WorldWideScience

Sample records for silicon thin-film transfer

  1. Wafer scale nano-membrane supported on a silicon microsieve using thin-film transfer technology

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A new micromachining method to fabricate wafer scale nano-membranes is described. The delicate thin-film nano-membrane is supported on a robust silicon microsieve fabricated by plasma etching. The silicon sieve is micromachined independently of the thin-film, which is later transferred onto it by

  2. Thin-film silicon solar cell technology

    Czech Academy of Sciences Publication Activity Database

    Shah, A. V.; Schade, H.; Vaněček, Milan; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J.

    2004-01-01

    Roč. 12, - (2004), s. 113-142 ISSN 1062-7995 R&D Projects: GA MŽP SN/320/11/03 Institutional research plan: CEZ:AV0Z1010914 Keywords : thin-film silicon modules * hydrogenerated amorphous silicon(a-Si:H) * hydrogenerated microcrystalline (ćc-Si:H) * transparent conductive oxydes(TCOs) * building-integrated photovoltaics(BIPV) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.196, year: 2004

  3. Mass transfer in silicon at deposition of Ti thin films assisted by self ion irradiation

    International Nuclear Information System (INIS)

    Mikhalkovich, O.M.; Tashlykov, I.S.; Gusakov, V.E.

    2011-01-01

    In this paper a composite structure, processes of diffusion in Si, modified by means of ion-assisted deposition of coatings in conditions of a self-irradiation are discussed. Rutherford backscattering in combination with a channelling (RBS/Ch) of He + ions and computer program RUMP were applied to investigate an element composition. It is established, that coatings include atoms of metal, hydrogen, carbon, oxygen, silicon. The interstitial Si atoms, generated by radiation effect, diffuse during deposition of thin coating, both in a depth of a wafers, and in coatings. The influence of irradiation of ions Xe+ on diffusion processes in silicon are revealed. (authors)

  4. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  5. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    with an activation energy of E{sub A}{sup poly-Si}=1.1 eV. By long-lasting tempering or a short high-temperature step finally the stable layer configuration substrate/Al+Si islands(hillocks)/poly-Si can be reached (E{sub A}{sup hillocks}=2.4 eV). The further main topic of this thesis is the study of the applicability of the poly-silicon layers fabricated by means of the ALILE and R-ALILE process for electronic applications. First thin-film transistors were studied. Additionally thin-film solar cells with microcrystalline silicon as absorber material on polycrystalline R-ALILE seed layers were fabricated. Finally the suitedness of the fabricated poly-silicon layers for crytographic applications were studied.

  6. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  7. Thin film silicon photovoltaics: Architectural perspectives and technological issues

    Energy Technology Data Exchange (ETDEWEB)

    Mercaldo, Lucia Vittoria; Addonizio, Maria Luisa; Noce, Marco Della; Veneri, Paola Delli; Scognamiglio, Alessandra; Privato, Carlo [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy)

    2009-10-15

    Thin film photovoltaics is a particularly attractive technology for building integration. In this paper, we present our analysis on architectural issues and technological developments of thin film silicon photovoltaics. In particular, we focus on our activities related to transparent and conductive oxide (TCO) and thin film amorphous and microcrystalline silicon solar cells. The research on TCO films is mainly dedicated to large-area deposition of zinc oxide (ZnO) by low pressure-metallorganic chemical vapor deposition. ZnO material, with a low sheet resistance (<8 {omega}/sq) and with an excellent transmittance (>82%) in the whole wavelength range of photovoltaic interest, has been obtained. ''Micromorph'' tandem devices, consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell, are fabricated by using the very high frequency plasma enhanced chemical vapor deposition technique. An initial efficiency of 11.1% (>10% stabilized) has been obtained. (author)

  8. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    International Nuclear Information System (INIS)

    Ben Dkhil, S.; Bourguiga, R.; Davenas, J.; Cornu, D.

    2012-01-01

    Highlights: ► Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. ► We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. ► The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. ► We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV–visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V oc and short-circuit current density J sc are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  9. Optically induced paramagnetism in amorphous hydrogenated silicon nitride thin films

    International Nuclear Information System (INIS)

    Warren, W.L.; Kanicki, J.; Buchwald, W.R.; Rong, F.C.; Harmatz, M.

