WorldWideScience

Sample records for silk fibroin-derived curcumin

  1. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    Science.gov (United States)

    Coburn, Jeannine M.; Cenis, José L.; Víllora, Gloria; Kaplan, David L.

    2018-01-01

    Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery. PMID:29495296

  2. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Mercedes G. Montalbán

    2018-02-01

    Full Text Available Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.

  3. Curcumin-functionalized silk biomaterials for anti-aging utility.

    Science.gov (United States)

    Yang, Lei; Zheng, Zhaozhu; Qian, Cheng; Wu, Jianbing; Liu, Yawen; Guo, Shaozhe; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David L

    2017-06-15

    Curcumin is a natural antioxidant that is isolated from turmeric (Curcuma longa) and exhibits strong free radical scavenging activity, thus functional for anti-aging. However, poor stability and low solubility of curcumin in aqueous conditions limit its biomedical applications. Previous studies have shown that the anti-oxidation activity of curcumin embedded in silk fibroin films could be well preserved, resulting in the promoted adipogenesis from human mesenchymal stem cells (hMSCs) cultured on the surface of the films. In the present study, curcumin was encapsulated in both silk fibroin films (silk/cur films) and nanoparticles (silk/cur NPs), and their anti-aging effects were compared with free curcumin in solution, with an aim to elucidate the mechanism of anti-aging of silk-associated curcumin and to better serve biomedical applications in the future. The morphology and structure of silk/cur film and silk/cur NP were characterized using SEM, FTIR and DSC, indicating characteristic stable beta-sheet structure formation in the materials. Strong binding of curcumin molecules to the beta-sheet domains of silk fibroin resulted in the slow release of curcumin with well-preserved activity from the materials. For cell aging studies, rat bone marrow mesenchymal stem cells (rBMSCs) were cultured in the presence of free curcumin (FC), silk/cur film and silk/cur NP, and cell proliferation and markers of aging (P53, P16, HSP70 gene expression and β-Galactosidase activity) were examined. The results indicated that cell aging was retarded in all FC, silk/cur NP and silk/cur film samples, with the silk-associated curcumin superior to the FC. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  5. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  6. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells

    Science.gov (United States)

    Li, Chunmei; Luo, Tingting; Zheng, Zhaozhu; Murphy, Amanda R.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    Curcumin, a natural phenolic compound derived from the plant Curcuma longa, was physically entrapped and stabilized in silk hydrogel films and its influence on human bone marrow-derived mesenchymal stem cells (hBMSCs) was assessed related to adipogenic differentiation. The presence of curcumin significantly reduced silk gelation time and changed the porous morphology of gel matrix, but did not change the formation of silk beta-sheet structure. Based on spectrofluorimetric analysis, curcumin likely interacted with hydrophobic residues in silk, interacting with the beta-sheet domains formed in the hydrogels. The antioxidant activity of silk film-associated curcumin remained functional over at least one month in both the dry and hydrated state. Negligible curcumin was released from silk hydrogel films over 48 hours incubation in aqueous solution. For hBMSCs cultured on silk films containing more than 0.25 mg/mL curcumin, cell proliferation was inhibited while adipogenesis was significantly promoted based on transcripts as well as oil red O staining. When hBMSCs were cultured in media containing free curcumin, both proliferation and adipogenesis of hBMSCs were inhibited when curcumin concentrations exceeded 5 μM, which is more than 1,000-times higher than the level of curcumin released from the films in aqueous solution. Thus, silk film-associated curcumin exhibited different effects on hBMSC proliferation and differentiation when compared to curcumin in solution. PMID:25132274

  7. Effect of degumming ph value on electrospining of silk fibroin

    Directory of Open Access Journals (Sweden)

    Lu Shen-Zhou

    2014-01-01

    Full Text Available Regenerated silk fibroin fibers show properties dependent on the molecular weight of fibroin. The cocoon-degumming approaches had great impact on the degradation of silk fibroin. The effect of degumming pH value to electrospining of fibroin was studied in this paper. The viscosity and molecular weight of regenerated silk fibroin were studied using rheometer and gel electrophoresis. The results showed that the weaker the alkalinity of degumming reagent, there was the milder the effect on silk fibroin molecular. The fibroin fibers can be prepared by electrospining with low concentration of regenerated silk fibroin solution.

  8. A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers

    International Nuclear Information System (INIS)

    Ming, Jinfa; Zuo, Baoqi

    2012-01-01

    A novel electrospinning of silk fibroin/hydroxyapatite hybrid nanofibers with different composition ratios was performed with methanoic acid as a spinning solvent. The silk fibroin/hydroxyapatite hybrids containing up to 30% hydroxyapatite nanoparticles could be electrospun into the continuous fibrous structure. The electrospun silk fibroin/hydroxyapatite hybrid nanofibers showed bigger diameter and wider diameter distribution than pure silk fibroin nanofibers, and the average diameter gradually increased from 95 to 582 nm. At the same time, the secondary structure of silk fibroin/hydroxyapatite nanofibers was characterized by X-ray diffraction, Fourier transform infrared analysis, and DSC measurement. Comparing with the pure silk fibroin nanofibers, the crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. X-ray diffraction results demonstrated the hydroxyapatite crystalline nature remained as evidenced from the diffraction planes (002), (211), (300), and (202) of the hydroxyapatite crystallites, which was also confirmed by Fourier transform infrared analysis. The thermal behavior of hybrid nanofibers exhibited the endothermic peak of moisture evaporation ranging from 86 to 113 °C, and the degradation peak at 286 °C appeared. The SF/HAp nanofibers mats containing 30% HAp nanoparticles showed higher breaking tenacity and extension at break for 1.1688 ± 0.0398 MPa and 6.55 ± 1.95%, respectively. Therefore, the electrospun silk fibroin/hydroxyapatite hybrid nanofibers should be provided potentially useful options for the fabrication of biomaterial scaffolds for bone tissue engineering. -- Highlights: ► The novel SF/HAp nanofibers were directly prepared by electrospinning method. ► The nanofiber diameter had significant related to the content of HAp. ► The crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. ► The HAp crystals existing in the hybrid nanofibers were characterized

  9. Structural analysis and application to biomaterials of the silk fibroins

    International Nuclear Information System (INIS)

    Nakazawa, Yasumoto

    2010-01-01

    Silk fibroin from Bombyx mori silkworm has outstanding mechanical properties despite being spun from aqueous solution. I have clarified two distinct structures in the solid state; silk I and silk II, which mean the structures before and after spinning, by using solid state NMR. Moreover, I have been developing several kinds of biomaterials, such as bone regeneration materials and vascular grafts. In this paper, I present two topics: one is the structural analyses of the silk fibroin in detail, the other is applications of silk fibroins to tissue engineering. In the case of vascular regeneration, I have developed the small diameter vascular grafts made by silk fibroins. The new grafts from silk fibroins have good patency, and these grafts were commonly covered with cells and platelets at 4 weeks after implantation. For bone tissue engineering, I performed structural analyses of a new silk-like peptide, E n (AGSGAG) 4 , in order to consider the molecular design of biomaterials for bone regeneration. (author)

  10. Effects of silk fibroin in murine dry eye

    Science.gov (United States)

    Kim, Chae Eun; Lee, Ji Hyun; Yeon, Yeung Kyu; Park, Chan Hum; Yang, Jaewook

    2017-03-01

    The study aimed to investigate the effects of silk fibroin in a mouse model of dry eye. The experimental dry eye mouse model was developed using more than twelve-weeks-old NOD.B10.H2b mice exposing them to 30-40% ambient humidity and injecting them with scopolamine hydrobromide for 10 days. Tear production and corneal irregularity score were measured by the instillation of phosphate buffered saline or silk fibroin. Corneal detachment and conjunctival goblet cell density were observed by hematoxylin and eosin or periodic acid Schiff staining in the cornea or conjunctiva. The expression of inflammatory markers was detected by immunohistochemistry in the lacrimal gland. The silk group tear production was increased, and corneal smoothness was improved. The corneal epithelial cells and conjunctival goblet cells were recovered in the silk groups. The expression of inflammatory factors was inhibited in the lacrimal gland of the silk group. These results show that silk fibroin improved the cornea, conjunctiva, and lacrimal gland in the mouse model of dry eye. These findings suggest that silk fibroin has anti-inflammatory effects in the experimental models of dry eye.

  11. Study on improving antioxidant and antibacterial activities of silk fibroin by irradiation treatment

    International Nuclear Information System (INIS)

    Tran Bang Diep; Nguyen Van Binh; Hoang Phuong Thao; Hoang Dang Sang; Nguyen Thuy Huong Trang

    2014-01-01

    The silk fibroin solutions were prepared in solvent system of CaCl 2 . CH 3 CH 2 OH. H 2 O (mole ratio = 1:2:8) followed dialysis against deionized water. The 3% silk fibroin solutions were irradiated under gamma Co-60 source with dose ranging from 0 to 50 kGy at Hanoi Irradiation Centre and bioactivities of the irradiated silk fibroin solutions were investigated with different radiation doses. The results indicated that the antioxidant and antibacterial activities of fibroin were much improved by gamma irradiation. Maximum value of DPPH radical scavenging activity was 70.4% for the solution of silk fibroin irradiated at 10 kGy. Silk fibroin solutions irradiated at doses higher than 10 kGy also exhibited rather high antibacterial activity against E. coli and S. aureus. In order to estimate the applicability of our irradiated fibroin, the silk fibroin solutions were lyophilized to obtain a pure fibroin powder, then their bio-activities were compared with those of commercial silk fibroin (Proteines De Soie/ Zijdeproteine, Bioflore, Canada). Our fibroin powder revealed higher antioxidant and antibacterial activities. The amino acid compositions of our irradiated fibroin were also higher than that of the commercial product. Thus, the irradiated silk fibroin can be used for further application in cosmetic and other related fields. (author)

  12. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    Science.gov (United States)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  13. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  14. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    International Nuclear Information System (INIS)

    Luan Xiying; Wang Yong; Duan Xiang; Duan Qiaoyan; Li Mingzhong; Lu Shenzhou; Zhang Huanxiang; Zhang Xueguang

    2006-01-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture

  15. Effect of. gamma. -irradiation on the crystalline structure of silk fibroin and silk sericin

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Masuhiro; Aoki, Akira

    1985-02-01

    Changes in the crystalline structure of silk sericin and silk fibroin induced by gamma-irradiation in the atmosphere described. The crystalline structure of silk sericin which had been subjected to gamma-irradiation remained unchanged. However the decomposition temperature of the specimen decreased to about 230 deg C, when the total dose of ..gamma.. rays exceeded 4.6 Mrad. The structure of the silk 1 type crystal of silk fibroin in the solid state, with a low degree of molecular orientation, changed into the silk 2 type crystal, when the total dose of ..gamma.. rays exceeded 4.6 Mrad. No changes in the crystalline structure were observed in the solid state of the silk 2 type crystal regardless of gamma-irradiation. The decrease in the decomposition temperature of the specimen was attributed to the decrease in the molecular orientation. However, the molecular conformation of silk fibroin with a randomly coiled structure remained unchanged even after gamma-irradiation.

  16. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    International Nuclear Information System (INIS)

    Ming, Jinfa; Liu, Zhi; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2014-01-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties

  17. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Jinfa, E-mail: jinfa.ming@gmail.com [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Liu, Zhi; Bie, Shiyu [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Zhang, Feng [Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006 (China); Zuo, Baoqi, E-mail: bqzuo@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China)

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties.

  18. Enhancing surface properties of breast implants by using electrospun silk fibroin.

    Science.gov (United States)

    Valencia-Lazcano, A A; Román-Doval, R; De La Cruz-Burelo, E; Millán-Casarrubias, E J; Rodríguez-Ortega, A

    2017-08-24

    In the present study, a new electrospun silk fibroin coating of silicone breast implants with improved biocompatibility and mechanical properties was obtained. Fibrous scaffolds were produced by electrospinning a solution containing silk fibroin, derived from Bombyx mori cocoons, and polyethylene oxide (PEO) to be used as a coating of breast implants. A randomly oriented structure of fibroin/PEO was electrospun on implants as assessed by SEM analysis, roughness measurements and ATR-FTIR spectroscopy. The scaffold showed 0.25 µm diameter fibres, 0.76 µm size superficial pores, arithmetic roughness of 0.632 ± 0.12 µm and texture aspect ratio of 0.893 ± 0.04. ATR-FTIR spectroscopy demonstrates the presence of PEO and fibroin in the coating. The mechanical characterisation of the implants before and after being coated with fibroin/PEO demonstrated that the fibroin/PEO scaffold contributes to the increase in the elastic modulus from 0.392 ± 0.02 to 0.560 ± 0.03 MPa and to a more elastic behaviour of the breast implants. Using the fibroin/PEO coating, human fibroblasts seeded on this matrix increased viability up to 30% compared to conventional breast implants. Electrospun silk fibroin could represent a clinically compatible, viable form to coat breast implants. Low cytotoxicity by the fibroin coating and its physico-chemical and mechanical properties may find application in improving breast implants biocompatibility. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  19. Structural study of Bombyx mori silk fibroin during processing for regeneration

    Science.gov (United States)

    Ha, Sung-Won

    Bombyx mori silk fibroin has excellent mechanical properties combined with flexibility, tissue compatibility, and high oxygen permeability in the wet condition. This important material should be dissolved and regenerated to be utilized as useful forms such as gel, film, fiber, powder, or non-woven. However, it has long been a problem that the regenerated fibroin materials show poor mechanical properties and brittleness. These problems were technically solved by improving a fiber processing method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the original silk fibers. This improved technique for the fiber processing of Bombyx mori silk fibroin may be used as a model system for other semi-crystalline fiber forming proteins, becoming available through biotechnology. The physical and chemical properties of the regenerated fibers were characterized by SinTechRTM tensile testing, X-ray diffraction, solid state 13C NMR spectroscopy, and SEM. Unlike synthetic polymers, the molecular weight distribution of Bombyx mori silk fibroin is mono-disperse because silk fibroin is synthesized from DNA template. Genetic studies have revealed the entire amino acid sequence of Bombyx mori silk fibroin. It is known that the crystalline silk II structure is composed of hexa-amino acid sequences, GAGAGS. However, in the amino acid sequence of Bombyx mori silk fibroin heavy chain, there are present 11 chemically irregular but evolutionarily conserved sequences with about 31 amino acid residues (irregular GT˜GT sequences). The structure and role of these irregular sequences have remained unknown. One of the most frequently appearing irregular sequences was synthesized by a peptide synthesizer. The three-dimensional structure of this irregular silk peptide was studied by the high resolution two-dimensional NMR technique. The three-dimensional structure of this peptide shows that it makes a turn or loop structure (distorted O shape), which

  20. The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiongyu; Tu, Fangfang; Liu, Yunfei; Zhang, Yujin; Li, Helei; Kang, Zhao [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Yin, Yin [Laboratory Animal Research Center, Soochow University, Suzhou, Jiangsu 215123 (China); Wang, Jiannan, E-mail: wangjn@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China)

    2017-06-01

    Thrombus formation remains a particular challenge for small-diameter vascular grafts. In this study, the direct thrombin inhibitor hirudin (Hir) was used to modify silk fibroin films in an attempt to enhance its antithrombogenic properties. Hir was successfully attached to silk fibroin and uniformly distributed in the regenerative material. Hir-modified films showed good cytocompatibility, and supported adhesion and proliferation of fibroblasts (L929), human umbilical vascular endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs). Proliferation of HAVSMCs was inhibited by increasing Hir concentration. Activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT) of Hir-modified silk fibroin tubular scaffolds (SFTSs) were all increased markedly compared with fresh rabbit blood, ethanol-treated SFTS and unmodified SFTS, demonstrating the improved antithrombogenicity of SFTSs following modification with Hir. - Highlights: • A direct thrombin inhibitor hirudin was used to modify silk fibroin. • Antithrombogenic property of Hir-modified silk fibroin films was improved. • Hir-modified silk fibroin films supported adhesion and proliferation of HUVECs and HAVSMCs. • Proliferation of HAVSMCs on silk fibroin films was inhibited by increasing Hir concentration.

  1. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.

    Science.gov (United States)

    Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri

    2014-07-01

    Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    Science.gov (United States)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  3. 3D freeform printing of silk fibroin.

    Science.gov (United States)

    Rodriguez, Maria J; Dixon, Thomas A; Cohen, Eliad; Huang, Wenwen; Omenetto, Fiorenzo G; Kaplan, David L

    2018-04-15

    Freeform fabrication has emerged as a key direction in printing biologically-relevant materials and structures. With this emerging technology, complex structures with microscale resolution can be created in arbitrary geometries and without the limitations found in traditional bottom-up or top-down additive manufacturing methods. Recent advances in freeform printing have used the physical properties of microparticle-based granular gels as a medium for the submerged extrusion of bioinks. However, most of these techniques require post-processing or crosslinking for the removal of the printed structures (Miller et al., 2015; Jin et al., 2016) [1,2]. In this communication, we introduce a novel method for the one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite) and polyethylene glycol (PEG). Silk fibroin has been used as a biopolymer for bioprinting in several contexts, but chemical or enzymatic additives or bulking agents are needed to stabilize 3D structures. Our method requires no post-processing of printed structures and allows for in situ physical crosslinking of pure aqueous silk fibroin into arbitrary geometries produced through freeform 3D printing. 3D bioprinting has emerged as a technology that can produce biologically relevant structures in defined geometries with microscale resolution. Techniques for fabrication of free-standing structures by printing into granular gel media has been demonstrated previously, however, these methods require crosslinking agents and post-processing steps on printed structures. Our method utilizes one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite), with no need for additional crosslinking compounds or post processing of the material. This new method allows for in situ physical crosslinking of pure aqueous silk fibroin into defined geometries produced through freeform 3D printing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights

  4. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery

    Directory of Open Access Journals (Sweden)

    Zhang Hao

    2012-06-01

    Full Text Available Abstract Background Degummed silk fibroin from Bombyx mori (silkworm has potential carrier capabilities for drug delivery in humans; however, the processing methods have yet to be comparatively analyzed to determine the differential effects on the silk protein properties, including crystalline structure and activity. Methods In this study, we treated degummed silk with four kinds of calcium-alcohol solutions, and performed secondary structure measurements and enzyme activity test to distinguish the differences between the regenerated fibroins and degummed silk fibroin. Results Gel electrophoresis analysis revealed that Ca(NO32-methanol, Ca(NO32-ethanol, or CaCl2-methanol treatments produced more lower molecular weights of silk fibroin than CaCl2-ethanol. X-ray diffraction and Fourier-transform infrared spectroscopy showed that CaCl2-ethanol produced a crystalline structure with more silk I (α-form, type II β-turn, while the other treatments produced more silk II (β-form, anti-parallel β-pleated sheet. Solid-State 13C cross polarization and magic angle spinning-nuclear magnetic resonance measurements suggested that regenerated fibroins from CaCl2-ethanol were nearly identical to degummed silk fibroin, while the other treatments produced fibroins with significantly different chemical shifts. Finally, enzyme activity test indicated that silk fibroins from CaCl2-ethanol had higher activity when linked to a known chemotherapeutic drug, L-asparaginase, than the fibroins from other treatments. Conclusions Collectively, these results suggest that the CaCl2-ethanol processing method produces silk fibroin with biomaterial properties that are appropriate for drug delivery.

  5. Cytocompatibility of a silk fibroin tubular scaffold

    International Nuclear Information System (INIS)

    Wang, Jiannan; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23 N and the Young's modulus was 0.2–0.3 MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. - Highlights: • A PEG-DE cross-linked small caliber porous silk fibroin tubular scaffold (SFTS) • PEG-DE cross-linked SF film had no inhibitory effect on DNA replication of cells. • Cells cultured on the SFTS showed good morphology, cell viability and proliferative activity. • SFTS would be beneficial to endothelialization. • SFTS had good suture retention strength and flexibility

  6. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.

    Science.gov (United States)

    Hong, Yanqing; Zhu, Xueke; Wang, Ping; Fu, Haitian; Deng, Chao; Cui, Li; Wang, Qiang; Fan, Xuerong

    2016-04-01

    Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications.

  7. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Science.gov (United States)

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  8. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.

    Science.gov (United States)

    Cheng, Yuan; Koh, Leng-Duei; Li, Dechang; Ji, Baohua; Zhang, Yingyan; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei

    2015-10-07

    Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications. Our study shows that graphene can have intriguing influences on the structures formed by the peptides with sequences representing different domains of silk fibroin. In general, for protein domains with stable structure and strong intramolecular interaction (e.g., β-sheets), graphene tends to compete with the intramolecular interactions and thus weaken the interchain interaction and reduce the contents of β-sheets. For the silk domains with random or less ordered secondary structures and weak intramolecular interactions, graphene tends to enhance the stability of peptide structures; in particular, it increases the contents of helical structures. Thereafter, tensile simulations were further performed on the representative peptides to investigate how such structure modifications affect their mechanical properties. It was found that the strength and resilience of the peptides are enhanced through their interaction with graphene. The present work reveals interesting insights into the interactions between silk peptides and graphene, and contributes in the efforts to enhance the mechanical properties of silk fibroin.

  9. Conductive Au nanowires regulated by silk fibroin nanofibers

    Science.gov (United States)

    Dong, Bo-Ju; Lu, Qiang

    2014-03-01

    Conductive Au-biopolymer composites have promising applications in tissue engineering such as nerve tissue regeneration. In this study, silk fibroin nanofibers were formed in aqueous solution by regulating silk self-assembly process and then used as template for Au nanowire fabrication. We performed the synthesis of Au seeds by repeating the seeding cycles for several times in order to increase the density of Au seeds on the nanofibers. After electroless plating, densely decorated Au seeds grew into irregularly shaped particles following silk nanofiber to fill the gaps between particles and finally form uniform continuous nanowires. The conductive property of the Au-silk fibroin nanowires was studied with current-voltage ( I-V) measurement. A typical ohmic behavior was observed, which highlighted their potential applications in nerve tissue regeneration.

  10. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Science.gov (United States)

    Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2014-01-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width × Length, 1 × 2 cm(2)) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study

  11. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Directory of Open Access Journals (Sweden)

    Yeun Goo Chung

    Full Text Available Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4 (Width × Length, 1 × 2 cm(2 in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS implants (Group 2, N = 4 or urethrotomy alone (Group 3, N = 3. Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome, immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results

  12. Development and Evaluation of Isoniazid Loaded Silk Fibroin Microsphere

    Directory of Open Access Journals (Sweden)

    Narinder Singh

    Full Text Available Aim: Current experimental investigation is dedicated to prepare microspheres with small size and good sphericity by Phase Separation method using Isoniazid (INH as model drug. Silk fibroin has unique intrinsic qualities like biodegradability, biocompatibility or release properties and their tunable drug loading capacity. The delivery loading proficiency of the drug molecules in silk spheres be contingent on their charge, and hydrophobicity or subsequent in altered drug release profiles. Methods: In the present work Isoniazid loaded silk fibroin microsphere was prepared by using phase separation method. Microsphere was evaluated for Ultraviolet-visible spectroscopy, Fourier Transform infrared spectroscopy, Entrapment efficiency, Scanning electron microscopy Studies. Results: Scanning electron microscopy studies revealed that Isoniazid Loaded Silk Fibroin Microspheres were spherical. Entrapment Efficiency of Isoniazid loaded Microspheres of different Formulation from F1 to F5 was in range of 53 to 68 %. F3 showed 68.47 % entrapment Efficiency and the optimized formulation drug release was 93.56 % at 24 hours. Conclusion: Experimental report disclosed a new aqueous based formulation method for silk spheres with controllable shape or size and sphere. Isoniazid loaded silk microspheres may act as ideal nano formulation with elaborated studies.

  13. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.

    Science.gov (United States)

    Partlow, Benjamin P; Tabatabai, A Pasha; Leisk, Gary G; Cebe, Peggy; Blair, Daniel L; Kaplan, David L

    2016-05-01

    Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    Science.gov (United States)

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.

  15. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure.

    Science.gov (United States)

    Shen, Tingting; Wang, Tao; Cheng, Guotao; Huang, Lan; Chen, Lei; Wu, Dayang

    2018-02-05

    Regenerated Silk biomaterials are usually pre-formed from silk fibroin solutions. However, the dissolution of silk fibroin in proper solvents by a simple and low cost way is still a challenge. Here, we employed a CaCl 2 -methanol solvent system with a very low CaCl 2 concentration of 6wt% to dissolve silk fibroin. During the dissolution process, the evaporation of methanol cause the changing of solvation sheath of ions in the solvent. The remaining solvent with the incomplete solvation sheath is absorbed by the silk fiber and interacts with fibroin chains to complete the solvation sheath, which accounts for the dissolution of silk fibroin. Silk fibroin dissolution stops as all the solvation sheaths are complete. The final CaCl 2 concentration is ca. 26% and silk fibroin is completely dissolved with a yield of about 90%. Silk fibroin is dissolved into multi-scale nanofibrils solution which is potential for producing regenerated silk fibroin materials for functional applications. Copyright © 2018. Published by Elsevier B.V.

  16. Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels

    Directory of Open Access Journals (Sweden)

    Dajiang Kuang

    2018-02-01

    Full Text Available Silk fibroin hydrogel is an ideal model as biomaterial matrix due to its excellent biocompatibility and used in the field of medical polymer materials. Nevertheless, native fibroin hydrogels show poor transparency and resilience. To settle these drawbacks, an interpenetrating network (IPN of hydrogels are synthesized with changing ratios of silk fibroin/N-Vinyl-2-pyrrolidonemixtures that crosslink by H2O2 and horseradish peroxidase. Interpenetrating polymer network structure can shorten the gel time and the pure fibroin solution gel time for more than a week. This is mainly due to conformation from the random coil to the β-sheet structure changes of fibroin. Moreover, the light transmittance of IPN hydrogel can be as high as more than 97% and maintain a level of 90% within a week. The hydrogel, which mainly consists of random coil, the apertures inside can be up to 200 μm. Elastic modulus increases during the process of gelation. The gel has nearly 95% resilience under the compression of 70% eventually, which is much higher than native fibroin gel. The results suggest that the present IPN hydrogels have excellent mechanical properties and excellent transparency.

  17. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  18. Novel two-step method to form silk fibroin fibrous hydrogel

    International Nuclear Information System (INIS)

    Ming, Jinfa; Li, Mengmeng; Han, Yuhui; Chen, Ying; Li, Han; Zuo, Baoqi; Pan, Fukui

    2016-01-01

    Hydrogels prepared by silk fibroin solution have been studied. However, mimicking the nanofibrous structures of extracellular matrix for fabricating biomaterials remains a challenge. Here, a novel two-step method was applied to prepare fibrous hydrogels using regenerated silk fibroin solution containing nanofibrils in a range of tens to hundreds of nanometers. When the gelation process of silk solution occurred, it showed a top-down type gel within 30 min. After gelation, silk fibroin fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. Moreover, the compressive stress and modulus of fibrous hydrogels were 31.9 ± 2.6 and 2.8 ± 0.8 kPa, respectively, which was formed using 2.0 wt.% concentration solutions. In addition, fibrous hydrogels supported BMSCs attachment and proliferation over 12 days. This study provides important insight in the in vitro processing of silk fibroin into useful new materials. - Highlights: • SF fibrous hydrogel was prepared by a novel two-step method. • SF solution containing nanofibrils in a range of tens to hundreds of nanometers was prepared. • Gelation process was top-down type gel with several minutes. • SF fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. • Fibrous hydrogels had higher compressive stresses superior to porous hydrogels.

  19. Silk fibroin as biomaterial for bone tissue engineering.

    Science.gov (United States)

    Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra

    2016-02-01

    Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.

    Science.gov (United States)

    Zhou, Feifei; Zhang, Xianzhu; Cai, Dandan; Li, Jun; Mu, Qin; Zhang, Wei; Zhu, Shouan; Jiang, Yangzi; Shen, Weiliang; Zhang, Shufang; Ouyang, Hong Wei

    2017-11-01

    The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1β, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature

  1. Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics

    Science.gov (United States)

    2010-06-01

    implantation. *A full list of authors and their affiliations appears at the end of the paper. Silk is an appealing biopolymer as a temporary, soluble...18 APR 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Dissolvable films of silk fibroin for ultrathin...10.1038/NMAT2745 Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics Dae-Hyeong Kim and Jonathan Viventi et al

  2. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Tao, Xiaojun [Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan (China); Zhang, Zhihua; Sun, Xiaomin [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Key Laboratory of Biomedical Materials of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. - Highlights: • Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere proposed for cartilage repair was created. • In vivo, scaffold could enhance cartilage regeneration and integration between the repaired and surrounding cartilage. • In vitro, scaffold exhibits excellent characteristics, such as, improved porosity water absorption and good cell affinity.

  3. Acylation Modification of Antheraea pernyi Silk Fibroin Using Succinic Anhydride and Its Effects on Enzymatic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2013-01-01

    Full Text Available The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study, Antheraea pernyi silk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR. In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of the β-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.

  4. Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds

    International Nuclear Information System (INIS)

    She Zhending; Feng Qingling; Liu Weiqiang

    2009-01-01

    Silk fibroin is an attractive natural fibrous protein for biomedical application due to its good biocompatibility and high tensile strength. Silk fibroin is apt to form a sheet-like structure during the freeze-drying process, which is not suitable for the scaffold of tissue engineering. In our former study, the adding of chitosan promoted the self-assembly of silk fibroin/chitosan (SFCS) into a three-dimensional (3D) homogeneous porous structure. In this study, a model of the self-assembly is proposed; furthermore, hepatocytes attachment and inflammatory response for the SFCS scaffold were examined. The rigid chain of chitosan may be used as a template for β-sheet formation of silk fibroin, and this may break the sheet structure of the silk fibroin scaffold and promote the formation of a 3D porous structure of the SFCS scaffold. Compared with the polylactic glycolic acid scaffold, the SFCS scaffold further facilitates the attachment of hepatocytes. To investigate the inflammatory response, SFCS scaffolds were implanted into the greater omentum of rats. From the results of implantation, we could demonstrate in vivo that the implantation of SFCS scaffolds resulted in only slight inflammation. Keeping the good histocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold could be a prominent candidate for soft tissue engineering, for example, in the liver.

  5. Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    She Zhending; Feng Qingling [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu Weiqiang, E-mail: biomater@mail.tsinghua.edu.c [Center for Advanced Materials and Biotechnology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2009-08-15

    Silk fibroin is an attractive natural fibrous protein for biomedical application due to its good biocompatibility and high tensile strength. Silk fibroin is apt to form a sheet-like structure during the freeze-drying process, which is not suitable for the scaffold of tissue engineering. In our former study, the adding of chitosan promoted the self-assembly of silk fibroin/chitosan (SFCS) into a three-dimensional (3D) homogeneous porous structure. In this study, a model of the self-assembly is proposed; furthermore, hepatocytes attachment and inflammatory response for the SFCS scaffold were examined. The rigid chain of chitosan may be used as a template for beta-sheet formation of silk fibroin, and this may break the sheet structure of the silk fibroin scaffold and promote the formation of a 3D porous structure of the SFCS scaffold. Compared with the polylactic glycolic acid scaffold, the SFCS scaffold further facilitates the attachment of hepatocytes. To investigate the inflammatory response, SFCS scaffolds were implanted into the greater omentum of rats. From the results of implantation, we could demonstrate in vivo that the implantation of SFCS scaffolds resulted in only slight inflammation. Keeping the good histocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold could be a prominent candidate for soft tissue engineering, for example, in the liver.

  6. Fabrication of Antibacterial Wound Dressings from Silk Fibroin and Silver Nano particles

    International Nuclear Information System (INIS)

    Uttayarat, P.; Jetawattana, S.; Suwanmala, P.; Eamsiri, J.; Pongpat, S.

    2011-06-01

    Full text: Patients with burn wounds that cover large body surface area are susceptible to infection which can lead to fatality. Wound dressings or skin grafts are needed to cover the wound during the regeneration of new skin tissue. The aim of this research is to fabricate antibacterial wound dressings from silk fibroin derived from the natural silk cocoon and silver nanoparticles (AgNPs) prepared by gamma irradiation. Fibroin mats composed of nonwoven fibers with diameter of 670± 11.5 nm were fabricated by electro spinning. Using gamma irradiation, the starting silver nitrate solution was reduced to colloidal AgNPs. The fibroin mats were coated with AgNPs at various AgNP concentration and then evaluated for their antibacterial property by disc diffusion test. The concentration of colloidal AgNP solution ≤ 1 mM was found to be as sufficient in inhibiting the growth of Pseudomonas aeruginosa and Staphylococcus aureus as commercial wound dressings embedded with silver ions. These results demonstrate that electro spun fibroin mats coated with AgNPs exhibite antibacterial property and can be further developed for the treatment of burn wounds

  7. Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate.

    Science.gov (United States)

    Pignatelli, Cataldo; Perotto, Giovanni; Nardini, Marta; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Athanassiou, Athanassia

    2018-04-17

    Human platelet lysate (hPL) is a pool of growth factors and cytokines able to induce regeneration of different tissues. Despite its good potentiality as therapeutic tool for regenerative medicine applications, hPL has been only moderately exploited in this field. A more widespread adoption has been limited because of its rapid degradation at room temperature that decreases its functionality. Another limiting factor for its extensive use is the difficulty of handling the hPL gels. In this work, silk fibroin-based patches were developed to address several points: improving the handling of hPL, enabling their delivery in a controlled manner and facilitating their storage by creating a device ready to use with expanded shelf life. Patches of fibroin loaded with hPL were synthesized by electrospinning to take advantage of the fibrous morphology. The release kinetics of the material was characterized and tuned through the control of fibroin crystallinity. Cell viability assays, performed with primary human dermal fibroblasts, demonstrated that fibroin is able to preserve the hPL biological activity and prolong its shelf-life. The strategy of storing and preserving small active molecules within a naturally-derived, protein-based fibrous scaffold was successfully implemented, leading to the design of a biocompatible device, which can potentially simplify the storage and the application of the hPL on a human patient, undergoing medical procedures such as surgery and wound care. Human platelets lysate (hPL) is a mixture of growth factors and cytokines able to induce the regeneration of damaged tissues. This study aims at enclosing hPL in a silk fibroin electrospun matrix to expand its utilization. Silk fibroin showed the ability to preserve the hPL activity at temperature up to 60 °C and the manipulation of fibroin's crystallinity provided a tool to modulate the hPL release kinetic. This entails the possibility to fabricate the hPL silk fibroin patches in advance and

  8. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhenghua [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Department of Application Engineering, ZheJiang Vocational College of Economic and Trade, HangZhou, ZheJiang 310018 (China); Imada, Takuzo [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Asakura, Tetsuo, E-mail: asakura@cc.tuat.ac.jp [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2009-10-15

    The regenerated silk fibers with high strength and high biodegradability were prepared from the aqueous solution of Bombyx mori silk fibroin from cocoons with wet spinning method. Although the tensile strength of the regenerated silk fibroin fiber, 210 MPa is still half of the strength of native silk fiber, the diameter of the fiber is about 100 {mu}m which is suitable for monofilament of suture together with high biodegradability. The high concentration (30%, w/v) of the aqueous solution of the silk fibroin which corresponds to the high concentration in the middle silkgland of silkworm was obtained. This was performed by adjusting the pH of the aqueous solution to 10.4 which corresponds to pK{sub a} value of the OH group of Tyr residues in the silk fibroin. The mixed solvent, methanol/acetic acid (7:3 in volume ratio) was used as coagulant solvent for preparing the regenerated fiber. The structural change of silk fibroin fiber by stretching was monitored with both {sup 13}C solid state NMR and X-ray diffraction methods, indicating that the high strength of the fiber is related with the long-range orientation of the silk fibroin chain with {beta}-sheet structure.

  9. Silk fibroin nanostructured materials for biomedical applications

    Science.gov (United States)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  10. Research on degradation of silk fibroin by combination of electron beam irradiation and hydrothermal processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin samples were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at an appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The soluble silk protein content increased from 0.462 to 0.653 mg protein/mg silk fibroin when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  11. Correlation between fibroin amino acid sequence and physical silk properties.

    Science.gov (United States)

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet.

  12. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties

    International Nuclear Information System (INIS)

    Teh, Thomas K H; Toh, Siew-Lok; Goh, James C H

    2010-01-01

    In the process of removing sericin (degumming) from a raw silk scaffold, the fibroin structural integrity is often challenged, leading to mechanical depreciation. This study aims to identify the factors and conditions contributing to fibroin degradation during alkaline degumming and to perform an optimization study of the parameters involved to achieve preservation of fibroin structure and properties. The methodology involves degumming knitted silk scaffolds for various durations (5-90 min) and temperatures (60-100 0 C). Mechanical agitation and use of the refreshed solution during degumming are included to investigate how these factors contribute to degumming efficiency and fibroin preservation. Characterizations of silk fibroin morphology, mechanical properties and protein components are determined by scanning electron microscopy (SEM), single fiber tensile tests and gel electrophoresis (SDS-PAGE), respectively. Sericin removal is ascertained via SEM imaging and a protein fractionation method involving SDS-PAGE. The results show that fibroin fibrillation, leading to reduced mechanical integrity, is mainly caused by prolonged degumming duration. Through a series of optimization, knitted scaffolds are observed to be optimally degummed and experience negligible mechanical and structural degradation when subjected to alkaline degumming with mechanical agitation for 30 min at 100 0 C.

  13. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Thomas K H; Toh, Siew-Lok; Goh, James C H, E-mail: dosgohj@nus.edu.s, E-mail: dostkh@nus.edu.s, E-mail: bietohsl@nus.edu.s [Division of Bioengineering, National University of Singapore (Singapore)

    2010-06-01

    In the process of removing sericin (degumming) from a raw silk scaffold, the fibroin structural integrity is often challenged, leading to mechanical depreciation. This study aims to identify the factors and conditions contributing to fibroin degradation during alkaline degumming and to perform an optimization study of the parameters involved to achieve preservation of fibroin structure and properties. The methodology involves degumming knitted silk scaffolds for various durations (5-90 min) and temperatures (60-100 {sup 0}C). Mechanical agitation and use of the refreshed solution during degumming are included to investigate how these factors contribute to degumming efficiency and fibroin preservation. Characterizations of silk fibroin morphology, mechanical properties and protein components are determined by scanning electron microscopy (SEM), single fiber tensile tests and gel electrophoresis (SDS-PAGE), respectively. Sericin removal is ascertained via SEM imaging and a protein fractionation method involving SDS-PAGE. The results show that fibroin fibrillation, leading to reduced mechanical integrity, is mainly caused by prolonged degumming duration. Through a series of optimization, knitted scaffolds are observed to be optimally degummed and experience negligible mechanical and structural degradation when subjected to alkaline degumming with mechanical agitation for 30 min at 100 {sup 0}C.

  14. Effect of Na2CO3 degumming concentration on LiBr-formic acid-silk fibroin solution properties

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2016-01-01

    Full Text Available Salt-acid system has been proved to be of high efficiency for silk fibroin dissolution. Using salt-acid system to dissolve silk, native silk fibrils can be preserved in the regenerated solution. Increasing experiments indicate that acquirement of silk fibrils in solution is strongly associated with the degumming process. In this study, the effect of sodium carbonate degumming concentration on solution properties based on lithium bromide-formic acid dissolution system was systematically investigated. Results showed that the morphology transformation of silk fibroin in solution from nanospheres to nanofibrils is determined by sodium carbonate concentration during the degumming process. Solutions containing different silk fibroin structure exhibited different rheological behaviors and different electrospinnability, leading to different electrospun nanofibre properties. The results have guiding significance for preparation and application of silk fibroin solutions.

  15. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    Science.gov (United States)

    Zhang, Yu-Qing; Shen, Wei-De; Xiang, Ru-Li; Zhuge, Lan-Jian; Gao, Wei-Jian; Wang, Wen-Bao

    2007-10-01

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk

  16. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    International Nuclear Information System (INIS)

    Zhang Yuqing; Shen Weide; Xiang Ruli; Zhuge Lanjian; Gao Weijian; Wang Wenbao

    2007-01-01

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl 2 , the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ε-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13 C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk

  17. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuqing, E-mail: yqzhang@public1.sz.js.cn; Shen Weide; Xiang Ruli [Soochow University, Silk Biotechnol. Lab., School of Life Science (China); Zhuge Lanjian; Gao Weijian; Wang Wenbao [Soochow University, Analytical Center (China)

    2007-10-15

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl{sub 2}, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the {epsilon}-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and {alpha}-helix form (Silk I) into anti-parallel {beta}-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, {sup 13}C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with {beta}-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular

  18. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    Science.gov (United States)

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage.

  19. Silk fibroin as an organic polymer for controlled drug delivery

    NARCIS (Netherlands)

    Hofmann, S.; Foo, S.; Rossetti, F.; Textor, M.; Vunjak-Novakovic, G.; Kaplan, D.L.; Merkle, H.P.; Meinel, L.

    2006-01-01

    The pharmaceutical utility of silk fibroin (SF) materials for drug delivery was investigated. SF films were prepared from aqueous solutions of the fibroin protein polymer and crystallinity was induced and controlled by methanol treatment. Dextrans of different molecular weights, as well as proteins,

  20. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    Science.gov (United States)

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering. © 2014 Wiley Periodicals, Inc.

  1. Silk-Silk Interactions between Silkworm Fibroin and Recombinant Spider Silk Fusion Proteins Enable the Construction of Bioactive Materials.

    Science.gov (United States)

    Nilebäck, Linnea; Chouhan, Dimple; Jansson, Ronnie; Widhe, Mona; Mandal, Biman B; Hedhammar, My

    2017-09-20

    Natural silk is easily accessible from silkworms and can be processed into different formats suitable as biomaterials and cell culture matrixes. Recombinant DNA technology enables chemical-free functionalization of partial silk proteins through fusion with peptide motifs and protein domains, but this constitutes a less cost-effective production process. Herein, we show that natural silk fibroin (SF) can be used as a bulk material that can be top-coated with a thin layer of the recombinant spider silk protein 4RepCT in fusion with various bioactive motifs and domains. The coating process is based on a silk assembly to achieve stable interactions between the silk types under mild buffer conditions. The assembly process was studied in real time by quartz crystal microbalance with dissipation. Coatings, electrospun mats, and microporous scaffolds were constructed from Antheraea assama and Bombyx mori SFs. The morphology of the fibroin materials before and after coating with recombinant silk proteins was analyzed by scanning electron microscopy and atomic force microscopy. SF materials coated with various bioactive 4RepCT fusion proteins resulted in directed antibody capture, enzymatic activity, and improved cell attachment and spreading, respectively, compared to pristine SF materials. The herein-described procedure allows a fast and easy route for the construction of bioactive materials.

  2. Modulation and Stabilization of Silk Fibroin-Coated Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Zhong-Min Chen

    2009-01-01

    Full Text Available The purpose of this study is to prepare and characterize stable oil-in-water emulsions containing droplets coated with silk fibroin. Silk fibroin, a native edible fibrous protein originating from silkworm cocoons, was used to prepare 10 % (by mass corn oil-in-water emulsions at ambient temperature (pH=7.0, 10 mM phosphate buffer. Emulsions with relatively small mean particle diameter (d32=0.47 μm and extremely good creaming stability (>7 days could be produced at silk fibroin concentration of 1 % (by mass. The influence of pH (2–8, thermal processing (60–90 °C, 20 min, and concentration of salt (c(NaCl=0–250 mM on the properties and stability of the emulsions was analyzed using ζ-potential, particle size, and creaming stability measurements. The isoelectric point of droplets stabilized with silk fibroin was pH~4. The emulsions were stable to droplet flocculation and creaming at any pH except intermediate value (pH=4.0 when stored at room temperature, which was attributed to their relatively low ζ-potential. Their ζ-potential went from around 25 to –35 mV as the pH was increased from 2 to 8. The emulsions were also stable to thermal treatment (60 and 90 °C for 20 min, pH=3 and 7, with a slight decrease in the magnitude of ζ-potential at temperatures exceeding 60 °C. The emulsions were unstable to aggregation and creaming even at relatively low salt concentrations (c(NaCl=0–250 mM, pH=3 and 7 as a result of electrostatic screening effects. These results suggest that bulk oil stabilized with silk fibroin has improved physical stability and may provide a new way of creating functional oil products and delivery systems.

  3. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); He, Jianxin, E-mail: hejianxin771117@163.com [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450007 (China); Ding, Bin [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li, E-mail: chenli@tjpu.edu.cn [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China)

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering. - Highlights: • A designing scaffold strategy to imitate the mineralized collagen bundles in natural bone was presented. • Aligned nanostructured composite fibers were fabricated by coaxial electrospinning using green water solvent. • Mechanical properties of aligned TSF nanofiber had been significantly improved by embedding with composite nanoparticles. • Composite scaffolds effectively supported proliferation of MG-63 cells and promoted biomineralization.

  4. Mechanism of Stabilization of Labile Compounds by Silk Fibroin Proteins

    Science.gov (United States)

    2017-04-05

    saliva, or urine , and their collection and storage is critical to obtain reliable results. Without proper temperature regulation protein biomarkers in... samples for long-term ambient storage and subsequent on-demand recovery and laboratory analysis. Air dried silks provide a protective barrier that...silk in the stabilization of a range of different analytes, including entrapment, storage and recovery. Here, we successfully used silk fibroin as a

  5. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.

    Science.gov (United States)

    Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M

    2015-11-01

    Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis and characterization of dense membranes of silk fibroin with glycerin

    International Nuclear Information System (INIS)

    Silva, Mariana F.; Moraes, Mariana A. de; Weska, Raquel F.; Nogueira, Grinia M.; Beppu, Marisa M.

    2009-01-01

    The addition of plasticizers seeks improvements in mechanical properties of dense membranes of silk fibroin with possible interactions by hydrogen bonds. The aim of the present study was to produce and characterize dense membranes of silk fibroin containing glycerin in two different concentrations. The characterization of the membranes was performed from scanning electron microscopy (SEM), mechanical traction tests, infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD). The results indicated that the addition of glycerin allowed obtaining homogeneous and more crystalline membranes and improved their properties of elongation. (author)

  7. Determination of molecular weight of silk fibroin by non-gel sieving capillary electrophoresis.

    Science.gov (United States)

    Wei, Wei; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2010-01-01

    A simple non-gel sieving capillary electrophoresis (NGSCE) method was established to determine the MW of silk fibroin using CE. The background electrolyte with a pH of 8.8 was based on three components: polyethylene glycol, tris(hydroxymethyl)aminomethane, and sodium dodecyl sulfate (SDS). NGSCE showed a good linear relationship with satisfactory reproducibility between the migration time and the MW of standard proteins. It was found that the regenerated silk fibroin had an MW around 83 kDa with a wide MW distribution (MWD). This absolute value is lower than the result obtained from SDS-polyacrylamide gel electrophoresis due to the different principles of the methods, but their similar MWD shapes indicated that NGSCE could be a feasible, highly sensitive, rapid method for determination of the MW of silk fibroin.

  8. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    Energy Technology Data Exchange (ETDEWEB)

    Çalamak, Semih [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey); Erdoğdu, Ceren; Özalp, Meral [Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 06100 Ankara (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey)

    2014-10-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line.

  9. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    International Nuclear Information System (INIS)

    Çalamak, Semih; Erdoğdu, Ceren; Özalp, Meral; Ulubayram, Kezban

    2014-01-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line

  10. Research On Degradation Of Silk Fibroin By Combination Of Electron Beam Irradiation And Hydrothermal Processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The protein content increased from 0.4617 to 0.6530 mg/mg when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  11. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    International Nuclear Information System (INIS)

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  12. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system

    Science.gov (United States)

    Yan, Hai-Bo; Zhang, Yu-Qing; Ma, Yong-Lei; Zhou, Li-Xia

    2009-11-01

    Silk fibroin derived from Bombyx mori is a biomacromolecular protein with outstanding biocompatibility. When it was dissolved in highly concentrated CaCl2 solution and then the mixture of the protein and salt was subjected to desalting treatments for long time in flowing water, the resulting liquid silk was water-soluble polypeptides with different molecular masses, ranging from 8 to 70 kDa. When the liquid silk was introduced rapidly into acetone, silk protein nanoparticles with a range of 40-120 nm in diameter could be obtained. The crystalline silk nanoparticles could be conjugated covalently with insulin alone with cross-linking reagent glutaraldehyde. In vitro properties of the insulin-silk fibroin nanoparticles (Ins-SFN) bioconjugates were determined by Enzyme-Linked Immunosorbent Assay (ELISA). The optimal conditions for the biosynthesis of Ins-SFN bioconjugates were investigated. The Ins-SFN constructs obtained by 8 h of covalent cross-linking with 0.7% cross-linking reagent and the proportion of insulin and SFN being 30 IU: 15 mg showed much higher recoveries (90-115%). When insulin was coupled covalently with silk nanoparticles, the resistance of the modified insulin to trypsin digestion and in vitro stability in human serum were greatly enhanced as compared with insulin alone. The results in human serum indicated that the half-life in vitro of the biosynthesized Ins-SFN derivatives was about 2.5 times more than that of native insulin. Therefore, the silk protein nanoparticles have the potential values for being studied and developed as a new bioconjugate for enzyme/polypeptide drug delivery system.

  13. Preparation and characterization of blends containing silk fibroin and chitosan

    International Nuclear Information System (INIS)

    Moraes, Mariana A. de; Nogueira, Grinia M.; Weska, Raquel F.; Beppu, Marisa M.

    2009-01-01

    The aim of this study was to prepare and characterize blend membranes of silk fibroin and chitosan. Moreover, a conformation of fibroin to a more stable form induced by the addition of chitosan was verified. Blend membranes of fibroin/chitosan were prepared in different proportions and had their crystallinity, structural conformation and thermal stability characterized. The results of crystallographic analysis (XRD) indicated the tendency to higher structural organization caused by the addition of chitosan. FTIR showed that, mainly in a content of chitosan of only 25%, fibroin is present in a more stable form. Thermal analyzes indicate that fibroin is thermally stable and that when its proportion in the blend increases, the temperature in which the degradation is initiated also does so. (author)

  14. Orientational structure formation of silk fibroin with anisotropic properties in solutions

    International Nuclear Information System (INIS)

    Kholmuminov, A.A.

