WorldWideScience

Sample records for silver nanoparticle-modified titanium

  1. Deposition of silver nanoparticles on titanium surface for antibacterial effect

    Directory of Open Access Journals (Sweden)

    Liao Juan

    2010-04-01

    Full Text Available Liao Juan1, Zhu Zhimin3, Mo Anchun1,2, Li Lei1, Zhang Jingchao11State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; 2Department of Dental Implant, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR China; 3Department of Prosthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR ChinaAbstract: Microbial colonization on implanted devices and biofilm formation is a recurrent complication in implant surgery and may result in loss of implants. The aim of this study was to deposit silver nanoparticles on a titanium surface to obtain antibacterial properties. In the present study, we prepared a silver nanoparticle-modified titanium (Ti-nAg surface using silanization method. The morphology and chemical components of the Ti-nAg surface were characterized by scanning electron microscopy (SEM equipped with energy-dispersive spectroscopy (EDS. Two species of bacteria, Staphylococcus aureus and Escherichia coli, were utilized to test the antibacterial effect of the Ti-nAg treated surface. The SEM examination revealed that a small quantity of silver nanoparticles was sparsely deposited on the titanium surface. The diameter of these nanoparticles ranged from ten to several hundred nm. EDS analyses revealed that there was 4.26% of Ag present on the surface. After a 24-hour incubation, 94% of Staphylococcus aureus and over 95% of Escherichia coli had been killed on the Ti-nAg surface, and the SEM examination of anti-adhesive efficacy test showed that there were less bacteria attached to Ti-nAg surface than to a control surface of untreated Titanium. These data suggest that silver nanoparticle-modified titanium is a promising material with an antibacterial property that may be used as an implantable biomaterial.Keywords: nano-silver, titanium, antibacterial activity, silanization method

  2. The immunomodulatory effects of titanium dioxide and silver nanoparticles.

    Science.gov (United States)

    Lappas, Courtney M

    2015-11-01

    Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Turkevich method for silver/titanium dioxide nanoparticles with antimicrobial application in polymers systems

    International Nuclear Information System (INIS)

    Olyveira, Gabriel Molina de; Pessan, Luiz Antonio

    2009-01-01

    Titanium dioxide nanoparticles were covered with silver nanoparticles using Turkevich Method or citrate reduction method. Silver and titanium dioxide has proved antimicrobial properties then the nanocomposite can be successful incorporated in polymer systems. Silver nitrate was reduced by sodium citrate in the presence of poly(vinyl pyrrolidone)(PVP) resulting in nano-Ag/TiO 2 stabilized suspension. It was tested ammonia hydroxide in the synthesis to avoid the nanoparticles growth. The Ag/TiO 2 nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). The best system of coloidal nanoparticles was that one with Poly(vinyl pyrrolidone) and ammonia in the synthesis. (author)

  4. PVDF nanofibers with silver nanoparticles and silver/titanium dioxide for antimicrobial applications;Eletrofiacao de nanofibras de PVDF com nanoparticulas de prata e de prata/dioxido de titanio para aplicacoes antimicrobiais

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ligia M.M.; Olyveira, Gabriel M. de, E-mail: gmolyveira@yahoo.com.b, E-mail: ligialmmc@hotmail.co [Universidade Federal de Sao Carlos (PPGCEM/UFScar), SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais; Gregorio Filho, Rinaldo; Pessan, Luiz A., E-mail: pessan@ufscar.b, E-mail: gregorio@ufscar.b [Universidade Federal de Sao Carlos (UFScar), SP (Brazil)

    2009-07-01

    PVDF nanofibers with and without nanoparticles were produced by the method of electro spinning using dimethylformamide (DMF). Silver nitrate nanoparticles (0,5 and 2 wt %) and silver/titanium dioxide nanoparticles obtained by the reduction method (2 wt %) were synthesized and added to the PVDF solution to prepared nanofibers. The processes of electrospinning and film preparation using PVDF with the nanoparticles were compared. Silver/titanium dioxide nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDX and x-ray photoelectron spectroscopy (XPS) to show silver/titanium dioxide nanoparticles. Nanofibers mats were characterized with SEM to study the effects of the addition of the nanoparticles on the morphology behavior and spectroscopy by Fourier transform infrared (FTIR) to analyze the crystalline phase of PVDF films. (author)

  5. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    International Nuclear Information System (INIS)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes

    2016-01-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  6. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes, E-mail: rayssasouza.net@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  7. Amperometric Sensor Used for Determination of Thiocyanate with a Silver Nanoparticles Modified Electrode

    OpenAIRE

    Wang, Guang-Feng; Li, Mao-Guo; Gao, Ying-Chun; Fang, Bin

    2004-01-01

    Abstract: A novel electrode modified with silver nanoparticles was fabricated. It is found that the reducibility of silver nanoparticles is higher than for bulk silver by comparing a silver nanoparticles modified electrode with a silver micro-disk electrode. When SCN- was added, a new oxidation peak occurred and the anodic peak current of silver nanoparticles decreased. The new anodic peak current is proportional to the thiocyanate concentration in the range of 5.0×10-7~4.0×10-4 mol/L i...

  8. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  9. Silver impregnated nanoparticles of titanium dioxide as carriers for {sup 211}At

    Energy Technology Data Exchange (ETDEWEB)

    Cedrowska, Edyta; Lyczko, Monika; Piotrowska, Agata; Bilewicz, Aleksander [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Stolarz, Anna; Trcinska, Agnieszka [Warsaw Univ. (Poland). Heavy Ion Lab.; Szkliniarz, Katarzyna [Silesia Univ. Katowice (Poland). Inst. of Physics; Was, Bogdan [Polish Academy of Science, Cracow (Poland). Inst. of Nuclear Physics

    2016-08-01

    The {sup 211}At radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately use of {sup 211}At is limited, because astatine as the heaviest halogen forms weak bond with carbon atoms in the biomolecules which makes {sup 211}At bioconjugates unstable in physiological conditions. In our work we propose a new solution for binding of {sup 211}At which consists of using nanoparticles of titanium dioxide modified with silver atoms as carriers for {sup 211}At. Ag{sup +} cations have been absorbed on the nanometer-sized TiO{sub 2} particles (15 and 32 nm) through ion exchange process and were reduced in Tollens' reaction. The obtained TiO{sub 2}-Ag nanoparticles were labeled with {sup 211}At. It was found that labeling yields were almost quantitative under reducing conditions, while under oxidizing conditions they dropped to about 80%. The labeled nanoparticles exhibited very high stability in physiological salt, PBS buffer, solutions of peptides (0.001 M cysteine, 0.001 M glutathione) and in human blood serum. To make TiO{sub 2}/Ag nanoparticles well dispersed in water and biocompatible their surface was modified with a silane coupling agent containing poly(ethyleneglycol) molecules. The developed functionalization approach will allow us to attach biomolecules to the TiO{sub 2}/Ag surface.

  10. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    Directory of Open Access Journals (Sweden)

    Piotr Orlowski

    Full Text Available The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.

  11. Experimental study of mutagenous and mitosis modifying activity of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    B. S. Kirbik

    2015-01-01

    Full Text Available Mutagenous and mitosis modifying impact of silver nanoparticles has been studied on outbred mice. Nanoparticles were of round shape with dimensions of 5-50 nm, size of generated organic shell of 2-5 nm, the quantity in 1 mcm3 makes 120-270. Metaphasic analysis of mice bone marrow cells was used as a testing technique. The frequency of chromosome aberrations and mitotic index of preparations were accounted. During single intraperitoneal administration of the agent in the dose of 250 mcg/kg the silver nanoparticles demonstrated mitosis stimulating activity. No mutagenous effect of silver nanoparticles by daily administration for 4 days of 25 mcg/kg and single administration in the dose of 250 mcg/kg has been registered, but there is statistically insignificant tendency of aberrant metaphases increase. Consequently silver nanoparticles in the investigated doses demonstrated no mutagenous activity and can be considered safe for mammalian cells.

  12. Potential for photocatalytic degradation of the potassic diclofenac using scandium and silver modified titanium dioxide thin films

    International Nuclear Information System (INIS)

    Ciola, R.A.; Oliveira, C.T.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The potential for photocatalytic degradation of the potassic diclofenac drug was investigated using titanium dioxide thin films modified with two modifier types, scandium and silver, both prepared by Sol-Gel method. It was demonstrated by UVVis spectroscopy analysis of the solutions containing the drug, under UV-A light irradiation that the degradation efficiency of the titanium dioxide photocatalyst is dependent of the semiconductor nature and that the scandium accelerates the first step of the degradation when compared to the silver. This result seems to be related to the redox potential of the electron-hole pair, once the scandium modifying sample generates a p type semiconductor that reduces the band gap. The extra holes attract more strongly the chorine ion present in diclofenac and leading to the releasing more easily. However, after the first byproducts degradation the following steps are not facilitated, making the silver modifying more advantageous. (author)

  13. Ionizing radiation effect on central venous catheters (CVC) of polyurethane coatings with silver nanoparticles

    International Nuclear Information System (INIS)

    Heilman, Sonia; Silva, Leonardo G.A.; Hewer, Thiago L.R.; Souza, Michele L.

    2015-01-01

    The present work aimed to study the use of ionizing radiation for coating of silver nanoparticles on central polyurethane catheters, providing reduction of infections associated with contamination of catheters introduced into the bloodstream. Silver nanoparticles have physical, chemical and biological properties only when compared to metal on a macroscopic scale, and have been used in the medical field because of its remarkable antimicrobial activity. Titanium dioxide nanoparticles obtained by the sol gel method were used as the coating catheters for subsequent impregnation of silver nanoparticles with ionizing radiation at doses of 25 and 50 kGy. A Raman spectrometry was used to identify the polymorph of titanium oxide, rutile. In trials with (ICP OES) were evaluated amounts of titanium and silver coated catheters in titanium oxide and silver.(author)

  14. Turkevich method for silver/titanium dioxide nanoparticles with antimicrobial application in polymers systems;Obtencao de nanoparticulas de prata/dioxido de titanio pelo metodo Turkevich para aplicacoes antimicrobiais em matrizes polimericas

    Energy Technology Data Exchange (ETDEWEB)

    Olyveira, Gabriel Molina de; Pessan, Luiz Antonio, E-mail: gmolyveira@yahoo.com.b, E-mail: acarvalho@ufscar.b [Universidade Federal de Sao Carlos (PPG-CEM/UFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Carvalho, Antonio Jose Felix de [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil)

    2009-07-01

    Titanium dioxide nanoparticles were covered with silver nanoparticles using Turkevich Method or citrate reduction method. Silver and titanium dioxide has proved antimicrobial properties then the nanocomposite can be successful incorporated in polymer systems. Silver nitrate was reduced by sodium citrate in the presence of poly(vinyl pyrrolidone)(PVP) resulting in nano-Ag/TiO{sub 2} stabilized suspension. It was tested ammonia hydroxide in the synthesis to avoid the nanoparticles growth. The Ag/TiO{sub 2} nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). The best system of coloidal nanoparticles was that one with Poly(vinyl pyrrolidone) and ammonia in the synthesis. (author)

  15. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linghui [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Guo, Ronghui, E-mail: ronghuiguo214@126.com [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Lan, Jianwu [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Jiang, Shouxiang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Lin, Shaojian [Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg (Germany)

    2016-11-15

    Highlights: • Silver nanoparticles were synthesized on bamboo pulp fabric using dopamine as an adhesive and reducing agent under microwave radiation. • Silver coated bamboo pulp fabric modified with dopamine has good UV protection and hydrophobic property. • Silver nanoparticles can be strongly fixed on dopamine modified bamboo pulp fabric. - Abstract: Silver nanoparticles were synthesized on bamboo pulp fabric with dopamine as the adhesive and reducing agent under microwave radiation. The silver nanoparticle coated bamboo pulp fabrics were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and X-ray diffraction. Ultraviolet (UV) protection, color and water contact angles of the silver nanoparticle coated bamboo pulp fabrics were evaluated. In addition, the influences of concentrations of dopamine and treatment time on color strength (K/S values) of the silver nanoparticle coated fabric were investigated. Fastness to washing was employed to evaluate the adhesive strength between the silver coating and the bamboo pulp fabric modified with dopamine. The results show that the dopamine modified bamboo pulp fabric is evenly covered with silver nanoparticles. The silver nanoparticle coated bamboo pulp fabric modified with dopamine shows the excellent UV protection with an ultraviolet protection factor of 157.75 and the hydrophobicity with a water contact angle of 132.4°. In addition, the adhesive strength between the silver nanoparticles and bamboo pulp fabric is significantly improved. Silver nanoparticles coating on bamboo pulp fabric modified with dopamine is environmentally friendly, easy to carry out and highly efficient.

  16. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research.

    Science.gov (United States)

    Cox, Ashley; Venkatachalam, P; Sahi, Shivendra; Sharma, Nilesh

    2016-10-01

    Nanoparticles (NPs) have become widely used in recent years for many manufacturing and medical processes. Recent literature suggests that many metallic nanomaterials including those of silver (Ag) and titanium dioxide (TiO2) cause significant toxic effects in animal cell culture and animal models, however, toxicity studies using plant species are limited. This review examines current progress in the understanding of the effect of silver and titanium dioxide nanoparticles on plant species. There are many facets to this ongoing environmental problem. This review addresses the effects of NPs on oxidative stress-related gene expression, genotoxicity, seed germination, and root elongation. It is largely accepted that NP exposure results in the cellular generation of reactive oxygen species (ROS), leading to both positive and negative effects on plant growth. However, factors such as NP size, shape, surface coating and concentration vary greatly among studies resulting in conflicting reports of the effect at times. In addition, plant species tend to differ in their reaction to NP exposure, with some showing positive effects of NP augmentation while many others showing detrimental effects. Seed germination studies have shown to be less effective in gauging phytotoxicity, while root elongation studies have shown more promise. Given the large increase in nanomaterial applications in consumer products, agriculture and energy sectors, it is critical to understand their role in the environment and their effects on plant life. A closer look at nanomaterial-driven ecotoxicity is needed. Ecosystem-level studies are required to indicate how these nanomaterials transfer at the critical trophic levels affecting human health and biota. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Organic-Modified Silver Nanoparticles as Lubricant Additives.

    Science.gov (United States)

    Kumara, Chanaka; Luo, Huimin; Leonard, Donovan N; Meyer, Harry M; Qu, Jun

    2017-10-25

    Advanced lubrication is essential in human life for improving mobility, durability, and efficiency. Here we report the synthesis, characterization, and evaluation of two groups of oil-suspendable silver nanoparticles (NPs) as candidate lubricant additives. Two types of thiolated ligands, 4-(tert-butyl)benzylthiol (TBBT) and dodecanethiol (C12), were used to modify Ag NPs in two size ranges, 1-3 and 3-6 nm. The organic surface layer successfully suspended the Ag NPs in a poly-alpha-olefin (PAO) base oil with concentrations up to 0.19-0.50 wt %, depending on the particle type. Use of the Ag NPs in the base oil reduced friction by up to 35% and wear by up to 85% in boundary lubrication. The two TBBT-modified NPs produced a lower friction coefficient than the C12-modified one, while the two larger NPs (3-6 nm) had better wear protection than the smaller one (1-3 nm). Results suggested that the molecular structure of the organic ligand might have a dominant effect on the friction behavior, while the NP size could be more influential in the wear protection. No mini-ball-bearing or surface smoothening effects were observed in the Stribeck scans. Instead, the wear protection in boundary lubrication was attributed to the formation of a silver-rich 50-100 nm thick tribofilm on the worn surface, as revealed by morphology examination and composition analysis from both the top surface and cross section.

  18. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    International Nuclear Information System (INIS)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-01-01

    The influence of arbuscular mycorrhizal fungus on 1 34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more 1 34Cs (up to 250,000 Bq kg - 1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased 1 34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg - 1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  19. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  20. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    International Nuclear Information System (INIS)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-01-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO 3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi

  1. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    Science.gov (United States)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  2. Release of silver nanoparticles from outdoor facades

    International Nuclear Information System (INIS)

    Kaegi, Ralf; Sinnet, Brian; Zuleeg, Steffen; Hagendorfer, Harald; Mueller, Elisabeth; Vonbank, Roger; Boller, Markus; Burkhardt, Michael

    2010-01-01

    In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 μ Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly 2 S. - We provide direct evidence for the release of silver nanoparticles from exterior paints to the aquatic environment.

  3. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    Science.gov (United States)

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  4. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-07-01

    The influence of albacore's mycorrhizal fungus on {sup 1}34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more {sup 1}34Cs (up to 250,000 Bq kg{sup -}1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased {sup 1}34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg{sup -}1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  5. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  6. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  7. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  8. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    Science.gov (United States)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  9. Microstructural and Z-scan measurement of silver nanoparticles

    International Nuclear Information System (INIS)

    Sivakami, R.; Dhanuskodi, S.

    2015-01-01

    Graphical abstract: - Highlights: • Novel Ag nanoparticles were prepared by hydrothermal method. • The modified forms of W-H analysis of Ag nanoparticles are reported first time. • Nonlinear optical (NLO) properties of Ag nanoflowers are reported and high nonlinearity was obtained. - Abstract: Silver nanoflowers were synthesized by the hydrothermal route. Formation of Ag nanoparticles is confirmed from the UV–vis spectrum where the surface plasmon absorption maxima are observed at 415–454 nm. FE-SEM and TEM images revealed the formation of silver nanoflowers and the flower-like silver nanostructures are estimated using transmission electron microscopy. XRD confirms that the synthesized silver is highly crystalline with face centered cubic structure. The X-ray line broadening is studied by the modified forms of Williamson–Hall analysis. The Z-scan results reveal that the flower-like silver nanostructures exhibit the nonlinear susceptilibility as 1.14 × 10 −5 esu

  10. Developing the procedure of modifying the denture soft liner by silver nanoparticles.

    Science.gov (United States)

    Chladek, Grzegorz; Barszczewska-Rybarek, Izabela; Lukaszczyk, Jan

    2012-01-01

    Colonization of denture soft lining materials by fungi and denture plaque leads to infections of mucosa. Microorganisms such as Candida albicans colonize not only the surface of the soft liners, but they also penetrate inside those materials. Therefore the use of common disinfectants, e.g., surface active cleaners, is not a perfect solution for keeping a proper hygiene of soft linings. Modifying soft lining by silver nanoparticles (AgNP) seems to be a right way to overcome those problems. The procedure of modifying two-component silicone material by silver nanoparticles (AgNP) is presented in the article. The solubility tests for both material components have been carried out in the first stage of examinations. On the basis of test results, a solvent has been selected, being a dispersion medium for AgNPs and both soft liner components. The effective method for evaporating a solvent from the composition has been developed. Material components with various AgNP concentrations (10, 20, 40, 80, 120 and 200 ppm) have been obtained. Cured samples of the composites have been examined by SEM to confirm the effectiveness of the procedure.

  11. Nonactivated titanium-dioxide nanoparticles promote the growth of Chlamydia trachomatis and decrease the antimicrobial activity of silver nanoparticles.

    Science.gov (United States)

    Bogdanov, A; Janovák, L; Lantos, I; Endrész, V; Sebők, D; Szabó, T; Dékány, I; Deák, J; Rázga, Z; Burián, K; Virok, D P

    2017-11-01

    Chlamydia trachomatis and herpes simplex virus (HSV) are the most prevalent bacterial and viral sexually transmitted infections. Due to the chronic nature of their infections, they are able to interact with titanium-dioxide (TiO 2 ) nanoparticles (NPs) applied as food additives or drug delivery vehicles. The aim of this study was to describe the interactions of these two prevalent pathogens with the TiO 2 NPs. Chlamydia trachomatis and HSV-2 were treated with nonactivated TiO 2 NPs, silver NPs and silver decorated TiO 2 NPs before infection of HeLa and Vero cells. Their intracellular growth was monitored by quantitative PCR. Unexpectedly, the TiO 2 NPs (100 μg ml -1 ) increased the growth of C. trachomatis by approximately fourfold, while the HSV-2 replication was not affected. Addition of TiO 2 to silver NPs decreased their antimicrobial activity against C. trachomatis up to 27·92-fold. In summary, nonactivated TiO 2 NPs could increase the replication of C. trachomatis and decrease the antimicrobial activity of silver NPs. The food industry or drug delivery use of TiO 2 NPs could enhance the growth of certain intracellular pathogens and potentially worsen disease symptoms, a feature that should be further investigated. © 2017 The Society for Applied Microbiology.

  12. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    Science.gov (United States)

    Buzby, Scott Edward

    . Dopant ions with larger radii than titanium stress the crystal lattice promoting anatase formation, since it has a larger c/a ratio than rutile does. The cation dopants were also found to decrease the average particle size of the titanium dioxide nanoparticles. The defect sites caused by the doping prevent the nucleation and retard particle growth of titanium dioxide particles. Cation doping of titanium dioxide nanoparticles affect other properties of the nanoparticles besides the phase transitions. For example titanium dioxide doped with magnetic materials such as Fe, Ni, Co or Cr has been shown to display room temperature ferromagnetism which are currently being studied for use in spintronic devices. The antibacterial studies of silver doped titanium dioxide nanoparticles were carried out against Escherichia coli, both in nutrient solution and on agar-plates. Both studies show that while pure titanium dioxide has no antibacterial effect, when doped with as little as 0.72 atomic % silver becomes more effective than pure silver nanoparticles of similar size. It has been observed that with concentrations as low as 25mug/cm 2 of silver doped titanium dioxide, completely antibacterial surfaces may be synthesized.

  13. Synthesis and optical properties of polyurethane foam modified with silver nanoparticles

    International Nuclear Information System (INIS)

    Apyari, V V; Volkov, P A; Dmitrienko, S G

    2012-01-01

    This paper for the first time describes peculiarities of synthesis of polyurethane foam modified with silver nanoparticles as a potential material for optical sensors in analytical chemistry. We found that the unique sorptional properties of polyurethane foam gave an opportunity to perform such a synthesis by two different approaches. The first one was based on sorption of previously synthesized in-solution nanoparticles by polyurethane foam, the second one consisted in preparation of nanoparticles directly in polyurethane foam matrix. This possibility is novel and interesting for practical use because the nanoparticles in polyurethane foam are capable of surface plasmon resonance. The influence of different factors during the synthesis was investigated and the optimal conditions were found. The samples prepared were characterized by diffuse reflectance spectroscopy and scanning electron microscopy. On the basis of the results obtained we first suggested that this material is attractive from the viewpoint of analytical chemistry as a convenient analytical form for determination of oxidants and reductants

  14. Ionizing radiation effect on central venous catheters (CVC) of polyurethane coatings with silver nanoparticles; Efeito da radiacao ionizante nos revestimentos de cateteres venosos centrais (CVC) de poliuretano com nanoparticulas de prata

    Energy Technology Data Exchange (ETDEWEB)

    Heilman, Sonia; Silva, Leonardo G.A., E-mail: sheilman@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Hewer, Thiago L.R.; Souza, Michele L. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Quimica

    2015-07-01

    The present work aimed to study the use of ionizing radiation for coating of silver nanoparticles on central polyurethane catheters, providing reduction of infections associated with contamination of catheters introduced into the bloodstream. Silver nanoparticles have physical, chemical and biological properties only when compared to metal on a macroscopic scale, and have been used in the medical field because of its remarkable antimicrobial activity. Titanium dioxide nanoparticles obtained by the sol gel method were used as the coating catheters for subsequent impregnation of silver nanoparticles with ionizing radiation at doses of 25 and 50 kGy. A Raman spectrometry was used to identify the polymorph of titanium oxide, rutile. In trials with (ICP OES) were evaluated amounts of titanium and silver coated catheters in titanium oxide and silver.(author)

  15. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2016-03-01

    Full Text Available Titanium dioxide (TiO2 has gained much attentions for the last few decades due to its remarkable performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via aluminium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up to 50% of visible light (400-700 nm and shows a relatively good photocatalytic activity in organic dye (Rhodamine B degradation under visible light irradiation compared with the commercial TiO2. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 7th January 2016; Accepted: 7th January 20 How to Cite: Ariyanti, D., Dong, J.Z., Dong, J.Y., Gao, W. (2016. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 40-47. (doi:10.9767/bcrec.11.1.414.40-47 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.414.40-47

  16. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    Science.gov (United States)

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  17. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  18. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  19. Cathodic stripping voltammetric determination of chromium in coastal waters on cubic Nano-titanium carbide loaded gold nanoparticles modified electrode

    Directory of Open Access Journals (Sweden)

    Haitao eHan

    2015-09-01

    Full Text Available The novel cubical nano-titanium carbide loaded gold nanoparticles modified electrode for selective and sensitive detection of trace chromium (Cr in coastal water was established based on a simple approach. Nano-titanium carbide is used as the typical cubical nanomaterial with wonderful catalytic activity towards the reduction of Cr(VI. Gold nanoparticles with excellent physical and chemical properties can facilitate electron transfer and enhance the catalytic activity of the modified electrode. Taking advantage of the synergistic effects of nano-titanium carbide and gold nanoparticles, the excellent cathodic signal responses for the stripping determination of Cr(VI can be obtained. The detection limit of this method is calculated as 2.08 μg L-1 with the linear calibration curve ranged from 5.2 to 1040 μg L-1. This analytical method can be used to detect Cr(VI effectively without using any complexing agent. The fabricated electrode was successfully applied for the detection of chromium in coastal waters collected from the estuary giving Cr concentrations between 12.48 and 22.88 μg L-1 with the recovery between 96% and 105%.

  20. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  1. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    International Nuclear Information System (INIS)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-01-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag + ) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg −1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm

  2. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A., E-mail: joseph.caruso@uc.edu; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag{sup +}) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg{sup −1} detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  3. Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

    Science.gov (United States)

    Venugopal, Adith; Muthuchamy, Nallal; Tejani, Harsh; Gopalan, Anantha-Iyengar; Lee, Kwang-Pill; Lee, Heon-Jin

    2017-01-01

    Objective Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial. PMID:28127534

  4. The preparation of nanometer silver antibacterial titanium plate and the test research of the physical and ;chemical properties%纳米银抗菌钛片的制备及其理化性能检测的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘泉; 黄文; 熊颖铭; 秦晓丹

    2014-01-01

    目的:用硅烷偶联的方法将纳米银颗粒被覆在钛片上,使光滑钛表面具有抗菌性能。方法:扫描电镜观察硅烷偶联改性钛板表面形貌,纳米银颗粒的形态、大小以及在钛片上的附着情况;X射线能谱及线扫描分析钛片上各元素成分;X射线光电子能谱定量分析钛片表面元素。实验组为纳米银改性钛片,对照组为光滑钛片。结果:肉眼观察纳米龈改性后的钛片表面光滑,扫描电镜下可见实验组基底面有纳米银颗粒附着,直径约几十个纳米,形态成圆形或柱形,部分纳米颗粒团聚在一起;X射线光电子能谱分析结果显示实验组钛表面含Ti,Ag,C,O四种元素,其中Ag的原子百分比为5.3%,银元素结合能为367.9 ev。结论:通过硅烷化的方法将纳米银沉积在钛表面,该方法简单,无需特殊设备,可操控性强。%Objective:in order to smooth the titanium surface with antimicrobial properties,use the method of silane coupling the nanosize silver particles coating on the titanium plate, and its physical and chemical properties were analyzed. Method:the experimental group for modified titanium silver nanoparticles,the control for smooth titanium plate,each 10 pieces. Scanning electron microscope observation of titanium plate surface morphology,the nano silver particle morphology, size and adhesion on titanium plate;X-ray energy spectrum and titanium plate line scanning analysis on composition of each element;X-ray photoelectron spectroscopy quantitative analysis of the modified titanium surface elements. Result:macro-scopic observation of the modified nanometer gum titanium surface is smooth,basal surface by scanning electron microscopy (sem) with silver nanoparticles,diameter of dozens of nanometers,form into a circular or cylindrical,part of the nanoparticles reunion together;Titanium surface X-ray photoelectron spectroscopy analysis results show that the

  5. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction.

    Science.gov (United States)

    Yu, Dabin; Yam, Vivian Wing-Wah

    2005-03-31

    Small colloidal silver spheres (diameter synthesis process. Adjustment of the synthesis parameters, in particular the concentrations of HTAB and [Ag(NH3)2]+, led to an obvious shape evolution of silver nanoparticles, thus resulting in the shape-selective formation of the silver nanoparticles. The monodisperse nanocubes with a well-defined crystallographical structure (a single crystal bounded by six {200} facets) have a strong tendency to assemble into two-dimensional arrays on substrates. The nanowires with uniform diameter usually existed in the form of two-dimensional alignments. The findings suggested that hydrothermal-induced assembly of small silver colloidal particles should be a convenient and effective approach to the preparation of various silver nanoparticles.

  6. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles.

    Science.gov (United States)

    Mercier-Bonin, Muriel; Despax, Bernard; Raynaud, Patrice; Houdeau, Eric; Thomas, Muriel

    2018-04-13

    Given the growing use of nanotechnology in many common consumer products, including foods, evaluation of the consequences of chronic exposure to nanoparticles in humans has become a major public health issue. The oral route of exposure has been poorly explored, despite the presence of a fraction of nanosized particles in certain food additives/supplements and the incorporation of such particles into packaging in contact with foods. After their ingestion, these nanoparticles pass through the digestive tract, where they may undergo physicochemical transformations, with consequences for the luminal environment, before crossing the epithelial barrier to reach the systemic compartment. In this review, we consider two examples, nanosilver and nanotitanium dioxide. Despite the specific features of these particles and the differences between them, both display a close relationship between physicochemical reactivity and bioavailability/biopersistence in the gastrointestinal tract. Few studies have focused on the interactions of nanoparticles of silver or titanium dioxide with the microbiota and mucus. However, the microbiota and mucus play key roles in intestinal homeostasis and host health and are undoubtedly involved in controlling the distribution of nanoparticles in the systemic compartment.

  7. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Science.gov (United States)

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Silver Nanoparticles Modification of Ultra High Molecular Weight Polyethylene in Non-Aqueous Medium

    OpenAIRE

    V. N. Glushko; L. I. Blokhina; E. E. Anisimova; M. V. Bogdanovskaya; V. I. Kozhukhov; T. A. Cherdyntseva

    2016-01-01

    A series of experiments for obtaining modified with silver nanoparticles ultra-high molecular weight polyethylene (UHMWPE) is done. Optimal precursors are silver trifluoroacetate, silver nitrate and silver methanesulfonate. Three variants of UHMWPE modification is studied: 1) the polyol synthesis, 2) polymer processing silver nanoparticle colloid and 3) reduction of silver salt solution in the UHMWPE polymer matrix. It is found that the last method is optimal. The specific surface of obtained...

  9. Studying the morphological features of plasma treated silver and PEGylated silver nanoparticles: antibacterial activity

    Science.gov (United States)

    Waseem, M.; Awan, T.; Yasin, H. M.; Rehman, N. U.

    2018-03-01

    A strategy to treat the silver and PEGylated silver nanoparticles with plasma was being purposed. Oil in water (o/w) microemulsion method was used for the synthesis of Ag nanoparticles (AgNPs). Polyethylene glycol (PEG) having molecular weight 600 was used to coat the surface of AgNPs. Optical emission spectroscopy (OES) was used to characterize the plasma and it is noted that plasma treatment is useful to modify the structural characteristic of silver nanoparticles. The nanoparticles were treated with helium-oxygen mixture plasma, generated in plasma needle at atmospheric pressure. Both AgNPs and PEGylated AgNPs before and after plasma treatment were characterized by x-rays diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The crystallite size of silver nanoparticles after the treatment of plasma decreases from 71 nm to 27 nm. The SEM micrographs show that the size of Ag nanoparticles was nearly 118 nm whereas the thickness of the silver needle was around 135 nm. All the characteristics IR bands associated to the silver nanoparticles were detected. The FTIR spectrum also support the accumulation of OH radicals in the plasma treated samples. The samples before and after plasma treatment were screened against Gram positive (Bacillus Subtilis and Staphylococcus Aureus) and Gram negative (Escherichia Coli and Pseudomonas Aeruginosa) bacteria. The promising response was detected when plasma treated PEGylated AgNPs was tested against bacterial strains.

  10. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Detection of Silver and TiO2 Nanoparticles using Light Scatter by Flow Cytometry and Darkfield Microscopy

    Science.gov (United States)

    Titanium Dioxide (Ti02) and Silver (Ag) nanoparticles are used in many domestic applications, including sunscreens and paints. Evaluation of the potential hazard of manmade nanomaterials has been hampered by a limited ability to detect and measure nanoparticles in cells. In the p...

  12. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wani, Irshad A.; Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmed, Jahangeer; Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmad, Tokeer, E-mail: tokeer.ch@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  13. Potential for photocatalytic degradation of the potassic diclofenac using scandium and silver modified titanium dioxide thin films; Potencial de degradacao fotocatalitica do diclofenaco potassico utilizando filmes finos de dioxido de titanio modificado com escandio e prata

    Energy Technology Data Exchange (ETDEWEB)

    Ciola, R.A.; Oliveira, C.T.; Lopes, S.A.; Cavalheiro, A.A., E-mail: rafaelciola@hotmail.com [Universidade Estadual de Mato Grosso do Sul (UFMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The potential for photocatalytic degradation of the potassic diclofenac drug was investigated using titanium dioxide thin films modified with two modifier types, scandium and silver, both prepared by Sol-Gel method. It was demonstrated by UVVis spectroscopy analysis of the solutions containing the drug, under UV-A light irradiation that the degradation efficiency of the titanium dioxide photocatalyst is dependent of the semiconductor nature and that the scandium accelerates the first step of the degradation when compared to the silver. This result seems to be related to the redox potential of the electron-hole pair, once the scandium modifying sample generates a p type semiconductor that reduces the band gap. The extra holes attract more strongly the chorine ion present in diclofenac and leading to the releasing more easily. However, after the first byproducts degradation the following steps are not facilitated, making the silver modifying more advantageous. (author)

  14. Non-monotonic wetting behavior of chitosan films induced by silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Praxedes, A.P.P.; Webler, G.D.; Souza, S.T. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Ribeiro, A.S. [Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Fonseca, E.J.S. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Oliveira, I.N. de, E-mail: italo@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil)

    2016-05-01

    Highlights: • The addition of silver nanoparticles modifies the morphology of chitosan films. • Metallic nanoparticles can be used to control wetting properties of chitosan films. • The contact angle shows a non-monotonic dependence on the silver concentration. - Abstract: The present work is devoted to the study of structural and wetting properties of chitosan-based films containing silver nanoparticles. In particular, the effects of silver concentration on the morphology of chitosan films are characterized by different techniques, such as atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). By means of dynamic contact angle measurements, we study the modification on surface properties of chitosan-based films due to the addition of silver nanoparticles. The results are analyzed in the light of molecular-kinetic theory which describes the wetting phenomena in terms of statistical dynamics for the displacement of liquid molecules in a solid substrate. Our results show that the wetting properties of chitosan-based films are high sensitive to the fraction of silver nanoparticles, with the equilibrium contact angle exhibiting a non-monotonic behavior.

  15. Surface Modification of Silica Nanoparticles with Titanium Tetraisopropoxide and Evaluation of their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Leila Mazaheri

    2012-12-01

    Full Text Available Silica nanoparticles were modified with titanium tetraisopropoxide (TTIP via atwo-step sol-gel route. The modified silica nanoparticles were characterized using FTIR spectroscopy, thermal gravimetric analysis (TGA and EDAX elemental analysis. Photocatalytic activity of the modified nanocomposites was evaluated by photo-activated degradation of Rhodamine B (Rh.B dyestuff, as a colorant model, in distilled water. Reduction in Rh.B concentration in aqueous solution was evaluated by UV-visible spectroscopy and with the aid of visual observations. The FTIR spectroscopy results confirmed the formation of Ti-O-Si chemical bond on the surfaceof silica nanoparticles. TGA test results showed that the weight loss of the modified sample is due to deterioration of the alkoxy groups of the SiO2 surface. According to the results of EDAX elemental analysis, the presence of carbon and titanium in the structure of the modified samples and also reduction in oxygen levels are attributed to the chemical interactions due to surface chemical modification. Carbon detection in the composition can be attributed to the presence of isopropoxide in titanium tetraisopropoxide compound. The results also revealed that, with TiO2 grafting on the silica nanoparticles surface, absorption in UV region is increased and that the silica nanoparticles modified with titanate compound show photocatalytic characteristics and degradation ability of Rh.B dyestuff under UV light irradiation. It became also evident that the photocatalytic activity of the modified nanoparticles is less than TiO2 nanoparticles. However, by inclusion of modified silica nanoparticles into the polymeric coating, the photocatalytic properties of the coating can be established. Although modified silica nanoparticles have less photocatalytic activity compared to TiO2 nanoparticles, but they cause less damage to the polymer matrix.

  16. Phytotoxicity of silver nanoparticles to Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Gubbins, Eva J. [Department of Geography and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Batty, Lesley C., E-mail: l.c.batty@bham.ac.uk [Department of Geography and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Lead, Jamie R. [Department of Geography and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2011-06-15

    The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there has been some attempt to determine the toxic effects of AgNPs, there is little information on aquatic plants which have a vital role in ecosystems. This study reports the use of Lemna minor L. clone St to investigate the phytotoxicity of AgNPs under modified OECD test conditions. AgNPs were synthesised, characterised and subsequently presented to the L. minor. Results showed that inhibition of plant growth was evident after exposure to small ({approx}20 nm) and larger ({approx}100 nm) AgNPs at low concentrations (5 {mu}g L{sup -1}) and this effect became more acute with a longer exposure time. There was a linear dose-response relationship after 14 d exposure. Using predicted environmental concentrations for wastewaters it was found that AgNPs may pose a significant potential risk to the environment. - Highlights: > Silver nanoparticles are toxic to Lemna minor at concentrations of 5 {mu}g L{sup -1}. > The effect of silver nanoparticles varies with size and concentration. > Standard toxicity tests are not appropriate for application to NPs. > Silver nanoparticles pose a potential environmental risk based on modelled environmental concentrations. - Silver nanoparticles are toxic to Lemna minor at low concentrations and constitute a significant environmental risk.

  17. Phytotoxicity of silver nanoparticles to Lemna minor L

    International Nuclear Information System (INIS)

    Gubbins, Eva J.; Batty, Lesley C.; Lead, Jamie R.

    2011-01-01

    The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there has been some attempt to determine the toxic effects of AgNPs, there is little information on aquatic plants which have a vital role in ecosystems. This study reports the use of Lemna minor L. clone St to investigate the phytotoxicity of AgNPs under modified OECD test conditions. AgNPs were synthesised, characterised and subsequently presented to the L. minor. Results showed that inhibition of plant growth was evident after exposure to small (∼20 nm) and larger (∼100 nm) AgNPs at low concentrations (5 μg L -1 ) and this effect became more acute with a longer exposure time. There was a linear dose-response relationship after 14 d exposure. Using predicted environmental concentrations for wastewaters it was found that AgNPs may pose a significant potential risk to the environment. - Highlights: → Silver nanoparticles are toxic to Lemna minor at concentrations of 5 μg L -1 . → The effect of silver nanoparticles varies with size and concentration. → Standard toxicity tests are not appropriate for application to NPs. → Silver nanoparticles pose a potential environmental risk based on modelled environmental concentrations. - Silver nanoparticles are toxic to Lemna minor at low concentrations and constitute a significant environmental risk.

