrated at moderate rep-rates up to 15 Hz, limited by the power supply being used. Preliminary tests to evaluate lifetime of the compact switch assembly have been encouraging. In one case, after more than 7,000 high-current ringdown tests with approximately 30 C of total charge transferred, the

  18. DNA and RNA-controlled switching of protein kinase activity

    NARCIS (Netherlands)

    Röglin, L.; Altenbrunn, F.; Seitz, O.

    2009-01-01

    Protein switches use the binding energy gained upon recognition of ligands to modulate the conformation and binding properties of protein segments. We explored whether the programmable nucleic acid mediated recognition might be used to design or mimic constraints that limit the conformational

  19. Fast risetime BLT switches for accelerators applications

    International Nuclear Information System (INIS)

    Kirkman-Amemiya, G.; Reinhardt, N.; Choi, M.S.; Gundersen, M.A.

    1991-01-01

    Several particle accelerator systems require repetitive switches capable to switching peak currents of several kA with short risetimes, in particular kicker magnets used to transfer particle beams from one section of an accelerator to another require current pulses that rise from zero to 100% in a time determined by the separation between particle bunches which can be only 10's of nsec in some applications. One particular application is the injection and extraction kickers for the low energy booster (LEB) of the superconducting super collider (SSC) which requires < 50nsec 0-99% risetime. Another system with similarly strict risetime requirement is the kicker for the Stanford Linear Collider electron damping rings. In this work, a fast risetime BLT switch which has demonstrated 17kA at 30kV with < 60nsec risetime, 1.5kA at 20kV with < 18nsec risetime, and up to 240Hz operation at 20kV, 7kA is reported. A tetrode triggering method is described which reduces risetime by eliminating prepulse behavior

  20. Design and Optimization of AlN based RF MEMS Switches

    Science.gov (United States)

    Hasan Ziko, Mehadi; Koel, Ants

    2018-05-01

    Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.

  1. Bowel habits after gastric bypass versus the duodenal switch operation.

    Science.gov (United States)

    Wasserberg, Nir; Hamoui, Nahid; Petrone, Patrizio; Crookes, Peter F; Kaufman, Howard S

    2008-12-01

    One of the perceived disadvantages of the biliopancreatic diversion with duodenal switch operation is diarrhea. The aim of this study was to compare the bowel habits of patients after duodenal switch operation or Roux-en-Y gastric bypass. A prospective comparative case series design was used. Forty-six patients who underwent duodenal switch (n=28) or gastric bypass (n=18) were asked to complete a daily diary for 14 days after losing least 50% of their excess body weight. Data were collected on number of bowel episodes, incontinence, urgency, stool consistency, and awakening from sleep to defecate. Background variables were recorded from the medical files. The duodenal switch group was heavier (body mass index 53.5 vs 47.0 kg/m(2), p=0.03) and older (47.5 vs 41.0 years, p=NS) than the gastric bypass group. Median time to 50% excess body weight loss was 22 months in the duodenal switch group compared to 10.0 months in the gastric bypass group (p=0.001). Patients after duodenal switch surgery reported a median of 23.5 bowel episodes over the 14-day study period compared to 16.5 in the gastric bypass group (p=NS). There was no between-group differences in any of the other bowel parameters studied. Although duodenal switch is associated with more bowel episodes than gastric bypass, the difference is not statistically significant. Bowel habits are similar in patients who achieve 50% estimated body weight loss with duodenal switch surgery or gastric bypass.

  2. Ferrimagnetic Tb-Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching

    Directory of Open Access Journals (Sweden)

    Birgit eHebler

    2016-02-01

    Full Text Available Ferrimagnetic rare earth - transition metal Tb-Fe alloy thin films exhibit a variety of different magnetic properties, which depends strongly on composition and temperature. In this study, first the influence of the film thickness (5 - 85 nm on the sample magnetic properties was investigated in a wide composition range between 15 at.% and 38 at.% of Tb. From our results, we find that the compensation point, remanent magnetization, and magnetic anisotropy of the Tb-Fe films depend not only on the composition but also on the thickness of the magnetic film up to a critical thickness of about 20-30 nm. Beyond this critical thickness, only slight changes in magnetic properties are observed. This behavior can be attributed to a growth-induced modification of the microstructure of the amorphous films, which affects the short range order. As a result, a more collinear alignment of the distributed magnetic moments of Tb along the out-of-plane direction with film thickness is obtained. This increasing contribution of the Tb sublattice magnetization to the total sample magnetization is equivalent to a sample becoming richer in Tb and can be referred to as an effective composition. Furthermore, the possibility of all-optical switching, where the magnetization orientation of Tb-Fe can be reversed solely by circularly polarized laser pulses, was analyzed for a broad range of compositions and film thicknesses and correlated to the underlying magnetic properties.

  3. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    Science.gov (United States)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  4. Anthem simulation studies of the plasma opening switch

    International Nuclear Information System (INIS)

    Mason, R.J.

    1993-01-01

    For a deeper understanding of the physical processes governing the Plasma Opening Switch (POS) the authors use the ANTHEM 2D implicit simulation code to study: (1) ion dynamical effects on electrohydrodynamic (EHD) waves propagating along steep density interfaces in the switch plasmas. At radial interfaces where the density jumps toward the anode, these waves can drive a finger of magnetic field into the plasma toward the load. Ion dynamics can open the rear of such fingers into a wedge-like density gap. Then: (2) they examine ion effects in uniform switch plasmas. These first develop potential hill structures at the drive edge of the cathode from the competition between electron velocity advection and EHD magnetic exclusion waves. Magnetic pressure gradients at the hill periphery and EHD effects then establish a density gap propagating along the cathode with radial electron emission from its tip. Similar results are obtained under both multi-fluid and PIC modeling on the plasma components

  5. Switched capacitor DC-DC converter with switch conductance modulation and Pesudo-fixed frequency control

    DEFF Research Database (Denmark)

    Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger

    A switched capacitor dc-dc converter with frequency-planned control is presented. By splitting the output stage switches in eight segments the output voltage can be regulated with a combination of switching frequency and switch conductance. This allows for switching at predetermined frequencies, 31...

  6. Compare the phase transition properties of VO2 films from infrared to terahertz range

    Science.gov (United States)

    Liang, Shan; Shi, Qiwu; Huang, Wanxia; Peng, Bo; Mao, Zhenya; Zhu, Hongfu

    2018-06-01

    VO2 with reversible semiconductor-metal phase transition properties is particularly available for the application in smart opto-electrical devices. However, there are rare reports on comparing its phase transition properties at different ranges. In this study, the VO2 films are designed with the similar crystalline structure and stoichiometry, but different morphologies by inorganic and organic sol-gel methods, and their phase transition characteristics are compared both at infrared and terahertz range. The results indicate that the VO2 film prepared by inorganic sol-gel method shows more compact nanostructure. It results in larger resistivity change, infrared and terahertz switching ratio in the VO2 film. Moreover, it presents that the phase transition intensity of VO2 film in terahertz range is more sensitive to its microstructure. This work is helpful for understanding the susceptibility of terahertz switching properties of VO2 to its microstructure. And it can provide insights for the applications of VO2 in terahertz smart devices.

  7. Switching Overvoltages in 60 kV reactor compensated cable grid due to resonance after disconnection

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Baldursson, Haukur; Oumarou, Abdoul M.

    2008-01-01

    power could be directly connected to long cables. Switching both cable and reactor together will cause resonance to occur between the cable capacitance and the inductance of the cable during last end disconnection. Similar type of resonance condition is known to have caused switching overvoltages...... on the 400kV grid in Denmark. Therefore it is considered necessary to analyze further whether connecting a reactor directly to 60kV cable can cause switching overvoltages. A model in PSCAD was used to analyze which parameters can cause overvoltage. The switching resonance overvoltage was found to be caused...

  8. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  9. Effective switching frequency multiplier inverter

    Science.gov (United States)

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  10. Electrical switching in Sb doped Al23Te77 glasses

    Science.gov (United States)

    Pumlianmunga; Ramesh, K.

    2017-08-01

    Bulk glasses (Al23Te77)Sbx (0≤ x≤10) prepared by melt quenching method show a change in switching type from threshold to memory for x≥5. An increase in threshold current (Ith) and a concomitant decrease in threshold voltage (Vth) and resisitivity(ρ) have been observed with the increase of Sb content. Raman spectra of the switched region in memory switching compositions show a red shift with respect to the as prepared glasses whereas in threshold switching compositions no such shift is observed. The magic angle spinning nuclear magnetic resonance (MAS NMR) of 27Al atom shows three different environments for Al ([4]Al, [5]Al and [6]Al). The samples annealed at their respective crystallization temperatures show rapid increase in [4]Al sites by annihilating [5]Al sites. The melts of threshold switching glasses (x≤2.5) quenched in water at room temperature (27 °C) show amorphous structure whereas, the melt of memory switching glasses (x>2.5) solidify into crystalline structure. The higher coordination of Al increases the cross-linking and rigidity. The addition of Sb increases the glass transition(Tg) and decreases the crystallization temperature(Tc). The decrease in the interval between the Tg and Tc eases the transition between the amorphous and crystalline states and improves the memory properties. The temperature rise at the time of switching can be as high as its melting temperature and the material in between the electrodes may melt to form a filament. The filament may consists of temporary (high resistive amorphous) and permanent (high conducting crystalline) units. The ratio between the temporary and the permanent units may decide the switching type. The filament is dominated by the permanent units in memory switching compositions and by the temporary units in threshold switching compositions. The present study suggests that both the threshold and memory switching can be understood by the thermal model and filament formation.

  11. Instability in time-delayed switched systems induced by fast and random switching

    Science.gov (United States)

    Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong

    2017-07-01

    In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.

  12. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  13. Experimental Validation of Flow Force Models for Fast Switching Valves

    DEFF Research Database (Denmark)

    Bender, Niels Christian; Pedersen, Henrik Clemmensen; Nørgård, Christian

    2017-01-01

    This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties of the surroun......This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties...... to compare and validate different models, where an effort is directed towards capturing the fluid squeeze effect just before material on material contact. The test data is compared with simulation data relying solely on analytic formulations. The general dynamics of the plunger is validated...

  14. Mode switching in volcanic seismicity: El Hierro 2011-2013

    Science.gov (United States)

    Roberts, Nick S.; Bell, Andrew F.; Main, Ian G.

    2016-05-01

    The Gutenberg-Richter b value is commonly used in volcanic eruption forecasting to infer material or mechanical properties from earthquake distributions. Such studies typically analyze discrete time windows or phases, but the choice of such windows is subjective and can introduce significant bias. Here we minimize this sample bias by iteratively sampling catalogs with randomly chosen windows and then stack the resulting probability density functions for the estimated b>˜ value to determine a net probability density function. We examine data from the El Hierro seismic catalog during a period of unrest in 2011-2013 and demonstrate clear multimodal behavior. Individual modes are relatively stable in time, but the most probable b>˜ value intermittently switches between modes, one of which is similar to that of tectonic seismicity. Multimodality is primarily associated with intermittent activation and cessation of activity in different parts of the volcanic system rather than with respect to any systematic inferred underlying process.

  15. Combination of CO2 and Q-switched Nd:YAG lasers is more effective than Q-switched Nd:YAG laser alone for eyebrow tattoo removal.

    Science.gov (United States)

    Radmanesh, Mohammad; Rafiei, Zohreh

    2015-04-01

    The eyebrow tattoo removal using Q-switched lasers is usually prolonged. Other modalities may be required to enhance the efficacy and shorten the treatment course. To compare the efficacy of Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser alone versus combination of Q-switched Nd:YAG and Ultrapulse CO2 lasers for eyebrow tattoo removal after a single session. After local anesthesia, the right eyebrow of 20 patients was treated with Ultrapulse CO2 laser with the parameters of 4 J/cm(2) and 3.2 J/cm(2) for the first and the second passes. Both eyebrows were then treated with 1064-nm and 532-nm Q-switched Nd:YAG laser. The spot size and pulse duration were 3 mm and 5 nanoseconds for both wavelengths, and the fluence was 7 J/cm(2) for 1064 nm and 3 J/cm (2) for 532 nm. The side treated with combination of Q-switched Nd:YAG and CO2 lasers improved 75-100% in 6 of 20 patients versus only 1 of 20 in the side treated with Q-switched Nd:YAG alone. Similarly, the right side in 13 of 20 patients showed more than 50% improvement with combination therapy versus the left side (the monotherapy side), where only 6 of 20 cases showed more than 50% improvement. The Mann-Whitney test was 2.85 for the right side and 1.95 for the left side (P value = 0.007). Using Ultra pulse CO2 laser enhances the efficacy of Q-switched Nd:YAG laser in eyebrow tattoo removal.

  16. Developing a New HSR Switching Node (SwitchBox for Improving Traffic Performance in HSR Networks

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2016-01-01

    Full Text Available High availability is crucial for industrial Ethernet networks as well as Ethernet-based control systems such as automation networks and substation automation systems (SAS. Since standard Ethernet does not support fault tolerance capability, the high availability of Ethernet networks can be increased by using redundancy protocols. Various redundancy protocols for Ethernet networks have been developed and standardized, such as rapid spanning tree protocol (RSTP, media redundancy protocol (MRP, parallel redundancy protocol (PRP, high-availability seamless redundancy (HSR and others. RSTP and MRP have switchover delay drawbacks. PRP provides zero recovery time, but requires a duplicate network infrastructure. HSR operation is similar to PRP, but HSR uses a single network. However, the standard HSR protocol is mainly applied to ring-based topologies and generates excessively unnecessary redundant traffic in the network. In this paper, we develop a new switching node for the HSR protocol, called SwitchBox, which is used in HSR networks in order to support any network topology and significantly reduce redundant network traffic, including unicast, multicast and broadcast traffic, compared with standard HSR. By using the SwitchBox, HSR not only provides seamless communications with zero switchover time in case of failure, but it is also easily applied to any network topology and significantly reduces unnecessary redundant traffic in HSR networks.

  17. Long-term RF burn-in effects on dielectric charging of MEMS capacitive switches

    KAUST Repository

    Molinero, David G.; Luo, Xi; Shen, Chao; Palego, Cristiano; Hwang, James; Goldsmith, Charles L.

    2013-01-01

    This paper experimentally quantified the long-term effects of RF burn-in, in terms of burn-in and recovery times, and found the effects to be semipermanent. Specifically, most of the benefit could be realized after approximately 20 min of RF burn-in, which would then last for several months. Additionally, since similar effects were observed on both real and faux switches, the effects appeared to be of electrical rather than mechanical nature. These encouraging results should facilitate the application of the switches in RF systems, where high RF power could be periodically applied to rejuvenate the switches. © 2001-2011 IEEE.

  18. Long-term RF burn-in effects on dielectric charging of MEMS capacitive switches

    KAUST Repository

    Molinero, David G.

    2013-03-01

    This paper experimentally quantified the long-term effects of RF burn-in, in terms of burn-in and recovery times, and found the effects to be semipermanent. Specifically, most of the benefit could be realized after approximately 20 min of RF burn-in, which would then last for several months. Additionally, since similar effects were observed on both real and faux switches, the effects appeared to be of electrical rather than mechanical nature. These encouraging results should facilitate the application of the switches in RF systems, where high RF power could be periodically applied to rejuvenate the switches. © 2001-2011 IEEE.

  19. 160-Gb/s Silicon All-Optical Packet Switch for Buffer-less Optical Burst Switching

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Pu, Minhao

    2015-01-01

    We experimentally demonstrate a 160-Gb/s Ethernet packet switch using an 8.6-mm-long silicon nanowire for optical burst switching, based on cross phase modulation in silicon. One of the four packets at the bit rate of 160 Gb/s is switched by an optical control signal using a silicon based 1 × 1 all......-optical packet switch. Error free performance (BER silicon packet switch based optical burst switching, which might be desirable for high-speed interconnects within a short...

  20. Design of optical switches by illusion optics

    International Nuclear Information System (INIS)

    Shoorian, H R; Abrishamian, M S

    2013-01-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device. (paper)

  1. Design of optical switches by illusion optics

    Science.gov (United States)

    Shoorian, H. R.; Abrishamian, M. S.

    2013-05-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  2. Comment on "Fault Tolerant analysis for stochastic systems using switching diffusion processes' by Yang, Jiang and Cocquempot

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Leth, John-Josef

    2011-01-01

    Results are given in [Yang et. al. 2009] regarding the overall stability of switched diffusion processes based on stability properties of separate processes combined through stochastic switching. This paper argues two main results to be empty, in that the presented hypotheses are logically...

  3. Ultrafast switching in wetting properties of TiO2/YSZ/Si(001) epitaxial heterostructures induced by laser irradiation

    International Nuclear Information System (INIS)

    Bayati, M. R.; Molaei, R.; Narayan, J.; Joshi, S.; Narayan, R. J.

    2013-01-01

    We have demonstrated dark hydrophilicity of single crystalline rutile TiO 2 (100) thin films, in which rapid switching from a hydrophobic to a hydrophilic surface was achieved using nanosecond excimer laser irradiation. The TiO 2 /YSZ/Si(001) single crystalline heterostructures were grown by pulsed laser deposition and were subsequently irradiated by a single pulse of a KrF excimer laser at several energies. The wettability of water on the surfaces of the samples was evaluated. The samples were hydrophobic prior to laser annealing and turned hydrophilic after laser annealing. Superhydrophilic surfaces were obtained at higher laser energy densities (e.g., 0.32 J.cm −2 ). The stoichiometries of the surface regions of the samples before and after laser annealing were examined using XPS. The results revealed the formation of oxygen vacancies on the surface, which are surmised to be responsible for the observed superhydrophilic behavior. According to the AFM images, surface smoothening was greater in films that were annealed at higher laser energy densities. The samples exhibited hydrophobic behavior after being placed in ambient atmosphere. The origin of laser induced wetting behavior was qualitatively understood to stem from an increase of point defects near the surface, which lowered the film/water interfacial energy. This type of rapid hydrophobic/hydrophilic switching may be used to facilitate fabrication of electronic and photonic devices with novel properties.

  4. Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol

    Science.gov (United States)

    Duggirala, Parasara Sridhar; Wang, Le; Mitra, Sayan; Viswanathan, Mahesh; Munoz, Cesar A.

    2014-01-01

    This paper presents an algorithm for checking temporal precedence properties of nonlinear switched systems. This class of properties subsume bounded safety and capture requirements about visiting a sequence of predicates within given time intervals. The algorithm handles nonlinear predicates that arise from dynamics-based predictions used in alerting protocols for state-of-the-art transportation systems. It is sound and complete for nonlinear switch systems that robustly satisfy the given property. The algorithm is implemented in the Compare Execute Check Engine (C2E2) using validated simulations. As a case study, a simplified model of an alerting system for closely spaced parallel runways is considered. The proposed approach is applied to this model to check safety properties of the alerting logic for different operating conditions such as initial velocities, bank angles, aircraft longitudinal separation, and runway separation.

  5. Analyzing self-similar and fractal properties of the C. elegans neural network.

    Directory of Open Access Journals (Sweden)

    Tyler M Reese

    Full Text Available The brain is one of the most studied and highly complex systems in the biological world. While much research has concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected network of nodes (neurons. A better understanding of the structural connectivity of the brain should elucidate some of its functional properties. In this paper we analyze the connectome of the nematode Caenorhabditis elegans. Consisting of only 302 neurons, it is one of the better-understood neural networks. Using a Laplacian Matrix of the 279-neuron "giant component" of the network, we use an eigenvalue counting function to look for fractal-like self similarity. This matrix representation is also used to plot visualizations of the neural network in eigenfunction coordinates. Small-world properties of the system are examined, including average path length and clustering coefficient. We test for localization of eigenfunctions, using graph energy and spacial variance on these functions. To better understand results, all calculations are also performed on random networks, branching trees, and known fractals, as well as fractals which have been "rewired" to have small-world properties. We propose algorithms for generating Laplacian matrices of each of these graphs.

  6. Task Uncertainty Can Account for Mixing and Switch Costs in Task-Switching

    Science.gov (United States)

    Rennie, Jaime L.

    2015-01-01

    Cognitive control is required in situations that involve uncertainty or change, such as when resolving conflict, selecting responses and switching tasks. Recently, it has been suggested that cognitive control can be conceptualised as a mechanism which prioritises goal-relevant information to deal with uncertainty. This hypothesis has been supported using a paradigm that requires conflict resolution. In this study, we examine whether cognitive control during task switching is also consistent with this notion. We used information theory to quantify the level of uncertainty in different trial types during a cued task-switching paradigm. We test the hypothesis that differences in uncertainty between task repeat and task switch trials can account for typical behavioural effects in task-switching. Increasing uncertainty was associated with less efficient performance (i.e., slower and less accurate), particularly on switch trials and trials that afford little opportunity for advance preparation. Interestingly, both mixing and switch costs were associated with a common episodic control process. These results support the notion that cognitive control may be conceptualised as an information processor that serves to resolve uncertainty in the environment. PMID:26107646

  7. Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects

    KAUST Repository

    Wu, Xing

    2018-04-14

    Higher memory density and faster computational performance of resistive switching cells require reliable array‐accessible architecture. However, selecting a designated cell within a crossbar array without interference from sneak path currents through neighboring cells is a general problem. Here, a highly doped n++ Si as the bottom electrode with Ni‐electrode/HfOx/SiO2 asymmetric self‐rectifying resistive switching device is fabricated. The interfacial defects in the HfOx/SiO2 junction and n++ Si substrate result in the reproducible rectifying behavior. In situ transmission electron microscopy is used to quantitatively study the properties of the morphology, chemistry, and dynamic nucleation–dissolution evolution of the chains of defects at the atomic scale. The spatial and temporal correlation between the concentration of oxygen vacancies and Ni‐rich conductive filament modifies the resistive switching effect. This study has important implications at the array‐level performance of high density resistive switching memories.

  8. Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects

    KAUST Repository

    Wu, Xing; Yu, Kaihao; Cha, Dong Kyu; Bosman, Michel; Raghavan, Nagarajan; Zhang, Xixiang; Li, Kun; Liu, Qi; Sun, Litao; Pey, Kinleong

    2018-01-01

    Higher memory density and faster computational performance of resistive switching cells require reliable array‐accessible architecture. However, selecting a designated cell within a crossbar array without interference from sneak path currents through neighboring cells is a general problem. Here, a highly doped n++ Si as the bottom electrode with Ni‐electrode/HfOx/SiO2 asymmetric self‐rectifying resistive switching device is fabricated. The interfacial defects in the HfOx/SiO2 junction and n++ Si substrate result in the reproducible rectifying behavior. In situ transmission electron microscopy is used to quantitatively study the properties of the morphology, chemistry, and dynamic nucleation–dissolution evolution of the chains of defects at the atomic scale. The spatial and temporal correlation between the concentration of oxygen vacancies and Ni‐rich conductive filament modifies the resistive switching effect. This study has important implications at the array‐level performance of high density resistive switching memories.

  9. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping.

    Science.gov (United States)

    Nair, R R; Tsai, I-L; Sepioni, M; Lehtinen, O; Keinonen, J; Krasheninnikov, A V; Castro Neto, A H; Katsnelson, M I; Geim, A K; Grigorieva, I V

    2013-01-01

    Control of magnetism by applied voltage is desirable for spintronics applications. Finding a suitable material remains an elusive goal, with only a few candidates found so far. Graphene is one of them and attracts interest because of its weak spin-orbit interaction, the ability to control electronic properties by the electric field effect and the possibility to introduce paramagnetic centres such as vacancies and adatoms. Here we show that the magnetism of adatoms in graphene is itinerant and can be controlled by doping, so that magnetic moments are switched on and off. The much-discussed vacancy magnetism is found to have a dual origin, with two approximately equal contributions; one from itinerant magnetism and the other from dangling bonds. Our work suggests that graphene's spin transport can be controlled by the field effect, similar to its electronic and optical properties, and that spin diffusion can be significantly enhanced above a certain carrier density.

  10. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    Science.gov (United States)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  11. Plasma flow switch and foil implosion experiments on Pegasus II

    International Nuclear Information System (INIS)

    Cochrane, J.C.; Bartsch, R.R.; Benage, J.R.; Forman, P.R.; Gribble, R.F.; Ladish, J.S.; Oona, H.; Parker, J.V.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J.

    1993-01-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground EXperiments) program. A goal of the program is to produce an intense (> 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy

  12. Investigation of patterning effects in ultrafast SOA-based optical switches

    DEFF Research Database (Denmark)

    Xu, Jing; Zhang, Xinliang; Mørk, Jesper

    2010-01-01

    , has been proposed based on the idea of driving the SOA at two saturation extremes by two periodic pulse trains. The predictive power of the periodic method is verified by comparing its results with those obtained by using ordinary PRBS patterns. Finally, the effectiveness of the periodic method...... is exploited by analyzing in detail the performance properties of a specific type of switch over large parameter regions. Besides allowing an investigation of patterning effects, the periodic method also simultaneously provides such figures of merit as output power and pulsewidth....... that limits the ultimate speed at which SOA-based switches can be operated. In this paper, we investigate the patterning effects of SOA-based switches using a systematic approach. A simple condition for the lower bound limit of the bit pattern length that should be adopted in the performance evaluations...

  13. Optimal switching using coherent control

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2013-01-01

    that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....

  14. Switch-connected HyperX network

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2018-02-13

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane, other of the N ports are connected to at least one of the global switches.

  15. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Herianto, E-mail: mail@heriantolim.com; Stavrias, Nikolas; Johnson, Brett C.; McCallum, Jeffrey C. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Marvel, Robert E.; Haglund, Richard F. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States)

    2014-03-07

    Vanadium dioxide (VO{sub 2}) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator–to–metal transition, the phase transition in VO{sub 2} can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO{sub 2} with erbium ions (Er{sup 3+}) and observe their combined properties. The first excited-state luminescence of Er{sup 3+} lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er{sup 3+} into VO{sub 2} could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO{sub 2} thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO{sub 2} by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ∼800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO{sub 2} thin films. We conclude that Er-implanted VO{sub 2} can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO{sub 2}.

  16. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    Science.gov (United States)

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  17. Computational modeling of plasma-flow switched foil implosions

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1985-01-01

    A ''plasma-flow'', or ''commutator'', switch has been proposed as a means of achieving high dI/dt in a radially imploding metallic foil plasma. In this concept, an axially moving foil provides the initial coaxial gun discharge path for the prime power source and provides and ''integral'' inductive storage of magnetic energy. As the axially moving foil reaches the end of the coaxial gun, a radially imploding load foil is switched into the circuit. The authors have begun two-dimensional computer modeling of the two-foil implosion system. They use a magnetohydrodynamic (MHD) model which includes tabulated state and transport properties of the metallic foil material. Moving numerical grids are used to achieve adequate resolution of the moving foils. A variety of radiation models are used to compute the radiation generated when the imploding load foil converges on axis. These computations are attempting to examine the interaction of the switching foil with the load foil. In particular, they examine the relationship between foil placement and implosion quality

  18. FreeSWITCH Cookbook

    CERN Document Server

    Minessale, Anthony

    2012-01-01

    This is a problem-solution approach to take your FreeSWITCH skills to the next level, where everything is explained in a practical way. If you are a system administrator, hobbyist, or someone who uses FreeSWITCH on a regular basis, this book is for you. Whether you are a FreeSWITCH expert or just getting started, this book will take your skills to the next level.