    2008-06-01

    Key words:silk fibroin, dissolution, solution's model systems, gelation, orientational crystallization, optical polarization, longitudinal stream, α - β transition, structure formation, phase transformations, relaxation, anisotropy of swelling and desorption, thermo- and biodegradation. Subjects of the inquiry: silk fibroin is the main subject of investigation. Fibroin's solutions were obtained on the base of water and organic solvents, containing salts. Comparative investigations were carried out by using biosolution - secretion of silkworm, solutions of silk sericin, cotton cellulose, methylcellulose, polystyrene and (co) polycrylonitrile. Aim of the inquiry: the elucidation of the regularities of silk fibroin anisotropic structures formation in the direct generation of orientational ordering in solutions taking into account of influences of its the molecular structures, configuration information, α - β conformational transformations, and development jointly using polarization-optical and hydrodynamic methods to control of structure formation. And also definition of possibility fields for use biopolymers anisotropic structure formation principles. Method of inquiry: birefringence, dispersion optical rotation, circular dichroism, polarization- ultramicroscope, ultracentrifuge, viscosimetry, potentiometry, differential thermal analysis, chromatography, x-ray analysis, spectroscopy. The results achieved and their novelty: the physical regularity amorphous-crystalline fibroin dissolutions in salt-containing solvents based on chains melting, distribution and redistribution were recognized; fibroin statistical parameters, molecular-mass and conformational characteristics were established; It was shown that fibroin molecules turned into fully uncoiled and oriented state with the breakdown decay of α-spiral chain sections by I type phase transition mechanism, but in oriented state with α-spiral conservation by II type transition; the presence of longitudinal field

  15. Preparation and water absorption of cross-linked chitosan/silk fibroin blend films

    Energy Technology Data Exchange (ETDEWEB)

    Suesat, Jantip; Rujiravanit, Ratana [Chulalongkorn University, The Petroleum and Petrochemical College, Bangkok (Thailand); Jamieson, Alexander M. [Case Western Reserve Univ., Department of Macromolecular Science, Cleveland (United States); Tokura, Seiichi [Kansai Univ., Faculty of Engineering, Osaka (Japan)

    2001-03-01

    Natural polymer blend films composed of chitosan and silk fibroin were prepared by varying the ratio of chitosan to silk fibroin, with and without glutaraldehyde as a crosslinking agent. The effects of the ratio of chitosan to silk fibroin and crosslinking agent on swelling behavior of the blend films were studied. For the swelling behavior, the blend films exhibited a dramatic change in the degree of swelling when immersed in acidic solutions. The degree of swelling of the films increased as the chitosan content increased; the blend film with 80% chitosan content had the maximum degree of swelling. It appeared that crosslinking had occurred in the blend films which helped the films to retain their three dimensional structure. In addition, FTIR spectra of the films showed evidence of hydrogen bonding interaction between chitosan and silk fibroin. For the effect of salt type, the films were immersed in various types of aqueous salt solutions, viz NaCl, LiCl, CaCl{sub 2}, AlCl{sub 3}, and FeCl{sub 3}. The films immersed in AlCl{sub 3} and FeCl{sub 3} aqueous solutions gave the maximum degree of swelling. The effects of AlCl{sub 3} and FeCl{sub 3} concentrations on swelling behavior were also investigated. It was found that the maximum degree of swelling of the films occurred at 1.0 x 10{sup -2} M of AlCl{sub 3} and FeCl{sub 3} aqueous solutions. (author)

  16. Preparation and water absorption of cross-linked chitosan/silk fibroin blend films

    International Nuclear Information System (INIS)

    Suesat, Jantip; Rujiravanit, Ratana; Jamieson, Alexander M.; Tokura, Seiichi

    2001-01-01

    Natural polymer blend films composed of chitosan and silk fibroin were prepared by varying the ratio of chitosan to silk fibroin, with and without glutaraldehyde as a crosslinking agent. The effects of the ratio of chitosan to silk fibroin and crosslinking agent on swelling behavior of the blend films were studied. For the swelling behavior, the blend films exhibited a dramatic change in the degree of swelling when immersed in acidic solutions. The degree of swelling of the films increased as the chitosan content increased; the blend film with 80% chitosan content had the maximum degree of swelling. It appeared that crosslinking had occurred in the blend films which helped the films to retain their three dimensional structure. In addition, FTIR spectra of the films showed evidence of hydrogen bonding interaction between chitosan and silk fibroin. For the effect of salt type, the films were immersed in various types of aqueous salt solutions, viz NaCl, LiCl, CaCl 2 , AlCl 3 , and FeCl 3 . The films immersed in AlCl 3 and FeCl 3 aqueous solutions gave the maximum degree of swelling. The effects of AlCl 3 and FeCl 3 concentrations on swelling behavior were also investigated. It was found that the maximum degree of swelling of the films occurred at 1.0 x 10 -2 M of AlCl 3 and FeCl 3 aqueous solutions. (author)

  17. Chitosan-functionalized silk fibroin 3D scaffold for keratocyte culture.

    Science.gov (United States)

    Guan, Linan; Tian, Pei; Ge, Hongyan; Tang, Xianling; Zhang, Hong; Du, Lingling; Liu, Ping

    2013-10-01

    The goal of this study was to evaluate the potential suitability of an artificial membrane composed of silk fibroin (SF) functionalized by different ratios of chitosan (CS) as a substrate for the stroma of the cornea. Keratocytes were cultured on translucent membranes made of SF and CS with different ratios. The biophysical properties of the silk fibroin and chitosan (SF/CS) membrane were examined. The SF/CS showed tensile strengths that increased as the CS concentration increased, but the physical and mechanical properties of chitosan-functionalized silk fibroin scaffolds weakened significantly compared with those of native corneas. The resulting cell scaffolds were evaluated using western blot in addition to light and electron microscopy. The cell attachment and proliferation on the scaffold were similar to those on a plastic plate. Keratocytes cultured in serum on SF/CS exhibited stellate morphology along with a marked increase in the expression of keratocan compared with identical cultures on tissue culture plastics. The biocompatibility was tested by transplanting the acellular membrane into rabbit corneal stromal pockets. There was no inflammatory complication detected at any time point on the macroscopic level. Taken together, these results indicate that SF/CS holds promise as a substrate for corneal reconstruction.

  18. Exploring the mechanism of microarteriogenesis in porous silk fibroin film.

    Science.gov (United States)

    Bai, Lun; Wang, Guangqian; Tan, Xiaoyan; Xu, Jianmei

    2012-01-01

    Purpose. Based on the experiment of the microarteriogenesis that is associated with angiogenesis during tissue repair process in porous silk fibroin films (PSFFs), we investigate the characteristics of micro-arteriogenesis and explore its mechanism. Methods. After the porous silk fibroin materials are implanted into the back hypodermal tissue of SD rats, the arteriole development and the morphogenesis of smooth muscle cell are histologically monitored and the micro-arteriogenesis is quantitatively analyzed. Results. 10 days after implantation, the arteriole density reaches the highest level in the junction of silk fibroin materials with tissues. Three weeks later, the arteriolar density in the materials reaches the maximum, and the arterioles in the junction of materials with tissues appear to be in a mature and upgrading state. Modeling of Microarteriogenesis. The arterioles in materials are generated after capillary angiogenesis. It is inferred that arteriolar development does not start until the network of the capillaries is formed. At first, the arterioles grow in the conjunct area of precapillaries with arterioles. Then with the extension of the arterioles, the upgrade of arterioles in connecting area is observed at a later stage. Based on the observation, the conditions and the mechanism of microarterializations as well as the upgrade of arterioles are analyzed.

  19. In vivo NMR analysis of incorporation of [2-13C] glycine into silk fibroin

    International Nuclear Information System (INIS)

    Asakura, Tetsuo; Nagashima, Mariko; Demura, Makoto; Osanai, Minoru.

    1990-01-01

    The biosynthetic mechanism of silk fibroin in silkworms, Bombyx mori, is unique because this fibrous protein composed mainly of glycine, alanine and serine is produced very rapidly in large quantity in the posterior silk glands. It is very meaningful to investigate into the biosynthesis of silk protein under nondestructive condition by in vivo NMR and C-13 labeling techniques. The sugar metabolism related to the production of silk fibroin was analyzed by monitoring the change in the C-13 labeled peaks in the NMR spectra for silkworms. In this paper, the monitoring of the 2-(C-13) glycine metabolism in Bombyx mori by the C-13 NMR in vivo is reported. In particular, the in vivo transport of glycine from the midgut to the posterior silk gland was measured, and the rate constants were determined with the course of the peak intensity in the C-13 NMR spectra. It is possible to discuss quantitatively the in vivo production of silk fibroin with these rate constants. The experiment and the results are reported. The in vivo C-13 NMR spectra of a 5 day old, 5th instar larva of Bombyx mori after the oral administration of 2-(C-13) glycine are shown. The significant increase of the peak intensity occurred. (K.I.)

  20. Modification of Silk Fibroin Using Diazonium Coupling Chemistry and the Effects on hMSC Proliferation and Differentiation

    Science.gov (United States)

    Murphy, Amanda R.; John, Peter St.; Kaplan, David L.

    2009-01-01

    A simple chemical modification method using diazonium coupling chemistry was developed to tailor the structure and hydrophilicity of silk fibroin protein. The extent of modification using several aniline derivatives was characterized using UV/vis and 1H NMR spectroscopy, and the resulting protein structure was analyzed with ATR-FTIR spectroscopy. Introduction of hydrophobic functional groups facilitated rapid conversion of the protein from a random coil to a β-sheet structure, while addition of hydrophilic groups inhibited this process. hMSCs were grown on these modified silks to assess the biocompatibility of these materials. The hydrophilicity of the silk derivatives was found to affect the growth rate and morphology, but hMSCs were able to attach, proliferate and differentiate into an osteogenic lineage on all of the silk derivatives. PMID:18417206

  1. Nucleation of hydroxyapatite on Antheraea pernyi (A. pernyi) silk fibroin film.

    Science.gov (United States)

    Yang, Mingying; Shuai, Yajun; Zhou, Guanshan; Mandal, Namita; Zhu, Liangjun

    2014-01-01

    Antheraea pernyi (A. pernyi) silk fibroin, which is spun from a wild silkworm, has increasingly attracted interest in the field of tissue engineering. The aim of this study was to investigate the nucleation of hydroxyapatite (HAp) on A. pernyi fibroin film. Von Kossa staining proved that A. pernyi fibroin had Ca binding activity. The A. pernyi fibroin film was mineralized with HAp crystals by alternative soaking in calcium and phosphate solutions. Spherical crystals were nucleated on the A. pernyi fibroin film according to scanning electron microscopeimaging results. The FT-IR and X-ray diffraction spectra confirmed that these spherical crystals were HAp. The results of in vitro cell culture using MG-63 cells demonstrated that the mineralized A. pernyi fibroin film showed excellent cytocompatibility and sound improvement of the MG-63 cellviability.

  2. Effects of alkyl polyglycoside (APG) on Bombyx mori silk degumming and the mechanical properties of silk fibroin fibre

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei; Zhang, Yu-Qing, E-mail: sericult@suda.edu.cn

    2017-05-01

    Alkyl polyglycoside (APG), a nonionic surfactant, is often considered to be a green surfactant and is synthesized using glucose and long chain fatty alcohols. It is used as a degumming agent of Bombyx mori silk fibre in this study for the first time. We studied APG systematically in comparison to the traditional degumming methods, such as aqueous solutions of sodium carbonate (Na{sub 2}CO{sub 3}) and neutral soap (NS). After repeatedly boiling silk fibres in an aqueous solution of 0.25% APG three times for 30 min and using a bath ratio of 1:90–120 (g/mL), sericin was completely removed from the fibre. SDS-PAGE showed that the degumming in APG did not induce an evident breakage of the silk fibroin peptide chains, including the light chain and P25 protein. The tensile properties, thermal analysis, and scanning electron microscopic (SEM) observation of the degummed fibroin fibre all show that APG is a degumming agent similar to NS and far superior to Na{sub 2}CO{sub 3}. These results indicate that APG is an environment-friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. - Graphical abstract: APG has potential uses as a green degumming/refining reagent for silkworm cocoons or silk fibres in the silk industry and for sericulture production. Display Omitted.

  3. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials.

    Science.gov (United States)

    Vu, Trang; Xue, Ye; Vuong, Trinh; Erbe, Matthew; Bennet, Christopher; Palazzo, Ben; Popielski, Lucas; Rodriguez, Nelson; Hu, Xiao

    2016-09-07

    This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples' characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the

  4. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials

    Directory of Open Access Journals (Sweden)

    Trang Vu

    2016-09-01

    Full Text Available This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt % for the first group (ultrasonication, and 10 wt % for the second group (natural gel. Differential scanning calorimetry (DSC and temperature modulated DSC (TMDSC were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM and atomic force microscopy (AFM were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications

  5. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  6. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Wu, Mingyang; Yi, Honggen; Wang, Jiannan, E-mail: wangjn@suda.edu.cn

    2016-02-01

    Silk fibroin heavy chain is the major protein component of Bombyx mori silk fibroin and is composed of 12 repetitive and 11 non-repetitive regions, with the non-repetitive domain consisting of a hydrophilic polypeptide chain. In order to determine the biomedical function of the non-repetitive domain or potentially use it to modify hydrophobic biomaterials, high-purity isolation is necessary. Previously, we cloned and extended a gene motif (f(1)) encoding the non-repetitive domain. Here, this motif and its multimers are inserted into a glutathione S-transferase (GST)-tagged fusion-protein expression vector. Motif f(1) and multimers f(4) and f(8) were expressed in Escherichia coli BL21 cells following isopropyl β-D-1-thiogalactopyranoside induction, purified by GST-affinity chromatography, and single bands of purified fusion proteins GST-F(1), GST-F(4), and GST-F(8), were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Target polypeptides F(1), F(4), and F(8), were cleaved clearly from the GST-fusion tag following thrombin digestion. Mass spectrometry results indicate that the molecular weights associated with fusion proteins GST-F(1), GST-F(4), and GST-F(8) are 31.5, 43.8, and 59.0 kDa, respectively, and with the cleaved polypeptides F(1), F(4), and F(8) are 4.8, 16.8, and 32.8 kDa, respectively. The F(1), F(4), and F(8) polypeptide chains are negatively charged with isoelectric points (pI) of 3.3, 3.2, and 3.0, respectively. The molecular weight and pI values of the polypeptide chains are consistent with the predicted values and the amino acid compositions similar to predicted sequences. FTIR and CD results show the molecular conformation of F(1) was mainly random coil, and more stable α-helix structure formed in longer molecular chain. - Highlights: • A non-repetitive domain and its multimers of silk fibroin were expressed by E. coli. • The corresponding target polypeptides F(1), F(4) and F(8) were cleaved clearly. • Their

  7. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2.

    Science.gov (United States)

    Feng, Xin-Xing; Zhang, Li-Li; Chen, Jian-Yong; Guo, Yu-Hai; Zhang, Hua-Peng; Jia, Chang-Ian

    2007-01-30

    This paper describes the synthesis and characterization of new regenerated silk fibroin (SF)/nano-TiO(2) composite films. The preparation method, based on the sol-gel technique using butyl titanate as oxide precursor, could avoid reagglomeration of the prepared nanoparticles. Samples were characterized mainly by X-ray diffraction (XRD), ultra-violet (UV) spectroscopy, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The UV and AFM results indicated that TiO(2) nanoparticles could be well dispersed inside the SF film, and the size of TiO(2) was about 80nm. The XRD and FT-IR analysis implied that the formation of nano-TiO(2) particles may induce the conformational transition of silk fibroin to a typical Silk II structure partly with the increasing of crystallinity in the composite films. Compared to the pure SF films, the mechanical and thermal properties of composite films were improved, and the solubility in water was decreased due to the conformational transition of silk fibroin to Silk II structure.

  8. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  9. Preparation of Porous Scaffolds from Silk Fibroin Extracted from the Silk Gland of Bombyx mori (B. mori

    Directory of Open Access Journals (Sweden)

    Liangjun Zhu

    2012-06-01

    Full Text Available In order to use a simple and ecofriendly method to prepare porous silk scaffolds, aqueous silk fibroin solution (ASF was extracted from silk gland of 7-day-old fifth instar larvae of Bombyx mori (B. mori. SDS-page analysis indicated that the obtained fibroin had a molecular weight higher than 200 kDa. The fabrication of porous scaffolds from ASF was achieved by using the freeze-drying method. The pore of porous scaffolds is homogenous and tends to become smaller with an increase in the concentration of ASF. Conversely, the porosity is decreased. The porous scaffolds show impressive compressive strength which can be as high as 6.9 ± 0.4 MPa. Furthermore, ASF has high cell adhesion and growth activity. It also exhibits high ALP activity. This implies that porous scaffolds prepared from ASF have biocompatibility. Therefore, the porous scaffolds prepared in this study have potential application in tissue engineering due to the impressive compressive strength and biocompatibility.

  10. Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun.

    Directory of Open Access Journals (Sweden)

    Celia Martínez-Mora

    Full Text Available Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular basis underlying wound healing properties of silk proteins using a cell model. For this purpose, we assayed fibroin and sericin in a wound healing scratch assay using MDA-MB-231 and Mv1Lu cells. Both proteins stimulated cell migration. Furthermore, treatment with sericin and fibroin involved key factors of the wound healing process such as upregulation of c-Jun and c-Jun protein phosphorylation. Moreover, fibroin and sericin stimulated the phosphorylation of ERK 1/2 and JNK 1/2 kinases. All these experiments were done in the presence of specific inhibitors for some of the cell signalling pathways referred above. The obtained results revealed that MEK, JNK and PI3K pathways are involved in fibroin and sericin stimulated cells migration. Inhibition of these three kinases prevented c-Jun upregulation and phosphorylation by fibroin or sericin. Fibroin and sericin were tested in the human keratinocyte cell line, HaCaT, with similar results. Altogether, our results showed that fibroin and sericin initiate cell migration by activating the MEK, JNK and PI3K signalling pathways ending in c-Jun activation.

  11. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Fang Qian [College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350108 (China); Chen Denglong [College of Chemistry and Materials Sciences, Fujian Normal University, Fuzhou, Fujian350108 (China); Yang Zhiming [Division of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Li Min, E-mail: mli@fjnu.edu.cn [College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350108 (China)

    2009-06-01

    In this paper, the feasibility of using Antheraea pernyi silk fibroin as tissue engineering tendon scaffold was investigated in vitro and in vivo, respectively, utilizing tenocytes and animal model. The animal model used here was an adult New Zealand White rabbit with a 15-mm gap defect in both sides of the Achilles tendon. The Achilles tendon defects in one side of hind legs were repaired using the braided A. pernyi silk fibroin scaffold in experimental group (n = 24), while the other side left untreated as negative group (n = 24). The recovery of the defect tendons were evaluated postoperatively at the 2nd, 6th, 12th, and 16th week using macroscopic, histological, immunohistochemical, scanning electron micrograph and biomechanical test techniques. In vitro results examined by scanning electron micrograph showed that A. pernyi silk fibroin promote the adhesion and propagation of the tenocytes. In vivo, at 16 weeks after implantation, morphological results showed that neo-tendons were formed, and bundles of collagen fibers in the neo-tendons were uniform and well oriented. Immunohistochemical results showed that collagen type in the regenerated tendons was predominantly type I. The maximum load of regenerated tendon at 16 weeks reached 55.46% of the normal tendon values. Preliminary, we concluded that A. pernyi silk fibroin promoted the recovery of Achilles tendon defect of rabbit and the application of A. pernyi silk fibroin as tissue engineering tendon scaffold is feasible.

  12. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds

    International Nuclear Information System (INIS)

    Fang Qian; Chen Denglong; Yang Zhiming; Li Min

    2009-01-01

    In this paper, the feasibility of using Antheraea pernyi silk fibroin as tissue engineering tendon scaffold was investigated in vitro and in vivo, respectively, utilizing tenocytes and animal model. The animal model used here was an adult New Zealand White rabbit with a 15-mm gap defect in both sides of the Achilles tendon. The Achilles tendon defects in one side of hind legs were repaired using the braided A. pernyi silk fibroin scaffold in experimental group (n = 24), while the other side left untreated as negative group (n = 24). The recovery of the defect tendons were evaluated postoperatively at the 2nd, 6th, 12th, and 16th week using macroscopic, histological, immunohistochemical, scanning electron micrograph and biomechanical test techniques. In vitro results examined by scanning electron micrograph showed that A. pernyi silk fibroin promote the adhesion and propagation of the tenocytes. In vivo, at 16 weeks after implantation, morphological results showed that neo-tendons were formed, and bundles of collagen fibers in the neo-tendons were uniform and well oriented. Immunohistochemical results showed that collagen type in the regenerated tendons was predominantly type I. The maximum load of regenerated tendon at 16 weeks reached 55.46% of the normal tendon values. Preliminary, we concluded that A. pernyi silk fibroin promoted the recovery of Achilles tendon defect of rabbit and the application of A. pernyi silk fibroin as tissue engineering tendon scaffold is feasible.

  13. Radiation degradation of silk

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  14. Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds

    International Nuclear Information System (INIS)

    Cao, Zhengbing; Wen, Jianchuan; Yao, Jinrong; Chen, Xin; Ni, Yusu; Shao, Zhengzhong

    2013-01-01

    In the present work, we report a new facile method to fabricate porous three-dimensional regenerated silk fibroin (RSF) scaffolds through n-butanol- and freezing-induced conformation transition and phase separation. The effects of RSF concentration, freezing temperature and n-butanol addition on the microstructure, the secondary structures of silk fibroin and apparent mechanical properties of the RSF scaffolds were investigated by SEM, 13 C CP-MAS NMR spectra and mechanical testing, respectively. By adjusting the RSF concentration and n-butanol addition, the pore size of the scaffold could be controlled in the range from of 10 μm to 350 μm with 84%–98% of porosity. The tensile strength of the wet scaffold reached the maximum of 755.2 ± 33.6 kPa when the concentration of RSF solution was increased to 15% w/w. Moreover, post-treatment with ethanol further induced conformation transition of RSF from random coil or helix to β-sheet. The porous scaffolds prepared by this facile and energy-saving method with good biocompatibility will have great potential for application in tissue engineering. Highlights: • A new facile and energy-saving method to fabricate porous silk fibroin scaffolds; • Freeze-drying step (a typical high energy consuming process) is unnecessary; • Morphology and mechanical properties of scaffolds were easily controlled; • Ethanol post-treatment can be used to tune the degradation behavior

  15. Novel fabrication method of the peritoneal dialysis filter using silk fibroin with urease fixation system.

    Science.gov (United States)

    Moon, Bo Mi; Choi, Myung-Jin; Sultan, Md Tipu; Yang, Jae Won; Ju, Hyung Woo; Lee, Jung Min; Park, Hyun Jung; Park, Ye Ri; Kim, Soo Hyeon; Kim, Dong Wook; Lee, Min Chae; Jeong, Ju Yeon; Lee, Ok Joo; Sung, Gun Yong; Park, Chan Hum

    2017-10-01

    During the last decade, there has been a great advance in the kidney dialysis system by wearable artificial kidney (WAK) system for end-stage renal disease patients. Uremic solute removal and water regeneration system are the most prerequisite for WAK to work properly. In this study, we designed a filtering membrane system by using immobilized urease silk fibroin filter and evaluated its comparative effectiveness with a PVDF filtering system in peritoneal dialysate regeneration system by urea removal efficacy. We evaluated this membrane's characteristic and performances by conducting SEM-EDX analyze, water-binding abilities and porosity test, removal abilities of urea, cytotoxicity assay and enzyme activity assay. Under the condition for optimization of urease, the percentage removal of urea was about 40% and 60% in 50 mg/dL urea solution by urease immobilized PVDF and silk fibroin scaffolds, respectively. The batch experimental result showed that immobilized filter removed more than 50% of urea in 50 mg/dL urea solution. In addition silk fibroin with urease filter removed 90 percent of urea in the peritoneal dialysate after 24 h filtration. We suggest that silk fibroin with urease fixation filter can be used more effectively for peritoneal dialysate regeneration system, which have hydrophilic property and prolonged enzyme activity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2136-2144, 2017. © 2016 Wiley Periodicals, Inc.

  16. Dissolution and regeneration of non-mulberry Eriogyna Pyretorum silk fibroin

    Science.gov (United States)

    Guo, Yuhang; Li, Xiufang; Zhang, Qiang; Yan, Shuqin; You, Renchuan

    2017-10-01

    Protein-based materials have been actively pursued as biomaterials because of their nontoxicity, biocompatibility and biodegradability. In this work, we demonstrated the potential of Eriogyna pyretorum silk fibroin (ESF), a non-mulberry silk protein, as biomaterials. The degummed ESF fibers could be dissolved completely by Ca(NO3)2/H2O/C2H5OH solution to produce regenerated ESF. The solubility was strongly dependent on the addition of C2H5OH, heating temperature and dissolving time. α-helix and random coil are main molecular conformation in aqueous ESF solution. The sol-gel transition behavior of regenerated ESF was also studied, indicating that the conformational transition of regenerated ESF from random coil/α-helix to β-sheet during gelation. Especially, ESF showed more rapid gelation than mulberry silk fibroin (BSF). Consequently, the gelation rate of BSF could be controlled ranging from tens of minutes to days by changing the ESF ratio, providing useful options for the fabrication of silk hydrogels. Water-stable regenerated ESF film could be achieved by using aqueous ethanol to induce structural transition. Tensile tests showed that the ESF films have a dry strength of approximate 31.0 MPa and a wet strength of approximate 3.3 MPa. This study provides new opportunities as an alternative natural protein material for biomedical applications.

  17. Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama.

    Science.gov (United States)

    Gupta, Adarsh K; Mita, Kazuei; Arunkumar, Kallare P; Nagaraju, Javaregowda

    2015-08-03

    The golden silk spun by Indian golden silkmoth Antheraea assama, is regarded for its shimmering golden luster, tenacity and value as biomaterial. This report describes the gene coding for golden silk H-fibroin (AaFhc), its expression, full-length sequence and structurally important motifs discerning the underlying genetic and biochemical factors responsible for its much sought-after properties. The coding region, with biased isocodons, encodes highly repetitious crystalline core, flanked by a pair of 5' and 3' non-repetitious ends. AaFhc mRNA expression is strictly territorial, confined to the posterior silk gland, encoding a protein of size 230 kDa, which makes homodimers making the elementary structural units of the fibrous core of the golden silk. Characteristic polyalanine repeats that make tight β-sheet crystals alternate with non-polyalanine repeats that make less orderly antiparallel β-sheets, β-turns and partial α-helices. Phylogenetic analysis of the conserved N-terminal amorphous motif and the comparative analysis of the crystalline region with other saturniid H-fibroins reveal that AaFhc has longer, numerous and relatively uniform repeat motifs with lower serine content that assume tighter β-crystals and denser packing, which are speculated to be responsible for its acclaimed properties of higher tensile strength and higher refractive index responsible for golden luster.

  18. Silk fibroin gelation via non-solvent induced phase separation

    Czech Academy of Sciences Publication Activity Database

    Kasoju, Naresh; Hawkins, N.; Pop-Georgievski, Ognen; Kubies, Dana; Vollrath, F.

    2016-01-01

    Roč. 4, č. 3 (2016), s. 460-473 ISSN 2047-4830 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : silk fibroin * non-solvent induced phase separation * desolvation Subject RIV: CE - Biochemistry Impact factor: 4.210, year: 2016

  19. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    International Nuclear Information System (INIS)

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A.

    2015-01-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  20. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A., E-mail: amitb79@gmail.com

    2015-03-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  1. Production of silk sericin/silk fibroin blend nanofibers

    Directory of Open Access Journals (Sweden)

    Zhang Xianhua

    2011-01-01

    Full Text Available Abstract Silk sericin (SS/silk fibroin (SF blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75 blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50 blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100 blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  2. Effect of the sterilization method on the properties of Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    George, Karina A. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059 (Australia); Shadforth, Audra M.A. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Chirila, Traian V., E-mail: traian.chirila@qei.org.au [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, 4072 (Australia); Faculty of Health Sciences, University of Queensland, Herston, Queensland 4006 (Australia); Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Laurent, Matthieu J. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Ecole Superieure d' Ingenieurs de Luminy (ESIL), Universite de la Mediterranee Aix-Marseille II, Luminy case 925 13288, Marseille, Cedex 09 (France); Stephenson, Sally-Anne [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059 (Australia); Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Edwards, Grant A. [Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, 4072 (Australia); Madden, Peter W. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Faculty of Health Sciences, University of Queensland, Herston, Queensland 4006 (Australia); and others

    2013-03-01

    We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method. - Highlights: Black-Right-Pointing-Pointer The effects of four methods of sterilization on the properties of silk fibroin films were investigated. Black-Right-Pointing-Pointer Steam treatment leads to stiffer films but to lower transparency and variable surface topography. Black-Right-Pointing-Pointer Degradation of fibroin is enhanced in the films that were gamma-irradiated. Black-Right-Pointing-Pointer The effects on mechanical properties are explained through changes in both primary and secondary structure of fibroin. Black-Right-Pointing-Pointer Gamma-irradiation and immersion in aqueous ethanol are suggested as preferred methods of sterilization.

  3. Effect of the sterilization method on the properties of Bombyx mori silk fibroin films

    International Nuclear Information System (INIS)

    George, Karina A.; Shadforth, Audra M.A.; Chirila, Traian V.; Laurent, Matthieu J.; Stephenson, Sally-Anne; Edwards, Grant A.; Madden, Peter W.

    2013-01-01

    We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method. - Highlights: ► The effects of four methods of sterilization on the properties of silk fibroin films were investigated. ► Steam treatment leads to stiffer films but to lower transparency and variable surface topography. ► Degradation of fibroin is enhanced in the films that were gamma-irradiated. ► The effects on mechanical properties are explained through changes in both primary and secondary structure of fibroin. ► Gamma-irradiation and immersion in aqueous ethanol are suggested as preferred methods of sterilization.

  4. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Kim, Hyunryung; Che, Lihua; Ha, Yoon; Ryu, WonHyoung

    2014-01-01

    Electrospun silk fibroin (SF) scaffolds provide large surface area, high porosity, and interconnection for cell adhesion and proliferation and they may replace collagen for many tissue engineering applications. Despite such advantages, electrospun SF scaffolds are still limited as bone tissue replacement due to their low mechanical strengths. While enhancement of mechanical strengths by incorporating inorganic ceramics into polymers has been demonstrated, electrospinning of a mixture of SF and inorganic ceramics such as hydroxyapatite is challenging and less studied due to the aggregation of ceramic particles within SF. In this study, we aimed to enhance the mechanical properties of electrospun SF scaffolds by uniformly dispersing hydroxyapatite (HAp) nanoparticles within SF nanofibers. HAp nanoaprticles were modified by γ-glycidoxypropyltrimethoxysilane (GPTMS) for uniform dispersion and enhanced interfacial bonding between HAp and SF fibers. Optimal conditions for electrospinning of SF and GPTMS-modified HAp nanoparticles were identified to achieve beadless nanofibers without any aggregation of HAp nanoparticles. The MTT and SEM analysis of the osteoblasts-cultured scaffolds confirmed the biocompatibility of the composite scaffolds. The mechanical properties of the composite scaffolds were analyzed by tensile tests for the scaffolds with varying contents of HAp within SF fibers. The mechanical testing showed the peak strengths at the HAp content of 20 wt.%. The increase of HAp content up to 20 wt.% increased the mechanical properties of the composite scaffolds, while further increase above 20 wt.% disrupted the polymer chain networks within SF nanofibers and weakened the mechanical strengths. - Highlights: • Electrospun composite silk fibroin scaffolds were mechanically-reinforced. • GPTMS enhanced hydroxyapatite distribution in silk fibroin nanofibers. • Mechanical property of composite scaffolds increased up to 20% of hydroxyapatite. • Composite

  5. Effect of Sodium Carbonate Concentrations on the Formation and Mechanism of Regenerated Silk Fibroin Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Hao Dou

    2014-01-01

    Full Text Available Degumming is the first process for the preparation of all silk-based products. In this paper, effect of sodium carbonate concentrations for silk degumming on the formation of electrospun silk fibroin nanofibers was investigated and the reason for the silk electrospinning process was explained for the first time by differences from the microstructure of regenerated silk fibroin. With increasing the sodium carbonate concentration, microstructure both in the aqueous solutions and in the electrospinning solutions transformed from nanofibrils to nanoparticles, leading to obvious changes on rheological property; electrospinning solutions with nanofibrils behaved like the native silk dope and owned remarkably higher viscosity than the solutions with nanoparticles showing very low viscosity. More interestingly, nanofibrils favored the formation of silk nanofibers with ease, and even nanofibers could be electrospun at concentration 2%. However, nanoparticles were completely unable to generate nanofibers at high spinning concentration 8%. Importance of sodium carbonate concentrations is heavily emphasized for impacting the microstructure types and further influencing the electrospinning performance of regenerated silk. Hence, sodium carbonate concentrations provide a controllable choice for the preparation of silk-based electrospun biomaterials with desired properties.

  6. Silk fibroin/pullulan blend films: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.; Asha, S. [Department of Studies in Physics, Mangalore University, Mangalagangotri – 574 199 (India); Sarojini, B. K. [Department of Industrial Chemistry, Mangalore University, Mangalagangotri, Mangalore –574 199 (India); Somashekhar, R. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore – 570 006 (India); Sangappa, Y., E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri – 574 199 (India); School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2016-05-23

    In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.

  7. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazushi; Tsuboi, Yasuyuki; Itaya, Akira

    2003-09-01

    Bombyx mori silk fibroin was fixed on mica substrates by cast of aqueous fibroin solutions, and the microscopic morphologies of the samples were revealed by means of atomic force microscopy. By adjusting the method used to prepare the solution, we succeeded in forming quasi-2-dimensional thin films in which a network of fibroin molecules developed over the substrate. The film network consisted of fibroin in a random coil structure. The morphology of the network changed after thermal or methanol treatments, which are known to convert the secondary structure of fibroin from the random coil to the {beta}-sheet type. In both of these cases, the network morphology disappeared and characteristic island-like morphologies appeared. On the other hand, temporally evolving gelation occurred in a fibroin solution due to the formation of {beta}-sheet crystals. Such islands were also observable in a specimen prepared by the cast of the gel-containing solution. Based on these results, it was concluded that the islands consist of {beta}-sheet crystals. Of particular interest is the observation that all of the islands had a common thickness value of 1.3 nm. These morphologies are discussed in terms of the secondary structure of fibroin.

  8. New oral dosage form for elderly patients. II. Release behavior of benfotiamine from silk fibroin gel.

    Science.gov (United States)

    Hanawa, T; Watanabe, A; Tsuchiya, T; Ikoma, R; Hidaka, M; Sugihara, M

    1995-05-01

    Silk fibroin gel (SFG) containing benfotiamine (BTMP) was prepared. The release behavior of BTMP from SFG was studied as a function of silk fibroin (SF) content and glycerol content, and the influence of the existence of beta-cyclodextrin (beta-CD) on the physicochemical properties of SFG were investigated. The release rate of BTMP from SFG was retarded by an increase in SF concentration. The addition of beta-CD affected both the release properties and rheological properties of the SFG. It was found from the results of the "paddle-bead method" that the release profiles of BTMP from SFG were inversely proportional to the SFG firmness.

  9. Biomaterials Derived from Silk-Tropoelastin Protein Systems

    Science.gov (United States)

    Hu, Xiao; Wang, Xiuli; Rnjak, Jelena; Weiss, Anthony S.; Kaplan, David L.

    2010-01-01

    A structural protein blend system based on silkworm silk fibroin and recombinant human tropoelastin is described. Silk fibroin, a semicrystalline fibrous protein with beta-sheet crystals provides mechanical strength and controllable biodegradation, while tropoelastin, a noncrystallizable elastic protein provides elasticity. Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) indicated that silk becomes miscible with tropoelastin at different blend ratios, without macrophase separation. Fourier transform infrared spectroscopy (FTIR) revealed secondary structural changes of the blend system (beta-sheet content) before and after methanol treatment. Atomic Force Microscopy (AFM) nano-indentation demonstrated that blending silk and tropoelastin at different ratios resulted in modification of mechanical features, with resilience from ~68% to ~97%, and elastic modulus between 2~9Mpa, depending on the ratio of the two polymers. Some of these values are close to those of native aortic elastin or elastin-like polypeptides. Significantly, during blending and drying silk-tropoelastin form micro- and nano-scale porous morphologies which promote human mesenchymal stem cell attachment and proliferation. These blends offer a new protein biomaterial system for cell support and tailored biomaterial properties to match mechanical needs. PMID:20674969

  10. Study of the effects of different sterilization methods on the properties of dense and porous silk fibroin membranes

    International Nuclear Information System (INIS)

    Weska, Raquel F.; Moraes, Mariana A. de; Beppu, Marisa M.

    2009-01-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing, and it must not alter in a negative way the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical and chemical characteristics of dense silk fibroin membranes. Dense fibroin membranes were sterilized by ultraviolet radiation, 70% ethanol, autoclave, ethylene oxide and gamma radiation, and were analyzed by SEM, FTIR-ATR and XRD. The results for sterilization indicated that the methods didn't cause degradation of the membranes, but the methods that used organic solvent, or increase of humidity and/or temperature (70% ethanol, autoclave and ethylene oxide) altered the molecular conformation of fibroin, increasing the proportion of β-sheet structure, what indicates an increase of crystallinity. This effect may be positive when a slower degradation of the membranes is desired, depending on the application as a bio material. (author)

  11. Microwave assisted synthesis of luminescent carbonaceous nanoparticles from silk fibroin for bioimaging.

    Science.gov (United States)

    Gao, Hongzhi; Teng, Choon Peng; Huang, Donghong; Xu, Wanqing; Zheng, Chaohui; Chen, Yisong; Liu, Minghuan; Yang, Da-Peng; Lin, Ming; Li, Zibiao; Ye, Enyi

    2017-11-01

    Bombyx mori silk as a natural protein based biopolymer with high nitrogen content, is abundant and sustainable because of its mass product all over the world per year. In this study, we developed a facile and fast microwave-assisted synthesis of luminescent carbonaceous nanoparticles using Bombyx mori silk fibroin and silk solution as the precursors. As a result, the obtained carbonaceous nanoparticles exhibit a photoluminescence quantum yield of ~20%, high stability, low cytotoxicity, high biocompatibility. Most importantly, we successfully demonstrated bioimaging using these luminescent carbonaceous nanoparticles with excitation dependent luminescence. In addition, the microwave-assisted hydrothermal method can be extended to convert other biomass into functional nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Silk fibroin-antigenic peptides-YVO{sub 4}:Eu{sup 3+} nanostructured thin films as sensors for hepatitis C

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Lais R. [Institute of Chemistry, São Paulo State University, UNESP, CP355, Araraquara, SP 14801-970 (Brazil); Moraes, Marli L. [Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, SP 12231-280 (Brazil); Nigoghossian, Karina; Peres, Maristela F.S. [Institute of Chemistry, São Paulo State University, UNESP, CP355, Araraquara, SP 14801-970 (Brazil); Ribeiro, Sidney J.L., E-mail: sidney@iq.unesp.br [Institute of Chemistry, São Paulo State University, UNESP, CP355, Araraquara, SP 14801-970 (Brazil)

    2016-02-15

    Nanostructured films prepared by Layer-by-Layer technique and containing silk fibroin, antigenic peptide NS5A-1 derived from hepatitis C virus (HCV) NS5A protein and YVO{sub 4}:Eu{sup 3+} luminescent nanoparticles, were utilized in sensing of hepatitis C. Detection system exploits the biorecognition between the antibody anti-HCV and the antigenic peptide NS5A-1 through changes in luminescence properties. Films deposition was monitored by UV–vis Absorption and Fluorescence Spectroscopy measurements at each bilayer deposited. The Eu{sup 3+} luminescence properties were evaluated in the presence of anti-HCV for optical detection of specific antibody and anti-HIV used as negative control. Significant changes in luminescence were observed in the presence of anti-HCV concentrations. A new immunosensor platform is proposed for optical detection of hepatitis C. - Highlights: • LbL films composed of silk fibroin, antigenic peptide NS5A-1 and YVO{sub 4}:Eu{sup 3+} NPs. • PL is sensitive to the presence of anti-HCV. • A new imunosensor platform is therefore proposed.

  13. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  14. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    International Nuclear Information System (INIS)

    Rossle, Manfred; Panine, Pierre; Urban, Volker S.; Riekel, Christine

    2004-01-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with β-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 (micro)m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  15. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rossle, Manfred [European Molecular Biology Laboratory (EMBL), France; Panine, Pierre [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Riekel, Christine [European Synchrotron Radiation Facility (ESRF)

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  16. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels

    Directory of Open Access Journals (Sweden)

    Anna eWoloszyk

    2016-04-01

    Full Text Available Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration.

  17. Biodegradable materials based on silk fibroin and keratin.

    Science.gov (United States)

    Vasconcelos, Andreia; Freddi, Giuliano; Cavaco-Paulo, Artur

    2008-04-01

    Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds

  18. Control of fibroin conformation: Toward the development of a biomimetic spinning process for silk fibers

    Science.gov (United States)

    Carlson, Kimberly Ann Trabbic

    1999-09-01

    Nature has shown that silks are sophisticated structural materials with remarkable mechanical properties; however, they are produced using far milder conditions than high-performance synthetic polymer fibers. While recent advances in molecular biotechnology have taken great strides toward the production of proteinaceous biopolymers, little is known about the processing conditions needed to spin fibers with the correct microstructures and mechanical properties. It is the purpose of this research to gain a fundamental understanding about how processing conditions affect the molecular structure of a model protein biopolymer, Bombyx mori silkworm fibroin, the structural protein of cocoon silk. Fibers of B. mori fibroin were wet spun from 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) into a methanol coagulation bath. X-ray fiber diffraction and quantitative Raman spectroscopy were used to determine that both naturally- and synthetically-spun fibers contain a high degree of beta-sheet (~50%). Fibers subjected to a post-spinning draw exhibited a preferential molecular alignment parallel to the fiber axis resulting in increased strength, stiffness, and extensibility. Fibers with microstructures and mechanical properties most similar to those of naturally-spun fibers were reproduced in synthetically-spun fibers with a draw ratio of 3.5. The transformation of helical fibroin in HFIP to beta-sheet sheet fibroin in synthetically-spun fibers was determined to be caused by the methanol coagulation bath. The kinetics beta-sheet fibroin crystallization from aqueous solution was investigated by monitoring the sigmoidal progression of gel formation using turbidity and Raman spectroscopy. Gelation kinetics were evaluated by measuring lag time, maximum gelation rate, and optical density to determine the effects of protein concentration, detergent concentration (nucleating agent), headgroup chemistry, ionic strength, pH, and temperature. An optimal molar ratio between SDS and fibroin (100

  19. Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State.

    Science.gov (United States)

    Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J

    2017-08-18

    Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.

  20. Structural and thermal properties of γ – irradiated Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Madhukumar, R.; Asha, S.; Rao, B. Lakshmeesha; Shivananda, C. S.; Harish, K. V.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Sarojini, B. K. [Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Somashekar, R. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore - 570006 (India)

    2015-06-24

    The gamma radiation-induced change in structural and thermal properties of Bombyx mori silk fibroin films were investigated and have been correlated with the applied radiation doses. Irradiation of samples were carried out in dry air at room temperature using Co-60 source, and radiation doses are in the range of 0 - 300 kGy. Structural and thermal properties of the irradiated silk films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) and compared with unirradiated sample. Interesting results are discussed in this report.

  1. Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers.

    Science.gov (United States)

    Yuan, Han; Shi, Hongfei; Qiu, Xushen; Chen, Yixin

    2016-01-01

    The mechanical strength, biocompatibility, and sterilizability of silk fibroin allow it to be a possible candidate as a natural bone regenerate material. To improve mechanical character and reinforce the cell movement induction, silk fibroin (SF)-polycaprolactone (PCL) alloy was fabricated by electrospinning techniques with a rotating collector to form aligned fibrous scaffolds and random-oriented scaffolds. The scanning electron microscope image of the scaffold and the mechanical properties of the scaffold were investigated by tensile mechanical tests, which were compared to random-oriented scaffolds. Furthermore, mesenchymal stem cells were planted on these scaffolds to investigate the biocompatibility, elongation, and cell movement in situ. Scanning electron microscopy shows that 91% fibers on the aligned fibroin scaffold were distributed between the dominant direction ±10°. With an ideal support for stem cell proliferation in vitro, the aligned fibrous scaffold induces cell elongation at a length of 236.46 ± 82 μm and distribution along the dominant fiber direction with a cell alignment angle at 6.57° ± 4.45°. Compared with random-oriented scaffolds made by artificial materials, aligned SF-PCL scaffolds could provide a moderate mesenchymal stem cell engraftment interface and speed up early stage cell movement toward the bone defect.

  2. Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Cao

    Full Text Available Strongly alkaline electrolyzed water (SAEW was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+ concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin.

  3. Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Unalan, Irem [Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir (Turkey); Colpankan, Oylum [Metallurgical and Materials Engineering Department, Faculty of Engineering, Dokuz Eylul University, Izmir (Turkey); Albayrak, Aylin Ziylan, E-mail: aylin.albayrak@deu.edu.tr [Metallurgical and Materials Engineering Department, Faculty of Engineering, Dokuz Eylul University, Izmir (Turkey); Gorgun, Cansu [Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, Izmir (Turkey); Urkmez, Aylin Sendemir [Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, Izmir (Turkey); Bioengineering Department, Faculty of Engineering, Ege University, Izmir (Turkey)

    2016-11-01

    The objective of this study was to produce biocompatible plasma-treated and silk-fibroin (SF) modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber mats. The mats were plasma-treated using O{sub 2} or N{sub 2} gas to increase their hydrophilicity followed by SF immobilization for the improvement of biocompatibility. Contact angle measurements and SEM showed increased hydrophilicity and no disturbed morphology, respectively. Cell proliferation assay revealed that SF modification together with N{sub 2} plasma (PS/N{sub 2}) promoted higher osteoblastic (SaOs-2) cell viability. Although, O{sub 2} plasma triggered more mineral formation on the mats, it showed poor cell viability. Consequently, the PS/N{sub 2} nanofiber mats would be a potential candidate for bone tissue engineering applications. - Highlights: • N{sub 2}-plasma treated and silk fibroin modified mats do not show hydrophobic recovery. • Biomineralization is better on O{sub 2}-plasma treated and silk fibroin modified mats. • SaOS-2 cells like to proliferate on N{sub 2}-plasma treated surfaces.

  4. Activation of the Ubiquitin Proteasome Pathway by Silk Fibroin Modified Chitosan Nanoparticles in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2015-01-01

    Full Text Available Silk fibroin (SF is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP, a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation.

  5. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Chao; Yang, Qiang; Zhu, Meifeng; Du, Lilong; Zhang, Jiamin; Ma, Xinlong; Xu, Baoshan; Wang, Lianyong

    2014-01-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus

  6. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  7. Orientational structure formation of silk fibroin with anisotropic properties in solutions; Orientastionnoe strukturoobrazovanie fibroina shelka s anizotropnymi svojstvami v rastvorakh

    Energy Technology Data Exchange (ETDEWEB)

    Kholmuminov, A A [AS RU, Institute of Polymer Chemistry and Physics, Tashkent (Uzbekistan)

    2008-06-15

    Key words:silk fibroin, dissolution, solution's model systems, gelation, orientational crystallization, optical polarization, longitudinal stream, {alpha} - {beta} transition, structure formation, phase transformations, relaxation, anisotropy of swelling and desorption, thermo- and biodegradation. Subjects of the inquiry: silk fibroin is the main subject of investigation. Fibroin's solutions were obtained on the base of water and organic solvents, containing salts. Comparative investigations were carried out by using biosolution - secretion of silkworm, solutions of silk sericin, cotton cellulose, methylcellulose, polystyrene and (co) polycrylonitrile. Aim of the inquiry: the elucidation of the regularities of silk fibroin anisotropic structures formation in the direct generation of orientational ordering in solutions taking into account of influences of its the molecular structures, configuration information, {alpha} - {beta} conformational transformations, and development jointly using polarization-optical and hydrodynamic methods to control of structure formation. And also definition of possibility fields for use biopolymers anisotropic structure formation principles. Method of inquiry: birefringence, dispersion optical rotation, circular dichroism, polarization- ultramicroscope, ultracentrifuge, viscosimetry, potentiometry, differential thermal analysis, chromatography, x-ray analysis, spectroscopy. The results achieved and their novelty: the physical regularity amorphous-crystalline fibroin dissolutions in salt-containing solvents based on chains melting, distribution and redistribution were recognized; fibroin statistical parameters, molecular-mass and conformational characteristics were established; It was shown that fibroin molecules turned into fully uncoiled and oriented state with the breakdown decay of {alpha}-spiral chain sections by I type phase transition mechanism, but in oriented state with {alpha}-spiral conservation by II type transition; the

  8. Silk Fibroin-Based Nanoparticles for Drug Delivery

    Science.gov (United States)

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  9. Silk fibroin in tissue engineering.

    Science.gov (United States)

    Kasoju, Naresh; Bora, Utpal

    2012-07-01

    Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Farokhi, Mehdi, E-mail: mehdi13294@yahoo.com [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mottaghitalab, Fatemeh, E-mail: fatemeh.motaghi@gmail.com [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hadjati, Jamshid; Azami, Mahmoud [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-02-01

    This study investigated the efficacy of bio-hybrid silk fibroin/Calcium phosphate/PLGA nanocomposite scaffold as vascular endothelial growth factor (VEGF) delivery system. The scaffold was fabricated using freeze-drying and electrospinning. Here, we highlight the structural changes of the scaffold using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The uniform dispersion of calcium phosohate (CaP) powder within silk fibroin (SF) solution was also confirmed using Zeta potential analysis. Moreover, good biocompatibility of osteoblast cells next to the scaffold was approved by cell adhesion, proliferation and alkaline phosphatase production. The release profile of VEGF during 28 days has established the efficacy of the scaffold as a sustained delivery system. The bioactivity of the released VEGF was maintained about 83%. The histology analysis has shown that the new bone tissue formation happened in the defected site after 10 weeks of implantation. Generally, our data showed that the fabricated scaffold could be considered as an effective scaffold for bone tissue engineering applications. - Highlights: • Silk fibroin/calcium phosphate/PLGA scaffold was successfully fabricated using freeze-drying and electrospinning. • The scaffold could control the release of VEGF during 28 days. • The bioactivity of electrospun VEGF was above 80%. • VEGF loaded scaffold could induce bone regeneration after 10 weeks in rabbit.