  18. Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment

    International Nuclear Information System (INIS)

    Gonçalves, Suely Patrícia C.; Strauss, Mathias; Delite, Fabrício S.; Clemente, Zaira; Castro, Vera L.; Martinez, Diego Stéfani T.

    2016-01-01

    Activated carbon from pyrolysed sugarcane bagasse (ACPB) presented pore size ranges from 1.0 to 3.5 nm, and surface area between 1200 and 1400 m"2 g"−"1 that is higher than commonly observed to commercial activated carbon. The ACPB material was successfully loaded with of silver nanoparticles with diameter around 35 nm (0.81 wt.%). X-ray photoelectron spectroscopy (XPS) analyses showed that the material surface contains metallic/Ag"0 (93.60 wt.%) and ionic/Ag"+ states (6.40 wt.%). The adsorption capacity of organic model molecules (i.e. methylene blue and phenol) was very efficient to ACPB and ACPB loaded with silver nanoparticles (ACPB-AgNP), indicating that the material modification with silver nanoparticles has not altered its adsorption capacity. ACPB-AgNP inhibited bacteria growth (Escherichia coli), it is a promising advantage for the use of these materials in wastewater treatment and water purification processes. However, ACPB-AgNP showed environmental risks, with toxic effect to the aquatic organism Hydra attenuata (i.e. LC50 value of 1.94 mg L"−"1), and it suppressed root development of Lycopersicum esculentum plant (tomato). Finally, this work draw attention for the environmental implications of activated carbon materials modified with silver nanoparticles. - Highlights: • Production of very efficient activated carbon by pyrolysis process of sugarcane bagasse. • Modification of activated carbon with silver nanoparticles to environmental remediation and water purification. • Activated carbon modified with silver nanoparticles showed acute ecotoxic effects.

  19. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior.

    Science.gov (United States)

    Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K

    2011-08-01

    The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.

  20. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    International Nuclear Information System (INIS)

    Trujillo, Nathan A.; Oldinski, Rachael A.; Ma, Hongyan; Bryers, James D.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at − 700 eV. For silver-doped films, two concentrations of silver (∼ 0.5 wt.% and ∼ 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with ∼ 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with ∼ 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: ► We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. ► Silver-doped hydroxyapatite thin films on titanium were developed. ► The thin films showed the ability to control the concentration of silver that is doped within the

  1. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  2. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    International Nuclear Information System (INIS)

    An Jing; Wang Desong; Luo Qingzhi; Yuan Xiaoyan

    2009-01-01

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF 4 ). [BMIM].BF 4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  3. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George, E-mail: gchumak@clemson.edu

    2015-12-01

    Graphical abstract: - Highlights: • Spin-coating of polymers onto 2D assemblies of Ag NPs was used to stabilize the assemblies against aggregation. • The polymer filled the space between the particles leaving the metal surface uncoated and accessible to various chemical reactions. • Etching nanoparticles produced crater-like structures. - Abstract: Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  4. Fluorescence enhancement of modified silver nanoparticles.

    Science.gov (United States)

    Liu, Meicen; Zhang, Zhenglong; Liu, Gaining; Dong, Jun; Sun, Yu; Zheng, Hairong; Li, Guian

    2011-11-01

    Surface enhanced fluorescence (SEF) effect of acridine orange fluorophore in the proximity of silver nanoparticles (NPs) has been investigated experimentally in the aqueous solution system. It was found that the SEF effect could be influenced by the distribution of the NPs and the separation between the fluorophore molecule and metal surface. The fluorescence enhancement was improved significantly when Ag NPs was capped with 4-Aminothiophenol (PATP) that was acted as an isolating layer between the metal surface and fluorophore molecules. The results suggest that a proper distribution of metallic NPs and proper separation between fluorophore molecule and the particle surface are important for obtaining an optimal SEF effect.

  5. Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Suely Patrícia C., E-mail: suely.goncalves@lnnano.cnpem.br [Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, SP (Brazil); Strauss, Mathias; Delite, Fabrício S. [Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, SP (Brazil); Clemente, Zaira [Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, SP (Brazil); Laboratory of Ecotoxicology and Biosafety, Embrapa, CEP 13820-000 Jaguariúna, SP (Brazil); Castro, Vera L. [Laboratory of Ecotoxicology and Biosafety, Embrapa, CEP 13820-000 Jaguariúna, SP (Brazil); Martinez, Diego Stéfani T., E-mail: diego.martinez@lnnano.cnpem.br [Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, SP (Brazil); School of Technology, University of Campinas (UNICAMP), CEP 13484-332 Limeira, SP (Brazil)

    2016-09-15

    Activated carbon from pyrolysed sugarcane bagasse (ACPB) presented pore size ranges from 1.0 to 3.5 nm, and surface area between 1200 and 1400 m{sup 2} g{sup −1} that is higher than commonly observed to commercial activated carbon. The ACPB material was successfully loaded with of silver nanoparticles with diameter around 35 nm (0.81 wt.%). X-ray photoelectron spectroscopy (XPS) analyses showed that the material surface contains metallic/Ag{sup 0} (93.60 wt.%) and ionic/Ag{sup +} states (6.40 wt.%). The adsorption capacity of organic model molecules (i.e. methylene blue and phenol) was very efficient to ACPB and ACPB loaded with silver nanoparticles (ACPB-AgNP), indicating that the material modification with silver nanoparticles has not altered its adsorption capacity. ACPB-AgNP inhibited bacteria growth (Escherichia coli), it is a promising advantage for the use of these materials in wastewater treatment and water purification processes. However, ACPB-AgNP showed environmental risks, with toxic effect to the aquatic organism Hydra attenuata (i.e. LC50 value of 1.94 mg L{sup −1}), and it suppressed root development of Lycopersicum esculentum plant (tomato). Finally, this work draw attention for the environmental implications of activated carbon materials modified with silver nanoparticles. - Highlights: • Production of very efficient activated carbon by pyrolysis process of sugarcane bagasse. • Modification of activated carbon with silver nanoparticles to environmental remediation and water purification. • Activated carbon modified with silver nanoparticles showed acute ecotoxic effects.

  6. Zeolites modified with silver for the development of a water disinfection system

    International Nuclear Information System (INIS)

    Aparicio V, S.

    2013-01-01

    In spite of great strides that have been taken in sanitation technologies, there still exist health problems due to microbiological contamination by water. The waterborne diseases have not been completely eradicated and are a big problem of economic interest and health. Moreover, the microbicidal properties of silver have been used for a long time. The use of silver as a disinfectant has many advantages; for example it inhibits a wide spectrum of microorganisms, it has oligo dynamic properties and owing its mechanisms of cell inactivation, it also does not allow the emergence of new resistant strains. In the present research, the kinetics of water disinfection with silver has been investigated, to develop small system for water disinfection, based in silver modified Mexican clinoptilolite. The chemical species of silver play a significant role in the disinfection processes. For this reason, in this work, were both the Ag + and nanoparticles of Ag ο considered. The synthesis of nanoparticles of Ag ο woes performed by thermal and chemical reduction. It was found that the chemical reduction of Ag + to Ag ο was more efficient because it presented more defined nano structures and better distribution than those of thermal reduction. Clinoptilolite of Taxco (Guerrero) was chosen to exchange the native ions from the clinoptilolite by Ag + from the aqueous medium, or to deposit the nanoparticles of Ag ο on this surface. These silver modified zeolitic materials were characterized by scanning electron microscopy (Sem), elemental analyses (EDS), X-ray diffraction (XRD) and neutron activation analysis (NAA). The results showed that the crystallographic structure of the clinoptilolite did not change during thermal and chemical reduction treatments of Ag + to obtain the nanoparticles of Ag ο . The bactericide activity of the silver modified zeolitic materials (with Ag + or nanoparticles of Ag ο ) was evaluated on Escherichia coli Atcc 8739, in both distilled water and well

  7. Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes

    International Nuclear Information System (INIS)

    Gutes, Albert; Carraro, Carlo; Maboudian, Roya

    2011-01-01

    Highlights: → New nonenzymatic glucose sensor material. → Modified epoxy-silver electrodes with palladium nanoparticles. → Simple electroless surface modification. → Wide linear response range. → Easy implementation. - Abstract: A new approach for nonenzymatic glucose sensing, based on a simple modification of epoxy-silver surfaces deposited on the tip of commercial copper electric wires, is presented. Palladium was galvanically displaced on the surface of the epoxy-silver surface in order to obtain metal nanoparticles that act as catalyst for the direct oxidation of glucose. Scanning electron microscopy revealed the formation of the metal nanoparticles. X-ray photoelectron spectroscopy confirmed the metallic nature of the formed nanostructures on the surface. Electrochemical characterization and calibration of the palladium-modified epoxy-silver electrode is reported, obtaining a linear range of 1-20 mM for the detection of glucose with low interference of ascorbic acid and uric acid. A simple 3-step coulometry was used as the detection technique. The developed sensing material is believed to be a great candidate for integration in small devices for clinical essays, due to the simplicity and cost effectiveness of the presented approach, compared to the state-of-the-art devices reported recently in the literature. Simplicity in the coulometry determinations makes these Pd-modified epoxy-silver sensors a good candidate for easy glucose determinations.

  8. Characterization of n-TiO2 thin films modified with silver nanoparticles

    International Nuclear Information System (INIS)

    Cueto, L.F.; Sanchez-Cervantes, E.M.

    2010-01-01

    Carbon dioxide accumulation in the atmosphere has gained much attention and has reopened many research lines that initiated two or three decades ago. Electrochemical reduction represents one of the most discussed methods, especially where semiconductor and metal-semiconductor cathodes are used to achieve CO 2 transformation into higher-energy products. In the present work, the influence of silver nanoparticles upon CO 2 reduction on n-TiO 2 cathodes in aqueous media is presented. Silver nanoparticles with an average diameter of 250nm were deposited on n-TiO 2 surfaces by the electrochemical Double-Pulse Potential method. A Grazing-Incidence X-Ray Diffraction structural analysis is presented showing the presence of metallic silver, while Atomic Force Microscopy shows surface roughness and particle size before and after surface modification. These measurements were confirmed by Scanning-Electron Microscopy acquainting for the formation of metal particles on the n-TiO 2 surface. Enhancement of CO 2 reduction by the presence of silver on cathodes is shown by cyclic voltammetry. (author)

  9. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    Science.gov (United States)

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  10. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  11. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    International Nuclear Information System (INIS)

    Azócar, Ignacio; Vargas, Esteban; Duran, Nicole; Arrieta, Abel; González, Evelyn

    2012-01-01

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix–polyether glycol was studied. AgNps of 4–6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia–polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20–80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO 3 concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia–polyether glycol hybrid film. Highlights: ► Antibacterial activity of films (zirconia–polyether glycol) modified with silver nanoparticles. ► Biofilm formation is prevented. ► High sensibility against gram positive bacteria.

  12. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Ignacio, E-mail: manuel.azocar@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vargas, Esteban [Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Duran, Nicole [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Arrieta, Abel [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Gonzalez, Evelyn [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas, Universidad de Chile, Sergio Livingstone Polhammer 1007, Santiago (Chile); and others

    2012-11-15

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix-polyether glycol was studied. AgNps of 4-6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia-polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20-80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO{sub 3} concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia-polyether glycol hybrid film. Highlights: Black-Right-Pointing-Pointer Antibacterial activity of films (zirconia-polyether glycol) modified with silver nanoparticles. Black-Right-Pointing-Pointer Biofilm formation is prevented. Black-Right-Pointing-Pointer High sensibility against gram positive bacteria.

  13. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Shah, Afzal; Chen, Yongmei; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhamma, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah

    2016-03-01

    In the present research work a novel, nontoxic and ecofriendly procedure was developed for the green synthesis of silver nano particle (AgNPs) using Caruluma edulis (C. edulis) extract act as reductant as well as stabilizer agents. The formation of AgNPs was confirmed by UV/Vis spectroscopy. The small and spherical sizes of AgNPs were conformed from high resolution transmission electron microscopy (HRTEM) analysis and were found in the range of 2-10nm, which were highly dispersion without any aggregation. The crystalline structure of AgNPs was conformed from X-ray diffraction (XRD) analysis. For the elemental composition EDX was used and FTIR helped to determine the type of organic compounds in the extract. The potential electrochemical property of modified silver electrode was also studied. The AgNPs showed prominent antibacterial motion with MIC values of 125 μg/mL against Bacillus subtilis and Staphylococcus aureus while 250 μg/mL against Escherichia coli. High cell constituents' release was exhibited by B. subtilis with 2 × MIC value of silver nanoparticles. Silver nanoparticles also showed significant DPPH free radical scavenging activity. This research would have an important implication for the synthesis of more efficient antimicrobial and antioxidant agent. The AgNP modified electrode (GC/AgNPs) exhibited an excellent electro-catalytic activity toward the redox reaction of phenolic compounds. The AgNPs were evaluated for electrochemical degradation of bromothymol blue (BTB) dyes which showed a significant activity. From the strong reductive properties it is obvious that AgNPs can be used in water sanitization and converting some organic perilous in to non-hazardous materials. The AgNPs showed potential applications in the field of electro chemistry, sensor, catalyst, nano-devices and medical. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process

    Directory of Open Access Journals (Sweden)

    Yu DG

    2012-11-01

    Full Text Available Deng-Guang Yu,1 Jie Zhou,2 Nicholas P Chatterton,3 Ying Li,1 Jing Huang,2 Xia Wang11School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China; 2School of Life Sciences, East China Normal University, Shanghai, People's Republic of China; 3Faculty of Life Sciences, London Metropolitan University, London, United KingdomBackground: The objective of this investigation was to develop a new class of antibacterial material in the form of nanofibers coated with silver nanoparticles (AgNPs using a modified coaxial electrospinning approach. Through manipulation of the distribution on the surface of nanofibers, the antibacterial effect of Ag can be improved substantially.Methods: Using polyacrylonitrile (PAN as the filament-forming polymer matrix, an electrospinnable PAN solution was prepared as the core fluid. A silver nitrate (AgNO3 solution was exploited as sheath fluid to carry out the modified coaxial electrospinning process under varied sheath-to-core flow rate ratios.Results: Scanning electron microscopy and transmission electron microscopy demonstrated that the sheath AgNO3 solution can take a role in reducing the nanofibers' diameters significantly, a sheath-to-core flow rate ratio of 0.1 and 0.2 resulting in PAN nanofibers with diameters of 380 ± 110 nm and 230 ± 70 nm respectively. AgNPs are well distributed on the surface of PAN nanofibers. The antibacterial experiments demonstrated that these nanofibers show strong antimicrobial activities against Bacillus subtilis Wb800, and Escherichia coli dh5α.Conclusion: Coaxial electrospinning with AgNO3 solution as sheath fluid not only facilitates the electrospinning process, providing nanofibers with reduced diameters, but also allows functionalization of the nanofibers through coating with functional ingredients, effectively ensuring that the active antibacterial component is on the surface of the material, which leads to

  15. Antibacterial TiO2Coating Incorporating Silver Nanoparticles by Micro arc Oxidation and Ion Implantation

    International Nuclear Information System (INIS)

    Zhang, P.; Zhang, Z.; Li, W.

    2013-01-01

    Infection associated with titanium implants remains the most common serious complication in hard tissue replacement surgery. Since such postoperative infections are usually difficult to cure, it is critical to find optimal strategies for preventing infections. In this study, TiO 2 coating incorporating silver (Ag) nanoparticles were fabricated on pure titanium by micro arc oxidation and ion implantation. The antibacterial activity was evaluated by exposing the specimens to Staphylococcus aureus and comparing the reaction of the pathogens to Ti-MAO-Ag with Ti-MAO controls. Ti-MAO-Ag clearly inhibited bacterial colonization more than the control specimen. The coating’s antibacterial ability was enhanced by increasing the dose of silver ion implantation, and Ti-MAO-Ag 20.0 had the best antibacterial ability. In addition, cytocompatibility was assessed by culturing cell colonies on the specimens. The cells grew well on both specimens. These findings indicate that surface modification by means of this process combining MAO and silver ion implantation is useful in providing antibacterial activity and exhibits cytocompatibility with titanium implants

  16. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Paladini, F.; Picca, R.A.; Sportelli, M.C.; Cioffi, N.; Sannino, A.; Pollini, M.

    2015-01-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag 2 O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  17. Determination of cyanide in wastewaters using modified glassy carbon electrode with immobilized silver hexacyanoferrate nanoparticles on multiwall carbon nanotube

    International Nuclear Information System (INIS)

    Noroozifar, Meissam; Khorasani-Motlagh, Mozhgan; Taheri, Aboozar

    2011-01-01

    Research highlights: → GC electrode modified with silver hexacyanoferrate nanoparticles (SHFNPs) immobilized on MWCNT. → Modified electrode use for determination of Cyanide in waste water. → The detection limit of the sensor is 8.3 nM. → The linear range is from 40.0 nM to 150.0 μM. - Abstract: The sensitive determination of cyanide in wastewaters using modified GC electrode with silver hexacyanoferrate nanoparticles (SHFNPs) immobilized on multiwall carbon nanotube (MWCNT) was reported. The immobilization of SHFNPs on MWCNT was confirmed by transmission electron microscopy (TEM). The TEM image showed that the SHFNPs retained the spherical morphology after immobilized on MWCNT. The size of SHFNPs was examined around 27 nm. The GC/MWCNT-SHFNPs was used for the determination of cyanide in borax buffer (BB) solution (pH 8.0). Using square wave voltammetry, the current response of cyanide increases linearly while increasing its concentration from 40.0 nM to 150.0 μM and a detection limit was found to be 8.3 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 5.0 μM cyanide in the presence of common contaminants at levels presenting in industrial wastewaters. The practical application of the present modified electrode was demonstrated by measuring the concentration of cyanide in industrial wastewater samples. Moreover, the studied sensor exhibited high sensitivity, good reproducibility and long-term stability.

  18. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  19. Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles

    KAUST Repository

    Schiffman, Jessica D.

    2011-11-01

    The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both Gram negative bacteria, Escherichia coli, and Gram positive bacteria, Bacillus anthracis and Staphylococcus aureus. © 2011 American Chemical Society.

  20. Synthesis of silver-titanium dioxide nanocomposites for antimicrobial applications

    Science.gov (United States)

    Yang, X. H.; Fu, H. T.; Wang, X. C.; Yang, J. L.; Jiang, X. C.; Yu, A. B.

    2014-08-01

    Silver-titanium dioxide (Ag-TiO2) nanostructures have attracted increasing attention because of unique functional properties and potential applications in many areas such as photocatalysis, antibacterial, and self-cleaning coatings. In this study, Ag@TiO2 core-shell nanostructures and Ag-decorated TiO2 particles (TiO2@Ag) (the size of these two nanoparticles is ranging from 200-300 nm) have been synthesized by a developed facile but efficient method. These two types of hybrid nanostructures, characterized by various advanced techniques (TEM, XRD, BET and others), exhibit unique functional properties particularly in antibacterial toward Gram negative Escherichia coli, as a case study. Specifically: (i) the TiO2@Ag nanoparticles are superior in bacterial growth inhibition in standard culture conditions (37 °C incubator) to the Ag@TiO2 core-shell ones, in which silver may dominate the antibacterial performance; (ii) while after UV irradiation treatment, the Ag@TiO2 core-shell nanoparticles exhibit better performance in killing grown bacteria than the TiO2@Ag ones, probably because of the Ag cores facilitating charge separation for TiO2, and thus produce more hydroxyl radicals on the surface of the TiO2 particles; and (iii) without UV irradiation, both TiO2@Ag and Ag@TiO2 nanostructures show poor capabilities in killing mature bacteria. These findings would be useful for designing hybrid metal oxide nanocomposites with desirable functionalities in bioapplications in terms of sterilization, deodorization, and water purification.

  1. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Giovanni, Marcella; Yue, Junqi; Zhang, Lifeng; Xie, Jianping; Ong, Choon Nam; Leong, David Tai

    2015-01-01

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10 −6 –10 −3 μg mL −1 . However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL −1 , through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10 −7 μg mL −1 . This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general

  2. Silver Nanoparticles-graphene Oxide Nanocomposite for Antibacterial Purpose

    International Nuclear Information System (INIS)

    Chook, S.W.; Chia, C.H.; Sarani Zakaria; Mohd Khan Ayob; Chee, K.L.; Neoh, H.M.; Huang, N.M.

    2011-01-01

    Graphene oxide (GO) sheets, a single layer of carbon atoms which can be served as substrates for fabricating metallic nanoparticles-GO nano composites, have been used in this study The nanocomposite of silver nanoparticles and graphene oxide were produced via in-situ synthesis and with the aid of chitosan to investigate the formation of silver nanoparticles on the graphene oxide sheets. XRD and UV-Vis studies confirmed the formation of silver nanoparticles on GO sheets, while TEM and FESEM images presented the loading of silver nanoparticles on the GO sheets. The degree of loading and distribution of the silver nanoparticles on the graphene oxide were depended on the procedure during the formation of silver nanoparticles. The nano composites can be potentially used in food packaging and biomedical applications. (author)

  3. The study of antibacterial activity and stability of dyed cotton fabrics modified with different forms of silver

    Directory of Open Access Journals (Sweden)

    Lazić Vesna

    2012-01-01

    Full Text Available This study compares the effect of colloidal silver nanoparticles and commercial RUCO-BAC AGP agent with silver chloride as an active component on antibacterial activity of dyed cotton fabrics. Cotton fabrics were dyed with vat dyes Bezanthren olive T and Bezanthren grey FFB. Antibacterial activity of silver loaded dyed cotton fabrics was tested against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Escherichia coli. Unlike RUCO-BAC AGP synthesized silver nanoparticles deposited onto dyed cotton fabrics provided maximum bacteria reduction independently of applied dye. The stability of modified cotton fabrics was analyzed in artificial sweat at pH 5.5 and 8.0. Approximately the same amount of silver was released from differently modified cotton fabrics in artificial sweat. Larger amount of silver was released in the sweat at pH 8.0.

  4. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  5. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  6. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  7. Preparation of silver nanoparticles at low temperature

    International Nuclear Information System (INIS)

    Mishra, Mini; Chauhan, Pratima

    2016-01-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  8. para-Sulfonatocalix[6]arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion.

    Science.gov (United States)

    Bian, Yinghui; Li, Chunya; Li, Haibing

    2010-05-15

    In this paper, a new electrochemical sensor, based on modified silver nanoparticles, was fabricated using one-step electrodeposition approach. The para-sulfonatocalix[6]arene-modified silver nanoparticles coated on glassy carbon electrode (pSC(6)-Ag NPs/GCE) was characterized by attenuated total reflection IR spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), etc. The pSC(6) as the host are highly efficient to capture organophosphates (OPs), which dramatically facilitates the enrichment of nitroaromatic OPs onto the electrochemical sensor surface. The combination of the host-guest supramolecular structure and the excellent electrochemical catalytic activities of the pSC(6)-Ag NPs/GCE provides a fast, simple, and sensitive electrochemical method for detecting nitroaromatic OPs. In this work, methyl parathion (MP) was used as a nitroaromatic OP model for testing the proposed sensor. In comparison with Ag NPs-modified electrode, the cathodic peak current of MP was amplified significantly. Differential pulse voltammetry was used for the simultaneous determination of MP. Under optimum conditions, the current increased linearly with the increasing concentration of MP in the range of 0.01-80microM, with a detection limit of 4.0nM (S/N=3). The fabrication reproducibility and stability of the sensor is better than that of enzyme-based electrodes. The possible underlying mechanism is discussed.

  9. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  10. Silver-embedded modified hyperbranched epoxy/clay nanocomposites as antibacterial materials.

    Science.gov (United States)

    Roy, Buddhadeb; Bharali, Pranjal; Konwar, B K; Karak, Niranjan

    2013-01-01

    Silver-embedded modified hyperbranched epoxy/clay nanocomposites were prepared at different wt.% of octadecyl amine-modified montmorillonite at a constant silver concentration (1 wt.%). UV-visible, XRD and TEM studies confirmed the formation of silver nanoparticles. Compared to the system without silver and clay, the gloss from 70° to 94°, scratch hardness from 4 to 5.8 kg, impact strength from 60 to 90 cm, tensile strength from 8.5 to 15.5 MPa, adhesive strength from 5 to 7.1 × 10(9)N/m, flexibility from >6 to nanocomposites showed antibacterial activity in well diffusion assays against Staphylococcus aureus (ATCC11632), Bacillus subtilis (ATCC11774), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC7814) and Klebsiella pneumoniae (ATCC10031). The results showed that these nanocomposites have potential to be used as antimicrobial materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers.

    Science.gov (United States)

    Benvidi, Ali; Banaei, Maryam; Tezerjani, Marzieh Dehghan; Molahosseini, Hosein; Jahanbani, Shahriar

    2017-12-14

    This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO 2 ) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL -1 to 25 pg.mL -1 , and from 25 pg.mL -1 to 25 ng.mL -1 ) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.

  12. Electro-catalytic properties of graphene composites containing gold or silver nanoparticles

    International Nuclear Information System (INIS)

    Pruneanu, Stela; Pogacean, Florina; Biris, Alexandru R.; Coros, Maria; Watanabe, Fumiya; Dervishi, Enkeleda; Biris, Alexandru S.

    2013-01-01

    Highlights: ► Graphene sheets with embedded gold or silver nanoparticles were prepared by RF-cCVD method. ► The crystallinity of the composite samples is less influenced by the type of metallic nanoparticles (silver or gold). ► The composite nanostructures exhibit excellent electro-catalytic properties toward carbamazepine oxidation. -- Abstract: Composite nanostructures based on few-layers graphene with encased gold or silver nanoparticles (denoted as Gr-Au and Gr-Ag, respectively) were separately prepared in a single-step synthesis by radio frequency catalytic chemical vapor deposition (RF-cCVD) over Au x /MgO and Ag x /MgO catalytic system (where x = 3 wt.%), respectively. Their morphological properties were investigated by electron microscopy techniques (TEM/HRTEM), which demonstrated that the number of graphitic layers within the sheet varied between 2 and 7. Thorough TEM analysis also indicated that gold nanoparticles had a mean size of 22 nm, while silver nanoparticles were found to be larger with a mean size of 35 nm. X-ray powder diffraction proved that the crystallinity of the Gr-Au or Gr-Ag samples is less influenced by the type of metallic nanoparticles (silver or gold) encased between the graphitic layers. The mean value of the crystalline domain perpendicular to graphene (0 0 2) crystallographic plane was determined to be approximately 2.25 nm (for Gr-Au sample) and 2.14 nm (for Gr-Ag sample), both corresponding to 6 graphitic layers. Gr-Ag and Gr-Au nanostructures were used to modify platinum substrates and subsequently employed for the electrochemical analysis of carbamazepine. A significant decrease in the electrochemical oxidation potential of carbamazepine (150 mV) was obtained with both modified electrodes. The detection limit (DL) was found to be 2.75 × 10 −5 M and 2.92 × 10 −5 M for the Pt/Gr-Ag and Pt/Gr-Au electrode, respectively

  13. Synthesis of dextrin-stabilized colloidal silver nanoparticles and their application as modifiers of cement mortar.

    Science.gov (United States)

    Konował, Emilia; Sybis, Marta; Modrzejewska-Sikorska, Anna; Milczarek, Grzegorz

    2017-11-01

    Various commercial dextrins were used as reducing and stabilizing agents for a novel one-step synthesis of silver nanoparticles from ammonia complexes of silver ions. As a result, stable colloids of silver were formed during the reaction with the particle size being the function of the dextrin type. The obtained colloids were characterized by UV-vis spectrophotometry, size distribution (using Non-Invasive Backscatter optics) and transmission electron microscopy (TEM). The achieved results clearly indicate the possibility of low-cost production of large quantities of colloidal silver nanoparticles using materials derived from renewable sources. The resulting silver colloids can be used for different purposes, e.g. as bactericidal agents. Combination of the aforementioned properties of nanosilver particles with plasticizing properties of dextrin enables to obtain cement mortars with increased workability and enhanced compressive strength. Moreover, the obtained material is also characterized by increased immunity to adverse impact of microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synthesis and characterization of silver nanoparticles by sol-gel route from silver nitrate

    International Nuclear Information System (INIS)

    Morales, Jorge; Moran, Jose; Quintana, Maria; Estrada, Walter

    2009-01-01

    Silver nanoparticles colloids have been synthesized by sol-gel method. This synthesis consists in silver nitrate reduction by ethylene glycol in a process called polyol. The growth of the nanoparticles have been controlled by the steric stabilization of the colloid with polyvinylpyrrolidone (PVP, M w = 40 000). The silver nanoparticle size and structure was depending on the control of parameters such as: molar concentrations ratio of silver nitrate and PVP, temperature of reaction and the reflux time. Colloids have been characterized by UV-vis spectroscopy in the range from 300 to 1000 nm. The results show that the typical peak of surface plasmon resonance is formed at 400-450 nm indicating the formation of silver nanoparticles. The presences of silver nanoparticles of spherical shape with size among 20-40 nm were observed by transmission electronic microscopy (TEM). Electron diffraction patterns confirmed that synthesized colloids contain metallic silver with a crystal structure face centered cubic FCC. (author)

  15. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Varshney, G. K. [Laser Bio-medical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2016-05-23

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  16. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni, Marcella [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Yue, Junqi; Zhang, Lifeng [PUB, 40 Scotts Road, Singapore 228231 (Singapore); Xie, Jianping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Ong, Choon Nam [Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore 117549 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Leong, David Tai, E-mail: cheltwd@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore)

    2015-10-30

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10{sup −6}–10{sup −3} μg mL{sup −1}. However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL{sup −1}, through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10{sup −7} μg mL{sup −1}. This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general.

  17. Toxicity of silver nanoparticles in monocytes and keratinocytes

    DEFF Research Database (Denmark)

    Orłowski, Piotr; Krzyzowska, Malgorzata; Winnicka, Anna

    2012-01-01

    Silver nanoparticles are of interest to be used as antimicrobial agents in wound dressings and coatings in medical devices, but potential adverse effects have been reported in the literature. The possible local inflammatory response to silver nanoparticles and the role of cell death in determining...... these effects are largely unknown. Effects of the mixture of silver nanoparticles of different sizes were compared in in vitro assays for cytotoxicity, caspase-1 and caspase-9 activity and bax expression. In all tested concentrations, silver nanoparticles were more toxic for RAW 264.7 monocytes than for 291.03C...... keratinocytes and induced significant caspase-1 activity and necrotic cell death. In keratinocytes, more significantly than in macrophages, silver nanoparticles led to increase of caspase-9 activity and apoptosis. These results indicate that effects of silver nanoparticles depend on the type of exposed cells...

  18. Antibacterial Properties of Titanate Nano fiber Thin Films Formed on a Titanium Plate

    International Nuclear Information System (INIS)

    Yada, M.; Inoue, Y.; Morita, T.; Torikai, T.; Watari, T.; Noda, I.; Hotokebuchi, T.

    2013-01-01

    A sodium titanate nano fiber thin film and a silver nanoparticle/silver titanate nano fiber thin film formed on the surface of a titanium plate exhibited strong antibacterial activities against methicillin-resistant Staphylococcus aureus, which is one of the major bacteria causing in-hospital infections. Exposure of the sodium titanate nano fiber thin film to ultraviolet rays generated a high antibacterial activity due to photo catalysis and the sodium titanate nano fiber thin film immediately after its synthesis possessed a high antibacterial activity even without exposure to ultraviolet rays. Elution of silver from the silver nanoparticle/silver titanate nano fiber thin film caused by the silver ion exchange reaction was considered to contribute substantially to the strong antibacterial activity. The titanate nano fiber thin films adhered firmly to titanium. Therefore, these titanate nano fiber thin film/titanium composites will be extremely useful as implant materials that have excellent antibacterial activities.

  19. HIGH-QUALITY ORNAMENTAL FINE CONCRETES MODIFIED BY NANOPARTICLES OF TITANIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    Bazhenov Yuriy Mikhaylovich

    2012-10-01

    Full Text Available Ultrasonic method of generation of a stable suspension of nano-particles of titanium dioxide and the strengthening properties of the ornamental fine concrete that contains cement binders with a nano-dispersed additive constitute the subject of the research covered by the authors. Nanoparticles react with the basic chemical elements that compose the concrete and act as crystallization centres. Therefore, the concrete porosity is reduced, while physical and technology-related properties of the ornamental fine concrete are improved. The authors have proven that the application of the nano-dispersed additive that contains titanium dioxide influences the processes of the structure formation in respect of fine ornamental concretes and improves the strength, as well as the water and cold resistance of fine concretes. The improvement is attributed to the dense concrete structure and strong adhesion between cement grains and between the cement and the aggregate. This conclusion is based on the data obtained through the employment of an electronic microscope used to identify the porosity of fine concretes.

  20. Silver nanoparticles in X-ray biomedical applications

    International Nuclear Information System (INIS)

    Mattea, Facundo; Vedelago, José; Malano, Francisco; Gomez, Cesar; Strumia, Miriam C.

    2017-01-01

    The fluorescence of silver nanoparticles or ions can be used for detection and dose enhancement purposes in X-ray irradiation applications. This study is focused on the full integration of the chemical synthesis of silver nanoparticles suitable for dosimetric and radiological purposes with characteristics that can be exploited in radiotherapy and radiodiagnostic. A narrow size distribution and a compatible stabilizing agent is often desired in order to obtain homogeneous behaviors in nanoparticle suspension. With the method proposed in this study, nanoparticles ranging from 5 to 20 nm were obtained. The fluorescence of aqueous suspensions of silver nanoparticles has been measured experimentally and simulated with the Monte Carlo PENELOPE code for different silver concentrations and geometrical configurations. Finally, the feasibility of using these nanoparticles for the elaboration of Fricke gel dosimeters has been tested obtaining a dose enhancement when compared with the same material irradiated below the silver K-edge. - Highlights: • A method to compare NP's fluorescence in simulations and experiments was developed. • Silver nanoparticles suitable for typical dosimetry systems were synthesized. • Concentration and depth of a Ag doped volume was measured with X-ray fluorescence. • A feasibility test of Ag NPs in Fricke gel dosimetry was performed. • Good agreement between Monte Carlo simulations and experiments was obtained.

  1. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    Science.gov (United States)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  2. Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks

    International Nuclear Information System (INIS)

    Zhou, Xueqin; Li, Wei; Wu, Meilan; Tang, Shen; Liu, Dongzhi

    2014-01-01

    This work studied dodecylamine-protected silver nanoparticles modified by a small amount of dodecanethiol as the co-protective agent. Contents of the dodecanethiol and the protective agent capping on the surface of silver nanoparticles were analyzed using the method of oxygen flask combustion and a thermogravimetric analysis instrument. Results of electrical property determination and transmission electron microscopy indicate that certain amount of capping dodecanethiol can slow down the spontaneous sintering process of silver nanoparticles. When capping DDT content of silver nanoparticles is 1.70 wt%, 10 wt% suspensions are stable under −18 °C and can be stored stably at room temperature as long as 120 days. Furthermore, the silver nanoparticle concentration could be increased to 20 wt% with a stable storage time of 60 days at room temperature. Finally, stable polymer-free conductive inks with the silver nanoparticle concentration of 20 wt% were produced to fabricate patterns by ink-jet printing. The resistivity of the PI-supported patterns having been annealed at 130 °C for 10 min is 7.2 μΩ cm.

  3. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    Science.gov (United States)

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  4. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light

    Science.gov (United States)

    Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia

    2018-05-01

    Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.

  5. Biosynthesis of Silver Nanoparticles and Its Applications

    International Nuclear Information System (INIS)

    Firdhouse, M. J.; Lalitha, P.

    2015-01-01

    Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phyto mediated synthesis of silver nanoparticles, its significant applications in various fields, and characterization techniques involved.

  6. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  7. Electrochemical Detection of Ultratrace (Picomolar) Levels of Hg2+ Using a Silver Nanoparticle-Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Suherman, Alex L; Ngamchuea, Kamonwad; Tanner, Eden E L; Sokolov, Stanislav V; Holter, Jennifer; Young, Neil P; Compton, Richard G

    2017-07-05

    Ultratrace levels of Hg 2+ have been quantified by undertaking linear sweep voltammetry with a silver nanoparticle-modified glassy carbon electrode (AgNP-GCE) in aqueous solutions containing Hg 2+ . This is achieved by monitoring the change in the silver stripping peak with Hg 2+ concentration resulting from the galvanic displacement of silver by mercury: Ag(np) + 1/2Hg 2+ (aq) → Ag + (aq) + 1/2Hg(l). This facile and reproducible detection method exhibits an excellent linear dynamic range of 100.0 pM to 10.0 nM Hg 2+ concentration with R 2 = 0.982. The limit of detection (LoD) based on 3σ is 28 pM Hg 2+ , while the lowest detectable level for quantification purposes is 100.0 pM. This method is appropriate for routine environmental monitoring and drinking water quality assessment since the guideline value set by the US Environmental Protection Agency (EPA) for inorganic mercury in drinking water is 0.002 mg L -1 (10 nM).

  8. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Leo H. Koole

    2011-01-01

    Full Text Available Bacterial infection from medical devices is a major problem and accounts for an increasing number of deaths as well as high medical costs. Many different strategies have been developed to decrease the incidence of medical device related infection. One way to prevent infection is by modifying the surface of the devices in such a way that no bacterial adhesion can occur. This requires modification of the complete surface with, mostly, hydrophilic polymeric surface coatings. These materials are designed to be non-fouling, meaning that protein adsorption and subsequent microbial adhesion are minimized. Incorporation of antimicrobial agents in the bulk material or as a surface coating has been considered a viable alternative for systemic application of antibiotics. However, the manifestation of more and more multi-drug resistant bacterial strains restrains the use of antibiotics in a preventive strategy. The application of silver nanoparticles on the surface of medical devices has been used to prevent bacterial adhesion and subsequent biofilm formation. The nanoparticles are either deposited directly on the device surface, or applied in a polymeric surface coating. The silver is slowly released from the surface, thereby killing the bacteria present near the surface. In the last decade there has been a surplus of studies applying the concept of silver nanoparticles as an antimicrobial agent on a range of different medical devices. The main problem however is that the exact antimicrobial mechanism of silver remains unclear. Additionally, the antimicrobial efficacy of silver on medical devices varies to a great extent. Here we will review existing antimicrobial coating strategies and discuss the use of silver or silver nanoparticles on surfaces that are designed to prevent medical device related infections.