  19. Task-set switching under cue-based versus memory-based switching conditions in younger and older adults.

    Science.gov (United States)

    Kray, Jutta

    2006-08-11

    Adult age differences in task switching and advance preparation were examined by comparing cue-based and memory-based switching conditions. Task switching was assessed by determining two types of costs that occur at the general (mixing costs) and specific (switching costs) level of switching. Advance preparation was investigated by varying the time interval until the next task (short, middle, very long). Results indicated that the implementation of task sets was different for cue-based switching with random task sequences and memory-based switching with predictable task sequences. Switching costs were strongly reduced under cue-based switching conditions, indicating that task-set cues facilitate the retrieval of the next task. Age differences were found for mixing costs and for switching costs only under cue-based conditions in which older adults showed smaller switching costs than younger adults. It is suggested that older adults adopt a less extreme bias between two tasks than younger adults in situations associated with uncertainty. For cue-based switching with random task sequences, older adults are less engaged in a complete reconfiguration of task sets because of the probability of a further task change. Furthermore, the reduction of switching costs was more pronounced for cue- than memory-based switching for short preparation intervals, whereas the reduction of switch costs was more pronounced for memory- than cue-based switching for longer preparation intervals at least for older adults. Together these findings suggest that the implementation of task sets is functionally different for the two types of task-switching conditions.

  20. Task uncertainty can account for mixing and switch costs in task-switching.

    Directory of Open Access Journals (Sweden)

    Patrick S Cooper

    Full Text Available Cognitive control is required in situations that involve uncertainty or change, such as when resolving conflict, selecting responses and switching tasks. Recently, it has been suggested that cognitive control can be conceptualised as a mechanism which prioritises goal-relevant information to deal with uncertainty. This hypothesis has been supported using a paradigm that requires conflict resolution. In this study, we examine whether cognitive control during task switching is also consistent with this notion. We used information theory to quantify the level of uncertainty in different trial types during a cued task-switching paradigm. We test the hypothesis that differences in uncertainty between task repeat and task switch trials can account for typical behavioural effects in task-switching. Increasing uncertainty was associated with less efficient performance (i.e., slower and less accurate, particularly on switch trials and trials that afford little opportunity for advance preparation. Interestingly, both mixing and switch costs were associated with a common episodic control process. These results support the notion that cognitive control may be conceptualised as an information processor that serves to resolve uncertainty in the environment.

  1. LCT protective dump-switch tests

    International Nuclear Information System (INIS)

    Parsons, W.M.

    1981-01-01

    Each of the six coils in the Large Coil Task (LCT) has a separate power supply, dump resistor, and switching circuit. Each switching circuit contains five switches, two of which are redundant. The three remaining switches perform separate duties in an emergency dump situation. These three switches were tested to determine their ability to meet the LCT conditions

  2. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    International Nuclear Information System (INIS)

    ISLAM, N.E.; SCHAMILOGLU, E.; MAR, ALAN; LOUBRIEL, GUILLERMO M.; ZUTAVERN, FRED J.; JOSHI, R.P.

    2000-01-01

    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of ∼ 10 4 shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10 8 shots for electro-optic drivers. Much effort is currently being channeled in the

  3. Atomic crystals resistive switching memory

    International Nuclear Information System (INIS)

    Liu Chunsen; Zhang David Wei; Zhou Peng

    2017-01-01

    Facing the growing data storage and computing demands, a high accessing speed memory with low power and non-volatile character is urgently needed. Resistive access random memory with 4F 2 cell size, switching in sub-nanosecond, cycling endurances of over 10 12 cycles, and information retention exceeding 10 years, is considered as promising next-generation non-volatile memory. However, the energy per bit is still too high to compete against static random access memory and dynamic random access memory. The sneak leakage path and metal film sheet resistance issues hinder the further scaling down. The variation of resistance between different devices and even various cycles in the same device, hold resistive access random memory back from commercialization. The emerging of atomic crystals, possessing fine interface without dangling bonds in low dimension, can provide atomic level solutions for the obsessional issues. Moreover, the unique properties of atomic crystals also enable new type resistive switching memories, which provide a brand-new direction for the resistive access random memory. (topical reviews)

  4. Investigation of a metal-organic interface. Realization and understanding of a molecular switch

    Energy Technology Data Exchange (ETDEWEB)

    Neucheva, Olga [Forschungszentrum Juelich (DE). Institute of Bio- and Nanosystems (IBN), Functional Nanostructures at Surfaces (IBN-3)

    2010-07-01

    The field of molecular organic electronics is an emerging and very dynamic area. The continued trend to miniaturisation, combined with increasing complexity and cost of production in conventional semiconductor electronics, forces companies to turn their attention to alternatives that promise the next levels of scale at significantly lower cost. After consumer electronic devices based on organic transistors, such as TVs and book readers, have already been presented, molecular electronics is expected to offer the next breakthrough in feature size. Unfortunately, most of the organic/metal interfaces contain intrinsic defects that break the homogeneity of the interface properties. In this thesis, the electronic and structural properties of such defects were examined in order to understand the influence of the inhomogeneities on the quality of the interface layer. However, the main focus of this work was the investigation of the local properties of a single molecule. Taking advantage of the Scanning Tunnelling Microscope's (STM's) ability to act as a local probe, a single molecular switch was realized and studied. Moreover, in close collaboration with theory groups, the underlying mechanism driving the switching process was identified and described. Besides the investigation of the switching process, the ability of the STM to build nanostructures of different shapes from large organic molecules was shown. Knowing the parameters for realization and control of the switching process and for building the molecular corrals, the results of this investigation enable the reconstruction of the studied molecular ensemble and its deployment in electric molecular circuits, constituting a next step towards further miniaturization of electronic devices. (orig.)

  5. [An analysis of code-switching phenomenon in bimodal bilinguals (Libras and Portuguese).

    Science.gov (United States)

    de Sousa, Aline Nunes; de Quadros, Ronice Müller

    2012-01-01

    An interesting linguistic phenomenon that happens in the interaction among bilingual people is code-switching. In this paper, we are investigating code-switching among oral Brazilian Portuguese and Brazilian Sign Language - Libras, in a same enunciative chain, with the goal of identifying and analyzing the use of code-switching in the speech of a child and an adult (both hearing from deaf parents), interacting in an intermodal bilingual context, with deaf and hearing interlocutors. Code-switching in languages, in this case, occurs when a person stops to speak in Portuguese and he/she alternates to sign. This present research is a starting study, with qualitative analysis of data. Our corpus is composed of nine sections of interactions in Libras and oral Portuguese, recorded in video, part of the Bimodal Bilingual Development Project from UFSC. The data shows that adult and child's characteristics of code-switching seem to have similarities and differences. The adult seems to switch more worried about the course of the interaction. On the other hand, the child did not seem to use code-switching for specific pragmatic reasons. In regard to the switching extension, it is noted that both the child and the adult used more than one word sentences. The role of the interlocutors seems to be decisive in the interactions investigated here - especially for the adult, since the child is still acquiring awareness about the role of the interlocutor in an interaction.

  6. Switch on, switch off: stiction in nanoelectromechanical switches

    KAUST Repository

    Wagner, Till J W

    2013-06-13

    We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the \\'ON\\' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between \\'free\\', \\'pinned\\' and \\'clamped\\' states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed. © 2013 IOP Publishing Ltd.

  7. Resistive switching in Pt/TiO{sub 2}/Pt

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Doo Seok

    2008-08-15

    Recently, the resistive switching behavior in TiO{sub 2} has drawn attention due to its application to resistive random access memory (RRAM) devices. TiO{sub 2} shows characteristic non-volatile resistive switching behavior, i.e. reversible switching between a high resistance state (HRS) and a low resistance state (LRS). Both unipolar resistive switching (URS) and bipolar resistive switching (BRS) are found to be observed in TiO{sub 2} depending on the compliance current for the electroforming. In this thesis the characteristic current-voltage (I-V) hysteresis in three different states of TiO{sub 2}, pristine, URS-activated, and BRS-activated states, was investigated and understood in terms of the migration of oxygen vacancies in TiO{sub 2}. The I-V hysteresis of pristine TiO{sub 2} was found to show volatile behavior. That is, the temporary variation of the resistance took place depending on the applied voltage. However, the I-V hysteresis of URS- and BRS-activated states showed non-volatile resistive switching behavior. Some evidences proving the evolution of oxygen gas during electroforming were obtained from time-of-flight secondary ion mass spectroscopy analysis and the variation of the morphology of switching cells induced by the electroforming. On the assumption that a large number of oxygen vacancies are introduced by the electroforming process, the I-V behavior in electroformed switching cells was simulated with varying the distribution of oxygen vacancies in electroformed TiO{sub x} (x similar 2). The I-V hysteresis undergoing the BRS was simulated with taking into consideration oxygen formation/annihilation reactions at a Pt/TiO{sub x} interface. The oxygen-related reactions given as a function of the applied voltage affect the distribution of oxygen vacancies in TiO{sub x}, consequently, the Schottky barrier height at the cathode/TiO{sub x} interface is influenced by the oxygen vacancy distribution. Therefore, the BRS behavior including the

  8. Design and analysis of a transversal-flux switched-reluctance-linear-machine pole-pair

    Energy Technology Data Exchange (ETDEWEB)

    Salo, J.

    1999-07-01

    The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the Sit-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the 'basic pole pair' in linear-movement transversal-flux switched-reluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis. (orig.)

  9. Design and analysis of a transversal-flux switched-reluctance-linear-machine pole-pair

    Energy Technology Data Exchange (ETDEWEB)

    Salo, J

    1999-07-01

    The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the Sit-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the 'basic pole pair' in linear-movement transversal-flux switched-reluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis. (orig.)

  10. Growth and self-assembly of BaTiO3 nanocubes for resistive switching memory cells

    International Nuclear Information System (INIS)

    Chu, Dewei; Lin, Xi; Younis, Adnan; Li, Chang Ming; Dang, Feng; Li, Sean

    2014-01-01

    In this work, the self-assembled BaTiO 3 nanocubes based resistive switching memory capacitors are fabricated with hydrothermal and drop-coating approaches. The device exhibits excellent bipolar resistance switching characteristics with ON/OFF ratio of 58–70, better reliability and stability over various polycrystalline BaTiO 3 nanostructures. It is believed that the inter cube junctions is responsible for such a switching behaviour and it can be described by the filament model. The effect of film thickness on switching ratio (ON/OFF) was also investigated in details. - Graphical abstract: This work describes a novel resistive switching memory cell based on self-assembled BaTiO 3 nanocubes. - Highlights: • BaTiO 3 nanocubes were prepared by one step facile hydrothermal method. • Self-assembled BaTiO 3 nanocubes thin films were obtained by drop-coating approach. • The BaTiO 3 nanocubes show excellent resistive switching properties for memory applications

  11. Control synthesis of switched systems

    CERN Document Server

    Zhao, Xudong; Niu, Ben; Wu, Tingting

    2017-01-01

    This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on inte...

  12. Application of nanomaterials in two-terminal resistive-switching memory devices

    Directory of Open Access Journals (Sweden)

    Jianyong Ouyang

    2010-05-01

    Full Text Available Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs, nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. Dr. Jianyong Ouyang received his bachelor degree from the Tsinghua University in Beijing, China, and MSc from the Institute of Chemistry, Chinese Academy of Science. He received his PhD from the Institute for Molecular

  13. Multifunctional BiFeO{sub 3}/TiO{sub 2} nano-heterostructure: Photo-ferroelectricity, rectifying transport, and nonvolatile resistive switching property

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Ayan; Khan, Gobinda Gopal, E-mail: gobinda.gk@gmail.com [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700 098 (India); Chaudhuri, Arka [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 098 (India); Department of Applied Science, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India); Das, Avishek [Department of Electronic Science, University of Calcutta, 92 APC Road, Kolkata 700009 (India); Mandal, Kalyan [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 098 (India)

    2016-01-18

    Multifunctional BiFeO{sub 3} nanostructure anchored TiO{sub 2} nanotubes are fabricated by coupling wet chemical and electrochemical routes. BiFeO{sub 3}/TiO{sub 2} nano-heterostructure exhibits white-light-induced ferroelectricity at room temperature. Studies reveal that the photogenerated electrons trapped at the domain/grain boundaries tune the ferroelectric polarization in BiFeO{sub 3} nanostructures. The photon controlled saturation and remnant polarization opens up the possibility to design ferroelectric devices based on BiFeO{sub 3.} The nano-heterostructure also exhibits substantial photovoltaic effect and rectifying characteristics. Photovoltaic property is found to be correlated with the ferroelectric polarization. Furthermore, the nonvolatile resistive switching in BiFeO{sub 3}/TiO{sub 2} nano-heterostructure has been studied, which demonstrates that the observed resistive switching is most likely caused by the electric-field-induced carrier injection/migration and trapping/detrapping process at the hetero-interfaces. Therefore, BiFeO{sub 3}/TiO{sub 2} nano-heterostructure coupled with logic, photovoltaics and memory characteristics holds promises for long-term technological applications in nanoelectronics devices.

  14. A dual-stimuli-responsive fluorescent switch ultrathin film

    Science.gov (United States)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  15. Low-Crosstalk Composite Optical Crosspoint Switches

    Science.gov (United States)

    Pan, Jing-Jong; Liang, Frank

    1993-01-01

    Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.

  16. Switching characteristics in Cu:SiO2 by chemical soak methods for resistive random access memory (ReRAM)

    Science.gov (United States)

    Chin, Fun-Tat; Lin, Yu-Hsien; Yang, Wen-Luh; Liao, Chin-Hsuan; Lin, Li-Min; Hsiao, Yu-Ping; Chao, Tien-Sheng

    2015-01-01

    A limited copper (Cu)-source Cu:SiO2 switching layer composed of various Cu concentrations was fabricated using a chemical soaking (CS) technique. The switching layer was then studied for developing applications in resistive random access memory (ReRAM) devices. Observing the resistive switching mechanism exhibited by all the samples suggested that Cu conductive filaments formed and ruptured during the set/reset process. The experimental results indicated that the endurance property failure that occurred was related to the joule heating effect. Moreover, the endurance switching cycle increased as the Cu concentration decreased. In high-temperature tests, the samples demonstrated that the operating (set/reset) voltages decreased as the temperature increased, and an Arrhenius plot was used to calculate the activation energy of the set/reset process. In addition, the samples demonstrated stable data retention properties when baked at 85 °C, but the samples with low Cu concentrations exhibited short retention times in the low-resistance state (LRS) during 125 °C tests. Therefore, Cu concentration is a crucial factor in the trade-off between the endurance and retention properties; furthermore, the Cu concentration can be easily modulated using this CS technique.

  17. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    Science.gov (United States)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  18. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    KAUST Repository

    Huang, Yi-Jen

    2016-04-07

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device.

  19. Rectifying resistance switching behavior of Ag/SBTO/STMO/p+-Si ...

    Indian Academy of Sciences (India)

    21

    problem of cross talk after unit integration, one of the ways to solve this matter ... pn hetero junction by combining p-type SrTi0.92Mg0.08O3 (STMO) and n-type .... The measurement illustration of the resistive switching properties was shown in ...

  20. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  1. Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments

    Directory of Open Access Journals (Sweden)

    A. Lendlein

    2012-01-01

    Full Text Available Thermo-sensitive shape-memory polymers (SMP, which are capable of memorizing two or more different shapes, have generated significant research and technological interest. A triple-shape effect (TSE of SMP can be activated e.g. by increasing the environmental temperature (Tenv, whereby two switching temperatures (Tsw have to be exceeded to enable the subsequent shape changes from shape (A to shape (B and finally the original shape (C. In this work, we explored the thermally and magnetically initiated shape-memory properties of triple-shape nanocomposites with various compositions and particle contents using different shape-memory creation procedures (SMCP. The nanocomposites were prepared by the incorporation of magnetite nanoparticles into a multiphase polymer network matrix with grafted polymer network architecture containing crystallizable poly(ethylene glycol (PEG side chains and poly(ε-caprolactone (PCL crosslinks named CLEGC. Excellent triple-shape properties were achieved for nanocomposites with high PEG weight fraction when two-step programming procedures were applied. In contrast, single-step programming resulted in dual-shape properties for all investigated materials as here the temporary shape (A was predominantly fixed by PCL crystallites.

  2. Binary and ternary gas mixtures for use in glow discharge closing switches

    Science.gov (United States)

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  3. Experimental investigation of the ion current distribution in microsecond plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskij, V; Grigor` ev, S; Kharlov, A; Sinebryukhov, A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics

    1997-12-31

    This paper is devoted to the investigations of properties of the microsecond plasma opening switch (MPOS) as an ion beam source for surface modification. Two plasma sources were investigated: flash-board and cable guns. The detailed measurements of axial and azimuthal distributions of ion current density in the switch were performed. It was found that the azimuthal inhomogeneity of the ion beam increases from the beginning to the end of MPOS. The advantages and problems of this approach are discussed. (author). 5 figs., 2 refs.

  4. Nox4 Is Dispensable for Exercise Induced Muscle Fibre Switch.

    Directory of Open Access Journals (Sweden)

    Juri Vogel

    Full Text Available By producing H2O2, the NADPH oxidase Nox4 is involved in differentiation of mesenchymal cells. Exercise alters the composition of slow and fast twitch fibres in skeletal. Here we hypothesized that Nox4 contributes to exercise-induced adaptation such as changes in muscle metabolism or muscle fibre specification and studied this in wildtype and Nox4-/- mice.Exercise, as induced by voluntary running in a running wheel or forced running on a treadmill induced a switch from fast twitch to intermediate fibres. However the induced muscle fibre switch was similar between Nox4-/- and wildtype mice. The same held true for exercise-induced expression of PGC1α or AMPK activation. Both are increased in response to exercise, but with no difference was observed between wildtype and Nox4-/- mice.Thus, exercise-induced muscle fibre switch is Nox4-independent.

  5. Resistive switching in microscale anodic titanium dioxide-based memristors

    Science.gov (United States)

    Aglieri, V.; Zaffora, A.; Lullo, G.; Santamaria, M.; Di Franco, F.; Lo Cicero, U.; Mosca, M.; Macaluso, R.

    2018-01-01

    The potentiality of anodic TiO2 as an oxide material for the realization of resistive switching memory cells has been explored in this paper. Cu/anodic-TiO2/Ti memristors of different sizes, ranging from 1 × 1 μm2 to 10 × 10 μm2 have been fabricated and characterized. The oxide films were grown by anodizing Ti films, using three different process conditions. Measured IV curves have shown similar asymmetric bipolar hysteresis behaviors in all the tested devices, with a gradual switching from the high resistance state to the low resistance state and vice versa, and a ROFF/RON ratio of 80 for the thickest oxide film devices.

  6. Evaluation of resistive switching properties of Si-rich oxide embedded with Ti nanodots by applying constant voltage and current

    Science.gov (United States)

    Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.

  7. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...

  8. Multistate storage nonvolatile memory device based on ferroelectricity and resistive switching effects of SrBi2Ta2O9 films

    Science.gov (United States)

    Song, Zhiwei; Li, Gang; Xiong, Ying; Cheng, Chuanpin; Zhang, Wanli; Tang, Minghua; Li, Zheng; He, Jiangheng

    2018-05-01

    A memory device with a Pt/SrBi2Ta2O9(SBT)/Pt(111) structure was shown to have excellent combined ferroelectricity and resistive switching properties, leading to higher multistate storage memory capacity in contrast to ferroelectric memory devices. In this device, SBT polycrystalline thin films with significant (115) orientation were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates using CVD (chemical vapor deposition) method. Measurement results of the electric properties exhibit reproducible and reliable ferroelectricity switching behavior and bipolar resistive switching effects (BRS) without an electroforming process. The ON/OFF ratio of the resistive switching was found to be about 103. Switching mechanisms for the low resistance state (LRS) and high resistance state (HRS) currents are likely attributed to the Ohmic and space charge-limited current (SCLC) behavior, respectively. Moreover, the ferroelectricity and resistive switching effects were found to be mutually independent, and the four logic states were obtained by controlling the periodic sweeping voltage. This work holds great promise for nonvolatile multistate memory devices with high capacity and low cost.

  9. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of

  10. Switching from adalimumab to tofacitinib in the treatment of patients with rheumatoid arthritis.

    Science.gov (United States)

    Genovese, Mark C; van Vollenhoven, Ronald F; Wilkinson, Bethanie; Wang, Lisy; Zwillich, Samuel H; Gruben, David; Biswas, Pinaki; Riese, Richard; Takiya, Liza; Jones, Thomas V

    2016-06-23

    Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). The aim of this study was to explore the safety and efficacy of open-label tofacitinib following blinded treatment with adalimumab or tofacitinib for moderate to severe RA. Analyses included patients treated with adalimumab 40 mg once every 2 weeks or tofacitinib 10 mg twice daily (BID) with background methotrexate (MTX) in a 12-month randomized study (NCT00853385), who subsequently received tofacitinib 10 mg BID (with/without background MTX) in an open-label extension (NCT00413699). Patients with treatment-related serious adverse events (AEs) and serious or recurrent infections in the index study were excluded from the extension study. Exposure-adjusted incidence rates of safety-related events were assessed in 3-month and 12-month periods in the year before and in the year after switching. Efficacy was assessed 3 months before, at the time of, and 3 months after switching. There were 233 (107 adalimumab to tofacitinib 10 mg BID, 126 blinded to open-label tofacitinib 10 mg BID) patients included in these analyses. Patients in both treatment sequences had similar incidence rates (per 100 patient-years) of discontinuation due to AEs, serious AEs, and serious infections in the year before and in the year after switching. Incidence rates of AEs were increased in the first 3 months after switching compared with the last 3 months before switching in both treatment groups. Switching from either blinded adalimumab or tofacitinib to open-label tofacitinib resulted in numerically higher incidence of responders for signs and symptoms of disease and improved physical function. Treatment can be directly switched from adalimumab to tofacitinib. A similar safety and efficacy profile was seen when patients received open-label tofacitinib after receiving either blinded adalimumab or tofacitinib. ClinicalTrials.gov Identifiers: NCT00853385 , registered 27 February 2009; NCT

  11. Uncertainty quantification in capacitive RF MEMS switches

    Science.gov (United States)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward

  12. A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior

    Science.gov (United States)

    Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi

    2017-12-01

    In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.

  13. Experimental Validation of Topology Optimization for RF MEMS Capacitive Switch Design

    DEFF Research Database (Denmark)

    Philippine, Mandy Axelle; Zareie, Hosein; Sigmund, Ole

    2013-01-01

    In this paper, we present 30 distinct RF MEMS capacitive switch designs that are the product of topology optimizations that control key mechanical properties such as stiffness, response to intrinsic stress gradients, and temperature sensitivity. The designs were evaluated with high-accuracy simul...

  14. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  15. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    International Nuclear Information System (INIS)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya

    2008-01-01

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC

  16. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xyjiang@mit.edu

    2008-06-07

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC.

  17. Practical switching power supply design

    CERN Document Server

    Brown, Martin C

    1990-01-01

    Take the ""black magic"" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive ""hands-on"" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also deta

  18. Theoretical and experimental study of fundamental differences in the noise suppression of high-speed SOA-based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Suzuki, R.

    2005-01-01

    We identify a fundamental difference between the ASE noise filtering properties of different all-optical SOA-based switch configurations, and divide the switches into two classes. An in-band ASE suppression ratio quantifying the difference is derived theoretically and the impact of the ASE...

  19. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  20. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  1. Complementary resistive switching in BaTiO3/NiO bilayer with opposite switching polarities

    Science.gov (United States)

    Li, Shuo; Wei, Xianhua; Lei, Yao; Yuan, Xincai; Zeng, Huizhong

    2016-12-01

    Resistive switching behaviors have been investigated in the Au/BaTiO3/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO3 thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I-V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO3 and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  2. Optimization of multi-branch switched diversity systems

    KAUST Repository

    Nam, Haewoon

    2009-10-01

    A performance optimization based on the optimal switching threshold(s) for a multi-branch switched diversity system is discussed in this paper. For the conventional multi-branch switched diversity system with a single switching threshold, the optimal switching threshold is a function of both the average channel SNR and the number of diversity branches, where computing the optimal switching threshold is not a simple task when the number of diversity branches is high. The newly proposed multi-branch switched diversity system is based on a sequence of switching thresholds, instead of a single switching threshold, where a different diversity branch uses a different switching threshold for signal comparison. Thanks to the fact that each switching threshold in the sequence can be optimized only based on the number of the remaining diversity branches, the proposed system makes it easy to find these switching thresholds. Furthermore, some selected numerical and simulation results show that the proposed switched diversity system with the sequence of optimal switching thresholds outperforms the conventional system with the single optimal switching threshold. © 2009 IEEE.

  3. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  4. The Kaleidoscope switch-a new concept for implementation of a large and fault tolerant ATM switch system

    DEFF Research Database (Denmark)

    Dittmann, Lars

    1997-01-01

    This paper describes a new concept for implementing a large switch network based on smaller modules. The concept is based an an alternative self-routing structure that due to a point symmetry allows the bit in the routing tag to be processed in a random order. Among others this property provides ...... an inherent fault protection and allows a simple implementation of broadcast and multicast. The concept has been implemented as a small prototype, that currently is used in a national experimental ATM network in Denmark...

  5. Numerical modelling of passively Q-switched intracavity Raman lasers

    International Nuclear Information System (INIS)

    Ding Shuanghong; Zhang Xingyu; Wang Qingpu; Zhang Jun; Wang Shumei; Liu Yuru; Zhang Xuehui

    2007-01-01

    Assuming intracavity photon densities to be of Gaussian spatial distributions, the space-dependent rate equations of passively Q-switched intracavity Raman lasers are deduced for the first time for the pumping beams of Gaussian and top-head spatial distributions, respectively. The new rate equations are normalized and solved numerically to investigate the influences of the normalized initial population inversion density, normalized Raman gain coefficient, saturable absorber parameter, beam size ratio of pump to fundamental laser and loss ratio of the first Stokes to fundamental laser on the pulse parameters of the first Stokes. The results of the Gaussian and top-head pumpings show similar trends despite some discrepancies. The new theories and numerical results will help design passively Q-switched intracavity Raman lasers of high performance

  6. Tutorial: Integrated-photonic switching structures

    Science.gov (United States)

    Soref, Richard

    2018-02-01

    Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.

  7. Linear population allocation by bistable switches in response to transient stimulation.

    Science.gov (United States)

    Srimani, Jaydeep K; Yao, Guang; Neu, John; Tanouchi, Yu; Lee, Tae Jun; You, Lingchong

    2014-01-01

    Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.

  8. Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2014-03-01

    Full Text Available The switch based on electrowetting technology has the advantages of no moving part, low contact resistance, long life and adjustable acceleration threshold. The acceleration threshold of switch can be fine-tuned by adjusting the applied voltage. This paper is focused on the electrowetting properties of switch and the influence of microchannel structural parameters, applied voltage and droplet volume on acceleration threshold. In the presence of process errors of micro inertial fluidic switch and measuring errors of droplet volume, there is a deviation between test acceleration threshold and target acceleration threshold. Considering the process errors and measuring errors, worst-case analysis is used to analyze the influence of parameter tolerance on the acceleration threshold. Under worst-case condition the total acceleration threshold tolerance caused by various errors is 9.95%. The target acceleration threshold can be achieved by fine-tuning the applied voltage. The acceleration threshold trimming method of micro inertial fluidic switch is verified.