  11. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ai, Jafar; Hadjati, Jamshid; Azami, Mahmoud

    2014-01-01

    This study investigated the efficacy of bio-hybrid silk fibroin/Calcium phosphate/PLGA nanocomposite scaffold as vascular endothelial growth factor (VEGF) delivery system. The scaffold was fabricated using freeze-drying and electrospinning. Here, we highlight the structural changes of the scaffold using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The uniform dispersion of calcium phosohate (CaP) powder within silk fibroin (SF) solution was also confirmed using Zeta potential analysis. Moreover, good biocompatibility of osteoblast cells next to the scaffold was approved by cell adhesion, proliferation and alkaline phosphatase production. The release profile of VEGF during 28 days has established the efficacy of the scaffold as a sustained delivery system. The bioactivity of the released VEGF was maintained about 83%. The histology analysis has shown that the new bone tissue formation happened in the defected site after 10 weeks of implantation. Generally, our data showed that the fabricated scaffold could be considered as an effective scaffold for bone tissue engineering applications. - Highlights: • Silk fibroin/calcium phosphate/PLGA scaffold was successfully fabricated using freeze-drying and electrospinning. • The scaffold could control the release of VEGF during 28 days. • The bioactivity of electrospun VEGF was above 80%. • VEGF loaded scaffold could induce bone regeneration after 10 weeks in rabbit

  12. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap.

    Science.gov (United States)

    Zhu, Changlai; Huang, Jing; Xue, Chengbin; Wang, Yaxian; Wang, Shengran; Bao, Shuangxi; Chen, Ruyue; Li, Yuan; Gu, Yun

    2017-12-27

    Extracellular/acellular matrix has been attracted much research interests for its unique biological characteristics, and ACM modified neural scaffolds shows the remarkable role of promoting peripheral nerve regeneration. In this study, skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) were used as parent cells to generate acellular(ACM) for constructing a ACM-modified neural scaffold. SKP-SCs were co-cultured with chitosan nerve guidance conduits (NGC) and silk fibroin filamentous fillers, followed by decellularization to stimulate ACM deposition. This NGC-based, SKP-SC-derived ACM-modified neural scaffold was used for bridging a 10 mm long rat sciatic nerve gap. Histological and functional evaluation after grafting demonstrated that regenerative outcomes achieved by this engineered neural scaffold were better than those achieved by a plain chitosan-silk fibroin scaffold, and suggested the benefits of SKP-SC-derived ACM for peripheral nerve repair. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  13. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    Science.gov (United States)

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Incorporation of Human Recombinant Tropoelastin into Silk Fibroin Membranes with the View to Repairing Bruch’s Membrane

    Directory of Open Access Journals (Sweden)

    Audra M. A. Shadforth

    2015-09-01

    Full Text Available Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE on fibroin membranes with the view to repairing the retina of patients afflicted with age-related macular degeneration (AMD. The goal of the present study was to investigate the feasibility of incorporating the ECM component elastin, in the form of human recombinant tropoelastin, into these same membranes. Two basic strategies were explored: (1 membranes prepared from blended solutions of fibroin and tropoelastin; and (2 layered constructs prepared from sequentially cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts by weight. Retention of tropoelastin within the blend and layered constructs was confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR. In the layered constructs, the bulk of tropoelastin was apparently absorbed into the initially cast fibroin layer. Blend membranes displayed higher elastic modulus, percentage elongation, and tensile strength (p < 0.01 when compared to the layered constructs. RPE cell response to fibroin membranes was not affected by the presence of tropoelastin. These findings support the potential use of fibroin membranes for the co-delivery of RPE cells and tropoelastin.

  15. Smooth silk fibroin nanofilm deposited by 1064-nm pulsed laser beam from an opaque target

    International Nuclear Information System (INIS)

    Nozaki, R.; Nakayama, S.; Senna, M.

    2013-01-01

    In an attempt to prepare smooth nanostructured thin films of silk fibroin (SF) by near-infrared (NIR) pulsed laser deposition, an opaque target was prepared from an emulsified aqueous solution of SF. Upon irradiation of 1064-nm pulsed laser beam at its fluence 5 J/cm 2 , a thin film of SF was deposited on the Si(100) substrate with its root-mean-square surface roughness, 0.37 nm, smoother than those obtained from a compressed target of SF powders by approximately an order of magnitude. The attainment of an extra-smooth film from the opaque target was discussed in terms of multiple Mie scattering of the incident NIR beam, leading to an increase in the plasma density, intensified optical breakdown, ablation of better dispersed SF molecular units, and a film with more intensive intermolecular cross-linking. - Highlights: • Thin film of silk fibroin with its RMS surface roughness, R rms , 0.37 nm was obtained. • The use of a target from an emulsified solution of SF was the key issue. • Mechanism involved was elucidated in terms of enhanced Mie scattering

  16. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Directory of Open Access Journals (Sweden)

    Ick-Soo Kim

    2011-10-01

    Full Text Available Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM. The water contact angle of silk/tetramethoxysilane (TMOS composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA biocomposites is prepared by means of an effective calcium and phosphate (Ca–P alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering.

  17. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    Science.gov (United States)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  18. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine.

    Science.gov (United States)

    Aznar-Cervantes, Salvador; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Lozano-Pérez, A Abel; Meseguer-Olmo, Luis; Otero, Toribio F; Cenis, Jose L

    2016-04-01

    Silk fibroin and graphene are both promising biomaterials described in the bibliography. Hybrid scaffolds combining their properties could be attractive for tissue engineering applications. In this work, a new methodology to produce electrospun fibroin scaffolds coated with graphene materials is provided. The mechanical, electrical and electrochemical properties of the materials attained were characterised. The fibre diameters were measured (from 3.9 to 5.2 μm). The samples coated with reduced grapheme were electronic conductors and electroactive in liquid electrolytes, showing maximum oxidation and reduction (around−0.4 V peak). The chronoamperometric responses showed a reduction shoulder, pointing to the entrance of balancing cations from the solution by nucleation–relaxation: the reaction induced structural changes in the graphene. In order to check the biocompatibility of the materials, they were seeded with L929 fibroblasts. The excellent biocompatibility of silk fibroin meshes was maintained after coating with graphene, being the proliferation results equal in all the treatments 7 days after the seeding (Tukey, p N 0.05).The conductive and electroactive properties of meshes coated with reduced graphene allow the potential application of local electric fields or local ionic currents to cell cultures, biological interfaces or animal models without host response.

  19. Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles

    International Nuclear Information System (INIS)

    Zhao, Liang; Luo, Jie; Wang, Hao; Song, Guolin; Tang, Guoyi

    2016-01-01

    Highlights: • Microencapsulated n-octadecane with silk fibroin shell was fabricated. • The microcapsules show high heat storage capability. • The microcapsules are good candidate for thermal-regulating textiles. - Graphical Abstract: Display Omitted - Abstract: Novel microencapsulated n-octadecane with natural silk fibroin (SF) shell was prepared using a self-assembly method in oil-in-water (o/w) emulsion. The microstructures and chemical compositions of the resultant microcapsules were investigated by scanning electronic microscope (SEM) and Fourier transformation infrared spectroscope (FT-IR). SEM images demonstrated that the microcapsules presented spherical shape with a median size of 4–5 µm. FT-IR results confirmed that SF shell was successfully fabricated upon n-octadecane core. According to the DSC and TGA examinations, the resultant microcapsules exhibited good phase-change performance, high thermal-storage capability and high thermal reliability. The microencapsulated n-octadecane with SF shell synthesized in the present study would be a potential candidate for the application of thermal-regulating textiles or fibers and biological medical materials, etc.

  20. Silk fibroin membranes from solvent-crystallized silk fibroin/gelatin blends: Effects of blend and solvent composition

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Eun S. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Frankowski, David J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Hudson, Samuel M. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Spontak, Richard J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States) and Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)]. E-mail: Rich_Spontak@ncsu.edu

    2007-04-15

    Protein membranes have been prepared by mixing gelatin (G) with Bombyx mori silk fibroin (SF) and using aqueous methanol (MeOH) to induce SF crystallization. Amorphous blends of these polymers appear quasi-homogeneous, as discerned from visual observation, electron microscopy and Fourier-transform infrared (FTIR) spectroscopy. Upon subsequent exposure to aqueous MeOH, SF undergoes a conformational change from random-coil to {beta}-sheet. This transformation occurs in pure SF, as well as in each of the G/SF blends, as discerned from FTIR spectroscopy and thermal calorimetry. The influence of MeOH-induced SF crystallization on structure and property development has been measured as functions of blend and solvent composition. By preserving a support scaffold above the G helix-to-coil transition temperature, the formation of crystalline SF networks in G/SF blends can be used to stabilize G-based hydrogels or generate SF membranes for biomaterial, pharmaceutical and gas-separation purposes. The present study not only examines the properties of G/SF blends before and after SF crystallization, but also establishes the foundation for future research into thermally-responsive G/SF bioconjugates.

  1. In vitro study on silk fibroin textile structure for anterior cruciate ligament regeneration.

    Science.gov (United States)

    Farè, Silvia; Torricelli, Paola; Giavaresi, Gianluca; Bertoldi, Serena; Alessandrino, Antonio; Villa, Tomaso; Fini, Milena; Tanzi, Maria Cristina; Freddi, Giuliano

    2013-10-01

    A novel hierarchical textile structure made of silk fibroin from Bombyx mori capable of matching the mechanical performance requirements of anterior cruciate ligament (ACL) and in vitro cell ingrowth is described. This sericin-free, Silk Fibroin Knitted Sheath with Braided Core (SF-KSBC) structure was fabricated using available textile technologies. Micro-CT analysis confirmed that the core was highly porous and had a higher degree of interconnectivity than that observed for the sheath. The in vivo cell colonization of the scaffolds is thus expected to penetrate even the internal parts of the structure. Tensile mechanical tests demonstrated a maximum load of 1212.4±56.4 N (under hydrated conditions), confirming the scaffold's suitability for ACL reconstruction. The absence of cytotoxic substances in the extracts of the SF-KSBC structure in culture medium was verified by in vitro tests with L929 fibroblasts. In terms of extracellular matrix production, Human Periodontal Ligament Fibroblasts (HPdLFs) cultured in direct contact with SF-KSBC, compared to control samples, demonstrated an increased secretion of aggrecan (PG) and fibronectin (FBN) at 3 and 7 days of culture, and no change in IL-6 and TNF-α secretion. Altogether, the outcomes of this investigation confirm the significant utility of this novel scaffold for ACL tissue regeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Silk I and Silk II studied by fast scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cebe, Peggy; Partlow, Benjamin P.; Kaplan, David L.; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    2017-06-01

    Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000 K/s using the Mettler Flash DSC1 on fibroin films with masses around 130–270 ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50% MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25 °C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50% MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37 °C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature Tm(II) = 351 ± 2.6 °C, compared to Silk I crystals which melt at Tm(I) = 292 ± 3.8 °C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065 s between onset and end of melting) of the FSC experiment.

  3. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    International Nuclear Information System (INIS)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-01-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  4. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Ding, Bin [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600 (China)

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  5. Robust microcapsules with controlled permeability from silk fibroin reinforced with graphene oxide.

    Science.gov (United States)

    Ye, Chunhong; Combs, Zachary A; Calabrese, Rossella; Dai, Hongqi; Kaplan, David L; Tsukruk, Vladimir V

    2014-12-29

    Robust and stable microcapsules are assembled from poly-amino acid-modified silk fibroin reinforced with graphene oxide flakes using layer-by-layer (LbL) assembly, based on biocompatible natural protein and carbon nanosheets. The composite microcapsules are extremely stable in acidic (pH 2.0) and basic (pH 11.5) conditions, accompanied with pH-triggered permeability, which facilitates the controllable encapsulation and release of macromolecules. Furthermore, the graphene oxide incorporated into ultrathin LbL shells induces greatly reinforced mechanical properties, with an elastic modulus which is two orders of magnitude higher than the typical values of original silk LbL shells and shows a significant, three-fold reduction in pore size. Such strong nanocomposite microcapsules can provide solid protection of encapsulated cargo under harsh conditions, indicating a promising candidate with controllable loading/unloading for drug delivery, reinforcement, and bioengineering applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silk I and Silk II studied by fast scanning calorimetry.

    Science.gov (United States)

    Cebe, Peggy; Partlow, Benjamin P; Kaplan, David L; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    2017-06-01

    Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000K/s using the Mettler Flash DSC1 on fibroin films with masses around 130-270ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50%MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25°C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50%MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37°C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature T m (II)=351±2.6°C, compared to Silk I crystals which melt at T m (I)=292±3.8°C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065s between onset and end of melting) of the FSC experiment. Silkworm silk is a naturally occurring biomaterial. The fibroin component of silk forms two types of crystals. Silk properties depend upon the

  7. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  8. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    International Nuclear Information System (INIS)

    Buga, Mihaela-Ramona; Zaharia, Cătălin; Bălan, Mihai; Bressy, Christine; Ziarelli, Fabio; Margaillan, André

    2015-01-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, 13 C, 29 Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents

  9. Influence of electron irradiation on the structural and thermal properties of silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Asha, S.; Sangappa,; Sanjeev, Ganesh, E-mail: ganeshanjeev@rediffmail.com [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574 199 (India)

    2015-06-24

    Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.

  10. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    International Nuclear Information System (INIS)

    Bai Liqiang; Zhu Liangjun; Min Sijia; Liu Lin; Cai Yurong; Yao Juming

    2008-01-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH 2 )-NGIVKAGPAIAVLGEAAL-CONH 2 , using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  11. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Liqiang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Zhu Liangjun; Min Sijia [College of Animal Sciences, Zhejiang University, Hangzhou 310029 (China); Liu Lin; Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao Juming [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)], E-mail: yaoj@zstu.edu.cn

    2008-03-15

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH{sub 2})-NGIVKAGPAIAVLGEAAL-CONH{sub 2}, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  12. Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats

    Directory of Open Access Journals (Sweden)

    Rodriguez-Nogales A

    2016-11-01

    Full Text Available Alba Rodriguez-Nogales,1 Francesca Algieri,1 Laura De Matteis,2 A. Abel Lozano-Perez,3 Jose Garrido-Mesa,1 Teresa Vezza,1 J M. de la Fuente,2 Jose Luis Cenis,3 Julio Gálvez,1,* Maria Elena Rodriguez-Cabezas1,* 1CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of Granada, Granada, 2Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, 3Department of Biotechnology, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain *These authors contributed equally to this work Background: Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose: This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs in the trinitrobenzenesulfonic acid (TNBS model of rat colitis. Materials and methods: SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat and RGD-SFNs (1 mg/rat were administered intrarectally to TNBS-induced colitic rats for 7 days. Results: The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the

  13. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.

    Science.gov (United States)

    Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-08-22

    Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.

  14. Production of fine powder from silk by radiation

    International Nuclear Information System (INIS)

    Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Silk fine power was prepared directly from silk fiber irradiated with an accelerated electron beam(EB). Irradiated silk fiber was well pulverized only by physical crushing using ball mill without any chemical pretreatment. Raw and degummed silk fibers were irradiated at ambient temperature in the dose range of 250-1000 kGy. Although unirradiated silk fibers were not pulverized at all, irradiated fibers were easily pulverized and showed higher conversion from fiber to powder for higher doses. The presence of oxygen in the irradiation atmosphere enhanced pulverization of silk fiber. Raw silk fibers were less pulverized compared to degummed ones. The electron microscope observation showed that the minimum particle size of silk powder obtained from fiber irradiated by 1000 kGy in oxygen was less than 10 microns. It was found that fibroin powder obtained in this work dissolved remarkably into cold water, thought unirradiated fibroin fiber had little solubility even in hot water. A typical soluble fraction was about 60% for fibroin powder obtained from fiber irradiated by 1000 kGy in oxygen. (author)

  15. Production of fine powder from silk by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Ishida, Kazunari; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan)

    2000-03-01

    Silk fine power was prepared directly from silk fiber irradiated with an accelerated electron beam(EB). Irradiated silk fiber was well pulverized only by physical crushing using ball mill without any chemical pretreatment. Raw and degummed silk fibers were irradiated at ambient temperature in the dose range of 250-1000 kGy. Although unirradiated silk fibers were not pulverized at all, irradiated fibers were easily pulverized and showed higher conversion from fiber to powder for higher doses. The presence of oxygen in the irradiation atmosphere enhanced pulverization of silk fiber. Raw silk fibers were less pulverized compared to degummed ones. The electron microscope observation showed that the minimum particle size of silk powder obtained from fiber irradiated by 1000 kGy in oxygen was less than 10 microns. It was found that fibroin powder obtained in this work dissolved remarkably into cold water, thought unirradiated fibroin fiber had little solubility even in hot water. A typical soluble fraction was about 60% for fibroin powder obtained from fiber irradiated by 1000 kGy in oxygen. (author)

  16. A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival.

    Science.gov (United States)

    Mao, Duo; Zhu, Meifeng; Zhang, Xiuyuan; Ma, Rong; Yang, Xiaoqing; Ke, Tingyu; Wang, Lianyong; Li, Zongjin; Kong, Deling; Li, Chen

    2017-09-01

    Islet transplantation is considered the most promising therapeutic option with the potential to cure diabetes. However, efficacy of current clinical islet transplantation is limited by long-term graft dysfunction and attrition. We have investigated the therapeutic potential of a silk fibroin macroporous (SF) scaffold for syngeneic islet transplantation in diabetic mice. The SF scaffold was prepared via lyophilisation, which enables incorporation of active compounds including cytokines, peptide and growth factors without compromising their biological activity. For the present study, a heparin-releasing SF scaffold (H-SF) in order to evaluate the versatility of the SF scaffold for biological functionalisation. Islets were then co-transplanted with H-SF or SF scaffolds in the epididymal fat pad of diabetic mice. Mice from both H-SF and SF groups achieved 100% euglycaemia, which was maintained for 1year. More importantly, the H-SF-islets co-transplantation led to more rapid reversal of hyperglycaemia, complete normalisation of glucose responsiveness and lower long-term blood glucose levels. This superior transplantation outcome is attributable to H-SF-facilitated islet revascularisation and cell proliferation since significant increase of islet endocrine and endothelial cells proliferation was shown in grafts retrieved from H-SF-islets co-transplanted mice. Better intra-islet vascular reformation was also evident, accompanied by VEGF upregulation. In addition, when H-SF was co-transplanted with islets extracted from vegfr2-luc transgenic mice in vivo, sustained elevation of bioluminescent signal that corresponds to vegfr2 expression was collected, implicating a role of heparin-dependent activation of endogenous VEGF/VEGFR2 pathway in promoting islet revascularisation and proliferation. In summary, the SF scaffolds provide an open platform as scaffold development for islet transplantation. Furthermore, given the pro-angiogenic, pro-survival and minimal post

  17. Solubilization of silk protein by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sudatis, Boonya; Pongpat, Suchada [Office of Atomic Energy of Peace, Bangkok (Thailand)

    2002-03-01

    Gamma irradiated silk fibroin at doses of 0, 5, 10, 20, 40, 60, 80, 100, 125, 250, 500, 750 and 1000 kGy were soaked in water for 1 hr. Silk fibroin solubilized percentage was investigated from lost weight of sample (dried at 105{sup 0}C), they were 0, 0, 0.7, 0, 0.11, 0.11, 0, 0.73, 0.77, 4.38, 8.32, 10.22 and 18.52 respectively. It showed that at the higher dose up to 250 kGy had direct effect to solubility, and increased with increasing dose. In addition, silk sericin dissolved 77.76, 82.22, 83.55, 84.31, 86.04, 86.67 and 87.37% after gamma irradiation at the doses of 0, 50, 100, 200, 500, 750 and 1000 kGy respectively. It presents that radiation can cause silk protein, fibroin and sericin dissolve because of their degradation. (author)

  18. Silk fibroin film from golden-yellow Bombyx mori is a biocomposite that contains lutein and promotes axonal growth of primary neurons.

    Science.gov (United States)

    Pistone, Assunta; Sagnella, Anna; Chieco, Camilla; Bertazza, Gianpaolo; Varchi, Greta; Formaggio, Francesco; Posati, Tamara; Saracino, Emanuela; Caprini, Marco; Bonetti, Simone; Toffanin, Stefano; Di Virgilio, Nicola; Muccini, Michele; Rossi, Federica; Ruani, Giampiero; Zamboni, Roberto; Benfenati, Valentina

    2016-05-01

    The use of doped silk fibroin (SF) films and substrates from Bombyx mori cocoons for green nanotechnology and biomedical applications has been recently highlighted. Cocoons from coloured strains of B. mori, such as Golden-Yellow, contain high levels of pigments that could have a huge potential for the fabrication of SF based biomaterials targeted to photonics, optoelectronics and neuroregenerative medicine. However, the features of extracted and regenerated SF from cocoons of B. mori Golden-Yellow strain have never been reported. Here we provide a chemophysical characterization of regenerated silk fibroin (RSF) fibers, solution, and films obtained from cocoons of a Golden-Yellow strain of B. mori, by SEM, (1) H-NMR, HPLC, FT-IR, Raman and UV-Vis spectroscopy. We found that the extracted solution and films from B. mori Golden-Yellow fibroin displayed typical Raman spectroscopic and optical features of carotenoids. HPLC-analyses revealed that lutein was the carotenoid contained in the fiber and RSF biopolymer from yellow cocoons. Notably, primary neurons cultured on yellow SF displayed a threefold higher neurite length than those grown of white SF films. The results we report pave the way to expand the potential use of yellow SF in the field of neuroregenerative medicine and provide green chemistry approaches in biomedicine. © 2016 Wiley Periodicals, Inc.

  19. New application of silk protein

    International Nuclear Information System (INIS)

    Kamiishi, Youichi

    2000-01-01

    Gunma prefecture is famous for sericulture and silk textile industry district in Japan. In Gunma prefecture, some kinds of new generation silk as high performance and high quality silk were developed. These silk are used not only for the new textile materials but also for new industrial materials. New application of silk protein, fibroin and sericin, is considered. (author)

  20. New application of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan)

    2000-03-01

    Gunma prefecture is famous for sericulture and silk textile industry district in Japan. In Gunma prefecture, some kinds of new generation silk as high performance and high quality silk were developed. These silk are used not only for the new textile materials but also for new industrial materials. New application of silk protein, fibroin and sericin, is considered. (author)

  1. Impact of silk fibroin-based scaffold structures on human osteoblast MG63 cell attachment and proliferation

    Directory of Open Access Journals (Sweden)

    Varkey A

    2015-10-01

    Full Text Available Aneesia Varkey,1,2 Elakkiya Venugopal,2 Ponjanani Sugumaran,2 Gopinathan Janarthanan,1 Mamatha M Pillai,2 Selvakumar Rajendran,2 Amitava Bhattacharyya1 1Advanced Textile and Polymer Research Laboratory, 2Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India Abstract: The present study was carried out to investigate the impact of various types of silk fibroin (SF scaffolds on human osteoblast-like cell (MG63 attachment and proliferation. SF was isolated from Bombyx mori silk worm cocoons after degumming. Protein concentration in the degummed SF solution was estimated using Bradford method. Aqueous SF solution was used to fabricate three different types of scaffolds, viz, electrospun nanofiber mat, sponge, and porous film. The structures of the prepared scaffolds were characterized using optical micro­scopy and field emission scanning electron microscopy. The changes in the secondary structure of the proteins and the thermal behavior of the scaffolds were determined by Fourier transform infrared spectroscopy and thermo-gravimetric analysis, respectively. The biodegradation rate of scaffolds was determined by incubating the scaffolds in simulated body fluid for 4 weeks. MG63 cells were seeded on the scaffolds and their attachment and proliferation onto the scaffolds were studied. The MTT assay was carried out to deduce the toxicity of the developed scaffolds. All the scaffolds were found to be biocompatible. The amount of collagen produced by the osteoblast-like cells growing on different scaffolds was estimated. Keywords: silk fibroin scaffold, electrospun nanofiber, porous film, sponge, osteoblast

  2. Preferential Alignment of Hydroxyapatite Crystallites in Nanocomposites with Chemically Disintegrated Silk Fibroin

    International Nuclear Information System (INIS)

    Nemoto, Rei; Wang Li; Ikoma, Toshiyuki; Tanaka, Junzo; Senna, Mamoru

    2004-01-01

    Hydroxyapatite (HAp) nanocrystals were prepared at room temperature by a coprecipitation method from Ca(OH) 2 and H 3 PO 4 , in the presence of chemically disintegrated silk fibroin (SF). Adsorbed amounts of cations on SF and crystallinity of HAp in the composite were increased by the chemical disintegration of SF higher order structure. Preferential alignment of c-axis of HAp crystallites along the longitudinal direction of ca. 150nm SF fibril was observed. These changes due to disintegration of SF were discussed in terms of the chemical interaction between HAp and SF. The resulted composite with preferential alignment of HAp nanocrystals is a good candidate as a starting material for bone substitutes

  3. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  4. Preparation of wound dressing of polyvinyl alcohol/silk fibroin hydrogels by gamma radiation

    International Nuclear Information System (INIS)

    Kewsuwan, Prartana; Pongpat, Suchada; Sonsuk, Manit; Pongpat, Suchada

    2004-10-01

    Poly vinylalcohol/silk fibroin (PVA/SF) hydrogels were prepared by γ-radiation. The preparation conditions such as absorbed doses and PVA/SF concentrations were investigated. When exposed to γ -radiation, PVA/SF was crosslinked to yield high water absorption materials with water content of 100 - 1000% of their dried weight depending on the preparation conditions. The crosslinked density seems to be the main factor governing the swelling of these gels. The swelling behaviors in NaCl aqueous solutions were also investigated. The swelling of PVA/SF hydrogels decreases when exposed to electrolyte solution. With an increase of absorbed dose, the gel fraction of PVA/SF increases

  5. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues

    International Nuclear Information System (INIS)

    Jaipaew, Jirayut; Wangkulangkul, Piyanun; Meesane, Jirut; Raungrut, Pritsana; Puttawibul, Puttisak

    2016-01-01

    Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis. - Highlights: • Silk fibroin/Hyaluronic acid was fabricated into mimicked scaffolds. • Mimicked scaffolds were incorporated with stem cells for chondrogenesis. • Mimicked scaffolds showed the clues for chondrogenic regulation. • Mimicked scaffolds had suitable performance for cartilage tissue engineering • Mimicked scaffolds showed promise for osteoarthritis surgery.

  6. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues

    Energy Technology Data Exchange (ETDEWEB)

    Jaipaew, Jirayut [Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Wangkulangkul, Piyanun [Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Department of Surgery, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Meesane, Jirut, E-mail: jirutmeesane999@yahoo.co.uk [Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Raungrut, Pritsana [Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Puttawibul, Puttisak [Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand); Department of Surgery, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110 (Thailand)

    2016-07-01

    Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis. - Highlights: • Silk fibroin/Hyaluronic acid was fabricated into mimicked scaffolds. • Mimicked scaffolds were incorporated with stem cells for chondrogenesis. • Mimicked scaffolds showed the clues for chondrogenic regulation. • Mimicked scaffolds had suitable performance for cartilage tissue engineering • Mimicked scaffolds showed promise for osteoarthritis surgery.

  7. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin

    Directory of Open Access Journals (Sweden)

    Yao MZ

    2016-11-01

    Full Text Available Meng-Zhu Yao,1 Ming-Yi Huang-Fu,1 Hui-Na Liu,1 Xia-Rong Wang,1 Xiaoxia Sheng,2 Jian-Qing Gao1 1Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 2Hangzhou SoliPharma Co., Ltd, Hangzhou, Zhejiang, People’s Republic of China Abstract: Nano-hydroxyapatite/polyamide 66 (nHA/PA66 porous scaffolds were fabricated by a phase inversion method. Carbon nanotubes (CNTs and silk fibroin (SF were used to modify the surface of the nHA/PA66 scaffolds by freeze-drying and cross-linking. Dexamethasone was absorbed to the CNTs to promote the osteogenic differentiation of bone mesenchymal stem cells (BMSCs. The cell viability of BMSCs was investigated by changing the concentration of the CNT dispersion, and the most biocompatible scaffold was selected. In addition, the morphology and mechanical property of the scaffolds were investigated. The results showed that the nHA/PA66 scaffolds modified with CNTs and SF met the requirements of bone tissue engineering scaffolds. The dexamethasone-loaded CNT/SF-nHA/PA66 composite scaffold promoted the osteogenic differentiation of BMSCs, and the drug-loaded scaffolds are expected to function as effective bone tissue engineering scaffolds. Keywords: BMSCs, tissue engineering, porous scaffold, carbon nanotubes, silk fibroin, surface modification, dexamethasone

  8. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants.

    Science.gov (United States)

    Costa, João B; Silva-Correia, Joana; Oliveira, Joaquim M; Reis, Rui L

    2017-11-01

    The pursuit for the "perfect" biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Silver oxide nanoparticles embedded silk fibroin spuns: Microwave mediated preparation, characterization and their synergistic wound healing and anti-bacterial activity.

    Science.gov (United States)

    Babu, Punuri Jayasekhar; Doble, Mukesh; Raichur, Ashok M

    2018-03-01

    The synergistic wound healing and antibacterial activity of silver oxide nanoparticles embedded silk fibroin (Ag 2 O-SF) spuns is reported here. UV-Vis spectro photometric analysis of these spuns showed the surface plasmon resonance (SPR) confirming the formation of the silver oxide nanoparticles (Ag 2 O NPs) on the surface of the silk fibroin (SF). Scanning electron microscope (SEM) and Differential scanning calorimetry (DSC) also confirmed the presence of Ag 2 O NPs on surface of SF. X-ray diffraction (XRD) analysis revealed the crystalline nature of both SF and Ag 2 O-SF. Fourier transform infrared spectroscopy (FT-IR) results showed the different forms of silk (I and II) and their corresponding protein (amide I, II, III) confirmations. Biodegradation study revealed insignificant changes in the morphology of Ag 2 O-SF spuns even after 14 days of immersion in phosphate buffered saline (PBS). Ag 2 O-SF spuns showed excellent antibacterial activity against both pathogen (S. aureus and M. tuberculosis) and non-pathogen (E. coli) bacteria. More importantly, In vitro wound healing (scratch assay) assay revealed fast migration of the T3T fibroblast cells through the scratch area treated with extract of Ag 2 O-SF spuns and the area was completely covered within 24 h. Cytotoxicity assay confirmed the biocompatible nature of the Ag 2 O-SF spuns, thus suggesting an ideal material for wound healing and anti-bacterial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Silk: a potential medium for tissue engineering.

    Science.gov (United States)

    Sobajo, Cassandra; Behzad, Farhad; Yuan, Xue-Feng; Bayat, Ardeshir

    2008-01-01

    Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional properties of native skin. To date, there are very few single application tissue-engineered dermal constructs fulfilling this criterion. Silk produced by the domestic silkworm, Bombyx mori, has a long history of use in medicine. It has recently been increasingly investigated as a promising biomaterial for dermal constructs. Silk contains 2 fibrous proteins, sericin and fibroin. Each one exhibits unique mechanical and biological properties. Comprehensive review of randomized-controlled trials investigating current dermal constructs and the structures and properties of silk-based constructs on wound healing. This review revealed that silk-fibroin is regarded as the most promising biomaterial, providing options for the construction of tissue-engineered skin. The research available indicates that silk fibroin is a suitable biomaterial scaffold for the provision of adequate dermal constructs.

  11. Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction

    Directory of Open Access Journals (Sweden)

    Liguo Sun

    2014-01-01

    Full Text Available The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3 gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.

  12. Comparative Study of Silk-Silk Alloy Materials

    Science.gov (United States)

    Xue, Ye; Jao, Dave; Hu, Wenbing; Wolf, Nathan; Rocks, Eva-Marie; Hu, Xiao

    Silk fibroin materials can be used for various kinds of biomedical applications. We report a comparative study of silk-silk blend materials using thermal analysis and infrared spectroscopy. Four groups of silk-silk blend films: Mori-Tussah, Mori-Muga, Mori-Eri and Mori-Thai, were fabricated from aqueous solutions and blended at different weight ratios, respectively. These silk-silk blend systems exploit the beneficial material properties of both silks. DSC and temperature-modulated DSC were used to measure the transition temperatures and heat capacity of these water-based silk-silk blend films. Fourier transform infrared spectrometer was used to characterize secondary structures of silk-silk blends. This study demonstrates that Mori silk are fully miscible with Tussah, Muga, Eri and Thai silk at different weight ratios without phase separation. Glass transition temperatures, degradation temperatures and the contents of alpha-helix and random coils of those silk-silk blend films can be controlled by changing the contents of different silks in the blend system. The features of Mori silk combined with the attributes of Tussah, Muga, Eri and Thai silk offer a useful suite of materials for a variety of applications in the future.

  13. Silk Electrogel Rheology

    Science.gov (United States)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2014-03-01

    We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  14. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells.

    Science.gov (United States)

    Zhao, Yahong; Gong, Jiahuan; Niu, Changmei; Wei, Ziwei; Shi, Jiaqi; Li, Guohui; Yang, Yumin; Wang, Hongbo

    2017-12-01

    Graphene (Gr) has been made of various forms used for repairing peripheral nerve injury with favorable electroactivity, however, graphene-based scaffolds in peripheral nerve regeneration are still rarely reported due to the difficulty of realizing uniform dispersion of graphene and electroactive materials at nanoscale as well as lacking biocompatibility. In this paper, graphene-silk fibroin (SF) composite nanofiber membranes with different mass ratios were prepared via electrospinning. Microscopic observation revealed that electrospun Gr/SF membranes had a nanofibrous structure. Electrochemical analysis provided electroactivity characterization of the Gr/SF membranes. The physiochemical results showed that the physiochemical properties of electrospun Gr/SF membranes could be changed by varying Gr concentration. Swelling ratio and contact angle measurements confirmed that electrospun Gr/SF membranes possessed large absorption capacity and hydrophilic surface, and the mechanical property was improved with increasing Gr concentration. Additionally, in-vitro cytotoxicity with L929 revealed that all the electrospun Gr/SF membranes are biocompatible. Moreover, the morphology and quantity showed that the membranes supported the survival and growth of the cultured Schwann cells. Collectively, all of the results suggest that the electrospun Gr/SF membranes combine the excellent electrically conductivity and mechanical strength of the graphene with biocompatibility property of silk to mimic the natural neural cell micro-environment for nerve development.

  15. Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs.

    Science.gov (United States)

    Zheng, Qin; Wu, Xiaofeng; Zheng, Hailing; Zhou, Yang

    2015-05-01

    We report the preparation of a specific fibroin antibody and its use for the identification of unearthed ancient silk relics. Based on the 12-amino-acid repeat sequence "GAGAGSGAGAGS", which is found in fibroin of the silkworm Bombyx mori, a specific antibody against fibroin was prepared in rabbits through peptide synthesis and carrier-protein coupling. This antibody was highly specific for fibroin found in silk. Using this antibody we have successfully identified four silk samples from different time periods. Our results reveal, for the first time, a method capable of detecting silk from a few milligrams of archaeological fabric that has been buried for thousands of years, confirming that the ancient practice of wearing silk products while praying for rebirth dated back to at least 400 BCE. This method also complements current approaches in silk detection, especially for the characterization of poorly preserved silks, promoting the investigation of silk origins and of ancient clothing cultures.

  16. Densifying carbon nanotubes on assembly surface by the self-contraction of silk fibroin

    Science.gov (United States)

    Jiang, Chunyang; Yang, Xueqin; Zhao, Jingna; Li, Qingsong; Zhang, Ke-Qin; Zhang, Xiaohua; Li, Qingwen

    2018-04-01

    High densification of carbon nanotubes (CNTs) is important for high utilization efficiency of their superior properties in macroscopic assemblies. However, the conventional "top-down" compressing strategies have met problems to modify CNT assemblies at and below the micrometer scale. Here we report a molecular way to strap CNTs together via the self-contraction of silk fibroin (SF) during its drying process, resulting in a localized densification below the micrometer scale. Importantly, after the thermal removal of SF molecules, the densified assembly was well maintained. The SF-induced densification increased the average strength from 355 MPa to 960 MPa for CNT fibers, and from 1.45 GPa to 1.82 GPa for CNT ribbons, which contain much more CNTs on the surface.

  17. A Novel Nanocomposite Particle of Hydroxyapatite and Silk Fibroin: Biomimetic Synthesis and Its Biocompatibility

    Directory of Open Access Journals (Sweden)

    Lin Niu

    2010-01-01

    Full Text Available A novel bone-like biomaterial of hydroxyapatite (HAP and silk fibroin (SF composite was developed by biomimetic synthesis. The composite was precipitated from drops of Ca(OH2 suspension and H3PO4 solution with SF. With this method, the HAP nanocrystals were obtained by self-assembling on a SF surface whose c-axis was aligned with the long-axis direction of SF in microstructures; this shares the same misconstrues of collagen and HAP with that in the natural bone. The HAP/SF composite then demonstrated that it could promote osteoblast proliferation in vitro and new bone formation in vivo. The novel biomaterial is a promising material for bone replacement and regeneration.

  18. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    International Nuclear Information System (INIS)

    Miroiu, F.M.; Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N.; Sima, L.E.; Petrescu, S.M.; Andronie, A.; Stamatin, I.; Moga, S.; Ducu, C.

    2010-01-01

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, λ = 248 nm, τ = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm 2 laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm -1 amide II, 1654 cm -1 amide I, 1243 cm -1 amide III, while the peak from 1027 cm -1 appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  19. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miroiu, F.M., E-mail: marimona.miroiu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest (Romania); Andronie, A.; Stamatin, I. [3Nano-SAE Alternative Energy Sources-University of Bucharest, Faculty of Physics, 409 Atomistilor Street, RO-77125, Magurele-Ilfov (Romania); Moga, S.; Ducu, C. [University of Pitesti, Targul din Vale Str, no. 1, 110040 Pitesti (Romania)

    2010-05-25

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, {lambda} = 248 nm, {tau} = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm{sup 2} laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm{sup -1} amide II, 1654 cm{sup -1} amide I, 1243 cm{sup -1} amide III, while the peak from 1027 cm{sup -1} appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  20. Anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative and curcumin ethylenediamine manganese complex

    OpenAIRE

    SUNTORNSUK, Leena; Koizumi, Keiichi; Saitoh, Yurika; Nakamura, ElianeShizuka; KAMMASUD, Naparat; VAJARAGUPTA, Opa; Saiki, Ikuo

    2004-01-01

    We investigated the anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative (curcumin ED) and curcumin ethylenediamine manganese complex (curcumin EDMn) through the inhibition of the formation of tube-like structures by human umbilical vascular endothelial cells (HUVEC). Curcumin, curcumin ED, curcumin EDMn did not show cytotoxicity to HUVEC at concentrations equal and lower than 10 μM. At the concentration of 10 μM,curcumin, curcumin ED and curcumin EDMn inhibited the tube fo...

  1. The ESR signals in silk fibroin and wool keratin under both the effect of UV-irradiation and without any external effects and the formation of free radicals.

    Science.gov (United States)

    Mamedov, Sh V; Aktas, B; Cantürk, M; Aksakal, B; Alekperov, V; Bülbül, F; Yilgin, R; Aslanov, R B

    2002-08-01

    ESR studies have been done on natural and UV-irradiated silk fibroins and wool keratins at the temperature range of -196 degrees C to 20 C. The intensities of ESR signals obtained from the irradiated samples at -196 C remarkably increase with respect to those of natural samples. While the signals mainly consist of triplet peaks at -196 C. a doublet arises around the room temperatures. For the first time, at room temperature without any external effect the complicated ESR spectra of fibrous proteins (wool keratin and silk fibroin) whose components are as follows have been observed: (1) (for white wool keratin) a central doublet with deltaHm = 1.1 mT and g = 2.0075; deltaHm = 5mT and g = 2.1911; (2) a wide peak with deltaHm approximately 66 mT and g approximately 2.1575; (3) the 'sulfur' peak given in the literature with deltaHm = 2.2 mT and g = 2.0218; (4) the signal with deltaHm = 0.6 mT and g = 2.0065, and for silk fibroin, (a) a very wide signal with deltaHm approximately 70 mT and g approximately 2.084; (b) a very sharp signal with deltaHm approximately 1.1 mT and g approximately 2.01; and (c) relatively narrower signal with deltaHm approximately 5 mT and g approximately 2.336. It has been shown by recombination kinetic method that 30-50% of the free radicals formed by UV-irradiation do not undergo recombination up to 220 degrees C and 15 degrees C for silk libroin and wool keratin, respectively, even they keep their concentration constant for long period of time (weeks, months, even longer). In this article, considering above-mentioned results, the mechanism of signals observed in natural wool keratin and silk fibroin without any external effects is examined. We can briefly explain the role of the subject of the article, by considering fibrous proteins and some applications of the reactions by free radical occurring in these proteins tinder the effects of different factors in medicine and biology and the important role of oxidation and the other kinds of

  2. Preparation of Antheraea pernyi Silk Fibroin Microparticles through a Facile Electrospinning Method

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2016-01-01

    Full Text Available The goal of this study was to fabricate Antheraea pernyi silk fibroin (ASF microparticles using electrospinning under mild processing conditions. To improve processability of the ASF solution, poly(ethylene oxide (PEO was used to regulate viscosity of ASF solution for electrospinning. It was found that the blend of ASF with PEO could form a bead-on-string structure with well spherical particles. Furthermore, aqueous ethanol and ultrasonic treatments could disrupt the nanofibrillar string structure between particles and ultimately produced water-insoluble ASF particles with submicron scale. Cell viability studies indicated that the ASF microparticles were nontoxic to EA926 cells. Moreover, fluorescent images based on FITC labeling showed that the ASF microparticles were easily uptaken by the cells. Aqueous-based electrospinning provides a potentially useful option for the fabrication of ASF microparticles based on this unique fibrous protein.

  3. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  4. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  5. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2015-05-01

    Poly-vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly-vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo-matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo-bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc.

  6. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.

    Science.gov (United States)

    Jiang, Pei; Ran, Jiabing; Yan, Pan; Zheng, Lingyue; Shen, Xinyu; Tong, Hua

    2018-02-01

    Bacterial cellulose/hydroxyapatite (BC/HAp) composite had favourable bioaffinity but its poor mechanical strength limited its widespread applications in bone tissue engineering (BTE). Silk fibroin, which possesses special crystalline structure, has been widely used as organic reinforcing material, and different SFs have different amino acid sequences, which exhibit different bioaffinity and mechanical properties. In this regard, bacterial cellulose-Antheraea yamamai silk fibroin/hydroxyapatite (BC-AYSF/HAp), bacterial cellulose-Bombyx mori silk fibroin/hydroxyapatite (BC-BMSF/HAp), and BC/HAp nano-composites were synthesized via a novel in situ hybridization method. Compared with BC/HAp and BC-BMSF/HAp, the BC-AYSF/HAp exhibited better interpenetration, which may benefit for the transportation of nutrients and wastes, the adhesion of cells as well. Additionally, the BC-AYSF/HAp also presented superior thermal stability than the other two composites revealed by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Compression testing indicated that the mechanical strength of BC-BMSF/HAp was greatly reinforced compared with BC/HAp and was even a little higher than that of BC-AYSF/HAp. Tensile testing showed that BC-AYSF/HAp possesses extraordinary mechanical properties with a higher elastic modulus at low strain and higher fracture strength simultaneously than the other two composites. In vitro cell culture exhibited that MC3T3-E1 cells on the BC-AYSF/HAp membrane took on higher proliferative potential than those on the BC-BMSF/HAp membrane. These results suggested that compared with BC-BMSF/HAp, the BC-AYSF/HAp composite was more appropriate as an ideal bone scaffold platform or biomedical membrane to be used in BTE.

  7. Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications.

    Science.gov (United States)

    Nalvuran, Hande; Elçin, Ayşe Eser; Elçin, Yaşar Murat

    2018-03-16

    Graphene and silk fibroin (SF) have been extensively investigated in the literature. Hybrid scaffolds of SF and graphene combine the properties of both of the materials and provide promising applications for tissue engineering purposes. In this study, reduced graphene oxide (RGO) (0.5%, 1.0% and 2.0% (w/v)) was incorporated into SF and fabricated into composite nanofibers through electrospinning. The fibers were characterized and analyzed by SEM, XRD, FTIR, TGA, circular dichroism analysis, contact angle measurements and tensile tests. Here, we document that the presence of RGO increases intermolecular forces between RGO and SF molecular chains in the SF matrix, which results in an increased silk II content. Upon the incorporation of RGO, thermal stability and mechanical properties of the fibers significantly improved. Furthermore, in-vitro findings showed that composite nanofibers supported cell viability and were hemocompatible. Finally, bone marrow mesenchymal stem cells were induced osteogenically on electrospun SF/RGO mats for 30days, which showed that the substrate supported osteogenic differentiation. In this study, a feasible method is proposed to generate biocompatible and versatile SF/RGO-composite nanofibers that can influence biomedical applications. Copyright © 2018. Published by Elsevier B.V.

  8. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Asha, S.; Sanjeev, Ganesh, E-mail: ganeshsanjeev@rediffmail.com [Microtron Center, Department of Studies in Physics, Mangalore University, Mangalagangotri - 574199 (India); Sangappa [Department of Studies in Physics, Mangalore University, Mangalagangotri - 574199 (India); Naik, Prashantha; Chandra, K. Sharat [Department of Biosciences, Mangalore University, Mangalagangotri - 574199 (India)

    2014-04-24

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated the antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.

  10. Intermolecular interactions between B. mori silk fibroin and poly(L-lactic acid) in electrospun composite nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Taddei, Paola, E-mail: paola.taddei@unibo.it [Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna (Italy); Tozzi, Silvia [Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna (Italy); Zuccheri, Giampaolo [Dipartimento di Farmacia e Biotecnologie e Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Centro S3, Istituto Nanoscienze, Consiglio Nazionale delle Ricerche, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (Italy); Martinotti, Simona; Ranzato, Elia [Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria (Italy); Chiono, Valeria; Carmagnola, Irene [Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Tsukada, Masuhiro [Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567 (Japan)

    2017-01-01

    In this study, composite nanofibrous scaffolds were obtained by electrospinning a trifluoroacetic acid solution containing B. mori silk fibroin (SF) and poly(L-lactic acid) (PLLA) in a 1:1 weight ratio. SF, PLLA and SF/PLLA nanofibres were prepared with average diameter sizes of 360 ± 90 nm, 470 ± 240 nm and 580 ± 220 nm, respectively, as assessed by SEM analysis. Vibrational and thermal analyses showed that upon blending in the SF/PLLA nanofibres, the crystallisation of PLLA was hindered by the presence of SF, which crystallized preferentially and underwent conformational changes that did not significantly change its prevailing β-sheet structure. The two components were thermodynamically compatible and the intermolecular interactions between them were revealed for the first time. Human keratinocytes were cultured on nanofibres and their viability and proliferation were determined. Preliminary in vitro tests showed that the incorporation of SF into the PLLA component enhanced cell adhesion and proliferation with respect to the unfunctionalised material. SF has been successfully used to modify the biomaterial properties and confirmed to be an efficient bioactive protein to mediate cell-biomaterial interaction. - Highlights: • Composite silk fibroin-poly(L-lactic acid) scaffolds were obtained by electrospinning. • Intermolecular interactions between SF and PLLA were revealed for the first time. • Upon blending, the crystallisation of PLLA was hindered by the presence of SF. • SF crystallized preferentially and maintained its prevailing β-sheet structure. • The incorporation of SF into PLLA enhanced human keratinocytes adhesion and proliferation.

  11. Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers.

    Science.gov (United States)

    Benvidi, Ali; Banaei, Maryam; Tezerjani, Marzieh Dehghan; Molahosseini, Hosein; Jahanbani, Shahriar

    2017-12-14

    This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO 2 ) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL -1 to 25 pg.mL -1 , and from 25 pg.mL -1 to 25 ng.mL -1 ) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.

  12. Controlling silk fibroin microspheres via molecular weight distribution

    International Nuclear Information System (INIS)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-01-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K 2 HPO 4 –KH 2 PO 4 ). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications

  13. Controlling silk fibroin microspheres via molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  14. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  15. Analysis of the Comprehensive Tensile Relationship in Electrospun Silk Fibroin/Polycaprolactone Nanofiber Membranes.

    Science.gov (United States)

    Yin, Yunlei; Pu, Dandan; Xiong, Jie

    2017-12-07

    The mechanical properties of electrospun nanofiber membranes are critical for their applications. A clear understanding of the mechanical properties that result from the characteristics of the individual fiber and membrane microstructure is vital in the design of fiber composites. In this reported study, silk fibroin (SF)/polycaprolactone (PCL) composite nanofiber membranes were preparedusing an electrostatic spinning technology. The nanofiber orientation distribution (FOD) of the membrane was analyzed using multi-layer image fusion technology, and the results indicated the presence of an approximately uniform distribution of fibers in the electrospun membranes. The relationship between the single nanofiber and the membrane was established by analyzing the geometrical structure of the cell by employing a representative volume element (RVE) analysis method. The mechanical properties of the 272 nm diameter SF/PCL composite fibers were then predicted using the developed model.

  16. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  17. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits.

    Science.gov (United States)

    Jin, Jun; Wang, Jun; Huang, Jian; Huang, Fang; Fu, Jianhong; Yang, Xinjing; Miao, Zongning

    2014-11-01

    The main requirements for successful tissue engineering of the bone are non-immunogenic cells with osteogenic potential and a porous biodegradable scaffold. The purpose of this study is to evaluate the potential of a silk fibroin/hydroxyapatite (SF/HA) porous material as a delivery vehicle for human placenta-derived mesenchymal stem cells (PMSCs) in a rabbit radius defect model. In this study, we randomly assigned 16 healthy adult New Zealand rabbits into two groups, subjected to transplantation with either SF/HA and PMSCs (experimental group) or SF/HA alone (control group). To evaluate fracture healing, we assessed the extent of graft absorption, the quantity of newly formed bone, and re-canalization of the cavitas medullaris using radiographic and histological tools. We performed flow cytometric analysis to characterize PMSCs, and found that while they express CD90, CD105 and CD73, they stain negative for HLA-DR and the hematopoietic cell surface markers CD34 and CD45. When PMSCs were exposed to osteogenic induction medium, they secreted calcium crystals that were identified by von Kossa staining. Furthermore, when seeded on the surface of SF/HA scaffold, they actively secreted extracellular matrix components. Here, we show, through radiographic and histological analyses, that fracture healing in the experimental group is significantly improved over the control group. This strongly suggests that transplantation of human PMSCs grown in an SF/HA scaffold into injured radius segmental bone in rabbits, can markedly enhance tissue repair. Our finding provides evidence supporting the utility of human placenta as a potential source of stem cells for bone tissue engineering. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.