  9. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  10. Silver Modified Degussa P25 for the Photocatalytic Removal of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Neil Bowering

    2007-01-01

    Full Text Available A study of the photocatalytic behaviour of silver modified titanium dioxide materials for the decomposition and reduction of nitric oxide (NO gas has been carried out. The effects of silver loading, calcination temperature, and reaction conditions have been investigated. Prepared photocatalysts were characterised using XRD, TEM, and XPS. A continuous flow reactor was used to determine the photocatalytic activity and selectivity of NO decomposition in the absence of oxygen as well as NO reduction using CO as the reducing agent, over the prepared photocatalysts. XRD and TEM analysis of the photocatalysts showed that crystalline silver nitrate particles were present on the titanium dioxide surface after calcination at temperatures of up to 200∘C. The silver nitrate particles are thermally decomposed to form metallic silver clusters at higher temperatures. XPS analysis of the photocatalysts showed that for each of the temperatures used, both Ag+ and Ag0 were present and that the Ag0/Ag+ ratio increased with increasing calcination temperature. The presence of metallic silver species on the TiO2 surface dramatically increased the selectivity for N2 formation of both decomposition and reduction reactions. When CO was present in the reaction gas, selectivities of over 90% were observed for all the Ag-TiO2 photocatalysts that had been calcined at temperatures above 200∘C. Unfortunately these high selectivities were at the expense of photocatalytic activity, with lower NO conversion rates than those achieved over unmodified TiO2 photocatalysts.

  11. Effect of silver on the phase transition and wettability of titanium oxide films

    Science.gov (United States)

    Mosquera, Adolfo A.; Albella, Jose M.; Navarro, Violeta; Bhattacharyya, Debabrata; Endrino, Jose L.

    2016-01-01

    The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance. PMID:27571937

  12. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    International Nuclear Information System (INIS)

    Zaki, Sahar; El Kady, M.F.; Abd-El-Haleem, Desouky

    2011-01-01

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: → About 300 bacterial isolates were screened for their ability to produce nanosilvers → Five of them were potential candidates for synthesis of silver nanoparticles → Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. → The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (AgNPs) in all positive

  13. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy, E-mail: drkvgobi@gmail.com, E-mail: satyam.nitw@gmail.com [Department of Chemistry, National Institute of Technology, Warangal - 506004, Telangana (India)

    2016-04-13

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ∼35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  14. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  15. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    Science.gov (United States)

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  16. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  17. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  18. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  19. Complex conductivity response to silver nanoparticles in ...

    Science.gov (United States)

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co

  20. Titanium dioxide nanoparticles modified by salicylic acid and arginine: Structure, surface properties and photocatalytic decomposition of p-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051 (China); Feng, Yujie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Liu, Youzhi; Wei, Bing; Guo, Jiaxin; Jiao, Weizhou [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang, Zhaohan [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Zhang, Qiaoling, E-mail: zhangqiaoling@nuc.edu.cn [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2016-02-15

    Graphical abstract: A simple and versatile synthetic method to produce TiO{sub 2} nanoparticles surface-modified with various organic capping agents can be used for novel multifunctional photocatalysts as required for various applications in energy saving and environmental protection. - Highlights: • SA and Arg was modified through the method of dipping treatment-based on chemical adsorption in saturated solution. • Surface modified TiO{sub 2} applied in photodecomposition of nitroaromatic. • The photoreduction of nitroaromatic and photocatalytic activity under visible light irradiation were enhanced by TiO{sub 2}–SA–Arg. • TiO{sub 2}–SA–Arg showed better lipophilic, dispersion and adsorption properties. - Abstract: In this study, titanium dioxide (TiO{sub 2}) nanoparticles were surface-modified with salicylic acid (SA) and arginine (Arg) using an environmentally friendly and convenient method, and the bonding structure, surface properties and degradation efficiency of p-nitrophenol (PNP) were investigated. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), water contact angle (WCA) measurements, ζ-potentiometric analysis, UV/visible diffuse reflectance spectroscopy (UV–vis DRS), and thermogravimetric analysis (TGA) were performed to evaluate the modification effect. The degradation rates were determined by high-performance liquid chromatography (HPLC). The results show that bidentate or bridging bonds are most likely formed between SA/Arg and TiO{sub 2} surface. Surface modification with SA, Arg, or both can improve the lipophilic properties and decrease the zeta potential, and also result in a red shift of the absorption wavelength. TiO{sub 2} nanoparticles modified by Arg or both SA and Arg show a large specific surface area and pore volume. Further, degradation

  1. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  2. Biosynthesis of silver nanoparticles by Aspergillus niger , Fusarium ...

    African Journals Online (AJOL)

    ... scanning electron microscope (SEM). Results indicate the synthesis of silver nanoparticles in the reaction mixture. The synthesis of nanoparticles would be suitable for developing a microbial nanotechnology biosynthesis process for mass scale production. Keywords: Silver nanoparticles, biosynthesis, fungi, Aspergillus.

  3. Biosynthesis of silver nanoparticles using Stevia extracts

    International Nuclear Information System (INIS)

    Laguta, I.V.; Fesenko, T.V.; Stavinskaya, O.N.; Shpak, L.M.; Dzyuba, O.I.

    2015-01-01

    Silver nanoparticles are synthesized using Stevia rebaudiana extracts. It is shown that the rate of nanoparticles formation is affected by plant cultivation conditions. It is found that, in the presence of the extract from callus, the formation of nanoparticles occurs faster than in the presence of extracts from plants grown under conditions of ex situ and in vitro. The synthesized silver nanoparticles were studied by UV and IR spectroscopies

  4. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  5. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    International Nuclear Information System (INIS)

    Zhang, Dezhong; Tang, Yang; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-01-01

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  6. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dezhong; Tang, Yang, E-mail: tangyang@nicenergy.com; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-04-30

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  7. Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Sathe, V.; Umadevi, M.

    2013-11-01

    Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439 nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14 nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons.

  8. Green synthesis of silver nanoparticles aimed at improving theranostics

    Science.gov (United States)

    Vedelago, José; Gomez, Cesar G.; Valente, Mauro; Mattea, Facundo

    2018-05-01

    Nowadays, the combination of diagnosis and therapy, known as theranostics, is one of the keys for an optimal treatment for cancer diseases. Theranostics can be significantly improved by incorporating metallic nanoparticles that are specifically delivered and accumulated in cancerous tissue. In this context, precise knowledge about dosimetric effects in nanoparticle-infused tissues as well as the detection and processing of emerging radiation are extremely important issues. In the last years the first studies on theranostic nanomaterials in gel dosimetry have been presented but there is still a broad field of study to explore. Most of gel dosimetric materials are extremely sensible to modifications in their composition, the addition of enhancers, metallic or inorganic charges can alter their stability and dosimetric properties; therefore, thorough studies must be made before the incorporation of any type of modifier. In this work, the synthesis of metallic nanoparticles suitable for gel dosimetry for x-ray applications is presented. A green synthesis process of silver nanoparticles coated with porcine skin gelatin by thermal reduction of silver nitrate is presented. Nanoparticles were obtained and purified for their application in gel dosimetry. Also, nanoparticles size distribution, reaction yield and the preliminar application as theranostic agents were tested in Fricke gel dosimetry in the keV range. The obtained nanoparticles were successfully used in theranostic applications acting as fluorescent agents and dose enhancers in X-ray beam irradiation simultaneously.

  9. Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana

    International Nuclear Information System (INIS)

    Yilmaz, M.; Turkdemir, H.; Kilic, M. Akif; Bayram, E.; Cicek, A.; Mete, A.; Ulug, B.

    2011-01-01

    Highlights: → Green synthesis of silver nanoparticles using leaves of Stevia Rebaudiana. → Spherical and polydispersed nanoparticles with diameters below 50 nm. → Interplay of nanoparticle formation and aggregation over time. → Capping reagents similar to those in gold synthesis via the same biomass. → Ketones to play active roles in the reduction of silver ions. - Abstract: The synthesis of silver nanoparticles employing a shadow-dried Stevia rebaudiana leaf extract in AgNO 3 solution is reported. Transmission electron microscopy and X-ray diffraction inspections indicate that nanoparticles are spherical and polydispersed with diameters ranging between 2 and 50 nm with a maximum at 15 nm. Ultraviolet-visible spectra recorded against the reaction time confirms the reduction of silver nanoparticles indicating that the formation and the aggregation of nanoparticles take place shortly after the mixing, as they persist concurrently with characteristic times of 48.5 min and 454.5 min, respectively. Aggregation is found to be the dominant mechanism after the first 73 min. Proton nuclear magnetic resonance spectrum of the silver nanoparticles reveals the existence of aliphatic, alcoholic and olefinic CH 2 and CH 3 groups, as well as some aromatic compounds but no sign of aldehydes or carboxylic acids. Infrared absorption of the silver nanoparticles suggests that the capping reagents of silver and gold nanoparticles reduced in plant extracts/broths are of the same chemical composition of different ratios. Ketones are shown to play a somehow active role for the formation of nanoparticles in plant extracts/broths.

  10. Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, M. [Department of Metallurgy and Materials Engineering, Faculty of Engineering, Bartin University, Bartin (Turkey); Turkdemir, H. [Department of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059 Goeruekle, Bursa (Turkey); Kilic, M. Akif [Department of Biology, Faculty of Science, Akdeniz University, Campus 07058, Antalya (Turkey); Bayram, E. [Department of Chemistry, Faculty of Science, Akdeniz University, Campus 07058, Antalya (Turkey); Cicek, A. [Department of Physics, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, 15100 Burdur (Turkey); Department of Physics, Faculty of Science, Akdeniz University, Campus 07058, Antalya (Turkey); Mete, A. [Department of Chemistry, Faculty of Arts and Sciences, Inonu University, Malatya (Turkey); Ulug, B., E-mail: bulug@akdeniz.edu.tr [Department of Physics, Faculty of Science, Akdeniz University, Campus 07058, Antalya (Turkey)

    2011-11-01

    Highlights: {yields} Green synthesis of silver nanoparticles using leaves of Stevia Rebaudiana. {yields} Spherical and polydispersed nanoparticles with diameters below 50 nm. {yields} Interplay of nanoparticle formation and aggregation over time. {yields} Capping reagents similar to those in gold synthesis via the same biomass. {yields} Ketones to play active roles in the reduction of silver ions. - Abstract: The synthesis of silver nanoparticles employing a shadow-dried Stevia rebaudiana leaf extract in AgNO{sub 3} solution is reported. Transmission electron microscopy and X-ray diffraction inspections indicate that nanoparticles are spherical and polydispersed with diameters ranging between 2 and 50 nm with a maximum at 15 nm. Ultraviolet-visible spectra recorded against the reaction time confirms the reduction of silver nanoparticles indicating that the formation and the aggregation of nanoparticles take place shortly after the mixing, as they persist concurrently with characteristic times of 48.5 min and 454.5 min, respectively. Aggregation is found to be the dominant mechanism after the first 73 min. Proton nuclear magnetic resonance spectrum of the silver nanoparticles reveals the existence of aliphatic, alcoholic and olefinic CH{sub 2} and CH{sub 3} groups, as well as some aromatic compounds but no sign of aldehydes or carboxylic acids. Infrared absorption of the silver nanoparticles suggests that the capping reagents of silver and gold nanoparticles reduced in plant extracts/broths are of the same chemical composition of different ratios. Ketones are shown to play a somehow active role for the formation of nanoparticles in plant extracts/broths.

  11. Subchronic oral toxicity of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Kim Yong

    2010-08-01

    Full Text Available Abstract Background The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. Results This study tested the oral toxicity of silver nanoparticles (56 nm over a period of 13 weeks (90 days in F344 rats following Organization for Economic Cooperation and Development (OECD test guideline 408 and Good Laboratory Practices (GLP. Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group: vehicle control, low-dose (30 mg/kg, middle-dose (125 mg/kg, and high-dose (500 mg/kg. After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P Conclusions The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level of 30 mg/kg and LOAEL (lowest observable adverse effect level of 125 mg/kg are suggested from the present study.

  12. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  13. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  14. The structure and properties of fluoroplastic modified with titanium nanoparticles

    Science.gov (United States)

    Baronin, G. S.; Buznik, V. M.; Dmitriev, O. S.; Zavrazhina, C. V.; Mishchenko, S. V.; Zavrazhin, D. O.; Khudyakov, V. V.

    2017-12-01

    The results of studying the structure and properties of a mixture of polytetrafluoroethylene (PTFE) and fillers, which are composites of ultrafine polytetrafluoroethylene and titanium (TiFP) nanoparticles, are presented. These composites are obtained with pyrolytic redistribution of a powdered PTFE - (NH4)2TiF6 mixture. It has been found that the composite properties depend on the type and concentration of the inorganic filler and the composite production technology. The created composites exceed the original PTFE in a number of characteristics (deflection temperature, thermal conductivity and durability).

  15. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  16. Precise micropatterning of silver nanoparticles on plastic substrates

    International Nuclear Information System (INIS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2017-01-01

    Highlights: • Silver ink has been deposited on plastic substrate and silver nanoparticles have been produced. • 3D control allows both ink superimposing and deposition on complicated surfaces. • Polyol method ensures the formation of metallic mircopatterns with high uniformity. • Substrate wettability, ink volume, and sintering temperature influences deposited patterns. - Abstract: Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV–vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  17. Precise micropatterning of silver nanoparticles on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A., E-mail: tapani.pakkanen@uef.fi

    2017-04-15

    Highlights: • Silver ink has been deposited on plastic substrate and silver nanoparticles have been produced. • 3D control allows both ink superimposing and deposition on complicated surfaces. • Polyol method ensures the formation of metallic mircopatterns with high uniformity. • Substrate wettability, ink volume, and sintering temperature influences deposited patterns. - Abstract: Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV–vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  18. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    Science.gov (United States)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  19. Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles

    International Nuclear Information System (INIS)

    Moghadam, Masoud Rohani; Akbarzadeh, Sanaz; Nasirizadeh, Navid

    2016-01-01

    This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %. (author)

  20. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  1. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    International Nuclear Information System (INIS)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F.; Huenuman, Nilton E.L.; Santos, Priscila M. dos

    2013-01-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  2. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Huenuman, Nilton E.L.; Santos, Priscila M. dos [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Dept. of Microbiologia; Riella, Humberto G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2013-07-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  3. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  4. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles.

    Science.gov (United States)

    Lokina, S; Stephen, A; Kaviyarasan, V; Arulvasu, C; Narayanan, V

    2014-04-09

    Bio-inspired silver nanoparticles are synthesized using Malus domestica (apple) extract. Polyphenols present in the apple extract act as a reducing and capping agent to produce the silver nanoparticles. UV-Visible analysis shows the surface plasmon resonance (SPR) absorption at 420 nm. The FTIR analysis was used to identify the functional groups responsible for the bio-reduction of silver ion. The XRD and HRTEM images confirm the formation of silver nanoparticles. The minimal inhibitory concentration (MIC) of silver nanoparticles was recorded against most of the bacteria and fungus. Further, MCF-7 human breast adenocarcinoma cancer cell line was employed to observe the efficacy of cancer cell killing. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    International Nuclear Information System (INIS)

    Shao-Peng, Zhu; Shao-Chun, Tang; Xiang-Kang, Meng

    2009-01-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability. (cross-disciplinary physics and related areas of science and technology)

  6. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  7. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Roshmi Thomas

    2014-12-01

    Full Text Available Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM and scanning electron microscope (SEM. The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  8. Biosynthesis of silver nanoparticles and its antibacterial activity ...

    African Journals Online (AJOL)

    In the present research work, biosynthesis of silver nanoparticles and its activity on bacterial pathogens were investigated. Silver nanoparticles were rapidly synthesized using Urospora sp. and the formation of nanoparticles was observed within 30 min. The results recorded from UV–vis spectrum, Fourier Transform Infrared ...

  9. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    International Nuclear Information System (INIS)

    Lima, R; Feitosa, L O; Ballottin, D; Tasic, L; Durán, N; Marcato, P D

    2013-01-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (− 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  10. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  11. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    International Nuclear Information System (INIS)

    Zhang Wanzhong; Qiao Xueliang; Chen Jianguo

    2006-01-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag 4 + intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields

  12. Toxicity of silver nanoparticles against bacteria, yeast, and algae

    Energy Technology Data Exchange (ETDEWEB)

    Dorobantu, Loredana S., E-mail: loredana@ualberta.ca; Fallone, Clara [University of Alberta, Department of Chemical and Materials Engineering (Canada); Noble, Adam J. [Trent University, Department of Biology (Canada); Veinot, Jonathan; Ma, Guibin [University of Alberta, Department of Chemistry (Canada); Goss, Greg G. [University of Alberta, Department of Biological Sciences (Canada); Burrell, Robert E. [University of Alberta, Department of Biomedical Engineering (Canada)

    2015-04-15

    The toxicity mechanism employed by silver nanoparticles against microorganisms has captivated scientists for nearly a decade and remains a debatable issue. The question most frequently asked is whether silver nanoparticles exert specific effects on microorganisms beyond the well-documented antimicrobial activity of Ag{sup +}. Here, we study the effects of citrate- (d = 17.5 ± 9.4 nm) and 11-mercaptoundecanoic acid (d = 38.8 ± 3.6 nm)-capped silver nanoparticles on microorganisms belonging to various genera. The antimicrobial effect of Ag{sup +} was distinguished from that of nanosilver by monitoring microbial growth in the presence and absence of nanoparticles and by careful comparison of the responses of equimolar silver nitrate solution. The results show that when using equimolar silver solutions, silver nitrate has higher toxic potential on all microorganisms than both nanoparticles tested. Furthermore, some microorganisms are more susceptible to silver than others and the choice of capping agent is relevant in the toxicity. Atomic force microscopy disclosed that AgNO{sub 3} had a destructive effect on algae. The antimicrobial activity of nanosilver could be exploited to prevent microbial colonization of medical devices and to determine the fate of nanoparticles in the environment.

  13. Toxicity of silver nanoparticles against bacteria, yeast, and algae

    International Nuclear Information System (INIS)

    Dorobantu, Loredana S.; Fallone, Clara; Noble, Adam J.; Veinot, Jonathan; Ma, Guibin; Goss, Greg G.; Burrell, Robert E.

    2015-01-01

    The toxicity mechanism employed by silver nanoparticles against microorganisms has captivated scientists for nearly a decade and remains a debatable issue. The question most frequently asked is whether silver nanoparticles exert specific effects on microorganisms beyond the well-documented antimicrobial activity of Ag + . Here, we study the effects of citrate- (d = 17.5 ± 9.4 nm) and 11-mercaptoundecanoic acid (d = 38.8 ± 3.6 nm)-capped silver nanoparticles on microorganisms belonging to various genera. The antimicrobial effect of Ag + was distinguished from that of nanosilver by monitoring microbial growth in the presence and absence of nanoparticles and by careful comparison of the responses of equimolar silver nitrate solution. The results show that when using equimolar silver solutions, silver nitrate has higher toxic potential on all microorganisms than both nanoparticles tested. Furthermore, some microorganisms are more susceptible to silver than others and the choice of capping agent is relevant in the toxicity. Atomic force microscopy disclosed that AgNO 3 had a destructive effect on algae. The antimicrobial activity of nanosilver could be exploited to prevent microbial colonization of medical devices and to determine the fate of nanoparticles in the environment

  14. Synthesis and optical properties of silver nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-01

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  15. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.

    Science.gov (United States)

    Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    Science.gov (United States)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  17. Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Abbasian

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide nanoparticles through our novel method. For this purpose, the surface of TiO2 nanoparticle was treated with 3-aminopropyl triethoxy silane, a silane coupling agent, and then these functionalized nanoparticles was reacted with ±-chloro phenyl acetyl chloride. The chlorine groups were converted to nitroxide mediated groups by coupling with 1-hydroxy-2, 2, 6, 6-tetramethyl piperidine. These modified TiO2 nanoparticles were then dispersed in styrene (St monomers to carry out the in situ free radical polymerization.

  18. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    DEFF Research Database (Denmark)

    Löschner, Katrin; Hadrup, Niels; Qvortrup, Klaus

    2011-01-01

    Background: The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food...... and food contact materials. Results: AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study...... in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of Ag...

  19. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    Science.gov (United States)

    Pourshahid, Seyedmohammad; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity. PMID:27652264

  20. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Science.gov (United States)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-06-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  1. Biosynthesis and Application of Silver and Gold Nanoparticles

    OpenAIRE

    Sadowski, Zygmunt

    2010-01-01

    A green chemistry synthetic route has been used for both silver and gold nanoparticles synthesis. The reaction occurred at ambient temperature. Among the nanoparticles biological organism, some microorganisms such as bacteria, fungi, and yeast have been exploited for nanoparticles synthesis. Several plant biomass or plant extracts have been successfully used for extracellular biosynthesis of silver and gold nanoparticles. Analytical techniques, such as ultraviolet-visible spectroscopy (UV-vis...

  2. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  3. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    Science.gov (United States)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  4. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan

    International Nuclear Information System (INIS)

    Leung, Thomas Chun-Yiu; Wong, Chung Kai; Xie Yong

    2010-01-01

    There is a growing need in developing a reliable and eco-friendly methodology for the synthesis of metallic nanoparticles, which may be applied for many nanotechnological applications. Natural compounds such as biopolymers are one of the resources which could be used for this purpose. The present study involves the development of a simple, ecological and user-friendly method in synthesizing silver nanoparticles by using carboxymethylated-curdlan or fucoidan as reducing and stabilizing agents. Reduction of silver ions by these biopolymers occurred when heating at 100 deg. C, led to the formation of silver nanoparticles in the range of 40-80 nm in dimensions. The silver nanoparticles were formed readily within 10-15 min. Morphological observation and characterization of the silver nanoparticles were performed by using dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and UV-vis absorption spectrophotometer. The size of silver nanoparticles can be controlled by using different concentrations of carboxymethylated-curdlan, fucoidan or silver nitrate. This way of silver nanoparticles preparation is easy, fast, user-friendly and suitable for large-scale production.

  5. Rapid synthesis of silver nanoparticles from Polylthia longifolia leaves

    Directory of Open Access Journals (Sweden)

    Tollamadugu Nagavenkata

    2012-10-01

    Full Text Available Objective: Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this research article we present a simple and eco-friendly biosynthesis of silver nanoparticles using P. longifolia leaf extract as reducing agent. Methods: Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM was performed. Results: TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions: P. longifolia demonstrated strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0. Biological methods are a good competent for the chemical procedures, which are enviro- friendly and convenient.

  6. Non-hazardous anticancerous and antibacterial colloidal 'green' silver nanoparticles.

    Science.gov (United States)

    Barua, Shaswat; Konwarh, Rocktotpal; Bhattacharya, Satya Sundar; Das, Pallabi; Devi, K Sanjana P; Maiti, Tapas K; Mandal, Manabendra; Karak, Niranjan

    2013-05-01

    Poly(ethylene glycol) stabilized colloidal silver nanoparticles were prepared using the reductive potency of the aqueous extract of Thuja occidentalis leaves under ambient conditions. The nanoparticles were well dispersed within a narrow size spectrum (7-14 nm) and displayed characteristic surface plasmon resonance peak at around 420 nm and Bragg's reflection planes of fcc structure. MTT assay revealed the dose-dependent cytocompatibility and toxicity of the nanoparticles with the L929 normal cell line. On the other hand, the antiproliferative action of the nanoparticles was evaluated on HeLa cell (cancerous cells) line. Fluorescence and phase contrast microscopic imaging indicated the appearance of multinucleate stages with aggregation and nuclear membrane disruption of the HeLa cells post treatment with the nanoparticles. The interaction at the prokaryotic level was also assessed via differential antibacterial efficacy against Staphylococcus aureus (MTCC 3160) and Escherichia coli (MTCC 40). Under these perspectives, it is also necessary to observe the environmental impact of the prepared silver nanoparticles. Hence, the dose dependent toxicity of silver nanoparticles was evaluated upon the earthworm species Eisenia fetida. Neither the survival nor the reproduction was affected by the addition of silver nanoparticles up to 1000 ppm. Thus these 'green' silver nanoparticles have promising potential as future materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Green synthesis of silver nanoparticles and its application for mosquito control

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available Objective: To synthesize and characterize silver nanoparticles from aqueous root extract of Parthenium hysterophorus (P. hysterophorus and also to evaluate the potentiality of synthesized silver nanoparticles as larvacidal agent against Culex quinquefasciatus (Cx. quinquefasciatus. Methods: The silver nano particles were generated using root extract of P. hysterophorus. The characterization of synthesized nanoparticles was done by visual color change, UV-Vis spectrum, scanning electron micrograph, fluorescent microscope and Fourier transform infrared spectroscopy. Results: It was found that aqueous silver ions can be reduced by aqueous root extract of P. hysterophorus to generate extremely stable silver nanoparticles in aqueous medium. Larvae were exposed to varying concentrations of plant extracts, aqueous silver nitrate solution and synthesized silver nanoparticles for 0, 24 and 48 h separately. Aqueous root extract showed moderate larvicidal effects; however, the maximum efficacy (60.18% was observed with the synthesized silver nanoparticles against the larvae of Cx. quinquefasciatus. Conclusions: These results suggest that the green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friently approach for the control of the Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the nano particle synthesized by P. hysterophorus.

  8. Silver nanoparticles in montmorillonite to application in polymeric materials

    International Nuclear Information System (INIS)

    Morita, R.Y.; Barbosa, R.V.; Kloss, J.R.; Schnitzler, M.; Garcia, J.

    2012-01-01

    This work presents the preparation of silver nanoparticles (AgNPs) through industrially viable methodologies and free of organic solvents, and their insertion in montmorillonite, to produce a nanomaterial with bactericidal properties. The modified montmorillonite was characterized through the techniques of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and x-ray diffraction (XRD). The FTIR and Raman spectrum's showed specific bands of involving stretching silver. In the XRD analyses was observed the occurrence of the following crystallographic planes (111), (200) e (220) silver related. For application in low density polyethylene, the mechanical tests showed no loss in the mechanical properties, when the AgNPs is present, this fact is important and indicate that the nanomaterial can be inserted in this polymer matrix with considerable technology interest. (author)

  9. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  10. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  11. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  12. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    Science.gov (United States)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  13. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    International Nuclear Information System (INIS)

    Peter Amaladhas, T; Akkini Devi, T; Ananthi, N; Priya Velammal, S; Sivagami, S

    2012-01-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV–Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9–31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was –36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus. (paper)

  14. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    Graphical abstract: - Highlights: • A novel Ag-loading and TiO 2 -coating technique was used to prepare samples. • The photocatalytic activity of the product was evaluated by removing of Rh B. • The as-synthesized samples showed an excellent photocatalytic activity. - Abstract: A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5–10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO 2 nanocrystals

  15. Fe{sub 3}O{sub 4} magnetic core coated by silver and functionalized with N-acetyl cysteine as novel nanoparticles in ferritin adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Beguem [Faculty of Science and Arts, Adnan Menderes University, Department of Chemistry (Turkey); Uygun, Murat [Kocarl Latin-Small-Letter-Dotless-I Vocational and Training School, Adnan Menderes University (Turkey); Uygun, Deniz Aktas, E-mail: daktas@adu.edu.tr [Faculty of Science and Arts, Adnan Menderes University, Department of Chemistry (Turkey); Antalik, Marian [Institute of Experimental Physics, Slovak Academy of Science, Department of Biophysics (Slovakia)

    2013-04-15

    A novel metal-chelate affinity matrix utilizing N-acetyl cysteine as a metal chelating agent was synthesized. For this, magnetic Fe{sub 3}O{sub 4} core was coated with silver by chemical reduction. Then, these magnetic silver nanoparticles were covered with N-acetyl cysteine, and Fe{sup 3+} was chelated to this modified magnetic silver nanoparticle. These magnetic nanoparticles were characterized by SEM, AFM, EDX, and ESR analysis. Synthesized nanoparticles were spherical and average size is found to be 69 nm. Fe{sup 3+} chelated magnetic silver nanoparticles were used for the adsorption of ferritin from its aqueous solution. Optimum conditions for the ferritin adsorption experiments were performed at pH 6.0 phosphate buffer and 25 Degree-Sign C of medium temperature and the maximum ferritin adsorption capacity is found to be 89.57 mg/g nanoparticle. Ferritin adsorption onto magnetic silver nanoparticles was increased with increasing ferritin concentration while adsorption capacity was decreased with increasing ionic strength. Affinity of the magnetic silver nanoparticles to the ferritin molecule was shown with SPR analysis. It was also observed that the adsorption capacity of the magnetic silver nanoparticles was not significantly changed after the five adsorption/desorption cycles.

  16. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    Science.gov (United States)

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  17. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    International Nuclear Information System (INIS)

    Gloria, E. Campillo; Ederley, Vélez; César, Hincapié; Gladis, Morales; Jaime, Osorio; Oscar, Arnache; José, Ignacio Uribe; Franklin, Jaramillo

    2017-01-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO 3 ) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) – Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV–visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λ max ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. (paper)

  18. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    International Nuclear Information System (INIS)

    Botasini, Santiago; Méndez, Eduardo

    2013-01-01

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10–20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV–Vis–NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  19. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Botasini, Santiago; Mendez, Eduardo, E-mail: emendez@fcien.edu.uy [Instituto de Quimica Biologica, Universidad de la Republica, Laboratorio de Biomateriales (Uruguay)

    2013-04-15

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10-20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV-Vis-NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  20. Hydrothermal synthesis of hydroxyapatite nanoparticles decorated with silver nanoparticles for application in biomaterials

    International Nuclear Information System (INIS)

    Assis, Jordanna Fernandes; Arantes, Tatiane Moraes; Cristovan, F.H.; Tada, Dayane Batista

    2016-01-01

    Full text: The hydroxyapatite nanoparticles (HA) have research attention because are material that exhibit biocompatibility with bone mineral phase of human body is great interest in the scientific community. Synthetic hydroxyapatite nanoparticles have excellent biocompatibility and bioactivity, due biocompatibility and osteo inducibility [1-3]. The hydroxyapatite nanoparticles were synthesized by hydrothermal processing and were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD and Raman spectra showed crystalline hydroxyapatite colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated hydroxyapatite surface. TEM images showed HA nanoparticles presented a well defined nanorod shapes and narrow size distributions with dimensions (width and length) around of 5 nm and 50 nm decorated with silver nanoparticles of spherical shape about 20 nm in diameter The results showed that crystalline hydroxyapatite colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. These nanoparticles The cell viability of the HA and HA/Ag was analyzed by reduction of the tetrazolium salt (MTT test). Embryonic mouse fibroblast cells were grown in the presence of nanoparticles for a total period of 96 hours. Analyses were made in 24h, 48h, 72h and 96h. The suspensions at the end of each period were analyzed in spectrophotometer. The 24h experiments were the most conclusive, with the silver presence in the HA, there is an increased in cellular proliferation. The results demonstrated that the HA/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  1. Hydrothermal synthesis of hydroxyapatite nanoparticles decorated with silver nanoparticles for application in biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Jordanna Fernandes; Arantes, Tatiane Moraes, E-mail: fernandes.jordanna9@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil); Cristovan, F.H.; Tada, Dayane Batista [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The hydroxyapatite nanoparticles (HA) have research attention because are material that exhibit biocompatibility with bone mineral phase of human body is great interest in the scientific community. Synthetic hydroxyapatite nanoparticles have excellent biocompatibility and bioactivity, due biocompatibility and osteo inducibility [1-3]. The hydroxyapatite nanoparticles were synthesized by hydrothermal processing and were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD and Raman spectra showed crystalline hydroxyapatite colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated hydroxyapatite surface. TEM images showed HA nanoparticles presented a well defined nanorod shapes and narrow size distributions with dimensions (width and length) around of 5 nm and 50 nm decorated with silver nanoparticles of spherical shape about 20 nm in diameter The results showed that crystalline hydroxyapatite colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. These nanoparticles The cell viability of the HA and HA/Ag was analyzed by reduction of the tetrazolium salt (MTT test). Embryonic mouse fibroblast cells were grown in the presence of nanoparticles for a total period of 96 hours. Analyses were made in 24h, 48h, 72h and 96h. The suspensions at the end of each period were analyzed in spectrophotometer. The 24h experiments were the most conclusive, with the silver presence in the HA, there is an increased in cellular proliferation. The results demonstrated that the HA/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  2. Properties of Ag nanoparticles prepared by modified Tollens' process with the use of different saccharide types

    Science.gov (United States)

    Michalcová, Alena; Machado, Larissa; Marek, Ivo; Martinec, Marek; Sluková, Marcela; Vojtěch, Dalibor

    2018-02-01

    Silver nanoparticles are well known for their catalytic and antimicrobial properties. In their production, the modified Tollens' process using saccharides as reduction agents is very popular. In this paper, the possibility of silver nanoparticles reduction by fructose, glucose, galactose, mannose, maltose, lactose and saccharose is shown. The size of successfully prepared nanoparticles was 16-70 nm depending on the saccharide type. The influence of NaOH and NH3 presence in reaction mixture on size of nanoparticles was described. Surprisingly good results were obtained using saccharose that is, however, known as non-reducing disaccharide.

  3. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.

  4. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate

    Science.gov (United States)

    Siegel, Jakub; Lyutakov, Oleksiy; Polívková, Markéta; Staszek, Marek; Hubáček, Tomáš; Švorčík, Václav

    2017-10-01

    Immobilization of nanoobjects on the surface of underlying material belongs to current issues of material science. Such altered materials exhibits completely exceptional properties exploitable in a broad spectrum of industrially important applications ranging from catalysts up to health-care industry. Here we present unique approach for immobilization of electrochemically synthesized silver nanoparticles on polyethyleneterephthalate (PET) foil whose essence lies in physical incorporation of particles into thin polymer surface layer induced by polarized excimer laser light. Changes in chemical composition and surface structure of polymer after particle immobilization were recorded by wide range of analytical techniques such as ARXPS, EDX, RBS, AAS, Raman, ICP-MS, DLS, UV-vis, SEM, TEM, and AFM. Thorough analysis of both nanoparticles entering the immobilization step as well as modified PET surface allowed revealing the mechanism of immobilization process itself. Silver nanoparticles were physically embedded into a thin surface layer of polymer reaching several nanometers beneath the surface rather than chemically bonded to PET macromolecules. Laser-implanted nanoparticles open up new possibilities especially in the development of the next generation cell-conform antimicrobial coatings of polymeric materials, namely due to the considerable immobilization strength which is strong enough to prevent particle release into the surrounding environment.

  5. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles

    Science.gov (United States)

    Li, Ping; Li, Juan; Wu, Changzhu; Wu, Qingsheng; Li, Jian

    2005-09-01

    The bactericidal action of silver (0) nanoparticles and amoxicillin on Escherichia coli is studied, respectively. Increasing concentration of both amoxicillin (0-0.525 mg ml-1) and silver nanoparticles (0-40 µg ml-1) showed a higher antibacterial effect in Luria-Bertani (LB) medium. Escherichia coli cells have different bactericidal sensitivity to them. When amoxicillin and silver nanoparticles are combined, it results in greater bactericidal efficiency on Escherichia coli cells than when they were applied separately. Dynamic tests on bacterial growth indicated that exponential and stationary phases are greatly decreased and delayed in the synergistic effect of amoxicillin and silver nanoparticles. In addition, the effect induced by a preincubation with silver nanoparticles is examined. The results show that solutions with more silver nanoparticles have better antimicrobial effects. One hypothesized mechanism is proposed to explain this phenomenon.

  6. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  7. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  8. Synthesis and antibacterial activity of of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Sadowski, Z

    2009-01-01

    Silver nanoparticles have been known to have inhibitory and bactericidal effects but the antimicrobial mechanism have not been clearly revealed. Here, we report on the synthesis of metallic nanoparticles of silver using wild strains of Penicillium isolated from environment. Kinetics of the formation of nanosilver was monitored using the UV-Vis. TEM micrographs showed the formation of silver nanoparticles in the range 10-100 nm. Obtained Ag nanoparticles were evaluated for their antimicrobial activity against the gram-positive and gram-negative bacteria. As results, Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were effectively inhibited. Nanosilver is a promising candidate for development of future antibacterial therapies because of its wide spectrum of activity.

  9. Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium

    International Nuclear Information System (INIS)

    Huang, Heng-Li; Chang, Yin-Yu; Chen, Ya-Chi; Lai, Chih-Ho; Chen, Michael Y.C.

    2013-01-01

    This study used a twin-gun magnetron sputtering system to deposit ZrO 2 -silver (Ag) coatings on biograde pure-titanium implant materials, and the Ag content in the deposited coatings was controlled by the magnetron power. The films were then annealed using rapid thermal annealing at 350 °C for 2 min to induce the nucleation and growth of nanoparticles on the film surface. Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) were used for in vitro antibacterial analyses. The cytocompatibility, mRNA expression, and adhesive morphology of human gingival fibroblast (HGF) cells on the coatings were also determined. The obtained results suggest that ZrO 2 -Ag composite coatings containing less than 10.6 at.% Ag show hydrophobicity, good viability and proliferation of HGF cells, and antibacterial effects on S. aureus and A. actinomycetemcomitans. Moreover, the antibacterial performance of ZrO 2 -Ag coatings is superior to that pure-titanium whilst maintaining biological compatibility. - Highlights: • The annealed ZrO 2 -Ag coatings showed a tetragonal-and-monoclinic structure. • Nanoparticles were well distributed in the annealed ZrO 2 -Ag composite coatings. • The ZrO 2 -Ag coated Ti showed hydrophobic feature. • The ZrO 2 -Ag showed good antibacterial performance. • The ZrO 2 -Ag showed good human gingival fibroblast cell viability

  10. Studies on extracellular biosynthesis of silver nanoparticles by the fungus aspergillus niger

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.

    2011-01-01

    An eco-friendly process for the synthesis of silver nanoparticles has been attempted, using the culture filtrate of various microorganisms, included bacteria, fungi and yeast. Only fungi, especially aspergillus niger, were capable of synthesizing silver nanoparticles. The culture filtrate treated with AgNo 3 (1 mM) turned dark brown after 72 h of incubation, indicating reduction of silver ions into silver nanoparticles. This observation was confirmed with UV-vis spectroscopy analysis;a large broad band with long tail was detected at 430 nm,this band is characteristic of several metal nanoparticles.X ray diffraction revealed the crystalline nature of obtained nanoparticles. The TEM and SEM analysis showed particles spherical in shape. The average particles size determined by DLS analysis was 94.2 nm.EDX analysis indicated the presence of silver element in the nanoparticles. FT-IR analysis confirmed the presence of protein associated with the synthesized silver nanoparticles. The maximum biosynthesis of nanoparticles was achieved when the culture filtrate was treated with 4.0 mM of AgNo 3 , adjusted to ph 8.0, and incubated at 50 degree C for 96 h. Silver nanoparticles showed antibiotic activity exceeding that of silver ions against various microorganisms

  11. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Mendez, Miguel A., E-mail: maguilarme@ipn.mx; San Martin-Martinez, Eduardo; Ortega-Arroyo, Lesli [Instituto Politecnico Nacional, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (Mexico); Cobian-Portillo, Georgina [Instituto Politecnico Nacional, Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (Mexico); Sanchez-Espindola, Esther [Instituto Politecnico Nacional, Escuela Nacional de Ciencias Biologicas, Prolongacion Manuel M. Carpio s/n, esq. Plan de Ayala (Mexico)

    2011-06-15

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5-24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  12. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    International Nuclear Information System (INIS)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-01-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV–Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV–Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5–24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  13. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 7114 Bucharest (Romania); Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Olaru, Mihaela, E-mail: olaruma@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed.