  9. Generalized Multi-Cell Switched-Inductor and Switched-Capacitor Z-source Inverters

    DEFF Research Database (Denmark)

    Li, Ding; Chiang Loh, Poh; Zhu, Miao

    2013-01-01

    . Their boosting gains are, therefore, limited in practice. To overcome these shortcomings, the generalized switched-inductor and switched-capacitor Z-source inverters are proposed, whose extra boosting abilities and other advantages have already been verified in simulation and experiment....

  10. All-optical switching using a new photonic crystal directional coupler

    Directory of Open Access Journals (Sweden)

    B. Vakili

    2015-07-01

    Full Text Available In this paper all-optical switching in a new photonic crystal directional coupler is performed.  The structure of the switch consists of a directional coupler and a separate path for a control signal called “control waveguide”. In contrast to the former reported structures in which the directional couplers are made by removing a row of rods entirely, the directional coupler in our optical switch is constructed by two reduced-radius line-defect waveguides separated by the control waveguide. Furthermore, in our case the background material has the nonlinear Kerr property. Therefore, in the structure of this work, no frequency overlap occurs between the control waveguide mode and the directional coupler modes. It is shown that such a condition provides a very good isolation between the control and the probe signals at the output ports. In the control waveguide, nonlinear Kerr effect causes the required refractive index change by the presence of a high power control (pump signal. Even and odd modes of the coupler are investigated by applying the distribution of the refractive index change in the nonlinear region of a super-cell so that a switching length of about 94 µm is obtained at the wavelength of 1.55 µm. Finally, all-optical switching of the 1.55 µm probe signal using a control signal at the wavelength of 1.3 µm, is simulated through the finite-difference time-domain method, where both signals are desirable in optical communication systems. A very high extinction ratio of 67 dB is achieved and the temporal characteristics of the switch are demonstrated.

  11. A Study on the Improvement of Switching Speed of NPT-IGBT by Fast Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Baek, H. N.; Sun, G. M.; Kim, J. S.; Hoang, S. M. T.; Jin, M. E.; Jin, S. B.; Ahn, S. H. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The insulated gate bipolar transistor (IGBT) has been widely used for high power switching devices due to low on-state forward voltage drop and fast switching speed. But, turn-off delay time occurs due to the tail current generated by the minority carrier existing in the n-drift region during turn-off, which reduces the switching speed. Recently, to mitigate this problem, studies on the control of the MCLT to improve the switching speed of IGBTs are carried out. A crystal defect is formed in the n-drift region of an IGBT to realize a deep energy level within the energy band. The deep level act as the recombination center of the minority carrier to reduce the turn-off delay time and control the lifetime by reducing the lifetime of the minority carrier injected during the device operation. The particle-beam irradiation method, such as electron, proton, fast neutron and others, has been used to control the lifetime of the minority carrier of a silicon power semiconductor device. To improve the switching speed of a IGBT, devices were produced by irradiating various doses of fast neutron, and electrical properties were comparatively analyzed with the IGBT device where before irradiated. The reduced in the lifetime of the minority carrier flowing into the n-drift region due to the crystal defect helps improve the switching speed of the IGBT. But, the resistance component increased due to the crystal defect generated by the fast neutron irradiation in the on-state, increasing of the forward voltage drop. So, to improve and optimize the IGBT performance, appropriate condition should be determined by trading off each electrical properties.

  12. A Study on the Improvement of Switching Speed of NPT-IGBT by Fast Neutron Irradiation

    International Nuclear Information System (INIS)

    Baek, H. N.; Sun, G. M.; Kim, J. S.; Hoang, S. M. T.; Jin, M. E.; Jin, S. B.; Ahn, S. H.

    2016-01-01

    The insulated gate bipolar transistor (IGBT) has been widely used for high power switching devices due to low on-state forward voltage drop and fast switching speed. But, turn-off delay time occurs due to the tail current generated by the minority carrier existing in the n-drift region during turn-off, which reduces the switching speed. Recently, to mitigate this problem, studies on the control of the MCLT to improve the switching speed of IGBTs are carried out. A crystal defect is formed in the n-drift region of an IGBT to realize a deep energy level within the energy band. The deep level act as the recombination center of the minority carrier to reduce the turn-off delay time and control the lifetime by reducing the lifetime of the minority carrier injected during the device operation. The particle-beam irradiation method, such as electron, proton, fast neutron and others, has been used to control the lifetime of the minority carrier of a silicon power semiconductor device. To improve the switching speed of a IGBT, devices were produced by irradiating various doses of fast neutron, and electrical properties were comparatively analyzed with the IGBT device where before irradiated. The reduced in the lifetime of the minority carrier flowing into the n-drift region due to the crystal defect helps improve the switching speed of the IGBT. But, the resistance component increased due to the crystal defect generated by the fast neutron irradiation in the on-state, increasing of the forward voltage drop. So, to improve and optimize the IGBT performance, appropriate condition should be determined by trading off each electrical properties

  13. Gas mixtures for spark gap closing switches with emphasis on efficiency of operation

    International Nuclear Information System (INIS)

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-01-01

    The efficient operation of a spark gap closing switch requires a gaseous medium with large breakdown strength, low conduction voltage, and a short formative time lag. Gas properties necessary to achieve these requirements are identified and discussed. Based on available knowledge of such properties, a number of binary (e.g., c-C 4 F 8 , or l-C 3 F 6 , or n-C 4 F 10 , or C 3 F 8 , or C 6 F 6 in Ar or He or H 2 ) and ternary gas mixtures (e.g., c-C 4 F 8 , or n-C 4 F 10 , or C 3 F 8 in Ar or He + C 2 H 2 or another low ionization onset additive) have been identified which may be suitable for use in spark gap closing switches

  14. Switching and energy-storage characteristics in PLZT 2/95/5 antiferroelectric ceramic system

    Directory of Open Access Journals (Sweden)

    A. Peláiz-Barranco

    2016-12-01

    Full Text Available Switching mechanisms and energy-storage properties have been investigated in (Pb0.98La0.02(Zr0.95Ti0.050.995O3 antiferroelectric ceramics. The electric field dependence of polarization (P–E hysteresis loops indicates that both the ferroelectric (FE and antiferroelectric (AFE phases coexist, being the AFE more stable above 100∘C. It has been observed that the temperature has an important influence on the switching parameters. On the other hand, the energy-storage density, which has been calculated from the P–E hysteresis loops, shows values higher than 1J/cm3 for temperatures above 100∘C with around 73% of efficiency as average. These properties indicate that the studied ceramic system reveals as a promising AFE material for energy-storage devices application.

  15. Complementary resistive switching in BaTiO{sub 3}/NiO bilayer with opposite switching polarities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Institut d’Electronique de Micro-électronique et de Nanotechnologie (IEMN), CNRS, Université des Sciences et Technologies de Lille, avenue Poincaré, BP 60069, 59652, Villeneuve d’Ascq cedex (France); Wei, Xianhua, E-mail: weixianhua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Lei, Yao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu 610054 (China); Yuan, Xincai [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zeng, Huizhong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu 610054 (China)

    2016-12-15

    Graphical abstract: Au/BaTiO{sub 3}/NiO/Pt bilayer device shows complementary resistive switching (CRS) without electroforming which is mainly ascribed to anti-serial stack of two RRAM cells with bipolar behaviors. - Highlights: • Complementary resistive switching (CRS) has been investigated in Au/BaTiO{sub 3}/NiO/Pt by stacking the two elements with different switching types. • The realization of complementary resistive switching (CRS) is mainly ascribed to the anti-serial stack of two RRAM cells with bipolar behaviors. • Complementary resistive switching (CRS) in bilayer is effective to solve the sneak current problem briefly and economically. - Abstract: Resistive switching behaviors have been investigated in the Au/BaTiO{sub 3}/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO{sub 3} thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I–V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO{sub 3} and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  16. Switch on the competition. Causes, consequences and policy implications of consumer switching costs

    International Nuclear Information System (INIS)

    Pomp, M.; Shestalova, V.; Rangel, L.

    2005-09-01

    The success or failure of reforms aimed at liberalising markets depends to an important degree on consumer behaviour. If consumers do not base their choices on differences in prices and quality, competition between firms may be weak and the benefits of liberalisation to consumers may be small. One possible reason why consumers may respond only weakly to differences in price and quality is high costs of switching to another firm. This report presents a framework for analysing markets with switching costs and applies the framework in two empirical case studies. The first case study analyses the residential energy market, the second focuses on the market for social health insurance. In both markets, there are indications that switching costs are substantial. The report discusses policy options for reducing switching costs and for alleviating the consequences of switching costs

  17. Switch on the competition. Causes, consequences and policy implications of consumer switching costs

    Energy Technology Data Exchange (ETDEWEB)

    Pomp, M.; Shestalova, V.; Rangel, L.

    2005-09-15

    The success or failure of reforms aimed at liberalising markets depends to an important degree on consumer behaviour. If consumers do not base their choices on differences in prices and quality, competition between firms may be weak and the benefits of liberalisation to consumers may be small. One possible reason why consumers may respond only weakly to differences in price and quality is high costs of switching to another firm. This report presents a framework for analysing markets with switching costs and applies the framework in two empirical case studies. The first case study analyses the residential energy market, the second focuses on the market for social health insurance. In both markets, there are indications that switching costs are substantial. The report discusses policy options for reducing switching costs and for alleviating the consequences of switching costs.

  18. Optically triggered high voltage switch network and method for switching a high voltage

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  19. Optically triggered high voltage switch network and method for switching a high voltage

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  20. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  1. PROPRIEDADES TERMOFÍSICAS DE SOLUÇÕES MODELO SIMILARES A CREME DE LEITE THERMOPHYSICAL PROPERTIES OF MODEL SOLUTIONS SIMILAR TO CREAM

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Sobottka Rolim de MOURA

    2001-08-01

    Full Text Available A demanda de creme de leite UHT tem aumentado significativamente. Diversas empresas diversificaram e aumentaram sua produção, visto que o consumidor, cada vez mais exigente, almeja cremes com ampla faixa de teor de gordura. O objetivo do presente trabalho foi determinar a densidade, viscosidade aparente e difusividade térmica, de soluções modelo similares a creme de leite, na faixa de temperatura de 30 a 70°C, estudando a influência do teor de gordura e da temperatura nas propriedades físicas dos produtos. O delineamento estatístico aplicado foi o planejamento 3X5, usando níveis de teor de gordura e temperatura fixos em 15%, 25% e 35%; 30°C, 40°C, 50°C, 60°C e 70°C, respectivamente (STATISTICA 6.0. Manteve-se constante a quantidade de carboidrato e de proteína, ambos em 3%. A densidade foi determinada pelo método de deslocamento de fluidos em picnômetro; a difusividade térmica com base no método de Dickerson e a viscosidade aparente foi determinada em reômetro Rheotest 2.1. Os resultados de cada propriedade foram analisados através de método de superfície de resposta. No caso destas propriedades, os dados obtidos apresentaram resultados significativos, indicando que o modelo representou de forma confiável a variação destas propriedades com a variação da gordura (% e da temperatura (°C.The requirement of UHT cream has been increased considerably. Several industries varied and increased their production, since consumers, more and more exigent, are demanding creams with a wide range of fat content. The objective of the present research was to determine the density, viscosity and thermal diffusivity of model solutions similar to cream. The range of temperature varied from 30°C to 70°C in order to study the influence of fat content and temperature in the physical properties of cream. The statistic method applied was the factorial 3X5 planning, with levels of fat content and temperature fixed in 15%, 25% and 35%; 30

  2. Resolving task rule incongruence during task switching by competitor rule suppression.

    Science.gov (United States)

    Meiran, Nachshon; Hsieh, Shulan; Dimov, Eduard

    2010-07-01

    Task switching requires maintaining readiness to execute any task of a given set of tasks. However, when tasks switch, the readiness to execute the now-irrelevant task generates interference, as seen in the task rule incongruence effect. Overcoming such interference requires fine-tuned inhibition that impairs task readiness only minimally. In an experiment involving 2 object classification tasks and 2 location classification tasks, the authors show that irrelevant task rules that generate response conflicts are inhibited. This competitor rule suppression (CRS) is seen in response slowing in subsequent trials, when the competing rules become relevant. CRS is shown to operate on specific rules without affecting similar rules. CRS and backward inhibition, which is another inhibitory phenomenon, produced additive effects on reaction time, suggesting their mutual independence. Implications for current formal theories of task switching as well as for conflict monitoring theories are discussed. (c) 2010 APA, all rights reserved

  3. Electromechanical magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  4. Electromechanical magnetization switching

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-01-01

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained

  5. JUNOS Enterprise Switching

    CERN Document Server

    Reynolds, Harry

    2009-01-01

    JUNOS Enterprise Switching is the only detailed technical book on Juniper Networks' new Ethernet-switching EX product platform. With this book, you'll learn all about the hardware and ASIC design prowess of the EX platform, as well as the JUNOS Software that powers it. Not only is this extremely practical book a useful, hands-on manual to the EX platform, it also makes an excellent study guide for certification exams in the JNTCP enterprise tracks. The authors have based JUNOS Enterprise Switching on their own Juniper training practices and programs, as well as the configuration, maintenanc

  6. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    Science.gov (United States)

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru; Moriwake, Hiroki

    2016-09-01

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P63mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P63/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (Ec) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis lattice parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering Ec during polarization, with a 5% biaxial expansion resulting in a decrease of Ec to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.

  7. Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films

    Science.gov (United States)

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-01

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

  8. SEARCHING FOR ELECTRICAL PROPERTIES, PHENOMENA AND MECHANISMS IN THE CONSTRUCTION AND FUNCTION OF CHROMOSOMES

    Directory of Open Access Journals (Sweden)

    Ivan Kanev

    2013-03-01

    Full Text Available Our studies reveal previously unidentified electrical properties of chromosomes: (1 chromosomes are amazingly similar in construction and function to electrical transformers; (2 chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3 chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c mechanisms demonstrating heterochromatin to be electrically active and genetically important.

  9. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field

    Science.gov (United States)

    Park, Sung Min; Wang, Bo; Das, Saikat; Chae, Seung Chul; Chung, Jin-Seok; Yoon, Jong-Gul; Chen, Long-Qing; Yang, Sang Mo; Noh, Tae Won

    2018-05-01

    Flexoelectricity is an electromechanical coupling between electrical polarization and a strain gradient1 that enables mechanical manipulation of polarization without applying an electrical bias2,3. Recently, flexoelectricity was directly demonstrated by mechanically switching the out-of-plane polarization of a uniaxial system with a scanning probe microscope tip3,4. However, the successful application of flexoelectricity in low-symmetry multiaxial ferroelectrics and therefore active manipulation of multiple domains via flexoelectricity have not yet been achieved. Here, we demonstrate that the symmetry-breaking flexoelectricity offers a powerful route for the selective control of multiple domain switching pathways in multiaxial ferroelectric materials. Specifically, we use a trailing flexoelectric field that is created by the motion of a mechanically loaded scanning probe microscope tip. By controlling the SPM scan direction, we can deterministically select either stable 71° ferroelastic switching or 180° ferroelectric switching in a multiferroic magnetoelectric BiFeO3 thin film. Phase-field simulations reveal that the amplified in-plane trailing flexoelectric field is essential for this domain engineering. Moreover, we show that mechanically switched domains have a good retention property. This work opens a new avenue for the deterministic selection of nanoscale ferroelectric domains in low-symmetry materials for non-volatile magnetoelectric devices and multilevel data storage.

  10. Comparison of switching control algorithms effective in restricting the switching in the neighborhood of the origin

    International Nuclear Information System (INIS)

    Joung, JinWook; Chung, Lan; Smyth, Andrew W

    2010-01-01

    The active interaction control (AIC) system consisting of a primary structure, an auxiliary structure and an interaction element was proposed to protect the primary structure against earthquakes and winds. The objective of the AIC system in reducing the responses of the primary structure is fulfilled by activating or deactivating the switching between the engagement and the disengagement of the primary and auxiliary structures through the interaction element. The status of the interaction element is controlled by switching control algorithms. The previously developed switching control algorithms require an excessive amount of switching, which is inefficient. In this paper, the excessive amount of switching is restricted by imposing an appropriately designed switching boundary region, where switching is prohibited, on pre-designed engagement–disengagement conditions. Two different approaches are used in designing the newly proposed AID-off and AID-off 2 algorithms. The AID-off 2 algorithm is designed to affect deactivated switching regions explicitly, unlike the AID-off algorithm, which follows the same procedure of designing the engagement–disengagement conditions of the previously developed algorithms, by using the current status of the AIC system. Both algorithms are shown to be effective in reducing the amount of switching times triggered from the previously developed AID algorithm under an appropriately selected control sampling period for different earthquakes, but the AID-off 2 algorithm outperforms the AID-off algorithm in reducing the number of switching times

  11. Brand switching or reduced consumption? A study of how cigarette taxes affect tobacco consumption.

    Science.gov (United States)

    Chen, Chiang-Ming; Chang, Kuo-Liang; Lin, Lin; Lee, Jwo-Leun

    2014-12-01

    We examined the influence of cigarette taxes on tobacco consumption, with an emphasis on smokers' choice between reducing cigarette consumption and switching brands. We constructed three scenario-based models to study the following two subjects: (1) the relationship between deciding whether to reduce one's cigarette consumption and to practice brand switching (simultaneous or sequential); (2) the key determinants that affect smokers' decisions in terms of their consumption and brand switching when facing higher taxes. We applied data collected from a survey in Taiwan, and the results indicated that both independent and two-stage decision-making models generated very similar conclusions. We also found that gender difference contributed to reduce cigarette consumption. In addition, this study indicated that high-income smokers were less likely to switch brands, whereas well-educated smokers were more likely to switch brands. Most importantly, we questioned the effectiveness of cigarette tax policy, as our results suggested that higher price did not necessarily reduce consumption. Indeed, data indicated that consumption after the tax on cigarettes increased.

  12. Experiments on microsecond conduction time plasma opening switch mechanisms

    International Nuclear Information System (INIS)

    Rix, W.; Coleman, M.; Miller, A.R.; Parks, D.; Robertson, K.; Thompson, J.; Waisman, E.; Wilson, A.

    1993-01-01

    The authors describe a series of experiments carried out on ACE 2 and ACE 4 to elucidate the mechanisms controlling the conduction and opening phases on plasma opening switches in a radial geometry with conduction times on the order of a microsecond. The results indicate both conduction and opening physics are similar to that observed on lower current systems in a coaxial geometry

  13. Differences in Tribological Behaviors upon Switching Fixed and Moving Materials of Tribo-pairs including Metal and Polymer.

    Science.gov (United States)

    Xu, Aijie; Tian, Pengyi; Wen, Shizhu; Guo, Fei; Hu, Yueqiang; Jia, Wenpeng; Dong, Conglin; Tian, Yu

    2017-10-12

    The coefficient of friction (COF) between two materials is usually believed to be an intrinsic property of the materials themselves. In this study, metals of stainless steel (304) and brass (H62), and polymers of polypropylene (PP) and polytetrafluoroethylene (PTFE) were tested on a standard ball-on-three-plates test machine. Significantly different tribological behaviors were observed when fixed and moving materials of tribo-pairs (metal/polymer) were switched. As an example, under the same applied load and rotating speed, the COF (0.49) between a rotating PP ball and three fixed H62 plates was approximately 2.3 times higher than that between switched materials of tribo-pairs. Meanwhile, the COF between H62 and PTFE was relatively stable. The unexpected tribological behaviors were ascribed to the thermal and mechanical properties of tribo-pairs. Theoretical analysis revealed that the differences in the maximum local temperature between switching the fixed and moving materials of tribo-pairs were consistent with the differences in the tested COF. This result indicated the precise prediction of the COF of two materials is complexcity, and that thermal and mechanical properties should be properly considered in designing tribo-pairs, because these properties may significantly affect tribological performance.

  14. Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices.

    Science.gov (United States)

    Wan, Tao; Qu, Bo; Du, Haiwei; Lin, Xi; Lin, Qianru; Wang, Da-Wei; Cazorla, Claudio; Li, Sean; Liu, Sidong; Chu, Dewei

    2018-02-15

    Resistive switching behaviour can be classified into digital and analog switching based on its abrupt and gradual resistance change characteristics. Realizing the transition from digital to analog switching in the same device is essential for understanding and controlling the performance of the devices with various switching mechanisms. Here, we investigate the resistive switching in a device made with strontium titanate (SrTiO 3 ) nanoparticles using X-ray diffractometry, scanning electron microscopy, Raman spectroscopy, and direct electrical measurements. It is found that the well-known rupture/formation of Ag filaments is responsible for the digital switching in the device with Ag as the top electrode. To modulate the switching performance, we insert a reduced graphene oxide layer between SrTiO 3 and the bottom FTO electrode owing to its good barrier property for the diffusion of Ag ions and high out-of-plane resistance. In this case, resistive switching is changed from digital to analog as determined by the modulation of interfacial resistance under applied voltage. Based on that controllable resistance, potentiation and depression behaviours are implemented as well. This study opens up new ways for the design of multifunctional devices which are promising for memory and neuromorphic computing applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Elements of magnetic switching

    International Nuclear Information System (INIS)

    Aaland, K.

    1983-01-01

    This chapter describes magnetic switching as a method of connecting a capacitor bank (source) to a load; reviews several successful applications of magnetic switching, and discusses switching transformers, limitations and future possibilities. Some of the inflexibility and especially the high cost of magnetic materials may be overcome with the availability of the new splash cooled ribbons (Metglas). Experience has shown that magnetics works despite shock, radiation or noise interferences

  16. Know-How on design of switching regulator

    International Nuclear Information System (INIS)

    1985-08-01

    This book introduces switching regulator from base to application, which deals with fundamentals of switching regulator such as the reason of boom about switching regulator, understanding simple circuit without electric transformer and decision of circuit type with input voltage and output voltage, configuration and characteristic of switching regulator, a concrete design of switching regulator, pulse width control circuit and protection circuit, concrete circuit examples of switching power and the point of switching regulator.

  17. MENGAPA PERUSAHAAN MELAKUKAN AUDITOR SWITCH?

    Directory of Open Access Journals (Sweden)

    Kadek Sumadi

    2011-01-01

    Full Text Available The existence of a large number of accounting firms allowsprovides companies choices whether to stay with current firm or switchto another accounting firm. Decision of Minister of FinanceNo.423/KMK.06/2002 states that a company must switch auditor afterfive years of consecutive assignment. This is mandatory. The questionrises when a company voluntarily switches its auditor. Why does thishappen?One of the reasons is that management does not satisfy withauditor opinion, except for unqualified opinion. New management teamwould directly or indirectly encourage auditor switch to align accountingand reporting policies. Moreover an expanding company expects positivereaction when it does auditor switch. Profitability is also one reason fora company to switch auditor, for example, when a company earns moreprofit it tends to hire more credible auditor. On the other hand, when thecompany faces a financial distress, it probably would switch auditor aswell.

  18. Comparison of Ion Beam opening switch and plasma opening switch performance

    International Nuclear Information System (INIS)

    Greenly, J.R.; Rondeau, G.D.; Sheldon, H.T.; Dreike, P.L.

    1986-01-01

    The Ion Beam opening switch (IBOS) experiment has shown that an intense charge-neutralized ion beam can carry current across a vacuum magnetically-insulated transmission line and then transfer that current to a downstream load quickly. In the IBOS experiment, a 10 cm wide parallel plate transmission line was fed up to 100 kA peak current by a 4Ω, 100 ns pulser. An ion beam of up to 100 A/cm/sup 2/, 100-300 keV protons or carbon was injected through the anode of the line in a 10 cm x 10 cm region. The line terminated in either a 15 nH short circuit or an electron diode with variable gap. The ion beam switch was able to carry up to 70 kA of line current before load current began to flow. This model is also quantitatively consistent with the observation that switch conduction current is not linear with either injected ion beam current or switch area

  19. Development of Phase Change Materials for RF Switch Applications

    Science.gov (United States)

    King, Matthew Russell

    For decades chalcogenide-based phase change materials (PCMs) have been reliably implemented in optical storage and digital memory platforms. Owing to the substantial differences in optical and electronic properties between crystalline and amorphous states, device architectures requiring a "1" and "0" or "ON" and "OFF" states are attainable with PCMs if a method for amorphizing and crystallizing the PCM is demonstrated. Taking advantage of more than just the binary nature of PCM electronic properties, recent reports have shown that the near-metallic resistivity of some PCMs allow one to manufacture high performance RF switches and related circuit technologies. One of the more promising RF switch technologies is the Inline Phase Change Switch (IPCS) which utilizes GeTe as the active material. Initial reports show that an electrically isolated, thermally coupled thin film heater can successfully convert GeTe between crystalline and amorphous states, and with proper design an RF figure of merit cutoff frequency (FCO) of 12.5 THz can be achieved. In order to realize such world class performance a significant development effort was undertaken to understand the relationship between fundamental GeTe properties, thin film deposition method and resultant device properties. Deposition pressure was found to be the most important deposition process parameter, as it was found to control Ge:Te ratio, oxygen content, Ar content, film density and surface roughness. Ultimately a first generation deposition process produced GeTe films with a crystalline resistivity of 3 ohm-mum. Upon implementing these films into IPCS devices, post-cycling morphological analysis was undertaken using STEM and related analyses. It was revealed that massive structural changes occur in the GeTe during switching, most notably the formation of an assembly of voids along the device centerline and large GeTe grains on either side of the so-called active region. Restructuring of this variety was tied to

  20. Error rate degradation due to switch crosstalk in large modular switched optical networks

    DEFF Research Database (Denmark)

    Saxtoft, Christian; Chidgey, P.

    1993-01-01

    A theoretical model of an optical network incorporating wavelength selective elements, amplifiers, couplers and switches is presented. The model is used to evaluate a large modular switch optical network that provides the capability of adapting easily to changes in network traffic requirements. T....... The network dimensions are shown to be limited by the optical crosstalk in the switch matrices and by the polarization dependent loss in the optical components...

  1. Pemodelan Markov Switching Autoregressive

    OpenAIRE

    Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi

    2014-01-01

    Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...