    1992-01-01

    This paper reports that the creation mechanisms of Si and N dangling bond defect centers in amorphous hydrogenated silicon nitride thin films by ultra-violet (UV) illumination are investigated. The creation efficiency and density of Si centers in the N-rich films are independent of illumination temperature, strongly suggesting that the creation mechanism of the spins in electronic in nature, i.e., a charge transfer mechanism. However, our results suggest that the creation of the Si dangling bond in the Si-rich films are different. Last, we find that the creation of the N dangling-bond in N-rich films can be fit to a stretched exponential time dependence, which is characteristic of dispersive charge transport

  10. Light-Induced Degradation of Thin Film Silicon Solar Cells

    International Nuclear Information System (INIS)

    Hamelmann, F U; Weicht, J A; Behrens, G

    2016-01-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods. (paper)

  11. Laser process for extended silicon thin film solar cells

    International Nuclear Information System (INIS)

    Hessmann, M.T.; Kunz, T.; Burkert, I.; Gawehns, N.; Schaefer, L.; Frick, T.; Schmidt, M.; Meidel, B.; Auer, R.; Brabec, C.J.

    2011-01-01

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  12. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  13. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  14. Deposition of magnetoelectric hexaferrite thin films on substrates of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-12-15

    Magnetoelectric M-type hexaferrite thin films (SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}) were deposited using Pulsed Laser Deposition (PLD) technique on Silicon substrate. A conductive oxide layer of Indium-Tin Oxide (ITO) was deposited as a buffer layer with the dual purposes of 1) to reduce lattice mismatch between the film and silicon and 2) to lower applied voltages to observe magnetoelectric effects at room temperature on Silicon based devices. The film exhibited magnetoelectric effects as confirmed by vibrating sample magnetometer (VSM) techniques in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe magnetoelectric effects was typically about 1000 times larger. The magnetoelectric thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance techniques. We measured saturation magnetization of 650 G, and coercive field of about 150 Oe for these thin films. The change in remanence magnetization was measured in the presence of DC voltages and the changes in remanence were in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a magnetoelectric coupling, α, of 1.36×10{sup −9} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  15. XRay Study of Transfer Printed Pentacene Thin Films

    International Nuclear Information System (INIS)

    Shao, Y.; Solin, S. A.; Hines, D. R.; Williams, E. D.

    2007-01-01

    We investigated the structural properties and transfer properties of pentacene thin films fabricated by thermal deposition and transfer printing onto SiO2 and plastic substrates, respectively. The dependence of the crystallite size on the printing time, temperature and pressure were measured. The increases of crystalline size were observed when pentacene thin films were printed under specific conditions, e.g. 120 deg. C and 600 psi and can be correlated with the improvement of the field effect mobility of pentacene thin-film transistors

  16. Analysis of the silicon market: Will thin films profit?

    International Nuclear Information System (INIS)

    Sark, W.G.J.H.M. van; Brandsen, G.W.; Fleuster, M.; Hekkert, M.P.

    2007-01-01

    The photovoltaic industry has been growing with astonishing rates over the past years. The supply of silicon to the wafer-based industry has recently become a problem. This paper presents a thorough analysis of the PV industry and quantifies the silicon shortage. It is expected that this leads to a decrease in production in 2006 rather than the usual increase. Due to a mismatch in expansion plans of silicon feedstock manufacturers and solar cell manufacturers, a large cell overcapacity will persist up to 2010. The thin-film PV market is expected to profit from the silicon shortage problem; its market share may substantially increase to about 25% in 2010

  17. Analysis of the silicon market: Will thin films profit?

    Energy Technology Data Exchange (ETDEWEB)

    Sark, W.G.J.H.M. van; Brandsen, G.W. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Science, Technology and Society; Fleuster, M. [Solland Solar Energy, Heerlen (Netherlands); Hekkert, M.P. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Innovation Studies

    2007-06-15

    The photovoltaic industry has been growing with astonishing rates over the past years. The supply of silicon to the wafer-based industry has recently become a problem. This paper presents a thorough analysis of the PV industry and quantifies the silicon shortage. It is expected that this leads to a decrease in production in 2006 rather than the usual increase. Due to a mismatch in expansion plans of silicon feedstock manufacturers and solar cell manufacturers, a large cell overcapacity will persist up to 2010. The thin-film PV market is expected to profit from the silicon shortage problem; its market share may substantially increase to about 25% in 2010. (author)

  18. Studying the noise parameters of thin-film silicon resistors

    International Nuclear Information System (INIS)

    Belogurov, S.V.; Gostilo, V.V.; Yurov, A.S.