    Science.gov (United States)

    McGill, Meghan; Coburn, Jeannine M; Partlow, Benjamin P; Mu, Xuan; Kaplan, David L

    2017-11-01

    Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications. Hydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods

  19. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel

    Science.gov (United States)

    Lee, Jung Min; Sultan, Md. Tipu; Kim, Soon Hee; Kumar, Vijay; Yeon, Yeung Kyu; Lee, Ok Joo; Park, Chan Hum

    2017-01-01

    Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel. PMID:28777314

  20. Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying.

    Science.gov (United States)

    Cao, Yang; Liu, Fengqiu; Chen, Yuli; Yu, Tao; Lou, Deshuai; Guo, Yuan; Li, Pan; Wang, Zhigang; Ran, Haitao

    2017-09-20

    Silk fibroin (SF), a FDA-approved natural protein, is renowned for its great biocompatibility, biodegradability, and mechanical properties. SF-based nanoparticles provide new options for drug delivery with their tunable drug loading and release properties. To take advantage of the features of carrier polymers, we present a one-step electrospraying method that combines SF, polyvinyl alcohol (PVA) and therapeutic drugs without an emulsion process. A distinct core-shell structure was obtained with the PVA core and silk shell after the system was properly set up. The model drug, doxorubicin, was encapsulated in the core with a greater than 90% drug encapsulation efficiency. Controllable drug release profiles were achieved by alternating the PVA/SF ratio. Although the initial burst release of the drug was minimized by the SF coating, a large number of drug molecules remained entrapped by the carrier polymers. To promote and trigger drug release on demand, low intensity focused ultrasound (US) was applied. The US was especially advantageous for accelerating the drug diffusion and release. The apoptotic activity of MDA-MB-231 cells incubated with drug-loaded nanoparticles was found to increase with time. In addition, we also observed PVA/SF nanoparticles that could elicit a drug release in response to pH.

  1. Building Interfaces: Mechanisms, fabrication, and applications at the biotic/abiotic interface for silk fibroin based bioelectronic and biooptical devices

    Science.gov (United States)

    Brenckle, Mark

    Recent efforts in bioelectronics and biooptics have led to a shift in the materials and form factors used to make medical devices, including high performance, implantable, and wearable sensors. In this context, biopolymer-based devices must be processed to interface the soft, curvilinear biological world with the rigid, inorganic world of traditional electronics and optics. This poses new material-specific fabrication challenges in designing such devices, which in turn requires further understanding of the fundamental physical behaviors of the materials in question. As a biopolymer, silk fibroin protein has remarkable promise in this space, due to its bioresorbability, mechanical strength, optical clarity, ability to be reshaped on the micro- and nano-scale, and ability to stabilize labile compounds. Application of this material to devices at the biotic/abiotic interface will require the development of fabrication techniques for nano-patterning, lithography, multilayer adhesion, and transfer printing in silk materials. In this work, we address this need through fundamental study of the thermal and diffusional properties of silk protein as it relates to these fabrication strategies. We then leverage these properties to fabricate devices well suited to the biotic/abiotic interface in three areas: shelf-ready sensing, implantable transient electronics, and wearable biosensing. These example devices will illustrate the advantages of silk in this class of bioelectronic and biooptical devices, from fundamentals through application, and contribute to a silk platform for the development of future devices that combine biology with high technology.

  2. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications

    International Nuclear Information System (INIS)

    Karuppuswamy, Priyadharsini; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram

    2014-01-01

    Highlights: • Functionalized hybrid polymer mats fabricated for tissue engineering. • Hybrid polymer mats showed high surface area, high porosity and good wettability. • Incorporation of natural polymers modified the properties of nanofiber mats more biologically favorable for biomedical applications. - Abstract: Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers – aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers – PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in

  3. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Karuppuswamy, Priyadharsini [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Department Physics and Nanotechnology, SRM University, Kattankulathur, Chennai (India); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Venugopal, Jayarama Reddy, E-mail: nnijrv@nus.edu.sg [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Navaneethan, Balchandar [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore); Department Physics and Nanotechnology, SRM University, Kattankulathur, Chennai (India); Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore (Singapore)

    2014-12-15

    Highlights: • Functionalized hybrid polymer mats fabricated for tissue engineering. • Hybrid polymer mats showed high surface area, high porosity and good wettability. • Incorporation of natural polymers modified the properties of nanofiber mats more biologically favorable for biomedical applications. - Abstract: Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers – aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers – PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in

  4. Radiation degradation of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Wachiraporn Pewlong; Boonya Sudatis [Office of Atomic Energy for Peace, Bangkok (Thailand); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-09-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated in the dose range up to 2500 kGy using an electron beam accelerator to apply the radiation degradation technique as a means to solubilize fibroin. The tensile strength of irradiated fibroin fiber decreased with increasing dose and the presence of oxygen in the irradiation atmosphere enhanced the degradation. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: calcium chloride solution (CaCl{sub 2}/C{sub 2}H{sub 5}OH/H{sub 2}O = 1 : 2 : 8 in mole ratio), hydrochloric acid (0.5N) and distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water-soluble protein was extracted by distilled water. (author)

  5. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells.

    Science.gov (United States)

    Rodríguez-Lozano, F J; García-Bernal, D; Aznar-Cervantes, S; Ros-Roca, M A; Algueró, M C; Atucha, N M; Lozano-García, A A; Moraleda, J M; Cenis, J L

    2014-12-01

    In regenerative dentistry, stem cell-based therapy often requires a scaffold to deliver cells and/or growth factors to the injured site. Graphene oxide (GO) and silk fibroin (SF) are promising biomaterials for tissue engineering as they are both non toxic and promote cell proliferation. On the other hand, periodontal ligament stem cells (PDLSCs) are mesenchymal stem cells readily accessible with a promising use in cell therapy. The purpose of this study was to investigate the effects of composite films of GO, SF and GO combined with fibroin in the mesenchymal phenotype, viability, adhesion and proliferation rate of PDLSCs. PDLSCs obtained from healthy extracted teeth were cultured on GO, SF or combination of GO and SF films up to 10 days. Adhesion level of PDSCs on the different biomaterials were evaluated after 12 h of culture, whereas proliferation rate of cells was assessed using the MTT assay. Level of apoptosis was determined using Annexin-V and 7-AAD and mesenchymal markers expression of PDLSCs were analyzed by flow cytometry. At day 7 of culture, MTT experiments showed a high rate of proliferation of PDLSCs growing on GO films compared to the other tested biomaterials, although it was slightly lower than in plastic (control). However PDLSCs growing in fibroin or GO plus fibroin films showed a discrete proliferation. Importantly, at day 10 of culture it was observed a significant increase in PDLSCs proliferation rate in GO films compared to plastic (P < 0.05), as well as in GO plus fibroin compared to fibroin alone (P < 0.001). Flow cytometry analysis showed that culture of PDLSCs in fibroin, GO or GO plus fibroin films did not significantly alter the level of expression of the mesenchymal markers CD73, CD90 or CD105 up to 168 h, being the cell viability in GO even better than obtained in plastic. Our findings suggest that the combination of human dental stem cells/fibroin/GO based-bioengineered constructs have strong potential for their therapeutic

  6. Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation.

    Science.gov (United States)

    Aznar-Cervantes, Salvador; Pagán, Ana; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Otero, Toribio F; Meseguer-Olmo, Luis; Paredes, Juan I; Cenis, Jose L

    2017-10-01

    Novel approaches to neural research require biocompatible materials capable to act as electrode structures or scaffolds for tissue engineering in order to stimulate or restore the functionality of damaged tissues. This work offers promising results that indicate the potential use of electrospun silk fibroin (SF) scaffolds coated with reduced graphene oxide (rGO) in this sense. The coated material becomes conductor and electroactive. A complete characterisation of SF/rGO scaffolds is provided in terms of electrochemistry, mechanical behaviour and chemical conformation of fibroin. The excellent biocompatibility of this novel material is proved with cultures of PC-12 cells. The coating with rGO improved the adhesion of cells in comparison with cells growing onto the surface of pure SF scaffolds. Also, the use of SF/rGO scaffolds combined with electrical stimulation promoted the differentiation into neural phenotypes reaching comparable or even superior levels to those obtained by means of the traditional treatment with neural growth factor (NGF). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. In vitro and in vivo studies on the cytotoxicity of irradiated silk fibroin against mouse melanoma tumor cell

    International Nuclear Information System (INIS)

    Byun, Eui-Baek; Sung, Nak-Yun; Kwon, Sun-Kyu; Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il; Hwang, Han-Joon; Byun, Myung-Woo; Lee, Ju-Woon

    2009-01-01

    The physicochemical properties of proteins can be altered by irradiation. But, it is rarely that the researches on the functional properties of irradiated proteins have been reported. Fibroin is a fibrous protein derived from silkworm Bombyx mori and has been suggested as a biomaterial for biomedical application. Therefore, fibroin was selected as a model protein and was examined with the irradiation effects on the cytotoxicity of fibroin on tumor cell. The cytotoxicity of fibroin against mouse melanoma cell (B16BL6) showed a significant increase dependent upon the increase of irradiation dose. And also, the splenocyte proliferation activities of fibroin were increased by gamma irradiation. In addition, the oral administration of irradiated fibroin significantly increased the inhibition rate of tumor growth in tumor-bearing mouse model. The reason might be due to the change of protein structure by gamma irradiation and is being studied. From these result, it could be concluded that the irradiated fibroin might be a potential candidate as a valuable product in food and medical industry.

  8. In vitro and in vivo studies on the cytotoxicity of irradiated silk fibroin against mouse melanoma tumor cell

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Eui-Baek [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate school of Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Sung, Nak-Yun [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kwon, Sun-Kyu [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Graduate school of Food and Biotechnology, Korea University, Jochiwon 339-800 (Korea, Republic of); Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Hwang, Han-Joon [Graduate school of Food and Biotechnology, Korea University, Jochiwon 339-800 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    The physicochemical properties of proteins can be altered by irradiation. But, it is rarely that the researches on the functional properties of irradiated proteins have been reported. Fibroin is a fibrous protein derived from silkworm Bombyx mori and has been suggested as a biomaterial for biomedical application. Therefore, fibroin was selected as a model protein and was examined with the irradiation effects on the cytotoxicity of fibroin on tumor cell. The cytotoxicity of fibroin against mouse melanoma cell (B16BL6) showed a significant increase dependent upon the increase of irradiation dose. And also, the splenocyte proliferation activities of fibroin were increased by gamma irradiation. In addition, the oral administration of irradiated fibroin significantly increased the inhibition rate of tumor growth in tumor-bearing mouse model. The reason might be due to the change of protein structure by gamma irradiation and is being studied. From these result, it could be concluded that the irradiated fibroin might be a potential candidate as a valuable product in food and medical industry.

  9. Contribution to the ultrastructural study of silk-excretion cells and autoradiographic analysis of intracellular fibroin transport in Bombyx mori L

    International Nuclear Information System (INIS)

    Couble, Pierre.

    1974-01-01

    It is much easier to study the mechanisms involved in the synthesis and exportation of extracellular proteins in the biological material chosen is highly differentiated. The silk-excretion gland of the silkworm is ideal in this respect because during the larva period, especially at the end of the 5th and last stage, the cells at the rear (excreting tube) synthesize and export massive quantities of a single protein: fibroin. These phenomena were explored by a cytological study carried out mainly by electron microscopy and autoradiography. The results obtained are given. They relate first of all to the morphological development of the secretion tube cells from the end of the 4th larva stage to the spinning of the cocoon, and contribute new information on the cell changes during the 4th slough and the end of the 5th age. They also concern intracellular fibroin transport which is proved to take place through the Golgi apparatus, and finally the possible role of the microtubules and microfilaments in fibroin transport and secretion. On this last point the results so far constitute only, a preliminary approach which justifie no final conclusions; they merely suggest that the microfilaments of the apical region are involved in the secretion process [fr

  10. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    Science.gov (United States)

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  11. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.

    Science.gov (United States)

    Panda, N; Bissoyi, A; Pramanik, K; Biswas, A

    2014-01-01

    Stimulating stem cell differentiation without growth factor supplement offers a potent and cost-effective scaffold for tissue regeneration. We hypothesise that surface precipitation of nano-hydroxyapatite (nHAp) over blends of non-mulberry silk fibroin with better hydrophilicity and RGD amino acid sequences can direct the stem cell towards osteogenesis. This report focuses on the fabrication of a blended eri-tasar silk fibroin nanofibrous scaffold (ET) followed by nHAp deposition by a surface precipitation (alternate soaking in calcium and phosphate solution) method. Morphology, hydrophilicity, composition, and the thermal and mechanical properties of ET/nHAp were examined by field emission scanning electron microscopy, TEM, FT-IR, X-ray diffraction, TGA and contact angle measurement and compared with ET. The composite scaffold demonstrated improved thermal stability and surface hydrophilicity with an increase in stiffness and elastic modulus (778 ± 2.4 N/m and 13.1 ± 0.36 MPa) as compared to ET (160.6 ± 1.34 N/m and 8.3 ± 0.4 MPa). Mineralisation studies revealed an enhanced and more uniform surface deposition of HAp-like crystals, while significant differences in cellular viability and attachment were observed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and confocal microscopy study. The cell viability and expression of adhesion molecules (CD 44 and CD 29) are found to be optimum for subsequent stages of growth proliferation and differentiation. The rates of proliferation have been observed to decrease owing to the transition of MSC from a state of proliferation to a state of differentiation. The confirmation of improved osteogenic differentiation was finally verified through the alkaline phosphatase assay, pattern of gene expression related to osteogenic differentiation and morphological observations of differentiated cord blood human mesenchymal stem cells under fluorescence microscope. The results

  12. Fabrication of silk fibroin nanoparticles for controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zheng; Chen Aizheng; Li Yi, E-mail: tcliyi@polyu.edu.hk; Hu Junyan; Liu Xuan; Li Jiashen; Zhang Yu; Li Gang; Zheng Zijian [Hong Kong Polytechnic University, Institute of Textiles and Clothing (Hong Kong)

    2012-03-15

    A novel solution-enhanced dispersion by supercritical CO{sub 2} (SEDS) was employed to prepare silk fibroin (SF) nanoparticles. The resulting SF nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution with a mean particle diameter of about 50 nm. The results of X-ray powder diffraction, thermo gravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis of the SF nanoparticles before and after ethanol treatment indicated conformation transition of SF nanoparticles from random coil to {beta}-sheet form and thus water insolubility. The MTS assay also suggested that the SF nanoparticles after ethanol treatment imposed no toxicity. A non-steroidal anti-inflammatory drug, indomethacin (IDMC), was chosen as the model drug and was encapsulated in SF nanoparticles by the SEDS process. The resulting IDMC-SF nanoparticles, after ethanol treatment, possessed a theoretical average drug load of 20%, an actual drug load of 2.05%, and an encapsulation efficiency of 10.23%. In vitro IDMC release from the IDMC-SF nanoparticles after ethanol treatment showed a significantly sustained release over 2 days. These studies of SF nanoparticles indicated the suitability of the SF nanoparticles prepared by the SEDS process as a biocompatible carrier to deliver drugs and also the feasibility of using the SEDS process to reach the goal of co-precipitation of drug and SF as composite nanoparticles for controlled drug delivery.

  13. Fabrication of silk fibroin nanoparticles for controlled drug delivery

    International Nuclear Information System (INIS)

    Zhao Zheng; Chen Aizheng; Li Yi; Hu Junyan; Liu Xuan; Li Jiashen; Zhang Yu; Li Gang; Zheng Zijian

    2012-01-01

    A novel solution-enhanced dispersion by supercritical CO 2 (SEDS) was employed to prepare silk fibroin (SF) nanoparticles. The resulting SF nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution with a mean particle diameter of about 50 nm. The results of X-ray powder diffraction, thermo gravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis of the SF nanoparticles before and after ethanol treatment indicated conformation transition of SF nanoparticles from random coil to β-sheet form and thus water insolubility. The MTS assay also suggested that the SF nanoparticles after ethanol treatment imposed no toxicity. A non-steroidal anti-inflammatory drug, indomethacin (IDMC), was chosen as the model drug and was encapsulated in SF nanoparticles by the SEDS process. The resulting IDMC–SF nanoparticles, after ethanol treatment, possessed a theoretical average drug load of 20%, an actual drug load of 2.05%, and an encapsulation efficiency of 10.23%. In vitro IDMC release from the IDMC–SF nanoparticles after ethanol treatment showed a significantly sustained release over 2 days. These studies of SF nanoparticles indicated the suitability of the SF nanoparticles prepared by the SEDS process as a biocompatible carrier to deliver drugs and also the feasibility of using the SEDS process to reach the goal of co-precipitation of drug and SF as composite nanoparticles for controlled drug delivery.

  14. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    International Nuclear Information System (INIS)

    Kweon, HaeYong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-01-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing

  15. A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering.

    Science.gov (United States)

    Wang, Qian; Chu, Yanyan; He, Jianxin; Shao, Weili; Zhou, Yuman; Qi, Kun; Wang, Lidan; Cui, Shizhong

    2017-11-01

    To better mimic natural bone, a graphene oxide-hydroxyapatite/silk fibroin (cGO-HA/SF) scaffold was fabricated by biomineralizing carboxylated GO sheets, blending with SF, and freeze-drying. The material has increasing porosity and decreasing density from outside to inside. Analysis of GO mineralization in simulated body fluid indicated that carboxylation and Chitosan may synergistically regulate HA growth along the c-axis of weakly crystalline, rod-like GO-HA particles. Compared with HA/SF gradient composites, a cGO-HA gradient scaffold with cGO:HA mass ratio 1:4 has 5-fold and 2.5-fold higher compressive strength and compressive modulus, respectively. Additionally, the cGO-HA/SF composite stimulated mouse mesenchymal stem cell adhesion and proliferation, alkaline phosphatase secretion, and mineral deposition more strongly than HA/SF and pure HA scaffolds. Hence, the material may prove to be an excellent and versatile scaffold for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.

    Science.gov (United States)

    Um, I C; Kweon, H Y; Park, Y H; Hudson, S

    2001-08-20

    Structural characteristics and thermal and solution properties of the regenerated silk fibroin (SF) prepared from formic acid (FU) were compared with those of SF from water (AU). According to the turbidity and shear viscosity measurement, SF formic acid solution was stable and transparent, no molecular aggregations occurred. The sample FU exhibited the beta-sheet structure, while AU random coil conformation using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry. The effects of methanol treatment on samples were also examined. According to the measurement of crystallinity (XRD) and crystallinity index (FTIR), the concept of long/short-range ordered structure formation was proposed. Long-range ordered crystallites are predominantly formed for methanol treated SF film while SF film cast from formic acid favors the formation of short-range ordered structure. The relaxation temperatures of SF films measured by dynamic thermomechanical analysis supported the above mechanism due to the sensitivity of relaxation temperature on the short-range order.

  17. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.

    Science.gov (United States)

    Lee, Dae Hoon; Tripathy, Nirmalya; Shin, Jae Hun; Song, Jeong Eun; Cha, Jae Geun; Min, Kyung Dan; Park, Chan Hum; Khang, Gilson

    2017-02-01

    Scaffolds, used for tissue regeneration are important to preserve their function and morphology during tissue healing. Especially, scaffolds for bone tissue engineering should have high mechanical properties to endure load of bone. Silk fibroin (SF) from Bombyx mori silk cocoon has potency as a type of biomaterials in the tissue engineering. β-tricalcium phosphate (β-TCP) as a type of bioceramics is also critical as biomaterials for bone regeneration because of its biocompatibility, osteoconductivity, and mechanical strength. The aim of this study was to fabricate three-dimensional SF/β-TCP scaffolds and access its availability for bone grafts through in vitro and in vivo test. The scaffolds were fabricated in each different ratios of SF and β-TCP (100:0, 75:25, 50:50, 25:75). The characterizations of scaffolds were conducted by FT-IR, compressive strength, porosity, and SEM. The in vitro and in vivo tests were carried out by MTT, ALP, RT-PCR, SEM, μ-CT, and histological staining. We found that the SF/β-TCP scaffolds have high mechanical strength and appropriate porosity for bone tissue engineering. The study showed that SF/β-TCP (75:25) scaffold exhibited the highest osteogenesis compared with other scaffolds. The results suggested that SF/β-TCP (75:25) scaffold can be applied as one of potential bone grafts for bone tissue engineering. Copyright © 2016. Published by Elsevier B.V.

  18. The Use of Silk in Nanomedicine Applications

    DEFF Research Database (Denmark)

    Chiasson, Raymond; Hasan, Moaraj; Al Nazer, Q.

    2016-01-01

    Biopolymers made up of silk proteins have been used in numerous drug delivery applications and represent an excellent source of natural biomaterials. In particular silk fibroin has proved valuable as a building block for nanomedicines and drug delivery implants, owing to its favorable...... biocompatibility, degradation, stabilization and controllability. In this chapter we will discuss the various sources of silk biomaterial and how this naturally occurring biopolymer has been utilized in the development of nanomedicines and implantable drug delivery systems, demonstrating how silk is a unique...

  19. Weft-knitted silk-poly(lactide-co-glycolide) mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair.

    Science.gov (United States)

    Zhang, Wenyuan; Yang, Yadong; Zhang, Keji; Li, Ying; Fang, Guojian

    2015-02-01

    Natural silk fibroin fiber scaffolds have excellent mechanical properties, but degrade slowly. In this study, we used poly(lactide-co-glycolide) (PLGA, 10:90) fibers to adjust the overall degradation rate of the scaffolds and filled them with collagen to reserve space for cell growth. Silk fibroin-PLGA (36:64) mesh scaffolds were prepared using weft-knitting, filled with type I collagen, and incubated with rabbit autologous bone marrow-derived mesenchymal stem cells (MSCs). These scaffold-cells composites were implanted into rabbit Achilles tendon defects. At 16 weeks after implantation, morphological and histological observations showed formation of tendon-like tissues that expressed type I collagen mRNA and a uniformly dense distribution of collagen fibers. The maximum load of the regenerated Achilles tendon was 58.32% of normal Achilles tendon, which was significantly higher than control group without MSCs. These findings suggest that it is feasible to construct tissue engineered tendon using weft-knitted silk fibroin-PLGA fiber mesh/collagen matrix seeded with MSCs for rabbit Achilles tendon defect repair.

  20. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    International Nuclear Information System (INIS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Liao, Liangsheng; Sun, Baoquan; Zhang, Ke-Qin

    2015-01-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq −1 , a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A −1 , demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices. (paper)

  1. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Science.gov (United States)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  2. Effects of Titanium Dioxide Nanoparticles on the Synthesis of Fibroin in Silkworm (Bombyx mori).

    Science.gov (United States)

    Ni, Min; Li, FanChi; Tian, JiangHai; Hu, JingSheng; Zhang, Hua; Xu, KaiZun; Wang, BinBin; Li, YangYang; Shen, WeiDe; Li, Bing

    2015-08-01

    Silkworm (Bombyx mori) is an economically important insect, and its silk production capacity largely depends on its ability to synthesize fibroin. While breeding of B. mori varieties has been a key strategy to improve silk production, little improvement of B. mori silk production has been achieved to date. As a result, the development of sericulture economy has not progressed well, pointing to the need of new ways for improvement of B. mori silk production. Titanium dioxide nanoparticles (TiO2 NPs), a food additive widely used for livestock, have been shown to promote animal growth and increase the protein synthesis in animals. However, no studies on effect of TiO2 NPs on fibroin synthesis in B. mori have been available. In this study, the differential expression profiles of genes and proteins in the silk gland of B. mori fed without or with TiO2 NPs (5 μg ml(-1)) were analyzed and compared using digital gene expression (DGE), reverse transcription quantitative polymerase chain reaction (RT-qPCR), semi-qPCR, and Western blot analysis. The effects of TiO2 NPs feeding on the activity of proteases in the midgut and the synthesis and transportation of amino acids in hemolymph were also investigated. DGE analyses showed that among a total of 4,741 genes detected, 306 genes were differentially expressed after the TiO2 NPs feeding, of which 137 genes were upregulated whereas 169 genes were downregulated. 106 genes were shown to be involved in fibroin synthesis, of which 97 genes, including those encoding cuticular protein glycine-rich 10, serine protease inhibitor 28, aspartate aminotransferase, lysyl-tRNA synthetase, and splicing factor arginine/serine-rich 6, and silk gland factor-1 (SGF-1), were upregulated with the maximum induction of 8.52-folds, whereas nine genes, including those encoding aspartylglucosaminidase, the cathepsin L in Tribolium castaneum, and similar to SPRY domain-containing SOCS box protein 3, were downregulated with the maximum reduction of 8

  3. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR.

    Science.gov (United States)

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-09-09

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra.

  4. Radiation degradation of silk protein

    International Nuclear Information System (INIS)

    Pewlong, W.; Sudatis, B.; Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated using an electron beam accelerator to investigate the application of the radiation degradation technique as a means to solubilize fibroin. The irradiation caused a significant degradation of the fiber. The tensile strength of fibroin fiber irradiated up to 2500 kGy decreased rapidly with increasing dose. The presence of oxygen in the irradiation atmosphere enhanced degradation of the tensile strength. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: a calcium chloride solution(CaCl 2 /C 2 H 5 OH/H 2 O=1:2:8 in mole ratio), a hydrochloric acid (0.5 N) and a distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water soluble proteins was extracted by a distilled water. (author)

  5. Radiation degradation of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Pewlong, W; Sudatis, B [Office of Atomic Energy for Peace, Bangkok (Thailand); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Silk fibroin fiber from the domesticated silkworm Bombyx mori was irradiated using an electron beam accelerator to investigate the application of the radiation degradation technique as a means to solubilize fibroin. The irradiation caused a significant degradation of the fiber. The tensile strength of fibroin fiber irradiated up to 2500 kGy decreased rapidly with increasing dose. The presence of oxygen in the irradiation atmosphere enhanced degradation of the tensile strength. The solubilization of irradiated fibroin fiber was evaluated using the following three kinds of solutions: a calcium chloride solution(CaCl{sub 2}/C{sub 2}H{sub 5}OH/H{sub 2}O=1:2:8 in mole ratio), a hydrochloric acid (0.5 N) and a distilled water. Dissolution of fibroin fiber into these solutions was significantly enhanced by irradiation. Especially, an appreciable amount of water soluble proteins was extracted by a distilled water. (author)

  6. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR.

    Science.gov (United States)

    Asakura, Tetsuo; Isobe, Kotaro; Kametani, Shunsuke; Ukpebor, Obehi T; Silverstein, Moshe C; Boutis, Gregory S

    2017-03-01

    The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2 H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3- 13 C]Ala-, [3- 13 C]Ser-, and [3- 13 C]Tyr-SF fibers and films were investigated by 13 C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2 H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and

  7. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Paşcu, Elena I.; Stokes, Joseph; McGuinness, Garrett B., E-mail: garrett.mcguinness@dcu.ie

    2013-12-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw = 90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (± 0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (± 0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples

  8. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering

    International Nuclear Information System (INIS)

    Paşcu, Elena I.; Stokes, Joseph; McGuinness, Garrett B.

    2013-01-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw = 90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (± 0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (± 0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples

  9. Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs.

    Science.gov (United States)

    Geurts, Paul; Zhao, Liang; Hsia, Yang; Gnesa, Eric; Tang, Simon; Jeffery, Felicia; La Mattina, Coby; Franz, Andreas; Larkin, Leah; Vierra, Craig

    2010-12-13

    Spider attachment disc silk fibers are spun into a viscous liquid that rapidly solidifies, gluing dragline silk fibers to substrates for locomotion or web construction. Here we report the identification and artificial spinning of a novel attachment disc glue silk fibroin, Pyriform Spidroin 2 (PySp2), from the golden orb weaver Nephila clavipes . MS studies support PySp2 is a constituent of the pyriform gland that is spun into attachment discs. Analysis of the PySp2 protein architecture reveals sequence divergence relative to the other silk family members, including the cob weaver glue silk fibroin PySp1. PySp2 contains internal block repeats that consist of two subrepeat units: one dominated by Ser, Gln, and Ala and the other Pro-rich. Artificial spinning of recombinant PySp2 truncations shows that the Ser-Gln-Ala-rich subrepeat is sufficient for the assembly of polymeric subunits and subsequent fiber formation. These studies support that both orb- and cob-weaving spiders have evolved highly polar block-repeat sequences with the ability to self-assemble into fibers, suggesting a strategy to allow fiber fabrication in the liquid environment of the attachment discs.

  10. Preparation and Characterization of a Novel Hybrid Hydrogel Composed of Bombyx mori Fibroin and Poly(N-isopropylacrylamide

    Directory of Open Access Journals (Sweden)

    Ting Wang

    2013-01-01

    Full Text Available A novel hybrid hydrogel was prepared and investigated based on silkworm silk fibroin and poly(N-isopropylacrylamide (PNIPAAm. PNIPAAm was introduced to silk fibroin, the resultant composite hydrogel was examined, and freeze-dried SF/PNIPAAm scaffold was analyzed using LB-550 dynamic light scattering particle-size analyzer, circular dichroism (CD, and scanning electron microscopy (SEM. Our results suggested that the hybrid hydrogels owned the porous sponge-like structures, and the gelation time of SF/PNIPAAm hybrids decreased with an increase in temperature and concentration of each polymer. Results of rheological analysis suggested that the rheological property of resultant SF/PNIPAAm gel depended on the concentration combinations as well as the aging time, which elapsed after mixing the two polymers. Results of CD spectra demonstrated that pH showed little influence on the secondary structure of silk fibroin, and significant changes of , , and G* as surrounding increase temperature above the lower critical solution temperature (LCST.

  11. Luminous composite ultrathin films of CdTe quantum dots/silk fibroin co-assembled with layered doubled hydroxide: Enhanced photoluminescence and biosensor application

    Directory of Open Access Journals (Sweden)

    Muhammad Sohail Haroone

    2018-06-01

    Full Text Available Quantum dots (QDs luminescent films are extensively applied to optoelectronics and optical devices. However, QDs aggregation results in the quenching of their fluorescence property which limits their practical applications to a greater extent. In order to resolve this issue, 3-mercaptopropionic acid (3-MPA functionalized Cadmium Tellurium (CdTe QDs were stabilized by silk fibroin (SB and co-assembled with layered doubled hydroxide (LDH to form (QDs@SF/LDHn ultrathin films (UTFs via the layer-by-layer (LBL technique. UV–Vis absorption and fluorescence spectroscopy showed a stepwise and normal growth of the films upon increasing the number of deposition cycles. XRD and AFM studies confirmed the formation of a periodic layered structure and regular surface morphology of the thin films. As compared to (CdTe QDs/LDHnUTFs, the (CdTe QDs@SF/LDHnUTFs displayed fluorescence enhancement and longer fluorescent lifetime, both in solid states and aqueous solutions. Furthermore compared with the solution state, the fluorescence enhancement of SF-RC and SF-β are, respectively, 7 times and 17 times in the (CdTe QDs@SF/LDHn UTFs, indicating that the LDH nanosheets favor the fluorescence enhancement effect on the CdTe QDs@SF. The fabricated materials displayed fluorescence response to a biological molecule such as immune globulin, lgG. Thus, the (CdTe QDs@SF/LDHn UTFs has a potential to be used as biosensor. Keywords: CdTe quantum dots, Silk fibroin, Layered doubled hydroxide, Co-assembly, Fluorescence enhancement

  12. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing.

    Science.gov (United States)

    Kim, Soon Hee; Yeon, Yeung Kyu; Lee, Jung Min; Chao, Janet Ren; Lee, Young Jin; Seo, Ye Been; Sultan, Md Tipu; Lee, Ok Joo; Lee, Ji Seung; Yoon, Sung-Il; Hong, In-Sun; Khang, Gilson; Lee, Sang Jin; Yoo, James J; Park, Chan Hum

    2018-04-24

    Although three-dimensional (3D) bioprinting technology has gained much attention in the field of tissue engineering, there are still several significant engineering challenges to overcome, including lack of bioink with biocompatibility and printability. Here, we show a bioink created from silk fibroin (SF) for digital light processing (DLP) 3D bioprinting in tissue engineering applications. The SF-based bioink (Sil-MA) was produced by a methacrylation process using glycidyl methacrylate (GMA) during the fabrication of SF solution. The mechanical and rheological properties of Sil-MA hydrogel proved to be outstanding in experimental testing and can be modulated by varying the Sil-MA contents. This Sil-MA bioink allowed us to build highly complex organ structures, including the heart, vessel, brain, trachea and ear with excellent structural stability and reliable biocompatibility. Sil-MA bioink is well-suited for use in DLP printing process and could be applied to tissue and organ engineering depending on the specific biological requirements.

  13. Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms.

    Science.gov (United States)

    Dutta, Saranga; Talukdar, Bijit; Bharali, Rupjyoti; Rajkhowa, Rangam; Devi, Dipali

    2013-05-01

    This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk-based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. Copyright © 2012 Wiley Periodicals, Inc.

  14. A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices

    Science.gov (United States)

    Bucciarelli, A.; Mulloni, V.; Maniglio, D.; Pal, R. K.; Yadavalli, V. K.; Motta, A.; Quaranta, A.

    2018-04-01

    Over the last two decades, silk fibroin has been exploited as a versatile optical material in biological applications due to a combination of unique properties. Recently, protocols have been developed to produce a silk fibroin negative tone resist that is UV crosslinkable, thereby allowing micro and nanoscale patterning of the protein using traditional photolithographic tools. The same protocol has been applied to the silk protein sericin to develop a sericin resist. Despite the immense potential of these biomaterials to develop micro optical patterns on silicon and glass surfaces, as well as self-standing components, their refractive indexes are not well characterized. In this work, optimizing a method to obtain extremely smooth, thin films, the refractive index (RI) of fibroin and sericin proteins and resists were characterized using ellipsometry. The parameters of the Sellmeier and Cauchy dispersion laws have been determined to obtain the RI over a large wavelength range. A complete morphological study of the films has been conducted. In addition, the effect of solvent on the optical properties of silk fibroin and sericin thin films are reported, with differences in values explained by examining the change in the protein secondary structure.

  15. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application.

    Science.gov (United States)

    Sheng, Xiaoyue; Fan, Linpeng; He, Chuanglong; Zhang, Kuihua; Mo, Xiumei; Wang, Hongsheng

    2013-05-01

    In the present study, we reported fabrication and skin benefit of a novel vitamin E (VE)-loaded silk fibroin (SF) nanofibrous mats. RRR-α-Tocopherol polyethylene glycol 1000 succinate (VE TPGS), a water-soluble derivative of VE, was incorporated into SF nanofiber successfully by aqua solution electrospinning for the first time. Morphology of the composite nanofibers changed with the different amount of VE TPGS: a ribbon-like shape for lower loading dose of VE TPGS, while a round shape for higher loading dose (more than 4% (wt/wt) based on the weight of SF). After treated with 75% (v/v) ethanol vapor, the composite nanofibrous mats showed an excellent water-resistant ability. In vitro study disclosed a sustained release behavior of VE TPGS disassociated from the nanofibrous mats. The mouse skin fibroblasts (L929 cells) cultured on the VE-loaded SF nanofibrous mats spread and proliferated much better than on cover slips. Moreover, the incorporation of VE TPGS was found strengthening the ability of SF nanofibrous mats on protecting the cells against oxidation stress induced by tert-butyl hydroperoxide. Our data presented impressive skin benefits of this VE-loaded SF nanofibrous mats, suggesting a promising applicative potential of this novel product on personal skin care, tissue regeneration and other related area. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effect of polyamines on mechanical and structural properties of Bombyx mori silk.

    Science.gov (United States)

    Yerra, Aparna; Mysarla, Danti Kumari; Siripurapu, Prasanthi; Jha, Anjali; Valluri, Satyavathi V; Mamillapalli, Anitha

    2017-01-01

    Silkworm, Bombyx mori (B. mori) belongs to the Lepidoptera family. The silk produced from this insect, mulberry silk, gained lot of importance as a fabric. Silk is being exploited as a biomaterial due to its surprising strength and biocompatibility. Polyamines (PA) are important cell growth regulators. In the present work the effect of treatment of polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm) on the quantity and quality of silk produced was assessed. Results showed that exogenous feeding of Spd at a concentration of 50 µM increased fiber length significantly. Analysis by Fourier transform infrared (FTIR) on the properties of silk obtained from Spd treated silkworms revealed an increase in percentage of absorption with no difference in peak positions of amide I and amide III groups. Scanning electron microscopy (SEM) revealed an increase in diameter of silk. Further, analysis at molecular level showed an increase in fibroin expression in Spd treated silk glands. However, the Spd treatment showed no significant difference with respect to fibroin to sericin ratio per unit weight of cocoon, silk tenacity, and percent elongation. Thus, the present results show that polyamine treatment would influence silk quality at structural, mechanical, and molecular level in the Bombyx mori, which can be exploited in silk biomaterial production. © 2016 Wiley Periodicals, Inc.

  17. In vitro cartilage construct generation from silk fibroin- chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition.

    Science.gov (United States)

    Agrawal, Parinita; Pramanik, Krishna; Biswas, Amit; Ku Patra, Ranjan

    2018-02-01

    Cartilage construct generation includes a scaffold with appropriate composition to mimic matrix of the damaged tissue on which the stem cells grow and differentiate. In this study, umbilical cord blood (UCB) derived human mesenchymal stem cells (hMSCs) were seeded on freeze dried porous silk-fibroin (SF)/chitosan (CS) scaffolds. Influence of static and dynamic (spinner flask bioreactor) culture conditions on the developing cartilage construct were studied by in-vitro characterization for viability, proliferation, distribution, and chondrogenic differentiation of hMSCs over the scaffold. Constructs developed in spinner flask consisted of 62% live cells, and exhibited 543% more cell density at the core than constructs cultured in static system. Quantification of DNA and glycosaminoglycans accumulation after 21 days showed the progression of chondrogenic differentiation of hMSCs was higher in dynamic culture compared to static one. In constructs generated under dynamic condition, histology staining for proteoglycan matrix, and fluorescence staining for collagen-II and aggrecan showed positive correlation between early and late stage chondrogenic markers, which was further confirmed by quantitative PCR analysis, showing low collagen-I expression and highly expressed Sox9, collagen-II and aggrecan. The present study demonstrated that construct generated by combining 3D SF/CS scaffold with UCB-hMSCs under dynamic condition using spinner flask bioreactor can be used for cartilage tissue regeneration for future medical treatments. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 397-407, 2018. © 2017 Wiley Periodicals, Inc.

  18. Functional expression of a Bombyx mori cocoonase: potential application for silk degumming.

    Science.gov (United States)

    Rodbumrer, Prangprapai; Arthan, Dumrongkiet; Uyen, Utai; Yuvaniyama, Jirundon; Svasti, Jisnuson; Wongsaengchantra, Pramvadee Y

    2012-12-01

    Cocoon, a shelter for larva development to silk moth, contains the fibrous protein fibroin, which is coated by the globular protein sericin. Emergence of the silk moth requires the action of cocoonase, a protease secreted by the pupa. The full-length prococoonase cDNA, with 780 bp open reading frame encoding 260 amino acids, was cloned by reverse transcription from total RNA of the head of 6-day-old Thai-silk Bombyx mori pupa. Only the gene fragment lacking the propeptide encoding sequence was successfully expressed in Pichia pastoris, yielding an extracellularly active cocoonase. The recombinant cocoonase was purified to homogeneity by 80% ammonium-sulfate fractionation and CM-Sepharose chromatography, and its internal peptide sequences were analyzed by nano liquid chromatography-mass spectrometry/mass spectrometry. This monomeric protein has native molecular weight of 26 kDa by gel exclusion analysis and 25 kDa subunit size by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme hydrolyses sericin but does not hydrolyse fibroin, as shown by radial diffusion on thin-layer enzyme assay (RD-TEA). Scanning electron microscopy showed that purified recombinant cocoonase could remove sericin from natural silk completely in 24 h, without damaging fibroin, using only 1 immobilized sericin unit (ISU) of enzyme as determined by RD-TEA. Natural cocoonase isolated from B. mori pupa could also digest sericin effectively, but required more enzymes (2 ISU) and longer time (48 h). In comparison, a commercial enzyme, alcalase, with the same activity not only showed less complete digestion of sericin but also caused damage of fibroin. These results suggest that recombinant B. mori cocoonase is potentially useful for silk degumming.

  19. Preliminary investigation of airgap electrospun silk-fibroin-based structures for ligament analogue engineering.

    Science.gov (United States)

    Sell, S A; McClure, M J; Ayres, C E; Simpson, D G; Bowlin, G L

    2011-01-01

    The process of electrospinning has proven to be highly beneficial for use in a number of tissue-engineering applications due to its ease of use, flexibility and tailorable properties. There have been many publications on the creation of aligned fibrous structures created through various forms of electrospinning, most involving the use of a metal target rotating at high speeds. This work focuses on the use of a variation known as airgap electrospinning, which does not use a metal collecting target but rather a pair of grounded electrodes equidistant from the charged polymer solution to create highly aligned 3D structures. This study involved a preliminary investigation and comparison of traditionally and airgap electrospun silk-fibroin-based ligament constructs. Structures were characterized with SEM and alignment FFT, and underwent porosity, permeability, and mechanical anisotropy evaluation. Preliminary cell culture with human dermal fibroblasts was performed to determine the degree of cellular orientation and penetration. Results showed airgap electrospun structures to be anisotropic with significantly increased porosity and cellular penetration compared to their traditionally electrospun counterparts.

  20. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering.

    Science.gov (United States)

    Font Tellado, Sònia; Bonani, Walter; Balmayor, Elizabeth R; Foehr, Peter; Motta, Antonella; Migliaresi, Claudio; van Griensven, Martijn

    2017-08-01

    Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.

  1. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    Science.gov (United States)

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2017-03-01

    Full Text Available The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF, extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.

  3. Characterization of Silk Fibroin Modified Surface: A Proteomic View of Cellular Response Proteins Induced by Biomaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2014-01-01

    Full Text Available The purpose of this study was to develop the pathway of silk fibroin (SF biopolymer surface induced cell membrane protein activation. Fibroblasts were used as an experimental model to evaluate the responses of cellular proteins induced by biopolymer material using a mass spectrometry-based profiling system. The surface was covered by multiwalled carbon nanotubes (CNTs and SF to increase the surface area, enhance the adhesion of biopolymer, and promote the rate of cell proliferation. The amount of adhered fibroblasts on CNTs/SF electrodes of quartz crystal microbalance (QCM greatly exceeded those on other surfaces. Moreover, analyzing differential protein expressions of adhered fibroblasts on the biopolymer surface by proteomic approaches indicated that CD44 may be a key protein. Through this study, utilization of mass spectrometry-based proteomics in evaluation of cell adhesion on biopolymer was proposed.

  4. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods.

    Science.gov (United States)

    Nakazawa, Yasumoto; Asakura, Tetsuo

    2003-06-18

    Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.

  5. Silk constructs for delivery of muskuloskeletal therapeutics

    Science.gov (United States)

    Meinel, Lorenz; Kaplan, David L.

    2012-01-01

    Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which render SF so exciting for biomedical applications. his pattern along with the versatility of this biopolymer have been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement. PMID:22522139

  6. Introducing biomimetic shear and ion gradients to microfluidic spinning improves silk fiber strength.

    Science.gov (United States)

    Li, David; Jacobsen, Matthew M; Gyune Rim, Nae; Backman, Daniel; Kaplan, David L; Wong, Joyce Y

    2017-05-31

    Silkworm silk is an attractive biopolymer for biomedical applications due to its high mechanical strength and biocompatibility; as a result, there is increasing interest in scalable devices to spin silk and recombinant silk so as to improve and customize their properties for diverse biomedical purposes (Vepari and Kaplan 2007 Prog. Polym. Sci. 32 ). While artificial spinning of regenerated silk fibroins adds tunability to properties such as degradation rate and surface functionalization, the resulting fibers do not yet approach the mechanical strength of native silkworm silk. These drawbacks reduce the applicability and attractiveness of artificial silk (Kinahan et al 2011 Biomacromolecules 12 ). Here, we used computational fluid dynamic simulations to incorporate shear in tandem with biomimetic ion gradients by coupling a modular novel glass microfluidic device to our previous co-axial flow device. Fibers spun with this combined apparatus demonstrated a significant increase in mechanical strength compared to fibers spun with the basic apparatus alone, with a three-fold increase in Young's modulus and extensibility and a twelve-fold increase in toughness. These results thus demonstrate the critical importance of ionic milieu and shear stress in spinning strong fibers from solubilized silk fibroin.

  7. Structure and interaction of silk fibroin and graphene oxide in concentrated solution under shear.

    Science.gov (United States)

    Zhang, Chao; Shao, Huili; Luo, Jie; Hu, Xuechao; Zhang, Yaopeng

    2018-02-01

    Considering the high biocompatibility of regenerated silk fibroin (RSF) and the good enhancement effect of graphene oxide (GO), various RSF/GO composite materials have been previously investigated, and found that GO plays a vital role in the fabrication of high-performance RSF/GO materials. However, its effects on the structure of RSF solution are unclear. Therefore, in this work, we studied the rheological and optical properties, as well as the aggregation behavior of concentrated RSF/GO solution in response to applied shear. The results demonstrated that the presence of GO sheets in RSF solution increased the shear resistance, while delayed the sol-gel transition. Moreover, GO sheets were not favorable to the formation of the ordered structures of RSF. The results from small angle X-ray scattering (SAXS) of RSF/GO solution also showed that the shear process promoted the formation of RSF/GO interface. The data also provided insights into the structural evolution within the mixture solutions, which can be beneficial to the future design and fabrication of nanofiller-reinforced high-performance materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    Science.gov (United States)

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  9. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.

    Science.gov (United States)

    Pina, S; Canadas, R F; Jiménez, G; Perán, M; Marchal, J A; Reis, R L; Oliveira, J M

    2017-01-01

    The treatment and regeneration of bone defects caused by traumatism or diseases have not been completely addressed by current therapies. Lately, advanced tools and technologies have been successfully developed for bone tissue regeneration. Functional scaffolding materials such as biopolymers and bioresorbable fillers have gained particular attention, owing to their ability to promote cell adhesion, proliferation, and extracellular matrix production, which promote new bone growth. Here, we present novel biofunctional scaffolds for bone regeneration composed of silk fibroin (SF) and β-tricalcium phosphate (β-TCP) and incorporating Sr, Zn, and Mn, which were successfully developed using salt-leaching followed by a freeze-drying technique. The scaffolds presented a suitable pore size, porosity, and high interconnectivity, adequate for promoting cell attachment and proliferation. The degradation behavior and compressive mechanical strengths showed that SF/ionic-doped TCP scaffolds exhibit improved characteristics for bone tissue engineering when compared with SF scaffolds alone. The in vitro bioactivity assays using a simulated body fluid showed the growth of an apatite layer. Furthermore, in vitro assays using human adipose-derived stem cells presented different effects on cell proliferation/differentiation when varying the doping agents in the biofunctional scaffolds. The incorporation of Zn into the scaffolds led to improved proliferation, while the Sr- and Mn-doped scaffolds presented higher osteogenic potential as demonstrated by DNA quantification and alkaline phosphatase activity. The combination of Sr with Zn led to an influence on cell proliferation and osteogenesis when compared with single ions. Our results indicate that biofunctional ionic-doped composite scaffolds are good candidates for further in vivo studies on bone tissue regeneration. © 2017 S. Karger AG, Basel.

  10. Biofunctionalized Lysophosphatidic Acid/Silk Fibroin Film for Cornea Endothelial Cell Regeneration

    Science.gov (United States)

    Jeon, Hayan; Oliveira, Joaquim Miguel; Reis, Rui Luis; Khang, Gilson

    2018-01-01

    Cornea endothelial cells (CEnCs) tissue engineering is a great challenge to repair diseased or damaged CEnCs and require an appropriate biomaterial to support cell proliferation and differentiation. Biomaterials for CEnCs tissue engineering require biocompatibility, tunable biodegradability, transparency, and suitable mechanical properties. Silk fibroin-based film (SF) is known to meet these factors, but construction of functionalized graft for bioengineering of cornea is still a challenge. Herein, lysophosphatidic acid (LPA) is used to maintain and increase the specific function of CEnCs. The LPA and SF composite film (LPA/SF) was fabricated in this study. Mechanical properties and in vitro studies were performed using a rabbit model to demonstrate the characters of LPA/SF. ATR-FTIR was characterized to identify chemical composition of the films. The morphological and physical properties were performed by SEM, AFM, transparency, and contact angle. Initial cell density and MTT were performed for adhesion and cell viability in the SF and LPA/SF film. Reverse transcription polymerase chain reactions (RT-PCR) and immunofluorescence were performed to examine gene and protein expression. The results showed that films were designed appropriately for CEnCs delivery. Compared to pristine SF, LPA/SF showed higher biocompatibility, cell viability, and expression of CEnCs specific genes and proteins. These indicate that LPA/SF, a new biomaterial, offers potential benefits for CEnCs tissue engineering for regeneration. PMID:29710848

  11. Fabrication and Intermolecular Interactions of Silk Fibroin/Hydroxybutyl Chitosan Blended Nanofibers

    Directory of Open Access Journals (Sweden)

    Xiu-Mei Mo

    2011-03-01

    Full Text Available The native extracellular matrix (ECM is composed of a cross-linked porous network of multifibril collagens and glycosaminoglycans. Nanofibrous scaffolds of silk fibroin (SF and hydroxybutyl chitosan (HBC blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP and trifluoroacetic acid (TFA as solvents to biomimic the native ECM via electrospinning. Scanning electronic microscope (SEM showed that relatively uniform nanofibers could be obtained when 12% SF was blended with 6% HBC at the weight ratio of 50:50. Meanwhile, the average nanofibrous diameter increased when the content of HBC in SF/HBC blends was raised from 20% to 100%. Fourier transform infrared spectra (FTIR and 13C nuclear magnetic resonance (NMR showed SF and HBC molecules existed in hydrogen bonding interactions but HBC did not induce conformation of SF transforming from random coil form to β-sheet structure. X-ray diffraction (XRD confirmed the different structure of SF/HBC blended nanofibers from both SF and HBC. Thermogravimetry-Differential thermogravimetry (TG-DTG results demonstrated that the thermal stability of SF/HBC blend nanofibrous scaffolds was improved. The results indicated that the rearrangement of HBC and SF molecular chain formed a new structure due to stronger hydrogen bonding between SF and HBC. These electrospun SF/HBC blended nanofibers may provide an ideal tissue engineering scaffold and wound dressing.