  2. Energy losses in switches

    International Nuclear Information System (INIS)

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-01-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF 6 polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V peak I peak ) 1.1846 . When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset

  3. Unified Frequency-Domain Analysis of Switched-Series-RC Passive Mixers and Samplers

    NARCIS (Netherlands)

    Soer, M.C.M.; Klumperink, Eric A.M.; de Boer, Pieter-Tjerk; van Vliet, Frank Edward; Nauta, Bram

    2010-01-01

    Abstract—A wide variety of voltage mixers and samplers are implemented with similar circuits employing switches, resistors, and capacitors. Restrictions on duty cycle, bandwidth, or output frequency are commonly used to obtain an analytical expression for the response of these circuits. This paper

  4. A chain-retrieval model for voluntary task switching.

    Science.gov (United States)

    Vandierendonck, André; Demanet, Jelle; Liefooghe, Baptist; Verbruggen, Frederick

    2012-09-01

    To account for the findings obtained in voluntary task switching, this article describes and tests the chain-retrieval model. This model postulates that voluntary task selection involves retrieval of task information from long-term memory, which is then used to guide task selection and task execution. The model assumes that the retrieved information consists of acquired sequences (or chains) of tasks, that selection may be biased towards chains containing more task repetitions and that bottom-up triggered repetitions may overrule the intended task. To test this model, four experiments are reported. In Studies 1 and 2, sequences of task choices and the corresponding transition sequences (task repetitions or switches) were analyzed with the help of dependency statistics. The free parameters of the chain-retrieval model were estimated on the observed task sequences and these estimates were used to predict autocorrelations of tasks and transitions. In Studies 3 and 4, sequences of hand choices and their transitions were analyzed similarly. In all studies, the chain-retrieval model yielded better fits and predictions than statistical models of event choice. In applications to voluntary task switching (Studies 1 and 2), all three parameters of the model were needed to account for the data. When no task switching was required (Studies 3 and 4), the chain-retrieval model could account for the data with one or two parameters clamped to a neutral value. Implications for our understanding of voluntary task selection and broader theoretical implications are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Performance analysis of signaling protocols on OBS switches

    Science.gov (United States)

    Kirci, Pinar; Zaim, A. Halim

    2005-10-01

    In this paper, Just-In-Time (JIT), Just-Enough-Time (JET) and Horizon signalling schemes for Optical Burst Switched Networks (OBS) are presented. These signaling schemes run over a core dWDM network and a network architecture based on Optical Burst Switches (OBS) is proposed to support IP, ATM and Burst traffic. In IP and ATM traffic several packets are assembled in a single packet called burst and the burst contention is handled by burst dropping. The burst length distribution in IP traffic is arbitrary between 0 and 1, and is fixed in ATM traffic at 0,5. Burst traffic on the other hand is arbitrary between 1 and 5. The Setup and Setup ack length distributions are arbitrary. We apply the Poisson model with rate λ and Self-Similar model with pareto distribution rate α to identify inter-arrival times in these protocols. We consider a communication between a source client node and a destination client node over an ingress and one or more multiple intermediate switches.We use buffering only in the ingress node. The communication is based on single burst connections in which, the connection is set up just before sending a burst and then closed as soon as the burst is sent. Our analysis accounts for several important parameters, including the burst setup, burst setup ack, keepalive messages and the optical switching protocol. We compare the performance of the three signalling schemes on the network under as burst dropping probability under a range of network scenarios.

  6. Software Switching for Data Acquisition

    CERN Multimedia

    CERN. Geneva; Malone, David

    2016-01-01

    In this talk we discuss the feasibility of replacing telecom-class routers with a topology of commodity servers acting as software switches in data acquisition. We extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism. We compare the performance under heavy many-to-one congestion to typical Ethernet switches and evaluate the scalability when building larger topologies, exploiting the integration with software-defined networking technologies. Please note that David Malone will speak on behalf of Grzegorz Jereczek.

  7. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  8. Adsorption and switching properties of a N-benzylideneaniline based molecular switch on a Au(111) surface

    International Nuclear Information System (INIS)

    Ovari, Laszlo; Luo, Ying; Haag, Rainer; Leyssner, Felix; Tegeder, Petra; Wolf, Martin

    2010-01-01

    High resolution electron energy loss spectroscopy has been employed to analyze the adsorption geometry and the photoisomerization ability of the molecular switch carboxy-benzylideneaniline (CBA) adsorbed on Au(111). CBA on Au(111) adopts a planar (trans) configuration in the first monolayer (ML) as well as for higher coverages (up to 6 ML), in contrast to the strongly nonplanar geometry of the molecule in solution. Illumination with UV light of CBA in direct contact with the Au(111) surface (≤1 ML) caused no changes in the vibrational structure, whereas at higher coverages (>1 ML) pronounced modifications of vibrational features were observed, which we assign to a trans→cis isomerization. Thermal activation induced the back reaction to trans-CBA. We propose that the photoisomerization is driven by a direct (intramolecular) electronic excitation of the adsorbed CBA molecules in the second ML (and above) analogous to CBA in the liquid phase.

  9. Attractor switching in neuron networks and Spatiotemporal filters for motion processing

    NARCIS (Netherlands)

    Subramanian, Easwara Naga

    2008-01-01

    From a broader perspective, we address two important questions, viz., (a) what kind of mechanism would enable a neuronal network to switch between various tasks or stored patterns? (b) what are the properties of neurons that are used by the visual system in early motion detection? To address (a) we

  10. Bootstrapped Low-Voltage Analog Switches

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1999-01-01

    Novel low-voltage constant-impedance analog switch circuits are proposed. The switch element is a single MOSFET, and constant-impedance operation is obtained using simple circuits to adjust the gate and bulk voltages relative to the switched signal. Low-voltage (1-volt) operation is made feasible...

  11. The stochastic behavior of a molecular switching circuit with feedback

    Directory of Open Access Journals (Sweden)

    Smith Eric

    2007-05-01

    Full Text Available Abstract Background Using a statistical physics approach, we study the stochastic switching behavior of a model circuit of multisite phosphorylation and dephosphorylation with feedback. The circuit consists of a kinase and phosphatase acting on multiple sites of a substrate that, contingent on its modification state, catalyzes its own phosphorylation and, in a symmetric scenario, dephosphorylation. The symmetric case is viewed as a cartoon of conflicting feedback that could result from antagonistic pathways impinging on the state of a shared component. Results Multisite phosphorylation is sufficient for bistable behavior under feedback even when catalysis is linear in substrate concentration, which is the case we consider. We compute the phase diagram, fluctuation spectrum and large-deviation properties related to switch memory within a statistical mechanics framework. Bistability occurs as either a first-order or second-order non-equilibrium phase transition, depending on the network symmetries and the ratio of phosphatase to kinase numbers. In the second-order case, the circuit never leaves the bistable regime upon increasing the number of substrate molecules at constant kinase to phosphatase ratio. Conclusion The number of substrate molecules is a key parameter controlling both the onset of the bistable regime, fluctuation intensity, and the residence time in a switched state. The relevance of the concept of memory depends on the degree of switch symmetry, as memory presupposes information to be remembered, which is highest for equal residence times in the switched states. Reviewers This article was reviewed by Artem Novozhilov (nominated by Eugene Koonin, Sergei Maslov, and Ned Wingreen.

  12. Characteristics of magnetic switch used as main switch of solid-state accelerator

    International Nuclear Information System (INIS)

    Li Song; Qian Baoliang; Yang Hanwu; Meng Zhipeng; Yang Shi

    2012-01-01

    In order to improve the performance of solid-state accelerator, the characteristics of magnetic switch used as the main switch of the accelerator have been investigated. The volume of magnetic core, the loss, and saturated inductance of the magnetic switch have been derived. The results show that the spacing factor of the magnetic switch reaches the peak when the height of the magnetic materials is 0.05 m for selected magnetic cores. The saturated inductance of the windings changes slowly when the average magnetic path length of the core is greater than 1 m. The physical process of saturation in the cores was analyzed by using saturation-wave theory. The rise-time factor of the output pulse was derived. The thickness, resistivity and magnetic path length difference of the magnetic core are shown to be key parameters affecting the rise-time factor. (authors)

  13. A new Zero-Voltage-Transition PWM switching cell

    Energy Technology Data Exchange (ETDEWEB)

    Grigore, V. [Electronics and Telecommunications Faculty `Politebuica` University Bucharest (Romania); Kyyrae, J. [Helsinki University of Technology, Otaniemi (Finland): Institute of Intelligent Power Electronics

    1997-12-31

    In this paper a new Zero-Voltage-Transition (ZVT) PWM switching cell is presented. The proposed switching cell is composed of the normal hard-switched PWM cell (consisting of one active switch and one passive switch), plus an auxiliary circuit (consisting of one active switch and some reactive components). The auxiliary circuit is inactive during the ON and OFF intervals of the switches in the normal PWM switch. However, the transitions between the two states are controlled by the auxiliary circuit. Prior to turn-on, the voltage across the active switch in the PWM cell is forced to zero, thus the turn-on losses of the active switch are practically eliminated. At turn-off the auxiliary circuit behaves like a non-dissipative passive snubber reducing the turn-off losses to a great extent. Zero-Voltage-Transition switching technique almost eliminates switching losses. The active switch operates under ZVT conditions, the passive switch (diode) has a controlled reverse recovery, and the switch in the auxiliary circuit operates under Zero-Current-Switching (ZCS) conditions. (orig.) 6 refs.

  14. Recent developments in switching theory

    CERN Document Server

    Mukhopadhyay, Amar

    2013-01-01

    Electrical Science Series: Recent Developments in Switching Theory covers the progress in the study of the switching theory. The book discusses the simplified proof of Post's theorem on completeness of logic primitives; the role of feedback in combinational switching circuits; and the systematic procedure for the design of Lupanov decoding networks. The text also describes the classical results on counting theorems and their application to the classification of switching functions under different notions of equivalence, including linear and affine equivalences. The development of abstract har

  15. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  16. Switched-capacitor isolated LED driver

    Science.gov (United States)

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  17. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  18. Comparison of patients undergoing switching versus augmentation of antipsychotic medications during treatment for schizophrenia

    Directory of Open Access Journals (Sweden)

    Ascher-Svanum H

    2012-03-01

    Full Text Available Haya Ascher-Svanum, Alan JM Brnabic, Anthony H Lawson, Bruce J Kinon, Virginia L Stauffer, Peter D Feldman, Katarina KelinLilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USAAbstract: It is often difficult to determine whether a patient may best benefit by augmenting their current medication or switching them to another. This post-hoc analysis compares patients’ clinical and functional profiles at the time their antipsychotic medications were either switched or augmented. Adult outpatients receiving oral antipsychotic treatment for schizophrenia were assessed during a 12-month international observational study. Clinical and functional measures were assessed at the time of first treatment switch/augmentation (0–14 days prior and compared between Switched and Augmented patient groups. Due to low numbers of patients providing such data, interpretations are based on effect sizes. Data at the time of change were available for 87 patients: 53 Switched and 34 Augmented. Inadequate response was the primary reason for treatment change in both groups, whereas lack of adherence was more prevalent in the Switched group (26.4% vs 8.8%. Changes in clinical severity from study initiation to medication change were similar, as indicated by Clinical Global Impressions–Severity scores. However, physical and mental component scores of the 12-item Short-Form Health Survey improved in the Augmented group, but worsened in the Switched group. These findings suggest that the patient’s worsening or lack of meaningful improvement prompts clinicians to switch antipsychotic medications, whereas when patients show some improvement, clinicians may be more likely to try bolstering the improvements through augmentation. Current findings are consistent with physicians’ stated reasons for switching versus augmenting antipsychotics in the treatment of schizophrenia. Confirmation of these findings requires further research

  19. Propriedades termofísicas de soluções modelo similares a sucos - Parte I Thermophysical properties of model solutions similar to juice - Part I

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Sobottka Rolim de Moura

    2003-04-01

    Full Text Available Propriedades termofísicas, difusividade térmica e calor específico, de soluções modelo similares a sucos, foram determinadas experimentalmente e ajustadas a modelos matemáticos (STATISTICA 6.0, em função da sua composição química. Para definição das soluções modelo foi realizado um planejamento estrela mantendo-se fixa a quantidade de ácido (1,5% e variando-se a água (82-98,5%, o carboidrato (0-15% e a gordura (0-1,5%. A determinação do calor específico foi realizada através do método de Hwang & Hayakawa e a difusividade térmica com base no método de Dickerson. Os resultados de cada propriedade foram analisados através de superfícies de respostas. Foram encontrados resultados significativos para as propriedades, mostrando que os modelos encontrados representam significativamente as mudanças das propriedades térmicas dos sucos, com alterações na composição e na temperatura.Thermophysical properties, thermal diffusivity and specific heat of model solutions similar to juices were experimentally determined and the values obtained compared to those predicted by mathematical models (STATISTIC 6.0 and to values mentioned in the literature, according to the chemical composition. It was adopted a star planning to define the composition of the model solutions fixing the acid amount in 1.5% and varying water (82-98.5%, carboydrate (0-15% and fat (0-1.5%. The specific heat was determined by Hwang & Hayakawa method and the thermal diffusivity was determined by Dickerson method. The results of each property were analysed by the response surface method. The results were significative, indicating that the models represented considerably the changes of thermal properties of juices according to their composition and temperature variations.

  20. A new Zero-Current-Transition PWM switching cell

    Energy Technology Data Exchange (ETDEWEB)

    Grigore, V. [Electronics and Telecommunications Faculty, `Politechnica` University Bucharest (Romania); Kyyrae, J. [Helsinki University of Technology, Otaniemi (Finland): Institute of Intelligent Power Electronics

    1997-12-31

    In this paper a new Zero-Current-Transition (ZCT) PWM switching cell is presented. The proposed switching cell is composed of the normal hard-switched PWM cell (consisting of one active switch and one passive switch), plus as auxiliary circuit. The auxiliary circuit is inactive during the ON ad OFF intervals of the switches in the normal PWM switch. The transitions between the two states are controlled by the auxiliary circuit. Prior to turn-off, the current through the active switch in the PWM cell is forced to zero, thus the turn-off losses of the active switch are practically eliminated. At turn-on the auxiliary circuit slows down the growing rate of the current through the main switch. Thus, turn-on losses are also very much reduced. The active switch operates under ZCT conditions, the passive switch (diode) has a controlled reverse recovery, while the switch in the auxiliary circuit operates under Zero-Current-Switching (ZCS) conditions. (orig.) 3 refs.

  1. Call for Papers: Photonics in Switching

    Science.gov (United States)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching Guest Editors: Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks. Scope of Submission The scope of the papers includes, but is not limited to, the following topics: WDM node architectures Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion Routing protocols WDM switching and routing Quality of service Performance measurement and evaluation Next-generation optical networks: architecture, signaling, and control Traffic measurement and field trials Optical burst and packet switching OBS/OPS node architectures Burst/Packet scheduling and routing algorithms Contention resolution/avoidance strategies Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.) Burst assembly and ingress traffic shaping Hybrid OBS/TDM or OBS/wavelength routing Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online

  2. Resistive switching characteristics of HfO2-based memory devices on flexible plastics.

    Science.gov (United States)

    Han, Yong; Cho, Kyoungah; Park, Sukhyung; Kim, Sangsig

    2014-11-01

    In this study, we examine the characteristics of HfO2-based resistive switching random access memory (ReRAM) devices on flexible plastics. The Pt/HfO2/Au ReRAM devices exhibit the unipolar resistive switching behaviors caused by the conducting filaments. From the Auger depth profiles of the HfO2 thin film, it is confirmed that the relatively lower oxygen content in the interface of the bottom electrode is responsible for the resistive switching by oxygen vacancies. And the unipolar resistive switching behaviors are analyzed from the C-V characteristics in which negative and positive capacitances are measured in the low-resistance state and the high-resistance state, respectively. The devices have a high on/off ratio of 10(4) and the excellent retention properties even after a continuous bending test of two thousand cycles. The correlation between the device size and the memory characteristics is investigated as well. A relatively smaller-sized device having a higher on/off ratio operates at a higher voltage than a relatively larger-sized device.

  3. Parasitic resistive switching uncovered from complementary resistive switching in single active-layer oxide memory device

    Science.gov (United States)

    Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai

    2017-12-01

    This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.

  4. Superdomain dynamics in ferroelectric-ferroelastic films: Switching, jamming, and relaxation

    Science.gov (United States)

    Scott, J. F.; Hershkovitz, A.; Ivry, Y.; Lu, H.; Gruverman, A.; Gregg, J. M.

    2017-12-01

    Recent experimental work shows that ferroelectric switching can occur in large jumps in which ferroelastic superdomains switch together, rather than having the numerous smaller ferroelectric domains switch within them. In this sense, the superdomains play a role analogous to that of Abrikosov vortices in thin superconducting films under the Kosterlitz-Thouless framework, which control the dynamics more than individual Cooper pairs within them do. Here, we examine the dynamics of ferroelastic superdomains in ferroelastic ferroelectrics and their role in switching devices such as memories. Jamming of ferroelectric domains in thin films has revealed an unexpected time dependence of t-1/4 at long times (hours), but it is difficult to discriminate between power-law and exponential relaxation. Other aspects of this work, including spatial period doubling of domains, led to a description of ferroelastic domains as nonlinear processes in a viscoelastic medium, which produce folding and metastable kinetically limited states. This ¼ exponent is a surprising agreement with the well-known value of ¼ for coarsening dynamics in viscoelastic media. We try to establish a link between these two processes, hitherto considered unrelated, and with superdomains and domain bundles. We note also that high-Tc superconductors share many of the ferroelastic domain properties discussed here and that several new solar cell materials and metal-insulator transition systems are ferroelastic.

  5. Soft switching buck-boost converter for photovoltaic power generation; Taiyoko hatsuden no tame no soft switching shokoatsu converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. [Kyungnam University (Korea, Republic of)

    1996-10-27

    A soft switching method with small switching loss was proposed for the purpose of increasing the efficiency of a DC-DC boost converter which converted a DC current generated by solar cells to a variable DC current. Existing current converters are supplemented by using a snubber circuit around the switch so as to protect the switch by a hard switching action. However, with an increase of the output current, snubber loss is increased, reducing the efficiency. In order to solve this problem, the partial resonant switch method was applied to the converter; with this method of partially forming a resonant circuit only at the time of turning on/off of the switch, the switching loss was reduced through the soft switching, thereby making the proposed converter operate with high efficiency. Moreover, the resonant element of the partial resonant circuit using a snubber condenser, the energy accumulated in the condenser was regenerated on the power supply side without loss of snubber. With the regenerated energy, the proposed converter was provided with a smaller ratio of switching to use than the conventional converter. 4 refs., 7 figs., 1 tab.

  6. Factors Affecting Mobile Users’ Switching Intentions: A Comparative Study between the Brazilian and German Markets

    Directory of Open Access Journals (Sweden)

    Rodrigo C. Martins

    2013-07-01

    Full Text Available In the competitive wireless market, there are many drivers behind customer defection. Switching barriers, service performance, perceived value in carriers’ offers, satisfaction and other constructs can play a pivotal role in customer switching processes among carriers. This study attempts to compare the influence of these factors, taking into account cultural similarities and dissimilarities, between Brazilian and German mobile users. A survey was conducted on two samples, comprising 202 users in Brazil and 200 users in Germany, with culture being employed as a context variable to compare their behavior. Analysis by means of multi-group structural equation modeling suggests that, in both countries, customer satisfaction, service performance and perceived value have important roles in defining customer switching intentions, while switching barriers did not prove to have significant effects upon switching behavior. The results also suggest that the two cultures are sufficientlysimilar (considering the sample and the variables involved in the model to not present differences in the studied consumer behavior, except for the effect of service performance upon satisfaction.

  7. Non-fragile switched H∞ control for morphing aircraft with asynchronous switching

    Directory of Open Access Journals (Sweden)

    Haoyu CHENG

    2017-06-01

    Full Text Available This paper deals with the problem of non-fragile linear parameter-varying (LPV H∞ control for morphing aircraft with asynchronous switching. The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model. The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators, which satisfies Bernoulli distribution. The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon. The parameter-dependent Lyapunov functional method and mode-dependent average dwell time (MDADT method are combined to guarantee the stability and prescribed performance of the system. The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities (LMI. In order to achieve higher efficiency of the designing process, an algorithm is applied to divide the whole set into subsets automatically. Simulation results are provided to verify the effectiveness and superiority of the method in the paper.

  8. Molecular switches at the synapse emerge from receptor and kinase traffic.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Changes in the synaptic connection strengths between neurons are believed to play a role in memory formation. An important mechanism for changing synaptic strength is through movement of neurotransmitter receptors and regulatory proteins to and from the synapse. Several activity-triggered biochemical events control these movements. Here we use computer models to explore how these putative memory-related changes can be stabilised long after the initial trigger, and beyond the lifetime of synaptic molecules. We base our models on published biochemical data and experiments on the activity-dependent movement of a glutamate receptor, AMPAR, and a calcium-dependent kinase, CaMKII. We find that both of these molecules participate in distinct bistable switches. These simulated switches are effective for long periods despite molecular turnover and biochemical fluctuations arising from the small numbers of molecules in the synapse. The AMPAR switch arises from a novel self-recruitment process where the presence of sufficient receptors biases the receptor movement cycle to insert still more receptors into the synapse. The CaMKII switch arises from autophosphorylation of the kinase. The switches may function in a tightly coupled manner, or relatively independently. The latter case leads to multiple stable states of the synapse. We propose that similar self-recruitment cycles may be important for maintaining levels of many molecules that undergo regulated movement, and that these may lead to combinatorial possible stable states of systems like the synapse.

  9. On the asymptotic stability of nonlinear mechanical switched systems

    Science.gov (United States)

    Platonov, A. V.

    2018-05-01

    Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.

  10. Raman analysis of ferroelectric switching in niobium-doped lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Ferrari, P.; Ramos-Moore, E.; Guitar, M.A.; Cabrera, A.L.

    2014-01-01

    Characteristic Raman vibration modes of niobium-doped lead zirconate titanate (PNZT) are studied as a function of ferroelectric domain switching. The microstructure of PNZT is characterized by scanning electron microscopy and X-ray diffraction. Ferroelectric switching is achieved by applying voltages between the top (Au) and bottom (Pt) electrodes, while acquiring the Raman spectra in situ. Vibrational active modes associated with paraelectric and ferroelectric phases are identified after measuring above and below the ferroelectric Curie temperature, respectively. Changes in the relative intensities of the Raman peaks are observed as a function of the switching voltage. The peak area associated with the ferroelectric modes is analyzed as a function of the applied voltage within one ferroelectric polarization loop, showing local maxima around the coercive voltage. This behavior can be understood in terms of the correlation between vibrational and structural properties, since ferroelectric switching modifies the interaction between the body-centered atom (Zr, Ti or Nb) and the Pb–O lattice. - Highlights: • Electric fields induce structural distortions on ferroelectric perovskites. • Ferroelectric capacitor was fabricated to perform hysteresis loops. • Raman analysis was performed in situ during ferroelectric switching. • Raman modes show hysteresis and inflections around the coercive voltages. • Data can be understood in terms of vibrational–structural correlations

  11. Switching dynamics of TaOx-based threshold switching devices

    Science.gov (United States)

    Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek

    2018-03-01

    Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.

  12. A review of micro-contact physics, materials, and failure mechanisms in direct-contact RF MEMS switches

    International Nuclear Information System (INIS)

    Basu, A; Adams, G G; McGruer, N E

    2016-01-01

    Direct contact, ohmic MEMS switches for RF applications have several advantages over other conventional switching devices. Advantages include lower insertion loss, higher isolation, and better switching figure-of-merit (cut-off frequency). The most important aspect of a direct-contact RF MEMS switch is the metal microcontact which can dictate the lifetime and reliability of the switch. Therefore, an understanding of contact reliability is essential for developing robust MEMS switches. This paper discusses and reviews the most important work done over the past couple of decades toward understanding ohmic micro-contacts. We initially discuss the contact mechanics and multi-physics models for studying Hertzian and multi-asperity contacts. We follow this with a discussion on models and experiments for studying adhesion. We then discuss experimental setups and the development of contact test stations by various groups for accelerated testing of microcontacts, as well as for analysis of contact reliability issues. Subsequently, we analyze a number of material transfer mechanisms in microcontacts under hot and cold switching conditions. We finally review the material properties that can help determine the selection of contact materials. A trade-off between contact resistance and high reliability is almost always necessary during selection of contact material; this paper discusses how the choice of materials can help address such trade-offs. (paper)

  13. Investigation of switching frequency variations and EMI properties in self-oscillating class D amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard

    2009-01-01

    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in these amplifiers is self-oscillation. A parameter of key interest in self-oscillating amplifiers is the switching frequency, which is kno...

  14. Development of the switching components for ZT-40

    International Nuclear Information System (INIS)

    Melton, J.G.; Dike, R.S.; Hanks, K.W.; Nunnally, W.C.

    1977-01-01

    Switching of the main capacitor banks for ZT-40 will be accomplished by spark gap switches. Initially, there will be 576 start switches and 288 crowbar switches. A development program is under way to develop three switches; (1) a versatile start switch, which can be used for both the I/sub z/ and the I/sub theta/ capacitor banks, with a wide operating voltage range, (2) a crowbar switch which is capable of crowbarring the circuit without the power crowbar bank, and (3) a power crowbar switch, which can handle 50 to 100 coulombs, so that a large number of crowbar switches will not be required when the power crowbar circuit is added. The problems with the start switches and the first crowbar switch have been solved, or alleviated. The development of a power crowbar switch has just begun

  15. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  16. Study of the temperature dependence of the uniaxial creep property of similar material of new soft rock

    Science.gov (United States)

    Wang, Y. Y.; Wu, Y.; Fan, X. Y.; Zhang, J. L.; Guo, P.; Li, J. G.

    2017-11-01

    Using the experimental method, the experimental research of creep properties were conducted under different temperature ranging from 10°C to 60°C. The similar material of new soft rock consists of paraffin, which can obtain that the deformation contains the instantaneous elastic deformation and creep deformation through the uniaxial creep experimental results. And thus the increase of temperature has great influence on the creep characteristics of similar soft rock according to the creep curve of similar soft rock at 10°C to 60°C. With the increase of temperature, the slope of the stress-strain curve of similar soft rock is increasing, while the average of the creep modulus is decreasing, which means that the capacity of resist deformation is reduced. Therefore, the creeps law of high-temperature and short-time can be shown the creep phenomenon of low-temperature and long-time, and further shorten the creep experimental cycle.

  17. Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods

    International Nuclear Information System (INIS)

    Rode, Michał F.; Sobolewski, Andrzej L.

    2014-01-01

    Effect of chemical substitutions to the molecular structure of 3-hydroxy-picolinic acid on photo-switching properties of the system operating on excited-state intramolecular double proton transfer (d-ESIPT) process [M. F. Rode and A. L. Sobolewski, Chem. Phys. 409, 41 (2012)] was studied with the aid of electronic structure theory methods. It was shown that simultaneous application of electron-donating and electron-withdrawing substitutions at certain positions of the molecular frame increases the height of the S 0 -state tautomerization barrier (ensuring thermal stability of isomers) and facilitates a barrierless access to the S 1 /S 0 conical intersection from the Franck-Condon region of the S 1 potential-energy surface. Results of study point to the conclusion that the most challenging issue for practical design of a fast molecular photoswitch based on d-ESIPT phenomenon are to ensure a selectivity of optical excitation of a given tautomeric form of the system

  18. Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods

    Science.gov (United States)

    Rode, Michał F.; Sobolewski, Andrzej L.

    2014-02-01

    Effect of chemical substitutions to the molecular structure of 3-hydroxy-picolinic acid on photo-switching properties of the system operating on excited-state intramolecular double proton transfer (d-ESIPT) process [M. F. Rode and A. L. Sobolewski, Chem. Phys. 409, 41 (2012)] was studied with the aid of electronic structure theory methods. It was shown that simultaneous application of electron-donating and electron-withdrawing substitutions at certain positions of the molecular frame increases the height of the S0-state tautomerization barrier (ensuring thermal stability of isomers) and facilitates a barrierless access to the S1/S0 conical intersection from the Franck-Condon region of the S1 potential-energy surface. Results of study point to the conclusion that the most challenging issue for practical design of a fast molecular photoswitch based on d-ESIPT phenomenon are to ensure a selectivity of optical excitation of a given tautomeric form of the system.

  19. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  20. SCR series switch and impulse crowbar at the Lawrence Berkeley Laboratory for CTR neutral beam source development

    International Nuclear Information System (INIS)

    Franck, J.V.; Arthur, A.A.; Brusse, L.A.; Low, W.