    1986-01-01

    The results of studies on spectral density and energy noise equivalent of thin-film resistors on the base of amorphous silicon and KIM and KVM commercial high-ohmic resistors are presented. Dependence of the active part of impedance on frequency is shown to be the main source of redundant noise in resistors. Dependence of spectral density of noise voltage of current noises of silicon resistors on applied voltage is described by the formula S T =B V 2 /f 1.6 with the values B=(1.4-1.7)x10 -12 Hz 0.6 . As to noise parameters the silicon resistor is superior to commercial resistors

  19. Morphological and optical properties of silicon thin films by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Schwarz, R.; Melo, L.V.; Ramalho, R.; Alves, E.; Marques, C.P.; Santos, L.; Almeida, R.; Conde, O.

    2009-01-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10 -6 mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm -2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature

  20. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Ana Luz Muñoz-Rosas

    2018-03-01

    Full Text Available Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC-sputtering technique, and an aluminum doped zinc oxide thin film (AZO which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.

  1. Low cost thin film poly-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  2. Application of plasma silicon nitride to crystalline thin-film silicon solar cells. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Oberbeck, L.; Rinke, T.J.; Berge, C.; Bergmann, R.B.

    2002-07-01

    We use plasma-enhanced chemical vapour deposition to deposit silicon nitride (SiN{sub x}) films at low temperature(400 C) onto the front surface of two different types of crystalline thin-film Si solar cells. The silicon nitride acts as an excellent antireflection coating on Si and provides a very high degree of electronic surface passivation over a wide range of compositions, including near-stoichiometric and Si-rich SiN{sub x}. Application of stoichiometric SiN{sub x} to non-textured thin-film cells, epitaxially grown at low temperature by ion-assisted deposition onto a monocrystalline Si substrate, results in an open-circuit voltage of 622 mV, a short-circuit current density of 26.6 mA/cm{sup 2} and an efficiency of 12.7%. It is shown that the SiN{sub x}-passivated in-situ grown n{sup +}-emitter of this cell type allows to reach open-circuit voltages of up to 667 mV. Silicon-rich SiN{sub x} is applied to the phosphorus-diffused n{sup +}-emitter of a textured thin-film cell on a glass superstrate fabricated by layer-transfer. The emitter saturation current density of these cells is only 40-64 fA/cm{sup 2}, which allows for open-circuit voltages of up to 699 mV. An impressively high open-circuit voltage of 638 mV and a short-circuit current density of 32.0 mA/cm{sup 2} are obtained for a 25 {mu}m thick SiN{sub x}-passivated, random pyramid-textured transfer cell. A transfer cell efficiency of 15.3% is independently confirmed.

  3. Thin film silicon modules on plastic superstrates

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y; Borreman, A.; Hamers, E.A.G.; Schlatmann, R.; Jongerden, G.J.; Schropp, R.E.I.

    2008-01-01

    The aim of this research is to fabricate high efficiency a-Si/μc-Si tandem solar cell modules on flexible (polymer) superstrates using the Helianthos concept. As a first step we began by depositing the top cell which contains an amorphous silicon (a-Si:H) i-layer of 350 nm made by VHF PECVD at 50

  4. Infrared analysis of thin films: amorphous, hydrogenated carbon on silicon

    International Nuclear Information System (INIS)

    Jacob, Wolfgang; Keudell, Achim von; Schwarz-Selinger, Thomas

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, an experimentally measured spectrum has to be simulated using the full formalism including the Kramers-Kronig relation. Infrared absorption spectra and the resulting k spectra in the range of the CH vibrational bands around 3000 cm -1 are presented for a variety of a-C:H layers. The shape and the total intensity of the peak are quite sensitive to the film structure. Soft, polymerlike hydrocarbon layers are characterized by a well structured, intense IR absorption band, while hard, amorphous, hydrogenated carbon layers exhibit a structureless, broad IR absorption band with relative low intensity. The k spectra of the CH vibrational bands can be considered as fingerprint for the type of a-C:H film. (author)

  5. Large Area Thin Film Silicon: Synergy between Displays and Solar Cells

    NARCIS (Netherlands)

    Schropp, R.E.I.