  12. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    Science.gov (United States)

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  13. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  14. Silk-Fibroin and Graphene Oxide Composites Promote Human Periodontal Ligament Stem Cell Spontaneous Differentiation into Osteo/Cementoblast-Like Cells.

    Science.gov (United States)

    Vera-Sánchez, Mar; Aznar-Cervantes, Salvador; Jover, Eva; García-Bernal, David; Oñate-Sánchez, Ricardo E; Hernández-Romero, Diana; Moraleda, Jose M; Collado-González, Mar; Rodríguez-Lozano, Francisco Javier; Cenis, Jose Luis

    2016-11-15

    Graphene represents one of the most interesting additions to the tissue engineering toolbox. Novel graphene-based composites are required to improve the beneficial graphene properties in terms of tridimensional polymeric structure, conferring a higher mechanical strength and favoring the differentiation of human mesenchymal stem cells. Here, we have demonstrated in a wide range of composite combinations, the successful use of graphene and silk-fibroin constructs for future bioengineering applications in the field of clinical regenerative dentistry using human periodontal ligament stem cells. Our results provide exciting new data for the development of suitable scaffolds that allow good cell engrafting, preservation of cell viability and proliferation, promotion of spontaneous osteoblastic differentiation, and importantly, stimulation of a higher cementum physiological synthesis than using other different available biomaterials.

  15. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D.

    Science.gov (United States)

    Bäcker, Anne; Erhardt, Olga; Wietbrock, Lukas; Schel, Natalia; Göppert, Bettina; Dirschka, Marian; Abaffy, Paul; Sollich, Thomas; Cecilia, Angelica; Gruhl, Friederike J

    2017-02-01

    In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze-drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers. © 2016 Wiley Periodicals, Inc.

  16. Silk-based biomaterials.

    Science.gov (United States)

    Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L

    2003-02-01

    Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.

  17. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  18. One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts.

    Science.gov (United States)

    Xu, Shengjie; Yong, Liu; Wu, Peiyi

    2013-02-01

    Flowerlike gold nanoparticles (Au NPs)/reduced graphene oxide (RGO) composites were fabricated by a facile, one-pot, environmentally friendly method in the presence of regenerated silk fibroin (RSF). The influences of reaction time, temperature, and HAuCl(4): RGO ratio on the morphology of Au NPs loaded on RGO sheets were discussed and a tentative mechanism for the formation of flowerlike Au NPs/RGO composite was proposed. In addition, the flowerlike Au NPs/RGO composite showed superior catalytic performance for oxygen reduction reaction (ORR) to Au/RGO composites with other morphologies. Our work provides an alternative facile and green approach to synthesize functional metal/RGO composites.

  19. Silk fibers and silk-producing organs of Harpactea rubicunda (C. L. Koch 1838) (Araneae, Dysderidae).

    Science.gov (United States)

    Hajer, Jaromír; Malý, Jan; Reháková, Dana

    2013-01-01

    Scanning electron microscopy and atomic force microscopy were used to study the silk spinning apparatus and silks of Harpactea rubicunda spiders. Three types of silk secretions that are produced by three kinds of silk spinning glands (ampullate, piriform, and pseudaciniform) and released through three types of spigots, were confirmed for both adult and juvenile spiders. Silk secretions for the construction of spider webs for shelter or retreat are produced by the pseudaciniform silk glands. Silk secretions that are released from spigots in the course of web construction are not processed by the legs during the subsequent process of hardening. Pairs of nanofibril bundles seemed to be part of the basic microarchitecture of the web silk fibers as revealed by AFM. These fiber bundles frequently not only overlap one another, but occasionally also interweave. This structural variability may strengthen the spider web. High-resolution AFM scans of individual nanofibrils show a distinctly segmented nanostructure. Each globular segment is ∼30-40 nm long along the longitudinal axis of the fiber, and resembles a nanosegment of artificial fibroin described by Perez-Rigueiro et al. (2007). Copyright © 2012 Wiley Periodicals, Inc.

  20. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response.

    Science.gov (United States)

    Calabrese, Rossella; Raia, Nicole; Huang, Wenwen; Ghezzi, Chiara E; Simon, Marc; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2017-09-01

    The response of human bone marrow-derived mesenchymal stem cells (hMSCs) encapsulated in three-dimensional (3D) charged protein hydrogels was studied. Combining silk fibroin (S) with recombinant human tropoelastin (E) or silk ionomers (I) provided protein composite alloys with tunable physicochemical and biological features for regulating the bioactivity of encapsulated hMSCs. The effects of the biomaterial charges on hMSC viability, proliferation and chondrogenic or osteogenic differentiation were assessed. The silk-tropoelastin or silk-ionomers hydrogels supported hMSC viability, proliferation and differentiation. Gene expression of markers for chondrogenesis and osteogenesis, as well as biochemical and histological analysis, showed that hydrogels with different S/E and S/I ratios had different effects on cell fate. The negatively charged hydrogels upregulated hMSC chondrogenesis or osteogenesis, with or without specific differentiation media, and hydrogels with higher tropoelastin content inhibited the differentiation potential even in the presence of the differentiation media. The results provide insight on charge-tunable features of protein-based biomaterials to control hMSC differentiation in 3D hydrogels, as well as providing a new set of hydrogels for the compatible encapsulation and utility for cell functions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Fabrication, characterization, and in vitro study of zinc substituted hydroxyapatite/silk fibroin composite coatings on titanium for biomedical applications.

    Science.gov (United States)

    Zhong, Zhenyu; Ma, Jun

    2017-09-01

    Zinc substituted hydroxyapatite/silk fibroin composite coatings were deposited on titanium substrates at room temperature by electrophoretic deposition. Microscopic characterization of the synthesized composite nanoparticles revealed that the particle size ranged 50-200 nm, which increased a little after zinc substitution. The obtained coatings maintained the phase of hydroxyapatite and they could induce fast apatite formation in simulated body fluid, indicating high bone activity. The cell culturing results showed that the biomimetic hydroxyapatite coatings could regulate adhesion, spreading, and proliferation of osteoblastic cells. Furthermore, the biological behavior of the zinc substituted hydroxyapatite coatings was found to be better than the bare titanium without coatings and hydroxyapatite coatings without zinc, increasing MC3T1-E1 cell differentiation in alkaline phosphatase expression.

  2. Novel water-soluble curcumin derivative mediating erectile signaling.

    Science.gov (United States)

    Abdel Aziz, Mohamed Talaat; El Asmer, Mohammed F; Rezq, Ameen; Kumosani, Taha Abdullah; Mostafa, Samya; Mostafa, Taymour; Atta, Hazem; Abdel Aziz Wassef, Mohamed; Fouad, Hanan H; Rashed, Laila; Sabry, Dina; Hassouna, Amira A; Senbel, Amira; Abdel Aziz, Ahmed

    2010-08-01

    Curcumin is an inducer of heme oxygenase enzyme-1 (HO-1) that is involved in erectile signaling via elevating cyclic guanosine monophosphate (cGMP)levels. To assess the effect of oral administration of a water-soluble long-acting curcumin derivative on erectile signaling. Two hundred and thirty six male white albino rats were divided into four groups; group 1 (N = 20) includes control. Group 2 (N = 72) was equally divided into four subgroups; subgroup 1 received pure curcumin (10 mg/kg), subgroup 2 received the long-acting curcumin derivative (2 mg/kg), subgroup 3 received the long-acting curcumin derivative (10 mg/kg), and subgroup 4 received sildenafil (4 mg/kg). Subgroups were sacrificed after the first, second, and third hour. Group 3 (N = 72) was equally divided into the same four subgroups already mentioned and were sacrificed after 24 hours, 48 hours, and 1 week. Group 4 (N = 72) was subjected to intracavernosal pressure (ICP) measurements 1 hour following oral administration of the same previous doses in the same rat subgroups. Cavernous tissue HO enzyme activity, cGMP, and ICP. In group 2, there was a significant progressive maintained elevation of HO activity and cGMP tissue levels starting from the first hour in subgroups 3 and 4, whereas, the rise in HO activity and cGMP started from second hour regarding the other rat subgroups. Sildenafil effect decreased after 3 hours. In group 3, there was a significant maintained elevation of HO activity and cGMP tissue levels extended to 1 week as compared to controls for all rat subgroups that received both forms of curcumin. In group 4, long-acting curcumin derivative exhibited more significant potentiation of intracavernosal pressure as compared to control and to the pure curcumin. Water-soluble long-acting curcumin derivative could mediate erectile function via upregulating cavernous tissue cGMP. © 2009 International Society for Sexual Medicine.

  3. Improved strength of silk fibers in Bombyx mori trimolters induced by an anti-juvenile hormone compound.

    Science.gov (United States)

    Guo, Kaiyu; Dong, Zhaoming; Zhang, Yan; Wang, Dandan; Tang, Muya; Zhang, Xiaolu; Xia, Qingyou; Zhao, Ping

    2018-05-01

    Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk. This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk. Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland. We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties. Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications

    International Nuclear Information System (INIS)

    Kasoju, Naresh; Bora, Utpal

    2012-01-01

    Hepatic tissue engineering, which aims to construct artificial liver tissues, requires a suitable extracellular matrix (ECM) for growth and proliferation of metabolically active hepatocytes. The current paper describes the development of a biomimetic artificial ECM, for hepatic tissue engineering applications, by mimicking the architectural features and biochemical composition of native ECM. Electrospinning was chosen as the fabrication technique of choice, while regenerated silk fibroin (RSF) and galactosylated chitosan (GalCS) were chosen as materials of choice. Poly(ethylene oxide) was used as a processing aid. Methodical optimization studies were performed to obtain smooth and continuous nanofibers with homogenous size distribution. Extensive characterization studies were performed to determine its morphological, physical, chemical/structural, thermal and cytotoxicity properties. Subsequently, detailed in vitro hepatocyte compatibility studies were performed using HepG2 cell line. Remarkably, the studies revealed that the growth, viability, metabolic activity and proliferation of hepatocytes were relatively superior on RSF–GalCS scaffold than on pure RSF and pure GalCS. In summary, the electrospun nanofibrous RSF–GalCS scaffold tries to mimic both architectural and biochemical features of native ECM, and hence could be an appropriate scaffold for in vitro engineering of hepatic tissue. However, additional experiments are needed to confirm the superiority in characteristic functionality of hepatocytes growing on RSF–GalCS scaffold in relation to RSF and GalCS scaffolds, and to test its behavior in vivo. (paper)

  5. Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant.

    Science.gov (United States)

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Redmond, Sharon L; Atlas, Marcus D; Wang, Xungai

    2017-11-01

    Regenerated silk fibroin membranes tend to be brittle when dry. The use of plasticisers such as glycerol improve membrane ductility, but, when combined with aqueous processing, can lead to a higher degradation rate than solvent-annealed membranes. This study investigated the use of formic acid as the solvent with glycerol to make deformable yet degradation-resistant silk membranes. Here we show that membranes cast using formic acid had low light scattering, with a diffuse transmittance of less than 5% over the visible wavelengths, significantly lower than the 20% transmittance of aqueous derived silk/glycerol membranes. They had 64% β-sheet content and lost just 30% of the initial silk weight over 6h when tested with an accelerated enzymatic degradation assay, in comparison the aqueous membranes completely degraded within this timeframe. The addition of glycerol also improved the maximum elongation of formic acid derived membranes from under 3% to over 100%. They also showed good cytocompatibility and supported the adhesion and migration of human tympanic membrane keratinocytes. Formic acid based, silk/glycerol membranes may be of great use in medical applications such as repair of tympanic membrane perforation or ocular applications where transparency and resistance to enzymatic degradation are important. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Silk fibroin immobilization on poly(ethylene terephthalate) films: Comparison of two surface modification methods and their effect on mesenchymal stem cells culture

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Meini; Yao, Jinrong; Chen, Xin; Huang, Lei; Shao, Zhengzhong, E-mail: zzshao@fudan.edu.cn

    2013-04-01

    Silk fibroin (SF) has played a curial role for the surface modification of conventional materials to improve the biocompatibility, and SF modified poly(ethylene terephthalate) (PET) materials have potential applications on tissue engineering such as artificial ligament, artificial vessel, artificial heart valve sewing cuffs dacron and surgical mesh engineering. In this work, SF was immobilized onto PET film via two different methods: 1) plasma pretreatment followed by SF dip coating (PET-SF) and 2) plasma-induce acrylic acid graft polymerization and subsequent covalent immobilization of SF on PET film (PET-PAA-SF). It could be found that plasma treatment provided higher surface roughness which was suitable for further SF dip coating, while grafted poly(acrylic acid) (PAA) promised the covalent bonding between SF and PAA. ATR-FTIR adsorption band at 3284 cm{sup −1}, 1623 cm{sup −1} and 1520 cm{sup −1} suggested the successful introduction of SF onto PET surface, while the amount of immobilized SF of PET-SF was higher than PET-PAA-SF according to XPS investigation (0.29 vs 0.23 for N/C ratio). Surface modified PET film was used as substrate for mesenchymal stem cells (MSCs) culture, the cells on PET-SF surface exhibited optimum density compared to PET-PAA-SF according to CCK-8 assays, which indicated that plasma pretreatment followed by SF dip coating was a simple and effective way to prepare biocompatible PET surface. Highlights: ► Silk fibroins were immobilized onto PET films with or without the linker of PAA. ► Various techniques were performed to characterize the modified surfaces ► Plasma treatment followed by SF dip coating introduced more SF onto PET films. ► Compare to PET-PAA-SF, PET-SF has better biocompatibility base on MSCs culture.

  7. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application.

    Science.gov (United States)

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-06-17

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.

  8. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2017-06-01

    Full Text Available Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol (PVA composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field.

  9. Design and Characterization of a Silk-Fibroin-Based Drug Delivery Platform Using Naproxen as a Model Drug

    Directory of Open Access Journals (Sweden)

    Tatyana Dyakonov

    2012-01-01

    Full Text Available The objective of this proof-of-concept study was to develop a platform for controlled drug delivery based on silk fibroin (SF and to explore the feasibility of using SF in oral drug delivery. The SF-containing matrixes were prepared via spray-drying and film casting, and the release profile of the model drug naproxen sodium was evaluated. Attenuated total reflectance Fourier transform infrared spectroscopy (FTIR has been used to observe conformational changes in SF- and drug-containing compositions. SF-based films, spray-dried microparticles, and matrixes loaded with naproxen were prepared. Both FTIR spectra and in vitro dissolution data demonstrated that SF β-sheet conformation regulates the release profile of naproxen. The controlled release characteristics of the SF-containing compositions were evaluated as a function of SF concentration, temperature, and exposure to dehydrating solvents. The results suggest that SF may be an attractive polymer for use in controlled drug delivery systems.

  10. Dextrose modified flexible tasar and muga fibroin films for wound healing applications.

    Science.gov (United States)

    Srivastava, Chandra Mohan; Purwar, Roli; Gupta, Anuradha; Sharma, Deepak

    2017-06-01

    This paper is focused on preparation and characterization of regenerated muga and tasar fibroin flexible films from cocoon using ionic liquid. These flexible muga and tasar fibroin films were prepared by incorporating dextrose (5 to 15% w/w) as plasticizer. The mechanical, thermal, physical, morphological and biological properties of dextrose plasticized muga and tasar fibroin films were characterized. These plasticized films showed higher elongation at break as well as water holding capacity as compared to the un-plasticized films. The surface roughness and water absorbance capacity of the dextrose plasticized films were higher than un-plasticized films, which results in improved adherence and proliferation of L929 fibroblast cells. Gentamicin loaded plasticized muga and tasar fibroin films showed slightly higher rate of release as compared to un-plasticized films. The biodegradability of dextrose plasticized films was significantly higher as compared to their respective counterpart. The regeneration of flexible muga and tasar silk fibroin films pave the way to expand potential use of non-mulberry in the field of biomedical such as wound dressing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fabrication and characterization of silk fibroin/bioactive glass composite films

    International Nuclear Information System (INIS)

    Zhu Hailin; Liu Na; Feng Xinxing; Chen Jianyong

    2012-01-01

    Composite films of silk fibroin (SF) with nano bioactive glass (NBG) were prepared by the solvent casting method, and the structures and properties of the composite films were characterized. Fourier transform infrared (FT-IR) spectroscopy analysis shows that the random coil and β-sheet structure co-exist in the SF films. Results of field emission scanning electron microscope (FESEM) indicate that the NBG particles are uniformly dispersed in the SF films. The measurements of the water contact angles suggest that the incorporation of NBG into SF can improve the hydrophilicity of the composites. The bioactivity of the composite films was evaluated by soaking in 1.5 times simulated body fluid (1.5 × SBF), and formation of a hydroxycarbonate apatite (HCA) layer was determined by XRD and FESEM. The results show that the SF/NBG composite film is bioactive as it induces the formation of HCA on the surface of the composite film after soaking in 1.5 × SBF for 7 days. In vitro osteoblasts attachment and proliferation tests show that the composite film is a good matrix for the growth of osteoblasts. Consequently, the incorporation of NBG into the SF film can enhance both the bioactivity and biocompatibility of the film, which suggests that the SF/NBG composite film may be a potential biomaterial for bone tissue engineering. - Highlights: ► The incorporation of NBG into SF can improve the hydrophilicity of the SF/NBG composite films. ► The SF/NBG composite films show the better bioactivity than the pure SF film. ► The SF/NBG composite films facilitate cell growth and promote cell proliferation and differentiation.

  12. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres

    Directory of Open Access Journals (Sweden)

    Zeng SG

    2015-05-01

    Full Text Available Shuguang Zeng,1,* Manwen Ye,1,2,* Junqi Qiu,1 Wei Fang,1 Mingdeng Rong,1 Zehong Guo,1 Wenfen Gao11Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, 2Department of Stomatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this workAbstract: We report the effects of distinct concentrations of genipin and silk fibroin (SF:chitosan (CS ratios on the formation of SF–CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA, and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 µm to 147 µm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the

  13. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials.

    Science.gov (United States)

    Bhattacharjee, Maumita; Schultz-Thater, Elke; Trella, Emanuele; Miot, Sylvie; Das, Sanskrita; Loparic, Marko; Ray, Alok R; Martin, Ivan; Spagnoli, Giulio C; Ghosh, Sourabh

    2013-11-01

    We have investigated monocyte and T cell responsiveness to silk based biomaterials of different physico-chemical characteristics. Here we report that untransformed CD14+ human monocytes respond to overnight exposure to silk fibroin-based biomaterials in tridimensional form by IL-1β and IL-6, but not IL-10 gene expression and protein production. In contrast, fibroin based materials in bidimensional form are unable to stimulate monocyte responsiveness. The elicitation of these effects critically requires contact between biomaterials and responding cells, is not sustained and becomes undetectable in longer term cultures. We also observed that NF-κβ and p38 MAP kinase play key roles in monocyte activation by silk-based biomaterials. On the other hand, fibroin based materials, irrespective of their physico-chemical characteristics appeared to be unable to induce the activation of peripheral blood T cells from healthy donors, as evaluated by the expression of activation markers and IFN-γ gene. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. A highly divergent gene cluster in honey bees encodes a novel silk family

    OpenAIRE

    Sutherland, Tara D.; Campbell, Peter M.; Weisman, Sarah; Trueman, Holly E.; Sriskantha, Alagacone; Wanjura, Wolfgang J.; Haritos, Victoria S.

    2006-01-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1–4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-r...

  15. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    OpenAIRE

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on ...

  16. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1 mm microcoil MAS NMR probehead

    KAUST Repository

    Yamauchi, Kazuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1 mg and therefore we used a home-built 1 mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed. © 2010 Elsevier Inc. All rights reserved.

  17. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Yang, Sung Yeun; Hwang, Tae Heon; Ryu, WonHyoung; Che, Lihua; Oh, Jin Soo; Ha, Yoon

    2015-01-01

    Electrospun silk fibroin (SF) scaffolds have drawn much attention because of their resemblance to natural tissue architecture such as extracellular matrix, and the biocompatibility of SF as a candidate material to replace collagen. However, electrospun scaffolds lack the physical integrity of bone tissue scaffolds, which require resistance to mechanical loadings. In this work, we propose membrane-reinforced electrospun SF scaffolds by a serial process of electrospinning and freeze-drying of SF solutions in two different solvents: formic acid and water, respectively. After wet electrospinning followed by replacement of methanol with water, SF nanofibers dispersed in water were mixed with aqueous SF solution. Freeze-drying of the mixed solution resulted in 3D membrane-connected SF nanofibrous scaffolds (SF scaffolds) with a thickness of a few centimeters. We demonstrated that the SF concentration of aqueous SF solution controlled the degree of membrane reinforcement between nanofibers. It was also shown that both increase in degree of membrane reinforcement and inclusion of hydroxyapatite (HAP) nanoparticles resulted in higher resistance to compressive loadings of the SF scaffolds. Culture of human osteoblasts on collagen, SF, and SF-HAP scaffolds showed that both SF and SF-HAP scaffolds had biocompatibility and cell proliferation superior to that of the collagen scaffolds. SF-HAP scaffolds with and without BMP-2 were used for in vivo studies for 4 and 8 weeks, and they showed enhanced bone tissue formation in rat calvarial defect models. (paper)

  18. Dextrose modified flexible tasar and muga fibroin films for wound healing applications

    International Nuclear Information System (INIS)

    Srivastava, Chandra Mohan; Purwar, Roli; Gupta, Anuradha; Sharma, Deepak

    2017-01-01

    This paper is focused on preparation and characterization of regenerated muga and tasar fibroin flexible films from cocoon using ionic liquid. These flexible muga and tasar fibroin films were prepared by incorporating dextrose (5 to 15% w/w) as plasticizer. The mechanical, thermal, physical, morphological and biological properties of dextrose plasticized muga and tasar fibroin films were characterized. These plasticized films showed higher elongation at break as well as water holding capacity as compared to the un-plasticized films. The surface roughness and water absorbance capacity of the dextrose plasticized films were higher than un-plasticized films, which results in improved adherence and proliferation of L929 fibroblast cells. Gentamicin loaded plasticized muga and tasar fibroin films showed slightly higher rate of release as compared to un-plasticized films. The biodegradability of dextrose plasticized films was significantly higher as compared to their respective counterpart. The regeneration of flexible muga and tasar silk fibroin films pave the way to expand potential use of non-mulberry in the field of biomedical such as wound dressing. - Highlights: • Cocoon extracted muga and tasar fibroin have regenerated as flexible films. • Dextrose acts as plasticizer in muga and tasar fibroin films. • Films show good mechanical integrity, water absorption, biocompatibility over the un-plasticized films. • These flexible films are found to be promising candidates for wound healing.

  19. Dextrose modified flexible tasar and muga fibroin films for wound healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Chandra Mohan [Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad, Daulatpur Bawana Road, Delhi 110042 (India); Purwar, Roli, E-mail: roli.purwar@dce.edu [Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad, Daulatpur Bawana Road, Delhi 110042 (India); Gupta, Anuradha; Sharma, Deepak [Department of Pharmaceutics, Central Drug Research Institute, Lucknow 226031 (India)

    2017-06-01

    This paper is focused on preparation and characterization of regenerated muga and tasar fibroin flexible films from cocoon using ionic liquid. These flexible muga and tasar fibroin films were prepared by incorporating dextrose (5 to 15% w/w) as plasticizer. The mechanical, thermal, physical, morphological and biological properties of dextrose plasticized muga and tasar fibroin films were characterized. These plasticized films showed higher elongation at break as well as water holding capacity as compared to the un-plasticized films. The surface roughness and water absorbance capacity of the dextrose plasticized films were higher than un-plasticized films, which results in improved adherence and proliferation of L929 fibroblast cells. Gentamicin loaded plasticized muga and tasar fibroin films showed slightly higher rate of release as compared to un-plasticized films. The biodegradability of dextrose plasticized films was significantly higher as compared to their respective counterpart. The regeneration of flexible muga and tasar silk fibroin films pave the way to expand potential use of non-mulberry in the field of biomedical such as wound dressing. - Highlights: • Cocoon extracted muga and tasar fibroin have regenerated as flexible films. • Dextrose acts as plasticizer in muga and tasar fibroin films. • Films show good mechanical integrity, water absorption, biocompatibility over the un-plasticized films. • These flexible films are found to be promising candidates for wound healing.

  20. SILK FIBRE DEGRADATION AND ANALYSIS BY PROTEOMICS

    Directory of Open Access Journals (Sweden)

    YUKSELOGLU S.Muge

    2016-05-01

    Full Text Available Silk is one of the promising natural fibres and has a long established history in textile production throughout the centuries. Silk is produced by cultured silk worms, spiders, scorpions, mites and flies. It is extracellular proteinaceous fibres which consist of highly crystalline and insoluble proteins, the fibroins glued with sericin and an amourphous protein. On the other hand, understanding and controlling the degradation of protein materials are important for determining quality and the value of appearance retention in textiles. Hence, for silk textiles, appearance retention is critical value for the quality. And this is one of the key properties directly related to the degree and nature of protein degradation. It is therefore necessary to understand the silk composition and damage to obtain good conservation treatments and long-term preservation especially for the historical silk fabrics. In this study, silk fibre and its properties are briefly introduced along with images on their fibre damages. Additionally, proteomics method which helps to understand the degradation at the molecular level in textiles is introduced. Finally, proteomic evaluation of silk is summarized according to the researchers carried out in the literature.

  1. Structural Origins of Silk Piezoelectricity.

    Science.gov (United States)

    Yucel, Tuna; Cebe, Peggy; Kaplan, David L

    2011-02-22

    Uniaxially oriented, piezoelectric silk films were prepared by a two-step method that involved: (1) air drying aqueous, regenerated silk fibroin solutions into films, and (2) drawing the silk films to a desired draw ratio. The utility of two different drawing techniques, zone drawing and water immersion drawing were investigated for processing the silk for piezoelectric studies. Silk films zone drawn to a ratio of λ= 2.7 displayed relatively high dynamic shear piezoelectric coefficients of d(14) = -1.5 pC/N, corresponding to over two orders of magnitude increase in d(14) due to film drawing. A strong correlation was observed between the increase in the silk II, β-sheet content with increasing draw ratio measured by FTIR spectroscopy (C(β)∝ e(2.5) (λ)), the concomitant increasing degree of orientation of β-sheet crystals detected via WAXD (FWHM = 0.22° for λ= 2.7), and the improvement in silk piezoelectricity (d(14)∝ e(2.4) (λ)). Water immersion drawing led to a predominantly silk I structure with a low degree of orientation (FWHM = 75°) and a much weaker piezoelectric response compared to zone drawing. Similarly, increasing the β-sheet crystallinity without inducing crystal alignment, e.g. by methanol treatment, did not result in a significant enhancement of silk piezoelectricity. Overall, a combination of a high degree of silk II, β-sheet crystallinity and crystalline orientation are prerequisites for a strong piezoelectric effect in silk. Further understanding of the structural origins of silk piezoelectricity will provide important options for future biotechnological and biomedical applications of this protein.

  2. Influence of Philosamia ricini silk fibroin components on morphology, secondary structure and thermal properties of chitosan biopolymer film.

    Science.gov (United States)

    Prasong, S; Nuanchai, K; Wilaiwan, S

    2009-09-15

    This study aimed to prepare Eri (Philosamia ricini) Silk Fibroin (SF)/chitosan (CS) blend films by a solvent evaporation method and to compare the blend films with both native SF and CS films. Influence of SF ratios on the morphology, secondary structure and thermal decomposition of the CS blend films were investigated. The native SF and CS films were uniform and homogeneous without phase separation. For the blend films, the uniform can be found less than 60% of SF composition. All of SF/CS blend films showed both SF and CS characteristics. FT-IR results showed that the blend films composed of both random coil and beta-sheet with predominant of beta-sheet form. Interaction of intermolecular between SF and CS have occurred which were measured by thermogravimetric thermograms. Increasing of SF contents was leading to the increase of beta-sheet structures which were enhanced the thermal stability of the CS blend films.

  3. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Shao, Weili; He, Jianxin; Han, Qiming; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong

    2016-01-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65 MPa and tensile strength 180.36 MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. - Highlights: • A novel strategy to mimic the hierarchical collagen fibril in bone is proposed by electrospinning and conventional textile technology. • The tensile strength of the woven scaffold was nearly 4-fold larger than that of nonwoven mats. • The nanofiber woven scaffolds show excellent cytocompatibility and accelerate osteoblast differentiation. • The composite scaffold significantly enhanced formation of new bone in damaged condyles in rabbit femur.

  4. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Han, Qiming [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); and others

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65 MPa and tensile strength 180.36 MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. - Highlights: • A novel strategy to mimic the hierarchical collagen fibril in bone is proposed by electrospinning and conventional textile technology. • The tensile strength of the woven scaffold was nearly 4-fold larger than that of nonwoven mats. • The nanofiber woven scaffolds show excellent cytocompatibility and accelerate osteoblast differentiation. • The composite scaffold significantly enhanced formation of new bone in damaged condyles in rabbit femur.

  5. Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats

    Directory of Open Access Journals (Sweden)

    Lozano-Pérez AA

    2014-09-01

    Full Text Available Antonio Abel Lozano-Pérez,1 Alba Rodriguez-Nogales,2 Víctor Ortiz-Cullera,1 Francesca Algieri,2 José Garrido-Mesa,2 Pedro Zorrilla,2 M Elena Rodriguez-Cabezas,2 Natividad Garrido-Mesa,2 M Pilar Utrilla,2 Laura De Matteis,3 Jesús Martínez de la Fuente,3 José Luis Cenis,1 Julio Gálvez2 1Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain; 2Centro de Investigaciones Biomédicas en Red – Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs Granada, Center for Biomedical Research, University of Granada, Granada, Spain; 3Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, Spain Purpose: We aimed to evaluate the intestinal anti-inflammatory properties of silk fibroin nanoparticles, around 100 nm in size, when loaded with the stilbene compound resveratrol, in an experimental model of rat colitis. Methods: Nanoparticles were loaded with resveratrol by adsorption. The biological effects of the resveratrol-loaded nanoparticles were tested both in vitro, in a cell culture of RAW 264.7 cells (mouse macrophages, and in vivo, in the trinitrobenzenesulfonic acid model of rat colitis, when administered intracolonically.Results: The resveratrol liberation in 1× phosphate-buffered saline (PBS; pH 7.4 was characterized by fast liberation, reaching the solubility limit in 3 hours, which was maintained over a period of 80 hours. The in vitro assays revealed immunomodulatory properties exerted by these resveratrol-loaded nanoparticles since they promoted macrophage activity in basal conditions and inhibited this activity when stimulated with lipopolysaccharide. The in vivo experiments showed that after evaluation of the macroscopic symptoms, inflammatory markers, and intestinal barrier function, the fibroin nanoparticles loaded with resveratrol had a better effect than the single treatments, being similar to that produced by the glucocorticoid dexamethasone. Conclusion: Silk

  6. Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliramaji, Shamsa; Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir; Mozafari, Masoud

    2017-01-01

    Tissue engineering is a promising approach in repairing damaged tissues. During the last few years, magnetic nanoparticles have been of great interest in this field of study due to their controlled responsive characteristics in specific external magnetic fields. In this study, after synthesizing iron oxide (magnetite) nanoparticles through a reverse coprecipitation method, silk fibroin/chitosan-based magnetic scaffolds were prepared using different amounts of magnetite nanoparticles (0, 0.5, 1 and 2%) by freeze-casting method. The physicochemical activity of the scaffolds was monitored in phosphate-buffered saline (PBS) solution to determine the biodegradation and swelling behaviors. The stability of the magnetite nanoparticles in the fabricated scaffolds was determined by atomic absorption spectroscopy (AAS). Moreover, the cellular activity of the magnetic scaffolds was examined under a static magnetic field. The results showed that the lamellar structured scaffolds having MNPs in the walls could not affect the final structure and deteriorate the biological characteristics of the scaffolds, while the ability of magnetic responsivity was added to the scaffolds. This study warrants further pre-clinical and clinical evaluations. - Highlights: • Based on TEM micrograph and Rietveld refinement the particle size of MNPs was approximately 12 nm. • The water absorption of silk scaffolds increases by the addition of chitosan content. • Addition of 0.5 wt% MNPs led to decrease in scaffolds degradation and number of living cells. • By increasing the MNPs from 0.5 to 1 and 2, the degradation rate and living cells increased. • In scaffolds with 2 wt% MNPs cell attachment is slightly better than those of 0.5 wt%.

  7. Differential scanning fluorimetry illuminates silk feedstock stability and processability

    Czech Academy of Sciences Publication Activity Database

    Dicko, C.; Kasoju, Naresh; Hawkins, N.; Vollrath, F.

    2016-01-01

    Roč. 12, č. 1 (2016), s. 255-262 ISSN 1744-683X R&D Projects: GA MŠk(CZ) EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : differential scanning fluorimetry * biomaterials * silk fibroin Subject RIV: CE - Biochemistry Impact factor: 3.889, year: 2016

  8. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Song; Gao Zhen; Chen Xiaomeng; Lian Xiaojie; Zhu Hesun [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng Jun; Sun Lizhong [Department of Cardiac Surgery, Cardiovascular Institute and Fu Wai Hospital, CAMS and PUMC, Beijing 100037 (China)], E-mail: wangsongbit@hotmail.com

    2008-12-15

    The hemocompatibility of silk fibroin (SF) was improved with ferulic acid (FA) by graft polymerization. Ferulic acid is an active ingredient of many Chinese herbal medicines, such as Chuanxiong (Rhizoma ligustici wallichii), Danggui (Angelica sinensis) and Awei (Asafoetida giantfennel), which have been used to treat cardiovascular diseases by Chinese physicians for thousands of years. The inhibitory functions of FA on blood coagulation and erythrocyte agglutination were first characterized by a Lee-White test tube method and a micropipette technique, respectively. Then, FA was immobilized on SF by graft polymerization and the surface composition of modified SF was characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR), x-ray photoelectron spectroscopy (XPS) and optical microscopy. The anticoagulant activity of modified SF was assessed, respectively, by in vitro clotting time measurements on a photo-optical clot detection instrument and with the Lee-White test tube method. The test results indicated that in comparison to untreated SF, the anticoagulant activity of modified SF has been improved significantly. Moreover, the SF surface composition is altered by FA but its {beta}-sheet conformation is not disturbed.

  9. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  10. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  11. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; Lei, Xiaohua; He, Feng-Li; He, Jin; Liu, Ya-Li; Ye, Ya-Jing; Deng, Xudong; Duan, Enkui; Yin, Da-Chuan

    2017-12-01

    The physical and chemical properties of the scaffold are known to play important roles in three-dimensional (3D) cell culture, which always determine the cellular fate or the results of implantation. To control these properties becomes necessary for meeting the requirements of a variety of tissue engineering applications. In this study, a series of silk fibroin/chitosan (SF/CS) scaffolds with tunable properties were prepared using freeze-drying method, and the rat bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded in these scaffolds to evaluate their availability of use in tissue engineering. The 3D structure, mechanical properties and degradation ability of SF/CS scaffold can be tuned by changing the total concentration of the precursor solution and the blending ratio between SF and CS. BM-MSCs cultured in the SF/CS scaffold exhibited excellent proliferation and multiple morphologies. The induction of osteogenic and adipogenic differentiation of BM-MSCs were successful in this scaffold when cultured in vitro. Subcutaneous implantation of the SF/CS scaffolds did not cause any inflammatory response within four weeks, which revealed good compatibility. Moreover, the implanted scaffold allowed host cells to invade, adhere, grow and form new blood vessels. With these excellent performance, SF/CS scaffold has great potential in preparing implants for tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.

  12. Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing.

    Science.gov (United States)

    Kheradvar, Shadi Alsadat; Nourmohammadi, Jhamak; Tabesh, Hadi; Bagheri, Behnam

    2018-06-01

    Core-sheath nanofibrous mat as a new vitamin E (VE) delivery system based on silk fibroin (SF)/poly(vinyl alcohol) (PVA)/aloe vera (AV) was successfully prepared by the electrospinning method. Initially, VE-loaded starch nanoparticles were produced and then incorporated into the best beadless SF-PVA-AV nanofibers. The successful loading of VE in starch nanoparticles was proved by Fourier-transform infrared spectroscopy. The scanning electron microscopy and transmission electron microscopy indicated that spherical nanoparticles were successfully embedded within the nanofibers. In vitro release studies demonstrated that the release of VE was controlled by Fickian diffusion and was faster in samples containing more nanoparticles. Fibroblast attachment, proliferation, and collagen secretion were enhanced after adding AV and VE to the SF-PVA nanomatrix. Moreover, the incorporation of VE into the nanocomposite dressing enhanced antioxidant activity, which can have a positive effect on wound healing process by protecting the cells from toxic oxidation products. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Novel and simple route to fabricate fully biocompatible plasmonic mushroom arrays adhered on silk biopolymer

    Science.gov (United States)

    Park, Joonhan; Choi, Yunkyoung; Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan

    2014-12-01

    A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures.A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures. Electronic supplementary information (ESI) available: The incident angle dependence of reflectance spectra and the atomic force microscopy image of the Au nanoparticle array on a silk film after 1 hour of ultrasonication. See DOI: 10.1039/c4nr05172f

  14. In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds

    Directory of Open Access Journals (Sweden)

    Hyeon Joo Kim

    2012-12-01

    Full Text Available Human adipose-derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with natural and synthetic biomaterials. In the present study, we hypothesized that porous aqueous-derived silk protein scaffolds would be suitable for chondrogenic differentiation of human adipose-derived stem cells. Human adipose-derived stem cells were cultured up to 6 weeks, and cell proliferation and chondrogenic differentiation were investigated and compared with those in conventional micromass culture. Cell proliferation, glycosaminoglycan, and collagen levels in aqueous-derived silk scaffolds were significantly higher than in micromass culture. Transcript levels of SOX9 and type II collagen were also upregulated in the cell–silk constructs at 6 weeks. Histological examination revealed that the pores of the silk scaffolds were filled with cells uniformly distributed. In addition, chondrocyte-specific lacunae formation was evident and distributed in the both groups. The results suggest the biodegradable and biocompatible three-dimensional aqueous-derived silk scaffolds provided an improved environment for chondrogenic differentiation compared to micromass culture.

  15. Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep.

    Science.gov (United States)

    Uebersax, Lorenz; Apfel, Tanja; Nuss, Katja M R; Vogt, Rainer; Kim, Hyoen Yoo; Meinel, Lorenz; Kaplan, David L; Auer, Joerg A; Merkle, Hans P; von Rechenberg, Brigitte

    2013-09-01

    The goal of the presented study was to compare the biocompatibility and cellular responses to porous silk fibroin (SF) scaffolds produced in a water-based (UPW) or a solvent based process (HFIP) using two different SF sources. For that reason, four different SF scaffolds were implanted (n=6) into drill hole defects in the cancellous bone of the sheep tibia and humerus. The scaffolds were evaluated histologically for biocompatibility, cell-material interaction, and cellular ingrowth. New bone formation was observed macroscopically and histologically at 8 weeks after implantation. For semiquantitative evaluation, the investigated parameters were scored and statistically analyzed (factorial ANOVA). All implants showed good biocompatibility as evident by low infiltration of inflammatory cells and the absent encapsulation of the scaffolds in connective tissue. Multinuclear foreign body giant cells (MFGCs) and macrophages were present in all parts of the scaffold at the material surface and actively degrading the SF material. Cell ingrowth and vascularization were uniform across the scaffold. However, in HFIP scaffolds, local regions of void pores were present throughout the scaffold, probably due to the low pore interconnectivity in this scaffold type in contrast to UPW scaffolds. The amount of newly formed bone was very low in both scaffold types but was more abundant in the periphery than in the center of the scaffolds and for HFIP scaffolds mainly restricted to single pores. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology.

    Directory of Open Access Journals (Sweden)

    Shuguang Zeng

    Full Text Available Bone tissue engineering is a powerful tool to treat bone defects caused by trauma, infection, tumors and other factors. Both silk fibroin (SF and chitosan (CS are non-toxic and have good biocompatibility, but are poor biological scaffolds when used alone. In this study, the microscopic structure and related properties of SF/CS composite scaffolds with different component ratios were examined. The scaffold material most suitable for osteoblast growth was determined, and these results offer an experimental basis for the future reconstruction of bone defects. First, via freeze-drying and chemical crosslinking methods, SF/CS composites with different component ratios were prepared and their structure was characterized. Changes in the internal structure of the SF and CS mixture were observed, confirming that the mutual modification between the two components was complete and stable. The internal structure of the composite material was porous and three-dimensional with a porosity above 90%. We next studied the pore size, swelling ratio, water absorption ratio, degradation and in vitro cell proliferation. For the 40% SF-60% CS group, the pore size of the scaffold was suitable for the growth of osteoblasts, and the rate of degradation was steady. This favors the early adhesion, growth and proliferation of MG-63 cells. In addition to good biocompatibility and satisfactory cell affinity, this material promotes the secretion of extracellular matrix materials by osteoblasts. Thus, 40% SF-60% CS is a good material for bone tissue engineering.

  17. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology.

    Science.gov (United States)

    Zeng, Shuguang; Liu, Lei; Shi, Yong; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfeng

    2015-01-01

    Bone tissue engineering is a powerful tool to treat bone defects caused by trauma, infection, tumors and other factors. Both silk fibroin (SF) and chitosan (CS) are non-toxic and have good biocompatibility, but are poor biological scaffolds when used alone. In this study, the microscopic structure and related properties of SF/CS composite scaffolds with different component ratios were examined. The scaffold material most suitable for osteoblast growth was determined, and these results offer an experimental basis for the future reconstruction of bone defects. First, via freeze-drying and chemical crosslinking methods, SF/CS composites with different component ratios were prepared and their structure was characterized. Changes in the internal structure of the SF and CS mixture were observed, confirming that the mutual modification between the two components was complete and stable. The internal structure of the composite material was porous and three-dimensional with a porosity above 90%. We next studied the pore size, swelling ratio, water absorption ratio, degradation and in vitro cell proliferation. For the 40% SF-60% CS group, the pore size of the scaffold was suitable for the growth of osteoblasts, and the rate of degradation was steady. This favors the early adhesion, growth and proliferation of MG-63 cells. In addition to good biocompatibility and satisfactory cell affinity, this material promotes the secretion of extracellular matrix materials by osteoblasts. Thus, 40% SF-60% CS is a good material for bone tissue engineering.

  18. Strong and biocompatible three-dimensional porous silk fibroin/graphene oxide scaffold prepared by phase separation.

    Science.gov (United States)

    Wang, Shu-Dong; Ma, Qian; Wang, Ke; Ma, Pi-Bo

    2018-05-01

    Silk fibroin (SF) is blended with graphene oxide (GO) to prepare the strong and biocompatible three dimensional porous SF/GO blended scaffold via phase separation. GO could be well dispersed in SF solution and GO could also be well distributed in the SF scaffold. Furthermore, the introduction of GO can lead to structural change in the bended scaffold. Higher concentration of GO resulted in more compact structure and smaller pore size of the composite scaffolds without decreasing their porosity. Scanning electron microscopy and energy dispersive spectrometry results also reveal that SF and GO are homogeneous blended together. Analysis of chemical structures of the scaffold shows that addition of GO do not affect the crystalline structure of SF and it is evenly blended with SF. The blended scaffold has significantly higher breaking strength than the pure SF scaffold. In vitro study indicates that both pure SF scaffold and SF/GO composite scaffold support growth and proliferation of MC3T3-E1 osteoprogenitor cells. However, the addition of GO contribute to the proliferation of MC3T3-E1 osteoprogenitor. The testing results show that the blended scaffold is an appropriate candidate for tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  20. Antimicrobial and antioxidant surface modification toward a new silk-fibroin (SF)-L-Cysteine material for skin disease management

    Science.gov (United States)

    Nogueira, Frederico; Granadeiro, Luíza; Mouro, Claudia; Gouveia, Isabel C.

    2016-02-01

    A novel dressing material - silk fibroin fabric (SF)-L-Cysteine (L-Cys) - is here developed to be used as standard treatment for atopic dermatitis (AD), which combines comfort, thermic, and tensile strength properties of silk materials with antioxidant and antimicrobial effects of L-Cys. A careful understanding about the linking strategies is needed in order not to compromise the bioavailability of L-Cys and deplenish its bioactivity. Durability was also addressed through washing cycles and compared with hospital requirements, according to international Standard EN ISO 105-C06:2010. The present research also analyze the interactions between Staphylococcus aureus and SF-L-Cys under simulating conditions of AD and demonstrated the effectiveness of a double covalent grafting, with the importance of SF tyrosine (Tyr) covalent linkage with L-Cys (SF-g-L-Cys/Tyr-g-L-Cys) even after several washing cycles, twenty five, whereas for a disposable application a single covalent mechanism of grafting L-Cys proved to be sufficient (SF-g-L-Cys). Results showed effective antimicrobial activities exhibiting higher inhibition ratios of 98.65% for SF-g-L-Cys after 5 washing cycles, whereas 97.55% for SF-g-L-Cys/Tyr-g-L-Cys after 25 washing cycles, both at pH 9.5 grafting strategy. Furthermore, it is also reported a non-protumoral effect of L-Cys. A new advance is herein achieved at the world of medical antimicrobial textiles tailored to address wound moisture environment and exudate self-cleaning, which may open novel applications as complementary therapy for AD disease.

  1. Photodynamic action of curcumin derived polymer modified ZnO nanocomposites

    International Nuclear Information System (INIS)

    Hariharan, R.; Senthilkumar, S.; Suganthi, A.; Rajarajan, M.

    2012-01-01

    Highlights: ► ZnO/PVA nano sensitized with curcumin and its metal complex were synthesized by vacuum evaporation method. ► M/cur sensitized on ZnO/PVA nanocomposites were characterized. ► Generation of 1 O 2 and ROS were detected by optical and EPR-spin trapping method. ► It was found that photoinduced cleavage of DNA using Zn/cur–ZnO/PVA was superior. ► Photodegradation of MB in water catalyzed by ZnO/PVA–Zn/cur was also superior under visible light. -- Abstract: The photodynamic action of ZnO nano can be improved by modifying the surface by PVA and encapsulating the natural product, curcumin. The synthesized ZnO/PVA nanocomposites have been characterized using XRD, SEM, TEM, FTIR, TG–DTA, etc. Here we are reporting the photodynamic effect of ZnO nanocomposites on pUC18 DNA. Based on optical and EPR measurements, singlet oxygen and other ROS were responsible for photocleavage of DNA. Most importantly, derived curcumin modified ZnO/PVA nanocomposites were comparatively more effective than derived curcumin complex against HeLa cell lines under in vitro condition. In addition, photodegradation of methylene blue (MB) in water catalyzed by nano ZnO/PVA–curcumin derivative was investigated at room temperature. Under visible irradiation photocatalytic activity of ZnO nanomaterial sensitized curcumin was higher than those of curcumin and nano ZnO.

  2. Structural and Spectral Properties of Curcumin and Metal- Curcumin Complex Derived from Turmeric (Curcuma longa)

    Science.gov (United States)

    Bich, Vu Thi; Thuy, Nguyen Thi; Binh, Nguyen Thanh; Huong, Nguyen Thi Mai; Yen, Pham Nguyen Dong; Luong, Tran Thanh

    Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa) were studied by SEM and vibrational (FTIR and Raman) techniques. By comparison between curcumin commercial, fresh turmeric and a yellow powder obtained via extraction and purification of turmeric, we have found that this insoluble powder in water is curcumin. The yellow compound could complex with certain ion metal and this metal-curcumin coloring complex is water soluble and capable of producing varying hues of the same colors and having antimicrobial, cytotoxicity activities for use in foodstuffs and pharmacy. The result also demonstrates that Micro-Raman spec-troscopy is a valuable non-destructive tool and fast for investigation of a natural plant even when occurring in low concentrations.

  3. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid (SF-GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF-GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF-GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF-GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    Science.gov (United States)

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  5. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada, E-mail: sorada.k@chula.ac.th

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10 mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm{sup 2}) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections. - Highlights

  6. Photodynamic action of curcumin derived polymer modified ZnO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, R.; Senthilkumar, S. [P.G. Department of Chemistry, Cardamom Planters’ Association College, Bodinayakanur 625513, Tamil Nadu (India); Suganthi, A., E-mail: suganthiphd09@gmail.com [P.G. and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu (India); Rajarajan, M., E-mail: rajarajan_1962@yahoo.com [P.G. Department of Chemistry, Cardamom Planters’ Association College, Bodinayakanur 625513, Tamil Nadu (India)

    2012-11-15

    Highlights: ► ZnO/PVA nano sensitized with curcumin and its metal complex were synthesized by vacuum evaporation method. ► M/cur sensitized on ZnO/PVA nanocomposites were characterized. ► Generation of {sup 1}O{sub 2} and ROS were detected by optical and EPR-spin trapping method. ► It was found that photoinduced cleavage of DNA using Zn/cur–ZnO/PVA was superior. ► Photodegradation of MB in water catalyzed by ZnO/PVA–Zn/cur was also superior under visible light. -- Abstract: The photodynamic action of ZnO nano can be improved by modifying the surface by PVA and encapsulating the natural product, curcumin. The synthesized ZnO/PVA nanocomposites have been characterized using XRD, SEM, TEM, FTIR, TG–DTA, etc. Here we are reporting the photodynamic effect of ZnO nanocomposites on pUC18 DNA. Based on optical and EPR measurements, singlet oxygen and other ROS were responsible for photocleavage of DNA. Most importantly, derived curcumin modified ZnO/PVA nanocomposites were comparatively more effective than derived curcumin complex against HeLa cell lines under in vitro condition. In addition, photodegradation of methylene blue (MB) in water catalyzed by nano ZnO/PVA–curcumin derivative was investigated at room temperature. Under visible irradiation photocatalytic activity of ZnO nanomaterial sensitized curcumin was higher than those of curcumin and nano ZnO.