  14. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    International Nuclear Information System (INIS)

    Aflori, Magdalena; Simionescu, Bogdana; Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina; Olaru, Mihaela

    2013-01-01

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed

  15. Improved microbial growth inhibition activity of bio-surfactant induced Ag–TiO{sub 2} core shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadevi, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Meena, P. [Department of Physics, PSGR Krishnammal college for women, Coimbatore 641 004 (India)

    2015-02-01

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles were synthesized by hydrolysis process and Ag nanoparticles were prepared by using hydrazine reduction method. • Ag–TiO{sub 2} core shell nanoparticles were synthesized by reverse micelle method. • Coatings of TiO{sub 2} shell leads to decrease the usage of silver particles and also it reduces the release of silver ions from the matrix. • Optimum ratio of TiO{sub 2} particles: Ag atoms are needed for better antibacterial activity. • Sodium alginate (Bio-copolymer) induced core shell nanoparticles results 100% cell growth inhibition toward Staphylococcus aureus. - Abstract: Surfactant induced silver–titanium dioxide core shell nanoparticles within the size range of 10–50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver–titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver–titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV–vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver–titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell

  16. Development and Application of TiO2 Nanoparticles Coupled with Silver Halide

    Directory of Open Access Journals (Sweden)

    Xiaojia Wan

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 is proposed to be effective photocatalyst for wastewater treatment, air purification, and self-cleaning ability, because of its strong oxidation and superhydrophilicity. In order to conquer the limits of TiO2, a variety of methods have been used. This paper presents a critical review of novel research and achievements in the modification of TiO2 nanoparticles with silver halide (AgX, X=Cl, Br, I, which aims at enhancing the visible light absorption and photosensitivity. Herein we study the synthesis, physical and chemical properties, and the mechanism of this composite photocatalyst.

  17. Towards localization of engineered silver nanoparticles in Pseudokirchneriella subcapitata

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Sørensen, Sara Nørgaard; Hartmann, Nanna Isabella Bloch

    Silver nanoparticles have increased cytotoxic properties compared to larger particles. Reflecting these properties, engineered silver nanoparticles are now added to an increasing number of consumer products often labelled as anti-bacterial. These particles are presently considered the fastest...... growing nanotechnology application. Accordingly, silver nanoparticles are now postulated to be released into the sewerage systems and wider environment in increasing quantities. Here they could potentially interfere with aquatic life and this ongoing project aims to localize possible particles taken up...

  18. Therapeutic Potential of Biologically Reduced Silver Nanoparticles from Actinomycete Cultures

    International Nuclear Information System (INIS)

    Sukanya, M.K.; Saju, K.A.; Praseetha, P.K.; Sakthivel, G.

    2013-01-01

    Silver nanoparticles are applied in nanomedicine from time immemorial and are still used as powerful antibiotic and anti-inflammatory agents. Antibiotics produced by actinomycetes are popular in almost all the therapeutic measures, and this study has proven that these microbes are also helpful in the biosynthesis of silver nanoparticles with good surface and size characteristics. Silver can be synthesized by various chemical methodologies, and most of them have turned to be toxic. This study has been successful in isolating the microbes from polluted environment, and subjecting them to the reduction of silver nanoparticles, characterizing the nanoparticles by UV spectrophotometry and transmission electron microscopy. The nanoparticles produced were tested for their antimicrobial property, and the zone of inhibition was greater than those produced by their chemically synthesized counterparts. Actinomycetes, helpful in bioremediating heavy metals, are useful for the production of metallic nanoparticles. The biosynthesized silver nanoparticles loaded with antibiotics prove to be better in killing the pathogens and have opened up new areas for developing nanobiotechnological research based on microbial applications.

  19. Silver Nanoparticles in Alveolar Bone Surgery Devices

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2012-01-01

    Full Text Available Silver (Ag ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cells in vitro and in vivo in animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.

  20. Silver nanoparticles - Wolves in sheep's clothing?

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus Bruno; Jiang, Xiumei; Micləuş, Teodora

    2015-01-01

    Silver nanoparticles (Ag NPs) are one of the most widely utilized engineered nanomaterials (ENMs) in commercial products due to their effective antibacterial activity, high electrical conductivity, and optical properties. Therefore, they have been one of the most intensively investigated nanomate......Silver nanoparticles (Ag NPs) are one of the most widely utilized engineered nanomaterials (ENMs) in commercial products due to their effective antibacterial activity, high electrical conductivity, and optical properties. Therefore, they have been one of the most intensively investigated...

  1. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  2. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    International Nuclear Information System (INIS)

    Dong, Chunfa; Zhang, Xianglin; Cai, Hao

    2014-01-01

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications

  3. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    International Nuclear Information System (INIS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.

    2010-01-01

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO 3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichiacoli, Proteusvulgaris and Shigellasonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  4. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@gmail.co [Thapar University, School of Physics and Materials Science (India); Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2010-06-15

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO{sub 3} using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 {+-} 1.5 nm ({sigma} = 18.3%) and 31.1 {+-} 4.5 nm ({sigma} = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichiacoli, Proteusvulgaris and Shigellasonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  5. Antituberculous effect of silver nanoparticles

    International Nuclear Information System (INIS)

    Kreytsberg, G N; Gracheva, I E; Kibrik, B S; Golikov, I V

    2011-01-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  6. Antituberculous effect of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kreytsberg, G N; Gracheva, I E [Limited Liability Company ' Scientific and Production Association (NPO)' Likom' , 150049, Yaroslavl, Magistralnaya str., 32 (Russian Federation); Kibrik, B S [Yaroslavl State Medical Academy Russia, 150000, Yaroslavl, Revolutsionnaya str., 5 (Russian Federation); Golikov, I V, E-mail: likomm@yaroslavl.ru [Yaroslavl State Technical University Russia, 150023, Yaroslavl, Moskovskiy avenue, 88 (Russian Federation)

    2011-04-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  7. Silver Nanoparticles (AgNP impregnated filters in drinking water disinfection

    Directory of Open Access Journals (Sweden)

    Rus Alexandru

    2017-01-01

    Full Text Available This paper describes how simple portable devices could eliminate water pathogens by using Silver Nanoparticles, based on their antimicrobial properties. Recent studies indicated that silver nanoparticles can achieve up to 100% antibacterial activity removal. Results are showing that Silver Nanoparticles retention in the filter structure, E. coli bacteria removal, water quality and water flow rate must be evaluated as main efficiency indicators of the designed filters, in order to obtain the optimal filter. To apply the antimicrobial property of Silver in drinking-water treatment, a filter is produced using Additive Manufacturing techniques and coated with different concentrations of silver solutions.

  8. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles.

    Science.gov (United States)

    Ahmad, Tokeer; Wani, Irshad A; Manzoor, Nikhat; Ahmed, Jahangeer; Asiri, Abdullah M

    2013-07-01

    An eco friendly simple biosynthetic route was used for the preparation of monodisperse and highly crystalline gold and silver nanoparticles using cell free extract of fungus, Candida albicans. Transmission electron microscopic studies show the formation of gold and silver nanocrystals of average size of 5 nm and 30 nm with the specific surface areas of 18.9 m(2)/g and 184.4 m(2)/g respectively. The interaction of gold and silver nanoparticles with proteins has been formulated by FT-IR spectroscopy and thermal gravimetric analysis. The formation of gold and silver nanoparticles was also confirmed by the appearance of a surface plasmon band at 540 nm and 450 nm respectively. The antimicrobial activity of the synthesized gold and silver nanoparticles was investigated against both Staphylococcus aureus and Escherichia coli. The results suggest that these nanoparticles can be used as effective growth inhibitors against the test microorganisms. Greater bactericidal activity was observed for silver nanoparticles. The E. coli, a gram negative bacterium was found to be more susceptible to gold and silver nanoparticles than the S. aureus, a gram positive bacterium. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Can a novel silver nano coating reduce infections and maintain cell viability in vitro?

    Science.gov (United States)

    Qureshi, Ammar T; Landry, Jace P; Dasa, Vinod; Janes, Marlene; Hayes, Daniel J

    2014-03-01

    Herein we report a facile layer-by-layer method for creating an antimicrobial coating composed of silver nanoparticles on medical grade titanium test discs. Nanoscale silver nanoparticle layers are attached to the titanium orthopedic implant material via aminopropyltriethoxy silane crosslinker that reacts with neighboring silane moieties to create an interconnected network. A monolayer of silane, followed by a monolayer of silver nanoparticles would form one self-assembled layer and this process can be repeated serially, resulting in increased silver nanoparticles deposition. The release rate of silver ion increases predictably with increasing numbers of layers and at appropriate thicknesses these coatings demonstrate 3-4 log reduction of viable Escherichia coli and Staphylococcus aureus bacteria. Increasing the thickness of the coatings resulted in reduced bacterial colonization as determined by fluorescent staining and image analysis. Interestingly, the cytotoxicity of murine 3T3 cells as quantified by fluorescent staining and flow cytometry, was minimal and did not vary significantly with the coating thickness. Additionally, these coatings are mechanically stable and resist delamination by orthogonal stress test. This simple layer-by-layer coating technique may provide a cost-effective and biocompatible method for reducing microbial colonization of implantable orthopedic devices.

  10. Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent

    Science.gov (United States)

    Susilowati, E.; Maryani; Ashadi

    2018-04-01

    The present study we explore an environmentally friendly colloidal silver nanoparticles preparation using chitosan as reducing agent and stabilizer. It develops a new strategy on preparation of silver nanoparticles through the gel phase using sodium hydroxide (NaOH) as accelerator reagent. Sunlight irradiation was employed to assisted reducing process of silver ions to silver nanoparticles. Localized surface plasmon resonance (LSPR) phenomenon of silver nanoparticles was investigated using UV-Vis spectrophotometer. The shape and size of silver particles were analyzed using TEM. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 396.0–412.0 nm. The absorption peak of LSPR were affected by NaOH amount, time of sulight irradiation and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 5 to 8 nm as shown by TEM images. All colloidals were stable without any aggregation for 30 days after preparation.

  11. Synthesis and characterization of silver nanoparticles in natural rubber

    International Nuclear Information System (INIS)

    Abu Bakar, N.H.H.; Ismail, J.; Abu Bakar, M.

    2007-01-01

    Silver nanoparticles are formed in natural rubber matrix via photo reduction of film cast from natural rubber latex (NRL) containing silver salt. The resulting NR-Ag nanocomposite is characterized using TEM, XRD and UV spectroscopic techniques. The nanoparticles, diameter ranging between 4 and 10 nm, are dispersed within distinct interfaces which correspond to the inter-particle boundaries of the NRL particles that form the matrix. The average width of the interfaces is 8 nm. X-ray diffraction (XRD) analysis confirms the nanoparticles as metallic silver of the face-centered cubic type. UV-vis absorption spectra show peaks characteristic of the surface plasmon resonance of nano-sized silver. A comparison with the results of formation of silver, obtained under similar reduction condition, in a series of matrices namely de-proteinized natural rubber latex (DNRL), NRL containing sodium dodecyl sulfate (SDS), aqueous solutions of bovain serum albumin and SDS, suggests that the protein in natural rubber is responsible for the formation of stable silver nanoparticles in the natural rubber (NR) matrix

  12. Noble silver nanoparticles (AgNPs) synthesis and characterization ...

    African Journals Online (AJOL)

    Nanotechnology is rapidly growing with nanoparticles produced and utilized in a wide range of pharmaceutical and commercial products throughout the world. In this study, fig (Ficus carica) leaf extracts were used for ecofriendly extracellular synthesis of stable silver nanoparticles (AgNPs) by treating an aqueous silver ...

  13. Biosynthesis of silver nanoparticles by Leishmania tropica | Rahi ...

    African Journals Online (AJOL)

    A novel biosynthesis route for Silver Nanoparticles (Ag-NPs) was attempted in the present study using Leishmania tropica the causative agent of cutaneous leishmaniasis in different countries, particularly in Mediterranean region in Iraq. Silver nanoparticles were successfully synthesized from AgNO3 by reduction of ...

  14. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  15. Formation of silver microbelt structures by laser irradiation of silver nanoparticles in ethanol

    Directory of Open Access Journals (Sweden)

    Zamiri R

    2011-10-01

    Full Text Available Reza Zamiri1, Azmi Zakaria1,2, Mohd Shahril Husin1, Zaidan Abd Wahab1, Forough Kalaei Nazarpour3 1Department of Physics, Faculty of Science, 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 3Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: In the present work, we prepared silver nanoparticles by laser ablation of pure silver plate in ethanol and then irradiated the silver nanoparticles using a 532 nm Q-switched Nd:YAG pulsed laser. Transmission electron microscopic images of the sample after irradiation clearly showed formation of big structures, such as microrods and microbelts in ethanol. The obtained microbelts had a width of about 0.166 µm and a length of 1.472 µm. The reason for the formation of such a big structure is the tendency of the nanoparticles to aggregate in ethanol before irradiation, which causes fusion of the nanoparticles. Keywords: nanomaterial, laser ablation, nanoparticles

  16. Formation of carboxymethyl cellulose hydrogel containing silver nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seok; Kuang, Jia; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-12-15

    Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using AgNO{sub 3} aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into 1.0 x 10{sup -2} M AgNO{sub 3} solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

  17. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  18. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    Science.gov (United States)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  19. Self-supported silver nanoparticles containing bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Barud, Hernane S.; Barrios, Celina; Regiani, Thais; Marques, Rodrigo F.C.; Verelst, Marc; Dexpert-Ghys, Jeannette; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2008-01-01

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles

  20. Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Chen, Yu-Chun; Shyue, Jing-Jong

    2011-01-01

    This article presents an electrochemical discharge (ECD) method that consists of a combination of chemical methods and electric arc discharges. In the method, 140 V is applied to an Ag electrode from a DC power supply. The arc-discharge between the electrodes produces metallic silver nanoparticles and silver ions in the aqueous solution. Compared with the original arc discharge, this ECD method creates smaller nanoparticles, prevents clumping of the nanoparticles, and shortens the production time. The citrate ions also reduce the silver ions to silver nanoparticles. In addition, the citrate ions cap the surface of the produced silver nanoparticles and the zeta potential increases. In this article, the weight loss of the electrodes and the reduction of silver ions to silver nanoparticles as a function of citrate concentration and electric conductivity of the medium are discussed. Furthermore, the properties of the colloidal silver prepared with ECD are analyzed by UV–Vis spectroscopy, dynamic light scattering, electrophoresis light scattering, and scanning electron microscopy. Finally, a continuous production apparatus is presented for the continuous production of colloidal silver.

  1. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  2. Evaluation of silver nanoparticles as a possible coccidiostat in ...

    African Journals Online (AJOL)

    ... silver content of the livers of the silver nanoparticle group was 0.083 mg/kg compared to 0.001 mg/kg in the control group. The results of this study on the use of silver nanoparticles as a coccidiostat were therefore not conclusive, but holds promise so that further investigation is warranted. Keywords: Ag, protozoa, oocysts, ...

  3. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  4. Intracellular Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Sankaran MIRUNALINI

    2012-11-01

    Full Text Available The process of biosynthesis of silver nanoparticles is a simple, cost effective and eco-friendly approach. Biosynthesis of silver nanoparticles using some commonly available edible mushroom extracts and their antimicrobial activity was demonstrated in the current study. The formation of silver nanoparticles was confirmed by UV, FTIR and SEM and antibacterial activity was tested using disc diffusion method. From the results it is confirmed the successful formation of silver nanoparticles using mushroom extracts; they performed their role as a reducing and capping agent and also exhibited a potent antibacterial activity against S. aureus (gram positive bacteria. Thus the biosynthesis of silver nanoparticles using edible mushroom extract will deserve to be a good candidate as an antibacterial agent.

  5. Green Synthesis of Silver Nanoparticles Using Pinus eldarica Bark Extract

    Directory of Open Access Journals (Sweden)

    Siavash Iravani

    2013-01-01

    Full Text Available Recently, development of reliable experimental protocols for synthesis of metal nanoparticles with desired morphologies and sizes has become a major focus of researchers. Green synthesis of metal nanoparticles using organisms has emerged as a nontoxic and ecofriendly method for synthesis of metal nanoparticles. The objectives of this study were production of silver nanoparticles using Pinus eldarica bark extract and optimization of the biosynthesis process. The effects of quantity of extract, substrate concentration, temperature, and pH on the formation of silver nanoparticles are studied. TEM images showed that biosynthesized silver nanoparticles (approximately in the range of 10–40 nm were predominantly spherical in shape. The preparation of nano-structured silver particles using P. eldarica bark extract provides an environmentally friendly option, as compared to currently available chemical and/or physical methods.

  6. Human skin penetration of silver nanoparticles through intact and damaged skin

    International Nuclear Information System (INIS)

    Larese, Francesca Filon; D'Agostin, Flavia; Crosera, Matteo; Adami, Gianpiero; Renzi, Nadia; Bovenzi, Massimo; Maina, Giovanni

    2009-01-01

    There is a growing interest on nanoparticle safety for topical use. The benefits of nanoparticles have been shown in several scientific fields, but little is known about their potential to penetrate the skin. This study aims at evaluating in vitro skin penetration of silver nanoparticles. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. Physiological solution was used as receiving phase and 70 μg/cm 2 of silver nanoparticles coated with polyvinylpirrolidone dispersed in synthetic sweat were applied as donor phase to the outer surface of the skin for 24 h. The receptor fluid measurements were performed by electro thermal atomic absorption spectroscopy (ETAAS). Human skin penetration was also determined by using transmission electron microscope (TEM) to verify the location of silver nanoparticles in exposed membranes. Median silver concentrations of 0.46 ng cm -2 (range -2 (range 0.43-11.6) were found in the receiving solutions of cells where the nanoparticles solution was applied on intact skin (eight cells) and on damaged skin (eight cells), respectively. Twenty-four hours silver flux permeation in damaged skin was 0.62 ± 0.2 ng cm -2 with a lag time <1 h. Our experimental data showed that silver nanoparticles absorption through intact and damaged skin was very low but detectable, and that in case of damaged skin it was possible an increasing permeation of silver applied as nanoparticles. Moreover, silver nanoparticles could be detected in the stratum corneum and the outermost surface of the epidermis by electron microscopy. We demonstrated for the first time that silver applied as nanoparticles coated with polyvinylpirrolidone is able to permeate the damaged skin in an in vitro diffusion cell system

  7. Toxicity of silver nanoparticles in zebrafish models

    Energy Technology Data Exchange (ETDEWEB)

    Asharani, P V; Valiyaveettil, Suresh [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Wu Yilian; Gong Zhiyuan [Department of Biological Sciences, National University of Singapore, Science Drive 4, 117543 (Singapore)], E-mail: chmsv@nus.edu.sg

    2008-06-25

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag{sup +} ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  8. Toxicity of silver nanoparticles in zebrafish models

    International Nuclear Information System (INIS)

    Asharani, P V; Valiyaveettil, Suresh; Wu Yilian; Gong Zhiyuan

    2008-01-01

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag + ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development

  9. Spectroscopic analysis of the riboflavin-serum albumins interaction on silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Voicescu, Mariana, E-mail: voicescu@icf.ro; Angelescu, Daniel G. [Institute of Physical Chemistry ' Ilie Murgulescu' , Romanian Academy (Romania); Ionescu, Sorana [University of Bucharest, Department of Physical Chemistry (Romania); Teodorescu, Valentin S. [Institute of Atomic Physics, National Institute of Materials Physics (Romania)

    2013-04-15

    Spectrophotometric behavior of riboflavin (RF) adsorbed on silver nanoparticles as well as its interaction with two serum albumins, BSA and HSA, respectively, has been evidenced. The time evolution of the plasmonic features of the complexes formed by RF/BSA/HSA and Ag(0) nanoparticles having an average diameter of 10.0 {+-} 2.0 nm have been investigated by UV-Vis absorption spectroscopy. Using steady-state and time-resolved fluorescence spectroscopy, the structure, stability, and dynamics of the serum albumins have been studied. The efficiency of energy transfer process between RF and serum albumins on silver nanoparticles has been estimated. A reaction mechanism of RF with silver nanoparticles is also proposed and the results are discussed with relevance to the involvement of the silver nanoparticles to the redox process of RF and to the RF-serum albumins interaction into a silver nanoparticles complex.

  10. Spectroscopic analysis of the riboflavin—serum albumins interaction on silver nanoparticles

    Science.gov (United States)

    Voicescu, Mariana; Angelescu, Daniel G.; Ionescu, Sorana; Teodorescu, Valentin S.

    2013-04-01

    Spectrophotometric behavior of riboflavin (RF) adsorbed on silver nanoparticles as well as its interaction with two serum albumins, BSA and HSA, respectively, has been evidenced. The time evolution of the plasmonic features of the complexes formed by RF/BSA/HSA and Ag(0) nanoparticles having an average diameter of 10.0 ± 2.0 nm have been investigated by UV-Vis absorption spectroscopy. Using steady-state and time-resolved fluorescence spectroscopy, the structure, stability, and dynamics of the serum albumins have been studied. The efficiency of energy transfer process between RF and serum albumins on silver nanoparticles has been estimated. A reaction mechanism of RF with silver nanoparticles is also proposed and the results are discussed with relevance to the involvement of the silver nanoparticles to the redox process of RF and to the RF-serum albumins interaction into a silver nanoparticles complex.

  11. Tagetes erecta mediated phytosynthesis of silver nanoparticles: an eco-friendly approach

    Directory of Open Access Journals (Sweden)

    ANIKET K. GADE

    2012-11-01

    Full Text Available Dhuldhaj UP, Deshmukh SD, Gade AK, Yashpal M, Rai MK. 2012. Tagetes erecta mediated phytosynthesis of silver nanoparticles:an eco-friendly approach. Nusantara Bioscience 4: 109-112. Nanotechnology is a multidisciplinary field having applications in the various fields like medicine, pharmacy, engineering and biotechnology. An important step in nanotechnology is to develop simple and eco-friendly method for the nanomaterial synthesis. Here we describe simple and eco-friendly method for synthesis of silver nanoparticles by extract of Tagetes erecta plant leaves. The phytosynthesis (synthesis by plant of silver nanoparticles was detected by color change from light-green to dark-brown. Synthesis of silver nanoparticles was confirmed by UV-Vis spectrophotometry, further characterization includes nanoparticle tracking analysis system (NTA (LM20 and transmission electron microscopy (TEM. TEM analysis confirms the synthesis of the polydispersed spherical silver nanoparticles of 20-50 n

  12. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Katrine Bilberg

    2012-01-01

    Full Text Available The influence of water chemistry on characterised polyvinyl pyrrolidone- (PVP- coated silver nanoparticles (81 nm was investigated. NaCl solution series of 100–800 mg L−1 lead to initial and temporal increase in nanoparticles size, but agglomeration was limited. pH variation (5–8 had only minor influence on the hydrodynamic particle size. Acute toxicity of nanosivler to zebrafish (Danio rerio was investigated in a 48-hour static renewal study and compared with the toxicity of silver ions (AgNO3. The nanosilver and silver ion 48-hour median lethal concentration (LC50 values were 84 μg L−1 and 25 μg L−1, respectively. To investigate exposure-related stress, the fish behaviour was observed visually after 0, 3, 6, 12, 24, 27, 30, and 48 hours of both nanosilver and ionic silver treatments. These observations revealed increased rate of operculum movement and surface respiration after nanosilver exposure, suggesting respiratory toxicity. The present study demonstrates that silver nanoparticles are lethal to zebrafish.

  13. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    OpenAIRE

    Farzin Heravi; Mohammad Ramezani; Maryam Poosti; Mohsen Hosseini; Arezoo Shajiei; Farzaneh Ahrari

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extrac...

  15. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-01-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO 3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  16. Isotopically modified silver nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures

    Science.gov (United States)

    Croteau, Marie-Noële; Dybowska, Agnieszka D.; Luoma, Samuel N.; Misra, Superb K.; Valsami-Jones, Eugenia

    2014-01-01

    A major challenge in understanding the environmental implications of nanotechnology lies in studying nanoparticle uptake in organisms at environmentally realistic exposure concentrations. Typically, high exposure concentrations are needed to trigger measurable effects and to detect accumulation above background. But application of tracer techniques can overcome these limitations. Here we synthesised, for the first time, citrate-coated Ag nanoparticles using Ag that was 99.7 % 109Ag. In addition to conducting reactivity and dissolution studies, we assessed the bioavailability and toxicity of these isotopically modified Ag nanoparticles (109Ag NPs) to a freshwater snail under conditions typical of nature. We showed that accumulation of 109Ag from 109Ag NPs is detectable in the tissues of Lymnaea stagnalis after 24-h exposure to aqueous concentrations as low as 6 ng L–1 as well as after 3 h of dietary exposure to concentrations as low as 0.07 μg g–1. Silver uptake from unlabelled Ag NPs would not have been detected under similar exposure conditions. Uptake rates of 109Ag from 109Ag NPs mixed with food or dispersed in water were largely linear over a wide range of concentrations. Particle dissolution was most important at low waterborne concentrations. We estimated that 70 % of the bioaccumulated 109Ag concentration in L. stagnalis at exposures –1 originated from the newly solubilised Ag. Above this concentration, we predicted that 80 % of the bioaccumulated 109Ag concentration originated from the 109Ag NPs. It was not clear if agglomeration had a major influence on uptake rates.

  17. Theoretical Studies of Optical Properties of Silver Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Zhao-Wang, Wu; Li-Hua, Zhang; Jie, Zhang

    2010-01-01

    Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization. (fundamental areas of phenomenology(including applications))

  18. From silver nanoparticles to nanostructures through matrix chemistry

    International Nuclear Information System (INIS)

    Ayyad, Omar; Munoz-Rojas, David; Oro-Sole, Judith; Gomez-Romero, Pedro

    2010-01-01

    Direct in situ reduction of silver ions by a biopolymer such as agar, without any other reducing nor capping agent is shown in this article to lead either to nanoparticles (typically 12(2) nm in an optimized case) or to more complex nanostructures depending on the reaction conditions used. This approach takes advantage of the porous polymer lattice acting as a template and leads to hybrid Ag-Agar materials with long-term synergic stability. Silver acts as an antibacterial agent for agar whereas the biopolymer prevents agglomeration of the inorganic nanoparticles leading to a stable nanocomposite formed by a thermoreversible biopolymer from which silver nanoparticles can eventually be recovered.

  19. Biosynthesis of Silver Nanoparticles Using Extracts of Mexican Medicinal Plants

    Science.gov (United States)

    López, J. L.; Baltazar, C.; Torres, M.; Ruız, A.; Esparza, R.; Rosas, G.

    The biosynthesis of silver nanoparticles using an aqueous extract of Agastache mexicana and Tecoma stans was carried out. The AgNO3 concentration and extract concentration was varied to evaluate their influence on the nanoparticles characteristics such as size and shape. Several characterization techniques were employed. UV-Vis spectroscopy revealed the surface plasmon resonance in the range of 400-500 nm. The X-Ray diffraction results showed that the nanoparticles have a face-centered cubic structure. SEM results confirmed the formation of silver nanoparticles with spherical morphologies. Finally, the antibacterial activity of silver nanoparticles was evaluated against Escherichia coli bacteria.

  20. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    International Nuclear Information System (INIS)

    Shams, Gholamabbas; Ranjbar, Morteza; Amiri, Aliasghar

    2013-01-01

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant’s productions for human consumptions.

  1. Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen)

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Gholamabbas, E-mail: ghs@iaushiraz.net; Ranjbar, Morteza [Shiraz Branch, Islamic Azad University, Department of Physics (Iran, Islamic Republic of); Amiri, Aliasghar [Shiraz Branch, Islamic Azad University, Department of Chemistry (Iran, Islamic Republic of)

    2013-05-15

    The tremendous progress on nanoparticle research area has been made significant effects on the economy, society, and the environment. Silver nanoparticle is one of the most important particles in these categories. Silver nanoparticles can be converted to the heavy silver metal in water by oxidation. Moreover, in the high amounts of silver concentration, they will be accumulated in different parts of the plant. However, by changing the morphology of the plant, the production will be harmful for human consumptions. In this study, nano-powders with average 50 nm silver particles are mixed with deionized distilled water in a completely randomized design. Seven treatments with various concentrations of suspension silver nanoparticles were prepared and repeated in four different parts of the plant in a regular program of spraying. Samples were analyzed to study the growth indexes and concentration of silver in different parts of the plant. It was observed that with increasing concentration of silver nanoparticles on cucumber, the growth indexes (except pH fruit), and the concentration of silver heavy metal are increased significantly. The incremental concentration had the linear relationship with correlation coefficient 0.95 and an average of 0.617 PPM by increasing of each unit in one thousand concentration of nanosilver. Although, by increasing concentration of silver nanoparticles as spraying form, the plant morphological characteristics were improved, the concentration of silver heavy metal in various plant organs was increased. These results open a new pathway to consider the effect of nanoparticles on plant's productions for human consumptions.

  2. Controlled synthesis of colloidal silver nanoparticles in capillary micro-flow reactor

    International Nuclear Information System (INIS)

    He Shengtai; Liu Yulan; Maeda, Hideaki

    2008-01-01

    In this study, using a polytetrafluoroethylene (PTFE) capillary tube as a micro-flow reactor, well-dispersed colloidal silver nanoparticles were controllably synthesized with different flow rates of precursory solution. Scanning transmission electron microscopy images and UV-visible absorbance spectra showed that silver nanoparticles with large size can be prepared with slow flow rate in the PTFE capillary reactor. The effects of tube diameters on the growth of colloidal silver nanoparticles were investigated. Experiment results demonstrated that using tube with small diameter was more propitious for the controllable synthesis of silver nanoparticles with different sizes.

  3. Green synthesis of silver nanoparticle using Bambusa arundinacea leaves

    Science.gov (United States)

    Kataria, Bharat; Shyam, Vasvani; Kaushik, Babiya; Vasoya, Jaydeep; Joseph, Joyce; Savaliya, Chirag; Kumar, Sumit; Parikh, Sachin P.; Thakar, C. M.; Pandya, D. D.; Ravalia, A. B.; Markna, J. H.; Shah, N. A.

    2017-05-01

    The synthesis of nanoparticles using ecofriendly way is an interesting area in advance nanotechnology. Silver (Ag) nanoparticles are usually synthesized by chemicals route, which are quite flammable and toxic in nature. This study deals with a biosynthesis process (environment friendly) of silver nanoparticles using Bambusa arundinacea leaves for its antibacterial activity. The formation and characterization of AgNPs was confirmed by UV-Vis spectroscopy. Silver nanoparticles were successfully synthesized from AgNO3 through a simple green route using the latex of Bambusa arundinacea leaves as reducing as well as capping agent. Scanning Electron Microscopy (SEM) study indicates the formation of grains (particles) with different size and shape.

  4. Evaluation of Flexural Strength of Polymethyl Methacrylate modified with Silver Colloidal Nanoparticles subjected to Two Different Curing Cycles: An in vitro Study.

    Science.gov (United States)

    Munikamaiah, Ranganath L; Jain, Saket K; Pal, Kapil S; Gaikwad, Ajay

    2018-03-01

    Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles. Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine. Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group. The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis. The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.

  5. Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Gopinathan, Priya [Nanobiotechnology Laboratory, Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore, 641004 (India); Ashok, Anuradha M. [HRTEM facility, Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore, 641004 (India); Selvakumar, R., E-mail: selvabiotech@gmail.com [Nanobiotechnology Laboratory, Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore, 641004 (India)

    2013-07-01

    The present study was carried out to synthesize one dimensional silver nanoparticle impregnated flagellar bionanomaterial. Flagella was isolated from Salmonella typhimurium and depolymerised into flagellin monomers. The flagellin monomers were repolymerised again into flagella using suitable technique. The molecular weight of native (NF) and polymerized flagella (PF) was determined using polyacrylamide gel electrophoresis. The NF and PF were used as a template, over which silver nanoparticles were impregnated using in situ chemical reduction process. The synthesized flagellar-silver nanoparticle bionanomaterials were characterized using UV–vis, FT-IR Raman and XRD spectroscopy, and High resolution transmission electron microscopy (HR-TEM). The characterization studies confirmed the attachment of silver nanoparticles over flagella and repolymerised flagella. The size of the silver nanoparticles on the flagella and repolymerised flagella varied and was in the range of 3–11 nm. I–V characteristics of the bionanomaterials were analyzed using Kethley meter which indicated the increase of conductivity after impregnation of silver nanoparticles. The results indicated that flagellar-silver nanoparticle bionanomaterials can be used as a potential one dimensional bionanomaterials for various applications.

  6. Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial

    International Nuclear Information System (INIS)

    Gopinathan, Priya; Ashok, Anuradha M.; Selvakumar, R.

    2013-01-01

    The present study was carried out to synthesize one dimensional silver nanoparticle impregnated flagellar bionanomaterial. Flagella was isolated from Salmonella typhimurium and depolymerised into flagellin monomers. The flagellin monomers were repolymerised again into flagella using suitable technique. The molecular weight of native (NF) and polymerized flagella (PF) was determined using polyacrylamide gel electrophoresis. The NF and PF were used as a template, over which silver nanoparticles were impregnated using in situ chemical reduction process. The synthesized flagellar-silver nanoparticle bionanomaterials were characterized using UV–vis, FT-IR Raman and XRD spectroscopy, and High resolution transmission electron microscopy (HR-TEM). The characterization studies confirmed the attachment of silver nanoparticles over flagella and repolymerised flagella. The size of the silver nanoparticles on the flagella and repolymerised flagella varied and was in the range of 3–11 nm. I–V characteristics of the bionanomaterials were analyzed using Kethley meter which indicated the increase of conductivity after impregnation of silver nanoparticles. The results indicated that flagellar-silver nanoparticle bionanomaterials can be used as a potential one dimensional bionanomaterials for various applications.

  7. Influence of surfactant on the preparation of silver nanoparticles by polyol method

    International Nuclear Information System (INIS)

    Dung Dang, Thi My; Tuyet Le, Thi Thu; Dang, Mau Chien; Fribourg-Blanc, Eric

    2012-01-01

    In this study, silver nanoparticles were synthesized from silver nitrate via a polyol method in ambient atmosphere. In our synthesis route, polyvinylpyrrolidone (PVP) is used as both size controller and capping agent, ethylene glycol acts both as solvent and reducing agent. The obtained silver nanoparticles were characterized by ultraviolet-visible spectrophotometry which indicated the formation of nanoparticles. Investigation of Fourier transform infrared spectroscopy clearly demonstrated the coordination between silver nanoparticles and PVP. Transmission electron microscopy (TEM) contributed to the particle size analysis. The surface plasmon resonance peak in absorption spectra of silver colloidal solution showed absorption from 406 to 409 nm. The average size of the resulting silver nanoparticles was below 10 nm with a dependency on the PVP concentration. (paper)

  8. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells

    International Nuclear Information System (INIS)

    Asare, Nana; Instanes, Christine; Sandberg, Wiggo J.; Refsnes, Magne; Schwarze, Per; Kruszewski, Marcin; Brunborg, Gunnar

    2012-01-01

    Serious concerns have been expressed about potential risks of engineered nanoparticles. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines; including the potential effects on reproduction and fertility, are relevant for this risk evaluation. In this study, we examined effects of silver particles of nano- (20 nm) and submicron- (200 nm) size, and titanium dioxide nanoparticles (TiO 2 -NPs; 21 nm), with emphasis on reproductive cellular- and genotoxicity. Ntera2 (NT2, human testicular embryonic carcinoma cell line), and primary testicular cells from C57BL6 mice of wild type (WT) and 8-oxoguanine DNA glycosylase knock-out (KO, mOgg1 −/− ) genotype were exposed to the particles. The latter mimics the repair status of human testicular cells vs oxidative damage and is thus a suitable model for human male reproductive toxicity studies. The results suggest that silver nano- and submicron-particles (AgNPs) are more cytotoxic and cytostatic compared to TiO 2 -NPs, causing apoptosis, necrosis and decreased proliferation in a concentration- and time-dependent manner. The 200 nm AgNPs in particular appeared to cause a concentration-dependent increase in DNA-strand breaks in NT2 cells, whereas the latter response did not seem to occur with respect to oxidative purine base damage analysed with any of the particles tested.

  10. Bacterial resistance to silver nanoparticles and how to overcome it

    Science.gov (United States)

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  11. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium.

    Science.gov (United States)

    Bankura, K P; Maity, D; Mollick, M M R; Mondal, D; Bhowmick, B; Bain, M K; Chakraborty, A; Sarkar, J; Acharya, K; Chattopadhyay, D

    2012-08-01

    A simple one-step rapid synthetic route is described for the preparation of silver nanoparticles by reduction of silver nitrate (AgNO3) using aqueous dextran solution which acts as both reducing and capping agent. The formation of silver nanoparticles is assured by characterization with UV-vis spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The absorbance of the silver nanoparticles is observed at 423 nm. The AFM image clearly shows the surface morphology of the well-dispersed silver nanoparticles with size range of 10-60 nm. TEM images show that the nanoparticles are spherical in shape with ∼5-10 nm dimensions. The crystallinity of Ag nanoparticles is assured by XRD analysis. The antimicrobial activity of as synthesized silver nanoparticles is tested against the bacteria, Bacillus subtilis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth is inhibited by gradual reduction of the concentration of the silver nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Glass frits coated with silver nanoparticles for silicon solar cells

    International Nuclear Information System (INIS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-01-01

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells

  13. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  14. Green Synthesis of Silver Nanoparticles Using Avena sativa L. Extract

    Directory of Open Access Journals (Sweden)

    Nooshin Amini

    2017-02-01

    Full Text Available Objective(s: Nowadays, nanoparticles bio production, considering their performance in medicine and biological science, is increasing. Green synthesis of metal nanoparticles using organisms has emerged as a nontoxic and ecofriendly method for synthesis of metal nanoparticles The objectives of this study were the production of silver nanoparticles using Avena sativa L. extract and optimization of the biosynthesis process. The effects of quantity of substrate (silver nitrate (AgNo3 and temperature on the formation of silver nanoparticles are studied. Methods: In this work, silver nanoparticles were synthesized from an extract of Avena sativa L. at different temperatures (30° C, 60° C, 90° C  and AgNo3 concentrations( 1 mM, 2mM, 4mM . The morphology and size of the nanoparticles were determined using Scanning Electron Microscope (SEM and Dynamic Light Scattering (DLS. Results: SEM images showed that by increasing temperature nanoparticles size were decreased and by increasing concentrations of AgNo3 the number of nanoparticles was increased. Conclusions: The results indicated that by increasing the reaction temperature, the size of the nanoparticles would decrease. Also by increasing the concentrations of AgNo3, the amount of produced nanoparticles would be increased, but won't have a significant effect on its size. The preparation of nano- structured silver particles using Avena sativa L. extract provides an environmentally friendly option as compared to currently available chemical/ physical methods.