    2012-01-01

    Thin-film silicon technology has changed our society, owing to the rapid advance of its two major application fields in communication (thin-film displays) and sustainable energy (thin-film solar cells). Throughout its development, advances in these application fields have always benefitted each

  6. Hydrogenation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Knížek, Karel; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2006-01-01

    Roč. 501, - (2006), s. 144-148 ISSN 0040-6090 R&D Projects: GA MŠk ME 537; GA MŽP(CZ) SM/300/1/03; GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GA202/03/0789 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon * atmospheric pressure chemical vapour deposition * hydrogen passivation * photoluminescence * Raman spectroscopy * Si-H 2 bonding * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  7. Thin-film polycrystalline silicon solar cells

    Science.gov (United States)

    Funghnan, B. W.; Blanc, J.; Phillips, W.; Redfield, D.

    1980-08-01

    Thirty-four new solar cells were fabricated on Wacker Sislo substrates and the AM-1 parameters were measured. A detailed comparison was made between the measurement of minority carrier diffusion length by the OE method and the penetrating light laser scan grain boundary photoresponse linewidth method. The laser scan method has more experimental uncertainty and agrees within 10 to 50% with the QE method. It allows determination of L over a large area. Atomic hydrogen passivation studies continued on Wacker material by three techniques. A method of determining surface recombination velocity, s, from laser scan data was developed. No change in s in completed solar cells after H-plasma treatment was observed within experimental error. H-passivation of bare silicon cars as measured by the new laser scan photoconductivity technique showed very large effects.

  8. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  9. Characterization of thin-film silicon materials and solar cells through numerical modeling

    NARCIS (Netherlands)

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film

  10. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    Science.gov (United States)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  11. Experimental analysis of silicon oxycarbide thin films and waveguides

    Science.gov (United States)

    Memon, Faisal Ahmed; Morichetti, Francesco; Somaschini, Claudio; Iseni, Giosue; Melloni, Andrea

    2017-05-01

    Silicon oxycarbide (SiOC) thin films are produced with reactive rf magnetron sputtering of a silicon carbide (SiC) target on Si (100) and SiO2/Si substrates under varying deposition conditions. The optical properties of the deposited SiOC thin films are characterized with spectroscopic ellispometry at multiple angles of incidence over a wavelength range 300- 1600 nm. The derived optical constants of the SiOC films are modeled with Tauc-Lorentz model. The refractive index n of the SiOC films range from 1.45 to 1.85 @ 1550 nm and the extinction coefficient k is estimated to be less than 10-4 in the near-infrared region above 1000 nm. The topography of SiOC films is studied with SEM and AFM giving rms roughness of 0.9 nm. Channel waveguides with a SiOC core with a refractive index of 1.7 have been fabricated to demonstrate the potential of sputtered SiOC for integrated photonics applications. Propagation loss as low as 0.39 +/- 0.05 dB/mm for TE and 0.41 +/- 0.05 dB/mm for TM polarizations at telecommunication wavelength 1550 nm is demonstrated.

  12. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  13. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  14. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  15. Piezoresistive silicon thin film sensor array for biomedical applications

    International Nuclear Information System (INIS)

    Alpuim, P.; Correia, V.; Marins, E.S.; Rocha, J.G.; Trindade, I.G.; Lanceros-Mendez, S.

    2011-01-01

    N-type hydrogenated nanocrystalline silicon thin film piezoresistors, with gauge factor - 28, were deposited on rugged and flexible polyimide foils by Hot-wire chemical vapor deposition using a tantalum filament heated to 1750 o C. The piezoresistive response under cyclic quasi-static and dynamical (up to 100 Hz) load conditions is reported. Test structures, consisting of microresistors having lateral dimensions in the range from 50 to 100 μm and thickness of 120 nm were defined in an array by reactive ion etching. Metallic pads, forming ohmic contacts to the sensing elements, were defined by a lift-off process. A readout circuit for the array consisting in a mutiplexer on each row and column of the matrix is proposed. The digital data will be processed, interpreted and stored internally by an ultra low-power micro controller, also responsible for the communication of two-way wireless data, e.g. from inside to outside the human body.