  7. Compliant electrospun silk fibroin tubes for small vessel bypass grafting.

    Science.gov (United States)

    Marelli, Benedetto; Alessandrino, Antonio; Farè, Silvia; Freddi, Giuliano; Mantovani, Diego; Tanzi, Maria Cristina

    2010-10-01

    Processing silk fibroin (SF) by electrospinning offers a very attractive opportunity for producing three-dimensional nanofibrillar matrices in tubular form, which may be useful for a biomimetic approach to small calibre vessel regeneration. Bypass grafting of small calibre vessels, with a diameter less than 6mm, is performed mainly using autografts, like the saphenous vein or internal mammary artery. At present no polymeric grafts made of SF are commercially available, mainly due to inadequate properties (low compliance and lack of endothelium cells). The aim of this work was to electrospin SF into tubular structures (Ø=6mm) for small calibre vessel grafting, characterize the morphological, chemico-physical and mechanical properties of the electrospun SF structures and to validate their potential to interact with cells. The morphological properties of electrospun SF nanofibres were investigated by scanning electron microscopy. Chemico-physical analyses revealed an increase in the crystallinity of the structure of SF nanofibres on methanol treatment. Mechanical tests, i.e. compliance and burst pressure measurements, of the electrospun SF tubes showed that the inner pressure to radial deformation ratio was linear for elongation up to 15% and pressure up to 400 mm Hg. The mean compliance value between 80 and 120 mm Hg was higher than the values reported for both Goretex(R) and Dacron(R) grafts and for bovine heterografts, but still slightly lower than those of saphenous and umbilical vein, which nowadays represent the gold standard for the replacement of small calibre arteries. The electrospun tubes resisted up to 575+/-17 mmHg, which is more than four times the upper physiological pressure of 120 mmHg and more than twice the pathological upper pressures (range 180-220 mmHg). The in vitro tests showed a good cytocompatibility of the electrospun SF tubes. Therefore, the electrospun SF tubes developed within this work represent a suitable candidate for small calibre

  8. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    Science.gov (United States)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  9. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering

    Science.gov (United States)

    Du, Juan; Zhu, Tonghe; Yu, Haiyan; Zhu, Jingjing; Sun, Changbing; Wang, Jincheng; Chen, Sihao; Wang, Jihu; Guo, Xuran

    2018-07-01

    Tissue engineering heart valves (TEHV) are thought to have many advantages in low immunogenicity, good histocompatibility, excellent mechanical properties. In this paper, we reported the fabrication and characterization of a novel composite nanofibrous scaffold consisting of silk fibroin (SF) and poly(ester-urethane) urea (LDI-PEUU) by using electrospinning. Chemical and physical properties of scaffolds were evaluated using scanning electron microscopy, attenuated total reflectance Fourier transform infrared, X-ray diffraction, contact angle measurement, thermogravimetric analysis, biodegradation test and tensile strength analysis. We determined that the composite scaffolds supported the growth of human umbilical vein endothelial cell (HUVEC). The results of cell proliferation and cell morphology indicate that SF/LDI-PEUU nanofibers promoted cell viability, which supporting the application in tissue engineering. All results clarified that SF/LDI-PEUU (40:60) nanofibrous scaffolds meet the required specifications for tissue engineering and could be used as a promising construct for heart valve tissue engineering.

  10. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.

    Science.gov (United States)

    Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin

    2018-07-01

    Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.

  11. Physical characterization of functionalized spider silk: electronic and sensing properties

    Directory of Open Access Journals (Sweden)

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    Full Text Available This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline and amorphous (helical structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size, on the process of pyrolization (suppressing mass loss rates and on the resulting carbonized fiber structure (that becomes more robust against bending and strain. The effects of iodine doping and other functional parameters (vacuum and thin film coating motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  12. Physical characterization of functionalized spider silk: electronic and sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Steven, Eden; Brooks, James S [Department of Physics and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Park, Jin Gyu [FAMU-FSU Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, Florida State University, 2005 Levy Ave., Tallahassee, FL 32310 (United States); Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G [FAMU-FSU Department of Chemical and Biomedical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Branco Lopes, Elsa [Departamento de Quimica, Instituto Tecnologico e Nuclear/CFMC-UL, P-2686-953 Sacavem (Portugal); Englander, Ongi, E-mail: esteven@magnet.fsu.edu [FAMU-FSU Department of Mechanical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, Florida 32310 (United States)

    2011-10-15

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of {beta}-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and {beta}-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of {beta}-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  13. Physical characterization of functionalized spider silk: electronic and sensing properties

    International Nuclear Information System (INIS)

    Steven, Eden; Brooks, James S; Park, Jin Gyu; Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G; Branco Lopes, Elsa; Englander, Ongi

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  14. Facile and highly efficient approach for the fabrication of multifunctional silk nanofibers containing hydroxyapatite and silver nanoparticles.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum

    2014-10-01

    In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.

  15. Synthesis and evaluation of antimalarial activity of curcumin derivatives

    International Nuclear Information System (INIS)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla

    2014-01-01

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC 50 values ranging from 1.7 to 15.2 μg mL -1 ), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  16. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori

    Science.gov (United States)

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography–tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218

  17. The effect of gamma irradiation on some morphological and quantitative changes of Bombyx mori L. silk gland

    International Nuclear Information System (INIS)

    Petkov, N.; Malinova, K.; Binkh, N.

    1996-01-01

    A study to determine the effect of gamma irradiation of silkworm eggs at doses of 1.00; 2.00 and 3.00 on silk gland weight, length and width is performed. It was found that gamma irradiation of eggs in the stage of embryo most intensive growth in length (B 2 ) at doses 2.00 and 3.00 Gy stimulates increasing of silk glands weight in silkworms on the fifth day instar by 12-25 mg, as well as the silk worm width - by 7-33 μm, which is of significant importance for the synthesis and secretion of silk proteins (fibroin and sericin). A breed specificity was also observed

  18. Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultra-high-molecular-weight polyethylene via promoting angiogenesis

    Directory of Open Access Journals (Sweden)

    Ai C

    2017-10-01

    Full Text Available Chengchong Ai, Dandan Sheng, Jun Chen, Jiangyu Cai, Siheng Wang, Jia Jiang, Shiyi Chen Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China Abstract: Ultra-high-molecular-weight polyethylene (UHMWPE has been applied in orthopedics, as the materials of joint prosthesis, artificial ligaments, and sutures due to its advantages such as high tensile strength, good wear resistance, and chemical stability. However, postoperative osteolysis induced by UHMWPE wear particles and poor bone–implant healing interface due to scarcity of osseointegration is a significant problem and should be solved imperatively. In order to enhance its affinity to bone tissue, vascular endothelial growth factor (VEGF was loaded on the surface of materials, the loading was performed by silk fibroin (SF coating to achieve a controlled-release delivery. Several techniques including field emission scanning electron microscopy (FESEM and attenuated total reflectance (ATR-Fourier transform infrared (FTIR and water contact angle measurement were used to validate the effectiveness of introduction of SF/VEGF. The result of ELISA demonstrated that the release of VEGF was well maintained up to 4 weeks. The modified UHMWPE was evaluated by both in vitro and in vivo experiments. According to the results of FESEM and cell counting kit-8 (CCK-8 assay, bone marrow mesenchymal stem cells cultured on the UHMWPE coated with SF/VEGF and SF exhibited a better proliferation performance than that of the pristine UHMWPE. The model rabbit of anterior cruciate ligament reconstruction was used to observe the graft–bone healing process in vivo. The results of histological evaluation, microcomputed tomography (micro-CT analysis, and biomechanical tests performed at 6 and 12 weeks after surgery demonstrated that graft–bone healing could be significantly improved due to the effect of VEGF on angiogenesis, which was loaded on the surface by SF

  19. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.

    Science.gov (United States)

    Luo, Ziwei; Jiang, Li; Xu, Yan; Li, Haibin; Xu, Wei; Wu, Shuangchi; Wang, Yuanliang; Tang, Zhenyu; Lv, Yonggang; Yang, Li

    2015-06-01

    Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (Pcartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (Pcartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair

  20. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    Science.gov (United States)

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels.

  1. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering.

    Science.gov (United States)

    Wenk, Esther; Meinel, Anne J; Wildy, Sarah; Merkle, Hans P; Meinel, Lorenz

    2009-05-01

    The development of prototype scaffolds for either direct implantation or tissue engineering purposes and featuring spatiotemporal control of growth factor release is highly desirable. Silk fibroin (SF) scaffolds with interconnective pores, carrying embedded microparticles that were loaded with insulin-like growth factor I (IGF-I), were prepared by a porogen leaching protocol. Treatments with methanol or water vapor induced water insolubility of SF based on an increase in beta-sheet content as analyzed by FTIR. Pore interconnectivity was demonstrated by SEM. Porosities were in the range of 70-90%, depending on the treatment applied, and were better preserved when methanol or water vapor treatments were prior to porogen leaching. IGF-I was encapsulated into two different types of poly(lactide-co-glycolide) microparticles (PLGA MP) using uncapped PLGA (50:50) with molecular weights of either 14 or 35 kDa to control IGF-I release kinetics from the SF scaffold. Embedded PLGA MP were located in the walls or intersections of the SF scaffold. Embedment of the PLGA MP into the scaffolds led to more sustained release rates as compared to the free PLGA MP, whereas the hydrolytic degradation of the two PLGA MP types was not affected. The PLGA types used had distinct effects on IGF-I release kinetics. Particularly the supernatants of the lower molecular weight PLGA formulations turned out to release bioactive IGF-I. Our studies justify future investigations of the developed constructs for tissue engineering applications.

  2. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering.

    Science.gov (United States)

    Bosetti, M; Boccafoschi, F; Calarco, A; Leigheb, M; Gatti, S; Piffanelli, V; Peluso, G; Cannas, M

    2008-01-01

    The aim of this study was to design a functional bio-engineered material to be used as scaffold for autologous mesenchymal stem cells in ligament tissue engineering. Polyelectrolyte modified HEMA hydrogel (HEMA-co-METAC), applied as coating on silk fibroin fibres, has been formulated in order to take advantage of the biocompatibility of the polyelectrolyte by increasing its mechanical properties with silk fibres. Human bone marrow mesenchymal stem cells behaviour on such reinforced polyelectrolyte has been studied by evaluating cell morphology, cell number, attachment, spreading and proliferation together with collagen matrix production and its mRNA expression. Silk fibroin fibres matrices with HEMA-co-METAC coating exhibited acceptable mechanical behaviour compared to the natural ligament, good human mesenchymal stem cell adhesion and with mRNA expression studies higher levels of collagen types I and III expression when compared to control cells on polystyrene. These data indicate high expression of mRNA for proteins responsible for the functional characteristics of the ligaments and suggest a potential for use of this biomaterial in ligament tissue-engineering applications.

  3. Radiation processing of silk protein (Bilateral research cooperation OAEP and JAERI. December 1998 - December 2002)

    International Nuclear Information System (INIS)

    2003-01-01

    Thailand's production of silk, about 1,200 ton per year, also gives about 10% of silk waste which is expected to be recycled into new material (non-textile application) and to avoid environmental pollution. For this purpose, cooperative program 'radiation processing of silk protein' was conducted between OAEP (Thailand) and JAERI. Among the results already obtained are: radiation degradation of silk protein (fibroin) with gamma rays at 160 kGy, production of fine silk milled powder (<90 microns) by electron beam irradiation at 250-1000 kGy (dry method) using electron accelerator (1 MeV, 1 mA), use of antioxidant effect of silk protein on lipid peroxidation and antibacterial activity of irradiated silk protein powder, and wound dressing hydrogel mixed with silk protein and use of antibacterial activity of cross-linked silk protein/PVA hydrogel. Other topics of interest are gamma irradiation of anionic natural polymer solution for use as latex protein scavenger and gamma radiation degradation of chitosan for use as plant growth promoter and fungicide. (S. Ohno)

  4. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Bhavesh, Neel Sarovar; Ghosh, Sourabh

    2016-04-12

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein-protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs.

  5. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration

    International Nuclear Information System (INIS)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Ghosh, Sourabh; Bhavesh, Neel Sarovar

    2016-01-01

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein–protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs. (paper)

  6. Gel spinning of silk tubes for tissue engineering

    Science.gov (United States)

    Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2011-01-01

    Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570

  7. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers.

    Science.gov (United States)

    Wang, Qi; Wang, Chunya; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying

    2016-10-12

    Silkworm silk is gaining significant attention from both the textile industry and research society because of its outstanding mechanical properties and lustrous appearance. The possibility of creating tougher silks attracts particular research interest. Carbon nanotubes and graphene are widely studied for their use as reinforcement. In this work, we report mechanically enhanced silk directly collected by feeding Bombyx mori larval silkworms with single-walled carbon nanotubes (SWNTs) and graphene. We found that parts of the fed carbon nanomaterials were incorporated into the as-spun silk fibers, whereas the others went into the excrement of silkworms. Spectroscopy study indicated that nanocarbon additions hindered the conformation transition of silk fibroin from random coil and α-helix to β-sheet, which may contribute to increased elongation at break and toughness modules. We further investigated the pyrolysis of modified silk, and a highly developed graphitic structure with obviously enhanced electrical conductivity was obtained through the introduction of SWNTs and graphene. The successful generation of these SWNT- or graphene-embedded silks by in vivo feeding is expected to open up possibilities for the large-scale production of high-strength silk fibers.

  8. Timing of autophagy and apoptosis during posterior silk gland degeneration in Bombyx mori.

    Science.gov (United States)

    Montali, Aurora; Romanelli, Davide; Cappellozza, Silvia; Grimaldi, Annalisa; de Eguileor, Magda; Tettamanti, Gianluca

    2017-07-01

    Over the years, the silkworm, Bombyx mori, has been manipulated by means of chemical and genetic approaches to improve silk production both quantitatively and qualitatively. The silk is produced by the silk gland, which degenerates quickly once the larva has finished spinning the cocoon. Thus, interfering with this degeneration process could help develop new technologies aimed at ameliorating silk yield. To this end, in this work we studied the cell death processes that lead to the demise of the posterior silk gland of B. mori, directing in particular our attention to autophagy and apoptosis. We focused on this portion of the gland because it produces fibroin, the main component of the silk thread. By using multiple markers, we provide a morphological, biochemical and molecular characterization of the apoptotic and autophagic processes and define their timing in this biological setting. Our data demonstrate that the activation of both autophagy and apoptosis is preceded by a transcriptional rise in key regulatory genes. Moreover, while autophagy is maintained active for several days and progressively digests silk gland cells, apoptosis is only switched on at a very late stage of silk gland demise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Composite biodegradable biopolymer coatings of silk fibroin - Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications

    Science.gov (United States)

    Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel

    2015-11-01

    Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.

  10. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering

  11. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  12. Three dimensional poly(ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Min, E-mail: yiyi1124@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Chae, Taesik, E-mail: apsiky@gmail.com [Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Sheikh, Faheem A., E-mail: faheem99in@yahoo.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Ju, Hyung Woo, E-mail: anabasjoo@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Moon, Bo Mi, E-mail: toribom@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Park, Hyun Jung, E-mail: hyunjungpark869@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Park, Ye Ri, E-mail: payeri89@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Park, Chan Hum, E-mail: hlpch@paran.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Hallym University, Chuncheon 200-704 (Korea, Republic of)

    2016-11-01

    Ideal dermal substitutes should have comparable physicochemical and biological properties to the natural skin tissue. In this study, we report a novel strategy to “engineer” controlled 3D nanocomposite fibrous matrix of poly(ε-caprolactone) (PCL) and silk fibroin (SF) for an artificial dermis application. Using a custom-designed cold-plate electrospinning and automatic magnet agitation system, up to 6 mm of the thickness was achieved resulting from the accumulation of ice crystal layers on the PCL nanofibers surface-modified with the SF particles. The sacrificed ice crystals induced interconnected macro-pores ranging from tens to hundreds μm. The agitation system introduced uniform distribution of the SF protein within/on the nanofibers, preventing the particles from precipitation and agglomeration. NIH 3T3 fibroblasts proliferated in vitro on the PCL and PCL/SF scaffolds for 7 days, but there was no statistical difference between the groups. Conversely, In vivo rat model studies revealed that the wound healing rate and collagen deposition increased with the SF content within the nanocomposites. The unique 3D construct with the PCL/SF nanocomposite fibers provided desirable spatial cues, surface topography, and surface chemistry for the native cells to infiltrate into the scaffolds. The wound healing potential of the nanocomposites was comparable to the commercial Matriderm® artificial dermis. - Highlights: • 3D macro-porous tissue engineering scaffold constructed with PCL nanofibers and SF nanoparticles. • Fabrication of the PCL/SF nanocomposite fibrous scaffold via a custom-designed cold plate electrospinning (CPE) and automatic magnet agitation (AMA) system. • Comparable wound healing capacity of the PCL/SF scaffolds to the commercial Matriderm® artificial dermis.

  13. Three dimensional poly(ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis

    International Nuclear Information System (INIS)

    Lee, Jung Min; Chae, Taesik; Sheikh, Faheem A.; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Park, Ye Ri; Park, Chan Hum

    2016-01-01

    Ideal dermal substitutes should have comparable physicochemical and biological properties to the natural skin tissue. In this study, we report a novel strategy to “engineer” controlled 3D nanocomposite fibrous matrix of poly(ε-caprolactone) (PCL) and silk fibroin (SF) for an artificial dermis application. Using a custom-designed cold-plate electrospinning and automatic magnet agitation system, up to 6 mm of the thickness was achieved resulting from the accumulation of ice crystal layers on the PCL nanofibers surface-modified with the SF particles. The sacrificed ice crystals induced interconnected macro-pores ranging from tens to hundreds μm. The agitation system introduced uniform distribution of the SF protein within/on the nanofibers, preventing the particles from precipitation and agglomeration. NIH 3T3 fibroblasts proliferated in vitro on the PCL and PCL/SF scaffolds for 7 days, but there was no statistical difference between the groups. Conversely, In vivo rat model studies revealed that the wound healing rate and collagen deposition increased with the SF content within the nanocomposites. The unique 3D construct with the PCL/SF nanocomposite fibers provided desirable spatial cues, surface topography, and surface chemistry for the native cells to infiltrate into the scaffolds. The wound healing potential of the nanocomposites was comparable to the commercial Matriderm® artificial dermis. - Highlights: • 3D macro-porous tissue engineering scaffold constructed with PCL nanofibers and SF nanoparticles. • Fabrication of the PCL/SF nanocomposite fibrous scaffold via a custom-designed cold plate electrospinning (CPE) and automatic magnet agitation (AMA) system. • Comparable wound healing capacity of the PCL/SF scaffolds to the commercial Matriderm® artificial dermis.

  14. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    Science.gov (United States)

    Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.

    2013-08-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.

  15. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    International Nuclear Information System (INIS)

    Gogurla, Narendar; Mondal, Suvra P; Sinha, Arun K; Katiyar, Ajit K; Banerjee, Writam; Ray, Samit K; Kundu, Subhas C

    2013-01-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems. (paper)

  16. Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Xue Rui [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Kang Tianfang, E-mail: kangtf@yahoo.cn [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Lu Liping; Cheng Shuiyuan [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2012-06-01

    An amperometric biosensor for the detection of organophosphate and carbamate pesticides was developed based on the immobilization of acetylcholinesterase (AChE) on regenerated silk fibroin (SF) matrix by non-covalent adsorption. SF and AChE were coated sequentially on the surface of the glassy carbon electrode (GCE) which was modified with multiwall carbon nanotube (MWNTs). The obtained biosensor was denoted as AChE-SF/MWNTs/GCE. The atomic force microscopy images showed that the SF matrix provided a more homogeneous interface for the AChE immobilization. The aggregation of immobilizing AChE was therefore avoided. The cyclic voltammogram of thiocholine at this biosensor exhibited a well defined oxidation peak at 0.667 V (vs. SCE). The inhibition rate of methyl parathion to the immobilized AChE was proportional to the logarithm of the concentration of methyl parathion over the range of the concentration of methyl parathion from 3.5 Multiplication-Sign 10{sup -6} to 2.0 Multiplication-Sign 10{sup -3} M with a detection limit of 5.0 Multiplication-Sign 10{sup -7} M. Similarly, the linearly response range of carbaryl was from 1.0 Multiplication-Sign 10{sup -7} to 3.0 Multiplication-Sign 10{sup -5} M with a detection limit of 6.0 Multiplication-Sign 10{sup -8} M. The experimental results indicate that AChE not only can be immobilized steadily on the SF matrix, but also the bioactivity of immobilizing AChE can be preserved effectively.

  17. The design of silk fiber composition in moths has been conserved for more than 150 million years

    Czech Academy of Sciences Publication Activity Database

    Yonemura, N.; Sehnal, František

    2006-01-01

    Roč. 63, č. 1 (2006), s. 42-53 ISSN 0022-2844 R&D Projects: GA AV ČR(CZ) IAA5007402 Institutional research plan: CEZ:AV0Z50070508 Keywords : silk * fibroin * Lepidoptera Subject RIV: CE - Biochemistry Impact factor: 2.767, year: 2006

  18. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering.

    Science.gov (United States)

    Lima, Paulo Autran Leite; Resende, Cristiane Xavier; Soares, Glória Dulce de Almeida; Anselme, Karine; Almeida, Luís Eduardo

    2013-08-01

    This work describes the preparation and characterization of porous 3D-scaffolds based on chitosan (CHI), chitosan/silk fibroin (CHI/SF) and chitosan/silk fibroin/hydroxyapatite (CHI/SF/HA) by freeze drying. The biomaterials were characterized by X-ray diffraction, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectroscopy. In addition, studies of porosity, pore size, contact angle and biological response of SaOs-2osteoblastic cells were performed. The CHI scaffolds have a porosity of 94.2±0.9%, which is statistically higher than the one presented by CHI/SF/HA scaffolds, 89.7±2.6%. Although all scaffolds were able to promote adhesion, growth and maintenance of osteogenic differentiation of SaOs-2 cells, the new 3D-scaffold based on CHI/SF/HA showed a significantly higher cell growth at 7 days and 21 days and the level of alkaline phosphatase at 14 and 21 days was statistically superior compared to other tested materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering.

    Science.gov (United States)

    Naghashzargar, Elham; Farè, Silvia; Catto, Valentina; Bertoldi, Serena; Semnani, Dariush; Karbasi, Saeed; Tanzi, Maria Cristina

    2015-07-04

    A novel biodegradable nano/micro hybrid structure was obtained by electrospinning P3HB or PCL nanofibers onto a twisted silk fibroin (SF) structure, with the aim of fabricating a suitable scaffold for tendon and ligament tissue engineering. The electrospinning (ES) processing parameters for P3HB and PCL were optimized on 2D samples, and applied to produce two different nano/micro hybrid constructs (SF/ES-PCL and SF/ES-P3HB).Morphological, chemico-physical and mechanical properties of the novel hybrid scaffolds were evaluated by SEM, ATR FT-IR, DSC, tensile and thermodynamic mechanical tests. The results demonstrated that the nanofibers were tightly wrapped around the silk filaments, and the crystallinity of the SF twisted yarns was not influenced by the presence of the electrospun polymers. The slightly higher mechanical properties of the hybrid constructs confirmed an increase of internal forces due to the interaction between nano and micro components. Cell culture tests with L929 fibroblasts, in the presence of the sample eluates or in direct contact with the hybrid structures, showed no cytotoxic effects and a good level of cytocompatibility of the nano/micro hybrid structures in term of cell viability, particularly at day 1. Cell viability onto the nano/micro hybrid structures decreased from the first to the third day of culture when compared with the control culture plastic, but appeared to be higher when compared with the uncoated SF yarns. Although additional in vitro and in vivo tests are needed, the original fabrication method here described appears promising for scaffolds suitable for tendon and ligament tissue engineering.

  20. Unique molecular architecture of silk fibroin in the waxmoth

    Czech Academy of Sciences Publication Activity Database

    Žurovec, Michal; Sehnal, František

    2002-01-01

    Roč. 277, č. 25 (2002), s. 22639-22647 ISSN 0021-9258 R&D Projects: GA ČR GA204/96/1100; GA ČR GA204/00/0019; GA MŠk ME 204 Institutional research plan: CEZ:AV0Z5007907 Keywords : silk Subject RIV: EG - Zoology Impact factor: 6.696, year: 2002

  1. An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan

    2017-02-01

    Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.

  2. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation

    Science.gov (United States)

    Wang, Sujuan; Peng, Xixi; Cui, Liangliang; Li, Tongtong; Yu, Bei; Ma, Gang; Ba, Xinwu

    2018-02-01

    The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-L-lysine. Benefiting from the enhanced solubility of 3.32 × 10- 2 g/mL for MLC and 4.66 × 10- 2 g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139 mM and 49.622 mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.

  3. Bone Morphogenic Protein-2 (rhBMP2)-Loaded Silk Fibroin Scaffolds to Enhance the Osteoinductivity in Bone Tissue Engineering

    Science.gov (United States)

    Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong

    2017-10-01

    There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.

  4. Transmission Electron Microscopy of Bombyx Mori Silk Fibers

    Science.gov (United States)

    Shen, Y.; Martin, D. C.

    1997-03-01

    The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.

  5. Fabrication of elastomeric silk fibers.

    Science.gov (United States)

    Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L

    2017-09-01

    Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.

  6. Potential applications of silk sericin, a natural protein from textile industry by-products.

    Science.gov (United States)

    Aramwit, Pornanong; Siritientong, Tippawan; Srichana, Teerapol

    2012-03-01

    Silk is composed of two major proteins, fibroin (fibrous protein) and sericin (globular, gumming protein). Fibroin has been used in textile manufacturing and for several biomaterial applications, whereas sericin is considered a waste material in the textile industry. Sericin has recently been found to activate the proliferation of several cell-lines and has also shown various biological activities. Sericin can form a gel by itself; however, after mixing with other polymers and cross-linking it can form a film or a scaffold with good characteristics that can be used in the cosmetic and pharmaceutical industries. Sericin is proven to cause no immunological responses, which has resulted in a more acceptable material for biological applications.

  7. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Bian X

    2016-05-01

    Full Text Available Xinyu Bian,* Puyuan Wu,* Huizi Sha, Hanqing Qian, Qing Wang, Lei Cheng, Yang Yang, Mi Yang, Baorui LiuComprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: In this study, we report a novel kind of targeting with paclitaxel (PTX-loaded silk fibroin nanoparticles conjugated with iRGD–EGFR nanobody recombinant protein (anti-EGFR-iRGD. The new nanoparticles (called A-PTX-SF-NPs were prepared using the carbodiimide-mediated coupling procedure and their characteristics were evaluated. The cellular cytotoxicity and cellular uptake of A-PTX-SF-NPs were also investigated. The results in vivo suggested that NPs conjugated with the recombinant protein exhibited more targeting and anti-neoplastic property in cells with high EGFR expression. In the in vivo antitumor efficacy assay, the A-PTX-SF-NPs group showed slower tumor growth and smaller tumor volumes than PTX-SF-NPs in a HeLa xenograft mouse model. A real-time near-infrared fluorescence imaging study showed that A-PTX-SF-NPs could target the tumor more effectively. These results suggest that the anticancer activity and tumor targeting of A-PTX-SF-NPs were superior to those of PTX-SF-NPs and may have the potential to be used for targeted delivery for tumor therapies. Keywords: EGFR, nanobody, iRGD, recombinant protein, targeting drug carriers, antitumor efficiency

  8. From 2D to 3D: The morphology, proliferation and differentiation of MC3T3-E1 on silk fibroin/chitosan matrices.

    Science.gov (United States)

    Li, Da-Wei; He, Feng-Li; He, Jin; Deng, Xudong; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Yin, Da-Chuan

    2017-12-15

    It has been widely accepted that cell culture in two-dimensional (2D) conditions may not be able to represent growth in three-dimensional (3D) conditions. Systematic comparisons between 2D and 3D cell cultures are needed to appropriately use the existing 2D results. In this work, we conducted a comparative study between 2D and 3D cell cultures of MC3T3-E1 using the same type of material (a mixture of silk fibroin (SF) and chitosan (CS)). Our results showed 3D SF/CS scaffold exhibited different effects on cell culture compared with the 2D cases. 1) The cells grown in 3D scaffold showed multiple morphologies. 2) The proliferation of cells in 3D scaffold was long-term and sustainable. 3) Cell differentiation occurred throughout the entire 3D scaffold. The results showed that cell culture in 3D SF/CS scaffold exhibited different features than 2D cases and 3D SF/CS scaffold could be a promising material for 3D cell culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.

    Science.gov (United States)

    Paşcu, Elena I; Stokes, Joseph; McGuinness, Garrett B

    2013-12-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw=90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (±0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (±0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples prepared with

  10. Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin.

    Science.gov (United States)

    Fang, Xubin; Fang, Lei; Gou, Shaohua; Cheng, Lin

    2013-03-01

    A series of dimethylaminomethyl-substituted curcumin derivatives/analogues were designed and synthesized. All compounds effectively inhibited HepG2, SGC-7901, A549 and HCT-116 tumor cell lines proliferation in MTT assay. Particularly, compounds 2a and 3d showed much better activity than curcumin against all of the four tumor cell lines. Antioxidant test revealed that these compounds had higher free radical scavenging activity than curcumin towards both DPPH and galvinoxyl radicals. Furthermore, the aqueous solubility and stability of the target compounds were also significantly improved compared with curcumin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Bovine pericardium coated with biopolymeric films as an alternative to prevent calcification: In vitro calcification and cytotoxicity results

    International Nuclear Information System (INIS)

    Nogueira, Grinia M.; Rodas, Andrea C.D.; Weska, Raquel F.; Aimoli, Cassiano G.; Higa, Olga Z.; Maizato, Marina; Leiner, Adolfo A.; Pitombo, Ronaldo N.M.; Polakiewicz, Bronislaw; Beppu, Marisa M.

    2010-01-01

    Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification.

  12. A highly divergent gene cluster in honey bees encodes a novel silk family.

    Science.gov (United States)

    Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S

    2006-11-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.

  13. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    Science.gov (United States)

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-10-20

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements.

  14. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    Directory of Open Access Journals (Sweden)

    Michael Floren

    2016-09-01

    Full Text Available Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications.

  15. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility.

    Science.gov (United States)

    Catto, Valentina; Farè, Silvia; Cattaneo, Irene; Figliuzzi, Marina; Alessandrino, Antonio; Freddi, Giuliano; Remuzzi, Andrea; Tanzi, Maria Cristina

    2015-09-01

    To overcome the drawbacks of autologous grafts currently used in clinical practice, vascular tissue engineering represents an alternative approach for the replacement of small diameter blood vessels. In the present work, the production and characterization of small diameter tubular matrices (inner diameter (ID)=4.5 and 1.5 mm), obtained by electrospinning (ES) of Bombyx mori silk fibroin (SF), have been considered. ES-SF tubular scaffolds with ID=1.5 mm are original, and can be used as vascular grafts in pediatrics or in hand microsurgery. Axial and circumferential tensile tests on ES-SF tubes showed appropriate properties for the specific application. The burst pressure and the compliance of ES-SF tubes were estimated using the Laplace's law. Specifically, the estimated burst pressure was higher than the physiological pressures and the estimated compliance was similar or higher than that of native rat aorta and Goretex® prosthesis. Enzymatic in vitro degradation tests demonstrated a decrease of order and crystallinity of the SF outer surface as a consequence of the enzyme activity. The in vitro cytocompatibility of the ES-SF tubes was confirmed by the adhesion and growth of primary porcine smooth muscle cells. The in vivo subcutaneous implant into the rat dorsal tissue indicated that ES-SF matrices caused a mild host reaction. Thus, the results of this investigation, in which comprehensive morphological and mechanical aspects, in vitro degradation and in vitro and in vivo biocompatibility were considered, indicate the potential suitability of these ES-SF tubular matrices as scaffolds for the regeneration of small diameter blood vessels. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Proposal for novel curcumin derivatives as potent inhibitors against Alzheimer's disease: Ab initio molecular simulations on the specific interactions between amyloid-beta peptide and curcumin

    Science.gov (United States)

    Ota, Shintaro; Fujimori, Mitsuki; Ishimura, Hiromi; Shulga, Sergiy; Kurita, Noriyuki

    2017-10-01

    Accumulation of amyloid-β (Aβ) peptides in a brain is closely related with the pathogenesis of Alzheimer's disease. To suppress the production of Aβ peptides, we propose novel curcumin derivatives and investigate their binding properties with the amyloid precursor protein (APP), using protein-ligand docking as well as ab initio molecular simulations. Our proposed derivative (curcumin XIV) is found to have a large binding energy with APP and interacts strongly with the cleavage site Ala19 by secretase. It is thus expected that curcumin XIV can protect APP from the secretase attack and be a potent inhibitor against the production of Aβ peptides.

  17. Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.

    Science.gov (United States)

    Wang, Fang; Jyothirmayee Aravind, S S; Wu, Hao; Forys, Joseph; Venkataraman, Venkat; Ramanujachary, Kandalam; Hu, Xiao

    2017-10-01

    Green graphene materials prepared by photoreduction of graphite oxide were first time blended with aqueous-based silk fibroin proteins to improve the mechanical and thermal properties of silk biomaterials, and their nanocomposite interaction mechanism was illustrated. Powder X-ray diffraction (XRD) analysis confirmed the complete exfoliation of graphite oxide to graphene in presence of focused pulses of solar radiation. By varying the concentration of graphene (0.1wt% to 10wt%), a series of free standing graphene-silk films were prepared and were systematically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nanoindentation measurements. The homogeneity of graphene in silk as well as the thermal stability of the composite films was demonstrated by thermal gravimetric analysis (TGA) and temperature-modulated differential scanning calorimetry (TMDSC). Surprisingly, silk composite film containing only 0.5wt% of graphene gives the highest Young's modulus of 1.65GPa (about 5.8 times higher than the pure silk's modulus), indicating a nano-composite to micro-composite transition of silk-graphene structure occurred around this mixing ratio. This finding provided an easy approach to improve the elastic modulus and other physical properties of silk materials by adding a tiny amount of graphene sheets. Fibroblast cells studies also proved that these graphene-silk materials can significantly improve cell adhesion, growth and proliferation. This protein nanocomposite study provided a useful model to understand how to manipulate the hydrophobic-hydrophobic and polar-polar interactions between high-surface-area inorganic nanomaterials and amphiphilic protein materials, which has many emerging applications in the material science and engineering, such as bio-device fabrication, drug storage and release, and tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering

    International Nuclear Information System (INIS)

    Kundu, Banani; Kundu, S C

    2013-01-01

    Conventional scaffold fabrication techniques result in narrow pore architectures causing a limited interconnectivity and use of porogens, which affects the bio- or cyto-compatibility. To ameliorate this, cryogels are immensely explored due to their macro-porous nature, ease in fabrication, using ice crystals as porogens, the shape property, easy reproducibility and cost-effective fabrication technique. Cryogels in the present study are prepared from nonmulberry Indian muga silk gland protein fibroin of Antheraea assamensis using two different fabrication temperatures (−20 and −80 °C). Anionic surfactant sodium dodecyl sulfate is used to solubilize fibroin, which in turn facilitates gelation by accelerating the ß-sheet formation. Ethanol is employed to stabilize the 3D network and induces bimodal porosity. The gels thus formed demonstrate increased ß-sheet content (FTIR) and a considerable effect of pre-freezing temperatures on 3D micro-architectures. The cryogels are capable of absorbing large amounts of water and withstanding mechanical compression without structure deformation. Further, cell impregnated cryogels well support the viability of human hepatocarcinoma cells (live/dead assay). The formation of cellular aggregates (confocal laser and scanning electron microscope), derivation in metabolic activity and proliferation rate are obtained in constructs fabricated at different temperatures. In summary, the present work reveals promising insights in the development of a biomimetic functional template for biomedical therapeutics and liver tissue engineering. (paper)

  19. ToF-SIMS Characterization of Biocompatible Silk/Polypyrrole Electromechanical Actuators

    Science.gov (United States)

    Bradshaw, Nathan; Severt, Sean; Wang, Zhaoying; Klemke, Carly; Larson, Jesse; Zhu, Zihua; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Materials capable of controlled movements that can also interface with biological environments are highly sought after for biomedical devices such as valves, blood vessel sutures, cochlear implants and controlled drug release devices. Recently we have reported the synthesis of films composed of a conductive interpenetrating network of the biopolymer silk fibroin and poly(pyrrole). These silk-PPy composites function as bilayer electromechanical actuators in a biologically-relevant environment, can be actuated repeatedly, and are able to generate forces comparable with natural muscle (>0.1 MPa), making them an ideal candidate for interfacing with biological tissues. Here, time of flight secondary ion mass spectrometry was used to investigate the migration of ions in the devices during actuation. These findings will be discussed in the context of the actuation mechanism and opportunities for further improvements in device stability and performance.

  20. Fabrication and Optimization of Stable, Optically Transparent, and Reusable pH-Responsive Silk Membranes

    Directory of Open Access Journals (Sweden)

    Andreas Toytziaridis

    2016-11-01

    Full Text Available The fabrication of silk-based membranes that are stable, optically transparent and reusable is yet to be achieved. To address this bottleneck we have developed a method to produce transparent chromogenic silk patches that are optically responsive to pH. The patches were produced by blending regenerated silk fibroin (RSF, Laponite RD (nano clay and the organic dyes neutral red and Thionine acetate. The Laponite RD played a central role in the patch mechanical integrity and prevention of dye leaching. The process was optimized using a factorial design to maximize the patch response to pH by UV absorbance and fluorescence emission. New patches of the optimized protocol, made from solutions containing 125 μM neutral red or 250 μM of Thionine and 15 mg/mL silk, were further tested for operational stability over several cycles of pH altering. Stability, performance, and reusability were achieved over the tested cycles. The approach could be extended to other reporting molecules or enzymes able to bind to Laponite.

  1. A simple semi-quantitative approach studying the in vivo degradation of regenerated silk fibroin scaffolds with different pore sizes.

    Science.gov (United States)

    Guo, Yongwei; Chen, Zhongchun; Wen, Jianchuan; Jia, Minghui; Shao, Zhengzhong; Zhao, Xia

    2017-10-01

    The biocompatibility and in vivo degradation rate of biomaterials represent critical control points in the long-term success of scaffolds for tissue restoration. In this study, new three-dimensional (3D) regenerated silk fibroin scaffolds (RSFs) were prepared by the freezing-defrosting procedure, and then were implanted beneath the dorsal skin of rats. This study aims to develop a kinetic semi-quantitative approach to assess in vivo degradation rate and biocompatibility of this kind of RSFs with different pore sizes for the first time, and to evaluate the relationship between the biodegradation and tissue responses by measuring the thickness of residual scaffolds, fibrous capsules and infiltrated tissues through integrated techniques of histology, optical imaging and image analysis. Our results showed that scaffolds with both pore sizes (74.35±10.84μm and 139.23±44.93μm, respectively) were well tolerated by host animals and pore size was found to be the rate limiting factor to the biodegradation in the subcutaneous implantation model. In addition, the biodegradation of RSFs was inflammation-mediated to a certain degree and fibroblasts may play a critical role in this process. Overall, such semi-quantitative approach was demonstrated to be a simple and effective method to assess the in vivo degradation rate, and the prepared RSFs were presented to have promising potential in tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.

    Science.gov (United States)

    Li, Jianqing; Wang, Qiuke; Gu, Yebo; Zhu, Yu; Chen, Liang; Chen, Yunfeng

    2017-11-08

    BACKGROUND Bone tissue engineering, a powerful tool to treat bone defects, is highly dependent on use of scaffolds. Both silk fibroin (SF) and chitosan (Cs) are biocompatible and actively studied for reconstruction of tissue engineering. Gelatin (Gel) is also widely applied in the biomedical field due to its low antigenicity and physicochemical stability. MATERIAL AND METHODS In this study, 4 different types of scaffolds were constructed - SF, SF/Cs, SF/Gel, and SF/Cs/Gel - and we compared their physical and chemical properties as well as biological characterization of these scaffolds to determine the most suitable scaffold for use in bone regeneration. First, these scaffolds were produced via chemical cross-linking method and freeze-drying technique. Next, the characterization of internal structure was studied using scanning electron microscopy and the porosity was evaluated by liquid displacement method. Then, we compared physicochemical properties such as water absorption rate and degradation property. Finally, MC3T3-E1 cells were inoculated on the scaffolds to study the biocompatibility and osteogenesis of the three-dimensional (3D) scaffolds in vitro. RESULTS The composite scaffold formed by all 3 components was the best for use in bone regeneration. CONCLUSIONS We conclude that the best scaffold among the 4 studied for MC3T3-E1 cells is our SF/Cs/Gel scaffold, suggesting a new choice for bone regeneration that can be used to treat bone defects or fractures in clinical practice.

  3. In vitro bioactivity of glass-ceramic/fibroin composites

    Directory of Open Access Journals (Sweden)

    Lachezar Radev

    2017-06-01

    Full Text Available Bioactive composite materials were prepared by mixing 20 wt.% of silk fibroin (SF and 80 wt.% of glassceramics from CaO-SiO2-P2O5-MgO system. In vitro bioactivity of the prepared composites was evaluated in 1.5 simulated body fluid (1.5 SBF in static conditions. The obtained samples before and after in vitro tests were characterized by X-ray diffraction (XRD analysis, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS. The changes in 1.5 SBF solutions after soaking the samples were evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES. MG63 osteosarcoma cells were used for the biological experiments. The obtained experimental data proved that the synthesized composites exhibit excellent in vitro bioactivity.

  4. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds.

    Science.gov (United States)

    Woloszyk, Anna; Holsten Dircksen, Sabrina; Bostanci, Nagihan; Müller, Ralph; Hofmann, Sandra; Mitsiadis, Thimios A

    2014-01-01

    Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone

  5. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds.

    Directory of Open Access Journals (Sweden)

    Anna Woloszyk

    Full Text Available Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%, while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV% significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL. Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x and Collagen type I (1.7x was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and

  6. Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part II: curcumin derivatives in cancer and neurodegeneration.

    Science.gov (United States)

    Di Martino, Rita Maria Concetta; Bisi, Alessandra; Rampa, Angela; Gobbi, Silvia; Belluti, Federica

    2017-08-01

    Curcumin, the main bioactive compound found in the rhizome of Curcuma longa L., is considered a 'privileged structure', due to its ability to modulate different signaling pathways involved in the pathogenesis of several diseases. Unfortunately, its poor pharmacodynamic and pharmacokinetic properties, mainly related to chemical instability, low solubility and rapid metabolism, greatly reduce its therapeutic potential. In the last years a number of derivatives were developed and patented, aimed both at improving its multifaceted biological profile and overcoming its undesired effects. Areas covered: This review summarizes the patent literature of the last five years dealing with synthetic curcumin-related compounds in cancer and neurodegeneration, properly designed in order to avoid the so-called 'dark side of curcumin', and to take advantage of the beneficial properties of this molecule, worth to be further exploited to obtain effective therapeutics. Expert opinion: Due to the synergistic binding to several networked targets, curcumin turned out to be suitable for polypharmacological approaches, and its 'privileged structure' could also provide the key scaffold to develop novel multipotent drugs useful for treating multifactiorial pathologic conditions such as cancer and neurodegeneration.

  7. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery.

    Science.gov (United States)

    Brooks, Amanda E

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  8. A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells.

    Science.gov (United States)

    Lopes-Rodrigues, Vanessa; Oliveira, Ana; Correia-da-Silva, Marta; Pinto, Madalena; Lima, Raquel T; Sousa, Emília; Vasconcelos, M Helena

    2017-01-15

    Cancer multidrug resistance (MDR) is a major limitation to the success of cancer treatment and is highly associated with the overexpression of drug efflux pumps such as P-glycoprotein (P-gp). In order to achieve more effective chemotherapeutic treatments, it is important to develop P-gp inhibitors to block/decrease its activity. Curcumin (1) is a secondary metabolite isolated from the turmeric of Curcuma longa L.. Diverse biological activities have been identified for this compound, particularly, MDR modulation in various cancer cell models. However, curcumin (1) has low chemical stability, which severely limits its application. In order to improve stability and P-gp inhibitory effect, two potential more stable curcumin derivatives were synthesized as building blocks, followed by several curcumin derivatives. These compounds were then analyzed in terms of antitumor and anti-P-gp activity, in two MDR and sensitive tumor lines (from chronic myeloid leukemia and non-small cell lung cancer). We identified from a series of curcumin derivatives a novel curcumin derivative (1,7-bis(3-methoxy-4-(prop-2-yn-1-yloxy)phenyl)hepta-1,6-diene-3,5-dione, 10) with more potent antitumor and anti-P-gp activity than curcumin (1). This compound (10) was shown to promote cell cycle arrest (at the G2/M phase) and induce apoptosis in the MDR chronic myeloid leukemia cell line. Therefore it is a really interesting P-gp inhibitor due to its ability to inhibit both P-gp function and expression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range.

    Science.gov (United States)

    Ran, Jiabing; Hu, Jingxiao; Sun, Guanglin; Chen, Si; Jiang, Pei; Shen, Xinyu; Tong, Hua

    2016-12-01

    Currently, great efforts have been made to enhance the mechanical strength of bone tissue engineering (BTE) scaffolds, which are composed of biopolymeric matrices and inorganic nano-fillers. But the tunability of mechanical strength in a wide range for BTE scaffolds has seldom been investigated in spite of the great importance of this performance. In this work, a chitosan-tussah silk fibroin/hydroxyapatite (CS-TSF/HAp) hydrogel was synthesized by using a novel in situ precipitation method. Through in situ inducing the conformation transition of TSF in the CS-TSF/HAp hydrogel, which could be monitored by XRD, FT-IR, TGA, and DTA, the elastic modulus and fracture strength of the final CS-TSF/HAp composite could be tailored in a wide range without changing its composition, morphology, roughness, and crystal structures. The elastic modulus of the CS-TSF/HAp composite ranged from ∼250 to ∼400MPa while its fracture strength ranged from ∼45 to ∼100MPa. In order to clarify the rationale behind this process, a speculative explanation was provided. In vitro cell culture indicated that MC3T3-E1 cells cultured on the CS-TSF/HAp composite had positive adhesion, proliferation, and differentiation potential. We believed that the CS-TSF/HAp composite could be used as an ideal scaffold platform for cell culture and implantation of bone reconstruction. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering

    International Nuclear Information System (INIS)

    Lima, Paulo Autran Leite; Resende, Cristiane Xavier; Dulce de Almeida Soares, Glória; Anselme, Karine; Almeida, Luís Eduardo

    2013-01-01

    This work describes the preparation and characterization of porous 3D-scaffolds based on chitosan (CHI), chitosan/silk fibroin (CHI/SF) and chitosan/silk fibroin/hydroxyapatite (CHI/SF/HA) by freeze drying. The biomaterials were characterized by X-ray diffraction, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectroscopy. In addition, studies of porosity, pore size, contact angle and biological response of SaOs-2osteoblastic cells were performed. The CHI scaffolds have a porosity of 94.2 ± 0.9%, which is statistically higher than the one presented by CHI/SF/HA scaffolds, 89.7 ± 2.6%. Although all scaffolds were able to promote adhesion, growth and maintenance of osteogenic differentiation of SaOs-2 cells, the new 3D-scaffold based on CHI/SF/HA showed a significantly higher cell growth at 7 days and 21 days and the level of alkaline phosphatase at 14 and 21 days was statistically superior compared to other tested materials. - Highlights: • Preparation of 3D-scaffolds based on CHI, with or without addition of SF and HA. • Scaffolds exhibited interconnected porous structure (pore size superior to 50 μm). • The tripolyphosphate did not induce any significant cytotoxic response. • The CHI/SF/HA composite showed a higher cell growth and ALP activity

  11. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Amanda E Brooks

    2015-11-01

    Full Text Available Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1 deliver sensitive biologic molecules, (2 promote intimate contact between the mucosa and the drug, and (3 prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  12. The effect of gamma irradiation on some morphological and quantitative changes of Bombyx mori L. silk gland; Vliyanie na gama lychite vyrhu nykoi morfologichni i kolichestveni izmeneniya na koprinenootdelitelnata zhleza na Bombyx mori L

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, N; Malinova, K [Institute of Animal Breeding, Kostinbrod (Bulgaria); Binkh, N [National Centre of Sericulture, Hanoj (Viet Nam)

    1997-12-31

    A study to determine the effect of gamma irradiation of silkworm eggs at doses of 1.00; 2.00 and 3.00 on silk gland weight, length and width is performed. It was found that gamma irradiation of eggs in the stage of embryo most intensive growth in length (B{sub 2}) at doses 2.00 and 3.00 Gy stimulates increasing of silk glands weight in silkworms on the fifth day instar by 12-25 mg, as well as the silk worm width - by 7-33 {mu}m, which is of significant importance for the synthesis and secretion of silk proteins (fibroin and sericin). A breed specificity was also observed. 4 refs.

  13. Novel fabrication of fluorescent silk utilized in biotechnological and medical applications.

    Science.gov (United States)

    Kim, Dong Wook; Lee, Ok Joo; Kim, Seong-Wan; Ki, Chang Seok; Chao, Janet Ren; Yoo, Hyojong; Yoon, Sung-Il; Lee, Jeong Eun; Park, Ye Ri; Kweon, HaeYong; Lee, Kwang Gill; Kaplan, David L; Park, Chan Hum

    2015-11-01

    Silk fibroin (SF) is a natural polymer widely used and studied for diverse applications in the biomedical field. Recently, genetically modified silks, particularly fluorescent SF fibers, were reported to have been produced from transgenic silkworms. However, they are currently limited to textile manufacturing. To expand the use of transgenic silkworms for biomedical applications, a solution form of fluorescent SF needed to be developed. Here, we describe a novel method of preparing a fluorescent SF solution and demonstrate long-term fluorescent function up to one year after subcutaneous insertion. We also show that fluorescent SF labeled p53 antibodies clearly identify HeLa cells, indicating the applicability of fluorescent SF to cancer detection and bio-imaging. Furthermore, we demonstrate the intraoperative use of fluorescent SF in an animal model to detect a small esophageal perforation (0.5 mm). This study suggests how fluorescent SF biomaterials can be applied in biotechnology and clinical medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages.

    Science.gov (United States)

    Ghezzi, Chiara E; Marelli, Benedetto; Donelli, Ilaria; Alessandrino, Antonio; Freddi, Giuliano; Nazhat, Showan N

    2017-07-01

    Type I collagen is a major structural and functional protein in connective tissues. However, collagen gels exhibit unstable geometrical properties, arising from extensive cell-mediated contraction. In an effort to stabilize collagen-based hydrogels, plastic compression was used to hybridize dense collagen (DC) with electrospun silk fibroin (SF) mats, generating multilayered DC-SF-DC constructs. Seeded mesenchymal stem cell (MSC)-mediated DC-SF-DC contraction, as well as growth and differentiation under chondrogenic and osteogenic supplements, were compared to those seeded in DC and on SF alone. The incorporation of SF within DC prevented extensive cell-mediated collagen gel contraction. The effect of the multilayered hybrid on MSC remodelling capacity was also evident at the transcription level, where the expression of matrix metalloproteinases and their inhibitor (MMP1, MMP2, MMP3, MMP13 and Timp1) by MSCs within DC-SF-DC were comparable to those on SF and significantly downregulated in comparison to DC, except for Timp1. Chondrogenic supplements stimulated extracellular matrix production within the construct, stabilizing its multilayered structure and promoting MSC chondrogenic differentiation, as indicated by the upregulation of the genes Col2a1 and Agg and the production of collagen type II. In osteogenic medium there was an upregulation in ALP and OP along with the presence of an apatitic phase, indicating MSC osteoblastic differentiation and matrix mineralization. In sum, these results have implications on the modulation of three-dimensional collagen-based gel structural stability and on the stimulation and maintenance of the MSC committed phenotype inherent to the in vitro formation of chondral tissue and bone, as well as on potential multilayered complex tissues. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.