  15. Production of silver nanoparticles by laser ablation in open air

    International Nuclear Information System (INIS)

    Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J.

    2015-01-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm

  16. Production of silver nanoparticles by laser ablation in open air

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo, 36310 (Spain); Lusquiños, F.; Riveiro, A.; Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9. Vigo, 36310 (Spain)

    2015-05-01

    Highlights: • Silver nanoparticles have been obtained by laser ablation of metallic Ag in open air using nanosecond laser. • The continuous process enables increasing the production yield. • The obtained particles are rounded shape with narrow size distribution. - Abstract: Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm.

  17. Synthesis of silver nanoparticle using Portulaca oleracea L. extracts

    Directory of Open Access Journals (Sweden)

    Shahbazi Nafeseh

    2013-09-01

    Full Text Available   Objective(s: To evaluate the influences of aqueous extracts of plant parts (stem, leaves, and root of Portulaca oleracea L. on bioformation of silver nanoparticles (AgNPs.   Materials and Methods: Synthesis of silver nanoparticles by different plant part extracts of Portulaca oleracea L. was carried out and formation of nanoparticles were confirmed and evaluated using UV-Visible spectroscopy and AFM. Results: The plant extracts exposed with silver nitrate showed gradual change in color of the extract from yellow to dark brown. Different silver nanoperticles were formed using extracts of different plant parts. Conclusion: It seems that the plant parts differ in their ability to act as a reducing and capping agent.

  18. Biosynthesis of silver nanoparticles | Silambarasan | African Journal ...

    African Journals Online (AJOL)

    friendly and exciting approach. Several microorganisms have been known to produce silver nanoparticles (Ag NPs), when silver molecules are exposed either intracellularly or extracellularly. Intracellular synthesis may accomplish a better ...

  19. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Balaji Kulandaivelu

    Full Text Available The biosynthesis of nanoparticles has been proposed as an environmental friendly and cost effective alternative to chemical and physical methods. Silver nanoparticles are biologically synthesized and characterized were used in the study. The invitro cytotoxic effect of biologically synthesized silver nanoparticles against MCF-7 cancer cell lines were assessed. The cytotoxic effects of the silver nanoparticles could significantly inhibited MCF-7 cancer cell lines proliferation in a time and concentration-dependent manner by MTT assay. Acridine orange, ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver nanoparticles ranging from 1 to 100 μg/mL. At 100 μg/mL concentration, the silver nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Western blot analysis has revealed that nanoparticle was able to induce cytochrome c release from the mitochondria, which was initiated by the inhibition of Bcl-2 and activation of Bax. Thus, the results of the present study indicate that biologically synthesized silver nanoparticles might be used to treat breast cancer. The present studies suggest that these nanoparticles could be a new potential adjuvant chemotherapeutic and chemo preventive agent against cytotoxic cells. However, it necessitates clinical studies to ascertain their potential as anticancer agents.

  20. Novel method for synthesis of silver nanoparticles and their application on wool

    Energy Technology Data Exchange (ETDEWEB)

    Boroumand, Majid Nasiri [Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Montazer, Majid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Dresden (Germany); Liesiene, Jolanta [Faculty of Chemical Technology, Kaunas University of Technology, Kaunas (Lithuania); Šaponjic, Zoran [Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade (Serbia); Dutschk, Victoria, E-mail: v.dutschk@utwente.nl [Faculty of Engineering Technology, University of Twente, Enschede (Netherlands)

    2015-08-15

    Graphical abstract: Tentative mechanism for reduction of Ag{sup +} by polyphenols having two hydroxy groups in ortho-position – the use of silver nanoparticles and an aqueous solution of extracted dye from Pomegranate peel as a reducing agent for synthesis silver nanoparticles from silver nitrate. - Highlights: • A new method for the synthesis of silver nanoparticles suitable to impart antibacterial properties of wool fabric proposed. • Silver nanopartilces were synthesized by a biochemical reduction method. • An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for synthesis of silver nanoparticles from silver nitrate. - Abstract: In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (R{sub Dye}/{sub Ag} = [Dye]/[AgNO{sub 3}]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying

  1. Novel method for synthesis of silver nanoparticles and their application on wool

    International Nuclear Information System (INIS)

    Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria

    2015-01-01

    Graphical abstract: Tentative mechanism for reduction of Ag + by polyphenols having two hydroxy groups in ortho-position – the use of silver nanoparticles and an aqueous solution of extracted dye from Pomegranate peel as a reducing agent for synthesis silver nanoparticles from silver nitrate. - Highlights: • A new method for the synthesis of silver nanoparticles suitable to impart antibacterial properties of wool fabric proposed. • Silver nanopartilces were synthesized by a biochemical reduction method. • An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for synthesis of silver nanoparticles from silver nitrate. - Abstract: In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (R Dye / Ag = [Dye]/[AgNO 3 ]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy

  2. Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin

    Science.gov (United States)

    Janardhanan, A.; Roshmi, T.; Varghese, Rintu T.; Soniya, E. V.; Mathew, Jyothis; Radhakrishnan, E. K.

    2013-04-01

    This study was aimed to explore the nanoparticle synthesizing properties of a silver resistant Bacillus sp. isolated from a marine water sample. The 16SrDNA sequence analysis of the isolate proved it as a Bacillus strain. Very interestingly, the isolate was found to have the ability to form intracellular silver nanoparticles at room temperature within 24 hours. This was confirmed by the UV-Vis absorption analysis which showed a peak at 430 nm corresponding to the plasmon absorbance of silver nanoparticles. Further characterization of the nanoparticles was carried out by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. The presence of silver nanoparticles with the size less than 100 nm was confirmed. These particles were found to be extremely stable as confirmed by the TEM analysis after three months of purification. So, the current study is the demonstration of an efficient synthesis of stable silver nanoparticles by a marine Bacillus strain.

  3. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    International Nuclear Information System (INIS)

    Mohapatra, Bandita; Kuriakose, Sini; Mohapatra, Satyabrata

    2015-01-01

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO 3 concentration. • Increase in AgNO 3 concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO 3 solution. The effects of AgNO 3 concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO 3 concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO 3 concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods

  4. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Bandita [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Kuriakose, Sini [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India)

    2015-07-15

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO{sub 3} concentration. • Increase in AgNO{sub 3} concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO{sub 3} solution. The effects of AgNO{sub 3} concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO{sub 3} concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO{sub 3} concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.

  5. Titanium oxide nanoparticles as additives in engine oil

    Directory of Open Access Journals (Sweden)

    Meena Laad

    2018-04-01

    Full Text Available This research study investigates the tribological behaviour of titanium oxide (TiO2 nanoparticles as additives in mineral based multi-grade engine oil. All tests were performed under variable load and varying concentrations of nanoparticles in lubricating oil. The friction and wear experiments were performed using pin-on-disc tribotester. This study shows that mixing of TiO2 nanoparticles in engine oil significantly reduces the friction and wear rate and hence improves the lubricating properties of engine oil. The dispersion analysis of TiO2 nanoparticles in lubricating oil using UV spectrometer confirms that TiO2 nanoparticles possess good stability and solubility in the lubricant and improve the lubricating properties of the engine oil. Keywords: Titanium oxide, Nanoparticles, UV spectrometer, Tribotester, Engine oil

  6. Size-dependent structure of silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  7. Nanoecotoxicity assessment of activated carbon from sugarcane bagasse modified with silver nanoparticles

    International Nuclear Information System (INIS)

    Goncalves, Suely Patricia Costa; Strauss, Mathias; Delite, Fabricio Souza; Martinez, Diego Stefani Teodoro; Clemente, Zaira; Castro, Vera Lucia Scherholz Salgado

    2016-01-01

    Full text: In this work, we performed the preparation and characterization of the activated carbon obtained from pyrolyzed sugarcane bagasse (ACBP) and its modification with silver nanoparticles with diameter around 35 nm (ACBP-AgNPs). The focus was on the correlations between the material physico-chemical properties and its adverse effects/ecotoxicity on three environmental exposure bioindicators (i.e. E. coli, Hydra attenuata, and Lycopersicum esculentum) based on its possible life cycle. The materials were well characterized using integrated techniques (e.g. TEM, SEM-EDS, XPS, BET, DLS, and ICP-OES). The presence of AgNPs on the activated carbon surface was responsible for microbial growth inhibition (E. coli). Besides, ACBP modification with silver nanoparticles has not altered its high adsorption capacity of organic pollutant models (i.e. phenol and methylene blue), making this material promising to environmental remediation and water purification. However, ACPB-AgNPs showed environmental risks, caused a moderate toxicity to the aquatic organism (H. attenuata, 1.94 mg L -1 , LC50) and delayed the tomato (L. esculentum) root development, including oxidative stress induction. Finally, to develop efficient, innovative and safe nanomaterials for environmental remediation technologies, the combination/integration of material physical and chemical methodologies with biological assays (ecotoxicity assessment) appears as a promising and necessary strategy towards a sustainable nanotechnology. (author)

  8. Nanoecotoxicity assessment of activated carbon from sugarcane bagasse modified with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Suely Patricia Costa; Strauss, Mathias; Delite, Fabricio Souza; Martinez, Diego Stefani Teodoro, E-mail: suely.goncalves@lnnano.cnpem.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Clemente, Zaira; Castro, Vera Lucia Scherholz Salgado [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Campinas, SP (Brazil)

    2016-07-01

    Full text: In this work, we performed the preparation and characterization of the activated carbon obtained from pyrolyzed sugarcane bagasse (ACBP) and its modification with silver nanoparticles with diameter around 35 nm (ACBP-AgNPs). The focus was on the correlations between the material physico-chemical properties and its adverse effects/ecotoxicity on three environmental exposure bioindicators (i.e. E. coli, Hydra attenuata, and Lycopersicum esculentum) based on its possible life cycle. The materials were well characterized using integrated techniques (e.g. TEM, SEM-EDS, XPS, BET, DLS, and ICP-OES). The presence of AgNPs on the activated carbon surface was responsible for microbial growth inhibition (E. coli). Besides, ACBP modification with silver nanoparticles has not altered its high adsorption capacity of organic pollutant models (i.e. phenol and methylene blue), making this material promising to environmental remediation and water purification. However, ACPB-AgNPs showed environmental risks, caused a moderate toxicity to the aquatic organism (H. attenuata, 1.94 mg L{sup -1}, LC50) and delayed the tomato (L. esculentum) root development, including oxidative stress induction. Finally, to develop efficient, innovative and safe nanomaterials for environmental remediation technologies, the combination/integration of material physical and chemical methodologies with biological assays (ecotoxicity assessment) appears as a promising and necessary strategy towards a sustainable nanotechnology. (author)

  9. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L.

    Directory of Open Access Journals (Sweden)

    Fatima Abu Bakar

    2011-08-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM, X-ray diffraction (XRD and UV–Visible (UV-Vis spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10–30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0.

  10. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  11. Assessing antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp

    Directory of Open Access Journals (Sweden)

    Mahmood Nafisi Bahabadi

    2016-04-01

    Full Text Available Background: Nanotechnology is a field of applied science and technology covering a broad range of topics. Use of nanotechnology and especially silver nanoparticles in control of bacterial diseases and infections has been studied in the recent years. The aim of the present study was to investigate the in vitro antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp. Materials and methods: In this research, first, the antibacterial effects of silver nanoparticles against mentioned bacteria were evaluated by microdilution method in Broth medium. After confidence of inhibitory effect of colloidal silver nanoparticles, antibacterial effect of filter media coated with silver nanoparticles was evaluated via in vitro microbiology tests (zone of inhibition test and test tube test. Results: Present study showed that colloidal silver nanoparticles have good antimicrobial effects against tested bacteria, so that MIC and MBC of silver nanoparticles for Bacillus spp. were calculated 3.9 and 31.25 mg/L, respectively. Also significant decrease was observed in bacterial growth after exposure to filter media coated with silver nanoparticles in test tube test and  zone of inhibition test (P≤ 5%. Conclusion: The results of this research indicate that filter media coated with silver nanoparticles have considerable antimicrobial effects; therefore they could possibly be used as excellent antibacterial water filters and would have several applications in other sectors.

  12. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics

    International Nuclear Information System (INIS)

    Lee, Kwi Jong; Jun, Byung Ho; Choi, Junrak; Lee, Young Il; Joung, Jaewoo; Oh, Yong Soo

    2007-01-01

    In this study, we attempted to synthesize organic-soluble silver nanoparticles in the concentrated organic phase with an environmentally friendly method. The fully organic phase system contains silver acetate as a silver precursor, oleic acid as both a medium and a capping molecule, and tin acetate as a reducing agent. Monodisperse silver nanoparticles with average diameters of ca. 5 nm can be easily synthesized at large scale. Only a small usage of tin acetate ( 90%). Also, it was investigated that the residual tin atom does not exist in the synthesized silver nanoparticles. This implied that tin acetate acts as a reducing catalyst

  13. Sustainability of silver nanoparticles in solutions and polymer materials

    International Nuclear Information System (INIS)

    Khaydarov, R.R.; Malikov, Sh.; Khaydarov, R.A.; Mironov, V.V.

    2006-01-01

    The technology of obtaining stable silver nanoparticles in solutions and composite materials for attainment of antimicrobial and antifungal properties to different surfaces has been developed. The shape of particles is spherical, diameter is about 5 nm. Various concentrations of silver nanoparticles have been deposited onto surfaces of different materials (cotton and synthetic fabrics, fibroid sorbents and polymer materials). Different ways of treatment and densities of nanoparticles on the treated surface have been studied during 6 months with respect to the best sustainability. In order to prevent agglomeration of obtained metal nanoparticles on the surface of materials treated, stabilizing reagents (ethylene glycol, formic acid, sodium dodecyl sulphate, etc.) have been used and their relative efficacy has been examined. Residual concentrations of the nanoparticles on various fabrics after 1, 3, 5 and 10 cycles of washing have been also studied. The treated fabrics keep their antibacterial properties after at least 3 times of laundering. The best finishing process to attach silver nanoparticles combination to various materials has been compared with biocidal properties of such antibacterial agents as metal salt solutions and zinc pyrithione.The possibility of treatment of nuclear track membranes by silver nanoparticles in order to prevent microbial growth on the surface of membranes has been discussed. (author)

  14. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    International Nuclear Information System (INIS)

    Kemp, Melissa M; Linhardt, Robert J; Kumar, Ashavani; Ajayan, Pulickel; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Mousa, Shaker A

    2009-01-01

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.

  15. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Melissa M; Linhardt, Robert J [Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Kumar, Ashavani; Ajayan, Pulickel [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Mousa, Shaker A, E-mail: Shaker.mousa@acphs.ed [Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208 (United States)

    2009-11-11

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.

  16. Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    Science.gov (United States)

    Stevenson, Amadeus PZ; Blanco Bea, Duani; Civit, Sergi; Antoranz Contera, Sonia; Iglesias Cerveto, Alberto; Trigueros, Sonia

    2012-02-01

    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies. PACS: 81.07.-b; 81.16.Be; 82.70.Dd.

  17. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    Pure silver nanoparticles in double distilled water were generated via simple physical method using pure (99.9%) silver wires with 0.2 mm diameter. These wires have been exploded in water by bringing them into sudden contact with pure (99.9%) silver plate when subjected to a potential difference of 36 V DC. High current.

  18. Direct synthesis of silver nanoparticles in ionic liquid

    International Nuclear Information System (INIS)

    Corrêa, Cíntia M.; Bizeto, Marcos A.; Camilo, Fernanda F.

    2016-01-01

    Ionic liquids have structural organization at nanoscale that can trigger the spontaneous ordering of structures in nanoscopic range. Due to this characteristic, several metal nanoparticles have been prepared in this media. In this paper, we describe the direct preparation of silver nanoparticles in the following imidazolium ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and in citrate tetrabutylammonium, that is an ionic liquid that acts as solvent and reducing agent at the same time. We also evaluated the morphology of the nanoparticles and the stability of the dispersions. Spherical silver nanoparticles with surface Plasmon bands in the range of 400–430 nm were produced in all the ionic liquids, with the only exception for the 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide that produced a black precipitate. The best results were obtained by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and citrate tetrabutylammonium ionic liquids. The former resulted in concentrated spherical silver nanoparticles dispersion (ca. 1.0 mM of Ag) with diameters ranging from 6 to 12 nm and by adding polyvinylpyrrolidone (PVP) to the dispersions they became stable for at least 1 month. The citrate tetrabutylammonium ionic liquid produced even more concentrated dispersion of spherical silver nanoparticles with diameters ranging from 2 to 6 nm. These dispersions were quite stable without the need of PVP, since the Plasmon band in the electronic absorption spectra remained unaltered for months after the preparation. The citrate tetrabutylammonium ionic liquid offers a slow kinetic for the silver nanoparticle formation as the citrate is a milder reducing agent than borohydride.Graphical Abstract

  19. Direct synthesis of silver nanoparticles in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, Cíntia M.; Bizeto, Marcos A.; Camilo, Fernanda F., E-mail: ffcamilo@unifesp.br [Universidade Federal de São Paulo, Laboratório de Materiais Híbridos, Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (Brazil)

    2016-05-15

    Ionic liquids have structural organization at nanoscale that can trigger the spontaneous ordering of structures in nanoscopic range. Due to this characteristic, several metal nanoparticles have been prepared in this media. In this paper, we describe the direct preparation of silver nanoparticles in the following imidazolium ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and in citrate tetrabutylammonium, that is an ionic liquid that acts as solvent and reducing agent at the same time. We also evaluated the morphology of the nanoparticles and the stability of the dispersions. Spherical silver nanoparticles with surface Plasmon bands in the range of 400–430 nm were produced in all the ionic liquids, with the only exception for the 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide that produced a black precipitate. The best results were obtained by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and citrate tetrabutylammonium ionic liquids. The former resulted in concentrated spherical silver nanoparticles dispersion (ca. 1.0 mM of Ag) with diameters ranging from 6 to 12 nm and by adding polyvinylpyrrolidone (PVP) to the dispersions they became stable for at least 1 month. The citrate tetrabutylammonium ionic liquid produced even more concentrated dispersion of spherical silver nanoparticles with diameters ranging from 2 to 6 nm. These dispersions were quite stable without the need of PVP, since the Plasmon band in the electronic absorption spectra remained unaltered for months after the preparation. The citrate tetrabutylammonium ionic liquid offers a slow kinetic for the silver nanoparticle formation as the citrate is a milder reducing agent than borohydride.Graphical Abstract.

  20. Effects of Prolonged Silver Nanoparticle Exposure on the Contextual Cognition and Behavior of Mammals

    Directory of Open Access Journals (Sweden)

    Anna Antsiferova

    2018-04-01

    Full Text Available Silver nanoparticles have been widely used in the lighting and food industries, in medicine, and in pharmaceutics as an antiseptic agent. Recent research demonstrates that, after prolonged oral administration, silver nanoparticles may cross the blood-brain barrier and accumulate in the brain in rather high amounts. In ex vivo experiments, it has also been shown that silver nanoparticles demonstrate neurotoxicity. The objective of this work was to answer the questions whether silver nanoparticles change cognitive and behavioral functions of mammals after prolonged administration if silver nanoparticles have accumulated in the brain. C57Bl/6 male mice were orally exposed to PVP-coated silver nanoparticles daily for 30, 60, 120 and 180 days. Control mice were exposed to distilled water. After that they were tested in the Open Field, Elevated Plus Maze, Light-Dark Box and contextual fear conditioning task. The data have shown that the experimental mice went through three periods of switching in the behavior caused by adaptation to the toxic silver nanoparticles: anxiety, appearance of research instinct and impairment of long-term memory. This provides evidence of the hazardous effect of silver nanoparticles, which appears after long periods of silver nanoparticle oral administration.

  1. Silver Nanoparticles as Potential Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Gianluigi Franci

    2015-05-01

    Full Text Available Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.

  2. Silver nanoparticles as potential antibacterial agents.

    Science.gov (United States)

    Franci, Gianluigi; Falanga, Annarita; Galdiero, Stefania; Palomba, Luciana; Rai, Mahendra; Morelli, Giancarlo; Galdiero, Massimiliano

    2015-05-18

    Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.

  3. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  4. Effets of Silver Salt Concentrations on Green Synthesis of Silver Nanoparticles Using the Plant Nigella Saliva

    Directory of Open Access Journals (Sweden)

    M.R. Saeri

    2016-03-01

    Full Text Available Bio-inspired silver nanoparticles were synthesized with the aid of a novel method, using leaves of the plant Nigella sativa. After drying the leaves in air, they were first sweltered in boiling distilled water and the liquid was filtered subsequently. The result was the brothused to reduce solutions including various concentrations of silver nitrate in a proper amount of pH. The displayed UV–visible spectra identified formation of silver nanoparticles whenever the colorless initial acclimated mixture turned brown. The centrifuged powder samples were examined using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (FESEM and energy dispersive X-ray diffraction analysis (EDX methods. The results clearly revealed that the final particles of precipitated powder are high purity agglomerates of silver nanoparticles. Besides, the effects of various amounts of the silver salt on particle size of nano silver were studied, using a particle size analyzer. FTIR results also indicated the role of different functional groups in the synthetic process.

  5. Improving the Vase life of Cut Carnation ‘Tempo’ (Dianthus carryophyllusL. Flower by Silver Thiosulphate and Silver Nano-Particles

    Directory of Open Access Journals (Sweden)

    D. Hashemabadi

    2014-08-01

    Full Text Available Nanometer-sized silver particle can be act as an anti-microbial compound. Thus, in this research, the efficacy of silver thiosulphate and silver nano-particles as antimicrobial agents in extending the vase-life of cut carnation flowers was evaluated. A factorial experiment carried out based on randomized completely blocks design with two factors: silver thiosulphate (0, 0.1, 0.2 and 0.3 mM and silver nano-particles (0, 5, 10 and 15 mg/L. Mean comparison of the data showed that the combined treatments of 0.3 mM silver thiosulphate + 15 mg/L silver nano-particles had the highest vase life, water uptake and super oxide dismutase enzyme. Thus, the mentioned above treatment was proposed to increase prolong vase life and improvement of water relations and control of stem end blockage. Based to results of this study, silver thiosulphate and silver nano-particles can be used for increasing postharvest longevity of cut carnation "Tempo".

  6. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  7. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shibin [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Shi Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China)]. E-mail: gshi@tsinghua.edu.cn

    2007-04-15

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles.

  8. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    International Nuclear Information System (INIS)

    Wang Shibin; Shi Gaoquan

    2007-01-01

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles

  9. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds

    Directory of Open Access Journals (Sweden)

    Ixtepan-Turrent Liliana

    2011-08-01

    Full Text Available Abstract The advance in nanotechnology has enabled us to utilize particles in the size of the nanoscale. This has created new therapeutic horizons, and in the case of silver, the currently available data only reveals the surface of the potential benefits and the wide range of applications. Interactions between viral biomolecules and silver nanoparticles suggest that the use of nanosystems may contribute importantly for the enhancement of current prevention of infection and antiviral therapies. Recently, it has been suggested that silver nanoparticles (AgNPs bind with external membrane of lipid enveloped virus to prevent the infection. Nevertheless, the interaction of AgNPs with viruses is a largely unexplored field. AgNPs has been studied particularly on HIV where it was demonstrated the mechanism of antiviral action of the nanoparticles as well as the inhibition the transmission of HIV-1 infection in human cervix organ culture. This review discusses recent advances in the understanding of the biocidal mechanisms of action of silver Nanoparticles.

  10. Radiation Synthesis of PVA/ Chitosan Membranes Containing Silver Nanoparticles for Biomedical Applications

    International Nuclear Information System (INIS)

    Elbarbary, A.M.; El-Sawy, N.M.

    2015-01-01

    Silver Nanoparticles (AgNPs) were synthesized by γ-rays of polyvinyl alcohol/ chitosan (PVA/ CS) membranes containing silver nitrate (AgNO ) with promising antimicrobial and biomedical applications. The synthesized silver nanoparticles characterized by Ultra Violet spectroscopy (UV), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV studies showed a strong peak around λmax at 420 nm. A uniform distribution of silver nanoparticles inside PVA/ CS membranes was achieved by TEM investigation. The prepared silver nanoparticles showed good antimicrobial activity. The membranes containing AgNPs showed non-thrombogenicity effect and slightly haemolytic potential. The prepared membranes containing AgNPs had promising use in biomedical applications.

  11. A facile route to synthesize nanogels doped with silver nanoparticles

    Science.gov (United States)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  12. Controlled Deposition of Tin Oxide and Silver Nanoparticles Using Microcontact Printing

    Directory of Open Access Journals (Sweden)

    Joo C. Chan

    2015-02-01

    Full Text Available This report describes extensive studies of deposition processes involving tin oxide (SnOx nanoparticles on smooth glass surfaces. We demonstrate the use of smooth films of these nanoparticles as a platform for spatially-selective electroless deposition of silver by soft lithographic stamping. The edge and height roughness of the depositing metallic films are 100 nm and 20 nm, respectively, controlled by the intrinsic size of the nanoparticles. Mixtures of alcohols as capping agents provide further control over the size and shape of nanoparticles clusters. The distribution of cluster heights obtained by atomic force microscopy (AFM is modeled through a modified heterogeneous nucleation theory as well as Oswald ripening. The thermodynamic modeling of the wetting properties of nanoparticles aggregates provides insight into their mechanism of formation and how their properties might be further exploited in wide-ranging applications.

  13. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode.

    Science.gov (United States)

    Palanisamy, Selvakumar; Karuppiah, Chelladurai; Chen, Shen-Ming

    2014-02-01

    The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Green synthesis of silver nanoparticles and biopolymer ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... Keywords. Biogenic silver nanoparticles; biopolymer nanocomposites; nanoparticles stability; ... Production of nanomaterials by using living organisms of plant-based ... 2.1b Microorganisms and cell culture: The evaluation of.

  15. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Zhihui [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Wang, Zhihua [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Sun, Lei, E-mail: sunlei@henu.edu.cn [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Binjie [Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng 475004 (China); Zhao, Yanbao [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. - Highlights: • Dispersed Ag/PAA NPs with small size were synthesized. • Ag/PAA NPs exhibited excellent antimicrobial properties. • Interaction mechanism between Ag/PAA NPs and bacteria was verified.

  16. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities

    International Nuclear Information System (INIS)

    Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao

    2014-01-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. - Highlights: • Dispersed Ag/PAA NPs with small size were synthesized. • Ag/PAA NPs exhibited excellent antimicrobial properties. • Interaction mechanism between Ag/PAA NPs and bacteria was verified

  17. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-01-01

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  18. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil)

    2014-03-15

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  19. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    Science.gov (United States)

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  20. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Piperidine adsorption on two different silver electrodes: A combined surface enhanced Raman spectroscopy and density functional theory study

    International Nuclear Information System (INIS)

    Hao Yanling; Fang Yan

    2007-01-01

    The surface enhanced Raman scattering (SERS) spectra of piperidine in silver colloid solution, on roughened silver electrode and on roughened silver electrode modified with silver nanoparticles were studied, and the high-quality SERS spectra of piperidine on roughened silver electrode modified with silver nanoparticles were obtained for the first time. Surface selection rules derived from the EM enhancement model were employed to deduce piperidine orientations on the different surfaces. On the basis of this, two models of piperidine adsorbed on the surface of the silver nanoparticles were built, and DFT-B3PW91/LanL2dz was applied to calculate the Raman frequencies. It proves that, at higher potential values, the piperidine is perpendicularly standing on the roughened silver electrode surface though its lone-electron pair, but in silver colloid solution and on the silver nanoparticles modified silver electrode the piperidine molecular lies flat on the silver surface. In the meantime, the potential dependent SERS of piperidine on the modified electrode were studied

  2. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium.

    Science.gov (United States)

    Dobrucka, Renata; Długaszewska, Jolanta

    2015-06-01

    Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.

  3. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes

    NARCIS (Netherlands)

    Shao, J.; Yu, N.; Kolwijck, E.; Wang, B.; Tan, K.W.; Jansen, J.A.; Walboomers, X.F.; Yang, F.

    2017-01-01

    AIM: To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS: Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and

  4. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    Science.gov (United States)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  5. Characterization and Biocompatibility of Chitosan Gels with Silver and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    C. Sámano-Valencia

    2014-01-01

    Full Text Available The presence of bacterial resistance to antibiotics is a very important issue and the search of new alternatives is necessary. In this work, a combination of chitosan gel with silver or gold nanoparticles was prepared and characterized using thermal, rheology, bactericide, and biocompatibility analyses. ESEM images were also taken to visualize the incorporation of the nanoparticles into the gel matrix. Thermal analysis showed a better thermal stability in the chitosan-gold nanoparticles gels compared to the chitosan-silver nanoparticles gels. Rheology analyses showed that the viscosity of the gels decreased when velocity increased and there were differences in viscosity when silver and gold nanoparticles concentrations change. ESEM images showed the presence of agglomerates of silver and gold nanoparticles into the gel matrix with a good distribution; in some cases the formation of microstructures was found. Bactericide results show that these materials present an antibacterial activity against S. aureus, S. mutans, and E. coli. The biocompatibility test showed neither negative reaction nor wound healing delay after the application of the gels in an in vivo test. The gels with silver and gold nanoparticles could be used to treat wound infections in oral or skin applications.

  6. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects

    Science.gov (United States)

    Prabhu, Sukumaran; Poulose, Eldho K.

    2012-10-01

    Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.

  7. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Silver nanoparticles – a material of the future…?

    Directory of Open Access Journals (Sweden)

    Pulit-Prociak Jolanta

    2016-01-01

    Full Text Available The paper presents properties of nanomaterials and methods of their principal applications. Environmental aspects of using nanomaterials and reasons for their toxicity are also reviewed. The vast part of the paper is devoted to properties, application and market of silver nanoparticles. Their biocidal activity is clarified. However, silver nanoparticles may cause environmental pollution. Reasons for their toxicity have been also described.

  9. Kinetic formation of silver-copper nanoparticles and its characterization

    Science.gov (United States)

    Zulkafi, Nurul Hikmah; Idrus, Nor Faeqah; Jai, Junaidah; Hadi, Abdul

    2017-12-01

    A study of the kinetic formation of silver-copper nanoparticles in aqueous medium on the basis of size distribution and its characterization has been carried out and reported in this paper. The Ag-Cu nanoparticles were synthesized through polyol method that using Ethylene Glycol (H2C6O12) as a reduction agent and solvent and Polyoxyethylene-(80)-Sorbitan Monooleate (Tween 80) as a stabilizer. The kinetic formation of Ag-Cu nanoparticles was observed using Dynamic Light Scattering (DLS) and characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The XRD analysis results confirmed that size distribution was strongly dependent on molarity of precursors of silver (AgNO3) and copper (Cu(NO3)2.3H2O). The FESEM and TEM analysis indicated the existence of Ag and Cu nanoparticles in the core-shell shape. The silver-copper nanoparticles were spherical and uniform particles size with the average size of about 28 nm and 38 nm for silver and copper, respectively. DLS observation showed the growth of nanoparticles at the temperature of 140°C as the effect of reaction time at 1, 2, 3, 4 and 5 hours.

  10. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    International Nuclear Information System (INIS)

    Garza-Navarro, Marco; Torres-Castro, Alejandro; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-01

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  11. Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity

    Science.gov (United States)

    Bhattacharjee, Sukla; Debnath, Gopal; Das, Aparajita Roy; Krishna Saha, Ajay; Das, Panna

    2017-12-01

    The aim of the present study was to test the efficacy of the extracellular mycelium extract of Penicillium oxalicum isolated from Phlogacanthus thyrsiflorus to biosynthesize silver nanoparticles. It was characterized using ultraviolet-visible absorption spectroscopy, atomic force microscopy, transmission electron microscopy and Fourier transforms infrared spectroscopy. The silver nanoparticles were evaluated for antimicrobial activity. The characterization confirms the synthesis of silver nanoparticles. Both silver nanoparticles and combination of silver nanoparticles with streptomycin showed activity against the four bacteria. The results suggested that P. oxalicum offers eco-friendly production of silver nanoparticles and the antibacterial activity may find application in biomedicine.

  12. A facile route to synthesize nanogels doped with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Coll Ferrer, M. Carme [University of Pennsylvania, Department of Materials Science (United States); Ferrier, Robert C. [University of Pennsylvania, Department of Chemical and Biomolecular Engineering (United States); Eckmann, David M. [University of Pennsylvania, Department of Anesthesiology and Critical Care (United States); Composto, Russell J., E-mail: composto@seas.upenn.edu [University of Pennsylvania, Department of Materials Science (United States)

    2013-01-15

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, {approx}160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, {approx}5 nm) are synthesized 'in situ' in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  13. A facile route to synthesize nanogels doped with silver nanoparticles

    International Nuclear Information System (INIS)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core–shell polymer host containing silver nanoparticles. First, the nanogels (NG, ∼160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, ∼5 nm) are synthesized “in situ” in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  14. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna

    DEFF Research Database (Denmark)

    Cupi, Denisa; Hartmann, Nanna Isabella Bloch; Baun, Anders

    2015-01-01

    The present study investigated changes in suspension stability and ecotoxicity of engineered nanoparticles (ENPs) by addition of Suwannee River natural organic matter and aging of stock and test suspensions prior to testing. Acute toxicity tests of silver (Ag), zinc oxide (ZnO), and titanium...... not decrease toxicity significantly. Conversely, the presence of Suwannee River natural organic matter (NOM; 20mgL-1) completely alleviated Ag ENP toxicity in all testing scenarios and did not aid in stabilizing suspensions. In contrast, addition of Suwannee River NOM stabilized ZnO ENP suspensions and did...... in stock suspensions. The authors' results suggest that aging and presence of Suwannee River NOM are important parameters in standard toxicity testing of ENPs, which in some cases may aid in gaining better control over the exposure conditions but in other cases might contribute to agglomeration...

  15. Shell crosslinked nanoparticles carrying silver antimicrobials as therapeutics†

    Science.gov (United States)

    Li, Yali; Hindi, Khadijah; Watts, Kristin M.; Taylor, Jane B.; Zhang, Ke; Li, Zicheng

    2010-01-01

    Amphiphilic polymer nanoparticles loaded with silver cations or/and N-heterocyclic carbene–silver complexes were assessed as antimicrobial agents against Gram-negative pathogens Escherichia coli and Pseudomonas aeruginosa. PMID:20024313

  16. Low molecular weight compounds as effective dispersing agents in the formation of colloidal silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Jun; Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp; Abe, Takao [Shinshu University, Faculty of Textile Science and Technology (Japan)

    2013-03-15

    A convenient method to synthesize uniform, well-dispersed colloidal silver nanoparticles is described. Aldonic acid or {alpha}-hydroxy acid compounds of low molecular weight are used instead of polymeric compounds as dispersing agents to prepare silver nanoparticles. The size, conformation, and electrical conductivity of the silver nanoparticles, and the effect and function of the dispersing agents are investigated in detail. Using these low molecular weight compounds as dispersing agents, silver nanoparticles with a diameter of 10 nm or less and high electrical conductivity can be obtained. In addition, this procedure allows silver nanoparticles to be sintered at 150 Degree-Sign C, which is lower than that required for silver nanoparticle formulation using polymeric compounds (200 Degree-Sign C). The silver nanoparticles produced by this process can be used to prepare various inks and to manufacture electronic circuits. It is found that low molecular weight compounds are more effective dispersing agents than polymeric compounds in the formation of silver nanoparticles.

  17. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    Science.gov (United States)

    Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.

    2009-11-01

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (Pcancer and inflammatory diseases.

  18. Silver nanoparticles delivery system based on natural rubber latex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder Jose, E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo/FFCLRP-DF (Brazil); Kinoshita, Angela [Universidade do Sagrado Coracao (Brazil); Ramos, Ana Paula [Universidade de Sao Paulo/FFCLRP-DQ (Brazil); Baffa, Oswaldo [Universidade de Sao Paulo/FFCLRP-DF (Brazil)

    2013-04-15

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV-Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane ({approx}0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are

  19. Silver nanoparticles delivery system based on natural rubber latex membranes

    International Nuclear Information System (INIS)

    Guidelli, Éder José; Kinoshita, Angela; Ramos, Ana Paula; Baffa, Oswaldo

    2013-01-01

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV–Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane (∼0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are sterically

  20. Laser-fabricated castor oil-capped silver nanoparticles.

    Science.gov (United States)

    Zamiri, Reza; Zakaria, Azmi; Abbastabar, Hossein; Darroudi, Majid; Husin, Mohd Shahril; Mahdi, Mohd Adzir

    2011-01-01

    Silver nanoparticles were fabricated by ablation of a pure silver plate immersed in castor oil. A Nd:YAG-pulsed Q-switch laser with 1064-nm wavelength and 10-Hz frequency was used to ablate the plate for 10 minutes. The sample was characterized by ultraviolet-visible, atomic absorption, Fourier transform-infrared spectroscopies, and transmission electron microscopy. The results of the fabricated sample showed that the nanoparticles in castor oil were about 5-nm in diameter, well dispersed, and showed stability for a long period of time.

  1. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  2. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.

    Science.gov (United States)

    Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters

    International Nuclear Information System (INIS)

    Radoman, Tijana S.; Džunuzović, Jasna V.; Jeremić, Katarina B.; Grgur, Branimir N.; Miličević, Dejan S.; Popović, Ivanka G.; Džunuzović, Enis S.