  16. Thin film silicon modules: contributions to low cost industrial production

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A. [Universite de Neuchatel, Neuchatel (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the research work done during the two-year period 2003-04 at the Thin-Film Solar Cell Laboratory of the Institute of Microtechnology (IMT) at the University of Neuchatel in Switzerland. The transition from fundamental research work to concrete industrialisation issues, and changes within the research staff are discussed. The main results of the work done are presented, including basic techniques for the production of p-i-n solar cells on glass, new technologies for the deposition of n-i-p cells on low-cost flexible substrates and the optimisation of zinc oxide deposition methods. The key role played by substrate chemistry and roughness in the nucleation and growth of micro-crystalline silicon layers is looked at and diagnostic tools for the analysis of micro-crystalline solar cells are discussed.

  17. Optical characterisation of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Chouiyakh, A.; Rjeb, A.; Barhdadi, A.

    2000-09-01

    The present work is devoted to the study of some optical properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by radio-frequency cathodic sputtering technique. It is essentially focused on investigating separately the effects of increasing partial hydrogen pressure during the deposition stage, and the effects of post deposition thermal annealing on the main optical parameters of the deposited layers (refraction index, optical gap Urbach energy, etc.). We show that low hydrogen pressures allow a saturation of the dangling bonds in the material, while high pressures lead to the creation of new defects. We also show that thermal annealing under moderate temperatures allows a good improvement of the structural quality of deposited films. (author)

  18. Ion beam analysis of PECVD silicon oxide thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.; Rodriguez, J.A.; Pedrero, E.; Fonseca Filho, H.D.; Llovera, A.; Riera, M.; Dominguez, C.; Behar, M.; Zawislak, F.C.

    2006-01-01

    A study of ion beam analysis techniques of plasma enhanced chemical vapor deposited (PECVD) silicon oxide thin films (1 μm thick) obtained from silane (SiH 4 ) and nitrous oxide (N 2 O) is reported. The film, elemental composition and surface morphology were determined as function of the reactant gas flow ratio, R = [N 2 O]/[SiH 4 ] in the 22-110 range using the Rutherford backscattering spectrometry, nuclear reaction analysis and atomic force microscopy techniques. The density of the films was determined by combining the RBS and thickness measurements. All the experiments were done at a deposition temperature of 300 deg. C. In all the cases almost stoichiometric oxides were obtained being the impurity content function of R. It was also observed that physical properties such as density, surface roughness and shape factor increase with R in the studied interval

  19. The Refractive Index Measurement Of Silicon Dioxide Thin Film by the Coupling Prism Method

    International Nuclear Information System (INIS)

    Budianto, Anwar; Hariyanto, Sigit; Subarkah

    1996-01-01

    Refractive index of silicon dioxide thin film that doped with phosphor (SiO 2 :P) above the pure silicon dioxide substrate has been measured by light coupling prism method. The method principle is focusing the light on coupling prism base so that the light propagates into the waveguide layer while the reflected one forms a mode in the observation plane. The SiO 2 thin film as waveguide layer has a refractive index that give the thick and refractive index relation. The He-Ne laser as light source has the wavelength λ 0,6328 μm. The refractive index measurement of the thin film with the substrate refractive index n sb = 1,47 and the thin film thick d = 2μm gives n g = 1,5534 ± 0,01136. This method can distinguish the refractive index of thin film about 6% to the refractive index of substrate

  20. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    Science.gov (United States)

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  1. Modulated surface textures for enhanced scattering in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.; Battaglia, C.; Ballif, C.; Zeman, M.

    2012-01-01

    Nano-scale randomly textured front transparent oxides are superposed on micro-scale etched glass substrates to form modulated surface textures. The resulting enhanced light scattering is implemented in single and double junction thin-film silicon solar cells.

  2. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  3. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  4. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  5. Frequency dependence of the active impedance component of silicon thin-film resistors

    International Nuclear Information System (INIS)

    Belogurov, S.V.; Gostilo, V.V.; Yurov, A.S.

    1987-01-01

    A high-resistant resistor on the silicon thin-film substrate considerably superior in noise and frequency performance than commercial resistors is described. The frequency dependence of the active impedance component is tested for determining noise and frequency dependences of silicon thin-film resistors. The obtained results permit to calculate the energy equivalent of resistor noise in nuclear radiation detection units at any temperature according to its frequency characteristic at room temperature

  6. Fracture properties of hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  7. Mass productions of thin film silicon PV modules

    International Nuclear Information System (INIS)

    Tawada, Y.; Yamagishi, H.; Yamamoto, K.