    Science.gov (United States)

    Wang, Xu; Gu, Zhipeng; Jiang, Bo; Li, Li; Yu, Xixun

    2016-04-01

    For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization.

  16. Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State NMR Perspective.

    Science.gov (United States)

    Tian, Donglin; Li, Tao; Zhang, Rongchun; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2017-06-29

    Fabricating materials with excellent mechanical performance from the natural renewable and degradable biopolymers has drawn significant attention in recent decades due to the environmental concerns and energy crisis. As two of the most promising substitutes of synthetic polymers, silk fibroin (SF), and cellulose, have been widely used in the field of textile, biomedicine, biotechnology, etc. Particularly, the cellulose/SF blend film exhibits better strength and toughness than that of regenerated cellulose film. Herein, this study is aimed to understand the molecular origin of the enhanced mechanical properties for the cellulose/SF blend film, using solid-state NMR as a main tool to investigate the conformational changes, intermolecular interactions between cellulose and SF and the water organization. It is found that the content of the β-sheet structure is increased in the cellulose/SF blend film with respect to the regenerated SF film, accompanied by the reduction of the content of random coil structures. In addition, the strong hydrogen bonding interaction between the SF and cellulose is clearly elucidated by the two-dimensional (2D) 1 H- 13 C heteronuclear correlation (HETCOR) NMR experiments, demonstrating that the SF and cellulose are miscible at the molecular level. Moreover, it is also found that the -NH groups of SF prefer to form hydrogen bonds with the hydroxyl groups bonded to carbons C2 and C3 of cellulose, while the hydroxyl groups bonded to carbon C6 and the ether oxygen are less favorable for hydrogen bonding interactions with the -NH groups of SF. Interestingly, bound water is found to be present in the air-dried cellulose/SF blend film, which is predominantly associated with the cellulose backbones as determined by 2D 1 H- 13 C wide-line-separation (WISE) experiments with spin diffusion. This clearly reveals the presence of nanoheterogeneity in the cellulose/SF blend film, although cellulose and SF are miscible at a molecular level. Without doubt

  17. Material quality assessment of silk nanofibers based on swarm intelligence

    Science.gov (United States)

    Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir

    2013-02-01

    In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.

  18. Investigation of silk fibroin nanoparticle-decorated poly(L-lactic acid composite scaffolds for osteoblast growth and differentiation

    Directory of Open Access Journals (Sweden)

    Chen BQ

    2017-03-01

    Full Text Available Biao-Qi Chen,1 Ranjith Kumar Kankala,1,2 Ai-Zheng Chen,1,2 Ding-Zhu Yang,1 Xiao-Xia Cheng,1 Ni-Na Jiang,1,2 Kai Zhu,3,4 Shi-Bin Wang1,2 1Institute of Biomaterials and Tissue Engineering, 2Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, 3Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 4Shanghai Institute of Cardiovascular Disease, Shanghai, People’s Republic of China Abstract: Attempts to reflect the physiology of organs is quite an intricacy during the tissue engineering process. An ideal scaffold and its surface topography can address and manipulate the cell behavior during the regeneration of targeted tissue, affecting the cell growth and differentiation significantly. Herein, silk fibroin (SF nanoparticles were incorporated into poly(L-lactic acid (PLLA to prepare composite scaffolds via phase-inversion technique using supercritical carbon dioxide (SC-CO2. The SF nanoparticle core increased the surface roughness and hydrophilicity of the PLLA scaffolds, leading to a high affinity for albumin attachment. The in vitro cytotoxicity test of SF/PLLA scaffolds in L929 mouse fibroblast cells indicated good biocompatibility. Then, the in vitro interplay between mouse preosteoblast cell (MC3T3-E1 and various topological structures and biochemical cues were evaluated. The cell adhesion, proliferation, osteogenic differentiation and their relationship with the structures as well as SF content were explored. The SF/PLLA weight ratio (2:8 significantly affected the MC3T3-E1 cells by improving the expression of key players in the regulation of bone formation, ie, alkaline phosphatase (ALP, osteocalcin (OC and collagen 1 (COL-1. These results suggest not only the importance of surface topography and biochemical cues but also the potential of applying SF/PLLA composite scaffolds as biomaterials in bone tissue engineering. Keywords: super critical fluids, surface topography, bone

  19. Hybrid scaffolds based on PLGA and silk for bone tissue engineering.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum

    2016-03-01

    Porous silk scaffolds, which are considered to be natural polymers, cannot be used alone because they have a long degradation rate, which makes it difficult for them to be replaced by the surrounding tissue. Scaffolds composed of synthetic polymers, such as PLGA, have a short degradation rate, lack hydrophilicity and their release of toxic by-products makes them difficult to use. The present investigations aimed to study hybrid scaffolds fabricated from PLGA, silk and hydroxyapatite nanoparticles (Hap NPs) for optimized bone tissue engineering. The results from variable-pressure field emission scanning electron microscopy (VP-FE-SEM), equipped with EDS, confirmed that the fabricated scaffolds had a porous architecture, and the location of each component present in the scaffolds was examined. Contact angle measurements confirmed that the introduction of silk and HAp NPs helped to change the hydrophobic nature of PLGA to hydrophilic, which is the main constraint for PLGA used as a biomaterial. Thermo-gravimetric analysis (TGA) and FT-IR spectroscopy confirmed thermal decomposition and different vibrations caused in functional groups of compounds used to fabricate the scaffolds, which reflected improvement in their mechanical properties. After culturing osteoblasts for 1, 7 and 14 days in the presence of scaffolds, their viability was checked by MTT assay. The fluorescent microscopy results revealed that the introduction of silk and HAp NPs had a favourable impact on the infiltration of osteoblasts. In vivo experiments were conducted by implanting scaffolds in rat calvariae for 4 weeks. Histological examinations and micro-CT scans from these experiments revealed beneficial attributes offered by silk fibroin and HAp NPs to PLGA-based scaffolds for bone induction. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach.

    Science.gov (United States)

    Yu, Emily; Mi, Hao-Yang; Zhang, Jue; Thomson, James A; Turng, Lih-Sheng

    2018-04-01

    A new electrospinning approach for fabricating vascular grafts with a layered, circumferentially aligned, and micro-wavy fibrous structure similar to natural elastic tissues has been developed. The customized electrospinning collector was able to generate wavy fibers using the dynamic "jump rope" collecting process, which also solved the sample removal problem for mandrel-type collectors. In this study, natural silk fibroin and synthetic thermoplastic polyurethane (TPU) were combined at different weight ratios to produce hybrid small-diameter vascular grafts. The purpose of combining these two materials was to leverage the bioactivity and tunable mechanical properties of these natural and synthetic materials. Results showed that the electrospun fiber morphology was highly influenced by the material compositions and solvents employed. All of the TPU/fibroin hybrid grafts had mechanical properties comparable to natural blood vessels. The circumferentially aligned and wavy biomimetic configuration provided the grafts with a sufficient toe region and the capacity for long-term usage under repeated dilatation and contraction. Cell culture tests with human endothelial cells (EC) also revealed high cell viability and good biocompatibility for these grafts. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 985-996, 2018. © 2017 Wiley Periodicals, Inc.

  1. Cooking enhances curcumin anti-cancerogenic activity through pyrolytic formation of "deketene curcumin".

    Science.gov (United States)

    Dahmke, Indra N; Boettcher, Stefan P; Groh, Matthias; Mahlknecht, Ulrich

    2014-05-15

    Curcumin is widely used in traditional Asian kitchen as a cooking ingredient. Despite its low bioavailability, epidemiological data, on low cancer incidence in Asia, suggest beneficial health effects of this compound. Therefore, the question arose whether cooking modifies the anti-cancerogenic effects of curcumin. To evaluate this, we pyrolysed curcumin with and without coconut fat or olive oil, and analysed the products by high-performance liquid chromatography (HPLC). A number of more hydrophilic curcumin isoforms and decomposition products, including a compound later identified by nuclear magnetic resonance spectroscopy (NMR) as "deketene curcumin" (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one), formerly described as a synthetic curcumin derivative, were detected. Additionally, we proved that deketene curcumin, compared to curcumin, exhibits higher toxicity on B78H1 melanoma cells resulting in G2 arrest. In conclusion, deketene curcumin is formed as a consequence of pyrolysis during common household cooking, showing stronger anti-cancer effects than curcumin. Moreover, we propose a chemical reaction-pathway for this process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

    Science.gov (United States)

    Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2016-02-01

    Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we

  3. Curcumin loaded in bovine serum albumin–chitosan derived ...

    Indian Academy of Sciences (India)

    study proved that BSA–chitosan based nanoparticles can be used as an efficient vehicle for effective curcumin ... tions in treating cerebral ischaemia by delivering Tanshinone. ∗ ... curcumin is its poor water solubility, which in turn reduces.

  4. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N.; Han, Jin Wook; Han, Sung-Hwan

    2010-01-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs (∼80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm 2 under 80 mW/cm 2 irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  5. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    Science.gov (United States)

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  6. ToF-SIMS characterization of silk fibroin and polypyrrole composite actuators

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Nathan P.; Severt, Sean Y.; Wang, Zhaoying; Fengel, Carly V.; Larson, Jesse D.; Zhu, Zihua; Murphy, Amanda R.; Leger., Janelle M.

    2015-11-01

    Biocompatible materials capable of controlled actuation under biologically relevant conditions are in high demand for use in a number of biomedical applications. Recently, we demonstrated that a composite material composed of silk biopolymer and the conducting polymer poly(pyrrole) can bend under an applied voltage using a simple bilayer device. Here we present further characterization of these bilayer actuators using time of flight secondary ion mass spectrometry, and provide clarification on the mechanism of actuation and factors affecting device performance and stability. We will discuss the results of this study in the context of strategies for optimization of device performance.

  7. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing.

    Science.gov (United States)

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2013-04-01

    Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating was purposed to prepare the non-adhesive wound dressing that is required in order to minimize pain and risk of repeated injury. SF woven fabrics were coated with different types of waxes including shellac wax, beeswax, or carnauba wax. Physical and mechanical properties of the wax-coated SF fabrics were characterized. It was clearly observed that all waxes could be successfully coated on the SF fabrics, possibly due to the hydrophobic interactions between hydrophobic domains of SF and waxes. The wax coating improved tensile modulus and percentage of elongation of the SF fabrics due to the denser structure and the thicker fibers coated. The in vitro degradation study demonstrated that all wax-coated SF fabrics remained up to 90% of their original weights after 7 weeks of incubation in lysozyme solution under physiological conditions. The wax coating did not affect the degradation behavior of the SF fabrics. A peel test of the wax-coated SF fabrics was carried out in the partial- and full-thickness wounds of porcine skin in comparison to that of the commercial wound dressing. Any wax-coated SF fabrics were less adhesive than the control, as confirmed by less number of cells attached and less adhesive force. This might be that the wax-coated SF fabrics showed the hydrophobic property, allowing the loosely adherence to the hydrophilic wound surface. In addition, the in vivo biocompatibility test of the wax-coated SF fabrics was performed in Sprague-Dawley rats with subcutaneous model. The irritation scores indicated that the carnauba wax-coated SF fabric was not irritant while the shellac wax or beeswax-coated SF

  8. Regeneration of Bombyx mori silk nanofibers and nanocomposite fibrils by the electrospinning process

    Science.gov (United States)

    Ayutsede, Jonathan Eyitouyo

    In recent years, there has been significant interest in the utilization of natural materials for novel nanoproducts such as tissue engineered scaffolds. Silkworm silk fibers represent one of the strongest natural fibers known. Silkworm silk, a protein-based natural biopolymer, has received renewed interest in recent years due to its unique properties (strength, toughness) and potential applications such as smart textiles, protective clothing and tissue engineering. The traditional 10--20 mum diameter, triangular-shaped Bombyx mori fibers have remained unchanged over the years. However, in our study, we examine the scientific implication and potential applications of reducing the diameter to the nanoscale, changing the triangular shape of the fiber and adding nanofillers in the form of single wall carbon nanotubes (SWNT) by the electrospinning process. The electrospinning process preserves the natural conformation of the silk (random and beta-sheet). The feasibility of changing the properties of the electrospun nanofibers by post processing treatments (annealing and chemical treatment) was investigated. B. mori silk fibroin solution (formic acid) was successfully electrospun to produce uniform nanofibers (as small as 12 nm). Response Surface Methodology (RSM) was applied for the first time to experimental results of electrospinning, to develop a processing window that can reproduce regenerated silk nanofibers of a predictable size (d silk multifunctional nanocomposite fibers were fabricated for the first time with anticipated properties (mechanical, thermal and electrically conductive) that may have scientific applications (nerve regeneration, stimulation of cell-scaffold interaction). In order to realize these applications, the following areas need to be addressed: a systematic investigation of the dispersion of the nanotubes in the silk matrix, a determination of new methodologies for characterizing the nanofiber properties and establishing the nature of the silk

  9. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Jin Wook, E-mail: jwhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of)

    2010-09-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs ({approx}80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm{sup 2} under 80 mW/cm{sup 2} irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  10. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures.

    Science.gov (United States)

    Wang, Yaxian; Ma, Ruilong; Hu, Kesong; Kim, Sunghan; Fang, Guangqiang; Shao, Zhengzhong; Tsukruk, Vladimir V

    2016-09-21

    We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.

  11. Dataset of curcumin derivatives for QSAR modeling of anti cancer against P388 cell line

    Directory of Open Access Journals (Sweden)

    Yum Eryanti

    2016-12-01

    Full Text Available The dataset of curcumin derivatives consists of 45 compounds (Table 1 with their anti cancer biological activity (IC50 against P388 cell line. 45 curcumin derivatives were used in the model development where 30 of these compounds were in the training set and the remaining 15 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA method. Based on the method, r2 value, r2 (CV value of 0.81, 0.67 were obtained. The QSAR model was also employed to predict the biological activity of compounds in the test set. Predictive correlation coefficient r2 values of 0.88 were obtained for the test set.

  12. Complementary effects of two growth factors in multifunctionalized silk nanofibers for nerve reconstruction.

    Directory of Open Access Journals (Sweden)

    Tony M Dinis

    Full Text Available With the aim of forming bioactive guides for peripheral nerve regeneration, silk fibroin was electrospun to obtain aligned nanofibers. These fibers were functionalized by incorporating Nerve Growth Factor (NGF and Ciliary NeuroTrophic Factor (CNTF during electrospinning. PC12 cells grown on the fibers confirmed the bioavailability and bioactivity of the NGF, which was not significantly released from the fibers. Primary neurons from rat dorsal root ganglia (DRGs were grown on the nanofibers and anchored to the fibers and grew in a directional fashion based on the fiber orientation, and as confirmed by growth cone morphology. These biofunctionalized nanofibers led to a 3-fold increase in neurite length at their contact, which was likely due to the NGF. Glial cell growth, alignment and migration were stimulated by the CNTF in the functionalized nanofibers. Organotypic culture of rat fetal DRGs confirmed the complementary effect of both growth factors in multifunctionalized nanofibers, which allowed glial cell migration, alignment and parallel axonal growth in structures resembling the 'bands of Bungner' found in situ. Graftable multi-channel conduits based on biofunctionalized aligned silk nanofibers were developed as an organized 3D scaffold. Our bioactive silk tubes thus represent new options for a biological and biocompatible nerve guidance conduit.

  13. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro.

    Directory of Open Access Journals (Sweden)

    Zijian Xiao

    Full Text Available This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1-42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1-42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1.

  14. Telomerase: A Target for Therapeutic Effects of Curcumin and a Curcumin Derivative in Aβ1-42 Insult In Vitro

    Science.gov (United States)

    Lin, Jianwen; Zheng, Zhenyang; Shi, Xiaolei; Di, Wei; Qi, Weiwei; Zhu, Yingting; Zhou, Guijuan; Fang, Yannan

    2014-01-01

    This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml) to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1–42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1–42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1. PMID:24983737

  15. A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media.

    Science.gov (United States)

    Madusanka, Nadeesh; de Silva, K M Nalin; Amaratunga, Gehan

    2015-12-10

    A novel curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is reported. A superabsorbent biopolymer; carboxymethyl cellulose (CMC) was used as an emulsifier for curcumin which is a turmeric derived water insoluble polyphenolic compound with antibacterial/anti-cancer properties. Montmorillonite (MMT) nanoclay was incorporated in the formulation as a matrix material which also plays a role in release kinetics. It was observed that water solubility of curcumin in the nanocomposite has significantly increased (60% release within 2h and 30 min in distilled water at pH 5.4) compared to pure curcumin. The prepared curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is suitable as a curcumin carrier having enhanced release and structural properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Basic Helix-Loop-Helix Transcription Factor Bmsage Is Involved in Regulation of fibroin H-chain Gene via Interaction with SGF1 in Bombyx mori

    Science.gov (United States)

    Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix–loop–helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008

  17. Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft.

    Directory of Open Access Journals (Sweden)

    Fanggang Bi

    Full Text Available The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application.

  18. Synthesis and evaluation of antimalarial activity of curcumin derivatives; Sintese e avaliacao da atividade antimalarica de compostos derivados da curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa [Universidade Federal de Juiz de Fora (UFSJ), MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla, E-mail: varotti@ufsj.edu.br [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil). Centro de Ciencias da Saude; others, and

    2014-05-15

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC{sub 50} values ranging from 1.7 to 15.2 μg mL{sup -1}), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  19. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders.

    Science.gov (United States)

    Vienneau-Hathaway, Jannelle M; Brassfield, Elizabeth R; Lane, Amanda Kelly; Collin, Matthew A; Correa-Garhwal, Sandra M; Clarke, Thomas H; Schwager, Evelyn E; Garb, Jessica E; Hayashi, Cheryl Y; Ayoub, Nadia A

    2017-03-14

    Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of β-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored

  20. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach.

    Directory of Open Access Journals (Sweden)

    Jolanda Rita Vetsch

    Full Text Available Mechanical loading plays a major role in bone remodeling and fracture healing. Mimicking the concept of mechanical loading of bone has been widely studied in bone tissue engineering by perfusion cultures. Nevertheless, there is still debate regarding the in-vitro mechanical stimulation regime. This study aims at investigating the effect of two different flow rates (vlow = 0.001m/s and vhigh = 0.061m/s on the growth of mineralized tissue produced by human mesenchymal stromal cells cultured on 3-D silk fibroin scaffolds. The flow rates applied were chosen to mimic the mechanical environment during early fracture healing or during bone remodeling, respectively. Scaffolds cultured under static conditions served as a control. Time-lapsed micro-computed tomography showed that mineralized extracellular matrix formation was completely inhibited at vlow compared to vhigh and the static group. Biochemical assays and histology confirmed these results and showed enhanced osteogenic differentiation at vhigh whereas the amount of DNA was increased at vlow. The biological response at vlow might correspond to the early stage of fracture healing, where cell proliferation and matrix production is prominent. Visual mapping of shear stresses, simulated by computational fluid dynamics, to 3-D micro-computed tomography data revealed that shear stresses up to 0.39mPa induced a higher DNA amount and shear stresses between 0.55mPa and 24mPa induced osteogenic differentiation. This study demonstrates the feasibility to drive cell behavior of human mesenchymal stromal cells by the flow velocity applied in agreement with mechanical loading mimicking early fracture healing (vlow or bone remodeling (vhigh. These results can be used in the future to tightly control the behavior of human mesenchymal stromal cells towards proliferation or differentiation. Additionally, the combination of experiment and simulation presented is a strong tool to link biological responses to

  1. Inhibition of HIV-1 by curcumin A, a novel curcumin analog

    Science.gov (United States)

    Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus

    2015-01-01

    Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056

  2. Water-insoluble Silk Films with Silk I Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  3. Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds

    International Nuclear Information System (INIS)

    Abdel-Fattah, Wafa I.; Sallam, Abdel Sattar M.; Diab, A.M.; Ali, Ghareib W.

    2015-01-01

    Two novel silk composites of phosphatic phases with nanosilver/chitosan having enhanced biocompatibility were achieved. Hydroxyapatite and octa calcium phosphates were synthesized in situ within silk fibroin/chitosan/nanosilver composites recently studied. Thermo-gravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) verified their thermal behavior. The structural aspects were characterized applying X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) with EDAX. Additionally X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared spectroscopy (FTIR) were applied. Mercury porosimeter was used to verify the pore size distribution. The in vitro degradation was followed in D-MEM for 48 h in a cumulative manner for five successive periods. Biochemical analyses of Ca, P and total protein using relevant chemical kits and atomic absorption for silver were performed. ANOVA statistics was carried out. Phosphatic crystalline phases along with the presence of silk, chitosan and nano-silver were developed. The diameters of hydroxyapatite and octa calcium phosphate particles were ~ 8–17 nm and 15–22 nm respectively. Comparatively higher degradation of Octa composite possessing higher porosity proved in turn more osteoinduction with in situ apatitic development. - Highlights: • A bottom–up approach controlled the achieved in situ configurations. • The calculated (CI) XDR and (CI) FTIR for both phases are highly conformable. • Post-immersion trimodal pore system was achieved in OCP composite. • Silver nanoparticle inclusion expected to enhance composite bactericidal activity

  4. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...... is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential −56 ± 5.......6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...

  5. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  6. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    Science.gov (United States)

    2014-03-01

    healing process. We selected fibrin and hydrogel as delivery vehicles for our test. The rationale is that fibrin, which is a natural biopolymer of blood...E.U. Alt, IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin- chitosan scaffold enhance wound repair in a murine soft

  7. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  8. Therapeutic actions of curcumin in bone disorders

    OpenAIRE

    Rohanizadeh, Ramin; Deng, Yi; Verron, Elise

    2016-01-01

    Curcumin is the active component of turmeric extract derived from the Curcuma longa plant. In the last decade, curcumin has raised a considerable interest in medicine owing to its negligible toxicity and multiple therapeutic actions including anti-cancer, anti-inflammatory and anti-microbial activities. Among the various molecular targets of curcumin, some are involved in bone remodeling, which strongly suggests that curcumin can affect the skeletal system. The review sheds light on the curre...

  9. Bioavailability of curcumin: problems and promises.

    Science.gov (United States)

    Anand, Preetha; Kunnumakkara, Ajaikumar B; Newman, Robert A; Aggarwal, Bharat B

    2007-01-01

    Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.

  10. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons.

    Science.gov (United States)

    Wang, Rui; Li, Yu-Hua; Xu, Ying; Li, Ying-Bo; Wu, Hong-Li; Guo, Hao; Zhang, Jian-Zhao; Zhang, Jing-Jie; Pan, Xue-Yang; Li, Xue-Jun

    2010-02-01

    Curcumin is a major constituent of curcuma longa, a traditional medicine used to manage mental disorders effectively in China. The neuroprotective effects of curcumin have been demonstrated in our previous studies. In the present research, we confirmed this effect by showing that curcumin application promoted the viability of cultured rodent cortical neurons. Moreover, when neurons were pretreated with tyrosine kinase B (TrkB) antibody, known to inhibit the activity of brain-derived neurotrophic factor (BDNF), the protective effect of curcumin was blocked. Additionally, treatment of curcumin increased BDNF and phosphor-TrkB and both of these enhancements can be suppressed by ERK and PI-3K inhibitors. The administration of curcumin led to increased levels of phosphor-ERK and AKT, which were each blocked by MAPK and PI-3K inhibitors. Furthermore, the curcumin-induced increase in phosphorylated cyclic AMP response element binding protein (CREB), which has been implicated as a possible mediator of antidepressant actions, was prevented by MAPK and PI-3K inhibitors. Therefore, we hypothesize the neuroprotection of curcumin might be mediated via BDNF/TrkB-MAPK/PI-3K-CREB signaling pathway. Copyright 2009. Published by Elsevier Inc.

  11. Immobilization of thorium over fibroin by polyacrylonitrile (PAN)

    International Nuclear Information System (INIS)

    Aslani, M.A.A.; Akyil, S.; Eral, M.

    1997-01-01

    This report describes a process for immobilization of thorium over fibroin, which was used as a bio-adsorbant, by polyacrylonitrile. The amounts of thorium in aqueous solutions which may be leached in various aqueous ambients were detected by a spectrophotometer. The results show that polyacrylonitrile processes are feasible to immobilize spent fibroins. The leachability of the materials immobilized with polyacrylonitrile can meet the requirements of storage and final disposal. The leachability of thorium ions from immobilized spent fibroin was rather low for 8 months

  12. A two-step synthetic strategy to obtain a water-soluble derivative of curcumin with improved antioxidant capacity and in vitro cytotoxicity in C6 glioma cells.

    Science.gov (United States)

    Landeros, José M; Belmont-Bernal, Fernando; Pérez-González, Alma Teresa; Pérez-Padrón, Mario Israel; Guevara-Salazar, Patricia; González-Herrera, Irma Gabriela; Guadarrama, Patricia

    2017-02-01

    A novel water-soluble derivative of curcumin (Cur-[G-2]-OH) was designed and synthesized from accessible raw materials in only two steps with an overall yield of 80%. The modification of curcumin phenol groups with second-generation polyester dendrons (dendronization) as a strategy to achieve an optimal hydrophilic/hydrophobic balance allows the complete water solubilization of the new curcumin derivative (5mg/ml) at room temperature. The therapeutic potential of Cur-[G-2]-OH was investigated in terms of antioxidant capacity, intracellular uptake and cytotoxicity in both rat glioblastoma cells and normal human dermal fibroblasts. Although the phenolic groups of curcumin were locked by dendronization, Cur-[G-2]-OH exhibited antioxidant capacity in water that was even higher than curcumin in dimethylsulfoxide (DMSO). This compound showed a steady cellular uptake contrasted with curcumin, which has a saturation capture at high concentrations. Combined with improved stability, this property seems to allow the intracellular accumulation of Cur-[G-2]-OH. Furthermore, the new compound exhibited increased cytotoxicity in rat C6 glioma cells in a time- and concentration-dependent manner, whereas in normal human fibroblasts, its IC 50 value was >600μM versus the IC 50 of curcumin found between 100 and 200μM. Surprisingly, Cur-[G-2]-OH drives cell death of C6 cells by a different mechanism of apoptosis triggered by curcumin. Together, these results suggest that curcumin dendronization could promote molecular and cellular mechanisms that are different from those induced by curcumin, presumably due to structural factors and not only for improved water solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A novel approach to fabricate silk nanofibers containing hydroxyapatite nanoparticles using a three-way stopcock connector

    Science.gov (United States)

    Sheikh, Faheem A.; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung Ho; Lee, Ok Joo; Park, Chan Hum

    2013-07-01

    Electrospinning technique is commonly used to produce micro- and/or nanofibers, which utilizes electrical forces to produce polymeric fibers with diameters ranging from several micrometers down to few nanometers. Desirably, electrospun materials provide highly porous structure and appropriate pore size for initial cell attachment and proliferation and thereby enable the exchange of nutrients. Composite nanofibers consisting of silk and hydroxyapatite nanoparticles (HAp) (NPs) had been considered as an excellent choice due to their efficient biocompatibility and bone-mimicking properties. To prepare these nanofiber composites, it requires the use of acidic solutions which have serious consequences on the nature of both silk and HAp NPs. It is ideal to create these nanofibers using aqueous solutions in which the physicochemical nature of both materials can be retained. However, to create those nanofibers is often difficult to obtain because of the fact that aqueous solutions of silk and HAp NPs can precipitate before they can be ejected into fibers during the electrospinning process. In this work, we had successfully used a three-way stopcock connector to mix the two different solutions, and very shortly, this solution is ejected out to form nanofibers due to electric fields. Different blend ratios consisting HAp NPs had been electrospun into nanofibers. The physicochemical aspects of fabricated nanofiber had been characterized by different state of techniques like that of FE-SEM, EDS, TEM, TEM-EDS, TGA, FT-IR, and XRD. These characterization techniques revealed that HAp NPs can be easily introduced in silk nanofibers using a stopcock connector, and this method favorably preserves the intact nature of silk fibroin and HAp NPs. Moreover, nanofibers obtained by this strategy were tested for cell toxicity and cell attachment studies using NIH 3 T3 fibroblasts which indicated non-toxic behavior and good attachment of cells upon incubation in the presence of nanofibers.

  14. Determination of the torsion angles of alanine and glycine residues of model compounds of spider silk (AGG){sub 10} using solid-state NMR methods

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Jun; Ohgo, Kosuke; Komatsu, Kohei; Kubota, Ayumi; Asakura, Tetsuo [Tokyo University of Agriculture and Technology, Department of Biotechnology (Japan)], E-mail: asakura@cc.tuat.ac.jp

    2003-02-15

    Spiders synthesize several kinds of silk fibers. In the primary structure of spider silk, one of the major ampullate (dragline, frame) silks, spidroin 1, and flagelliform silk (core fibers of adhesive spiral), there are common repeated X-Gly-Gly (X = Ala, Leu, Pro, Tyr, Glu, and Arg) sequences, which are considered to be related to the elastic character of these fibers. In this paper, two dimensional spin diffusion solid-state NMR under off magic angle spinning (OMAS), {sup 13}C chemical shift contour plots, and Rotational Echo DOuble Resonance (REDOR) were applied to determine the torsion angles of one Ala and two kinds of Gly residues in the Ala-Gly-Gly sequence of {sup 13}C=O isotope-labeled (Ala-Gly-Gly){sub 10}. The torsion angles were determined to be ({phi}, {psi}) = (-90 deg., 150 deg.) within an experimental error of {+-}10 deg. for each residue. This conformation is characterized as 3{sub 1} helix which is in agreement with the structure proposed from the X-ray powder diffraction pattern of poly(Ala-Gly-Gly). The 3{sub 1} helix of (Ala-Gly-Gly){sub 10} does not change by formic acid treatment although (Ala-Gly){sub 15} easily changes from the silk I conformation (the structure of Bombyx mori silk fibroin before spinning in the solid state) to silk II conformation (the structure of the silk fiber after spinning) by such treatment. Thus, the 3{sub 1} helix conformation of (Ala-Gly-Gly){sub 10} is considered very stable. Furthermore, the torsion angles of the 16th Leu residue of (Leu-Gly-Gly){sub 10} were also determined as ({phi}, {psi}) = (-90 deg., 150 deg.) and this peptide is also considered to take 3{sub 1} helix conformation.

  15. SPIDER SILK

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2014-05-01

    Full Text Available The strengthness and toughness of spider fiber and its multifunctional nature is only surpassed in some cases by synthetic high performance fibers. In the world of natural fibers, spider silk has been long time recognized as a wonder fiber for its unique combination of high strength and rupture elongation. Scientists in civil military engineering reveal that the power of biological material (spider silk lies in the geometric configuration of structural protein, and the small cluster of week hydrogen bonds that works together to resist force and dissipate energy. Each spider and each type of silk has a set of mechanical properties optimized for their biological function. Most silks, in particular deagline silk, have exceptional mechanical properties. They exhibit a unique combination of high tensile strength and extensibility (ductility. This enables a silk fiber to absorb a lot of energy before breaking (toughness, the area under a stress- strain curve. A frequent mistake made in the mainstream media is to confuse strength and toughness when comparing silk to other materials. As shown below in detail, weight for weight, silk is stronger than steel, but not as strong as Kevlar. Silk is,however, tougher than both.This paper inform about overview on the today trend in the world of spider silk.

  16. Curcumin: getting back to the roots.

    Science.gov (United States)

    Shishodia, Shishir; Sethi, Gautam; Aggarwal, Bharat B

    2005-11-01

    The use of turmeric, derived from the root of the plant Curcuma longa, for treatment of different inflammatory diseases has been described in Ayurveda and in traditional Chinese medicine for thousands of years. The active component of turmeric responsible for this activity, curcumin, was identified almost two centuries ago. Modern science has revealed that curcumin mediates its effects by modulation of several important molecular targets, including transcription factors (e.g., NF-kappaB, AP-1, Egr-1, beta-catenin, and PPAR-gamma), enzymes (e.g., COX2, 5-LOX, iNOS, and hemeoxygenase-1), cell cycle proteins (e.g., cyclin D1 and p21), cytokines (e.g., TNF, IL-1, IL-6, and chemokines), receptors (e.g., EGFR and HER2), and cell surface adhesion molecules. Because it can modulate the expression of these targets, curcumin is now being used to treat cancer, arthritis, diabetes, Crohn's disease, cardiovascular diseases, osteoporosis, Alzheimer's disease, psoriasis, and other pathologies. Interestingly, 6-gingerol, a natural analog of curcumin derived from the root of ginger (Zingiber officinalis), exhibits a biologic activity profile similar to that of curcumin. The efficacy, pharmacologic safety, and cost effectiveness of curcuminoids prompt us to "get back to our roots."

  17. Antibacterial Action of Curcumin against Staphylococcus aureus: A Brief Review

    Directory of Open Access Journals (Sweden)

    Sin-Yeang Teow

    2016-01-01

    Full Text Available Curcumin, the major constituent of Curcuma longa L. (Zingiberaceae family or turmeric, commonly used for cooking in Asian cuisine, is known to possess a broad range of pharmacological properties at relatively nontoxic doses. Curcumin is found to be effective against Staphylococcus aureus (S. aureus. As demonstrated by in vitro experiment, curcumin exerts even more potent effects when used in combination with various other antibacterial agents. Hence, curcumin which is a natural product derived from plant is believed to have profound medicinal benefits and could be potentially developed into a naturally derived antibiotic in the future. However, there are several noteworthy challenges in the development of curcumin as a medicine. S. aureus infections, particularly those caused by the multidrug-resistant strains, have emerged as a global health issue and urgent action is needed. This review focuses on the antibacterial activities of curcumin against both methicillin-sensitive S. aureus (MSSA and methicillin-resistant S. aureus (MRSA. We also attempt to highlight the potential challenges in the effort of developing curcumin into a therapeutic antibacterial agent.

  18. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration

    Directory of Open Access Journals (Sweden)

    Gandhimathi C

    2014-10-01

    Full Text Available Chinnasamy Gandhimathi,1 Jayarama Reddy Venugopal,2 Velmurugan Bhaarathy,2 Seeram Ramakrishna,2 Srinivasan Dinesh Kumar1 1Cellular and Molecular Epigenetics Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 2Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore Abstract: Nanotechnology and tissue engineering have enabled engineering of nanostructured strategies to meet the current challenges in skin tissue regeneration. Electrospinning technology creates porous nanofibrous scaffolds to mimic extracellular matrix of the native tissues. The present study was performed to gain some insights into the applications of poly(L-lactic acid-co-poly-(ε-caprolactone (PLACL/silk fibroin (SF/vitamin E (VE/curcumin (Cur nanofibrous scaffolds and to assess their potential for being used as substrates for the culture of human dermal fibroblasts for skin tissue engineering. PLACL/SF/VE/Cur nanofibrous scaffolds were fabricated by electrospinning and characterized by fiber morphology, membrane porosity, wettability, mechanical strength, and chemical properties by Fourier transform infrared (FTIR analysis. Human dermal fibroblasts were cultured on these scaffolds, and the cell scaffold interactions were analyzed by cell proliferation, cell morphology, secretion of collagen, expression of F-actin, and 5-chloromethylfluorescein diacetate (CMFDA dye. The electrospun nanofiber diameter was obtained between 198±4 nm and 332±13 nm for PLACL, PLACL/SF, PLACL/SF/VE, and PLACL/SF/VE/Cur nanofibrous scaffolds. FTIR analysis showed the presence of the amide groups I, II, and III, and a porosity of up to 92% obtained on these nanofibrous scaffolds. The results showed that the fibroblast proliferation, cell morphology, F-actin, CMFDA dye expression, and secretion of collagen were significantly increased in PLACL/SF/VE/Cur when compared

  19. Antiproliferative effects of an analog of curcumin in Hep-2 cells: a comparative study with curcumin.

    Science.gov (United States)

    Kumaravel, Mohankumar; Sankar, Pajaniradje; Latha, Periyasamy; Benson, Chellakan S; Rukkumani, Rajagopalan

    2013-02-01

    Curcumin, the major active principle of Curcuma longa, is one of the promising, plant-derived, chemopreventive agents being studied for its anticarcinogenic and antioxidant properties. Hence, in our study, we aimed at testing the antiproliferative efficacy of an o-hydroxyl substituted analog of curcumin, bis demethoxy curcumin analog (BDMC-A), and comparing its efficacy with that of curcumin. BDMC-A was synthesised with a yield of 78% and 98% purity. Hep-2 cells and the MTT cell viability assay were used to examine cell proliferation. LDH assay and cell counts were performed to assess the cytotoxicity and anti-proliferative effects of the compound, respectively. Flow cytometry followed by Western blot were performed to investigate the cell cycle distribution. BDMC-A inhibited cell proliferation at a much lower concentration (IC50 20 microM) than curcumin (IC50 50 microM). Similar effects were observed in the LDH release and cell count assays. Flow cytometric studies using propidium iodide showed accumulation of cells in the G0/G1 phase and the arrest was further confirmed by immunoblotting of protein cyclin D1. BDMC-A was more potent in inhibiting the cells at a lower dose when compared with curcumin. Our results showed that the analog of curcumin is likely to possess more efficacy compared with curcumin in inhibiting cancer.

  20. Renoprotective effect of the antioxidant curcumin: Recent findings☆

    Science.gov (United States)

    Trujillo, Joyce; Chirino, Yolanda Irasema; Molina-Jijón, Eduardo; Andérica-Romero, Ana Cristina; Tapia, Edilia; Pedraza-Chaverrí, José

    2013-01-01

    For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2), inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury. PMID:24191240

  1. Renoprotective effect of the antioxidant curcumin: Recent findings

    Directory of Open Access Journals (Sweden)

    Joyce Trujillo

    2013-01-01

    Full Text Available For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2, inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury.

  2. Preparation of 3D fibroin/chitosan blend porous scaffold for tissue engineering via a simplified method.

    Science.gov (United States)

    Ruan, Yuhui; Lin, Hong; Yao, Jinrong; Chen, Zhengrong; Shao, Zhengzhong

    2011-03-10

    In this work, we developed a simple and flexible method to manufacture a 3D porous scaffold based on the blend of regenerated silk fibroin (RSF) and chitosan (CS). No crosslinker or other toxic reagents were used in this method. The pores of resulted 3D scaffolds were connected with each other, and their sizes could be easily controlled by the concentration of the mixed solution. Compared with pure RSF scaffolds, the water absorptivities of these RSF/CS blend scaffolds with significantly enhanced mechanical properties were greatly increased. The results of MTT and RT-PCR tests indicated that the chondrocytes grew very well in these blend RSF/CS porous scaffolds. This suggested that the RSF/CS blend scaffold prepared by this new method could be a promising candidate for applications in tissue engineering. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering.

    Science.gov (United States)

    Font Tellado, Sònia; Chiera, Silvia; Bonani, Walter; Poh, Patrina S P; Migliaresi, Claudio; Motta, Antonella; Balmayor, Elizabeth R; van Griensven, Martijn

    2018-05-01

    The tendon/ligament-to-bone transition (enthesis) is a highly specialized interphase tissue with structural gradients of extracellular matrix composition, collagen molecule alignment and mineralization. These structural features are essential for enthesis function, but are often not regenerated after injury. Tissue engineering is a promising strategy for enthesis repair. Engineering of complex tissue interphases such as the enthesis is likely to require a combination of biophysical, biological and chemical cues to achieve functional tissue regeneration. In this study, we cultured human primary adipose-derived mesenchymal stem cells (AdMCs) on biphasic silk fibroin scaffolds with integrated anisotropic (tendon/ligament-like) and isotropic (bone/cartilage like) pore alignment. We functionalized those scaffolds with heparin and explored their ability to deliver transforming growth factor β2 (TGF-β2) and growth/differentiation factor 5 (GDF5). Heparin functionalization increased the amount of TGF-β2 and GDF5 remaining attached to the scaffold matrix and resulted in biological effects at low growth factor doses. We analyzed the combined impact of pore alignment and growth factors on AdMSCs. TGF-β2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. In addition, the combined delivery of TGF-β2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity. Altogether, the data obtained in this study improves current understanding on the combined effects of biological and structural cues on stem cell fate and presents a promising strategy for tendon/ligament-to-bone regeneration. Regeneration of the tendon/ligament-to-bone interphase (enthesis) is of significance in the repair of ruptured tendons/ligaments to bone to improve implant integration and

  4. Triazole-curcuminoids: A new class of derivatives for 'tuning' curcumin bioactivities?

    Science.gov (United States)

    Caprioglio, Diego; Torretta, Simone; Ferrari, Maila; Travelli, Cristina; Grolla, Ambra A; Condorelli, Fabrizio; Genazzani, Armando A; Minassi, Alberto

    2016-01-15

    Curcumin is a unique blend of pharmacophores responsible for the pleiotropy of this natural pigment. In the present study we have replaced the 1,3-dicarbonyl moiety with a 1,2,3-triazole ring to furnish a new class of triazole-curcuminoids as a possible strategy to generate new compounds with different potency and selectivity compared to curcumin. We obtained a proof-of-principle library of 28 compounds tested for their cytotoxicity (SY-SY5Y and HeLa cells) and for their ability to inhibit NF-κB. Furthermore, we also generated 1,3-dicarbonyl curcuminoids of selected click compounds. Triazole-curcuminoids lost their ability to be Michael's acceptors, yet maintained some of the features of the parent compounds and disclosed new ones. In particular, we found that some compounds were able to inhibit NF-κB without showing cytotoxicity, while others, unlike curcumin, activated NF-κB signalling. This validates the hypothesis that click libraries can be used to investigate the biological activities of curcumin as well as generate analogs with selected features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The functional genomic studies of curcumin.

    Science.gov (United States)

    Huminiecki, Lukasz; Horbańczuk, Jarosław; Atanasov, Atanas G

    2017-10-01

    Curcumin is a natural plant-derived compound that has attracted a lot of attention for its anti-cancer activities. Curcumin can slow proliferation of and induce apoptosis in cancer cell lines, but the precise mechanisms of these effects are not fully understood. However, many lines of evidence suggested that curcumin has a potent impact on gene expression profiles; thus, functional genomics should be the key to understanding how curcumin exerts its anti-cancer activities. Here, we review the published functional genomic studies of curcumin focusing on cancer. Typically, a cancer cell line or a grafted tumor were exposed to curcumin and profiled with microarrays, methylation assays, or RNA-seq. Crucially, these studies are in agreement that curcumin has a powerful effect on gene expression. In the majority of the studies, among differentially expressed genes we found genes involved in cell signaling, apoptosis, and the control of cell cycle. Curcumin can also induce specific methylation changes, and is a powerful regulator of the expression of microRNAs which control oncogenesis. We also reflect on how the broader technological progress in transcriptomics has been reflected on the field of curcumin. We conclude by discussing the areas where more functional genomic studies are highly desirable. Integrated OMICS approaches will clearly be the key to understanding curcumin's anticancer and chemopreventive effects. Such strategies may become a template for elucidating the mode of action of other natural products; many natural products have pleiotropic effects that are well suited for a systems-level analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Natural derivatives of curcumin attenuate the Wnt/β-catenin pathway through down-regulation of the transcriptional coactivator p300

    International Nuclear Information System (INIS)

    Ryu, Min-Jung; Cho, Munju; Song, Jie-Young; Yun, Yeon-Sook; Choi, Il-Whan; Kim, Dong-Eun; Park, Byeoung-Soo; Oh, Sangtaek

    2008-01-01

    Curcumin, a component of turmeric (Curcuma longa), has been reported to suppress β-catenin response transcription (CRT), which is aberrantly activated in colorectal cancer. However, the effects of its natural analogs (demethoxycurcumin [DMC] and bisdemethoxycurcumin [BDMC]) and metabolite (tetrahydrocurcumin [THC]) on the Wnt/β-catenin pathway have not been investigated. Here, we show that DMC and BDMC suppressed CRT that was activated by Wnt3a conditioned-medium (Wnt3a-CM) without altering the level of intracellular β-catenin, and inhibited the growth of various colon cancer cells, with comparable potency to curcumin. Additionally, DMC and BDMC down-regulated p300, which is a positive regulator of the Wnt/β-catenin pathway. Notably, THC also inhibited CRT and cell proliferation, but to a much lesser degree than curcumin, DMC, or BDMC, indicating that the conjugated bonds in the central seven-carbon chain of curcuminoids are essential for the inhibition of Wnt/β-catenin pathway and the anti-proliferative activity of curcuminoids. Thus, our findings suggest that curcumin derivatives inhibit the Wnt/β-catenin pathway by decreasing the amount of the transcriptional coactivator p300.

  7. Curcumin Inhibits Growth of Saccharomyces cerevisiae through Iron Chelation ▿ ††

    OpenAIRE

    Minear, Steven; O'Donnell, Allyson F.; Ballew, Anna; Giaever, Guri; Nislow, Corey; Stearns, Tim; Cyert, Martha S.

    2011-01-01

    Curcumin, a polyphenol derived from turmeric, is an ancient therapeutic used in India for centuries to treat a wide array of ailments. Interest in curcumin has increased recently, with ongoing clinical trials exploring curcumin as an anticancer therapy and as a protectant against neurodegenerative diseases. In vitro, curcumin chelates metal ions. However, although diverse physiological effects have been documented for this compound, curcumin's mechanism of action on mammalian cells remains un...

  8. Sequential entrapping of Li and S in a conductivity cage of N-doped reduced graphene oxide supercapacitor derived from silk cocoon: a hybrid Li-S-silk supercapacitor

    Science.gov (United States)

    Jangir, Himanshi; Pandey, Mohit; Jha, Rishabh; Dubey, Amarish; Verma, Shourya; Philip, Deepu; Sarkar, Sabyasachi; Das, Mainak

    2018-02-01

    Li and S compounds are currently exploited for their applications in battery industry. Here, we discovered that Li-S compounds exhibit supercapacitor like properties in a context-dependent manner viz., when Li and S atoms are entrapped in a conductivity cage of N-doped reduced graphene oxide (ND-RGO) supercapacitor derived from silk cocoon, it resulted in the formation of a superior hybrid Li-S-silk (ND-RGO-Li-S) supercapacitor. Interestingly, ND-RGO-Li-S proves to be a better supercapacitor than ND-RGO alone. Electrochemical properties of ND-RGO versus ND-RGO-Li-S indicated that the later has higher capacitance ( 10.72%), lower resistance ( 2.98%), and higher time constant or relaxation time ( 7.52%). Thus, in one of the first attempts, caging Li and S in ND-RGO supercapacitor matrix offers a new role for Li-S, as an improved supercapacitor, unlike its current application as a battery.

  9. Curcumin nanoformulations: a future nanomedicine for cancer

    Science.gov (United States)

    Yallapu, Murali M; Jaggi, Meena; Chauhan, Subhash C

    2011-01-01

    Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion, apoptosis and cell death, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy. PMID:21959306

  10. Curcumin β-D-Glucuronide Plays an Important Role to Keep High Levels of Free-Form Curcumin in the Blood.

    Science.gov (United States)

    Ozawa, Hitomi; Imaizumi, Atsushi; Sumi, Yoshihiko; Hashimoto, Tadashi; Kanai, Masashi; Makino, Yuji; Tsuda, Takanori; Takahashi, Nobuaki; Kakeya, Hideaki

    2017-01-01

    Curcumin, a polyphenol derived from the rhizome of the naturally occurring plant Curcuma longa, has various pharmacological actions such as antioxidant and anti-inflammatory effects. In this paper, we evaluated the role of its internal metabolite, curcumin β-D-glucuronide (curcumin monoglucuronide, CMG), by investigating curcumin kinetics and metabolism in the blood. Firstly, we orally administered highly bioavailable curcumin to rats to elucidate its kinetics, and observed not only the free-form of curcumin, but also, curcumin in a conjugated form, within the portal vein. We confirmed that curcumin is conjugated when it passes through the intestinal wall. CMG, one of the metabolites, was then orally administered to rats. Despite its high aqueous solubility compared to free-form curcumin, it was not well absorbed. In addition, CMG was injected intravenously into rats in order to assess its metabolic behavior in the blood. Interestingly, high levels of free-form curcumin, thought to be sufficiently high to be pharmacologically active, were observed. The in vivo antitumor effects of CMG following intravenous injection were then evaluated in tumor-bearing mice with the HCT116 human colon cancer cell line. The tumor volume within the CMG group was significantly less than that of the control group. Moreover, there was no significant loss of body weight in the CMG group compared to the control group. These results suggest that CMG could be used as an anticancer agent without the serious side effects that most anticancer agents have.

  11. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite

    Science.gov (United States)

    Jiang, Jia; Wan, Fang; Yang, Jianjun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Zhang, Peng; Chen, Jun; Zhou, Liang; Chen, Shiyi

    2014-01-01

    Background Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon–bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon–bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo. Methods HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others. Results The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and

  12. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite.

    Science.gov (United States)

    Jiang, Jia; Wan, Fang; Yang, Jianjun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Zhang, Peng; Chen, Jun; Zhou, Liang; Chen, Shiyi

    2014-01-01

    Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon-bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon-bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo. HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others. The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and eosin staining showed that new bone

  13. Trends in World Silk Cocoons and Silk Production and Trade, 2007-2010

    Directory of Open Access Journals (Sweden)

    AGATHA AGATHA POPESCU

    2013-10-01

    Full Text Available The paper aimed to analyze world production and trade for fresh silk cocoons and raw silk using FAO Stat data for  the  period 2007-2010. The use of index, share and comparison methods allowed to identify the major trends in the analyzed period. Silk decline was determined by the increased importance of cotton and artificial fibres in textile and clothing industry. Important changes are taking place on silk cocoons and silk market. While, the European market decreased, the Asian market has mainly developed fresh cocoons and raw silk, while the European market became more interested of clothes. Silk consumption declined because of consumer’s preference for synthetic fibres, except traditional consumers from Asia.  China is the main producer and exporter of fresh and dry cocoons, while raw silk is produced and exported by China, Brazil and Italy and imported by India, Japan and Italy. In Europe, Bulgaria is the top producer of fresh cocoons and raw silk and Italy is the main raw silk importer and the top producer and exporter of textile and fashion clothes. Silk will remain an important raw material for producing high quality and luxury clothes.