    2014-01-01

    Highlights: • Nanocomposites of epoxy resin and TiO 2 nanoparticles surface modified with gallates. • The T g of epoxy resin was increased by incorporation of surface modified TiO 2 . • WVTR of epoxy resin decreased in the presence of surface modified TiO 2 nanoparticles. • WVTR of nanocomposites was reduced with increasing gallates hydrophobic chain length. • Modified TiO 2 nanoparticles react as oxygen scavengers, inhibiting steel corrosion. - Abstract: Epoxy resin/titanium dioxide (epoxy/TiO 2 ) nanocomposites were obtained by incorporation of TiO 2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO 2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO 2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO 2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO 2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO 2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO 2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO 2 nanocomposites was reduced with increasing hydrophobic part chain length of

  4. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf

    International Nuclear Information System (INIS)

    Huang Jiale; Li Qingbiao; Sun Daohua; Lu Yinghua; Su Yuanbo; Yang Xin; Wang Huixuan; Wang Yuanpeng; Shao Wenyao; He Ning; Hong Jinqing; Chen Cuixue

    2007-01-01

    The synthesis of nanocrystals is in the limelight in modern nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Not only could silver nanoparticles ranging from 55 to 80 nm in size be fabricated, but also triangular or spherical shaped gold nanoparticles could be easily modulated by reacting the novel sundried biomass of Cinnamomum camphora leaf with aqueous silver or gold precursors at ambient temperature. The marked difference of shape control between gold and silver nanoparticles was attributed to the comparative advantage of protective biomolecules and reductive biomolecules. The polyol components and the water-soluble heterocyclic components were mainly responsible for the reduction of silver ions or chloroaurate ions and the stabilization of the nanoparticles, respectively. The sundried leaf in this work was very suitable for simple synthesis of nanoparticles

  5. Fabrication of silver nanoparticle sponge leather with durable antibacterial property.

    Science.gov (United States)

    Liu, Gongyan; Haiqi, Gao; Li, Kaijun; Xiang, Jun; Lan, Tianxiang; Zhang, Zongcai

    2018-03-15

    Leather product with durable antibacterial property is of great interest both from industry and consumer's point of view. To fabricate such functional leather, gallic acid modified silver nanoparticles (GA@AgNPs) were first in situ synthesized with a core-shell structure and an average size of 15.3nm. Due to its hydrophilic gallic acid surface, the GA@AgNPs possessed excellent stability and dispersibility in wide pH range from 3 to 12 and also showed effective antibacterial activity with a minimum inhibitory concentration (MIC) of around 10μgmL -1 . Then, such GA@AgNPs were used as retanning agent to be successfully filled into leather matrix during the leather manufacturing process. Moreover, taking the advantage of its high surface density of carboxyl groups, these GA@AgNPs could be further chemically cross-linked onto collagen fibers by chrome tanning agent. After retanning, the resultant leather was given a "AgNPs sponge" feature with high payload of silver nanoparticles against laundry, exhibiting high and durable antibacterial activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  7. [Antimicrobial activity of stable silver nanoparticles of a certain size].

    Science.gov (United States)

    Mukha, Iu P; Eremenko, A M; Smirnova, N P; Mikhienkova, A I; Korchak, G I; Gorchev, V F; Chunikhin, A Iu

    2013-01-01

    Conditions for obtaining stable silver nanoparticles smaller than 10 nm were developed using a binary stabilizer polyvinylpyrrolidone/sodium dodecylsulphate in optimal ratio. Optical spectra, morphology and dependence of size of the nanoparticles on the amount of reducing agent were studied. Colloidal solutions of nanosilver showed a high bactericidal activity against strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, and fungicidal activity against Candida albicans. The mechanism of action of nanosized silver on microbial cell was examined by laser scanning confocal microscope using fluorescent label. First step of antimicrobial effect on microorganisms was membrane damage and penetration of silver nanoparticles into the cell. Prolonged stability of nanoparticles and their antimicrobial activity over the past two years were showed.

  8. Silver nanoparticles: synthesis and size control by electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, K A; Dhole, S D; Bhoraskar, V N [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune-411007 (India)

    2006-07-14

    Silver nanoparticles were synthesized by irradiating solutions, prepared by mixing AgNO{sub 3} and poly-vinyl alcohol (PVA), with 6 MeV electrons. The electron-irradiated solutions and the thin coatings cast from them were characterized using the ultraviolet-visible (UV-vis), x-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. During electron irradiation, the process of formation of the silver nanoparticles appeared to be initiated at an electron fluence of {approx}2 x 10{sup 13} e cm{sup -2}. This was evidenced from the solution, which turned yellow and exhibited the characteristic plasmon absorption peak around 455 nm. Silver nanoparticles of different sizes in the range 60-10 nm, with a narrow size distribution, could be synthesized by varying the electron fluence from 2 x 10{sup 13} to 3 x 10{sup 15} e cm{sup -2}. Silver nanoparticles of sizes in the range 100-200 nm were also synthesized by irradiating an aqueous AgNO{sub 3} solution with 6 MeV electrons.

  9. Green Synthesis of Silver Nanoparticles and the Study of Optical Properties

    OpenAIRE

    Vasireddy, Ramakrishna; Paul, Rima; Mitra, Apurba Krishna

    2012-01-01

    The synthesis of silver nanoparticles of varying size has been achieved using different molar concentrations of NaOH while the effect of changing the temperature has been studied. AgNO3, gelatine, glucose and NaOH are used as a silver precursor, stabilizer, reducing agent and accelerator respectively. The synthesized nanoparticles have been characterized by a FESEM study, X‐ray diffractometry, Raman spectroscopy and UV‐vis spectroscopy. The colloidal sols of the silver nanoparticles in a biop...

  10. Organometallic approach to polymer-protected antibacterial silver nanoparticles: optimal nanoparticle size-selection for bacteria interaction

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, Julian; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M.; Monge, Miguel, E-mail: miguel.monge@unirioja.es; Olmos, M. Elena [Universidad de La Rioja, Centro de Investigacion en Sintesis Quimica (CISQ), Departamento de Quimica (Spain); Saenz, Yolanda; Torres, Carmen [Centro de Investigacion Biomedica de La Rioja, Area de Microbiologia Molecular (Spain)

    2012-12-15

    The optimal size-specific affinity of silver nanoparticles (Ag NPs) towards E. coli bacteria has been studied. For this purpose, Ag NPs coated with polyvinylpyrrolidone (PVP) and cellulose acetate (CA) have been prepared using an organometallic approach. The complex NBu{sub 4}[Ag(C{sub 6}F{sub 5}){sub 2}] has been treated with AgClO{sub 4} in a 1:1 molar ratio giving rise to the nanoparticle precursor [Ag(C{sub 6}F{sub 5})] in solution. Addition of an excess of PVP (1) or CA (2) and 5 h of reflux in tetrahydrofuran (THF) at 66 Degree-Sign C leads to Ag NPs of small size (4.8 {+-} 3.0 nm for PVP-Ag NPs and 3.0 {+-} 1.2 nm for CA-Ag NPs) that coexist in both cases with larger nanoparticles between 7 and 25 nm. Both nanomaterials display a high antibacterial effectiveness against E. coli. The TEM analysis of the nanoparticle-bacterial cell membrane interaction shows an optimal size-specific affinity for PVP-Ag NPs of 5.4 {+-} 0.7 nm in the presence of larger size silver nanoparticles.Graphical AbstractAn organometallic approach permits the synthesis of small size silver nanoparticles (ca 5 nm) as a main population in the presence of larger size nanoparticles. Optimal silver nanoparticle size-selection (5.4 nm) for the interaction with the bacterial membrane is achieved.

  11. Green Synthesis of Silver Nanoparticles from several NTFP Plants

    Directory of Open Access Journals (Sweden)

    Somnath BHOWMIK

    2016-03-01

    Full Text Available The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology. In this study, rapid, simple approach was applied for synthesis of silver nanoparticles using , Clerodendrum infortunatum, Mucuna interrupta, Phlogancanthus thyrsiflorus and Sansevieria trifasciata aqueous leaf extract. The plant extract acts both as reducing agent as well as capping agent. To identify the compounds responsible for reduction of silver ions, the functional groups present in plant extract were investigated by FTIR. Various techniques used to characterize synthesized nanoparticles are Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM and UV–Visible spectrophotometer. Results confirmed that this protocol was simple, rapid, one step, eco-friendly, non-toxic and might be an alternative conventional physical/chemical methods. Conversion of silver nanoparticles takes place at room temperature without the involvement of any hazardous chemicals.

  12. Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species

    Science.gov (United States)

    Ghiuță, I.; Cristea, D.; Croitoru, C.; Kost, J.; Wenkert, R.; Vyrides, I.; Anayiotos, A.; Munteanu, D.

    2018-04-01

    In this work, the biosynthesis of silver nanoparticles, using AgNO3 as a precursor, by two Bacillus species, namely Bacillus amyloliquefaciens and Bacillus subtillis, is reported. After the synthesis stages, the absorbance of the brown nanoparticle colloidal solutions was assessed by UV-vis spectrophotometry, which showed the peak absorbance values at 418 nm and 414 nm, corresponding to surface plasmon resonance of silver nanoparticles. The EDX, SEM and DLS analyses confirmed the formation of spherical silver nanoparticles with an average diameter smaller than 140 nm. XRD confirmed the presence of face-centered cubic silver crystals, with the highest intensity peak at 2θ = 38.12°, which corresponds to the (111) diffraction planes. The antibacterial activity after 24 h of incubation was observed against gram negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Salmonella, as well as gram positive: Staphylococcus aureus, Streptococcus pyogenes. Furthermore, the antifungal activity was assessed against Candida albicans. The inhibition zone was clearly observed on the plates containing silver nanoparticles, either standalone or in combination with antibiotics, thus showing their potentiating antibacterial effect.

  13. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    International Nuclear Information System (INIS)

    Duran, Nelson; Marcato, Priscyla D.; Alves, Oswaldo L.; Silva, Joao P. S. Da; Souza, Gabriel I. H. De; Rodrigues, Flavio A.; Esposito, Elisa

    2010-01-01

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  14. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Nelson, E-mail: duran@iqm.unicamp.br; Marcato, Priscyla D. [Universidade Estadual de Campinas, Biological Chemistry Laboratory, Instituto de Quimica (Brazil); Alves, Oswaldo L. [Universidade Estadual de Campinas, Solid State Chemistry Laboratory, Instituto de Quimica (Brazil); Silva, Joao P. S. Da; Souza, Gabriel I. H. De [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil); Rodrigues, Flavio A. [Universidade de Mogi das Cruzes, Material Chemistry Laboratory, Biochemical Research Center (Brazil); Esposito, Elisa [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil)

    2010-01-15

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  15. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    Science.gov (United States)

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  16. [Ag25(SR)18]¯: The ‘Golden’ Silver Nanoparticle

    KAUST Repository

    Joshi, Chakra Prasad

    2015-08-31

    Silver nanoparticles with an atomically precise molecular formula [Ag25(SR)18]¯ (‒SR: thiolate) are synthesized and their single-crystal structure is determined. This synthesized nanocluster is the only silver nanoparticle that has a virtually identical analogue in gold, i.e., [Au25(SR)18]¯, in terms of number of metal atoms, ligand count, super-atom electronic configuration, and atomic arrangement. Furthermore, both [Ag25(SR)18]¯ and its gold analogue share a number of features in their optical absorption spectra. This unprecedented molecular synthesis in silver to mimic gold offers the first model nanoparticle platform to investigate the centuries-old problem of understanding the fundamental differences between silver and gold in terms of nobility, catalytic activity, and optical property.

  17. [Ag25(SR)18]¯: The ‘Golden’ Silver Nanoparticle

    KAUST Repository

    Joshi, Chakra Prasad; Bootharaju, Megalamane Siddaramappa; Alhilaly, Mohammad J.; Bakr, Osman

    2015-01-01

    Silver nanoparticles with an atomically precise molecular formula [Ag25(SR)18]¯ (‒SR: thiolate) are synthesized and their single-crystal structure is determined. This synthesized nanocluster is the only silver nanoparticle that has a virtually identical analogue in gold, i.e., [Au25(SR)18]¯, in terms of number of metal atoms, ligand count, super-atom electronic configuration, and atomic arrangement. Furthermore, both [Ag25(SR)18]¯ and its gold analogue share a number of features in their optical absorption spectra. This unprecedented molecular synthesis in silver to mimic gold offers the first model nanoparticle platform to investigate the centuries-old problem of understanding the fundamental differences between silver and gold in terms of nobility, catalytic activity, and optical property.

  18. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells.

    Science.gov (United States)

    Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin

    2012-02-05

    Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract

    International Nuclear Information System (INIS)

    White, G.V.; Kerscher, P.; Brown, R.M.; Morella, J.D.; Kitchens, C.L.; McAllister, W.; Dean, D.

    2012-01-01

    This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature, where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive X-ray chemical analysis, and high-performance liquid chromatography indicated that allicin and other carbohydrates in the garlic extract are the primary nanoparticle stabilizing moieties. The synthesized silver nanoparticles also demonstrate potential for biomedical applications, owing to (1) enhanced stability in biological media, (2) resistance to oxidation by the addition of H 2 O 2 , (3) ease and scalability of synthesis, and (4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/mL, confirming that silver nanoparticles synthesized with garlic extract are potential candidates for future experimentation and implementation in the biomedical field.

  20. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    International Nuclear Information System (INIS)

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  1. Development and Antibacterial Activity of Cashew Gum-Based Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria José dos S. Soares

    2013-03-01

    Full Text Available The present study describes the development of a green synthesis of silver nanoparticles reduced and stabilized by exuded gum from Anacardium occidentale L. and evaluates in vitro their antibacterial and cytotoxic activities. Characterization of cashew gum-based silver nanoparticles (AgNPs was carried out based on UV–Vis spectroscopy, transmission electron microscopy and dynamic light scattering analysis which revealed that the synthesized silver nanoparticles were spherical in shape, measuring about 4 nm in size with a uniform dispersal. AgNPs presented antibacterial activity, especially against Gram-negative bacteria, in concentrations where no significant cytotoxicity was observed.

  2. Size-tunable silver nanoparticles synthesized by using aminopolycarboxylic acids at ambient-temperature

    International Nuclear Information System (INIS)

    Malkar, Vishwabharati V.; Chadha, R.; Biswas, N.; Mukherjee, T.; Kapoor, S.

    2009-01-01

    Full text: Stable aqueous sols of silver nanoparticles are prepared by using various aminopolycarboxylic acids as stabilizing agents at ambient temperature. The precursor silver perchlorate is reduced using γ radiations. Interestingly, it was observed that size of silver nanoparticles obtained could be tuned using various aminopolycarboxylic acids of varying carboxylic acid groups The silver sols synthesized by this method were stable for months and particles obtained were monodisperse in almost all cases. Particle formation was observed at equimolar concentration of silver and aminopolycarboxylic acids. The stabilization of particles even in the absence of any polymer indicates that the adsorption of aminopolycarboxylic acids on silver particle is a spontaneous process. The adsorbed aminopolycarboxylic acids can saturate the residual valence force of the silver atom on the particle surface by coordinating with unoccupied orbital. Adsorption of aminopolycarboxylic acids does not lead to any change in surface plasmon band of silver nanoparticles; this indicates that anions in the double layer on the colloidal particle have different chemical properties from the free anions. Synthesized silver nanoparticles were characterized by UV-visible spectrophotometer, X-ray Diffraction, Dynamic Light Scattering and Transmission Electron Microscope

  3. Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiangping Chen

    2015-05-01

    Full Text Available In this study, we developed a reflective localized surface plasmon resonance (LSPR optical fiber sensor, based on silver nanoparticles (Ag NPs. To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability.

  4. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  5. Uncaria gambir Roxb. mediated green synthesis of silver nanoparticles using diethanolamine as capping agent

    Science.gov (United States)

    Labanni, A.; Zulhadjri; Handayani, D.; Arief, S.

    2018-01-01

    Studies of silver nanoparticles preparation has been developed increasingly due to the wide application in various areas and field, such as medicine, energy, catalysis, and electronic. An environmental-friendly method is needed to fabricate biocompatible silver nanoparticles without producing hazardous materials to the environment. In this study, we synthesized silver nanoparticles by green synthesis method, using leaf extract of gambir (Uncaria gambir Roxb.) as bioreducing agent and aqueous diethanolamine (DEA) solution as capping agents. The AgNO3/DEA molar ratio was varied to investigate the effect of DEA concentration to the properties of silver nanoparticles. The formation of silver nanoparticles was indicated by colour changes to yellowish brown and confirmed by result of UV-Vis spectrophotometer analysis which shown absorption band at 400 to 410 nm. The absorbance was increased to the reaction time of 24 hours, and was decrease by the increasing of DEA concentration in reaction. TEM analysis showed that prepared silver nanoparticles were spherical in shape with diameter of 3,5 - 45,5 nm. The diameter of DEA capped silver nanoparticles was 13 nm, smaller than uncapped silver nanoparticles which was 26 nm It exhibited good stability to time reaction of one month which was potential to be developed in some fields.

  6. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV–vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli. Keywords: Green synthesis, Nanoparticles, Antibacterial effect

  7. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity

    Directory of Open Access Journals (Sweden)

    RAKSHA PANDIT

    2015-05-01

    Full Text Available Pandit R. 2015. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusantara Bioscience 7: 15-19. We report the green synthesis of silver nanoparticles using seed extract of Brassica nigra. UV-visible spectroscopic analysis showed the absorbance peak at 432 nm which indicated the synthesis of silver nanoparticles. Nanoparticles Tracking and Analysis (NTA was used to determine the size of synthesized silver nanoparticles. Zeta potential analysis was carried out to study the stability of nanoparticles while FTIR analysis confirmed the presence of proteins as capping agents that provided stability to nanoparticles in colloid. Antibacterial activity of silver nanoparticles was evaluated against Propionibacterium acnes, Pseudomonas aeruginosa and Klebsiella pneumoniae. The activity of Vancomycin was significantly increased in combination with silver nanoparticles showing synergistic activity against all bacteria while the maximum activity was noted against P. acnes.

  8. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  9. Green Synthesis of Silver Nanoparticles and the Study of Optical Properties

    Directory of Open Access Journals (Sweden)

    Ramakrishna Vasireddy

    2012-08-01

    Full Text Available The synthesis of silver nanoparticles of varying size has been achieved using different molar concentrations of NaOH while the effect of changing the temperature has been studied. AgNO3, gelatine, glucose and NaOH are used as a silver precursor, stabilizer, reducing agent and accelerator respectively. The synthesized nanoparticles have been characterized by a FESEM study, X‐ray diffractometry, Raman spectroscopy and UV‐vis spectroscopy. The colloidal sols of the silver nanoparticles in a biopolymer gelatine show strong surface plasmon resonance absorption peaks. The visible photoluminescence emission from the synthesized silver nanocrystals has been recorded within the wavelength range of 400‐600 nm under UV excitation. The synthesized nanoparticles may be extremely useful in making biosensor devices as well as for other applications.

  10. Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles

    Science.gov (United States)

    Mahmoud, K. H.; Abbo, M.

    2013-12-01

    In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single - oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L*u*v* color space.

  11. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol; Park, Ji Hyun; Bae, Hyung Bin; Park, Changmoon

    2013-01-01

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances

  12. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  13. Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms.

    Science.gov (United States)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-06-01

    In order to reduce the level of transmission of diseases caused by bacteria and fungi, the development of antimicrobial additives for use in personal care, hygiene products, clothing and others has increased. Many of these additives are based on metals such as silver and titanium. The disposal of these products in the environment has raised concerns pertaining to their potential harmfulness for beneficial organisms. The objective of this study was to evaluate the influence of the shape, surface chemistry, size and carrier of three additives containing silver and one with titanium dioxide (TiO 2 ) on microcrustacean survival. Daphnia magna was used as a bioindicator for acute exposure test in suspensions from 0.0001 to 10,000ppm. Ceriodaphnia dubia was used for chronic test in TiO 2 suspensions from 0.001 to 100ppm. D. magna populations presented high susceptibility to all silver based additives, with 100% mortality after 24hr of exposure. A different result was found in the acute experiments containing TiO 2 suspensions, with mortality rates only after 48hr of incubation. Even on acute and chronic tests, TiO 2 did not reach a linear concentration-response versus mortality, with 1ppm being more toxic than 10,000ppm on acute test and 0.001 more toxic than 0.01ppm on chronic assay. Silver based material toxicity was attributed to silver itself, and had no relation to either form (nano or ion) or carrier (silica, phosphate glass or bentonite). TiO 2 demonstrated to have a low acute toxicity against D. magna. Copyright © 2016. Published by Elsevier B.V.

  14. Facile synthesis of silver nanoparticles and their application in dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Siby, E-mail: sibyjoseph4@gmail.com [Department of Chemistry, St. George' s College, Aruvithura, Kottayam 686122, Kerala (India); Mathew, Beena, E-mail: beenamscs@gmail.com [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India)

    2015-05-15

    Graphical abstract: - Highlights: • This synthetic method uses the novel reducing agent hexamine. • The method is simple, fast and environment friendly. • This is a cost-effective method as all materials used are inexpensive and readily available. • The method provides highly stable spherical silver nanoparticles. • The nanoparticles show outstanding catalytic activity in the degradation of organic dyes. - Abstract: The present article reports a simple, facile and eco-friendly method based on microwave irradiation for the synthesis of silver nanoparticles in aqueous medium using starch as stabilizing agent and a new reducing agent namely hexamine. The silver nanoparticles were characterized by UV–vis, FTIR, XRD and HR-TEM analysis. UV–vis spectroscopic studies provided sufficient evidences for the formation of nanoparticles. The role of starch in the synthesis and stabilization of the nanoparticles was obtained from FTIR studies. The XRD and HR-TEM investigations clearly demonstrated the crystalline nature of the nanoparticles. From the TEM images, the silver nanoparticles were found to be spherical and of nearly uniform size with an average diameter of 18.2 ± 0.97 nm. The nanoparticles showed excellent catalytic activity in the degradation of methyl orange and rhodamine B by NaBH{sub 4}.

  15. Facile synthesis of silver nanoparticles and their application in dye degradation

    International Nuclear Information System (INIS)

    Joseph, Siby; Mathew, Beena

    2015-01-01

    Graphical abstract: - Highlights: • This synthetic method uses the novel reducing agent hexamine. • The method is simple, fast and environment friendly. • This is a cost-effective method as all materials used are inexpensive and readily available. • The method provides highly stable spherical silver nanoparticles. • The nanoparticles show outstanding catalytic activity in the degradation of organic dyes. - Abstract: The present article reports a simple, facile and eco-friendly method based on microwave irradiation for the synthesis of silver nanoparticles in aqueous medium using starch as stabilizing agent and a new reducing agent namely hexamine. The silver nanoparticles were characterized by UV–vis, FTIR, XRD and HR-TEM analysis. UV–vis spectroscopic studies provided sufficient evidences for the formation of nanoparticles. The role of starch in the synthesis and stabilization of the nanoparticles was obtained from FTIR studies. The XRD and HR-TEM investigations clearly demonstrated the crystalline nature of the nanoparticles. From the TEM images, the silver nanoparticles were found to be spherical and of nearly uniform size with an average diameter of 18.2 ± 0.97 nm. The nanoparticles showed excellent catalytic activity in the degradation of methyl orange and rhodamine B by NaBH 4

  16. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; El-Agamy Farh, Mohamed; Yang, Deok Chun

    2016-05-01

    In the present study, we report a green methodology for the synthesis of silver and gold nanoparticles, using the root extract of the herbal medicinal plant Korean red ginseng. The silver and gold nanoparticles were synthesized within 1 h and 10 min respectively. The nanoparticles generated were not aggregated, and remained stable for a long time, which suggests the nature of nanoparticles. The phytochemicals and ginsenosides present in the root extract assist in reducing and stabilizing the synthesized nanoparticles. The red ginseng root extract-generated silver nanoparticles exhibit antimicrobial activity against pathogenic microorganisms including Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Candida albicans. In addition, the silver nanoparticles exhibit biofilm degrading activity against S. aureus and Pseudomonas aeruginosa. Thus, the present study opens up a new possibility of synthesizing silver and gold nanoparticles in a green and rapid manner using Korean red ginseng root extract, and explores their biomedical applications.

  17. Complex conductivity response to silver nanoparticles in partially saturated sand columns

    Science.gov (United States)

    Abdel Aal, Gamal; Atekwana, Estella A.; Werkema, D. Dale

    2017-02-01

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0-30%), nanoparticle concentrations (0-10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90-210 and 1500-2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex conductivity parameters based on the strong power law relationships.

  18. Conductive Adhesive Based on Mussel-Inspired Graphene Decoration with Silver Nanoparticles.

    Science.gov (United States)

    Casa, Marcello; Sarno, Maria; Liguori, Rosalba; Cirillo, Claudia; Rubino, Alfredo; Bezzeccheri, Emanuele; Liu, Johan; Ciambelli, Paolo

    2018-02-01

    Decoration with silver nanoparticles was obtained by coating graphene with a polydopamine layer, able to induce spontaneous metallic nanoparticles formation without any specific chemical interfacial modifier, neither using complex instrumentation. The choice of dopamine was inspired by the composition of adhesive proteins in mussels, related to their robust attach to solid surfaces. The synthesis procedure started from graphite and involved eco-friendly compounds, such as Vitamin C and glucose as reducing agent and water as reaction medium. Silver decorated graphene was inserted as secondary nanofiller in the formulation of a reference conductive adhesive based on epoxy resin and silver flakes. A wide characterization of the intermediate materials obtained along the step procedure for the adhesive preparation was carried out by several techniques. We have found that the presence of nanofiller yields, in addition to an improvement of the thermal conductivity (up to 7.6 W/m · K), a dramatic enhancement of the electrical conductivity of the adhesive. In particular, starting from 3 · 102 S/cm of the reference adhesive, we obtained a value of 4 · 104 S/cm at a nanofiller concentration of 11.5 wt%. The combined double filler conductivity was evaluated by Zallen's model. The effect of the temperature on the resistivity of the adhesive has been also studied.

  19. Biosynthesized Silver Nanoparticles Used in Preservative Solutions for Chrysanthemum cv. Puma

    Directory of Open Access Journals (Sweden)

    Luis M. Carrillo-López

    2016-01-01

    Full Text Available The use of pulse solutions containing antimicrobials has been reported, but more research is necessary. To increase vase life and to study their effect on opening inflorescences, silver nanoparticles were used in vase solutions for cv. Puma Chrysanthemum stems. The nanoparticles were synthesized biologically using Chenopodium ambrosioides L. applied at concentrations of 0.01, 0.05, 0.1, 0.5, 1, and 5 mM and compared with a control. Treatments were replicated five times. The stems were cut to 50 cm and observed until the end of their vase life. Low concentrations of silver nanoparticles promoted inflorescence opening and leaf yellowing, while the control leaves remained green, but there was a lower degree of inflorescence opening. High concentrations of silver nanoparticles (0.5, 1, and 5 mM caused senescence due to low water uptake through the stems. Statistical differences in inflorescence opening and diameter, bacterial growth (CFU mL−1 in vase solutions, fresh weight, water uptake, and vase life were found among treatments. Longer vase life and less weight loss were observed in the stems exposed to low concentrations of silver nanoparticles. Low concentrations of silver nanoparticles promoted inflorescence opening and increased vase life of Chrysanthemum cv. Puma.

  20. Temperature evolution in silver nanoparticle doped PETN composite

    Science.gov (United States)

    Kameswari, D. P. S. L.; Kiran, P. Prem

    2018-04-01

    Optical absorption and the associated spatio-temporal evolution of temperature silver nanoparticles doped energetic material composite is presented. Silver nanoparticles of radii 10 - 150 nm are doped in Penta Erythrtol Tetra Nitrate (PETN), a secondary energetic material to form the composite materials. Of all the composites the ones doped with 35 nm sized nanoparticles have shown maximum absorption at excitation wavelength of 532 nm. The spatio-temporal evolution of temperature within these composites up on excitation with ns laser pulses of energy density 0.5 J/cm2 is studied. The role of particle sizes on the temperature of composites is studied and a maximum temperature of 2200 K at the nanoparticle interface is observed for 35 nm doped PETN composite.

  1. Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms

    Directory of Open Access Journals (Sweden)

    D. Tomacheski

    2017-12-01

    Full Text Available There is a growing consumer market for products that proclaim to decrease microorganism counts to prevent infections. Most of these products are loaded with silver in its ionic or nanoparticle form. Through use or during production, these particles can find their way into the soil and cause an impact in microbial and plant communities. This study aims to evaluate the impact of silver based particles in Avena byzantina (oat, Lactuca sativa (lettuce and Raphanus sativus (radish development and in the soil microorganism abundance. Oat, lettuce and radish plants were cultivated in soil contaminated with particles of bentonite organomodified with silver (Ag+_bentonite, silver phosphate glass (Ag+_phosphate and silver nanoparticles adsorbed on fumed silica (AgNp_silica. Plant development and microorganisms’ abundance were evaluated. To some degree, Ag+_bentonite impacted plants development and AgNp_silica causes an adverse effect on microbial abundance. The impact on plants and microorganisms was contradictory and varied according to soil and particles physicochemical characteristics.

  2. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

    Science.gov (United States)

    Bharali, P; Saikia, J P; Paul, S; Konwar, B K

    2013-10-01

    The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Biosynthesis of silver nanoparticles using lingonberry and cranberry juices and their antimicrobial activity.

    Science.gov (United States)

    Puišo, Judita; Jonkuvienė, Dovilė; Mačionienė, Irena; Šalomskienė, Joana; Jasutienė, Ina; Kondrotas, Rokas

    2014-09-01

    In this study lingonberry and cranberry juices were used for silver nanoparticle synthesis. The berry juices were characterized by total phenolics, total anthocyanins and benzoic acid content, respectively 1.9-2.7mg/ml, 55.2-83.4mg/l and 590.8-889.2mg/l. The synthesis of silver nanoparticles was performed at room temperature assisting in solutions irradiated by ultraviolet for 30min. Ultraviolet-visible (UV-vis) spectroscopy and microscopy confirmed the formation of nanoparticles as well as the dark red color of colloid of silver samples showed the formation of stable nanoparticles. Broad localized surface plasmon resonance (LSPR) peaks in UV-vis spectra indicated the formation of polydispersive silver nanoparticles and LSPR was observed at 485nm and 520nm for the silver nanoparticles synthesis using lingonberry and cranberry juices, respectively. The antimicrobial activity of silver nanoparticles was determined against the reference strains of microorganisms that could be found in food products: Staphylococcus aureus ATCC 25923, Salmonella typhimurium ATCC 13076, Listeria monocytogenes ATCC 19111, Bacillus cereus ATCC 11778, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633, Candida albicans ATCC 10231 and foodborne B. cereus producing and non-producing enterotoxins. Silver nanoparticles showed a broad spectrum of antimicrobial activity and were most active against S. aureus ATCC 25923, B. subtilis ATCC 6633 and B. cereus ATCC 11778 reference cultures, and less active against C. albicans ATCC 10231 and foodborne B. cereus. It can be concluded that lingonberry and cranberry juices could be used as bioreductants for silver ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of silver nanoparticle composite with poly(p-Br-phenylsilane).

    Science.gov (United States)

    Kim, Myoung-Hee; Lee, Jun; Mo, Soo-Yong; Woo, Hee-Gweon; Yang, Kap Seung; Kim, Bo-Hye; Lee, Byeong-Gweon; Sohn, Honglae

    2012-05-01

    The one-pot synthesis and characterization of silver nanoparticle-poly(p-Br-phenylsilane) composites have been carried out. The conversion of silver(+1) salt to stable silver(0) nanoparticles is promoted by poly(p-Br-phenylsilane), Br-PPS possessing both possible reactive Si-H bonds in the polymer backbone and C-Br bonds in the substituents. The composites were characterized using XRD, TEM, FE-SEM, and solid-state UV-vis analytical techniques. TEM and FE-SEM data show the formation of the composites where large number of silver nanoparticles (less than 30 nm of size) are well dispersed throughout the Br-PPS matrix. XRD patterns are consistent with that for fcc-typed silver. The elemental analysis for Br atom and the polymer solubility confirm that the cleavage of C-Br bond and the Si-Br dative bonding were not occurred appreciably at ambient temperature. Nonetheless, TGA data suggest that some sort of cross-linking was occurred at high temperature. The size and processability of such nanoparticles depend on the ratio of metal to Br-PPS. In the absence of Br-PPS, most of the silver particles undergo macroscopic aggregation, which indicates that the polysilane is necessary for stabilizing the silver nanoparticles.

  5. Plasmon enhancement of Raman scattering and fluorescence for rhodamine 6G molecules in the porous glass and PVA films with nanoparticles of silver citrate hydrosol

    International Nuclear Information System (INIS)

    Konstantinova, E I; Zyubin, A U; Samusev, I G; Slezhkin, V A; Bryukhanov, V V

    2016-01-01

    The study of Raman and fluorescence spectra for Rhodamine 6G molecules in a film of polyvinyl alcohol on the modified by silver nanoparticles (NPs) porous glass and without the porous glass has been done. The gain of the scattering intensity and fluorescence emission has been obtained in the presence of silver nanoparticles. The gain order was obtained as ∼ 10"1"1 (paper)

  6. Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy.

    Science.gov (United States)

    Kolodziejczyk, Agnieszka; Jakubowska, Aleksandra; Kucinska, Magdalena; Wasiak, Tomasz; Komorowski, Piotr; Makowski, Krzysztof; Walkowiak, Bogdan

    2018-05-10

    Endothelial cells, due to their location, are interesting objects for atomic force spectroscopy study. They constitute a barrier between blood and vessel tissues located deeper, and therefore they are the first line of contact with various substances present in blood, eg, drugs or nanoparticles. This work intends to verify whether the mechanical response of immortalized human umbilical vein endothelial cells (EA.hy926), when exposed to silver nanoparticles, as measured using force spectroscopy, could be effectively used as a bio-indicator of the physiological state of the cells. Silver nanoparticles were characterized with transmission electron microscopy and dynamic light scattering techniques. Tetrazolium salt reduction test was used to determine cell viability after treatment with silver nanoparticles. An elasticity of native cells was examined in the Hanks' buffer whereas fixed cells were softly fixed with formaldehyde. Additional aspect of the work is the comparative force spectroscopy utilizing AFM probes of ball-shape and conical geometries, in order to understand what changes in cell elasticity, caused by SNPs, were detectable with each probe. As a supplement to elasticity studies, cell morphology observation by atomic force microscopy and detection of silver nanoparticles inside cells using transmission electron microscopy were also performed. Cells exposed to silver nanoparticles at the highest selected concentrations (3.6 μg/mL, 16 μg/mL) are less elastic. It may be associated with the reorganization of the cellular cytoskeleton and the "strengthening" of the cell cortex caused by presence of silver nanoparticles. This observation does not depend on cell fixation. Agglomerates of silver nanoparticles were observed on the cell membrane as well as inside the cells. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    Science.gov (United States)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  8. Characterization of silver nanoparticles prepared by wet chemical ...

    African Journals Online (AJOL)

    Results: The silver nanoparticles formed were spherical in shape with mean size of 10.3 nm. The ... antibacterial activity against various strains of bacteria. Keywords: Wet ..... Fang J, Zhong C, Mu R. The study of deposited silver particulate ...

  9. Surface Phenomena at Silver Nanoparticles in the Context of Toxicology

    DEFF Research Database (Denmark)

    Miclaus, Teodora

    2015-01-01

    Nanoparticle research and applications are rapidly expanding areas and large scale production and use of nanomaterials has prompted concern regarding their safety for humans and the environment. Nanotoxicology aims to offer answers to issues that may arise in regards to potential harmful effects...... associated with engineered nanomaterials. Among these materials, silver nanoparticles are some of the most widely employed and thus represent a major point of focus in nanotoxicology and the topic of this PhD thesis. While nanoparticles have, upon synthesis, well-defined characteristics, specific...... of nanotoxicology. The main aim of this PhD research is to investigate these phenomena at the surface of silver nanoparticles under conditions that are relevant for in vitro studies in order to understand their implications for nano-silver toxicity. Upon contact with biological fluids, particles get coated...

  10. Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles

    International Nuclear Information System (INIS)

    Mankidy, Bijith D; Joseph, Babu; Gupta, Vinay K

    2013-01-01

    Converting carbon dioxide (CO 2 ) to hydrocarbons that can be used as fuels is beneficial from both environmental and economic points of view. In this study, nanoparticles are designed to enhance the photoreduction of CO 2 on a titanium dioxide (TiO 2 ) catalyst. An increase in catalytic activity is reported when silver (Ag), platinum (Pt) or bimetallic Ag–Pt and core–shell Ag@silica (SiO 2 ) nanoparticles are used with the TiO 2 semiconductor catalyst. Nanoparticles with different elemental composition or geometrical structure facilitate successive photo-excitation steps—generation, transport, storage and interfacial transfer of electrons and holes. Results show that while the addition of either type of nanoparticles augments product formation rates, bimetallic co-catalysts improve product selectivity. When both bimetallic co-catalysts and Ag@SiO 2 nanoparticles are used in combination, product yields are enhanced more than seven fold in comparison to native TiO 2 and high selectivity for methane (CH 4 ) is observed. When the bimetallic Ag–Pt co-catalysts are tuned, a selectivity of CH 4 of approximately 80%, as compared to 20% with only TiO 2 , can be achieved. (paper)

  11. Mesquite Gum as a Novel Reducing and Stabilizing Agent for Modified Tollens Synthesis of Highly Concentrated Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maira Berenice Moreno‐Trejo

    2016-10-01

    Full Text Available The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular, confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular, confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.

  12. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging.

    Science.gov (United States)

    Siqueira, Maria C; Coelho, Gustavo F; de Moura, Márcia R; Bresolin, Joana D; Hubinger, Silviane Z; Marconcini, José M; Mattoso, Luiz H C

    2014-07-01

    In this study, silver nanoparticles were prepared and incorporated into carboxymethylcellulose films to evaluate the antimicrobial activity for food packaging applications. The techniques carried out for material characterization were: infrared spectroscopy and thermal analysis for the silver nanoparticles and films, as well as particle size distribution for the nanoparticles and water vapor permeability for the films. The antimicrobial activity of silver nanoparticles prepared by casting method was investigated. The minimum inhibitory concentration (MIC) value of the silver nanoparticles to test Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) microorganisms was carried out by the serial dilution technique, tested in triplicate to confirm the concentration used. The results were developed using the Mcfarland scale which indicates that the presence or absence of turbidity tube demonstrates the inhibition of bacteria in relation to the substance inoculated. It was found that the silver nanoparticles inhibited the growth of the tested microorganisms. The carboxymethylcellulose film embedded with silver nanoparticles showed the best antimicrobial effect against Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria (0.1 microg cm(-3)).

  13. Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens.

    Science.gov (United States)

    Wang, Chao; Singh, Priyanka; Kim, Yeon Ju; Mathiyalagan, Ramya; Myagmarjav, Davaajargal; Wang, Dandan; Jin, Chi-Gyu; Yang, Deok Chun

    2016-11-01

    Various microorganisms were found to be cable of synthesizing gold and silver nanoparticles when gold and silver salts were supplied in the reaction system. The main objective of this study was to evaluate the extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505]. The biosynthesized gold and silver nanoparticles were characterized by ultraviolet-visible spectroscopy (UV-Vis), field emission transmission electron micrograph (FE-TEM), energy dispersive X-ray spectroscopy (EDX), elemental mapping, and dynamic light scattering (DLS). Moreover, the nanoparticles were evaluated for antimicrobial potential against various pathogenic microorganisms such as Vibrio parahaemolyticus [ATCC 33844], Salmonella enterica [ATCC 13076], Staphylococcus aureus [ATCC 6538], Bacillus anthracis [NCTC 10340], Bacillus cereus [ATCC 14579], Escherichia coli [ATCC 10798], and Candida albicans [KACC 30062]. The silver nanoparticles were found as a potent antimicrobial agent whereas gold nanoparticles not showed any ability. Therefore, the current study describes the simple, green, and extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505].