    2003-01-01

    Mass production technologies of a-Si single junction and a-Si/poly-Si hybrid modules with stable 8% and 10% efficiency were developed in the Shiga factory of Kaneka Corporation. Kaneka instituted Kaneka Solartech Corporation (KST) as a subsidiary company of 100% shareholder and invested 20 MW production plant in Toyooka City in 1999. There are fully automatic thin film fabrication equipments. KST started the manufacturing amorphous silicon PV modules in 1999 and those of hybrid type PV modules in 2001. The largest size glass substrates used for these modules are 95x98 cm and variable size of modules are being produced by cutting these large area base modules. Recent production yields are higher than 98%. Production technologies of a-Si, thin c-Si and solar cells, performances of modules, applications to the rooftop PV systems will be presented. We estimate the production cost of a-Si solar modules and a-Si/thin c-Si hybrid solar modules. The future business plan of our new type solar modules and our production lines will be discussed. (author)

  8. Development of microforming process combined with thin film transfer printing

    Directory of Open Access Journals (Sweden)

    Koshimizu Kazushi

    2015-01-01

    Full Text Available Microforming receives a lot of attentions in the recent years due to the increased use of microparts in electronics and medical sectors. For the further functionalization of these micro devices, high functional surface with noble metals are strongly required for the devices in bio- and medical fields, such as bio-sensors. To realize the submillimeter structure of metal foils and micro to nanometer structures in one forming process, the present study proposes a combined process of microforming for metal foils and transfer printing of gold (Au thin films. To clarify the availability of the proposed combined process, transferability of Au thin films under micro bulging deformation are investigated. 0.1 mm-thick pure titanium (Ti foils and 100 nm-thick Au films were used as blank and functional materials, respectively. The forming tests of the proposed process were conducted. With increasing strain of Ti foils, Au TP areas increase. By this experiment, it’s confirmed that the hydrogen reduction of oxidation layers and the strain of Ti foil are significant factor for Au TP on Ti foils.

  9. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  10. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    International Nuclear Information System (INIS)

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-01-01

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF_6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF_6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF_6 thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF_6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF_6 thin film, the covalent interaction between ImPF_6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  11. A novel diagnostic approach for studying silicon thin film growth

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.

    2005-01-01

    In the deposition of thin films, the material properties are formed through the interaction of gas phase species with the growing surface. The resulting surface kinetics and chemistry is determined by the reactivity of the different gas phase species as well as by the surface chemical nature and may

  12. Development of A Thin Film Crystalline Silicon Solar Cell

    International Nuclear Information System (INIS)

    Sopori, B.; Chen, W.; Zhang, Y.

    1998-01-01

    A new design for a single junction, thin film Si solar cell is presented. The cell design is compatible with low-temperature processing required for the use of a low-cost glass substrate, and includes effective light trapping and impurity gettering. Elements of essential process steps are discussed

  13. Plasma deposition of thin film silicon at low substrate temperature and at high growth rate

    NARCIS (Netherlands)

    Verkerk, A.D.|info:eu-repo/dai/nl/304831719

    2009-01-01

    To expand the range of applications for thin film solar cells incorporating hydrogenated amorphous silicon (a-Si:H) and hydrogenated nanocrystalline silicon (nc-Si:H), the growth rate has to be increased 0.5 or less to several nm/s and the substrate temperature should be lowered to around 100 C. In

  14. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  15. Pulsed Laser Deposition of Zinc Sulfide Thin Films on Silicon: The influence of substrate orientation and preparation on thin film morphology and texture

    OpenAIRE

    Heimdal, Carl Philip J

    2014-01-01

    The effect of orientation and preparation of silicon substrates on the growth morphology and crystalline structure of ZnS thin films deposited by pulsed laser deposition (PLD) has been investigated through scanning electron microscopy (SEM) and grazing incidence x-ray diffraction (GIXRD). ZnS thin films were grown on silicon (100) and (111), on HF-treated and untreated silicon (100) as well as substrates coated with Al, Ge and Au. The ZnS films showed entirely different morphologies for ZnS f...

  16. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  17. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    OpenAIRE

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of photovoltaic (PV) devices which deploy the chemical-vapor-deposited hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) and their alloys as the absorber layers and doped ...