  14. Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits

    OpenAIRE

    Christine Radtke

    2016-01-01

    Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropo...

  15. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines

    International Nuclear Information System (INIS)

    Ooko, Edna; Alsalim, Tahseen; Saeed, Bahjat; Saeed, Mohamed E.M.; Kadioglu, Onat; Abbo, Hanna S.; Titinchi, Salam J.J.; Efferth, Thomas

    2016-01-01

    Background: Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF–CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Material and methods: Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC 50 values and binding energies. Results: The compounds displayed IC 50 values between 0.7 ± 0.03 and 20.2 ± 0.25 μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from − 9.00 ± 0.10 to − 6.20 ± 0.02 kcal/mol and pKi values from 0.24 ± 0.04 to 29.17 ± 0.88 μM. At the ATP-binding site of P-gp, lowest binding energies ranged from − 9.78 ± 0.17 to − 6.79 ± 0.01 kcal/mol and pKi values from 0.07 ± 0.02 to 0.03 ± 0.03 μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF–CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R = 0.797 and R = 0.794 for training and test sets). Conclusion: Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. - Highlights: • Novel derivatives of curcumin in reversing multidrug

  16. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Ooko, Edna [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Alsalim, Tahseen; Saeed, Bahjat [Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah (Iraq); Saeed, Mohamed E.M.; Kadioglu, Onat [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Abbo, Hanna S. [Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town (South Africa); Titinchi, Salam J.J., E-mail: stitinchi@uwc.ac.za [Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town (South Africa); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2016-08-15

    Background: Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF–CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Material and methods: Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC{sub 50} values and binding energies. Results: The compounds displayed IC{sub 50} values between 0.7 ± 0.03 and 20.2 ± 0.25 μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from − 9.00 ± 0.10 to − 6.20 ± 0.02 kcal/mol and pKi values from 0.24 ± 0.04 to 29.17 ± 0.88 μM. At the ATP-binding site of P-gp, lowest binding energies ranged from − 9.78 ± 0.17 to − 6.79 ± 0.01 kcal/mol and pKi values from 0.07 ± 0.02 to 0.03 ± 0.03 μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF–CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R = 0.797 and R = 0.794 for training and test sets). Conclusion: Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. - Highlights: • Novel derivatives of curcumin in reversing

  17. Understanding curcumin-induced modulation of protein aggregation.

    Science.gov (United States)

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A β-cyclodextrin, polyethyleneimine and silk fibroin hydrogel containing Centella asiatica extract and hydrocortisone acetate: releasing properties and in vivo efficacy for healing of pressure sores.

    Science.gov (United States)

    Lee, M S; Seo, S R; Kim, J-C

    2012-10-01

      Pressure sores are lesions caused by impaired blood flow. Conventional dressings can absorb exudates, but do not promote wound healing. A hydrogel composed of β-cyclodextrin (β-CD), polyethyleneimine (PEI) and silk fibroin (SF) was assessed for use in healing of pressure sores. The hydrogel was prepared by crosslinking β-CD-grafted PEI and SF using epichlorohydrin. The gel was then immersed in an aqueous solution of Centella asiatica extract (CAE) 0.7 mg/mL and/or hydrocortisone acetate (HCA) 0.5 mg/mL. The in vivo pressure sore-healing efficacy of the dry gel (with or without the drugs) was investigated in terms of the hyperplasia of epidermis and the number of neutrophils in the skin tissue. The specific loading of CAE was 0.0091 g/g of dry gel. The percentage of CAE released at 24 h at pH 3.0, 5.0 and 7.4 was approximately 63.9%, 55.0% and 44.4%, respectively. This pH-dependent release is possibly due to the degree of gel swelling, which decreased with increasing pH. The specific loading of HCA was 0.0050 g/g dry gel, and the percentage release of HCA at 24 h was around 20% at all three pH points. It is likely that HCA release is independent of pH. HCA is a hydrophobic compound, and therefore the release of HCA is affected by the partitioning of HCA between the β-CD cavity and the bulk water phase, but not by the degree of swelling of the hydrogel. The pressure sores treated with the hydrogel healed in 6 days, compared with 10 days for controls. In this study, a β-CD/PEI/SF hydrogel containing CAE and HCA reduced the healing time for pressure sores. © The Author(s). CED © 2012 British Association of Dermatologists.

  19. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2

    Directory of Open Access Journals (Sweden)

    Zhao Z

    2015-04-01

    Full Text Available Zheng Zhao,1,3 Maobin Xie,2 Yi Li,2 Aizheng Chen,4 Gang Li,5 Jing Zhang,2 Huawen Hu,2 Xinyu Wang,1,3 Shipu Li1,31State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People’s Republic of China; 2Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong; 3Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People’s Republic of China; 4College of Chemical Engineering, Huaqiao University, Xiamen, People’s Republic of China; 5National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People’s Republic of ChinaAbstract: In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2 (SEDS was employed to prepare curcumin nanoparticles for the first time. A 24 full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P =20 MPa, T =35°C, flow rate of solution =0.5 mL.min-1, concentration of solution =0.5%. Fourier transform infrared (FTIR spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The

  20. Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique.

    Science.gov (United States)

    Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung

    2017-09-28

    Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

  1. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A [Department of Tissue Regeneration, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hedhammar, My; Johansson, Jan [Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Box 575, 751 23 Uppsala (Sweden); Blom, Tobias; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden)

    2010-08-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  2. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    International Nuclear Information System (INIS)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A; Hedhammar, My; Johansson, Jan; Blom, Tobias; Leifer, Klaus

    2010-01-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  3. Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Bai, Xiyuan; Oberley-Deegan, Rebecca E; Bai, An; Ovrutsky, Alida R; Kinney, William H; Weaver, Michael; Zhang, Gong; Honda, Jennifer R; Chan, Edward D

    2016-07-01

    With the worldwide emergence of highly drug-resistant tuberculosis (TB), novel agents that have direct antimycobacterial effects or that enhance host immunity are urgently needed. Curcumin is a polyphenol responsible for the bright yellow-orange colour of turmeric, a spice derived from the root of the perennial herb Curcuma longa. Curcumin is a potent inducer of apoptosis-an effector mechanism used by macrophages to kill intracellular Mycobacterium tuberculosis (MTB). An in vitro human macrophage infection model was used to determine the effects of curcumin on MTB survival. We found that curcumin enhanced the clearance of MTB in differentiated THP-1 human monocytes and in primary human alveolar macrophages. We also found that curcumin was an inducer of caspase-3-dependent apoptosis and autophagy. Curcumin mediated these anti-MTB cellular functions, in part, via inhibition of nuclear factor-kappa B (NFκB) activation. Curcumin protects against MTB infection in human macrophages. The host-protective role of curcumin against MTB in macrophages needs confirmation in an animal model; if validated, the immunomodulatory anti-TB effects of curcumin would be less prone to drug resistance development. © 2016 Asian Pacific Society of Respirology.

  4. SYNTHESIZING DERIVATIVES FROM CYCLOPENTANONE ANALOGUE CURCUMIN AND THEIR TOXIC, ANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Adel Zamri1

    2011-11-01

    Full Text Available Three types of cyclopentanone derivatives have been synthesized from aromatic aldehyde and ketone derivatives undera base condition through aldol condensation. These cyclopentanone products were 2,5-dibenzylidene-cyclopentanone(a, 2,5-bis-(4-hydroxy-benzylidene-cyclopentanone (b, and 2,5-bis-(4-hydroxy-benzylidene-cyclopentanone (cwhich has a yield of 63-99%. The chemical structure of these compounds were determined using UV, IR and NMRspectroscopy. In order to clarify the role of hydroxyl and amine moieties, toxic, antioxidant and anti-inflammatoryactivities were carried out. The toxic test indicated that the compounds showed strong toxicity. In addition, the presenceof hydroxyl and amine groups on both rings of curcumin increased the antioxidant and anti-inflammatory activities

  5. Characterization of polymer, DNA-based, and silk thin film resistivities and of DNA-based films prepared for enhanced electrical conductivity

    Science.gov (United States)

    Yaney, Perry P.; Ouchen, Fahima; Grote, James G.

    2009-08-01

    DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.

  6. Early events in the evolution of spider silk genes.

    Directory of Open Access Journals (Sweden)

    James Starrett

    Full Text Available Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers, from the suborder Araneomorphae ('true spiders'. Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs, is known only from the orbicularian species, Lactrodectus hesperus (Western black widow. In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders, which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae. We use the spidroin gene tree to reconstruct the evolution of amino acid

  7. A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron- and boron- complexed curcumin

    Science.gov (United States)

    Mohammed, Fatima; Rashid-Doubell, Fiza; Cassidy, Seamas; Henari, Fryad

    2017-08-01

    Curcumin is a yellow phenolic compound with a wide range of reported biological effects. However, two main obstacles hinder the use of curcumin therapeutically, namely its poor bioavailability and photostability. We have synthesized two curcumin complexes, the first a boron curcumin complex (B-Cur2) and the second an iron (Fe-Cur3) complex of curcumin. Both derivatives showed high fluorescence efficiency (quantum yield) and greater photostability in solution. The improved photostability could be attributed to the coordination structures and the removal of β-diketone group from curcumin. The fluorescence and ultra violet/visible absorption spectra of curcumin, B-Cur2 and Fe-Cur3 all have a similar spectral pattern when dissolved in the same organic solvent. However, a shift towards a lower wavelength was observed when moving from polar to non-polar solvents, possibly due to differences in solvent polarity. A plot of Stokes' shift vs the orientation polarity parameter (Δf) or vs the solvent polarity parameter (ET 30) showed an improved correlation between the solvent polarity parameter than with the orientation polarity parameter and indicating that the red shift observed could be due to hydrogen-bonding between the solvent molecules. A similar association was obtained when Stokes' shift was replaced by maximum synchronous fluorescence. Both B-Cur2 and Fe-Cur3 had larger quantum yields than curcumin, suggesting they may be good candidates for medical imaging and in vitro studies.

  8. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.

    Science.gov (United States)

    Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2013-10-15

    Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    Science.gov (United States)

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations.

  10. Epigenetic impact of curcumin on stroke prevention

    OpenAIRE

    Kalani, Anuradha; Kamat, Pradip K; Kalani, Komal; Tyagi, Neetu

    2014-01-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering ...

  11. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2014-01-01

    Full Text Available Curcuma longa L. (Zingiberaceae family and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.

  12. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Science.gov (United States)

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  13. Biological and therapeutic activities, and anticancer properties of curcumin.

    Science.gov (United States)

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  14. 人脐带间充质干细胞与蚕丝蛋白支架构建组织工程脂肪的研究%Study on reconstruction of tissue engineering adipose with human umbilical cord mesenchymal stem cells and silk fibroin scaffolds

    Institute of Scientific and Technical Information of China (English)

    刘毅; 肖宏涛

    2011-01-01

    目的:将体外以人脐带间充质干细胞(hUCMSCs)与蚕丝蛋白支架初步构建的组织工程脂肪移植到大鼠体内,观察其演变过程.方法:hUCMSCs与蚕丝蛋白支架复合培养10天后,进行成脂诱导;6周后将其移植到Wistar大鼠后肢肌肉内,同时,以同体积支架材料作为对照;分别于移植后4周和8周取材,行油红0染色、HE染色以及扫描电镜观察.结果.hUCMSCs与蚕丝蛋白支架复合培养及成脂诱导6周后,见大量成脂样细胞生成,并与支架牢固粘附.移植4周,移植物体积略小,质稍硬,表面有透明薄膜形成,膜中分布新生血管网;油红0染色见支架内新生脂肪组织及细胞呈橙红色;HE染色显示支架网眼内有新生脂肪组织,并可见少量炎性细胞浸润;扫描电镜见支架网眼内有球形、表面光滑的脂肪细胞.移植8周,移植物体积进一步缩小,质变软,表面薄膜内血管网丰富;油红0染色见支架中着橙红色组织较前明显增多,部分呈片状融合;HE染色显示新生脂肪明显增多,仍有少量炎性细胞浸润;扫描电镜显示脂肪细胞较前增生明显.对照组同样可见炎性细胞浸润,未见新生脂肪组织生成,支架材料8周时较4周时降解更加明显.结论:随着时间推移,蚕丝蛋白支架网眼内脂肪细胞逐渐增多,支架材料在体内呈现逐步降解趋势,说明体内环境有利于组织工程化脂肪的进一步形成.同时,也提示支架材料在组织相容性方面尚存不足.%Objective To transplant the tissue engineering adipose reconstructed with human umbilical cord mesenchymal stem cells (hUCMSCs)and silk fibroin scaffolds in vitro into Wistar rats, and dynamically observe their changing. Methods hUCMSCs and silk fibroin scaffolds were compoundly cultured ten days, then induced them into adipose and continuely cultured. Six weeks later, those compound materials were transplanted into muscles in hind legs of Wistar rats, at the same time, the

  15. Regulation of COX and LOX by curcumin.

    Science.gov (United States)

    Rao, Chinthalapally V

    2007-01-01

    Turmeric (Curcuma longa) is extensively used as a household remedy for various diseases. For the last few decades, work has been done to establish the biological activities and pharmacological actions of curcumin, the principle constituent of turmeric. Curcumin has proven to be beneficial in the prevention and treatment of a number of inflammatory diseases due to its anti-inflammatory activity. Arachidonic acid-derived lipid mediators that are intimately involved in inflammation are biosynthesized by pathways dependent on cyclooxygenase (COX) and lipoxygenase (LOX) enzymes. The role of LOX and COX isoforms, particularly COX-2, in the inflammation has been well established. At cellular and molecular levels, curcumin has been shown to regulate a number of signaling pathways, including the eicosanoid pathway involving COX and LOX. A number of studies have been conducted that support curcumin-mediated regulation of COX and LOX pathways, which is an important mechanism by which curcumin prevents a number of disease processes, including the cancer. The specific regulation of 5-LOX and COX-2 by curcumin is not fully established; however, existing evidence indicates that curcumin regulates LOX and COX-2 predominately at the transcriptional level and, to a certain extent, the posttranslational level. Thus, the curcumin-selective transcriptional regulatory action of COX-2, and dual COX/LOX inhibitory potential of this naturally occurring agent provides distinctive advantages over synthetic COX/LOX inhibitors, such as nonsteroidal anti-inflammatory drugs. In this review, we discuss evidence that supports the regulation of COX and LOX enzymes by curcumin as the key mechanism for its beneficial effects in preventing various inflammatory diseases.

  16. Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells

    Science.gov (United States)

    Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, François; Chretien, Nathalie; Welsh, Elizabeth A.; Soares, Jason W.; Karatzas, Costas N.

    2002-01-01

    Spider silks are protein-based ``biopolymer'' filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to ``biomimic'' the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.

  17. Molecular mechanisms of curcumin action: gene expression.

    Science.gov (United States)

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  18. Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease.

    Science.gov (United States)

    Reddy, P Hemachandra; Manczak, Maria; Yin, Xiangling; Grady, Mary Catherine; Mitchell, Andrew; Tonk, Sahil; Kuruva, Chandra Sekhar; Bhatti, Jasvinder Singh; Kandimalla, Ramesh; Vijayan, Murali; Kumar, Subodh; Wang, Rui; Pradeepkiran, Jangampalli Adi; Ogunmokun, Gilbert; Thamarai, Kavya; Quesada, Kandi; Boles, Annette; Reddy, Arubala P

    2018-01-01

    The purpose of our article is to assess the current understanding of Indian spice, curcumin, against amyloid-β (Aβ)-induced toxicity in Alzheimer's disease (AD) pathogenesis. Natural products, such as ginger, curcumin, and gingko biloba have been used as diets and dietary supplements to treat human diseases, including cancer, cardiovascular, respiratory, infectious, diabetes, obesity, metabolic syndromes, and neurological disorders. Products derived from plants are known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions. In the last decade, several groups have designed and synthesized curcumin and its derivatives and extensively tested using cell and mouse models of AD. Recent research on Aβ and curcumin has revealed that curcumin prevents Aβ aggregation and crosses the blood-brain barrier, reach brain cells, and protect neurons from various toxic insults of aging and Aβ in humans. Recent research has also reported that curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD. Further, recent groups have initiated studies on elderly individuals and patients with AD and the outcome of these studies is currently being assessed. This article highlights the beneficial effects of curcumin on AD. This article also critically assesses the current limitations of curcumin's bioavailability and urgent need for new formulations to increase its brain levels to treat patients with AD.

  19. Pharmacokinetics of Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, in Wistar Rats.

    Science.gov (United States)

    Bangphumi, Kunan; Kittiviriyakul, Chuleeporn; Towiwat, Pasarapa; Rojsitthisak, Pornchai; Khemawoot, Phisit

    2016-12-01

    Curcumin is the major bioactive component of turmeric, but has poor oral bioavailability that limits its clinical applications. To improve the in vitro solubility and alkaline stability, we developed a prodrug of curcumin by succinylation to obtain curcumin diethyl disuccinate, with the goal of improving the oral bioavailability of curcumin. The in vivo pharmacokinetic profile of curcumin diethyl disuccinate was compared with that of curcumin in male Wistar rats. Doses of curcumin 20 mg/kg intravenous or 40 mg/kg oral were used as standard regimens for comparison with the prodrug at equivalent doses in healthy adult rats. Blood, tissues, urine, and faeces were collected from time zero to 48 h after dosing to determine the prodrug level, curcumin level and a major metabolite by liquid chromatography-tandem spectrometry. The absolute oral bioavailability of curcumin diethyl disuccinate was not significantly improved compared with curcumin, with both compounds having oral bioavailability of curcumin less than 1 %. The major metabolic pathway of the prodrug was rapid hydrolysis to obtain curcumin, followed by glucuronidation. Interestingly, curcumin diethyl disuccinate gave superior tissue distribution with higher tissue to plasma ratio of curcumin and curcumin glucuronide in several organs after intravenous dosing at 1 and 4 h. The primary elimination route of curcumin glucuronide occurred via biliary and faecal excretion, with evidence of an entry into the enterohepatic circulation. Curcumin diethyl disuccinate did not significantly improve the oral bioavailability of curcumin due to first pass metabolism in the gastrointestinal tract. Further studies on reduction of first pass metabolism are required to optimise delivery of curcumin using a prodrug approach.

  20. Curcumin blocks interleukin-1 signaling in chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Thomas Kalinski

    Full Text Available Interleukin (IL-1 signaling plays an important role in inflammatory processes, but also in malignant processes. The essential downstream event in IL-1 signaling is the activation of nuclear factor (NF-κB, which leads to the expression of several genes that are involved in cell proliferation, invasion, angiogenesis and metastasis, among them VEGF-A. As microenvironment-derived IL-1β is required for invasion and angiogenesis in malignant tumors, also in chondrosarcomas, we investigated IL-1β-induced signal transduction and VEGF-A expression in C3842 and SW1353 chondrosarcoma cells. We additionally performed in vitro angiogenesis assays and NF-κB-related gene expression analyses. Curcumin is a substance which inhibits IL-1 signaling very early by preventing the recruitment of IL-1 receptor associated kinase (IRAK to the IL-1 receptor. We demonstrate that IL-1 signaling and VEGF-A expression are blocked by Curcumin in chondrosarcoma cells. We further show that Curcumin blocks IL-1β-induced angiogenesis and NF-κB-related gene expression. We suppose that IL-1 blockade is an additional treatment option in chondrosarcoma, either by Curcumin, its derivatives or other IL-1 blocking agents.

  1. Therapeutic potential of curcumin in gastrointestinal diseases

    OpenAIRE

    Rajasekaran, Sigrid A

    2011-01-01

    Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin’s therapeutic potential for preventing and treating various cancers is being recognized. As curcumin’s therapeutic promise is being explored more system...

  2. Silk coating on a bioactive ceramic scaffold for bone regeneration: effective enhancement of mechanical and in vitro osteogenic properties towards load-bearing applications.

    Science.gov (United States)

    Li, Jiao Jiao; Roohani-Esfahani, Seyed-Iman; Kim, Kyungsook; Kaplan, David L; Zreiqat, Hala

    2017-06-01

    Bioactive ceramic scaffolds represent competitive choices for clinical bone reconstruction, but their widespread use is restricted by inherent brittleness and weak mechanical performance under load. This study reports the development of strong and tough bioactive scaffolds suitable for use in load-bearing bone reconstruction. A strong and bioactive ceramic scaffold (strontium-hardystonite-gahnite) is combined with single and multiple coating layers of silk fibroin to enhance its toughness, producing composite scaffolds which match the mechanical properties of cancellous bone and show enhanced capacity to promote in vitro osteogenesis. Also reported for the first time is a comparison of the coating effects obtained when a polymeric material is coated on ceramic scaffolds with differing microstructures, namely the strontium-hardystonite-gahnite scaffold with high-density struts as opposed to a conventional ceramic scaffold, such as biphasic calcium phosphate, with low-density struts. The results show that silk coating on a unique ceramic scaffold can lead to simple and effective enhancement of its mechanical and biological properties to suit a wider range of applications in clinical bone reconstruction, and also establish the influence of ceramic microstructure on the effectiveness of silk coating as a method of reinforcement when applied to different types of ceramic bone graft substitutes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin.

    Directory of Open Access Journals (Sweden)

    Longbin Zheng

    Full Text Available Curcumin is extracted from the rhizomes of the traditional Chinese herb Curcuma longa. Our previous study indicated curcumin was able to function as a sonosensitizer. Hydroxyl acylated curcumin was synthesized from curcumin to eliminate the unstable hydroxy perssad in our group. The potential use of Hydroxyl acylated curcumin as a sonosensitizer for sonodynamic therapy (SDT requires further exploration. This study investigated the sonodynamic effect of Hydroxyl acylated curcumin on THP-1 macrophage. THP-1 macrophages were cultured with Hydroxyl acylated curcumin at a concentration of 5.0 μg/mL for 4 hours and then exposed to pulse ultrasound irradiation (0.5 W/cm2 with 1.0 MHz for 5 min, 10 min and 15 min. Six hours later, cell viability decreased significantly by CCK-8 assay. After ultrasound irradiation, the ratio of apoptosis and necrosis in SDT group was higher than that in control, Hydroxyl acylated curcumin alone and ultrasound alone. Moreover, the apoptotic rate was higher than necrotic rate with the flow cytometry analysis. Furthermore, Hydroxyl acylated curcumin-SDT induced reactive oxygen species (ROS generation in THP-1 macrophages immediately after the ultrasound treatment while ROS generation was reduced significantly with the scavenger of singlet oxygen Sodium azide (NaN3. Hydroxyl acylated curcumin-SDT led to a conspicuous loss of mitochondrial membrane potential (MMP compared with other groups, while MMP was increased significantly with the scavenger of singlet oxygen Sodium azide (NaN3, ROS inhibitor N-acetyl cysteine (NAC and Mitochondrial Permeability Transition Pore (MPTP inhibitor Cyclosporin A (CsA. The cytochrome C, cleaved-Caspase-9, cleaved-Caspase-3 and cleaved-PARP upregulated after SDT through Western blotting. These findings suggested that Hydroxyl acylated curcumin under low-intensity ultrasound had sonodynamic effect on THP-1 macrophages via generation of intracellular singlet oxygen and mitochondria

  4. Curcumin as a potential protective compound against cardiac diseases.

    Science.gov (United States)

    Jiang, Shuai; Han, Jing; Li, Tian; Xin, Zhenlong; Ma, Zhiqiang; Di, Wencheng; Hu, Wei; Gong, Bing; Di, Shouyin; Wang, Dongjin; Yang, Yang

    2017-05-01

    Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High-efficiency production of human serum albumin in the posterior silk glands of transgenic silkworms, Bombyx mori L.

    Directory of Open Access Journals (Sweden)

    Qiujie Qian

    Full Text Available Human serum albumin (HSA is an important biological preparation with a variety of biological functions in clinical applications. In this study, the mRNA of a fusion transposase derived from the pESNT-PBase plasmid and a pBHSA plasmid containing the HSA gene under the control of a fibroin light chain (FL promoter were co-injected into fertilized eggs. Fifty-six transgenic silkworm pedigrees expressing theexogenous recombinant HSA (rHSA in the posterior silk glands (PSGs with stable inheritance were successfully obtained. The SDS-PAGE and Western blot results confirmed that the rHSA was secreted into the transgenic silkworm cocoon, and the rHSA could be easily extracted with phosphate-buffered saline (PBS. In our research, the isolated highest amount rHSA constituted up to 29.1% of the total soluble protein of the cocoon shell, indicating that the transgenic silkworm produced an average of 17.4 μg/mg of rHSA in the cocoon shell. The production of soluble rHSA in the PSGs by means of generating transgenic silkworms is a novel approach, whereby a large amount of virus-free and functional HSA can be produced through the simple rearing of silkworms.

  6. Applicability of biotechnologically produced insect silks.

    Science.gov (United States)

    Herold, Heike M; Scheibel, Thomas

    2017-09-26

    Silks are structural proteins produced by arthropods. Besides the well-known cocoon silk, which is produced by larvae of the silk moth Bombyx mori to undergo metamorphosis inside their silken shelter (and which is also used for textile production by men since millennia), numerous further less known silk-producing animals exist. The ability to produce silk evolved multiple independent times during evolution, and the fact that silk was subject to convergent evolution gave rise to an abundant natural diversity of silk proteins. Silks are used in air, under water, or like honey bee silk in the hydrophobic, waxen environment of the bee hive. The good mechanical properties of insect silk fibres together with their non-toxic, biocompatible, and biodegradable nature renders these materials appealing for both technical and biomedical applications. Although nature provides a great diversity of material properties, the variation in quality inherent in materials from natural sources together with low availability (except from silkworm silk) impeded the development of applications of silks. To overcome these two drawbacks, in recent years, recombinant silks gained more and more interest, as the biotechnological production of silk proteins allows for a scalable production at constant quality. This review summarises recent developments in recombinant silk production as well as technical procedures to process recombinant silk proteins into fibres, films, and hydrogels.

  7. Nonlinear optical studies of curcumin metal derivatives with cw laser

    Energy Technology Data Exchange (ETDEWEB)

    Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain (Bahrain)

    2015-03-30

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.

  8. Nonlinear optical studies of curcumin metal derivatives with cw laser

    International Nuclear Information System (INIS)

    Henari, F. Z.; Cassidy, S.

    2015-01-01

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10 −7 cm 2 /W and negative nonlinear absorption of the order of 10 −6 cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated

  9. Buyid Silk and the Tale of Bibi Shahrbanu: Identification of Biomarkers of Artificial Aging (Forgery) of Silk.

    Science.gov (United States)

    Moini, Mehdi; Rollman, Christopher M

    2017-10-03

    Buyid silk forgery is one of the most famous silk forgeries in the world. In 1924-1925, excavation of the Bibi Shahrbanu site in Iran unearthed several silk textiles. The silks were thought to be of the Buyid period (934-1062 BCE) of the Persian Empire and have since been known as the "Buyid silks". In the 1930s, more silk appeared and was reported as being from the Buyid period as well. Controversy over the authenticity of these silks escalated after the purchase of the silks by museums throughout the world. Extensive investigations of several of these silks have been conducted over the years with respect to iconography, weaving patterns, dyes/mordant, style, and even radiocarbon dating. It was found that most of the silks are not from Buyid period. To test the authenticity of these silk fabrics, the recently developed silk dating technique using amino acid racemization (AAR) in conjunction with capillary electrophoresis mass spectrometry was applied to 13 Buyid silk specimens from the Textile Museum collections. Among these silk specimens, the AAR ratios of only one specimen were consistent with authentic silk fabrics collected from various museums. In addition, the aspartic acid racemization ratio of this specimen was also consistent with its 14 C dating. The other "Buyid silks" showed excessive levels of amino acid racemization not only for aspartic acid, but also for phenylalanine and tyrosine, inconsistent with racemization rates of these amino acids in authentic historical silk fabrics. Treatment of modern silk with a base at different pH and temperature reproduced the AAR pattern of the Buyid silks, implying that chemical treatment with a base at relatively high temperatures was perhaps the method used to artificially age these fabrics. The results imply that the racemization ratios of aspartic acid, phenylalanine, and tyrosine can be used as biomarkers for identification of naturally versus artificially aged silk.

  10. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  11. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk

    Science.gov (United States)

    Piorkowski, Dakota; Blackledge, Todd A.

    2017-08-01

    The origin of viscid capture silk in orb webs, from cribellate silk-spinning ancestors, is a key innovation correlated with significant diversification of web-building spiders. Ancestral cribellate silk consists of dry nanofibrils surrounding a stiff, axial fiber that adheres to prey through van der Waals interactions, capillary forces, and physical entanglement. In contrast, viscid silk uses chemically adhesive aqueous glue coated onto a highly compliant and extensible flagelliform core silk. The extensibility of the flagelliform fiber accounts for half of the total work of adhesion for viscid silk and is enabled by water in the aqueous coating. Recent cDNA libraries revealed the expression of flagelliform silk proteins in cribellate orb-weaving spiders. We hypothesized that the presence of flagelliform proteins in cribellate silk could have allowed for a gradual shift in mechanical performance of cribellate axial silk, whose effect was masked by the dry nature of its adhesive. We measured supercontraction and mechanical performance of cribellate axial silk, in wet and dry states, for two species of cribellate orb web-weaving spiders to see if water enabled flagelliform silk-like performance. We found that compliance and extensibility of wet cribellate silk increased compared to dry state as expected. However, when compared to other silk types, the response to water was more similar to other web silks, like major and minor ampullate silk, than to viscid silk. These findings support the punctuated evolution of viscid silk mechanical performance.

  12. Enhancing analysis of cells and proteins by fluorescence imaging on silk-based biomaterials: modulating the autofluorescence of silk.

    Science.gov (United States)

    Neo, Puay Yong; Tan, Daryl Jian-An; Shi, Pujiang; Toh, Siew Lok; Goh, James Cho-Hong

    2015-02-01

    Silk is a versatile and established biomaterial for various tissue engineering purposes. However, it also exhibits strong autofluorescence signals-thereby hindering fluorescence imaging analysis of cells and proteins on silk-derived biomaterials. Sudan Black B (SB) is a lysochrome dye commonly used to stain lipids in histology. It has also been reported to be able to quench autofluorescence of tissues in histology and has been tested on artificial biomedical polymers in recent years. It was hypothesized that SB would exert similar quenching effects on silk, modulating the autofluorescence signals, and thereby enabling improved imaging analysis of cells and molecules of interests. The quenching effect of SB on the intrinsic fluorescence properties of silk and on commercial fluorescent dyes were first investigated in this study. SB was then incorporated into typical fluorescence-based staining protocols to study its effectiveness in improving fluorescence-based imaging of the cells and proteins residing with the silk-based biomaterials. Silk processed into various forms of biomaterials (e.g., films, sponges, fibers, and electrospun mats) was seeded with cells and cultured in vitro. At sacrificial time points, specimens were harvested, fixed, and prepared for fluorescence staining. SB, available commercially as a powder, was dissolved in 70% ethanol (0.3% [w/v]) to form staining solutions. SB treatment was introduced at the last step of typical immunofluorescence staining protocols for 15-120 min. For actin staining protocols by phalloidin toxin, SB staining solutions were added before and after permeabilization with Triton-X for 15-30 min. Results showed that ideal SB treatment duration is about 15 min. Apart from being able to suppress the autofluorescence of silk, this treatment duration was also not too long to adversely affect the fluorescent labeling probes used. The relative improvement brought about by SB treatment was most evident in the blue and green

  13. Curcumin: the Indian solid gold.

    Science.gov (United States)

    Aggarwal, Bharat B; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo

    2007-01-01

    Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

  14. Targeted delivery of curcumin for treating type 2 diabetes.

    Science.gov (United States)

    Maradana, Muralidhara Rao; Thomas, Ranjeny; O'Sullivan, Brendan J

    2013-09-01

    Type 2 diabetes is a chronic condition in which cells have reduced insulin signalling, leading to hyperglycemia and long-term complications, including heart, kidney and liver disease. Macrophages activated by dying or stressed cells, induce the transcription factor nuclear factor kappa-B leading to the production of pro-inflammatory cytokines including TNF and IL-6. These inflammatory macrophages in liver and adipose tissue promote insulin resistance, and medications which reduce inflammation and enhance insulin signalling improve glucose control. Curcumin is an anti-oxidant and nuclear factor kappa-B inhibitor derived from turmeric. A number of studies have shown that dietary curcumin reduces inflammation and delays or prevents obesity-induced insulin resistance and associated complications, including atherosclerosis and immune mediate liver disease. Unfortunately dietary curcumin is poorly absorbed by the digestive system and undergoes glucuronidation and excretion rather than being released into the serum and systemically distributed. This confounds understanding of how dietary curcumin exerts its beneficial effects in type 2 diabetes and associated diseases. New improved methods of delivering curcumin are being developed including nanoparticles and lipid/liposome formulations that increase absorption and bioavailability of curcumin. Development and refinement of these technologies will enable cell-directed targeting of curcumin and improved therapeutic outcome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.

    Science.gov (United States)

    Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum

    2016-07-01

    Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. © 2016 Wiley Periodicals, Inc.

  16. Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2016-10-01

    Full Text Available Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropods including spiders, caterpillars and mites. The silk fibers are secreted by the labial gland of the larvae of some orders of Holometabola (insects with pupa or the spinnerets of spiders. The majority of studies using silks for biomedical applications use materials from silkworms or spiders, mostly of the genus Nephila clavipes. Silk is one of the most promising biomaterials with effects not only in nerve regeneration, but in a number of regenerative applications. The development of silks for human biomedical applications is of high scientific and clinical interest. Biomaterials in use for biomedical applications have to meet a number of requirements such as biocompatibility and elicitation of no more than a minor inflammatory response, biodegradability in a reasonable time and specific structural properties. Here we present the current status in the field of silk-based conduit development for nerve repair and discuss current advances with regard to potential clinical transfer of an implantable nerve conduit for enhancement of nerve regeneration.

  17. Cyclocurcumin, a curcumin derivative, exhibits immune-modulating ability and is a potential compound for the treatment of rheumatoid arthritis as predicted by the MM-PBSA method.

    Science.gov (United States)

    Fu, Min; Chen, Lihui; Zhang, Limin; Yu, Xiao; Yang, Qingrui

    2017-05-01

    The control and treatment of rheumatoid arthritis is a challenge in today's world. Therefore, the pursuit of natural disease-modifying antirheumatic drugs (DMRDs) remains a top priority in rheumatology. The present study focused on curcumin and its derivatives in the search for new DMRDs. We focused on prominent p38 mitogen-activated protein (MAP) kinase p38α which is a prime regulator of tumor necrosis factor-α (TNF-α), a key mediator of rheumatoid arthritis. In the present study, we used the X-ray crystallographic structure of p38α for molecular docking simulations and molecular dynamic simulations to study the binding modes of curcumin and its derivatives with the active site of p38α. The ATP-binding domain was used for evaluating curcumin and its derivatives. Molecular docking simulation results were used to select 4 out of 8 compounds. These 4 compounds were simulated using GROMACS molecular simulation platform; the results generated were subjected to molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) calculations. The results showed cyclocurcumin as a potential natural compound for development of a potent DMRD. These data were further supported by inhibition of TNF-α release from lipopolysaccharide (LPS)-stimulated human macrophages following cyclocurcumin treatment.

  18. Biomechanics of Spider Silks

    Science.gov (United States)

    2006-03-02

    water and deformation conditions. Such fibres [Nexia ’ biosteel ’ silk ] were spun from recombinant silk ’cloned’ from Spidroin II and indeed show 67...SUBTITLE 5. FUNDING NUMBERS Biomechanics of Spider Silks F49620-03-1-0111 6. AUTHOR(S) Fritz Vollrath 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Perform Pro, WHSIDIOR, Oct 94 COVER SHEET FINAL (3rd Year) Report to AFOSR on: BIOMECHANICS OF SPIDER SILKS Fritz Vollrath, Oxford University, England

  19. Molecular mechanics of silk nanostructures under varied mechanical loading.

    Science.gov (United States)

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  20. Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    Science.gov (United States)

    Shimizu, Katsuhiko

    2018-05-15

    Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk, resulting in the development of sericulture and the textile industry. Silk is generally white, so dyeing is required to obtain colored fiber. However, the dyeing process involves harsh conditions and generates a large volume of waste water, which have environmentally and economically negative impacts. Although some strains produce cocoons that contain pigments derived from the mulberry leaves that they eat, the pigments are distributed in the sericin layer and are lost during gumming. In trials for production of colored silk by feeding silkworms on diets containing dyes, only limited species of dye molecules were incorporated into the silk threads. A method for the generation of transgenic silkworm was established in conjunction with the discovery of green fluorescent protein (GFP), and silkworms carrying the GFP gene spun silk threads that formed cocoons that glowed bright green and still retained the original properties of silk. A wide range of color variation of silk threads has been obtained by replacing the GFP gene with the genes of other fluorescent proteins chosen from the fluorescent protein palette. The genetically modified silk with photonic properties can be processed to form various products including linear threads, 2D fabrics, and 3D materials. The transgenic colored silk could be economically advantageous due to addition of a new value to silk and reduction of cost for water waste, and environmentally preferable for saving water. Here, I review the literature regarding the production methods of fluorescent silk from transgenic silkworms and present examples of genetically modified color silk.

  1. Recent Advances of Curcumin in the Prevention and Treatment of Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Xuejiao Sun

    2017-01-01

    Full Text Available Curcumin, a polyphenol derived from the turmeric, has received attention as a potential treatment for renal fibrosis primarily because it is a relatively safe and inexpensive compound that contributes to kidney health. Here, we review the literatures on the applications of curcumin in resolving renal fibrosis in animal models and summarize the mechanisms of curcumin and its analogs (C66 and (1E,4E-1,5-bis(2-bromophenyl penta-1,4-dien-3-one(B06 in preventing inflammatory molecules release and reducing the deposition of extracellular matrix at the priming and activation stage of renal fibrosis in animal models by consulting PubMed and Cnki databases over the past 15 years. Curcumin exerts antifibrotic effect through reducing inflammation related factors (MCP-1, NF-κB, TNF-α, IL-1β, COX-2, and cav-1 and inducing the expression of anti-inflammation factors (HO-1, M6PRBP1, and NEDD4 as well as targeting TGF-β/Smads, MAPK/ERK, and PPAR-γ pathways in animal models. As a food derived compound, curcumin is becoming a promising drug candidate for improving renal health.

  2. Novel Curcumin Diclofenac Conjugate Enhanced Curcumin Bioavailability and Efficacy in Streptococcal Cell Wall-induced Arthritis.

    Science.gov (United States)

    Jain, S K; Gill, M S; Pawar, H S; Suresh, Sarasija

    2014-09-01

    Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; stability of curcumin-diclofenac conjugate in gastrointestinal fluids and in vitro efficacy have been evaluated. In vivo bioavailability of curcumin-diclofenac conjugate and curcumin in Sprague-Dawley rats, and antiarthritic activity of curcumin-diclofenac conjugate, curcumin and diclofenac in modified streptococcal cell wall-induced arthritis model in Balb/c mice to mimic rheumatoid arthritis in humans have also been studied. In all of the above studies, curcumin-diclofenac conjugate exhibited enhanced stability as compared to curcumin; its activity was twice that of diclofenac in inhibiting thermal protein denaturation taken as a measure of in vitro antiinflammatory activity; it enhanced the bioavailability of curcumin by more than five folds, and significantly (Parthritis in streptococcal cell wall-induced arthritis model as compared to both diclofenac and curcumin.

  3. Curcumin homing to the nucleolus: mechanism for initiation of an apoptotic program.

    Science.gov (United States)

    Ghosh, Mistuni; Ryan, Robert O

    2014-11-01

    Curcumin is a plant-derived polyphenol that displays antitumor properties. Incubation of cultured SF-767 glioma cells with curcumin gave rise to intense intranuclear foci of curcumin fluorescence. In vitro studies revealed that nuclear homing by curcumin is not a result of DNA/chromatin binding. On the other hand, curcumin fluorescence colocalized with nucleophosmin, a nucleolus marker protein. To determine the temporal relationship between curcumin-induced apoptosis and nucleolar homing, confocal live cell imaging was performed. The data show that curcumin localization to the nucleolus occurs prior to cell surface exposure of phosphatidylserine. In studies of the mechanism of curcumin-induced apoptosis in SF-767 cells, its effect on the subcellular location of p14(ARF) was determined. Whereas p14(ARF) was confined to the nucleolus in untreated cells, 2 h following incubation with curcumin, it displayed a diffuse nuclear distribution. Given the role of nuclear p14(ARF) in binding the E3 ubiquitin ligase, mouse double minute 2 homolog (MDM2), the effect of curcumin treatment on cellular levels of the tumor suppressor protein, p53, was examined. Between 2 and 4 h following curcumin treatment, p53 levels increased with maximum levels reached by 8 h. Thus, curcumin homing to the nucleolus induces redistribution of p14(ARF) to the nucleoplasm where interaction with MDM2 leads to stabilization of p53, with subsequent initiation of apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Stabilisation of Laryngeal AL Amyloidosis with Long Term Curcumin Therapy

    Directory of Open Access Journals (Sweden)

    Terry Golombick

    2015-01-01

    Full Text Available Multiple myeloma (MM, smoldering myeloma (SMM, and monoclonal gammopathy of undetermined significance (MGUS represent a spectrum of plasma cell dyscrasias (PCDs. Immunoglobulin light chain amyloidosis (AL falls within the spectrum of these diseases and has a mortality rate of more than 80% within 2 years of diagnosis. Curcumin, derived from turmeric, has been shown to have a clinical benefit in some patients with PCDs. In addition to a clinical benefit in these patients, curcumin has been found to have a strong affinity for fibrillar amyloid proteins. We thus administered curcumin to a patient with laryngeal amyloidosis and smoldering myeloma and found that the patient has shown a lack of progression of his disease for a period of five years. This is in keeping with our previous findings of clinical benefits of curcumin in patients with plasma cell dyscrasias. We recommend further evaluation of curcumin in patients with primary AL amyloidosis.

  5. Affinity of nat/68Ga-Labelled Curcumin and Curcuminoid Complexes for β-Amyloid Plaques: Towards the Development of New Metal-Curcumin Based Radiotracers

    Directory of Open Access Journals (Sweden)

    Sara Rubagotti

    2016-09-01

    Full Text Available Curcumin derivatives labelled with fluorine-18 or technetium-99m have recently shown their potential as diagnostic tools for Alzheimer’s disease. Nevertheless, no study by exploiting the labelling with gallium-68 has been performed so far, in spite of its suitable properties (positron emitter, generator produced radionuclide. Herein, an evaluation of the affinity for synthetic β-amyloid fibrils and for amyloid plaques of three nat/68Ga-labelled curcumin analogues, namely curcumin curcumin (CUR, bis-dehydroxy-curcumin (bDHC and diacetyl-curcumin (DAC, was performed. Affinity and specificity were tested in vitro on amyloid synthetic fibrils by using gallium-68 labelled compounds. Post-mortem brain cryosections from Tg2576 mice were used for the ex vivo visualization of amyloid plaques. The affinity of 68Ga(CUR2+, 68Ga(DAC2+, and 68Ga(bDHC2+ for synthetic β-amyloid fibrils was moderate and their uptake could be observed in vitro. On the other hand, amyloid plaques could not be visualized on brain sections of Tg2576 mice after injection, probably due to the low stability of the complexes in vivo and of a hampered passage through the blood–brain barrier. Like curcumin, all nat/68Ga-curcuminoid complexes maintain a high affinity for β-amyloid plaques. However, structural modifications are still needed to improve their applicability as radiotracers in vivo.

  6. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Science.gov (United States)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  7. Dietary supplementation with curcumin enhances metastatic growth of Lewis lung carcinoma in mice

    Science.gov (United States)

    Curcumin is a phenolic compound derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used traditionally in Ayurvedic medicine as it has therapeutic properties including being anti-inflammatory, anti-oxidant and anti-microbial. The present study investigated the effects...

  8. Modulation of the Proteasome Pathway by Nano-Curcumin and Curcumin in Retinal Pigment Epithelial Cells.

    Science.gov (United States)

    Ramos de Carvalho, J Emanuel; Verwoert, Milan T; Vogels, Ilse M C; Schipper-Krom, Sabine; Van Noorden, Cornelis J F; Reits, Eric A; Klaassen, Ingeborg; Schlingemann, Reinier O

    2018-01-01

    Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, β5, and β5i were assessed. Nano-curcumin (5-100 μM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 μM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits β2 and β5i/β1 and reduced activity of β5/β1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells. The Author(s). Published by S. Karger AG, Basel.

  9. Synthesis and exploration of novel curcumin analogues as anti-malarial agents.

    Science.gov (United States)

    Mishra, Satyendra; Karmodiya, Krishanpal; Surolia, Namita; Surolia, Avadhesha

    2008-03-15

    Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.

  10. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.

    Science.gov (United States)

    Mounce, Bryan C; Cesaro, Teresa; Carrau, Lucia; Vallet, Thomas; Vignuzzi, Marco

    2017-06-01

    Several compounds extracted from spices and herbs exhibit antiviral effects in vitro, suggesting potential pharmacological uses. Curcumin, a component of turmeric, has been used as a food additive and herbal supplement due to its potential medicinal properties. Previously, curcumin exhibited antiviral properties against several viruses, including dengue virus and hepatitis C virus, among others. Here, we describe the antiviral effect of curcumin on Zika and chikungunya viruses, two mosquito-borne outbreak viruses. Both viruses responded to treatment of cells with up to 5 μM curumin without impacting cellular viability. We observed that direct treatment of virus with curcumin reduced infectivity of virus in a dose- and time-dependent manner for these enveloped viruses, as well as vesicular stomatitis virus. In contrast, we found no change in infectivity for Coxsackievirus B3, a non-enveloped virus. Derivatives of curcumin also exhibited antiviral activity against enveloped viruses. Further examination revealed that curcumin interfered with the binding of the enveloped viruses to cells in a dose-dependent manner, though the integrity of the viral RNA was maintained. Together, these results expand the family of viruses sensitive to curcumin and provide a mechanism of action for curcumin's effect on these enveloped viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    OpenAIRE

    Choudhury, Ambar K.; Raja, Suganya; Mahapatra, Sanjata; Nagabhushanam, Kalyanam; Majeed, Muhammed

    2015-01-01

    Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated co...

  12. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    Science.gov (United States)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-08-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.

  13. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    Science.gov (United States)

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  14. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    Science.gov (United States)

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  15. Optically probing torsional superelasticity in spider silks

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P. [Department of Physical Sciences, IISER Mohali, Sector 81, Manauli, Mohali 140306 (India)

    2013-11-11

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  16. Optically probing torsional superelasticity in spider silks

    International Nuclear Information System (INIS)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-01-01

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10 2−3 rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices

  17. Azomethines, isoxazole, N-substituted pyrazoles and pyrimidine containing curcumin derivatives: Urease inhibition and molecular modeling studies.

    Science.gov (United States)

    Ahmed, Mahmood; Qadir, Muhammad Abdul; Hameed, Abdul; Arshad, Muhammad Nadeem; Asiri, Abdullah M; Muddassar, Muhammad

    2017-08-19

    Curcumin has shown large number of pharmacological properties against different phenotypes of various disease models. Different synthetic routes have been employed to develop its various derivatives for diverse biological functions. In this study, curcumin derived azomethine, isoxazole, pyrimidines and N-substituted pyrazoles were synthesized to investigate their urease enzyme inhibition. The structures of newly synthesized compounds were described by IR, MS, 1 H NMR and 13 C NMR spectral data. Urease enzyme inhibition was evaluated through in vitro assays in which compound 8b was found to be the most potent (IC 50  = 2.44 ± 0.07 μM) among the tested compounds. The compounds with diazine ring system except the 4d showed better urease inhibition (IC 50  = 11.43 ± 0.21-19.63 ± 0.28 μM) than the standard urease inhibitor thiourea (IC 50  = 22.61 ± 0.23 μM). Similarly enzyme kinetics data revealed that compounds 3c-3e and 8b were competitive inhibitors with Ki values of 20.0, 19.87, 20.23 and 19.11 μM respectively while the compounds 4b, 4c and 4e were mixed type of inhibitors with Ki values 6.72, 19.69 and 6.72 μM respectively. Molecular docking studies were also performed to identify the plausible binding modes of the most active compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    Science.gov (United States)

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Novel Curcumin Diclofenac Conjugate Enhanced Curcumin Bioavailability and Efficacy in Streptococcal Cell Wall-induced Arthritis

    OpenAIRE

    Jain, S. K.; Gill, M. S.; Pawar, H. S.; Suresh, Sarasija

    2014-01-01

    Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; st...

  20. Emu oil based nano-emulgel for topical delivery of curcumin.

    Science.gov (United States)

    Jeengar, Manish Kumar; Rompicharla, Sri Vishnu Kiran; Shrivastava, Shweta; Chella, Naveen; Shastri, Nalini R; Naidu, V G M; Sistla, Ramakrishna

    2016-06-15

    Curcumin and emu oil derived from emu bird (Dromaius novaehollandiae) has shown promising results against inflammation. However, the delivery of curcumin is hindered due to low solubility and poor permeation. In addition, till date the role of emu oil in drug delivery has not been explored systemically. Hence, the current investigation was designed to evaluate the anti-inflammatory potential of curcumin in combination with emu oil from a nanoemulgel formulation in experimental inflammation and arthritic in vivo models. Nanoemulsion was prepared using emu oil, Cremophor RH 40 and Labrafil M2125CS as oil phase, surfactant and co-surfactant. The optimized curcumin loaded nanoemulsion with emu oil was incorporated into carbopol gel for convenient application by topical route. The anti-inflammatory efficacy was evaluated in carrageenan induced paw edema and FCA induced arthritic rat model in terms of paw swelling, weight indices of the liver and spleen, pathological changes in nuclear factor kappa B, iNOS, COX-2 expression and inflammatory cytokines. Arthritic scoring, paw volume, biochemical, molecular, radiological and histological examinations indicated significant improvement in anti-inflammatory activity with formulations containing curcumin in combination with emu oil compared to pure curcumin. These encouraging results demonstrate the potential of formulations containing curcumin and emu oil combination in rheumatoid arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.