    1977-10-01

    The series switch is designed to operate at 120kV and pass 65A for 0.5 sec every 30 sec on the Lawrence Berkeley Laboratory CTR Neutral Beam Source Test Stand IIIB. The series switch consists of 400 individual SCR circuits connected in series and is turned on by a simple system of cascaded pulse transformers with multiple single turn secondaries each driving the individual SCR gates. It is turned off by an SCR impulse crowbar that momentarily shorts the power supply allowing the series switch to recover. The SCR switch has been tested in the impulse crowbar configuration and will reliably commutate up to 90A at 120kV. The series switch and impulse crowbar are now in service in Test Stand IIIB. A series switch and impulse crowbar similar in concept is routinely powering a 10 x 10 cm source at 150kV, 20A, 0.5 sec with a 1% duty cycle on the Lawrence Berkeley Laboratory CTR NSB Test Stand IIIA

  1. Enhanced resistive switching in forming-free graphene oxide films embedded with gold nanoparticles deposited by electrophoresis

    International Nuclear Information System (INIS)

    Khurana, Geetika; Kumar, Nitu; Katiyar, Ram S; Misra, Pankaj; Kooriyattil, Sudheendran; Scott, James F

    2016-01-01

    Forming-free resistive random access memory (ReRAM) devices having low switching voltages are a prerequisite for their commercial applications. In this study, the forming-free resistive switching characteristics of graphene oxide (GO) films embedded with gold nanoparticles (Au Nps), having an enhanced on/off ratio at very low switching voltages, were investigated for non-volatile memories. The GOAu films were deposited by the electrophoresis method and as-grown films were found to be in the low resistance state; therefore no forming voltage was required to activate the devices for switching. The devices having an enlarged on/off ratio window of ∼10"6 between two resistance states at low voltages (<1 V) for repetitive dc voltage sweeps showed excellent properties of endurance and retention. In these films Au Nps were uniformly dispersed over a large area that provided charge traps, which resulted in improved switching characteristics. Capacitance was also found to increase by a factor of ∼10, when comparing high and low resistance states in GOAu and pristine GO devices. Charge trapping and de-trapping by Au Nps was the mechanism responsible for the improved switching characteristics in the films. (paper)

  2. In vitro effect of Q-switched Nd:YAG laser exposure on morphology, hydroxyapatite composition and microhardness properties of human dentin

    Directory of Open Access Journals (Sweden)

    Retna Apsari

    2011-12-01

    Full Text Available Background: A Q-switched Nd:YAG laser was employed as a source of ablation. The fundamental wavelength of the laser is 1064 nm, with pulse duration of 8 nanosecond operates with uniphase mode of TEM00. In the following experiments, dentin samples (without caries and plaque are exposed to pulse laser with Q-switching effect at various energy dose. Purpose: The aim of this study was to investigate the effect of laser ablation on dentin samples using Q-switched Nd:YAG laser exposure. Methods: The laser was operated in repetitive mode with frequency of 10 Hz. The energy dose of the laser was ranging from 13.9 J/cm2, 21.2 J/cm2 and 41.7 J/cm2. The target material comprised of human dentin. The laser was exposed in one mode with Q-switched Nd:YAG laser. Energy delivered to the target through free beam technique. The exposed human dentin was examined by using x-ray diffraction (XRD and fluoresence scanning electron microscopy for energy dispersive (FESEM-EDAX. Microhardness of human dentin were examined by using microhardness vickers test (MVT. Results: The result obtained showed that the composition of hydroxyapatite of the dentin after exposed by Q-switched Nd:YAG laser are 75.02% to 78.21%, with microhardness of 38.7 kgf/mm2 to 86.6 kgf/mm2. This indicated that exposed pulsed Nd:YAG laser on the human dentin attributed to the phototermal effect. The power density created by the Q-switched Nd:YAG laser enables the heat to produce optical breakdown (melting and hole associated with plasma formation and shock wave propagation, from energy dose of 21.2 J/cm2. From XRD analysis showed that the exposure of Nd:YAG laser did not involve in changing the crystal structure of the dentin, but due to photoablation effect. Conclusion: In conclusion, the application of Q-switched Nd:YAG laser as contactless drills in dentistry should be regarded as an alternative to the classical mechanical technique to improve the quality of the dentin treatment.Latar belakang

  3. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches.

    Science.gov (United States)

    Riecke, Bernhard E; Feuereissen, Daniel; Rieser, John J; McNamara, Timothy P

    2015-01-01

    Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields ("auditory vection") and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  4. Optimization of multi-branch switched diversity systems

    KAUST Repository

    Nam, Haewoon; Alouini, Mohamed-Slim

    2009-01-01

    A performance optimization based on the optimal switching threshold(s) for a multi-branch switched diversity system is discussed in this paper. For the conventional multi-branch switched diversity system with a single switching threshold

  5. A low-latency optical switch architecture using integrated μm SOI-based contention resolution and switching

    Science.gov (United States)

    Mourgias-Alexandris, G.; Moralis-Pegios, M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    The urgent need for high-bandwidth and high-port connectivity in Data Centers has boosted the deployment of optoelectronic packet switches towards bringing high data-rate optics closer to the ASIC, realizing optical transceiver functions directly at the ASIC package for high-rate, low-energy and low-latency interconnects. Even though optics can offer a broad range of low-energy integrated switch fabrics for replacing electronic switches and seamlessly interface with the optical I/Os, the use of energy- and latency-consuming electronic SerDes continues to be a necessity, mainly dictated by the absence of integrated and reliable optical buffering solutions. SerDes undertakes the role of optimally synergizing the lower-speed electronic buffers with the incoming and outgoing optical streams, suggesting that a SerDes-released chip-scale optical switch fabric can be only realized in case all necessary functions including contention resolution and switching can be implemented on a common photonic integration platform. In this paper, we demonstrate experimentally a hybrid Broadcast-and-Select (BS) / wavelength routed optical switch that performs both the optical buffering and switching functions with μm-scale Silicon-integrated building blocks. Optical buffering is carried out in a silicon-integrated variable delay line bank with a record-high on-chip delay/footprint efficiency of 2.6ns/mm2 and up to 17.2 nsec delay capability, while switching is executed via a BS design and a silicon-integrated echelle grating, assisted by SOA-MZI wavelength conversion stages and controlled by a FPGA header processing module. The switch has been experimentally validated in a 3x3 arrangement with 10Gb/s NRZ optical data packets, demonstrating error-free switching operation with a power penalty of <5dB.

  6. Widening consumer access to medicines: a comparison of prescription to non-prescription medicine switch in Australia and New Zealand.

    Directory of Open Access Journals (Sweden)

    Natalie J Gauld

    Full Text Available Despite similarities in health systems and Trans-Tasman Harmonization of medicines scheduling, New Zealand is more active than Australia in 'switching' (reclassifying medicines from prescription to non-prescription.To identify and compare enablers and barriers to switch in New Zealand and Australia.We conducted and analyzed 27 in-depth personal interviews with key participants in NZ and Australia and international participants previously located in Australia, and analyzed records of meetings considering switches (2000-2013. Analysis of both sets of data entailed a heuristic qualitative approach that embraced the lead researcher's knowledge and experience.The key themes identified were conservatism and political influences in Australia, and an open attitude, proactivity and flexibility in NZ. Pharmacist-only medicine schedules and individuals holding a progressive attitude were proposed to facilitate switch in both countries. A pharmacy retail group drove many switches in NZ ('third-party switch', unlike Australia. Barriers to switch in both countries included small market sizes, funding of prescription medicines and cost of doctor visits, and lack of market exclusivity. In Australia, advertising limitations for pharmacist-only medicines reportedly discouraged industry from submitting switch applications. Perceptions of pharmacy performance could help or hinder switches.Committee and regulator openness to switch, and confidence in pharmacy appear to influence consumer access to medicines. The pharmacist-only medicine schedule in Australasia and the rise of third-party switch and flexibility in switch in NZ could be considered elsewhere to enable switch.

  7. Widening consumer access to medicines: a comparison of prescription to non-prescription medicine switch in Australia and New Zealand.

    Science.gov (United States)

    Gauld, Natalie J; Kelly, Fiona S; Emmerton, Lynne M; Buetow, Stephen A

    2015-01-01

    Despite similarities in health systems and Trans-Tasman Harmonization of medicines scheduling, New Zealand is more active than Australia in 'switching' (reclassifying) medicines from prescription to non-prescription. To identify and compare enablers and barriers to switch in New Zealand and Australia. We conducted and analyzed 27 in-depth personal interviews with key participants in NZ and Australia and international participants previously located in Australia, and analyzed records of meetings considering switches (2000-2013). Analysis of both sets of data entailed a heuristic qualitative approach that embraced the lead researcher's knowledge and experience. The key themes identified were conservatism and political influences in Australia, and an open attitude, proactivity and flexibility in NZ. Pharmacist-only medicine schedules and individuals holding a progressive attitude were proposed to facilitate switch in both countries. A pharmacy retail group drove many switches in NZ ('third-party switch'), unlike Australia. Barriers to switch in both countries included small market sizes, funding of prescription medicines and cost of doctor visits, and lack of market exclusivity. In Australia, advertising limitations for pharmacist-only medicines reportedly discouraged industry from submitting switch applications. Perceptions of pharmacy performance could help or hinder switches. Committee and regulator openness to switch, and confidence in pharmacy appear to influence consumer access to medicines. The pharmacist-only medicine schedule in Australasia and the rise of third-party switch and flexibility in switch in NZ could be considered elsewhere to enable switch.

  8. Untriggered water switching

    International Nuclear Information System (INIS)

    Van Devender, J.P.; Martin, T.H.

    Recent experiments indicate that synchronous untriggered multichannel switching in water will permit the development of relatively simple, ultra-low impedance, short pulse, relativistic electron beam (REB) accelerators. These experiments resulted in the delivery of a 1.5 MV, 0.75 MA, 15 ns pulse into a two-ohm line with a current risetime of 2 x 10 14 A/sec. The apparatus consisted of a 3 MV Marx generator and a series of three 112 cm wide strip water lines separated by two edge-plane water-gap switches. The Marx generator charged the first line in less than 400 ns. The first switch then formed five or more channels. The second line was charged in 60 ns and broke down with 10 to 25 channels at a mean field of 1.6 MV/cm. The closure time of each spark channel along both switches was measured with a streak camera and showed low jitter. The resulting fast pulse line construction is simpler and should provide considerable costs savings from previous designs. Multiples of these low impedance lines in parallel can be employed to obtain power levels in the 10 14 W range for REB fusion studies. (U.S.)

  9. Bipolar resistive switching of single gold-in-Ga2O3 nanowire.

    Science.gov (United States)

    Hsu, Chia-Wei; Chou, Li-Jen

    2012-08-08

    We have fabricated single nanowire chips on gold-in-Ga(2)O(3) core-shell nanowires using the electron-beam lithography techniques and realized bipolar resistive switching characteristics having invariable set and reset voltages. We attribute the unique property of invariance to the built-in conduction path of gold core. This invariance allows us to fabricate many resistive switching cells with the same operating voltage by simple depositing repetitive metal electrodes along a single nanowire. Other characteristics of these core-shell resistive switching nanowires include comparable driving electric field with other thin film and nanowire devices and a remarkable on/off ratio more than 3 orders of magnitude at a low driving voltage of 2 V. A smaller but still impressive on/off ratio of 10 can be obtained at an even lower bias of 0.2 V. These characteristics of gold-in-Ga(2)O(3) core-shell nanowires make fabrication of future high-density resistive memory devices possible.

  10. Polarization switching and patterning in self-assembled peptide tubular structures

    Science.gov (United States)

    Bdikin, Igor; Bystrov, Vladimir; Delgadillo, Ivonne; Gracio, José; Kopyl, Svitlana; Wojtas, Maciej; Mishina, Elena; Sigov, Alexander; Kholkin, Andrei L.

    2012-04-01

    Self-assembled peptide nanotubes are unique nanoscale objects that have great potential for a multitude of applications, including biosensors, nanotemplates, tissue engineering, biosurfactants, etc. The discovery of strong piezoactivity and polar properties in aromatic dipeptides [A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, ACS Nano 4, 610 (2010)] opened up a new perspective for their use as biocompatible nanoactuators, nanomotors, and molecular machines. Another, as yet unexplored functional property is the ability to switch polarization and create artificial polarization patterns useful in various electronic and optical applications. In this work, we demonstrate that diphenylalanine peptide nanotubes are indeed electrically switchable if annealed at a temperature of about 150 °C. The new orthorhombic antipolar structure that appears after annealing allows for the existence of a radial polarization component, which is directly probed by piezoresponse force microscopy (PFM) measurements. Observation of the relatively stable polarization patterns and hysteresis loops via PFM testifies to the local reorientation of molecular dipoles in the radial direction. The experimental results are complemented with rigorous molecular calculations and create a solid background of electric-field induced deformation of aromatic rings and corresponding polarization switching in this emergent material.

  11. Similar Symmetries: The Role of Wallpaper Groups in Perceptual Texture Similarity

    Directory of Open Access Journals (Sweden)

    Fraser Halley

    2011-05-01

    Full Text Available Periodic patterns and symmetries are striking visual properties that have been used decoratively around the world throughout human history. Periodic patterns can be mathematically classified into one of 17 different Wallpaper groups, and while computational models have been developed which can extract an image's symmetry group, very little work has been done on how humans perceive these patterns. This study presents the results from a grouping experiment using stimuli from the different wallpaper groups. We find that while different images from the same wallpaper group are perceived as similar to one another, not all groups have the same degree of self-similarity. The similarity relationships between wallpaper groups appear to be dominated by rotations.

  12. Energy storage, compression, and switching. Vol. 2

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.H.; Sahlin, H.

    1983-01-01

    This book is a compilation of papers presented at the Second International Conference on Energy Storage, Compression, and Switching, which was held in order to assemble active researchers with a major interest in plasma physics, electron beams, electric and magnetic energy storage systems, high voltage and high current switches, free-electron lasers, and pellet implosion plasma focus. Topics covered include: Slow systems: 50-60 Hz machinery, homopolar generators, slow capacitors, inductors, and solid state switches; Intermediate systems: fast capacitor banks; superconducting storage and switching; gas, vacuum, and dielectric switching; nonlinear (magnetic) switching; imploding liners capacitors; explosive generators; and fuses; and Fast systems: Marx, Blumlein, oil, water, and pressurized water dielectrics; switches; magnetic insulation; electron beams; and plasmas

  13. A level switch with a sound tube

    OpenAIRE

    赤池, 誠規

    2017-01-01

    Level switches are sensor with an electrical contact output at a specific liquid, powder or bulk level. Most of traditional level switches are not suitable for harsh environments. The level switch in this study connects a loudspeaker on top end of the sound tube. When liquid, powder or bulk closes bottom end of the sound tube, the level switch turns on. The level switch is suitable for harsh environments and easy to install. The aim of this study is to propose a level switch with a sound tube...

  14. The weak π − π interaction originated resonant tunneling and fast switching in the carbon based electronic devices

    Directory of Open Access Journals (Sweden)

    Jun He

    2012-03-01

    Full Text Available By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transport properties of C60 based electronic device with different intermolecular interactions. It is found that the electronic transport properties vary with the types of the interaction between two C60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.

  15. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Ivanov, Ilia N. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia, E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  16. Semi-similar properties of light nuclear collisions

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Hlavakova, J.; Martinska, G.; Urban, J.; Vytykacova, M.

    2000-01-01

    A new way of the representation of the nuclei fragmentation data is suggested. The self-similar behaviour of these processes called out by the kinematics is demonstrated. The convenience of working in accelerated nuclei is emphasized particularly for the determination of the binding energy of a wide class of nuclear fragments [ru

  17. Characterization of switching field distributions in Ising-like magnetic arrays

    Science.gov (United States)

    Fraleigh, Robert D.; Kempinger, Susan; Lammert, Paul E.; Zhang, Sheng; Crespi, Vincent H.; Schiffer, Peter; Samarth, Nitin

    2017-04-01

    The switching field distribution within arrays of single-domain ferromagnetic islands incorporates both island-island interactions and quenched disorder in island geometry. Separating these two contributions is important for disentangling the effects of disorder and interactions in the magnetization dynamics of island arrays. Using submicron, spatially resolved Kerr imaging in an external magnetic field for islands with perpendicular magnetic anisotropy, we map out the evolution of island arrays during hysteresis loops. Resolving and tracking individual islands across four different lattice types and a range of interisland spacings, we can extract the individual switching fields of every island and thereby quantitatively determine the contributions of interactions and quenched disorder in the arrays. The width of the switching field distribution is found to be well fitted by a simple model comprising the sum of an array-independent contribution (interpreted as disorder induced) and a term proportional to the maximum field the entire rest of the array could exert on a single island, i.e., in a fully polarized state. This supports the claim that disorder in these arrays is primarily a single-island property and provides a methodology by which to quantify such disorder.

  18. Optical Multidimensional Switching for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija

    2017-01-01

    . Software controlled switching using an on-chip integrated fiber switch is demonstrated and enabling of additional network functionalities such as multicast and optical grooming is experimentally confirmed. Altogether this work demonstrates the potential of optical switching technologies...... for the purpose of deploying optical switching within the network. First, the Hi-Ring data center architecture is proposed. It is based on optical multidimensional switching nodes that provide switching in hierarchically layered space, wavelength and time domain. The performance of the Hi-Ring architecture...... is evaluated experimentally and successful switching of both high capacity wavelength connections and time-shared subwavelengthconnections is demonstrated. Error-free performance is also achieved when transmitting 7 Tbit/s using multicore fiber, confirming the ability to scale the network. Moreover...

  19. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  20. Study of selected phenotype switching strategies in time varying environment

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Denis, E-mail: horvath.denis@gmail.com [Centre of Interdisciplinary Biosciences, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia); Brutovsky, Branislav, E-mail: branislav.brutovsky@upjs.sk [Department of Biophysics, Institute of Physics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia)

    2016-03-22

    Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.

  1. Study of selected phenotype switching strategies in time varying environment

    International Nuclear Information System (INIS)

    Horvath, Denis; Brutovsky, Branislav

    2016-01-01

    Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.

  2. A Survey on Modeling and Simulation of MEMS Switches and Its Application in Power Gating Techniques

    OpenAIRE

    Pramod Kumar M.P; A.S. Augustine Fletcher

    2014-01-01

    Large numbers of techniques have been developed to reduce the leakage power, including supply voltage scaling, varying threshold voltages, smaller logic banks, etc. Power gating is a technique which is used to reduce the static power when the sleep transistor is in off condition. Micro Electro mechanical System (MEMS) switches have properties that are very close to an ideal switch, with infinite off-resistance due to an air gap and low on-resistance due to the ohmic metal to m...

  3. An Element of Determinism in a Stochastic Flagellar Motor Switch.

    Science.gov (United States)

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements.

  4. Quinonoid metal complexes: toward molecular switches.

    Science.gov (United States)

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo

    2004-11-01

    The peculiar redox-active character of quinonoid metal complexes makes them extremely appealing to design materials of potential technological interest. We show here how the tuning of the properties of these systems can be pursued by using appropriate molecular synthetic techniques. In particular, we focus our attention on metal polyoxolene complexes exhibiting intramolecular electron transfer processes involving either the ligand and the metal ion or the two dioxolene moieties of a properly designed ligand thus inducing electronic bistability. The transition between the two metastable electronic states can be induced by different external stimuli such as temperature, pressure, light, or pH suggesting the use of these systems for molecular switches.

  5. Propriedades termofísicas de soluções-modelo similares a sucos: parte II Thermophysical properties of model solutions similar to juice: part II

    Directory of Open Access Journals (Sweden)

    Sílvia Cristina Sobottka Rolim de Moura

    2005-09-01

    Full Text Available Propriedades termofísicas, densidade e viscosidade de soluções-modelo similares a sucos foram determinadas experimentalmente. Os resultados foram comparados aos preditos por modelos matemáticos (STATISTICA 6.0 e obtidos da literatura em função da sua composição química. Para definição das soluções-modelo, foi realizado um planejamento estrela, mantendo-se fixa a quanti-dade de ácido (1,5% e variando-se a água (82-98,5%, o carboidrato (0-15% e a gordura (0-1,5%. A densidade foi determinada em picnômetro. A viscosidade foi determinada em viscosímetro Brookfield modelo LVF. A condutividade térmica foi calculada com o conhecimento das propriedades difusividade térmica e calor específico (apresentados na Parte I deste trabalho MOURA [7] e da densidade. Os resultados de cada propriedade foram analisados através de superfícies de respostas. Foram encontrados resultados significativos para as propriedades, mostrando que os modelos encontrados representam as mudanças das propriedades térmicas e físicas dos sucos, com alterações na composição e na temperatura.Thermophysical properties, density and viscosity of model solutions similar to juices were experimentally determined. The results were compared to those predicted by mathematical models (STATISTIC 6.0 and to values mentioned in the literature, according to the chemical composition. A star planning was adopted to define model solutions composition; fixing the acid amount in 1.5% and varying water (82-98.5%, carbohydrate (0-15% and fat (0-1.5%. The density was determined by picnometer. The viscosity was determined by Brookfield LVF model viscosimeter. The thermal conductivity was calculated based on thermal diffusivity and specific heat values (presented at the 1st . Part of this paper - MOURA [7] and density. The results of each property were analyzed by the response surface method. The found results were significant, indicating that the models represent the changes of

  6. 47 CFR 69.106 - Local switching.

    Science.gov (United States)

    2010-10-01

    ... foreign services that use local exchange switching facilities. (c) If end users of an interstate or... local exchange carriers shall establish rate elements for local switching as follows: (1) Price cap... use local exchange switching facilities for the provision of interstate or foreign services. The...

  7. Black phosphorus saturable absorber for Q-switched Er:YAG laser at 1645 nm

    Science.gov (United States)

    Guo, Lei; Li, Tao; Zhang, Shuaiyi; Wang, Mingjian; Yang, Kejian; Fan, Mingqi; Zhao, Shengzhi; Li, Ming

    2018-03-01

    A Q-switched Er:YAG solid-state laser at 1645 nm based on black phosphorus (BP) saturable absorbers (SAs) was demonstrated firstly to our knowledge. The BP-SA was fabricated by drop-casting BP nanoplatelets dispersion on a YAG substrate and corresponding saturable absorption properties were characterized at 1.6 μm. By employing as-prepared BP-SAs, stable Q-switched laser operations were achieved with a pulse width of 2.8 μs and a repetition rate of 34 kHz, corresponding to the average output power of 0.33 W. The results verify that BP-SAs have great potential for pulsed 1.6 μm lasers.

  8. Resistance switching memory in perovskite oxides

    International Nuclear Information System (INIS)

    Yan, Z.B.; Liu, J.-M.

    2015-01-01

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given

  9. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  10. Manually operated coded switch

    International Nuclear Information System (INIS)

    Barnette, J.H.

    1978-01-01

    The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made

  11. A high performance transparent resistive switching memory made from ZrO_2/AlON bilayer structure

    International Nuclear Information System (INIS)

    Tsai, Tsung-Ling; Chang, Hsiang-Yu; Tseng, Tseung-Yuen; Lou, Jesse Jen-Chung

    2016-01-01

    In this study, the switching properties of an indium tin oxide (ITO)/zirconium oxide (ZrO_2)/ITO single layer device and those of a device with an aluminum oxynitride (AlON) layer were investigated. The devices with highly transparent characteristics were fabricated. Compared with the ITO/ZrO_2/ITO single layer device, the ITO/ZrO_2/AlON/ITO bilayer device exhibited a larger ON/OFF ratio, higher endurance performance, and superior retention properties by using a simple two-step forming process. These substantial improvements in the resistive switching properties were attributed to the minimized influence of oxygen migration through the ITO top electrode (TE), which can be realized by forming an asymmetrical conductive filament with the weakest part at the ZrO_2/AlON interface. Therefore, in the ITO/ZrO_2/AlON/ITO bilayer device, the regions where conductive filament formation and rupture occur can be effectively moved from the TE interface to the interior of the device.

  12. Investigation of the electroforming and resistive switching mechanisms in Fe-doped SrTiO3 thin films

    International Nuclear Information System (INIS)

    Menke, Tobias

    2009-01-01

    To overcome the physical limits of todays memory technologies new concepts are needed. The resistive random access memory (RRAM), which bases on a nonvolatile and repeatable change of the resistance by external electrical stimuli, seems to be one promising candidate. Within the scope of this work, the model system Strontium titanate (SrTiO 3 ) has been investigated to get a deeper understanding of the underlying physical mechanism related to the resistance change. The electrical properties of SrTiO 3 (STO) can be modulated from a band insulator to metallic conduction by a self-doping with oxygen vacancies which act as shallow donors. A local accumulation or depletion of oxygen vacancies at the vicinity of the surface will lead to a local redox process which is responsible for the resistance change. To study the influence of the interfaces on the switching properties of SrTiO 3 thin films, epitaxial films of Fe-doped SrTiO 3 were grown on different bottom electrodes (SrRuO 3 , LaNiO 3 und Nb:STO) by a ''Pulsed Laser Deposition'' technique. An atomic force microscope equipped with a conductive tip (LC-AFM) allowed studying the conductivity of the deposited films on the nanometer scale. Resistive switching of lateral structures smaller than ∝5 nm could be realized which represents the potential of this material for a further downscaling of RRAM devices. The deposition of top electrodes, made of Platinum or Titanium, allowed the electrical characterization of metal-insulator-metal (MIM) structures. An extensive investigation of pristine MIM-devices by impedance spectroscopy showed the big impact of the metal-insulator interface on the overall device resistance. Furthermore, a chemical polarization was studied by dynamical current sweeps and identified as a volatile resistance variation. Usually a forming procedure is needed to ''enable'' the resistive switching properties in MIM devices. The electroforming of these devices was extensively studied and could be

  13. Manufacture of Radio Frequency Micromachined Switches with Annealing

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2014-01-01

    Full Text Available The fabrication and characterization of a radio frequency (RF micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  14. Manufacture of radio frequency micromachined switches with annealing.

    Science.gov (United States)

    Lin, Cheng-Yang; Dai, Ching-Liang

    2014-01-17

    The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  15. Observer-Based Robust Control of Uncertain Switched Fuzzy Systems with Combined Switching Controller

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2013-01-01

    Full Text Available The observer-based robust control for a class of switched fuzzy (SF time-delay systems involving uncertainties and external disturbances is investigated in this paper. A switched fuzzy system, which differs from existing ones, is firstly employed to describe a nonlinear system. Next, a combined switching controller is proposed. The designed controller based on the observer instead of the state information integrates the advantages of both the switching controllers and the supplementary controllers but eliminates their disadvantages. The proposed controller provides good performance during the transient period, and the chattering effect is removed when the system state approaches the origin. Sufficient condition for the solvability of the robust control problem is given for the case that the state of system is not available. Since convex combination techniques are used to derive the delay-independent criteria, some subsystems are allowed to be unstable. Finally, various comparisons of the elaborated examples are conducted to demonstrate the effectiveness of the proposed control design approach.

  16. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococcal polysaccharide.

    OpenAIRE

    Sanford, J E; Lupan, D M; Schlageter, A M; Kozel, T R

    1990-01-01

    The in vivo properties of an immunoglobulin isotype-switch family of monoclonal antibodies specific for the polysaccharide capsule of Cryptococcus neoformans were examined in a murine model of cryptococcosis. Subclass-switch variants were isolated by sequential sublining of an immunoglobulin G subclass 1 (IgG1)-secreting cell line. Antibodies of the IgG1, IgG2a, and IgG2b isotypes with identical reactivities with cryptococcal polysaccharide were prepared. The antibodies had the distinct biolo...