  14. Green Synthesis of Silver Nanoparticles Using Pimpinella anisum L. Seed Aqueous Extract and Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Hashem Akhlaghi

    2015-09-01

    Full Text Available An aqueous extract of Pimpinella anisum was used for green synthesis of silver nanoparticles by bio reduction of an aqueous solution of silver nitrate. Silver nanoparticles were characterized by UV–Vis spectrometry, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD analysis, scanning electron microscopy (SEM and energy-dispersive X-ray analysis (EDAX. The increase in absorption at 420 nm was used for recording the formation of a colloidal suspension of silver nanoparticles. The binding properties of the capped Ag nanoparticles synthesized from aqueous extract of P. anisum were analyzed by FTIR. XRD studies revealed that most of the nanoparticles were cubic and face centered cubic in shape. SEM analysis showed the size and shape of silver nanoparticles and EDAX confirmed the presence of silver. The synthesized silver nanoparticles showed DPPH free radical scavenging activity.

  15. Influence of silver doping on surface defect characteristics of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Rani, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Department of Physics, DAV University Jalandhar, - 144 001, Punjab (India)

    2015-08-28

    In the present work, we proposed a novel silver doped TiO{sub 2} polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO{sub 2} photoanodes. Silver doped titanium dioxide (TiO{sub 2}:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique at 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO{sub 2} films are about 548 times more photosensitive as compare to the pure TiO{sub 2} sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO{sub 2} nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO{sub 2} and Ag-TiO{sub 2} films keeping intensity of light constant.

  16. Synthesis and characterization of monodispersed silver nanoparticles

    Science.gov (United States)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  17. Synthesis and characterization of monodispersed silver nanoparticles

    International Nuclear Information System (INIS)

    Christy, A Jegatha; Umadevi, M

    2012-01-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO 3 ), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM). (paper)

  18. Formation of nanoparticles from thin silver films irradiated by laser pulses in air

    Science.gov (United States)

    Nastulyavichus, A. A.; Smirnov, N. A.; Kudryashov, S. I.; Ionin, A. A.; Saraeva, I. N.; Busleev, N. I.; Rudenko, A. A.; Khmel'nitskii, R. A.; Zayarnyi, D. A.

    2018-03-01

    Some specific features of the transport of silver nanoparticles onto a SiO2 substrate under focused nanosecond IR laser pulses is experimentally investigated. A possibility of obtaining silver coatings is demonstrated. The formation of silver nanostructures as a result of pulsed laser ablation in air is studied. Nanoparticles are formed by exposing a silver film to radiation of an HTF MARK (Bulat) laser marker (λ = 1064 nm). The thus prepared nanoparticles are analysed using scanning electron microscopy and optical spectroscopy.

  19. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  20. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  1. Biosynthesis of Silver Nanoparticles Using Oscillatoria Extract and Evaluation the Anticancer and Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    T Ghasemipour

    2017-07-01

    Full Text Available Abstract Background and aim: The emergence of nanotechnology is one of the most promising areas for medical research. Today, biological methods of synthesizing nanoparticles have been considered in the fight against many diseases. The purpose of this study was to evaluate the anti-cancer and anti-bacterial activity of silver nanoparticles, biosynthesized with cyanobacteria acetate extract. Methods: In the present experimental study, the silver nanoparticles biosynthesis was performed using silver ions regeneration with cyanobacteria acetate extracts. Techniques such as X-ray diffraction, scanning electron microscopy and transient evaluation of silver nanoparticles were evaluated. In order to investigate the antibacterial activity of synthesized nanosilver, serial dilution method was used for broth microdilution test to determine minimum inhibitory concentration (MIC. The effects of silver nanoparticle toxicity on T47D breast cancer cell line were evaluated using MTT colorimetric method. Also, the proximal anxine 0.5 propidoid yodide kit and flow cytometry system were evaluated to evaluate the percentage of apoptosis and necrosis in cancer cells treated with silver nanoparticles. Results: Characterization of biosynthetic silver nanoparticles indicated that these nanoparticles had a mean size of 30 nm with dominant spherical morphology. The evaluation of the antibacterial properties of biosynthetic nanoparticles showed that the minimum inhibitory concentration for Escherichia coli, Acinetobacter Bumanni and Staphylococcus aureus was 25, 50 and 12.5 μg / ml, respectively. The results of cell proliferation of nanoparticles showed that its effect depends on the concentration and time of treatment of silver nanoparticles on cancerous cells. In addition, flow cytometric results showed an apoptotic cell death rate of 35% in the T47D cell line. Conclusion: Biosynthesis nanoparticles have anticancer and antibacterial activity and can be studied further

  2. Simple and environmentally friendly preparation and size control of silver nanoparticles using an inhomogeneous system with silver-containing glass powder

    International Nuclear Information System (INIS)

    Mori, Yasutaka; Tagawa, Toshio; Fujita, Masanori; Kuno, Toyohiko; Suzuki, Satoshi; Matsui, Takemi; Ishihara, Masayuki

    2011-01-01

    A simple, environmentally friendly method for preparing highly size-controlled spherical silver nanoparticles was developed that involved heating a mixture of silver-containing glass powder and an aqueous solution of glucose. The stabilizing agent for silver nanoparticles was found to be caramel, which was generated from glucose when preparing the nanoparticles. The particle size was independent of the reaction time, but it increased proportionally with the square root of the glucose concentration in the range 0.25–8.0 wt% (corresponding to particle sizes of 3.48 ± 1.83 to 20.0 ± 2.76 nm). Difference of the generation mechanism of silver nanoparticles between this inhomogeneous system and a system in which Ag + was homogeneously dispersed was discussed.

  3. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    Science.gov (United States)

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  4. Preparation of amine coated silver nanoparticles using ...

    Indian Academy of Sciences (India)

    Administrator

    concentrations without the precipitation of particles. In this work, an analysis of the temperature influ- ence on the precipitation of silver nanoparticles was carried out. Also, the nanoparticles were func- tionalized using triethylenetetramine in order to im- prove the adhesion between the epoxy resin and the filler.

  5. Silver Nanoparticles and Studies on Using in Poultry Nutrition

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Özcan

    2015-02-01

    Full Text Available The use of colloidal silver as an antibiotic was becoming widespread until the 1940s. However, with the discovery of antibiotics, usage of colloidal silver had been reduced because of being expensive. The fact that bacteria develop resistance to antibiotics lead to prohibiton the usage of antibiotics in poultry diets as growth promoters. Based on these developments reuse of colloidal silver has been raised as an alternative to antibiotics. Without prejudice to the beneficial enzymes, colloidal silver disables certain enzymes needed by bacteria, viruses, yeasts, and fungus resulting in the destruction of these enzymes. It is reported that increase in surface area of nano-particles of silver increase antibacterial activity. The most important limitation on the widespread use of silver nanoparticles as feed additives is uncertainty about the possible toxic effects. In this review, studies for the use of colloidal silver particles in poultry feed were evaluated and tried to seek answer the question “may be a new resource that can be used as an alternative to antibiotics?

  6. Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature.

    Science.gov (United States)

    Barani, Hossein; Montazer, Majid; Braun, Hans-Georg; Dutschk, Victoria

    2014-12-01

    The use of silver nanoparticle on various substrates has been widespread because of its good antibacterial properties that directly depend on the stability of the silver nanoparticles in a colloidal suspension. In this study, the colloidal solutions of the silver nanoparticles were synthesised by a simple and safe method by using lecithin as a stabilising agent and their stability was examined at various temperatures. The effect of the lecithin concentrations on the stability of the synthesised silver nanoparticles was examined from 25 to 80°C at 5°C intervals, by recording the changes in the UV-vis absorption spectra, the hydrodynamic diameter and the light scattering intensity of the silver nanoparticles. In addition, the morphology of the synthesised silver nanoparticles was investigated with the low-voltage scanning electron microscopy and transmission electron microscopy. The results indicated that increasing temperature caused different changes in the size of the stabilised and the unstabilised silver nanoparticles. The size of the stabilised silver nanoparticles reduced from 38 to 36 nm during increasing temperature, which confirmed good stability.

  7. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    Science.gov (United States)

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Comparative study of synthesized silver and gold nanoparticles ...

    Indian Academy of Sciences (India)

    The present investigation aimed at comparing the synthesis, characterization and in vitro anticancer ... Bauhinia tomentosa Linn; silver nanoparticles; gold nanoparticles; A-549; HEp-2; MCF-7. 1. Introduction ..... Methods 65 55. [33] Singh A K ...

  9. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.

    Science.gov (United States)

    Gopinath, V; MubarakAli, D; Priyadarshini, S; Priyadharsshini, N Meera; Thajuddin, N; Velusamy, P

    2012-08-01

    In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    International Nuclear Information System (INIS)

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-01-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ("1H NMR and "1"3C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL"−"1. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticlesSilver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity

  11. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Venil, Chidambaram Kulandaisamy, E-mail: ckvenil@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sathishkumar, Palanivel [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Malathi, Mahalingam [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu (India); Usha, Rajamanickam [Department of Microbiology, Karpagam University, Coimbatore 641 023, Tamil Nadu (India); Jayakumar, Rajarajeswaran [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusoff, Abdull Rahim Mohd [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ahmad, Wan Azlina, E-mail: azlina@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ({sup 1}H NMR and {sup 13}C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL{sup −1}. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticlesSilver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity.

  12. Biosynthesis Of Silver Nanoparticles From Marine Seaweed Sargassum Cinereum And Their Antibacterial Activity

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.; VijayRaj, A.S.; Rajasabapathy, R.; SatheeshBabu, S.; Rao, S.V.; Shiva, C.; De-Mello, I.

    the biosynthesis of gold and silver nanoparticles using various plant sources and obtained a good nanoparticles with an average size of 20‑30 nm[10‑13]. Green synthesis of nanoparticles provides advancement over chemical and physical methods as it is cost... that hygienic benefits have been associated with the use of silver for considerably longer. Records show that Hippocrates recognised the role of silver in the prevention of disease and accounts exist that, the Romans stored wine in silver vessels to prevent...

  13. Radiation induced synthesis of colloidal silver nanoparticles stabilized by PVP/chitosan

    International Nuclear Information System (INIS)

    Dang Van Phu; Nguyen Trieu; Vo Thi Kim Lang; Nguyen Quoc Hien; Bui Duy Du

    2008-01-01

    Colloidal silver nanoparticle solution (10 mmol) was prepared by gamma 60 Co irradiation using polyvinyl pyrrolidone (PVP), water soluble chitosan (WSC) and mixture of PVP/WSC as stabilizers. Saturated conversion doses (Ag + → Ag 0 ) and maximum absorption wavelengths (λ max ) were determined by UV-vis spectra to be of 28 kGy (405.5 nm), 20 kGy (418.5 nm), 24 kGy (415.0 nm) and 24 kGy (407.0 nm) for PVP 1% (C1), WSC 0.5% (C2), PVP 1%/WSC 0.5% (C3) and PVP 1%/ethanol 1 M (C4), respectively. Results of the conversion doses indicated that WSC and ethanol plays a role in scavenging the OH* and H* arising from radiolysis of water, which reduced the conversion dose from 28 kGy (C1) to 20 kGy (C2). The average size of silver nanoparticles was characterized by Transmission Electron Microscopy (TEM) as 15.96 ± 0.51, 5.55 ± 0.25, 2.92 ± 0.05, and 11.44 ±2.07 nm for C1, C2, C3 and C4, respectively. The obtained result of silver nanoparticle sizes showed that WSC exhibited the effect of reducing silver nanoparticle size in colloids, especially the mixture of PVP/WSC that reduced the size of silver nanoparticle from ∼16 nm (C1) to about 3 nm (C3). The effect of NaNO 3 on stability of colloidal silver nanoparticles has been also investigated. (author)

  14. Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure.

    Directory of Open Access Journals (Sweden)

    Jens Boenigk

    Full Text Available Among metal pollutants silver ions are one of the most toxic forms, and have thus been assigned to the highest toxicity class. Its toxicity to a wide range of microorganisms combined with its low toxicity to humans lead to the development of a wealth of silver-based products in many bactericidal applications accounting to more than 1000 nano-technology-based consumer products. Accordingly, silver is a widely distributed metal in the environment originating from its different forms of application as metal, salt and nanoparticle. A realistic assessment of silver nanoparticle toxicity in natural waters is, however, problematic and needs to be linked to experimental approaches. Here we apply metatranscriptome sequencing allowing for elucidating reactions of whole communities present in a water sample to stressors. We compared the toxicity of ionic silver and ligand-free silver nanoparticles by short term exposure on a natural community of aquatic microorganisms. We analyzed the effects of the treatments on metabolic pathways and species composition on the eukaryote metatranscriptome level in order to describe immediate molecular responses of organisms using a community approach. We found significant differences between the samples treated with 5 µg/L AgNO3 compared to the controls, but no significant differences in the samples treated with AgNP compared to the control samples. Statistical analysis yielded 126 genes (KO-IDs with significant differential expression with a false discovery rate (FDR <0.05 between the control (KO and AgNO3 (NO3 groups. A KEGG pathway enrichment analysis showed significant results with a FDR below 0.05 for pathways related to photosynthesis. Our study therefore supports the view that ionic silver rather than silver nanoparticles are responsible for silver toxicity. Nevertheless, our results highlight the strength of metatranscriptome approaches for assessing metal toxicity on aquatic communities.

  15. Release, transport and fate of engineered nanoparticles in the aquatic environment

    NARCIS (Netherlands)

    Markus, A.A.

    2016-01-01

    Besides many benefits, nanotechnology brings us a new type of contaminant to worry about: nanoparticles - particles smaller than 100 nm. Silver nanoparticles are used in medical textile, because they kill bacteria. Titanium dioxide and zinc oxide nanoparticles are used as UV filters in sunscreens,

  16. ECO-FRIENDLY SYNTHESIS OF SILVER NANOPARTICLES ...

    African Journals Online (AJOL)

    userpc

    Keywords: Silver nanoparticles; UV-Visible Spectrophotometry; Dynamic Light Scattering;. Transmission ... The eco- friendly protocol developed led to the synthesis ... lamp for. 5 minutes. (Omidiet al.,. 2014).Authentication of the formation of.

  17. Antibacterial Activity of Silver Nanoparticles Synthesized by Using Extracts of Hedera helix

    Directory of Open Access Journals (Sweden)

    Ahmadreza Abbasifar

    2017-01-01

    Full Text Available Background Silver nanoparticles (AgNPs are one of the most widely applicable particles whose application is increasing in Nano world daily. Silver nanoparticles have expressed significant advances owing to wide range of applications in the field of bio-medical, sensors, antimicrobials, catalysts, electronics, optical fibers, agricultural, bio-labeling and the other areas. Green synthesis is the safe and easiest method of producing silver nanoparticles. Because of the production of the silver ions, silver nanoparticles are found to have the antibacterial activity. Objectives The aim of this study was to investigate antibacterial activity of silver nanoparticles synthesized by using extracts of Hedera helix against Bacillus subtilis and Klebsiella pneumoniae. Methods In this experimental study AgNPs were prepared by the reaction of 1mM silver nitrate and extracts of Hedera helix. Antibacterial activity of AgNPs was assessed by using disc diffusion method against Bacillus subtilis and Klebsiella pneumoniae. The AgNPs were characterized by UV-visible (vis spectrophotometer, particle size analyzer by dynamic light scattering (DLS method, transmission electron microscopy (TEM. Results AgNPs obtained showed significantly higher antimicrobial activities against B. subtilis and K. pneumonia in comparison to both AgNO3 and raw plant extracts. Conclusions Biological methods are a good competent for the chemical procedures, which are environment friendly and convenient.

  18. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    Science.gov (United States)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. TTC- Based Test as an Efficient Method to Determine Antibiofilm Activity of Silver Nanoparticles

    OpenAIRE

    Chojniak Joanna; Biedroń Izabela; Płaza Grażyna

    2017-01-01

    Among metal nanoparticles, silver nanoparticles are a widely used in various life sectors such as in biomedical applications, air and water purification, food production, cosmetics, garments and in various household products. There are several methods for production of silver nanoparticles. Generally, silver nanoparticles can be prepared by chemical methods such as chemical reduction and electrochemical techniques, physical methods, and biological methods such as the use of microorganisms. Th...

  20. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    International Nuclear Information System (INIS)

    Slepička, P.; Elashnikov, R.; Ulbrich, P.; Staszek, M.; Kolská, Z.; Švorčík, V.

    2015-01-01

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H 2 O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H 2 O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H 2 O—1/1), 509–535 nm (PEG/H 2 O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles

  1. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz; Elashnikov, R. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology (Czech Republic); Staszek, M. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Kolská, Z. [University of J. E. Purkyně, Faculty of Science (Czech Republic); Švorčík, V. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic)

    2015-01-15

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H{sub 2}O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H{sub 2}O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H{sub 2}O—1/1), 509–535 nm (PEG/H{sub 2}O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

  2. Synthesis of Silver-Doped Titanium TiO2 Powder-Coated Surfaces and Its Ability to Inactivate Pseudomonas aeruginosa and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Saman Khan

    2013-01-01

    Full Text Available Hard, nonporous environmental surfaces in daily life are now receiving due recognition for their role in reducing the spread of several nosocomial infections. In this work, we established the photokilling effects of 1% silver-doped titanium dioxide TiO2. The nanoparticles synthesized by liquid impregnation method were characterized using X-ray diffraction (XRD, energy dispersive spectroscopy (EDS, and scanning electron microscopy (SEM. The Ag-TiO2 nanoparticle coatings that have been applied on glass and venetian blind surfaces were effective in generating a loss of viability of two bacteria (Pseudomonas aeruginosa and Bacillus subtilis after two hours of illumination under normal light in the visible spectrum. Such surfaces can be applicable to medical and other facilities where the potential for infection should be controlled.

  3. Synthesis of Silver-Doped Titanium TiO2 Powder-Coated Surfaces and Its Ability to Inactivate Pseudomonas aeruginosa and Bacillus subtilis

    International Nuclear Information System (INIS)

    Khan, S.; Qazi, I.A.; Hashmi, I.; Awan, M.A.; Zaidi, N.S.S.

    2013-01-01

    Hard, non porous environmental surfaces in daily life are now receiving due recognition for their role in reducing the spread of several nosocomial infections. In this work, we established the photo killing effects of 1% silver-doped titanium dioxide TiO 2 . The nanoparticles synthesized by liquid impregnation method were characterized using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). The Ag-TiO 2 nanoparticle coatings that have been applied on glass and venetian blind surfaces were effective in generating a loss of viability of two bacteria (Pseudomonas aeruginosa and Bacillus subtilis) after two hours of illumination under normal light in the visible spectrum. Such surfaces can be applicable to medical and other facilities where the potential for infection should be controlled

  4. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    Science.gov (United States)

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  5. Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The development of rapid and reliable processes for the synthesis of nanosized materials is of great importance in the field of nanotechnology. Synthesis of silver nanoparticles using microorganism have been reported, but the process is rather slow. In this paper, we describe a novel combinatorial synthesis approach which is rapid, simple and “green” for the synthesis of metallic nanostructures of noble metals such as silver (Ag, by using a combination of culture supernatanant of Bacillus subtilis and microwave (MW irradiation in water in absence of a surfactant or soft template. It was found that exposure of culture supernatanant of Bacillus subtilis and microwave irradiation to silver ion lead to the formation of silver nanoparticles. The silver nanoparticles were in the range of 5-60 nm in dimension. The nanoparticles were examined using UV-Visible Spectroscopy, and Transmission Electron Microscopy (TEM analyses. The formation of nanoparticles by this method is extremely rapid, requires no toxic chemicals and the nanoparticles are stable for several months. The main conclusion is that the bio-reduction method to produce nanoparticles is a good alternative to the electrochemical methods.

  6. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry.

    Science.gov (United States)

    Adur, Alaknanda J; Nandini, N; Shilpashree Mayachar, K; Ramya, R; Srinatha, N

    2018-06-01

    Silver nanoparticles were prepared through eco-friendly, cost effective, bio-mediated technique using anaerobically digested Parthenium hysterophorous digested slurry (PDS) for the first time. The synthesized nanoparticles were characterized through different techniques such as UV-Vis spectrophotometer for optical properties; X-ray diffractometer (XRD), high resolution transmission electron spectroscopy (HR-TEM) and Fourier Transform Infra Red (FTIR) Spectroscopy for structural property investigations. It was observed that the prepared silver nanoparticles were crystallized in face centered cubic crystal structure with an average particle size of 19 nm as confirmed from XRD. Also HR-TEM studies reveal the formation of nano-sized silver particles with face centered cubic nano structure. In addition, absorption spectra exhibit Surface Plasmon Resonance (SPR) which suggests the formation of silver nanoparticles. FTIR results show the presence of different characteristic functional groups and their stretching / bending vibrations in turn responsible for the bioreduction of silver ions in Parthenium digested slurry. Further investigations on antimicrobial activity were done by subjecting the synthesized silver nanoparticles on E-coli and Pseudomonas as marker organisms for the group of gram negative bacteria by well plate method on enrichment media. The result obtained shows a clear zone of inhibition confirming the antibacterial activity. Overall, the investigated results confirm the biosynthesized silver nanoparticles are potential candidates for antimicrobial activity applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    Science.gov (United States)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  8. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric

    Science.gov (United States)

    Vankar, Padma S.; Shukla, Dhara

    2012-06-01

    Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.

  9. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    Science.gov (United States)

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  10. Effect of gold and silver nanoparticles on the morpho-functional state of the epididymis and prostate gland in rats

    Directory of Open Access Journals (Sweden)

    V. Y. Kalynovskyi

    2016-09-01

    Full Text Available Metals are widely used in modern medicine: iron, copper, zinc, vanadium, titanium – all of them are vital for treatment of different diseases. Recently a new field of medical technology has emerged, which focuses on the biomedical application of metallic nanoparticles, with a particular interest in a gold and silver-based materials. These structures are already used for photothermal anticancer therapy, drug delivery, bioimaging, radiosensitizers and as drugs themselves. Despite the wide usage of nanoparticles, we still don’t know much about the toxicity of nanomaterials. Nanotoxicological studies are mainly carried out in vitro, but in vivo effects are still elusive. Hence, we focused on the reproductive toxicity of gold and silver nanosized particles. Spherical 10–15 nm gold and silver nanoparticles were synthesized through the reduction of sodium tetrachloroaurate (III and silver nitrate respectively with ascorbic acid in the presence of sodium polyphosphate as a coating and stabilizing agent. Next, these particles were administered intraperitoneally to the young and adult animals (1- and 6-months old respectively at 1 mg/kg dose for 10 days. As quantitative markers of functional activity, we used the diameter of epididymal tubules, height and the nuclear cross-section of epididymal epitheliocytes and relative volume of the prostatic epithelium. We showed that intraperitoneal administrations of nanogold to young animals caused no significant histological changes, although we found a decrease in the nuclear cross-sectional area of epididymal epitheliocytes. At the same time, nanogold caused more morphometric changes in adult animals. Similar results were obtained from the nanosilver groups. Silver nanoparticles caused an observable decrease of sperm quantity in the lumen of epididymal tubules with a simultaneous increase in the number of extraepididymal cells in young animals. Morphometric parameters of the epididymis and prostate also

  11. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun

    2010-01-01

    The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 μg/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  12. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    Science.gov (United States)

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  13. Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting.

    Science.gov (United States)

    Sathyavathi, R; Krishna, M Bala Murali; Rao, D Narayana

    2011-03-01

    The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.

  14. Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis.

    Science.gov (United States)

    Zuykov, Michael; Pelletier, Emilien; Demers, Serge

    2011-02-01

    Metal transport in mollusk extrapallial fluid (EPF) that acts as a "bridge" between soft tissues and shell has surprisingly received little attention until now. Using ultrafiltration and radiotracer techniques we determined silver concentrations and speciation in the EPF of the blue mussel Mytilus edulis after short-term uptake and depuration laboratory experiments. Radiolabelled silver ((¹¹⁰m)Ag) was used in dissolved or nanoparticulate phases (AgNPs silver nanoparticles were transported to the EPF of blue mussels at a level similar to the Ag ionic form. Bulk activity of radiolabelled silver in the EPF represented only up to 7% of the bulk activity measured in the whole mussels. The EPF extracted from mussels exposed to both treatments exhibited an Ag colloidal complexed form based on EPF ultrafiltration through a 3 kDa filter. This original study brings new insights to internal circulation of nanoparticles in living organisms and contributes to the international effort in studying the potential impacts of engineered nanomaterials on marine bivalves which play an essential role in coastal ecosystems, and are important contributors to human food supply from the sea. © 2010 Elsevier Ltd. All rights reserved.

  15. Tuning photoluminescence of ZnS nanoparticles by silver

    Indian Academy of Sciences (India)

    Wintec

    Ag@ZnS core-shell nanoparticles. ... doped ZnS NPs and thus changes the emission charac- teristics. We also ... Nanoparticles; photoluminescence; silver; zinc sulfide; doping. 1. ..... Sooklal K, Brain S, Angel M and Murphy C J 1996 J. Phys.

  16. l-Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A.

    Science.gov (United States)

    Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang

    2018-02-01

    A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimization of Parameters for Biosynthesis of Silver Nanoparticles Using Leaf Extract of Aegle marmelos

    Directory of Open Access Journals (Sweden)

    JohnSamuel Godwin Christopher

    2015-10-01

    Full Text Available ABSTRACTThe aim of this study was to optimize the biosynthesis of silver nanoparticles using leaves ofAegle marmelos as the primary source. The optimal reaction medium comprised 2:1 concentration of leaf extract and 6mM concentration of silver nitrate solution (pH 7. The biosynthesized silver nanoparticles were confirmed by UV-Vis spectroscopy at 420 nm, XRD and FTIR analysis. The antimicrobial properties of silver nanoparticles were confirmed withBacillus subtilis andPseudomonas aeruginosa.

  18. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Science.gov (United States)

    Parashar, Upendra Kumar; Kumar, Vinod; Bera, Tanmay; Saxena, Preeti S.; Nath, Gopal; Srivastava, Sunil K.; Giri, Rajiv; Srivastava, Anchal

    2011-10-01

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag + by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag + has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  19. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Upendra Kumar; Srivastava, Sunil K; Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, Vinod; Saxena, Preeti S [Department of Zoology, Banaras Hindu University, Varanasi 22005 (India); Bera, Tanmay [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Nath, Gopal [Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 22005 (India); Giri, Rajiv, E-mail: anchalbhu@gmail.com [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2011-10-14

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag{sup +} by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag{sup +} has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  20. Radiochemical synthesis of {sup 105g}Ag-labelled silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ichedef, C., E-mail: cigdem_ch@yahoo.com; Simonelli, F.; Holzwarth, U. [Institute for Health and Consumer Protection, European Commission, Joint Research Centre (Italy); Bagaria, J. Piella; Puntes, V. F. [Institut Català de Nanotecnologia (ICN2) (Spain); Cotogno, G.; Gilliland, D.; Gibson, N. [Institute for Health and Consumer Protection, European Commission, Joint Research Centre (Italy)

    2013-11-15

    A method for synthesis of radiolabelled silver nanoparticles is reported. The method is based on proton activation of silver metal powder, enriched in {sup 107}Ag, with a 30.7 MeV proton beam. At this proton energy {sup 105g}Ag is efficiently created, mainly via the {sup 107}Ag(p,3n){sup 105}Cd → {sup 105g}Ag reaction. {sup 105g}Ag has a half-life of 41.29 days and emits easily detectable gamma radiation on decay to {sup 105}Pd. This makes it very useful as a tracing radionuclide for experiments over several weeks or months. Following activation and a period to allow short-lived radionuclides to decay, the powder was dissolved in concentrated nitric acid in order to form silver nitrate (AgNO{sub 3}), which was used to synthesise radiolabelled silver nanoparticles via the process of sodium borohydride reduction. For comparison, non-radioactive silver nanoparticles were synthesised using commercially supplied AgNO{sub 3} in order to check if the use of irradiated Ag powder as a starting material would alter in any way the final nanoparticle characteristics. Both nanoparticle types were characterised using dynamic light scattering, zeta-potential and X-ray diffraction measurements, while additionally the non-radioactive samples were analysed by transmission electron microscopy and UV–Vis spectrometry. A hydrodynamic diameter of about 16 nm was determined for both radiolabelled and non-radioactive nanoparticles, while the electron microscopy on the non-radioactive samples indicated that the physical size of the metal NPs was (7.3 ± 1.4) nm.

  1. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential

    Directory of Open Access Journals (Sweden)

    Hemali Padalia

    2015-09-01

    Full Text Available In the present study, silver nanoparticles were synthesized using flower broth of Tagetes erecta as reductant by a simple and eco-friendly route. The aqueous silver ions when exposed to flower broth were reduced and resulted in green synthesis of silver nanoparticles. The silver nanoparticles were characterized by UV–visible spectroscopy, zeta potential, Fourier transform infra-red spectroscopy (FTIR, X-ray diffraction, Transmission electron microscopy (TEM analysis, Energy dispersive X-ray analysis (EDX and selected area electron diffraction (SAED pattern. UV–visible spectrum of synthesized silver nanoparticles showed maximum peak at 430 nm. TEM analysis revealed that the particles were spherical, hexagonal and irregular in shape and size ranging from 10 to 90 nm and Energy dispersive X-ray (EDX spectrum confirmed the presence of silver metal. Synergistic antimicrobial potential of silver nanoparticles was evaluated with various commercial antibiotics against Gram positive (Staphylococcus aureus and Bacillus cereus, Gram negative (Escherichia coli and Pseudomonas aeruginosa bacteria and fungi (Candida glabrata, Candida albicans, Cryptococcae neoformans. The antifungal activity of AgNPs with antibiotics was better than antibiotics alone against the tested fungal strains and Gram negative bacteria, thus signification of the present study is in production of biomedical products.

  2. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver

    Science.gov (United States)

    Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characte...

  3. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study

    Science.gov (United States)

    Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata

    2017-11-01

    In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.

  4. Polypropylene film with silver nanoparticles and nanoclay aiming to action biocidal

    International Nuclear Information System (INIS)

    Oliani, W.L.; Lima, L.F.C.P.; Lugao, A.B.; Parra, D.F.; Fermino, D.M.; Diaz, F.R.V.

    2014-01-01

    This paper presents an initial study of films made of polypropylene nanoclay and silver nanoparticles. The nanocomposite of polypropylene (iPP), commercial organoclay - montmorillonite (MMT), Cloisite 20A at concentrations of 1.0% and silver nanoparticles (AgNPs) at a concentration of 0.1% were prepared in a twin-screw-extruder, using polypropylene with maleic anhydride (PP-g-MA) as coupling agent. The properties of nanocomposites of PP/MMT/AgNPs are closely related to the dispersion of silver particles and the distribution of sheets of MMT in the polymer matrix, which define its efficiency in the case of the particles and their interaction clay/polymer matrix. However, this combination of MMT and AgNPs that are polar, with the polymer matrix nonpolar in the molten state, presents a challenge. The characterization of the film was performed by analysis of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and reduction of colony forming unit (CFU %). The results indicate the formation of predominantly exfoliated microstructures and agglomeration of silver nanoparticles in the film. The effect of silver nanoparticles was evaluated against bacteria E.coli and S.aureus. (author)

  5. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Selvaraj Karthick Raja Namasivayam

    2015-04-01

    Full Text Available Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  6. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Institute of Scientific and Technical Information of China (English)

    Duraisamy Jayakumar; Ramesh Kumar; Rajan SowriArvind Bharani

    2015-01-01

    Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  7. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    Science.gov (United States)

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the

  8. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles

    Science.gov (United States)

    Kaler, Abhishek; Mittal, Amit Kumar; Katariya, Mahesh; Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog; Banerjee, Uttam Chand

    2014-09-01

    Therapeutic use of nano-silver is claimed to have reduced side effects and enhanced curative activity as compared to its ionic counterpart (silver ions). The present work aims to screen microbes for the synthesis of silver nanoparticles (AgNPs), to formulate the nano-silver-based Carbopol gel and evaluating its wound healing efficacy on rat model. The goal was to develop the topical formulation based on bio-nano-silver to control the infection and healing the wounds with higher efficacy. Procedure involved the use of Saccharomyces boulardii for the synthesis of silver nanoparticles in the size range of 3-10 nm and these nanoparticles were used for the preparation of Carbopol-based nano-silver gel. Highly stable Carbopol nanogel was developed with good rheological properties. The burn wound healing potential of this nano-silver gel was evaluated on SD rats via visual observation, transepidermal water loss and histology of skin. Excellent wound healing was observed with AgNPs. Biologically synthesized AgNPs-based nano-silver gel showed superior wound healing efficacy as compared to marketed formulations and silver ions.

  9. Dose of radiation enhancement, using silver nanoparticles in a human tissue equivalent gel dosimeter.

    Science.gov (United States)

    Hassan, Muhammad; Waheed, Muhammad Mohsin; Anjum, Muhammad Naeem

    2016-01-01

    To quantify the radiation dose enhancement in a human tissue-equivalent polymer gel impregnated with silver nanoparticles. The case-control study was conducted at the Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, Pakistan, in January 2014. Silver nanoparticles used in this study were prepared by wet chemical method. Polymer gel was prepared by known quantity of gelatine, methacrylic acid, ascorbic acid, copper sulphate pentahydrate, hydroquinone and water. Different concentrations of silver nanoparticles were added to the gel during its cooling process. The gel was cooled in six plastic vials of 50ml each. Two vials were used as a control sample while four vials were impregnated with silver nanoparticles. After 22 hours, the vials were irradiated with gamma rays by aCobalt-60 unit. Radiation enhancement was assessed by taking magnetic resonance images of the vials. The images were analysed using Image J software. The dose enhancement factor was 24.17% and 40.49% for 5Gy and 10Gy dose respectively. The dose enhancement factor for the gel impregnated with 0.10mM silver nanoparticles was 32.88% and 51.98% for 5Gy and 10Gy dose respectively. The impregnation of a tissue-equivalent gel with silver nanoparticles resulted in dose enhancement and this effect was magnified up to a certain level with the increase in concentration of silver nanoparticles.

  10. Antioxidant properties of biohybrids based on liposomes and sage silver nanoparticles.

    Science.gov (United States)

    Barbinta-Patrascu, Marcela Elisabeta; Bunghez, Ioana-Raluca; Iordache, Stefan Marian; Badea, Nicoleta; Fierascu, Radu-Claudiu; Ion, Rodica Mariana

    2013-03-01

    This paper is aimed to describe a simple and rapid eco-friendly bottom-up approach for the preparation of antioxidant silver bionanostructures using a leaf extract from sage (Salvia officinalis L.). The bioreduction property of sage in the synthesis of silver nanoparticles was investigated by UV-VIS and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. During their preparation, the particle size analysis was performed by using Dynamic Light Scattering technique. Ultrasonic irradiation was used to obtain sage silver nanoparticles. The morphology (size and shape) of the herbal silver nanoparticles was evaluated by Scanning Electron Microscopy that revealed the formation of spherical phytonanoparticles with size less than 80 nm. In order to increase their stability and their biocompatibility, the sage silver nanoparticles were introduced in two types of liposomes: soybean lecithin- and Chla-DPPC-lipid vesicles which were prepared by thin film hydration method. X-Ray Fluorescence analysis confirmed the silver presence in liposomes/sage-AgNPs biohybrids. The stability of liposomes/herbal AgNPs bioconstructs was checked by zeta potential measurements. The most stable biohybrids: Chla-DPPC/sage-AgNPs with zeta potential value of -34.2 mV, were characterized by Atomic Force Microscopy revealing the spherical and quasi-spherical shaped profiles of these nanobiohybrids with size less than 96 nm. The antioxidant activity of the silver bionanostructures was evaluated using chemiluminescence assay. The developed eco-friendly silver phytonanostructures based on lipid membranes, nanosilver and sage extract, manifest strong antioxidant properties (between 86.5% and 98.6%).

  11. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    Science.gov (United States)

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The anti-cancer effect of octagon and spherical silver nanoparticles on MCF-7 breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Mehrdad Khatami

    2017-04-01

    Full Text Available Background: The modern science of nanotechnology is an interdisciplinary science that has contributed to advances in cancer treatment. This study was performed to evaluate the therapeutic effects of biosynthesized silver nanoparticles on breast cancer cell of line MCF-7 in vitro. Methods: This analytical study was performed in Kerman and Bam University of Medical Sciences, Bam City, Kerman Province, Iran from March 2015 to March 2016. Silver nanoparticles suspension was synthesized using palm kernel extract. The resulting silver nanoparticles were studied and characterized. The ultraviolet-visible spectroscopy and transmission electron microscopy used for screening of physicochemical properties. The average particle size of the biosynthesized silver nanoparticles was determined by transmission electron microscopy. The properties of different concentrations of synthesized silver nanoparticles (1 to 3 μg/ml and palm kernel extract (containing the same concentration of the extract was used for the synthesis of silver nanoparticles against MCF-7 human breast cancer cells were determined by MTT assay. MTT is used to assess cell viability as a function of redox potential. Actively respiring cells convert the water-soluble MTT to an insoluble purple formazan. Results: The ultraviolet-visible spectroscopy showed strong absorption peak at 429 nm. The X-ray diffraction (XRD and transmission electron microscopy (TEM images revealed the formation of silver nanoparticles with spherical and octagon shape and sizes in the range between 1-40 nm, with an average size approximately 17 nm. The anti-cancer effect of silver nanoparticles on cell viability was strongly depends on the concentration of silver nanoparticles and greatly decrease with increasing the concentration of silver nanoparticles. The IC50 amount of silver nanoparticle was 2 μg/ml. Conclusion: The biosynthesized silver nanoparticles showed a dose-dependent toxicity against MCF-7 human breast

  13. Phytosynthesis and Characterization of Silver Nanoparticles Using Callus of JATROPHA CURCAS: a Biotechnological Approach

    Science.gov (United States)

    Demissie, A. G.; Lele, S. S.

    2013-06-01

    The present study reports a rapid plant-based biosynthesis of silver nanoparticles using callus extract of Jatropha curcas L. The particle size and morphological analyses were carried out using Zetasizer, SEM, TEM. The physicochemical properties were monitored using UV-Vis spectroscopic, IR and DSC. The formation of silver nanoparticle was confirmed by using UV-Vis spectrophotometer and absorbance peaks at 421 nm. The silver nanoparticle was found to be a negatively charged with size ranging from 2 nm to 50 nm. The morphology of the nanoparticle is uniformly spherical and has a dispersion ratio of 0.14. The physicochemical study using DSC indicated significant thermal stability and crystalline nature of the nanoparticle. This intracellular biosynthesis of silver nanoparticles is simple, cheap and eco-friendly than other mechanical and chemical approaches.

  14. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode

    International Nuclear Information System (INIS)

    Kalambate, Pramod K.; Rawool, Chaitali R.; Karna, Shashi P.; Srivastava, Ashwini K.