  17. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  18. Financial Support to Eligible Countries for the Switch From Trivalent to Bivalent Oral Polio Vaccine-Lessons Learned.

    Science.gov (United States)

    Shendale, Stephanie; Farrell, Margaret; Hampton, Lee M; Harris, Jennifer B; Kachra, Tasleem; Kurji, Feyrouz; Patel, Manish; Ramirez Gonzalez, Alejandro; Zipursky, Simona

    2017-07-01

    The global switch from trivalent oral polio vaccine (tOPV) to bivalent oral polio vaccine (bOPV) ("the switch") presented an unprecedented challenge to countries. In order to mitigate the risks associated with country-level delays in implementing the switch, the Global Polio Eradication Initiative provided catalytic financial support to specific countries for operational costs unique to the switch. Between November 2015 and February 2016, a total of approximately US$19.4 million in financial support was provided to 67 countries. On average, country budgets allocated 20% to human resources, 23% to trainings and meetings, 8% to communications and advocacy, 9% to logistics, 15% to monitoring, and 5% to waste management. All 67 funded countries successfully switched from tOPV to bOPV during April-May 2016. This funding provided target countries with the necessary catalytic support to facilitate the execution of the switch on an accelerated timeline, and the mechanism offers a model for similar support to future global health efforts, such as the eventual global withdrawal of bOPV. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  19. Rev1 Recruits Ung to Switch Regions and Enhances dU Glycosylation for Immunoglobulin Class Switch DNA Recombination

    Directory of Open Access Journals (Sweden)

    Hong Zan

    2012-11-01

    Full Text Available By diversifying the biological effector functions of antibodies, class switch DNA recombination (CSR plays a critical role in the maturation of the immune response. It is initiated by activation-induced cytidine deaminase (AID-mediated deoxycytosine deamination, yielding deoxyuridine (dU, and dU glycosylation by uracil DNA glycosylase (Ung in antibody switch (S region DNA. Here we showed that the translesion DNA synthesis polymerase Rev1 directly interacted with Ung and targeted in an AID-dependent and Ung-independent fashion the S regions undergoing CSR. Rev1−/− Ung+/+ B cells reduced Ung recruitment to S regions, DNA-dU glycosylation, and CSR. Together with an S region spectrum of mutations similar to that of Rev1+/+ Ung−/− B cells, this suggests that Rev1 operates in the same pathway as Ung, as emphasized by further decreased CSR in Rev1−/− Msh2−/− B cells. Rescue of CSR in Rev1−/− B cells by a catalytically inactive Rev1 mutant shows that the important role of Rev1 in CSR is mediated by Rev1’s scaffolding function, not its enzymatic function.

  20. Research and embedded implementation of Layer 3 switch

    Science.gov (United States)

    Song, Jin; Cheng, Zijing

    2009-12-01

    In the internetworking world, switches and routers have been deployed for workgroup and enterprise connectivity. In the past, switches mainly operated at Layer 2 (they were extensions of bridges), while routers were clearly Layer3 devices. Recently, the line has blurred and switches operating at Layer 3 are becoming more popular. This paper explains the Linux Bridge, Layer 2 Switches, Virtual LAN (VLAN) and Layer 3 Switches. The flow chart of Layer 3 switches and working routine related to Layer 3 switch technology were investigated in detail. This paper presents a new method to implement layer 3 switching that is entirely accomplished in software and is embedded implemented by code transplanting based on PowerPC 460GT platform.

  1. Passively-switched energy harvester for increased operational range

    International Nuclear Information System (INIS)

    Liu, Tian; Livermore, Carol; Pierre, Ryan St

    2014-01-01

    This paper presents modeling and experimental validation of a new type of vibrational energy harvester that passively switches between two dynamical modes of operation to expand the range of driving frequencies and accelerations over which the harvester effectively extracts power. In both modes, a driving beam with a low resonant frequency couples into ambient vibrations and transfers their energy to a generating beam that has a higher resonant frequency. The generating beam converts the mechanical power into electrical power. In coupled-motion mode, the driving beam bounces off the generating beam. In plucked mode, the driving beam deflects the generating beam until the driving beam passes from above the generating beam to below it or vice versa. Analytical system models are implemented numerically in the time domain for driving frequencies of 3 Hz to 27 Hz and accelerations from 0.1 g to 2.6 g, and both system dynamics and output power are predicted. A corresponding switched-dynamics harvester is tested experimentally, and its voltage, power, and dynamics are recorded. In both models and experiments, coupled-motion harvesting is observed at lower accelerations, whereas plucked harvesting and/or mixed mode harvesting are observed at higher accelerations. As expected, plucked harvesting outputs greater power than coupled-motion harvesting in both simulations and experiments. The predicted (1.8 mW) and measured (1.56 mW) maximum average power levels are similar under measured conditions at 0.5 g. When the system switches to dynamics that are characteristic of higher frequencies, the difference between predicted and measured power levels is more pronounced due to non-ideal mechanical interaction between the beams’ tips. Despite the beams’ non-ideal interactions, switched-dynamics operation increases the harvester’s operating range. (paper)

  2. Combining SDM-Based Circuit Switching with Packet Switching in a Router for On-Chip Networks

    Directory of Open Access Journals (Sweden)

    Angelo Kuti Lusala

    2012-01-01

    Full Text Available A Hybrid router architecture for Networks-on-Chip “NoC” is presented, it combines Spatial Division Multiplexing “SDM” based circuit switching and packet switching in order to efficiently and separately handle both streaming and best-effort traffic generated in real-time applications. Furthermore the SDM technique is combined with Time Division Multiplexing “TDM” technique in the circuit switching part in order to increase path diversity, thus improving throughput while sharing communication resources among multiple connections. Combining these two techniques allows mitigating the poor resource usage inherent to circuit switching. In this way Quality of Service “QoS” is easily provided for the streaming traffic through the circuit-switched sub-router while the packet-switched sub-router handles best-effort traffic. The proposed hybrid router architectures were synthesized, placed and routed on an FPGA. Results show that a practicable Network-on-Chip “NoC” can be built using the proposed router architectures. 7 × 7 mesh NoCs were simulated in SystemC. Simulation results show that the probability of establishing paths through the NoC increases with the number of sub-channels and has its highest value when combining SDM with TDM, thereby significantly reducing contention in the NoC.

  3. On The Snubber Influence To The Switching And Conduction Losses In A Converter Using Switched Capacitor

    Directory of Open Access Journals (Sweden)

    Viorel DUGAN

    2002-12-01

    Full Text Available The paper deals to design and to compute the snubber parameters influence on the switching and conduction losses of the transistors (IGBT used as bidirectional switches in a converter with switched capacitor. The converter was modelled with difference equations, and the transistors during turn-on and turn-off processes were simulated by dynamically varying resistance models. The energy loss per switching, commutation time, the variation of the transistor voltage etc. and the influence of snubber parameters in each of these cases are shown in the context of a converter used as a 50Hz reactive power controller unit

  4. High-voltage high-current triggering vacuum switch

    International Nuclear Information System (INIS)

    Alferov, D.F.; Bunin, R.A.; Evsin, D.V.; Sidorov, V.A.

    2012-01-01

    Experimental investigations of switching and breaking capacities of the new high current triggered vacuum switch (TVS) are carried out at various parameters of discharge current. It has been shown that the high current triggered vacuum switch TVS can switch repeatedly a current from units up to ten kiloampers with duration up to ten millisecond [ru

  5. Electrochemical control of quantum interference in anthraquinone-based molecular switches

    DEFF Research Database (Denmark)

    Markussen, Troels; Schiøtz, Jakob; Thygesen, Kristian Sommer

    2010-01-01

    Using first-principles calculations we analyze the electronic transport properties of a recently proposed anthraquinone-based electrochemical switch. Robust conductance on/off ratios of several orders of magnitude are observed due to destructive quantum interference present in the anthraquinone...... of hopping via the localized orbitals. The topology of the tight-binding model, which is dictated by the symmetries of the molecular orbitals, determines the amount of quantum interference....

  6. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3.

    Science.gov (United States)

    Li, Congmin; Lim, Sunghyuk; Braunewell, Karl H; Ames, James B

    2016-01-01

    Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.

  7. Sequential Effects in Deduction: Cost of Inference Switch

    Science.gov (United States)

    Milan, Emilio G.; Moreno-Rios, Sergio; Espino, Orlando; Santamaria, Carlos; Gonzalez-Hernandez, Antonio

    2010-01-01

    The task-switch paradigm has helped psychologists gain insight into the processes involved in changing from one activity to another. The literature has yielded consistent results about switch cost reconfiguration (abrupt offset in regular task-switch vs. gradual reduction in random task-switch; endogenous and exogenous components of switch cost;…

  8. Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase.

    Science.gov (United States)

    Farb, Joshua N; Morrical, Scott W

    2009-01-16

    Recombinases of the highly conserved RecA/Rad51 family play central roles in homologous recombination and DNA double-stranded break repair. RecA/Rad51 enzymes form presynaptic filaments on single-stranded DNA (ssDNA) that are allosterically activated to catalyze ATPase and DNA strand-exchange reactions. Information is conveyed between DNA- and ATP-binding sites, in part, by a highly conserved glutamine residue (Gln194 in Escherichia coli RecA) that acts as an allosteric switch. The T4 UvsX protein is a divergent RecA ortholog and contains histidine (His195) in place of glutamine at the allosteric switch position. UvsX and RecA catalyze similar strand-exchange reactions, but differ in other properties. UvsX produces both ADP and AMP as products of its ssDNA-dependent ATPase activity--a property that is unique among characterized recombinases. Details of the kinetics of ssDNA-dependent ATP hydrolysis reactions indicate that UvsX-ssDNA presynaptic filaments are asymmetric and contain two classes of ATPase active sites: one that generates ADP, and another that generates AMP. Active-site asymmetry is reduced by mutations at the His195 position, since UvsX-H195Q and UvsX-H195A mutants both exhibit stronger ssDNA-dependent ATPase activity, with lower cooperativity and markedly higher ADP/AMP product ratios, than wild-type UvsX. Reduced active-site asymmetry correlates strongly with reduced ssDNA-binding affinity and DNA strand-exchange activity in both H195Q and H195A mutants. These and other results support a model in which allosteric switch residue His195 controls the formation of an asymmetric conformation of UvsX-ssDNA filaments that is active in DNA strand exchange. The implications of our findings for UvsX recombination functions, and for RecA functions in general, are discussed.

  9. Aurora oil switch upgrade program

    International Nuclear Information System (INIS)

    Warren, T.

    1989-03-01

    This report describes the short pulse synchronization requirements, the original Aurora trigger scheme, and the PI/SNLA approach to improving the synchronization. It also describes the oil switching design study undertaken as the first phase of the program. A discussion of oil-switch closure analysis and the conceptual design motivated by this analysis are presented. This paper also describes the oil-switch trigger pulser tests required to validate the concept. This includes the design of the testing facility, a description of the test goals, and a discussion of the results. This paper finally describes oil-switch trigger pulser testing on one of the four Aurora Blumlein modules, which includes the hardware design and operation, the testing goals, hardware installation, and test results. 9 refs., 26 figs

  10. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination

    Science.gov (United States)

    Ehrenstein, Michael R.; Rada, Cristina; Jones, Anne-Marie; Milstein, César; Neuberger, Michael S.

    2001-01-01

    Isotype switching involves a region-specific, nonhomologous recombinational deletion that has been suggested to occur by nonhomologous joining of broken DNA ends. Here, we find increased donor/acceptor homology at switch junctions from PMS2-deficient mice and propose that class switching can occur by microhomology-mediated end-joining. Interestingly, although isotype switching and somatic hypermutation show many parallels, we confirm that PMS2 deficiency has no major effect on the pattern of nucleotide substitutions generated during somatic hypermutation. This finding is in contrast to MSH2 deficiency. With MSH2, the altered pattern of switch recombination and hypermutation suggests parallels in the mechanics of the two processes, whereas the fact that PMS2 deficiency affects only switch recombination may reflect differences in the pathways of break resolution. PMID:11717399

  11. More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection for Perspective Switches

    Directory of Open Access Journals (Sweden)

    Bernhard E. Riecke

    2015-08-01

    Full Text Available Self-motion can facilitate perspective switches and automatic spatial updating and help reduce disorientation in applications like Virtual Reality. However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (circular vection can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously-learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (auditory vection and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective Virtual Reality simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  12. Laterally configured resistive switching device based on transition-metal nano-gap electrode on Gd oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Masatoshi; Okabe, Kyota [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kimura, Takashi [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2016-01-11

    We have developed a fabrication process for a laterally configured resistive switching device based on a Gd oxide. A nano-gap electrode connected by a Gd oxide with the ideal interfaces has been created by adapting the electro-migration method in a metal/GdO{sub x} bilayer system. Bipolar set and reset operations have been clearly observed in the Pt/GdO{sub x} system similarly in the vertical device based on GdO{sub x}. Interestingly, we were able to observe a clear bipolar switching also in a ferromagnetic CoFeB nano-gap electrode with better stability compared to the Pt/GdO{sub x} device. The superior performance of the CoFeB/GdO{sub x} device implies the importance of the spin on the resistive switching.

  13. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  14. Organic-based molecular switches for molecular electronics.

    Science.gov (United States)

    Fuentes, Noelia; Martín-Lasanta, Ana; Alvarez de Cienfuegos, Luis; Ribagorda, Maria; Parra, Andres; Cuerva, Juan M

    2011-10-05

    In a general sense, molecular electronics (ME) is the branch of nanotechnology which studies the application of molecular building blocks for the fabrication of electronic components. Among the different types of molecules, organic compounds have been revealed as promising candidates for ME, due to the easy access, great structural diversity and suitable electronic and mechanical properties. Thanks to these useful capabilities, organic molecules have been used to emulate electronic devices at the nanoscopic scale. In this feature article, we present the diverse strategies used to develop organic switches towards ME with special attention to non-volatile systems.

  15. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition

    International Nuclear Information System (INIS)

    Zhang Jian; Yang Hui; Zhang Qilong; Dong Shurong; Luo, J. K.

    2013-01-01

    ZnO films deposited by plasma-enhanced atomic layer deposition (PEALD) have been used to investigate resistive memory behavior. The bipolar resistance switching properties were observed in the Al/PEALD-ZnO/Pt devices. The resistance ratio for the high and low resistance states (HRS/LRS) is more than 10 3 , better than ZnO devices deposited by other methods. The dominant conduction mechanisms of HRS and LRS are trap-controlled space charge limited current and Ohmic behavior, respectively. The resistive switching behavior is induced upon the formation/disruption of conducting filaments. This study demonstrated that the PEALD-ZnO films have better properties for the application in 3D resistance random access memory.

  16. Isolated converter with synchronized switching leg

    NARCIS (Netherlands)

    2003-01-01

    An amplification device is disclosed providing a way of integrating a switch mode power supply and a class D amplifier (switch mode amplifier). This results in the usage of basically one magnetic component (1), one major energy storage element (4) and switches (20, 30) that are controlled in such a

  17. Function Modelling Of The Market And Assessing The Degree Of Similarity Between Real Properties - Dependent Or Independent Procedures In The Process Of Office Property Valuation

    Directory of Open Access Journals (Sweden)

    Barańska Anna

    2015-09-01

    Full Text Available Referring to the developed and presented in previous publications (e.g. Barańska 2011 two-stage algorithm for real estate valuation, this article addresses the problem of the relationship between the two stages of the algorithm. An essential part of the first stage is the multi-dimensional function modelling of the real estate market. As a result of selecting the model best fitted to the market data, in which the dependent variable is always the price of a real property, a set of market attributes is obtained, which in this model are considered to be price-determining. In the second stage, from the collection of real estate which served as a database in the process of estimating model parameters, the selected objects are those which are most similar to the one subject to valuation and form the basis for predicting the final value of the property being valued. Assessing the degree of similarity between real properties can be carried out based on the full spectrum of real estate attributes that potentially affect their value and which it is possible to gather information about, or only on the basis of those attributes which were considered to be price-determining in function modelling. It can also be performed by various methods. This article has examined the effect of various approaches on the final value of the property obtained using the two-stage prediction. In order fulfill the study aim precisely as possible, the results of each calculation step of the algorithm have been investigated in detail. Each of them points to the independence of the two procedures.

  18. Wireless Nanoionic-Based Radio Frequency Switch

    Science.gov (United States)

    Nessel, James A. (Inventor); Miranda, Felix A (Inventor)

    2017-01-01

    A nanoionic switch connected to one or more rectenna modules is disclosed. The rectenna module is configured to receive a wireless signal and apply a first bias to change a state of the nanoionic switch from a first state to a second state. The rectenna module can receive a second wireless signal and apply a second bias to change the nanoionic switch from the second state back to the first state. The first bias is generally opposite of the first bias. The rectenna module accordingly permits operation of the nanoionic switch without onboard power.

  19. Simplified design of switching power supplies

    CERN Document Server

    Lenk, John

    1995-01-01

    * Describes the operation of each circuit in detail * Examines a wide selection of external components that modify the IC package characteristics * Provides hands-on, essential information for designing a switching power supply Simplified Design of Switching Power Supplies is an all-inclusive, one-stop guide to switching power-supply design. Step-by-step instructions and diagrams render this book essential for the student and the experimenter, as well as the design professional. Simplified Design of Switching Power Supplies concentrates on the use of IC regulators. All popular forms of swit

  20. Split-face comparison of intense pulsed light and nonablative 1,064-nm Q-switched laser in skin rejuvenation.

    Science.gov (United States)

    Huo, Meng-Hua; Wang, Yong-Qian; Yang, Xin

    2011-01-01

    Multiple nonablative skin rejuvenation techniques have been used to improve facial aging. To compare rejuvenation efficiency of intense pulsed light (IPL) with nonablative 1,064-nm Q-switched laser in Asian patients. Twelve female subjects were enrolled and received five sessions of treatments at 2-week intervals. A split-face study was performed, with IPL applied to the left side of the face and nonablative 1,064-nm Q-switched laser to the right side. All assessments showed significant skin rejuvenation. For the improvement of skin texture, pore size, and sebum secretion, similar efficiency from laser and IPL was observed. For lightening of skin tone and macula, the IPL was more efficient than the laser after the first treatment, although no further clinical improvement resulted after three treatments. The laser gradually lightened the skin tone and macula and was ultimately more efficient than the IPL after five treatments. A series of IPL and nonablative 1,064-nm Q-switched laser treatments were performed with similar efficiency and safety for the improvement in skin texture, pore size, and sebum secretion. IPL was faster, but nonablative 1,064-nm Q-switched laser was more effective in improving skin tone and macula. © 2010 by the American Society for Dermatologic Surgery, Inc.

  1. Grammatical encoding in bilingual language production: A focus on code switching

    Directory of Open Access Journals (Sweden)

    MEHDI ePURMOHAMMAD

    2015-11-01

    Full Text Available I report three experiments that examined whether words from one language of bilinguals can use the syntactic features form the other language and how such syntactic co-activation might influence syntactic processing. In other words, I examined whether there are any cases in which a lexical item inhibits its inherent syntactic feature and uses the syntactic feature(s that belongs to the other language, instead. In the non-switch condition in experiment 1 and 2, Persian-English bilinguals described pictures using an adjective-noun string from the same language requested. In the switch condition, they used the nouns and adjectives from the other language. In Experiment 3, in the switch condition participants used only the adjectives of noun phrases from the other language. The results showed that bilinguals may inhibit the activation of a word’s syntactic feature and use the syntactic property from the other language instead (e.g., pirāhane (N black. As the combinatorial node (the node that specify different kinds of syntactic structures in which a word can be used of a used adjective retains activation at least temporarily, bilinguals are more likely to use the same combinatorial node even for an adjective from the other language. Using the syntactic features from the other language increased in the switch conditions. Moreover, more inappropriate responses observed when switching from bilinguals’ L2 to L1. The results also revealed that different experimental contexts may lead to different patterns of the control mechanism. The results will be interpreted in terms of Hartsuiker and Pickering’s (2008 model of syntactic representation

  2. Gain-switched all-fiber lasers and quasi-continuous wave supercontinuum generation

    DEFF Research Database (Denmark)

    Larsen, Casper

    The extreme broadening phenomenon of supercontinuum (SC) generation in optical fibers is the basis of SC laser sources. These sources have numerous applications in areas, such as spectroscopy and microscopy due to the unique combination of extremely broad spectral bandwidths, high spectral power...... densities, and high spatial coherence. In this work the feasibility of applying gain-switched all-fiber lasers to SC generation is investigated. It is motivated by the simplicity of the architecture and the ability to scale the optical output power of such fiber lasers. The physics of fiber lasers......-switching of fiber lasers with a variety of different configurations are carried out. The peak power, pulse duration, bandwidth, and scaling with repetition rate are thoroughly described. General guidelines are submitted to enable designing of gainswitched fiber lasers with specifically tailored properties...

  3. Woods with physical, mechanical and acoustic properties similar to those of Caesalpinia echinata have high potential as alternative woods for bow makers

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Longui

    2014-09-01

    Full Text Available For nearly two hundred years, Caesalpinia echinata wood has been the standard for modern bows. However, the threat of extinction and the enforcement of trade bans have required bow makers to seek alternative woods. The hypothesis tested was that woods with physical, mechanical and acoustic properties similar to those of C. echinata would have high potential as alternative woods for bows. Accordingly, were investigated Handroanthus spp., Mezilaurus itauba, Hymenaea spp., Dipteryx spp., Diplotropis spp. and Astronium lecointei. Handroanthus and Diplotropis have the greatest number of similarities with C. echinata, but only Handroanthus spp. showed significant results in actual bow manufacture, suggesting the importance of such key properties as specific gravity, speed of sound propagation and modulus of elasticity. In practice, Handroanthus and Dipteryx produced bows of quality similar to that of C. echinata.

  4. Switched reluctance motor drives

    Indian Academy of Sciences (India)

    Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...

  5. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    Science.gov (United States)

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-11-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.

  6. Application of the principle of similarity fluid mechanics

    International Nuclear Information System (INIS)

    Hendricks, R.C.; Sengers, J.V.

    1979-01-01

    Possible applications of the principle of similarity to fluid mechanics is described and illustrated. In correlating thermophysical properties of fluids, the similarity principle transcends the traditional corresponding states principle. In fluid mechanics the similarity principle is useful in correlating flow processes that can be modeled adequately with one independent variable (i.e., one-dimensional flows). In this paper we explore the concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow. We illustrate the usefulness of the procedure by applying such a transformation to calculate two phase critical mass flow through a nozzle

  7. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  8. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    Science.gov (United States)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  9. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    Science.gov (United States)

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  11. What’s Easier: Doing What You Want, or Being Told What to Do? Cued versus Voluntary Language and Task Switching

    Science.gov (United States)

    Gollan, Tamar H.; Kleinman, Daniel; Wierenga, Christina E.

    2014-01-01

    The current study contrasted cued versus voluntary switching to investigate switching efficiency and possible sharing of control mechanisms across linguistic and non-linguistic domains. Bilinguals switched between naming pictures in Spanish versus English or between reading numbers aloud versus adding their digits, either without or with repetition of stimuli, and with fewer requirements as to when and how much they had to switch relative to previous instantiations of voluntary switching. Without repetition (Experiment 1), voluntary responses were faster than cued responses on both stay and switch trials (especially in the non-linguistic switching task), whereas in previous studies the voluntary advantage was restricted to switch-cost reduction. Similarly, when targets were presented repeatedly (Experiment 2), voluntary responses were faster overall for both linguistic and non-linguistic switching, though here the advantage tended to be larger on switch trials. Experiment 3 confirmed the overall voluntary speed advantage for the read-add task in monolinguals, and revealed a reduction in switch costs only for a different non-linguistic task (size-parity judgments). These results reveal greater overall advantages for voluntary over cued switching than previously reported, but also that the precise manifestation of the voluntary advantage can vary with different tasks. In the linguistic domain, lexical inaccessibility introduces some unique control mechanisms, and repetition may magnify cross-domain overlap in control mechanisms. Finally, under some limited conditions, cost-free switches were found in both linguistic and non-linguistic domains; however, suspension of top-down control may be restricted to language or highly automatic tasks. PMID:25313951

  12. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  13. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  14. Analysis on the Motivations of Code–Switching%Analysis on the Motivations of Code– Switching

    Institute of Scientific and Technical Information of China (English)

    孔祥曼

    2015-01-01

    Code-switching is a common phenomenon in language contact. It reflects the speaker's psychological state and his attitude towards a certain language or a language variety. This paper briefly analyzes the social and psychological motivations of the speakers when they use code-switching.

  15. High-speed 2 × 2 silicon-based electro-optic switch with nanosecond switch time

    International Nuclear Information System (INIS)

    Xue-Jun, Xu; Shao-Wu, Chen; Hai-Hua, Xu; Yang, Sun; Yu-De, Yu; Jin-Zhong, Yu; Qi-Ming, Wang

    2009-01-01

    A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach–Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of 1 mm in length and cross-section of 400 nm×340 nm. The measurement results show that the switch has a V π L π figure of merit of 0.145 V·cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and −28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated

  16. Improved switch-resistor packaging

    Science.gov (United States)

    Redmerski, R. E.

    1980-01-01

    Packaging approach makes resistors more accessible and easily identified with specific switches. Failures are repaired more quickly because of improved accessibility. Typical board includes one resistor that acts as circuit breaker, and others are positioned so that their values can be easily measured when switch is operated. Approach saves weight by using less wire and saves valuable panel space.

  17. Spike-timing dependent plasticity in a transistor-selected resistive switching memory

    International Nuclear Information System (INIS)

    Ambrogio, S; Balatti, S; Nardi, F; Facchinetti, S; Ielmini, D

    2013-01-01

    In a neural network, neuron computation is achieved through the summation of input signals fed by synaptic connections. The synaptic activity (weight) is dictated by the synchronous firing of neurons, inducing potentiation/depression of the synaptic connection. This learning function can be supported by the resistive switching memory (RRAM), which changes its resistance depending on the amplitude, the pulse width and the bias polarity of the applied signal. This work shows a new synapse circuit comprising a MOS transistor as a selector and a RRAM as a variable resistance, displaying spike-timing dependent plasticity (STDP) similar to the one originally experienced in biological neural networks. We demonstrate long-term potentiation and long-term depression by simulations with an analytical model of resistive switching. Finally, the experimental demonstration of the new STDP scheme is presented. (paper)

  18. Mathematical Modeling and Digital Control of A Hybrid Switching Buck Converter

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Abbasi

    2017-06-01

    Full Text Available The aim of this paper is to describe mathematical modeling and digital control of a hybrid switching buck converter. This converter belongs to a class of so called hybrid switching converters and contains a resonant capacitor, resonant inductor and a diode in addition to original buck converter components. The dc gain of this converter is shown to be independent of resonant branch parameters. Moreover the dc conversion ratio is derived for both ideal case and including main inductor dc resistance. Small signal model of the converter is derived and is shown to be similar to conventional buck converter. Simulation results in SIMPLIS Software as well as experimental results of digital control using an 8 bit STM microcontroller are presented. The potential advantages and applications of this converter are discussed.

  19. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  20. Bistable switches control memory and plasticity in cellular differentiation

    Science.gov (United States)

    Wang, Lei; Walker, Brandon L.; Iannaccone, Stephen; Bhatt, Devang; Kennedy, Patrick J.; Tse, William T.

    2009-01-01

    Development of stem and progenitor cells into specialized tissues in multicellular organisms involves a series of cell fate decisions. Cellular differentiation in higher organisms is generally considered irreversible, and the idea of developmental plasticity in postnatal tissues is controversial. Here, we show that inhibition of mitogen-activated protein kinase (MAPK) in a human bone marrow stromal cell-derived myogenic subclone suppresses their myogenic ability and converts them into satellite cell-like precursors that respond to osteogenic stimulation. Clonal analysis of the induced osteogenic response reveals ultrasensitivity and an “all-or-none” behavior, hallmarks of a bistable switch mechanism with stochastic noise. The response demonstrates cellular memory, which is contingent on the accumulation of an intracellular factor and can be erased by factor dilution through cell divisions or inhibition of protein synthesis. The effect of MAPK inhibition also exhibits memory and appears to be controlled by another bistable switch further upstream that determines cell fate. Once the memory associated with osteogenic differentiation is erased, the cells regain their myogenic ability. These results support a model of cell fate decision in which a network of bistable switches controls inducible production of lineage-specific differentiation factors. A competitive balance between these factors determines cell fate. Our work underscores the dynamic nature of cellular differentiation and explains mechanistically the dual properties of stability and plasticity associated with the process. PMID:19366677

  1. Voltage switching technique for detecting nuclear spin polarization in a quantum dot

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Kono, Kimitoshi; Tarucha, Seigo; Ono, Keiji

    2010-01-01

    We have introduced a source-drain voltage switching technique for studying nuclear spins in a vertical double quantum dot. Switching the source-drain voltage between the spin-blockade state and the zero-bias Coulomb blockade state can tune the energy difference between the spin singlet and triplet, and effectively turn on/off the hyperfine interaction. Since the change in the nuclear spin state affects the source-drain current, nuclear spin properties can only be detected by transport measurement. Using this technique, we have succeeded in measuring the timescale of nuclear spin depolarization. Furthermore, combining this technique and an RF ac magnetic field, we successfully detected continuous-wave NMR signals of 75 As, 69 Ga, and 71 Ga, which are contained in a quantum dot. (author)

  2. Insulating oil, electrical for transformers and switches : a national standard of Canada

    International Nuclear Information System (INIS)

    Paniri, S.; Burford, G.; Martin, A.; Adragna, M.

    1997-01-01

    Standard specifications for insulating oil used in power transformers, instrument transformers, bushings, bulk oil circuit breakers, oil circuit reclosers, and switches were provided. The specifications are divided into Class A and Class B depending on the requirement for kinematic viscosity at -40 degrees C. A Class S oil is also introduced for oil circuit breakers. The standards were prepared by the Technical Committee on Transformer and Switch Oils under the jurisdiction of the Steering Committee on Electrical Engineering, and has been formally approved by these committees. It has been also approved as a National Standard of Canada by the Standards Council of Canada. The document provides a list of reference publications, describes the samples and test procedures, properties and delivery requirements. 1 tab

  3. Secure videoconferencing equipment switching system and method

    Science.gov (United States)

    Hansen, Michael E [Livermore, CA

    2009-01-13

    A switching system and method are provided to facilitate use of videoconference facilities over a plurality of security levels. The system includes a switch coupled to a plurality of codecs and communication networks. Audio/Visual peripheral components are connected to the switch. The switch couples control and data signals between the Audio/Visual peripheral components and one but nor both of the plurality of codecs. The switch additionally couples communication networks of the appropriate security level to each of the codecs. In this manner, a videoconferencing facility is provided for use on both secure and non-secure networks.

  4. Stochastic multistep polarization switching in ferroelectrics

    Science.gov (United States)

    Genenko, Y. A.; Khachaturyan, R.; Schultheiß, J.; Ossipov, A.; Daniels, J. E.; Koruza, J.

    2018-04-01

    Consecutive stochastic 90° polarization switching events, clearly resolved in recent experiments, are described by a nucleation and growth multistep model. It extends the classical Kolmogorov-Avrami-Ishibashi approach and includes possible consecutive 90°- and parallel 180° switching events. The model predicts the results of simultaneous time-resolved macroscopic measurements of polarization and strain, performed on a tetragonal Pb (Zr ,Ti ) O3 ceramic in a wide range of electric fields over a time domain of seven orders of magnitude. It allows the determination of the fractions of individual switching processes, their characteristic switching times, activation fields, and respective Avrami indices.

  5. The increased importance of sector switching

    DEFF Research Database (Denmark)

    Frederiksen, Anders; Hansen, Jesper Rosenberg

    2017-01-01

    Sector switching is an important phenomenon that casts light on public–private differences. Yet our knowledge about its prevalence and trends is limited. We study sector switching using unique Danish register-based employer–employee data covering more than 25 years. We find that sector switching...... constitutes 18.5% of all job-to-job mobility, and the trend is increasing both from public to private and from private to public. Sector switching is also generally increasing for middle managers, but for administrative professionals only the flows from private to public increase and for top managers only...... the flows from public to private increase....

  6. Transistor electronics use of semiconductor components in switching operations

    CERN Document Server

    Rumpf, Karl-Heinz

    2014-01-01

    Transistor Electronics: Use of Semiconductor Components in Switching Operations presents the semiconductor components as well as their elementary circuits. This book discusses the scope of application of electronic devices to increase productivity. Organized into eight chapters, this book begins with an overview of the general equation for the representation of integer positive numbers. This text then examines the properties and characteristics of basic electronic components, which relates to an understanding of the operation of semiconductors. Other chapters consider the electronic circuit ar

  7. Determinants of Method Switching among Social Franchise Clients Who Discontinued the Use of Intrauterine Contraceptive Device.

    Science.gov (United States)

    Hameed, Waqas; Azmat, Syed Khurram; Ali, Moazzam; Hussain, Wajahat; Mustafa, Ghulam; Ishaque, Muhammad; Ali, Safdar; Ahmed, Aftab; Temmerman, Marleen

    2015-01-01

    Introduction. Women who do not switch to alternate methods after contraceptive discontinuation, for reasons other than the desire to get pregnant or not needing it, are at obvious risk for unplanned pregnancies or unwanted births. This paper examines the factors that influence women to switch from Intrauterine Contraceptive Device (IUCD) to other methods instead of terminating contraceptive usage altogether. Methods. The data used for this study comes from a larger cross-sectional survey conducted in nine (9) randomly selected districts of Sindh and Punjab provinces of Pakistan, during January 2011. Using Stata 11.2, we analyzed data on 333 women, who reported the removal of IUCDs due to reasons other than the desire to get pregnant. Results. We found that 39.9% of the women do not switch to another method of contraception within one month after IUCD discontinuation. Use of contraception before IUCD insertion increases the odds for method switching by 2.26 times after removal. Similarly, postremoval follow-up by community health worker doubles (OR = 2.0) the chances of method switching. Compared with women who received free IUCD service (via voucher scheme), the method switching is 2.01 times higher among women who had paid for IUCD insertion. Conclusion. To increase the likelihood of method switching among IUCD discontinuers this study emphasizes the need for postremoval client counseling, follow-up by healthcare provider, improved choices to a wider range of contraceptives for poor clients, and user satisfaction.

  8. Determinants of Method Switching among Social Franchise Clients Who Discontinued the Use of Intrauterine Contraceptive Device

    Directory of Open Access Journals (Sweden)

    Waqas Hameed

    2015-01-01

    Full Text Available Introduction. Women who do not switch to alternate methods after contraceptive discontinuation, for reasons other than the desire to get pregnant or not needing it, are at obvious risk for unplanned pregnancies or unwanted births. This paper examines the factors that influence women to switch from Intrauterine Contraceptive Device (IUCD to other methods instead of terminating contraceptive usage altogether. Methods. The data used for this study comes from a larger cross-sectional survey conducted in nine (9 randomly selected districts of Sindh and Punjab provinces of Pakistan, during January 2011. Using Stata 11.2, we analyzed data on 333 women, who reported the removal of IUCDs due to reasons other than the desire to get pregnant. Results. We found that 39.9% of the women do not switch to another method of contraception within one month after IUCD discontinuation. Use of contraception before IUCD insertion increases the odds for method switching by 2.26 times after removal. Similarly, postremoval follow-up by community health worker doubles (OR = 2.0 the chances of method switching. Compared with women who received free IUCD service (via voucher scheme, the method switching is 2.01 times higher among women who had paid for IUCD insertion. Conclusion. To increase the likelihood of method switching among IUCD discontinuers this study emphasizes the need for postremoval client counseling, follow-up by healthcare provider, improved choices to a wider range of contraceptives for poor clients, and user satisfaction.

  9. Investigation of the electroforming and resistive switching mechanisms in Fe-doped SrTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Menke, Tobias

    2009-11-27

    To overcome the physical limits of todays memory technologies new concepts are needed. The resistive random access memory (RRAM), which bases on a nonvolatile and repeatable change of the resistance by external electrical stimuli, seems to be one promising candidate. Within the scope of this work, the model system Strontium titanate (SrTiO{sub 3}) has been investigated to get a deeper understanding of the underlying physical mechanism related to the resistance change. The electrical properties of SrTiO{sub 3} (STO) can be modulated from a band insulator to metallic conduction by a self-doping with oxygen vacancies which act as shallow donors. A local accumulation or depletion of oxygen vacancies at the vicinity of the surface will lead to a local redox process which is responsible for the resistance change. To study the influence of the interfaces on the switching properties of SrTiO{sub 3} thin films, epitaxial films of Fe-doped SrTiO{sub 3} were grown on different bottom electrodes (SrRuO{sub 3}, LaNiO{sub 3} und Nb:STO) by a ''Pulsed Laser Deposition'' technique. An atomic force microscope equipped with a conductive tip (LC-AFM) allowed studying the conductivity of the deposited films on the nanometer scale. Resistive switching of lateral structures smaller than {proportional_to}5 nm could be realized which represents the potential of this material for a further downscaling of RRAM devices. The deposition of top electrodes, made of Platinum or Titanium, allowed the electrical characterization of metal-insulator-metal (MIM) structures. An extensive investigation of pristine MIM-devices by impedance spectroscopy showed the big impact of the metal-insulator interface on the overall device resistance. Furthermore, a chemical polarization was studied by dynamical current sweeps and identified as a volatile resistance variation. Usually a forming procedure is needed to ''enable'' the resistive switching properties in MIM devices

  10. Resistive switching in TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin

    2011-10-26

    The continuing improved performance of the digital electronic devices requires new memory technologies which should be inexpensively fabricated for higher integration capacity, faster operation, and low power consumption. Resistive random access memory has great potential to become the front runner as the non volatile memory technology. The resistance states stored in such cell can remain for long time and can be read out none-destructively by a very small electrical pulse. In this work the typically two terminal memory cells containing a thin TiO{sub 2} layer are studied. Polycrystalline TiO{sub 2} thin films are deposited with atomic layer deposition and magnetron reactive sputtering processes, which are both physically and electrically characterized. The resistive switching cells are constructed in a metal/TiO{sub 2}/metal structure. Electroforming process initiate the cell from the beginning good insulator to a real memory cell to program the resistive states. Multilevel resistive bipolar switching controlled by current compliance is the common characteristic observed in these cells, which is potentially to be used as so called multi-bit memory cells to improve the memory capacity. With different top electrodes of Pt, Cu, Ag the resistive switching behaviors are studied. The switching behaviors are different depending on the top metal such as the minimum current compliance, the endurance of the programmed resistance states and the morphology change during the switching. The temperature dependence of different resistance states are investigated. A reduction of the activation energy and their possible conduction mechanisms is discussed on the base of the basic current conduction models. It is found that the resistance state transfers from semiconductor to metallic property with the reducing resistances. The calculated temperature coefficients of their metallic states on the Cu/TiO{sub 2}/Pt and Ag/TiO{sub 2}/Pt are very close to the reported literature data

  11. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    Science.gov (United States)

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  12. Failure of botulinum toxin injection for neurogenic detrusor overactivity: Switch of toxin versus second injection of the same toxin.

    Science.gov (United States)

    Peyronnet, Benoit; Castel-Lacanal, Evelyne; Manunta, Andréa; Roumiguié, Mathieu; Marque, Philippe; Rischmann, Pascal; Gamé, Xavier

    2015-12-01

    To evaluate the efficacy of a second injection of the same toxin versus switching to a different botulinum toxin A after failure of a first detrusor injection in patients with neurogenic detrusor overactivity. The charts of all patients who underwent detrusor injections of botulinum toxin A (either abobotulinumtoxinA or onabotulinumtoxinA) for the management of neurogenic detrusor overactivity at a single institution were retrospectively reviewed. Patients in whom a first detrusor injection had failed were included in the present study. They were managed by a second injection of the same toxin at the same dosage or by a new detrusor injection using a different botulinum toxin A. Success was defined as a resolution of urgency, urinary incontinence and detrusor overactivity in a patient self-catheterizing seven times or less per 24 h. A total of 58 patients were included for analysis. A toxin switch was carried out in 29 patients, whereas the other 29 patients received a reinjection of the same toxin at the same dose. The success rate was higher in patients who received a toxin switch (51.7% vs. 24.1%, P = 0.03). Patients treated with a switch from abobotulinumtoxinA to onabotulinumtoxinA and those treated with a switch from onabotulinumtoxinA to abobotulinumtoxinA had similar success rates (52.9% vs. 50%, P = 0.88). After failure of a first detrusor injection of botulinum toxin for neurogenic detrusor overactivity, a switch to a different toxin seems to be more effective than a second injection of the same toxin. The replacement of onabotulinumtoxin by abobotulinumtoxin or the reverse provides similar results. © 2015 The Japanese Urological Association.

  13. 41 CFR 101-26.301-1 - Similar items.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Similar items. 101-26.301-1 Section 101-26.301-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND...

  14. DETERMINANT OF DOWNWARD AUDITOR SWITCHING

    Directory of Open Access Journals (Sweden)

    Totok Budisantoso

    2017-12-01

    Full Text Available Abstract: Determinant of Downward Auditor Switching. This study examines the factors that influence downward auditor switching in five ASEAN countries. Fixed effect logistic regression was used as analytical method. This study found that opinion shopping occurred in ASEAN, especially in distress companies. Companies with complex businesses will retain the Big Four auditors to reduce complexity and audit costs. Audit and public committees serve as guardians of auditor quality. On the other hand, shareholders failed to maintain audit quality. It indicates that there is entrenchment effect in auditor switching.

  15. Contraceptive method switching in the United States.

    Science.gov (United States)

    Grady, William R; Billy, John O G; Klepinger, Daniel H

    2002-01-01

    Switching among contraceptive method types is the primary determinant of the prevalence of use of specific contraceptive methods, and it has direct implications for women's ability to avoid unintended pregnancies. Yet, method switching among U.S. women has received little attention from researchers. Data from the 1995 National Survey of Family Growth were used to construct multiple-decrement life tables to explore the gross switching rates of married and unmarried women. Within each group, discrete-time hazard models were estimated to determine how women's characteristics affect their switching behavior. Overall rates of method switching are high among both married and unmarried women (40% and 61%, respectively). Married women's two-year switching rates vary from 30% among women who use the implant, injectable, IUD or other reversible methods to 43% among nonusers, while unmarried women's rates vary from 33% among women who use the implant, injectable or IUD to 70% among nonusers. Multivariate analyses of method switching according to women's characteristics indicate that among married women, women without children are less likely than other women to adopt sterilization or a long-term reversible contraceptive (the implant, injectable or IUD). Older married women have a higher rate than their younger counterparts of switching to sterilization, but are also more likely to continue using no method. Among unmarried women, younger and more highly educated women have high rates of switching to the condom and to dual methods. Women's method switching decisions may be driven primarily by concerns related to level and duration of contraceptive effectiveness, health risks associated with contraceptive use and, among single women, sexually transmitted disease prevention.

  16. A Novel Silicon-based Wideband RF Nano Switch Matrix Cell and the Fabrication of RF Nano Switch Structures

    Directory of Open Access Journals (Sweden)

    Yi Xiu YANG

    2011-12-01

    Full Text Available This paper presents the concept of RF nano switch matrix cell and the fabrication of RF nano switch. The nano switch matrix cell can be implemented into complex switch matrix for signal routing. RF nano switch is the decision unit for the matrix cell; in this research, it is fabricated on a tri-layer high-resistivity-silicon substrate using surface micromachining approach. Electron beam lithography is introduced to define the pattern and IC compatible deposition process is used to construct the metal layers. Silicon-based nano switch fabricated by IC compatible process can lead to a high potential of system integration to perform a cost effective system-on-a-chip solution. In this paper, simulation results of the designed matrix cell are presented; followed by the details of the nano structure fabrication and fabrication challenges optimizations; finally, measurements of the fabricated nano structure along with analytical discussions are also discussed.

  17. Gas adsorption/absorption heat switch, phase 1

    Science.gov (United States)

    Chan, C. K.

    1987-01-01

    The service life and/or reliability of far-infrared sensors on surveillance satellites is presently limited by the cryocooler. The life and/or reliability, however, can be extended by using redundant cryocoolers. To reduce parasitic heat leak, each stage of the inactive redundant cryocooler must be thermally isolated from the optical system, while each stage of the active cryocooler must be thermally connected to the system. The thermal break or the thermal contact can be controlled by heat switches. Among different physical mechanisms for heat switching, mechanically activated heat switches tend to have low reliability and, furthermore, require a large contact force. Magnetoresistive heat switches are, except at very low temperatures, of very low efficiency. Heat switches operated by the heat pipe principle usually require a long response time. A sealed gas gap heat switch operated by an adsorption pump has no mechanical motion and should provide the reliability and long lifetime required in long-term space missions. Another potential application of a heat switch is the thermal isolation of the optical plane during decontamination.

  18. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  19. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  20. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  1. Study of the Switching Errors in an RSFQ Switch by Using a Computerized Test Setup

    International Nuclear Information System (INIS)

    Kim, Se Hoon; Baek, Seung Hun; Yang, Jung Kuk; Kim, Jun Ho; Kang, Joon Hee

    2005-01-01

    The problem of fluctuation-induced digital errors in a rapid single flux quantum (RSFQ) circuit has been a very important issue. In this work, we calculated the bit error rate of an RSFQ switch used in superconductive arithmetic logic unit (ALU). RSFQ switch should have a very low error rate in the optimal bias. Theoretical estimates of the RSFQ error rate are on the order of 10 -50 per bit operation. In this experiment, we prepared two identical circuits placed in parallel. Each circuit was composed of 10 Josephson transmission lines (JTLs) connected in series with an RSFQ switch placed in the middle of the 10 JTLs. We used a splitter to feed the same input signal to both circuits. The outputs of the two circuits were compared with an RSFQ exclusive OR (XOR) to measure the bit error rate of the RSFQ switch. By using a computerized bit-error-rate test setup, we measured the bit error rate of 2.18 x 10 -12 when the bias to the RSFQ switch was 0.398 mA that was quite off from the optimum bias of 0.6 mA.

  2. Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

    Directory of Open Access Journals (Sweden)

    Christoph Schreyvogel

    2016-11-01

    Full Text Available In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV− and a nuclear spin (of 15N or 13C for example of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.

  3. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  4. Monitoring Mellanox Infiniband SX6036 switches

    CERN Document Server

    Agapiou, Marinos

    2017-01-01

    The SX6036 switches addressed by my project, are part of a fully non-blocking fat-tree cluster consisting of 72 servers and 6 Mellanox SX6036 Infiniband switches. My project is about retrieving the appropriate metrics from the Infiniband switch cluster, ingesting the data to Collectd and after my data are being transfered to CERN Database, they are being visualized via Grafana Dashboards.

  5. Optical switches based on surface plasmons

    International Nuclear Information System (INIS)

    Chen Cong; Wang Pei; Yuan Guanghui; Wang Xiaolei; Min Changjun; Deng Yan; Lu Yonghua; Ming Hai

    2008-01-01

    Great attention is being paid to surface plasmons (SPs) because of their potential applications in sensors, data storage and bio-photonics. Recently, more and more optical switches based on surface plasmon effects have been demonstrated either by simulation or experimentally. This article describes the principles, advantages and disadvantages of various types of optical switches based on SPs, in particular the all-optical switches. (authors)

  6. A new switched power linac structure

    International Nuclear Information System (INIS)

    Villa, F.

    1989-03-01

    A new pulse power structure has been described that utilizes an easily accessible rectilinear switch. The new structure is more ''forgiving'' (as far as risetime is concerned) than the radial line transformer, and contains fewer switching structures/unit length. The combination of the new structure with the switch proposed seems to offer interesting possibilities for a future linear collider. 13 refs., 6 figs., 2 tabs

  7. General Slowing and Education Mediate Task Switching Performance Across the Life-Span

    Directory of Open Access Journals (Sweden)

    Luca Moretti

    2018-05-01

    Full Text Available Objective: This study considered the potential role of both protective factors (cognitive reserve, CR and adverse ones (general slowing in modulating cognitive flexibility in the adult life-span.Method: Ninety-eight individuals performed a task-switching (TS paradigm in which we adopted a manipulation concerning the timing between the cue and the target. Working memory demands were minimized by using transparent cues. Additionally, indices of cognitive integrity, depression, processing speed and different CR dimensions were collected and used in linear models accounting for TS performance under the different time constraints.Results: The main results showed similar mixing costs and higher switching costs in older adults, with an overall age-dependent effect of general slowing on these costs. The link between processing speed and TS performance was attenuated when participants had more time to prepare. Among the different CR indices, formal education only was associated with reduced switch costs under time pressure.Discussion: Even though CR is often operationalized as a unitary construct, the present research confirms the benefits of using tools designed to distinguish between different CR dimensions. Furthermore, our results provide empirical support to the assumption that processing speed influence on executive performance depends on time constraints. Finally, it is suggested that whether age differences appear in terms of switch or mixing costs depends on working memory demands (which were low in our tasks with transparent cues.

  8. Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3

    NARCIS (Netherlands)

    Maksymovych, P.; Huijben, Mark; Pan, M.; Jesse, S.; Balke, N.; Chu, Y.H.; Chang, H.J.; Borisevich, A.Y.; Baddorf, A.P.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Ramesh, R.; Kalinin, S.V.

    2012-01-01

    Using piezoresponse force microscopy in an ultrahigh vacuum, polarization switching has been detected and quantified in epitaxial BiFeO3 films from 200 to about 4 unit cells thick. Local remnant piezoresponse was utilized to probe both ferroelectric properties and effects of imperfect electrical

  9. 36 CFR 1002.20 - Skating, skateboards and similar devices.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Skating, skateboards and similar devices. 1002.20 Section 1002.20 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.20 Skating, skateboards and similar devices. Using roller skates...

  10. Photo-stimulated resistive switching of ZnO nanorods

    International Nuclear Information System (INIS)

    Park, Jinjoo; Lee, Seunghyup; Yong, Kijung

    2012-01-01

    Resistive switching memory devices are promising candidates for emerging memory technologies because they yield outstanding device performance. Storage mechanisms for achieving high-density memory applications have been developed; however, so far many of them exhibit typical resistive switching behavior from the limited controlling conditions. In this study, we introduce photons as an unconventional stimulus for activating resistive switching behaviors. First, we compare the resistive switching behavior in light and dark conditions to describe how resistive switching memories can benefit from photons. Second, we drive the switching of resistance not by the electrical stimulus but only by the modulation of photon. ZnO nanorods were employed as a model system to demonstrate photo-stimulated resistive switching in high-surface-area nanomaterials, in which photo-driven surface states strongly affect their photoconductivity and resistance states. (paper)

  11. The Transistor as Low Level Switch

    Energy Technology Data Exchange (ETDEWEB)

    Lyden, Anders

    1963-10-15

    The common collector transistor switch has in the on state with open emitter a certain offset voltage U{sub EK} {approx_equal} -kT/qB{sub N}. This expression is derived in a new, more physical way. It is further shown at which emitter current the current amplification factor B{sub N} should be measured to get a correct value for the above expression. The collector current I at zero collector voltage I{sub K} = I{sub 0}(exp(qU{sub E}/kT) - 1) extremely well. Substitution of I{sub EBO} and I{sub KBO} by I{sub 0} in Eber's and Moll's relations consequently improves these equations and the characteristics of the transistor switch can be better determined. At switching on and off transients appear across the switch. The influence of the 'spike' at switching off can be described by an current I{sub SPIKE} which is easy to calculate. I{sub SPIKE} is approximately dependent only on the base - emitter depletion layer capacitance and the chopper frequency f{sub 0}. Some compensated switches have lower drift than the drift in U{sub EK}. They may, for example, have a temperature drift < 0.2 {mu}V/deg C and a long time drift < 2 {mu}V/week. Some compensated switches also have I{sub SPIKE} < 10{sup -12} f{sub 0}A. The static offset current in the off state can easily be made < 10{sup -12} A.

  12. Offshore Outsourcing, Contractual R&D and Intellectual Property in Developing Countries

    OpenAIRE

    Marjit, Sugata; Xu, Xinpeng; Yang, Lei

    2009-01-01

    This paper examines the role of intellectual property in developing countries in offshore outsourcing of R&D. We find that strengthened intellectual property protection in developing countries provides incentive for firms, both multinational and local, to specialize in undertaking an R&D activity in which it has competitive advantage (the specialization effect). It also facilitates the process for local firms to switch from imitators to potential innovators (the switching effect). We demon...

  13. Proton-Controlled Organic Microlaser Switch.

    Science.gov (United States)

    Gao, Zhenhua; Zhang, Wei; Yan, Yongli; Yi, Jun; Dong, Haiyun; Wang, Kang; Yao, Jiannian; Zhao, Yong Sheng

    2018-05-25

    Microscale laser switches have been playing irreplaceable roles in the development of photonic devices with high integration levels. However, it remains a challenge to switch the lasing wavelengths across a wide range due to relatively fixed energy bands in traditional semiconductors. Here, we report a strategy to switch the lasing wavelengths among multiple states based on a proton-controlled intramolecular charge-transfer (ICT) process in organic dye-doped flexible microsphere resonant cavities. The protonic acids can effectively bind onto the ICT molecules, which thus enhance the ICT strength of the dyes and lead to a red-shifted gain behavior. On this basis, the gain region was effectively modulated by using acids with different proton-donating ability, and as a result, laser switching among multiple wavelengths was achieved. The results will provide guidance for the rational design of miniaturized lasers with performances based on the characteristic of organic optoelectronic materials.

  14. Multi-planed unified switching topologies

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

    2017-07-04

    An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.

  15. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    Science.gov (United States)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  16. Low prepulse, high power density water dielectric switching

    International Nuclear Information System (INIS)

    Johnson, D.L.; VanDevender, J.P.; Martin, T.H.

    1979-01-01

    Prepulse voltage suppression has proven difficult in high power, high voltage accelerators employing self-breakdown water dielectric switches. A novel and cost effective water switch has been developed at Sandia Laboratories which reduces prepulse voltage by reducing the capacity across the switch. This prepulse suppression switch causes energy formerly stored in the switch capacity and dissipated in the arc to be useful output energy. The switching technique also allows the pulse forming lines to be stacked in parallel and electrically isolated from the load after the line has been discharged. The switch consists of a ground plane, with several holes, inserted between the switch electrodes. The output line switch electrodes extend through the holes and face electrodes on the pulse forming line (PFL). The capacity between the PFL and the output transmission line is reduced by about 80%. The gap spacing between the output line electrode and the hole in the ground plane is adjusted so that breakdown occurs after the main pulse and provides a crow bar between the load and the source. Performance data from the Proto II, Mite and Ripple test facilities are presented

  17. Adjusting for treatment switching in randomised controlled trials - A simulation study and a simplified two-stage method.