    2016-01-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (I p ) current for MM is found to be rectilinear in the range 4.0 × 10 −8 –2.0 × 10 −5 M with a detection limit of 7.1 × 10 −9 M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. - Highlights: • Voltammetric sensor for methylergometrine maleate using carbon nanofibers and silver nanoparticle - carbon paste electrode • Wide working range, good reproducibility, fast response and high stability were the main advantages of the proposed sensor • Analysis of methylergometrine maleate in pharmaceutical formulations, urine and blood serum samples • Lowest limit of detection obtained for methylergometrine maleate

  15. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    Science.gov (United States)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  16. Antifungal silver nanoparticles: synthesis, characterization and biological evaluation

    International Nuclear Information System (INIS)

    Elgorban, Abdallah Mohamed; El-Samawaty, Abd El-Rahim Mohamed; Yassin, Mohamed Abdallah; Sayed, Shaban Rushdy; Adil, Syed Farooq; Elhindi, Khaled Mohamed; Bakri, Marwa; Khan, Mujeeb

    2016-01-01

    Silver nanoparticles have a high antimicrobial activity and are broadly utilized for several disinfection purposes including water and materials’ Sanitation for medical purposes. There have been comparatively few studies on using silver against plant pathogenic fungi. In this study, silver nanoparticles (Ag NPs) were used at concentrations of 0.0, 0.0002, 0.0005, 0.0007, 0.0009, 0.0014 and 0.0019 mol/L. Six different Rhizoctonia solani anastomosis groups (AGs) infecting cotton plants were treated in vitro with Ag NPs on Czapek Dox agar (CDA) and potato dextrose agar plates. The results showed that various concentrations of Ag NPs have antifungal properties to control R. solani AGs. The obtained results also revealed that strong inhibition of R. solani AGs was noticed on CDA at all concentrations

  17. A versatile synthesis of highly bactericidal Myramistin (registered) stabilized silver nanoparticles

    International Nuclear Information System (INIS)

    Vertelov, G K; Krutyakov, Yu A; Olenin, A Yu; Lisichkin, G V; Efremenkova, O V

    2008-01-01

    Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin capped silver NPs exhibited notable activity against six different microorganisms-gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs

  18. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material

    Directory of Open Access Journals (Sweden)

    Donya Ramimoghadam

    2014-01-01

    Full Text Available Anatase titanium dioxide nanoparticles (TiO2-NPs were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, thermogravimetric analysis (TGA, ultraviolet visible spectra (UV-Vis, and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.

  19. Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin.

    Science.gov (United States)

    Mathew, Thomas V; Kuriakose, Sunny

    2013-01-01

    Colloidal silver nanoparticles were synthesised using sol-gel method and these nanoparticles were stabilised by encapsulated into the scaffolds of bovine serum albumin. Silver nanoparticles and encapsulated products were characterised by FTIR, NMR, XRD, TG, SEM and TEM analyses. Silver nanoparticle encapsulated bovine serum albumin showed highly potent antibacterial activity towards the bacterial strains such as Staphylococcus aureus, Serratia marcescens, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    International Nuclear Information System (INIS)

    Cabal, B; Moya, J S; Torrecillas, R; Malpartida, F

    2010-01-01

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  1. Heterogeneous precipitation of silver nanoparticles on kaolinite plates.

    Science.gov (United States)

    Cabal, B; Torrecillas, R; Malpartida, F; Moya, J S

    2010-11-26

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  2. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    Energy Technology Data Exchange (ETDEWEB)

    Cabal, B; Moya, J S [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049, Cantoblanco, Madrid (Spain); Torrecillas, R [Centro de Investigacion en Nanomateriales y NanotecnologIa (CINN), Consejo Superior de Investigaciones CientIficas (CSIC)-Universidad de Oviedo-UO-Principado de Asturias, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Malpartida, F, E-mail: bcabal@icmm.csic.es [Centro Nacional de BiotecnologIa (CNB-CSIC), 28049, Cantoblanco, Madrid (Spain)

    2010-11-26

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  3. Understanding the Synthesis and Properties of Molecular Silver Nanoparticles

    Science.gov (United States)

    Ashenfelter, Brian A.

    Molecular nanoparticles have emerged as an interesting class of materials whose atomically precise structures and discrete properties set them apart from their larger counterparts. Molecular silver nanoparticles are of particular interest because they provide a host of advantages as optical materials for possible use in sensing and imaging applications. However, relatively little is known about molecular silver nanoparticles including the details of their formation and their optical and mechanical properties. Size control remains a longstanding challenge in the production of glutathionate (SG) protected silver nanoparticles. Singular Ag:SG nanoparticle products have been difficult to obtain directly, but size focusing of larger distributions through attrition has been found to lead to useful isolation of particular species. Here, we present a methodology for controlling the size of Ag:SG molecular nanoparticles that leverages the stability of the most robust species. These results were then used to develop a facile approach for achieving two of the most stable species in the Ag:SG system. Molecular metal nanoparticles are known to be much more fluorescent than larger plasmonic nanoparticles, however the nature and origin of this fluorescence are not fully understood. Fluorescence can originate from either the quantum states within the metal core or mixed ligand states at the inorganic-organic interface. We have presented compelling evidence that fluorescence from molecular silver glutathionate nanoparticles has its origin in interfacial electronic states. Fluorescence spectra were found to be independent of size, with very similar wavelength and bandwidth, although the quantum yield was not. Excitation spectra indicated that the strongest fluorescence had its origin in that part of the spectrum that is dominated by ligand-related states. Further, excitations to strictly core states and to higher lying d-band states had little to no contribution to the fluorescence

  4. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    Science.gov (United States)

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  5. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-01-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. - Highlights: ► The synthesis is environmentally benign, easy to perform, and of low-cost. ► DL-Alanine was employed both as reducing and capping agent. ► Mean size of 7.5 nm, narrow size distribution, and spherical shape of particles. ► Increased sensitivity and reduced energetic dependence compared with pure alanine. ► The nanocomposite has potential application for ESR dosimetry.

  6. Enhanced antimicrobial efficacy of thermal-reduced silver nanoparticles supported by titanium dioxide.

    Science.gov (United States)

    Chen, Yen-Chi; Yu, Kuo-Pin

    2017-06-01

    The antimicrobial efficacy of silver nanoparticles (AgNPs) is influenced by many factors, including the particle size, AgNP oxidation state and support materials. In this study, AgNPs are synthesized and supported by two types of TiO 2 powders (P25 and Merck TiO 2 ) using two heat-treatment temperatures (120 and 200°C). The formation of well-dispersed AgNPs with diameters ranging from 3.2 to 5.7nm was confirmed using transmission electron microscopy. X-ray photoelectron spectroscopy and X-ray diffraction indicated that the majority of the AgNPs were reduced from Ag + to Ag 0 at 200°C. The AgNP antimicrobial activity was determined by the zone of inhibition against three fungi, A. niger, P. spinulosum and S. chartarum, and two bacteria, E. coli (Gram-negative) and S. epidermidis (Gram-positive). The antimicrobial activity of metallic AgNPs was more pronounced than that of silver nitrate and some antimicrobial drugs. The AgNPs exhibited optimal antimicrobial efficacy when the AgNP dispersion on the surface of TiO 2 was in the region between 0.2 and 0.7μg-Ag/m 2 . The minimum (critical) AgNP concentrations needed to inhibit the growth of bacteria (E. coli) and fungi (A. niger) were 13.48 and 25.4μg/mL, respectively. The results indicate that AgNPs/TiO 2 nanocomposites are a promising disinfectant against both bacteria and fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Science.gov (United States)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  8. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    Science.gov (United States)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-07-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  9. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    International Nuclear Information System (INIS)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-01-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi (Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV–vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV–vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4–30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  10. Optical and structural studies of silver nanoparticles

    International Nuclear Information System (INIS)

    Temgire, M.K.; Joshi, S.S.

    2004-01-01

    Gamma radiolysis method was used to prepare polyvinyl alcohol (PVA) capped silver nanoparticles by optimizing various conditions like metal ion concentration and polymer (PVA) of different molecular weights. The role of different scavengers was also studied. The decrease in particle size was observed with increase in the molecular weight of capping agent. γ-radiolytic method provides silver nanoparticles in fully reduced and highly pure state. XRD (X-ray diffraction) technique confirmed the zero valent state of silver. Optical studies were done using UV-visible spectrophotometer to see the variation of electronic structure of the metal sol. Transmission Electron Microscopic (TEM) studies reveal the fcc geometry. The TEM show clearly split Debye-Scherrer rings. The d values calculated from the diffraction ring pattern are in perfect agreement with the ASTM data. Ag particles less than 10 nm are spherical in shape, whereas the particles above 30 nm have structure of pentagonal biprisms or decahedra, referred to as multiply twinned particles

  11. Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesised using forest and edible mushroom

    Science.gov (United States)

    Sriramulu, Mohana; Sumathi, Shanmugam

    2017-12-01

    Mushroom has been part of the human diet for thousands of years, and in recent times, the amounts consumed have risen greatly, involving a large number of species. Mushrooms used for nutritional and therapeutic purposes. In this study silver nanoparticles were synthesised using an edible mushroom (Agaricus bisporus) and forest mushroom (Ganoderma lucidum) extract. The synthesised nanoparticles were characterised by UV-vis spectroscopy, FTIR, powder XRD and SEM. Silver nanoparticles were synthesised at room temperature and at 60 °C. FTIR results recognised the presence of bioactive functional groups responsible for the reduction of silver nitrate to silver nanoparticles. From the XRD, it was observed that the nanoparticles are silver with an average size of 10-80 nm. The silver nanoparticles are explored for photocatalytic activity and biological activities such as in vitro antioxidant activity, anti-inflammatory activity and antimicrobial activity against Escherichia coli and Staphylococcus aureus organisms. 98% of textile dye (direct blue 71) degradation was noticed under UV light within 150 min for forest mushroom synthesised silver nanoparticles at room temperature.

  12. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  13. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    Science.gov (United States)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  14. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Science.gov (United States)

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green a...

  15. Electrospun alginate nanofibres impregnated with silver nanoparticles: Preparation, morphology and antibacterial properties

    CSIR Research Space (South Africa)

    Mokhena, Teboho M

    2017-06-01

    Full Text Available . In this study, silver nanoparticles (AgNPs) have been synthesized using chitosan as reducing and stabilizing agent. The formation of silver nanoparticles was confirmed by UV-vis, and the TEM showed that different shapes were obtained depending on the heating...

  16. High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis.

    Science.gov (United States)

    Leiterer, Christian; Wünsche, Erik; Singh, Prabha; Albert, Jens; Köhler, Johann M; Deckert, Volker; Fritzsche, Wolfgang

    2016-05-01

    AFM tips are modified with silver nanoparticles using an AC electrical field. The used technique works with sub-micron precision and also does not require chemical modification of the tip. Based on the electrical parameters applied in the process, particle density and particle position on the apex of the tip can be adjusted. The feasibility of the method is proven by subsequent tip-enhanced Raman spectroscopy (TERS) measurements using the fabricated tips as a measurement probe. Since this modification process itself does not require any lithographic processing, the technique can be easily adapted to modify AFM tips with a variety of nanostructures with pre-defined properties, while being parallelizable for a potential commercial application.

  17. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  18. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  19. In vitro human digestion test to monitor the dissolution of silver nanoparticles

    International Nuclear Information System (INIS)

    Bove, P; Sabella, S; Malvindi, M A

    2017-01-01

    Nanotechnology is a scientific revolution that the food industry has experienced over the last years. Widely employed as food additives and/or food contact materials in consumer products, silver nanoparticles are an example of this innovation. However, their increasing use makes also likely the human ingestion, thus requiring a proper risk analysis. In this framework, a comprehensive characterization of biotransformation of silver nanoparticles in biological fluids is fundamental for the regulatory needs. Herein, we aimed at studying the dissolution behaviour of silver nanoparticles using an in vitro test, which simulates the human oral ingestion of NPs during their passage through the gastrointestinal tract. The nanoparticle suspensions were characterized in the different digestion phases using several techniques to follow the changes of key physical properties ( e.g. , size, surface charge and plasmon peak) and to quantify the biotransformed products arisen by the process, as for example free silver ions. (paper)

  20. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments

    International Nuclear Information System (INIS)

    Elzey, Sherrie; Grassian, Vicki H.

    2010-01-01

    The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5-6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 ± 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

  1. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Elzey, Sherrie; Grassian, Vicki H., E-mail: vicki-grassian@uiowa.ed [University of Iowa, Department of Chemical and Biochemical Engineering (United States)

    2010-06-15

    The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5-6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 {+-} 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

  2. Study of optical and physicochemical properties of colloidal silver nanoparticles as an efficient substrate for SERS

    International Nuclear Information System (INIS)

    Cyrankiewicz, M; Kruszewski, S

    2011-01-01

    The unique optical and physicochemical properties of the noble metal colloidal nanoparticles enable their use in a wide range of applications, especially as a substrate in SERS and MEF study. The aim of this work is to characterize the conditions for the enhancement of Raman scattering by molecules adsorbed on silver surface. Silver sol is prepared by slightly modified Lee-Meisel's method and rhodamine 6G is used as a probe adsorbate. Pure colloidal silver suspension containing isolated nanoparticles exhibits relatively poor SERS efficiency. The extremely large electromagnetic field is induced in the junctions between two or more metallic nanocrystalites so some degree of their aggregation is necessary. The influence of potassium chloride and nitric acid as the aggregating agents is investigated here. The experiments show that both of them can promote the controlled aggregation process but chloride anions, unlike nitrate, much more effectively affect both electromagnetic and chemical mechanisms contributing to SERS. Due to the co-adsorption with rhodamine 6G they allow the dye molecules to directly interact with metallic surface. Moreover, the results clearly indicate that chloride in the presence of silver particles can induce the dimerization of the dye molecules.

  3. Electrostatic assembly of CTAB-capped silver nanoparticles along predefined λ-DNA template

    International Nuclear Information System (INIS)

    Wei Gang; Wang Li; Zhou Hualan; Liu Zhiguo; Song Yonghai; Li Zhuang

    2005-01-01

    Cetyltrimethylammonium bromide (CTAB)-capped positively-charged silver nanoparticles synthesized in water-ethanol system was electrostatic assembled on predefined aligned λ-DNA template. Silver nanowire can be obtained by changing the reaction time and the particles concentration. In our work, the length of the silver nanowire obtained is about 10 μm, and the dimension of the wires is about 20 nm. AFM data reveal that the assembly of CTAB-capped silver nanoparticles on DNA is ordered, but there is space between two particles absorbed on the DNA template. X-ray photoelectron spectroscopy (XPS) was applied to characterize the linear silver clusters, which provides an additional proof that the silver particles were assembled onto DNA template with fine order

  4. The segregation of silver nanoparticles in low-cost ceramic water filters

    International Nuclear Information System (INIS)

    Larimer, Curtis; Ostrowski, Nicole; Speakman, Jacquelyn; Nettleship, Ian

    2010-01-01

    As an impregnated constituent in low-cost ceramic water filters, silver nanoparticles have a demonstrated antibacterial effect. The bactericidal mechanism is believed to be based on direct contact between silver and the cell wall of a contaminant organism. In this study microstructural analysis was used to examine the effect of the processing method on the distribution of silver nanoparticles in the filter material. Silver nanofluid was impregnated into fired clay ceramic samples by a low-cost soak-and-dry method. Analyses of filter samples by scanning electron microscopy, energy dispersive spectroscopy, and digital optical topological mapping showed that silver was concentrated in near surface pores, a condition that is not optimal for highest probability of silver contact. A simple experiment showed that segregation of silver occurs during the drying phase of impregnation. Drying curves showed that 90% of contained liquid evaporates from the external surface.

  5. Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract

    Science.gov (United States)

    Shittu, K. O.; Ihebunna, O.

    2017-12-01

    Synthesis of nanoparticles from various biological systems has been reported, but among all such systems, biosynthesis of nanoparticles from plants is considered the most suitable method. The use of plant material not only makes the process eco-friendly, but also the abundance makes it more economical. The aim of this study was to biologically synthesize silver nanoparticle using Piliostigma thonningii aqueous leaf extract and applied in the purification of laboratory stimulated waste with optimization using the different conditions of silver nanoparticle production such as time, temperature, pH, concentration of silver nitrate and volume of the aqueous extract. The biosynthesized silver nanoparticles were characterized by UV-visible spectrophotometry, nanosizer, energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The time intervals for the reaction with aqueous silver nitrate solution shows an increase in the absorbance with time and became constant giving a maximum absorbance at 415 nm at 60 min of incubation. The pH of 6.5, temperature 65 °C, 1.25 mM of silver nitrate and 5 ml of plant extract was the best condition with maximum absorbance. The results from nanosizer, UV-vis and TEM suggested the biosynthesis silver nanoparticle to be spherical ranging from 50 nm to 114 nm. The EDX confirmed the elemental synthesis of silver at 2.60 keV and FTIR suggested the capping agent to be hydroxyl (OH) group with -C=C stretching vibrations. The synthesized silver nanoparticle also shows heavy metal removal activity in laboratory simulated waste water. The safety toxicity studies show no significant difference between the orally administered silver nanoparticles treated water group and control group, while the histopathological studies show well preserved hepatic architecture for the orally administered silver nanoparticle treated waste water group when compared with the control

  6. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance.

    Science.gov (United States)

    Du, Huamao; Lo, Tat-Ming; Sitompul, Johnner; Chang, Matthew Wook

    2012-08-10

    Despite extensive use of silver nanoparticles for antimicrobial applications, cellular mechanisms underlying microbial response to silver nanoparticles remain to be further elucidated at the systems level. Here, we report systems-level response of Escherichia coli to silver nanoparticles using transcriptome-based biochemical and phenotype assays. Notably, we provided the evidence that anaerobic respiration is induced upon exposure to silver nanoparticles. Further we showed that anaerobic respiration-related regulators and enzymes play an important role in E. coli resistance to silver nanoparticles. In particular, our results suggest that arcA is essential for resistance against silver NPs and the deletion of fnr, fdnH and narH significantly increases the resistance. We envision that this study offers novel insights into modes of antimicrobial action of silver nanoparticles, and cellular mechanisms contributing to the development of microbial resistance to silver nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium

    OpenAIRE

    Dobrucka, Renata; Długaszewska, Jolanta

    2015-01-01

    Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV–visble spectroscopy, Fourier...

  8. Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility.

    Science.gov (United States)

    Wang, Yawen; Duo, Fangfang; Peng, Shiqi; Jia, Falong; Fan, Caimei

    2014-09-15

    In this paper, we report a novel polyol process to synthesize highly water-dispersible anatase titanium dioxide (TiO2) nanoparticles (∼5 nm) by the introduction of inorganic oxidizing agent--KIO3. The obtained TiO2 nanoparticles are well dispersible in water at pH≥5.0 and the resulting aqueous dispersion remains stable over months. The superior water-dispersibility of as-formed TiO2 is ascribed to the electrostatic repulsion from carboxylic acid group modified on TiO2 nanoparticles, which is the oxidation product of solvent diethylene glycol (DEG) by KIO3. Based on the characterization results, the formation processes of water-dispersibility TiO2 nanoparticles are proposed. Meanwhile, the synthesized TiO2 nanoparticles are found to be doped by iodine and exhibit excellent photocatalytic activity on degradation of rhodamine-B (RhB) under visible-light irradiation. The further tests demonstrate that the O(2-) is the main active species during photodegradation of RhB. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Green synthesis of silver nanoparticles by Escherichia coli : Analysis of antibacterial activity

    Directory of Open Access Journals (Sweden)

    Koilparambil Divya

    2016-07-01

    Full Text Available The emerging infectious diseases and the development of drug resistance in the pathogenic microorganism is a matter of serious concern. Despite the increased knowledge of microbial pathogenesis and application of modern therapeutics, the morbidity and mortality associated with the microbial infections still remains high. Therefore, there is a pressing demand to discover novel strategies and identify new antimicrobial agents to develop the next generation of drugs or agents to control microbial infections. The use of nanoparticles is gaining impetus in the present century as they possess defined chemical, optical and mechanical properties. In the present study green synthesis of silver nanoparticles by Escherichia coli has been done. Various parameters such as mixing ratio of culture supernatant and silver nitrate, media, temperature and pH for production of silver nanoparticles were optimised. The nanoparticles synthesised was characterized using SEM, FTIR and XRD. The antibacterial activity of silver nanoparticles synthesised using both pellet and supernatant against human pathogens Salmonella typhi, Vibrio cholerae, Bacillus subtilis and Klebsiella pneumoniae was analysed and MIC was calculated as 20µg and 50µg respectively.

  10. Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles

    Science.gov (United States)

    Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy

    2017-01-01

    The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.

  11. Biosynthesis of silver nanoparticles using Reseda Luteola L. and their antimicrobial activity

    NARCIS (Netherlands)

    Nasiriboroumand, Majid Nasiri; Montazer, Majid; Dutschk, Victoria

    2013-01-01

    Among different methods to synthesize silver nanoparticles (SNPs), the biological method has been the most extensively investigated. This study presents a facile and rapid method for biosynthesis of silver nanoparticles from Weld (Reseda Luteola L.) as a natural dye. An aqueous extract of the dye

  12. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    NARCIS (Netherlands)

    Richter, A.P.; Brown, J.S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E.A.; Paunov, V.N.; Stoyanov, S.D.; Velev, O.D.

    2015-01-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to

  13. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  14. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  15. Silver nanoparticles plasmonic effect on eosin and rhodamine 6G luminescence in various media

    Science.gov (United States)

    Samusev, Ilia G.; Tikhomirova, Nadezhda S.; Slezhkin, Vasiliy A.; Zyubin, Andrey Yu.; Bryukhanov, Valery V.; Tsibulnikova, Anna V.

    2016-11-01

    The plasmonic enhancement and quenching of phosphorescence and fluorescence of the anionic (eosin) and cationic (rhodamine 6G) dyes have been studied in various environments: silver nanoparticles of silver hydrosol citrate in water, in polymer films and on the surface of nanoporous silica in order to determine the kinetic and spectral effects on the dye luminescence. Depending on the silver nanoparticles concentration both the enhancement and quenching of the dyes phosphorescence and fluorescence have been detected. The mechanism of interaction between the excited molecules and silver nanoparticles has been discussed.

  16. Synthesis and characterization of hydroxyapatite-doped silver nanoparticles

    International Nuclear Information System (INIS)

    Andrade, Flavio Augusto Cavadas da Silva; Rollo, Joao Manuel Domingos de Almeida; Rigo, Eliana Cristina da Silva; Vercik, Andres; Vercik, Luci Cristina de Oliveira; Valencia, German Ayala; Ferreira, Leticcia Gaviao

    2012-01-01

    Hydroxyapatite-doped silver nanoparticles was obtained by immersing the powder in increasing dilutions of a solution containing AGNPS which were synthesized in different times and were characterized by UV-vis spectroscopy. The X-ray diffraction (XRD)studies demonstrate no change in the major phase of HA. Scanning Electron Microscopy (SEM) revealed morphological characteristics of powders after doping and the presence of silver was confirmed by energy dispersive X-ray (EDAX) analysis.The antibacterial effect of the doped powders was evaluated using strain of Staphylococcus aureus by disc-diffusion test. The zone of inhibition was found to vary with the amount of silver nanoparticle in the doped powder even for low concentrations of AgNPs. These results indicate that the method of immersion hydroxyapatite in solutions containing AgNPs is promising to obtain bioactive materials with low cytotoxicity and antibacterial effects. (author)

  17. Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin

    Science.gov (United States)

    Bhunia, Amit Kumar; Kanti Samanta, Pijus; Aich, Debasish; Saha, Satyajit; Kamilya, Tapanendu

    2015-06-01

    The interactions of human hemoglobin with protein capped silver nanoparticles and bare silver nanoparticles were studied to understand fundamental perspectives about the biocompatibility of protein capped silver nanoparticles compared with bare silver nanoparticles. Bare silver (Ag) nanoparticles (NPs) were prepared by the chemical reduction method. High resolution transmission electron microscopy (HRTEM) analysis along with absorption at ~390 nm indicated the formation of bare Ag NPs. Protein coated Ag NPs were prepared by a green synthesis method. Absorption at ~440 nm along with ~280 nm indicated the formation of protein coated Ag NPs. The biocompatibility of the above mentioned Ag NPs was studied by interaction with human hemoglobin (Hb) protein. In presence of bare Ag NPs, the Soret band of Hb was red shifted. This revealed the distortion of iron from the heme pockets of Hb. Also, the fluorescence peak of Hb was quenched and red shifted which indicated that Hb became unfolded in the presence of bare Ag NPs. No red shift of the absorption of Soret, along with no shift and quenching of the fluorescence peak of Hb were observed in the presence of protein coated Ag NPs. A hemolysis assay suggested that protein coated Ag NPs were more biocompatible than bare one.

  18. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin, E-mail: zhangxy@iccas.ac.cn, E-mail: ylsong@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-21

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO{sub 3} mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10{sup -8}-8.76 x 10{sup -8} {Omega} m after thermal treatment at 160 {sup 0}C for 30 min, which was about five times that of bulk silver (1.586 x 10{sup -8} {Omega} m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  19. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    International Nuclear Information System (INIS)

    Zhang Zhiliang; Zhang Xingye; Xin Zhiqing; Deng Mengmeng; Wen Yongqiang; Song Yanlin

    2011-01-01

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO 3 mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 x 10 -8 -8.76 x 10 -8 Ω m after thermal treatment at 160 0 C for 30 min, which was about five times that of bulk silver (1.586 x 10 -8 Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  20. A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles

    Science.gov (United States)

    Vertelov, G. K.; Krutyakov, Yu A.; Efremenkova, O. V.; Olenin, A. Yu; Lisichkin, G. V.

    2008-09-01

    Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin®) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin® capped silver NPs exhibited notable activity against six different microorganisms—gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin® at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs.

  1. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

    International Nuclear Information System (INIS)

    Hoeng, Fanny; Denneulin, Aurore; Neuman, Charles; Bras, Julien

    2015-01-01

    Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension

  2. Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature

    NARCIS (Netherlands)

    Barani, H.; Montazer, M.; Braun, H.G.; Dutschk, Victoria

    2014-01-01

    The use of silver nanoparticle on various substrates has been widespread because of its good antibacterial properties that directly depend on the stability of the silver nanoparticles in a colloidal suspension. In this study, the colloidal solutions of the silver nanoparticles were synthesised by a

  3. Microwave-assisted facile green synthesis of silver nanoparticles

    Indian Academy of Sciences (India)

    Silver nanoparticles have been successfully synthesized in aqueous medium by a green, rapid and costefficient synthetic approach based on microwave irradiation. In this study, iota-carrageenan (I-carrageenan) is used both as reducing and stabilizing agent. The formation of nanoparticles is determined using UV–vis, ...

  4. Biosynthesis of silver nanoparticles and its antibacterial activity ...

    African Journals Online (AJOL)

    Dr.Rajasekar

    2012-07-19

    Jul 19, 2012 ... Available online at http://www.academicjournals.org/AJB ... Transmission Electron Microscopy (HRTEM) support the biosynthesis and characterization of silver nanoparticles. ... nanoparticle from seaweed is a green chemical method ... operating at a voltage of 80 kV and a current of 30 mA (Chandran.

  5. Isolation and identification of burn wound superbugs by molecular technique and their susceptibility to silver nanoparticles

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby

    2018-02-01

    Burn wound is a global problem affecting millions of people. It is the major cause of mortality and morbidity. This study was aimed to isolate and identify the wound isolates by 16S rRNA and to assess their susceptibility to antibiotics and silver nanoparticles. Silver nanoparticles were synthesized using aqueous extract of A.indica. The silver nanoparticles were characterized by FESEM, XRD, FTIR and DSC. Antibacterial susceptibility of the isolates was assessed by well diffusion method. The wound isolates were identified as S.aureus and E.coli. Both isolates were resistant to β lactum antibiotics, aminoglycoside, quinolones and macrolides. The inhibition zone exhibited by all antibiotics against both organisms was less than 5 mm. The size of silver nanoparticles were recorded as 55 nm. XRD confirmed the crystalline nature of the nanoparticles. TGA and DSC of silver nanoparticles showed the loss of weight and the melting point of silver nanoparticles was recorded at 871.3°C. Silver nano particles inhibited S.aureus and E.coli with an inhibition zone of 27 mm and 32 mm respectively. Therefore the study demonstrated that only silver containing dressings can be used in burn wounds infected by multi drug resistant super bugs.

  6. Towards Environmentally-benign Nanoengineering: Antimicrobial Nanoparticles Based on Silver-infused Lignin Cores

    Science.gov (United States)

    Richter, Alexander Philipp

    Engineered nanomaterials are capable of solving challenges in industries important to society such as energy, agriculture, and health care. Antimicrobial silver nanoparticles (AgNPs) are the most widely used nanoparticles by number of commercial products in commerce today. However, the increased introduction of AgNPs in industrial applications may lead to discharge of persistent nanoparticles in the environment and undesired impacts on living organisms. This dissertation will present a new class of antimicrobial environmentallybenign nanoparticles (EbNPs) designed with green chemistry principles, which can serve as highly efficient microbicide substitutes of the AgNPs. The EbNP core is made of biodegradable lignin, and is infused with an optimal amount of silver ions. We report on the fabrication of environmentally benign nanoparticles (EbNPs) using two types of lignin precursors with simple, inexpensive, and non-toxic processes, (i) by employing a solvent exchange precipitation method at room temperature and (ii) by applying an environmentally friendly water-based acid precipitation method. The synthesis of Organosolv (High Purity Lignin) nanoparticles via antisolvent flash precipitation method in water resulted in particles in the size range of 45 to 250 nm in diameter. We investigate the synthesis parameters of Kraft (Indulin AT) lignin nanoparticles by flash precipitation induced by pH drop in ethylene glycol. Furthermore, we evaluate the ionic strength and pH stability of both lignin nanoparticle suspensions and highlight differences in the systems. After silver ion infusion of Indulin AT nanoparticles followed by surface modification, we show that the EbNPs exhibit higher antimicrobial activity towards Gram-negative human pathogens Escherichia coli and Pseudomonas aeruginosa and Gram-positive human pathogens Staphylococcus epidermidis in direct comparison with silver nanoparticles and silver nitrate solution, and that the particles are effective against

  7. Zeolites modified with silver for the development of a water disinfection system; Zeolitas modificadas con plata para el desarrollo de un sistema de desinfeccion de agua

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio V, S.

    2013-07-01

    In spite of great strides that have been taken in sanitation technologies, there still exist health problems due to microbiological contamination by water. The waterborne diseases have not been completely eradicated and are a big problem of economic interest and health. Moreover, the microbicidal properties of silver have been used for a long time. The use of silver as a disinfectant has many advantages; for example it inhibits a wide spectrum of microorganisms, it has oligo dynamic properties and owing its mechanisms of cell inactivation, it also does not allow the emergence of new resistant strains. In the present research, the kinetics of water disinfection with silver has been investigated, to develop small system for water disinfection, based in silver modified Mexican clinoptilolite. The chemical species of silver play a significant role in the disinfection processes. For this reason, in this work, were both the Ag{sup +} and nanoparticles of Ag{sup ο} considered. The synthesis of nanoparticles of Ag{sup ο} woes performed by thermal and chemical reduction. It was found that the chemical reduction of Ag{sup +} to Ag{sup ο} was more efficient because it presented more defined nano structures and better distribution than those of thermal reduction. Clinoptilolite of Taxco (Guerrero) was chosen to exchange the native ions from the clinoptilolite by Ag{sup +} from the aqueous medium, or to deposit the nanoparticles of Ag{sup ο} on this surface. These silver modified zeolitic materials were characterized by scanning electron microscopy (Sem), elemental analyses (EDS), X-ray diffraction (XRD) and neutron activation analysis (NAA). The results showed that the crystallographic structure of the clinoptilolite did not change during thermal and chemical reduction treatments of Ag{sup +} to obtain the nanoparticles of Ag{sup ο}. The bactericide activity of the silver modified zeolitic materials (with Ag{sup +} or nanoparticles of Ag{sup ο}) was evaluated on

  8. Striated muscle microvascular response to silver implants: A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Hansis, M; Arens, S; Menger, M D; Vollmar, B

    2000-02-01

    Local microvascular perfusion is the primary line of defense of tissue against microorganisms and plays a considerable role in reparative processes. The impairment of the microcirculation by a biomaterial may therefore have profound consequences. Silver is known to have excellent antimicrobial activity and, although regional and systemic toxic effects have been described, silver is regularly discussed as an implant material in bone surgery. Because little is known about the influence of silver implants on the adjacent host tissue microvasculature, we studied in vivo nutritive perfusion and leukocytic response, and compared these results with those of the conventionally used materials titanium and stainless steel. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, the implantation of a commercially pure silver sample led to a distinct and persistent activation of leukocytes combined with a marked disruption of the microvascular endothelial integrity, massive leukocyte extravasation, and considerable venular dilation. Whereas animals with stainless-steel implants showed a moderate increase in these parameters with a tendency to recuperate, titanium implants caused only a transient increase of leukocyte-endothelial cell interaction within the first 120 min and no significant change in macromolecular leakage, leukocyte extravasation and venular diameter. After 3 days, five of six preparations with silver samples showed severe inflammation and massive edema. Thus, the use of silver as an implant material should be critically judged despite its bactericidal properties. The implant material titanium seems to be well tolerated by the local vascular system and currently represents the golden standard. Copyright 2000 John Wiley & Sons, Inc.

  9. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  10. Synthesis and Oxidation of Silver Nano-particles

    Science.gov (United States)

    2011-01-01

    solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt

  11. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  12. Anaerobic toxicity of cationic silver nanoparticles

    International Nuclear Information System (INIS)

    Gitipour, Alireza; Thiel, Stephen W.; Scheckel, Kirk G.; Tolaymat, Thabet

    2016-01-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag"+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L"−"1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L"−"1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag"+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L"−"1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L"−"1), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  13. The preparation, physicochemical properties, and the cohesive energy of liquid sodium containing titanium nanoparticles

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Itami, Toshio; Ara, Kuniaki

    2012-01-01

    Liquid sodium containing titanium nanoparticles (LSnanop) of 10-nm diameter was prepared by dispersing titanium nanoparticles (2 at.% Ti) into liquid sodium with the addition of stirring and ultrasonic sound wave. The titanium nanoparticles themselves were prepared by the vapor deposition method. This new liquid metal, LSnanop, shows a remarkable stability due to the Brownian motion of nanoparticles in liquid sodium medium. In addition, the difference of measured heat of reaction to water between this LSnanop and liquid sodium indicates the existence of cohesive energy between the liquid sodium medium and dispersed titanium nanoparticles. The origin of the cohesive energy, which serves to stabilize this new liquid metal, was explained by the model of screened nanoparticles in liquid sodium. In this model, negatively charged nanoparticles with transferred electrons from liquid sodium are surrounded by the positively charged screening shell, which may inhibit the gathering of nanoparticles by the “Coulombic repulsion coating.” The atomic volume of LSnanop shows the shrinkage from the linear law, which also suggests the existence of cohesive energy. The viscosity of LSnanop is almost the same as that of liquid sodium. This behavior was explained by the Einstein equation. The surface tension of LSnanop is 17 % larger than that of liquid sodium. The cohesive energy and the negative adsorption may be responsible to this increase. Titanium nanoparticles in liquid sodium seem to be free from the Coulomb fission. This new liquid metal containing nanoparticles suggests the possibility to prepare various stable suspensions with new properties.

  14. Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification

    Science.gov (United States)

    Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd

    2018-06-01

    Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.

  15. Plasma-Induced Wafer-Scale Self-Assembly of Silver Nanoparticles and Application to Biochemical Sensing

    Directory of Open Access Journals (Sweden)

    Yunbo Shi

    2015-06-01

    Full Text Available In this work, the wafer-scale silver nanoparticles fabricated by a self-assembly method was demonstrated based on a magnetron sputtering and plasma treatment process. Silver nanoparticles of different sizes and shapes were prepared, and the effects of the plasma treatment time, plasma gas composition, and power were systematically investigated to develop a method for low-cost and large-scale fabrication of silver nanoparticles. Furthermore, the surface-enhanced Raman scattering experiments: crystal violet, as the probe, was absorbed on the silver nanoparticles film of different size and density, and get the phenomena of surface-enhanced Raman scattering and surface-enhanced fluorescence. The results show that the proposed technique provides a rapid method for the fabrication of silver nanomaterial; the method is adaptable to large-scale production and is compatible with the fabrication of other materials and biosensors.

  16. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  17. Characterization of Silver Nanoparticle In Situ Synthesis on Porous Sericin Gel for Antibacterial Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2016-01-01

    Full Text Available Sericin from Bombyx mori cocoon has good hydrophilicity, reaction activity, biocompatibility, and biodegradability, which has shown great potentials for biomedical materials. Here, an ultraviolet light-assisted in situ synthesis approach is developed to immobilize silver nanoparticles on the surface of sericin gel. The amount of silver nanoparticles immobilized on the surface of sericin gel could be regulated by the irradiation time. The porous structure and property of sericin gel were not affected by the modification of AgNPs, as evidenced by the observation of scanning electron microscopy, X-ray diffractometry, and Fourier transform infrared spectroscopy. Differential scanning calorimetry analysis showed that the modification of AgNPs increased the thermal stability of sericin gel. The growth curve of bacteria and inhibition zone assays suggested that the sericin gel modified with AgNPs had good antimicrobial activities against both Gram-negative and Gram-positive bacteria. This novel sericin has shown a great potential for biomedical purpose.

  18. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract

    Directory of Open Access Journals (Sweden)

    Upendra Nagaich

    2016-01-01

    Full Text Available The advancement of the biological production of nanoparticles using herbal extracts performs a significant role in nanotechnology discipline as it is green and does not engage harsh chemicals. The objective of the present investigation was to extract flavonoids in the mode of apple extract and synthesize its silver nanoparticles and ultimately nanoparticles loading into hydrogels. The presence of flavonoids in apple extract was characterized by preliminary testing like dil. ammonia test and confirmatory test by magnesium ribbon test. The synthesized silver nanoparticles were characterized using UV spectroscopy, particle size and surface morphology, and zeta potential. Silver nanoparticles loaded hydrogels were evaluated for physical appearance, pH, viscosity, spreadability, porosity, in vitro release, ex vivo permeation, and antibacterial (E. coli and S. aureus and antioxidant studies (DPPH radical scavenging assay. Well dispersed silver nanoparticles below were observed in scanning electron microscope image. Hydrogels displayed in vitro release of 98.01%  ±  0.37% up to 24 h and ex vivo permeation of 98.81  ±  0.24% up to 24 h. Hydrogel effectively inhibited the growth of both microorganism indicating good antibacterial properties. The value of percent radical inhibition was 75.16%  ±  0.04 revealing its high antioxidant properties. As an outcome, it can be concluded that antioxidant and antiageing traits of flavonoids in apple extract plus biocidal feature of silver nanoparticles can be synergistically and successfully utilized in the form of hydrogel.

  19. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    Science.gov (United States)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  20. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.