    Science.gov (United States)

    Latimer, Nicholas R; Abrams, K R; Lambert, P C; Crowther, M J; Wailoo, A J; Morden, J P; Akehurst, R L; Campbell, M J

    2017-04-01

    Estimates of the overall survival benefit of new cancer treatments are often confounded by treatment switching in randomised controlled trials (RCTs) - whereby patients randomised to the control group are permitted to switch onto the experimental treatment upon disease progression. In health technology assessment, estimates of the unconfounded overall survival benefit associated with the new treatment are needed. Several switching adjustment methods have been advocated in the literature, some of which have been used in health technology assessment. However, it is unclear which methods are likely to produce least bias in realistic RCT-based scenarios. We simulated RCTs in which switching, associated with patient prognosis, was permitted. Treatment effect size and time dependency, switching proportions and disease severity were varied across scenarios. We assessed the performance of alternative adjustment methods based upon bias, coverage and mean squared error, related to the estimation of true restricted mean survival in the absence of switching in the control group. We found that when the treatment effect was not time-dependent, rank preserving structural failure time models (RPSFTM) and iterative parameter estimation methods produced low levels of bias. However, in the presence of a time-dependent treatment effect, these methods produced higher levels of bias, similar to those produced by an inverse probability of censoring weights method. The inverse probability of censoring weights and structural nested models produced high levels of bias when switching proportions exceeded 85%. A simplified two-stage Weibull method produced low bias across all scenarios and provided the treatment switching mechanism is suitable, represents an appropriate adjustment method.

  18. High-explosive driven crowbar switch

    International Nuclear Information System (INIS)

    Dike, R.S.; Kewish, R.W. Jr.

    1976-01-01

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor

  19. Switched-mode power supply apparatus and method

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead- time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power

  20. Switched-mode power supply apparatus and method

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead-time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power

  1. Control and synchronisation in switched arrival systems

    NARCIS (Netherlands)

    Rem, B.; Armbruster, H.D.

    2003-01-01

    A chaotic model of a production flow called the switched arrival system is extended to include switching times and maintenance. The probability distribution of the chaotic return times is calculated. Scheduling maintenance, loss of production due to switching, and control of the chaotic dynamics is

  2. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    Science.gov (United States)

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  3. Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO{sub 2}/TiN devices

    Energy Technology Data Exchange (ETDEWEB)

    Matveyev, Yu.; Zenkevich, A. [Moscow Institute of Physics and Technology, 141700 Moscow Region (Russian Federation); NRNU “Moscow Engineering Physics Institute”, 115409 Moscow (Russian Federation); Egorov, K.; Markeev, A. [Moscow Institute of Physics and Technology, 141700 Moscow Region (Russian Federation)

    2015-01-28

    Recently proposed novel neural network hardware designs imply the use of memristors as electronic synapses in 3D cross-bar architecture. Atomic layer deposition (ALD) is the most feasible technique to fabricate such arrays. In this work, we present the results of the detailed investigation of the gradual resistive switching (memristive) effect in nanometer thick fully ALD grown TiN/HfO{sub 2}/TiN stacks. The modelling of the I-V curves confirms interface limited trap-assisted-tunneling mechanism along the oxygen vacancies in HfO{sub 2} in all conduction states. The resistivity of the stack is found to critically depend upon the distance from the interface to the first trap in HfO{sub 2}. The memristive properties of ALD grown TiN/HfO{sub 2}/TiN devices are correlated with the demonstrated neuromorphic functionalities, such as long-term potentiation/depression and spike-timing dependent plasticity, thus indicating their potential as electronic synapses in neuromorphic hardware.

  4. Switching away from pipotiazine palmitate: a naturalistic study.

    Science.gov (United States)

    Mustafa, Feras Ali

    2017-01-01

    In March 2015, pipotiazine palmitate depot antipsychotic was globally withdrawn due to the shortage of its active ingredient. Thus, all patients receiving this medication had to be switched to an alternative antipsychotic drug. In this study we set to evaluate the process of switching away from pipotiazine palmitate within our clinical service, and its impact on hospitalization. Demographic and clinical data on patients who were receiving pipotiazine palmitate in Northamptonshire at the time of its withdrawal were anonymously extracted from their electronic records and analyzed using descriptive statistics. A total of 17 patients were switched away from pipotiazine palmitate at the time of its withdrawal, all of whom had a prior history of nonadherence with oral treatment. A total of 14 patients were switched to another depot antipsychotic drug, while three patients chose an oral alternative which they subsequently discontinued resulting in relapse and hospitalization. There was a five-fold increase in mean hospitalization among patients who completed a year after the switch. Switching away from pipotiazine palmitate was associated with significant clinical deterioration in patients who switched to an oral antipsychotic, whereas most patients who switched to another depot treatment maintained stability. Clinicians should exercise caution when switching patients with schizophrenia away from depot antipsychotic drugs, especially in cases of patients with a history of treatment nonadherence who prefer to switch to oral antipsychotics.

  5. Reverse bistable effect in ferroelectric liquid crystal devices with ultra-fast switching at low driving voltage.

    Science.gov (United States)

    Guo, Qi; Zhao, Xiaojin; Zhao, Huijie; Chigrinov, V G

    2015-05-15

    In this Letter, reverse bistable effect with deep-sub-millisecond switching time is first reported in ferroelectric liquid crystal (FLC) devices using a homogeneous photo-alignment technique. It is indicated by our experimental results that both the anchoring energy and the dielectric property of the FLC's alignment layer is critical for the existence of the reverse bistable effect. In addition, with the derived criteria of the reverse bistable effect, we quantitatively analyze the switching dynamics of the reverse bistable FLC and the transition condition between the traditional bistability and our presented reverse bistability. Moreover, the fabricated FLC device exhibits an ultra-fast switching of ∼160  μs and a high contrast ratio of 1000:1, both of which were measured at a low driving voltage of 11 V. The featured deep-sub-millisecond switching time is really advantageous for our presented reverse bistable FLC devices, which enables a significant quality improvement of the existing optical devices, as well as a wide range of new applications in photonics and display areas.

  6. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  7. The phenomenon of the switching of estrogen effects and joker function of glucose: similarities and relation to age-associated pathology and approaches to correction.

    Science.gov (United States)

    Berstein, Lev M; Tsyrlina, Evgenia V; Vasilyev, Dmitry A; Poroshina, Tatjana E; Kovalenko, Rina G

    2005-12-01

    Estrogens and glucose are characterized by a myriad of functions that can be reduced to a small number of principal actions. In aging there is a simultaneous increase in the prevalence of diseases connected with estrogen deficiency as well as with estrogenic excess and associated with the phenomenon of the switching of estrogen effects (PSEE). Estrogens possess hormonal and genotoxic properties. An increase in genotoxic effect (isolated or combined with a decrease in hormonal effect) can influence the course of age-associated diseases that, contrary to the situation with adaptive hypersensitivity to estrogens, may become less favorable or more aggressive. Inductors of PSEE include smoking, irradiation, and aging. Yet with "glycemic load" and the endocrine effect of glucose (the stimulation of insulin secretion), reactive oxygen species are formed in multiple sites, including adipose tissue. The ratio between hormonal and genotoxic effects reflects a "joker" function of glucose and can be conditioned by endogenous (perhaps including genetic) and exogenous factors. The shift in this glucose-associated ratio may selectively encourage some chronic non-communicable diseases. Several groups of treatments can be distinguished including alleviators of PSEE and insulin resistance syndrome (biguanides, glitazones, statins, modifiers of adipocytokines secretion, etc.) as well as other compounds aimed to optimally orchestrate the balance between endocrine and DNA-damaging effects of estrogens and glucose.

  8. Interallelic class switch recombination contributes significantly to class switching in mouse B cells.

    Science.gov (United States)

    Reynaud, Stéphane; Delpy, Laurent; Fleury, Laurence; Dougier, Hei-Lanne; Sirac, Christophe; Cogné, Michel

    2005-05-15

    Except for the expression of IgM and IgD, DNA recombination is constantly needed for the expression of other Ig classes and subclasses. The predominant path of class switch recombination (CSR) is intrachromosomal, and the looping-out and deletion model has been abundantly documented. However, switch regions also occasionally constitute convenient substrates for interchromosomal recombination, since it is noticeably the case in a number of chromosomal translocations causing oncogene deregulation in the course of lymphoma and myeloma. Although asymmetric accessibility of Ig alleles should theoretically limit its occurrence, interallelic CSR was shown to occur at low levels during IgA switching in rabbit, where the definition of allotypes within both V and C regions helped identify interchromosomally derived Ig. Thus, we wished to evaluate precisely interallelic CSR frequency in mouse B cells, by using a system in which only one allele (of b allotype) could express a functional VDJ region, whereas only interallelic CSR could restore expression of an excluded (a allotype) allele. In our study, we show that interchromosomal recombination of V(H) and Cgamma or Calpha occurs in vivo in B cells at a frequency that makes a significant contribution to physiological class switching: trans-association of V(H) and C(H) genes accounted for 7% of all alpha mRNA, and this frequency was about twice higher for the gamma3 transcripts, despite the much shorter distance between the J(H) region and the Cgamma3 gene, thus confirming that this phenomenon corresponded to site-specific switching and not to random recombination between long homologous loci.

  9. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  10. Behavioral plasticity through the modulation of switch neurons.

    Science.gov (United States)

    Vassiliades, Vassilis; Christodoulou, Chris

    2016-02-01

    A central question in artificial intelligence is how to design agents capable of switching between different behaviors in response to environmental changes. Taking inspiration from neuroscience, we address this problem by utilizing artificial neural networks (NNs) as agent controllers, and mechanisms such as neuromodulation and synaptic gating. The novel aspect of this work is the introduction of a type of artificial neuron we call "switch neuron". A switch neuron regulates the flow of information in NNs by selectively gating all but one of its incoming synaptic connections, effectively allowing only one signal to propagate forward. The allowed connection is determined by the switch neuron's level of modulatory activation which is affected by modulatory signals, such as signals that encode some information about the reward received by the agent. An important aspect of the switch neuron is that it can be used in appropriate "switch modules" in order to modulate other switch neurons. As we show, the introduction of the switch modules enables the creation of sequences of gating events. This is achieved through the design of a modulatory pathway capable of exploring in a principled manner all permutations of the connections arriving on the switch neurons. We test the model by presenting appropriate architectures in nonstationary binary association problems and T-maze tasks. The results show that for all tasks, the switch neuron architectures generate optimal adaptive behaviors, providing evidence that the switch neuron model could be a valuable tool in simulations where behavioral plasticity is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Single molecular switch based on thiol tethered iron(II)clathrochelate on gold

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Subramanian [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Voloshin, Yan Z. [Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow (Russian Federation); Radecka, Hanna [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Radecki, Jerzy [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland)], E-mail: radecki@pan.olsztyn.pl

    2009-09-30

    Molecular electronics has been associated with high density nano-electronic devices. Developments of molecular electronic devices were based on reversible switching of molecules between the two conductive states. In this paper, self-assembled monolayers of dodecanethiol (DDT) and thiol tethered iron(II)clathrochelate (IC) have been prepared on gold film. The electrochemical and electronic properties of IC molecules inserted into the dodecanethiol monolayer (IC-DDT SAM) were investigated using voltammetric, electrochemical impedance spectroscopy (EIS), scanning tunneling microscopy (STM) and cross-wire tunneling measurements. The voltage triggered switching behaviour of IC molecules on mixed SAM was demonstrated. Deposition of polyaniline on the redox sites of IC-DDT SAM using electrochemical polymerization of aniline was performed in order to confirm that this monolayer acts as nano-patterned semiconducting electrode surface.

  12. The baryonic self similarity of dark matter

    International Nuclear Information System (INIS)

    Alard, C.

    2014-01-01

    The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M 1/4 . These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.

  13. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  14. Caffeine improves anticipatory processes in task switching

    NARCIS (Netherlands)

    Tieges, Zoe; Snel, Jan; Kok, Albert; Wijnen, Jasper G.; Lorist, Monicque M.; Ridderinkhof, K. Richard

    We studied the effects of moderate amounts of caffeine on task switching and task maintenance using mixed-task (AABB) blocks, in which participants alternated predictably between two tasks, and single-task (AAAA, BBBB) blocks. Switch costs refer to longer reaction times (RT) on task switch trials

  15. Resistive switching phenomena of extended defects in Nb-doped SrTiO3 under influence of external gradients

    International Nuclear Information System (INIS)

    Rodenbuecher, Christian

    2014-01-01

    Redox-based memristive materials have attracted much attention in the last decade owing to their ability to change the resistance upon application of an electric field making them promising candidates for future non-volatile memories. However, a fundamental understanding of the nature of the resistive switching effect, which is indispensable for designing future technological applications,is still lacking. As a prototype material of a memristive oxide, strontium titanate (SrTiO 3 ) has been investigated intensively and it was revealed that the valence change of a Ti ''d'' electron plays an important role during resistive switching related to insulator-to-metal transition. Such a transition can be induced by electrical gradients, by chemical gradients, by a combination of these gradients or by donor doping. Hence, SrTiO 3 doped with the donor Nb should have metallic properties and is used commonly as a conducting substrate for the growth of functional oxide thin films. Nevertheless,the resistive switching effect has also be observed in Nb-doped SrTiO 3 . This paradoxical situation offers a unique opportunity to gain an insight into the processes during the insulator-to metal transition. In this thesis, a comprehensive study of the influence of external gradients on SrTiO 3 :Nb single crystals is presented. The focus is especially set on the investigation of the crystallographic structure, the chemical composition, the electronic structure, the lattice dynamics and the electronic transport phenomena using surface-sensitive methods on the macro- and nanoscale. On the as-received epi-polished single crystals, the evolution of a surface layer having a slight excess of strontium and - in contrast to the bulk of the material - semiconducting properties are observed. Hence, the key for understanding of the resistive switching effect is the knowledge of the nature of the surface layer. On the basis of systematic studies of the influence of external

  16. The nanocoherer: an electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper

    Science.gov (United States)

    Minnai, Chloé; Mirigliano, Matteo; Brown, Simon A.; Milani, Paolo

    2018-03-01

    We report the realization of a resettable resistive switching device based on a nanostructured film fabricated by supersonic cluster beam deposition of gold clusters on plain paper substrates. Through the application of suitable voltage ramps, we obtain, in the same device, either a complex pattern of resistive switchings, or reproducible and stable switchings between low resistance and high resistance states, with an amplitude up to five orders of magnitude. Our device retains a state of internal resistance following the history of the applied voltage similar to that reported for memristors. The two different switching regimes in the same device are both stable, the transition between them is reversible, and it can be controlled by applying voltage ramps or by mechanical deformation of the substrate. The device behavior can be related to the formation, growth and breaking of junctions between the loosely aggregated gold clusters forming the nanostructured films. The fact that our cluster-assembled device is mechanically resettable suggests that it can be considered as the analog of the coherer: a switching device based on metallic powders used for the first radio communication system.

  17. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing.

    Science.gov (United States)

    Sillin, Henry O; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V; Aono, Masakazu; Stieg, Adam Z; Gimzewski, James K

    2013-09-27

    Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

  18. Denoising of genetic switches based on Parrondo's paradox

    Science.gov (United States)

    Fotoohinasab, Atiyeh; Fatemizadeh, Emad; Pezeshk, Hamid; Sadeghi, Mehdi

    2018-03-01

    Random decision making in genetic switches can be modeled as tossing a biased coin. In other word, each genetic switch can be considered as a game in which the reactive elements compete with each other to increase their molecular concentrations. The existence of a very small number of reactive element molecules has caused the neglect of effects of noise to be inevitable. Noise can lead to undesirable cell fate in cellular differentiation processes. In this paper, we study the robustness to noise in genetic switches by considering another switch to have a new gene regulatory network (GRN) in which both switches have been affected by the same noise and for this purpose, we will use Parrondo's paradox. We introduce two networks of games based on possible regulatory relations between genes. Our results show that the robustness to noise can increase by combining these noisy switches. We also describe how one of the switches in network II can model lysis/lysogeny decision making of bacteriophage lambda in Escherichia coli and we change its fate by another switch.

  19. Exploring the repetition bias in voluntary task switching.

    Science.gov (United States)

    Mittelstädt, Victor; Dignath, David; Schmidt-Ott, Magdalena; Kiesel, Andrea

    2018-01-01

    In the voluntary task-switching paradigm, participants are required to randomly select tasks. We reasoned that the consistent finding of a repetition bias (i.e., participants repeat tasks more often than expected by chance) reflects reasonable adaptive task selection behavior to balance the goal of random task selection with the goals to minimize the time and effort for task performance. We conducted two experiments in which participants were provided with variable amount of preview for the non-chosen task stimuli (i.e., potential switch stimuli). We assumed that switch stimuli would initiate some pre-processing resulting in improved performance in switch trials. Results showed that reduced switch costs due to extra-preview in advance of each trial were accompanied by more task switches. This finding is in line with the characteristics of rational adaptive behavior. However, participants were not biased to switch tasks more often than chance despite large switch benefits. We suggest that participants might avoid effortful additional control processes that modulate the effects of preview on task performance and task choice.

  20. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2012-01-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  1. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  2. Intrinsic nanofilamentation in resistive switching

    KAUST Repository

    Wu, Xing

    2013-03-15

    Resistive switching materials are promising candidates for nonvolatile data storage and reconfiguration of electronic applications. Intensive studies have been carried out on sandwiched metal-insulator-metal structures to achieve high density on-chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission electron microscopy is used to study in real-time the physical structure and analyze the chemical composition of the nanofilament dynamically during resistive switching. Electrical stressing using an external voltage was applied by a tungsten tip to the nanosized devices having hafnium oxide (HfO2) as the insulator layer. The formation and rupture of the nanofilaments result in up to three orders of magnitude change in the current flowing through the dielectric during the switching event. Oxygen vacancies and metal atoms from the anode constitute the chemistry of the nanofilament.

  3. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad

    2012-09-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  4. Similarity and self-similarity in high energy density physics: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Falize, E.

    2008-10-01

    The spectacular recent development of powerful facilities allows the astrophysical community to explore, in laboratory, astrophysical phenomena where radiation and matter are strongly coupled. The titles of the nine chapters of the thesis are: from high energy density physics to laboratory astrophysics; Lie groups, invariance and self-similarity; scaling laws and similarity properties in High-Energy-Density physics; the Burgan-Feix-Munier transformation; dynamics of polytropic gases; stationary radiating shocks and the POLAR project; structure, dynamics and stability of optically thin fluids; from young star jets to laboratory jets; modelling and experiences for laboratory jets

  5. Evolution of a Fluctuating Population in a Randomly Switching Environment.

    Science.gov (United States)

    Wienand, Karl; Frey, Erwin; Mobilia, Mauro

    2017-10-13

    Environment plays a fundamental role in the competition for resources, and hence in the evolution of populations. Here, we study a well-mixed, finite population consisting of two strains competing for the limited resources provided by an environment that randomly switches between states of abundance and scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios-one of pure resource competition, and one in which one strain provides a public good-and investigate how environmental randomness (external noise) coupled to demographic (internal) noise determines the population's fixation properties and size distribution. By analytical means and simulations, we show that these coupled sources of noise can significantly enhance the fixation probability of the slower-growing species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and undergoes noise-induced transitions between these regimes when the rate of switching matches the population's growth rate.

  6. Investigation on amorphous InGaZnO based resistive switching memory with low-power, high-speed, high reliability

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yang-Shun [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Liu, Po-Tsun, E-mail: ptliu@mail.nctu.edu.tw [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Hsu, Ching-Hui [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China)

    2013-12-31

    Recently, non-volatile memory (NVM) has been widely used in electronic devices. Nowadays, the prevailing NVM is Flash memory. However, it is generally believed that the conventional Flash memory will approach its scaling limit within about a decade. The resistive random access memory (RRAM) is emerging as one of the potential candidates for future memory replacement because of its high storage density, low power consumption as well as simple structure. The purpose of this work is to develop a reliable a-InGaZnO based resistive switching memory. We investigate the resistive switching characteristics of TiN/Ti/IGZO/Pt structure and TiN/IGZO/Pt structure. The device with TiN/Ti/IGZO/Pt structure exhibits stable bipolar resistive switching. The impact of inserting a Ti interlayer is studied by material analyses. The device shows excellent resistive switching properties. For example, the DC sweep endurance can achieve over 1000 times; and the pulse induced switching cycles can reach at least 10,000 times. Furthermore, the impact of different sputtering ambience, the variable temperature measurement, and the conduction mechanisms are also investigated. According to our experiments, we propose a model to explain the resistive switching phenomenon observed in our devices.

  7. Switch-attention (aka switch-reference in South-American temporal clauses: facilitating oral transmission

    Directory of Open Access Journals (Sweden)

    Rik van Gijn

    2012-01-01

    Full Text Available Cultures without a written tradition depend entirely on the oral channel to transmit sometimes highly complex information. It is therefore not surprising that in the languages of such cultures linguistic devices evolve that enhance textual coherence, and thus comprehension. These devices should ideally also be economical in terms of morphosyntactic complexity in order to facilitate both production and comprehension. In this paper, I will argue that switch-attention (a term preferred over the traditional switch-reference systems in temporal clauses fulfill these requirements of cohesion and complexity reduction, making them particularly apt for orally transmitting texts. Moreover, switch-reference systems seem to diffuse relatively easily. These features taken together are suggested to be (partly responsible for the widely attested phenomenon in areas without a lengthy written tradition.

  8. Modeling and analysis of the Rimfire gas switch

    International Nuclear Information System (INIS)

    Gahl, John M.; Kemp, Mark A.; Struve, Kenneth William; Curry, Randy D.; McDonald, Ken F.

    2005-01-01

    Many accelerators at Sandia National Laboratories utilize the Rimfire gas switch for high-voltage, high-power switching. Future accelerators will have increased performance requirements for switching elements. When designing improved versions of the Rimfire switch, there is a need for quick and accurate simulation of the electrical effects of geometry changes. This paper presents an advanced circuit model of the Rimfire switch that can be used for these simulations. The development of the model is shown along with comparisons to past models and experimental results.

  9. A CW Gunn diode bistable switching element.

    Science.gov (United States)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  10. Beginning Microsoft Visual Studio LightSwitch Development

    CERN Document Server

    Novák, István

    2011-01-01

    Learn how LightSwitch can accelerate and simplify application development As Microsoft's newest offering for simplifying application development, LightSwitch opens the development door to creating applications without writing code. This introductory, full-color book shows you how to quickly create, modify, and distribute information for your business with LightSwitch. Packed with simple example programs, this beginner-level resource guides you through a complete small business application using LightSwitch to demonstrate the capabilities of this exciting new tool. You'll explore the most commo

  11. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    International Nuclear Information System (INIS)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M.

    2016-01-01

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules

  12. How similar are recognition memory and inductive reasoning?

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan

    2013-07-01

    Conventionally, memory and reasoning are seen as different types of cognitive activities driven by different processes. In two experiments, we challenged this view by examining the relationship between recognition memory and inductive reasoning involving multiple forms of similarity. A common study set (members of a conjunctive category) was followed by a test set containing old and new category members, as well as items that matched the study set on only one dimension. The study and test sets were presented under recognition or induction instructions. In Experiments 1 and 2, the inductive property being generalized was varied in order to direct attention to different dimensions of similarity. When there was no time pressure on decisions, patterns of positive responding were strongly affected by property type, indicating that different types of similarity were driving recognition and induction. By comparison, speeded judgments showed weaker property effects and could be explained by generalization based on overall similarity. An exemplar model, GEN-EX (GENeralization from EXamples), could account for both the induction and recognition data. These findings show that induction and recognition share core component processes, even when the tasks involve flexible forms of similarity.

  13. Average contraction and synchronization of complex switched networks

    International Nuclear Information System (INIS)

    Wang Lei; Wang Qingguo

    2012-01-01

    This paper introduces an average contraction analysis for nonlinear switched systems and applies it to investigating the synchronization of complex networks of coupled systems with switching topology. For a general nonlinear system with a time-dependent switching law, a basic convergence result is presented according to average contraction analysis, and a special case where trajectories of a distributed switched system converge to a linear subspace is then investigated. Synchronization is viewed as the special case with all trajectories approaching the synchronization manifold, and is thus studied for complex networks of coupled oscillators with switching topology. It is shown that the synchronization of a complex switched network can be evaluated by the dynamics of an isolated node, the coupling strength and the time average of the smallest eigenvalue associated with the Laplacians of switching topology and the coupling fashion. Finally, numerical simulations illustrate the effectiveness of the proposed methods. (paper)

  14. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    Science.gov (United States)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  15. Manufacturing fuel-switching capability, 1988

    International Nuclear Information System (INIS)

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs

  16. Manufacturing fuel-switching capability, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  17. Submicrosecond Q-Switching Er-Doped All-Fiber Ring Laser Based on Black Phosphorus

    Directory of Open Access Journals (Sweden)

    Yao Cai

    2017-01-01

    Full Text Available Black phosphorus (BP, a new two-dimensional (2D material, has been deeply developed for extensive applications in electronics and optoelectronics due to its similar physical structure to graphene and thickness dependent direct band gap. Here, we demonstrated a submicrosecond passive Q-switching Er-doped fiber laser with BP as saturable absorber (SA. The BP saturable absorber was fabricated by mechanical exfoliation method. By taking full advantage of the ultrafast relaxation time of BP-SA and careful design of compact ring cavity, we obtained stable Q-switching pulses output with a shortest duration as narrow as 742 ns. With increasing the pump power, the pulse repetition rate accreted gradually almost linearly from 9.78 to 61.25 kHz, and the pulse duration declined rapidly at lower pump power regime and retained approximate stationary at higher pump power regime from 3.05 to 0.742 μs. The experimental results indicate that BP-SA can be an effective SA for nanosecond Q-switching pulse generation.

  18. Numerical approach to optimal portfolio in a power utility regime-switching model

    Science.gov (United States)

    Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G.

    2017-12-01

    We consider a system of weakly coupled degenerate semi-linear parabolic equations of optimal portfolio in a regime-switching with power utility function, derived by A.R. Valdez and T. Vargiolu [14]. First, we discuss some basic properties of the solution of this system. Then, we develop and analyze implicit-explicit, flux limited finite difference schemes for the differential problem. Numerical experiments are discussed.

  19. Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure

    International Nuclear Information System (INIS)

    Kurnia, F.; Hadiyawarman, H.; Jung, C. U.; Liu, C. L.; Lee, S. B.; Yang, S. M.; Park, H. W.; Song, S. J.; Hwang, C. S.

    2010-01-01

    We deposited NiO thin films with SrRuO 3 bottom electrodes on SrTiO 3 (001) substrates by using pulsed laser deposition. The growth temperature and the oxygen pressure were varied in order to obtain NiO films with different structural and electrical properties. We investigated the I-V characteristics of the Pt/NiO/SRO structures and observed a strong dependence of bipolar resistance switching on the growth conditions of the NiO thin films. Stable bipolar memory resistance switching was observed only in the devices with NiO films deposited at 400 .deg. C and 10 mTorr of O 2 . The off-state I-V curve of bipolar switching showed a linear fitting to the Schottky effect, indicating its origin in the NiO/SRO interface. Our results suggest that the growth conditions of NiO may affect the bipolar switching behavior through the film's resistance, the film's crystallinity, or the status of the grain boundaries.

  20. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.