  19. Polycrystalline silicon thin-film solar cells on glass

    Energy Technology Data Exchange (ETDEWEB)

    Gall, S.; Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Lee, K.Y.; Rau, B.; Ruske, F.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH (formerly Hahn-Meitner-Institut Berlin GmbH), Department Silicon Photovoltaics (SE1), Kekulestr. 5, D-12489 Berlin (Germany)

    2009-06-15

    Poly-Si thin-film solar cells on glass feature the potential to reach single-junction efficiencies of 15% or even higher at low costs. In this paper innovative approaches are discussed, which could lead to substantial efficiency improvements and significant cost reductions: (i) preparation of large-grained poly-Si films using the 'seed layer concept' targeting at high material quality, (ii) utilization of ZnO:Al-coated glass enabling simple contacting and light-trapping schemes, (iii) utilization of high-rate electron-beam evaporation for the absorber deposition offering a high potential for cost reduction. (author)

  20. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  1. Quadruple-Junction Thin-Film Silicon-Based Solar Cells

    NARCIS (Netherlands)

    Si, F.T.

    2017-01-01

    The direct utilization of sunlight is a critical energy source in a sustainable future. One of the options is to convert the solar energy into electricity using thin-film silicon-based solar cells (TFSSCs). Solar cells in a triple-junction configuration have exhibited the highest energy conversion

  2. Light management in large area thin-film silicon solar modules

    Czech Academy of Sciences Publication Activity Database

    Losio, P.A.; Caglar, O.; Cashmore, J.S.; Hötzel, J.E.; Ristau, S.; Holovský, Jakub; Remeš, Zdeněk; Sinicco, I.

    2015-01-01

    Roč. 143, Dec (2015), s. 375-385 ISSN 0927-0248 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : micromorph * thin-film silicon solar cells * light management * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  3. On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy

    NARCIS (Netherlands)

    Bronneberg, A. C.; Smets, A. H. M.; Creatore, M.; M. C. M. van de Sanden,

    2011-01-01

    Insight into the oxidation mechanism of microcrystalline silicon thin films has been obtained by means of Fourier transform infrared spectroscopy. The films were deposited by using the expanding thermal plasma and their oxidation upon air exposure was followed in time. Transmission spectra were

  4. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  5. Thin-Film layers with Interfaces that reduce RF Losses on High-Resistivity Silicon Substrates

    NARCIS (Netherlands)

    Evseev, S. B.; Milosavljevic, S.; Nanver, L. K.

    2017-01-01

    Radio-Frequency (RF) losses on High-Resistivity Silicon (HRS) substrates were studied for several different surface passivation layers comprising thin-films of SiC, SiN and SiO2 In many combinations, losses from conductive surface channels were reduced and increasing the number of interfaces between

  6. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong

    2018-01-01

    We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...

  7. Carrier transport in polycrystalline silicon thin films solar cells grown on a highly textured structure

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Takakura, H.; Hamakawa, Y.; Muhida, R.; Kawamura, T.; Harano, T.; Toyama, T.; Okamoto, H.

    2004-01-01

    Roč. 43, 9A (2004), s. 5955-5959 ISSN 0021-4922 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon thin film * solar cells * substrate texture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2004

  8. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    NARCIS (Netherlands)

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of

  9. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...

  10. Pyroelectricity of silicon-doped hafnium oxide thin films

    Science.gov (United States)

    Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.

    2018-04-01

    Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.

  11. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  12. Investigation of the degradation of a thin-film hydrogenated amorphous silicon photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    van Dyk, E.E.; Audouard, A.; Meyer, E.L. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Woolard, C.D. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-01-23

    The degradation of a thin-film hydrogenated single-junction amorphous silicon (a-Si:H) photovoltaic (PV) module has been studied. We investigated the different modes of electrical and physical degradation of a-Si:H PV modules by employing a degradation and failure assessment procedure used in conjunction with analytical techniques, including, scanning electron microscopy (SEM) and thermogravimetry. This paper reveals that due to their thickness, thin films are very sensitive to the type of degradation observed. Moreover, this paper deals with the problems associated with the module encapsulant, poly(ethylene-co-vinylacetate) (EVA). The main objective of this study was to establish the influence of outdoor environmental conditions on the performance of a thin-film PV module comprising a-Si:H single-junction cells. (author)

  13. Characteristics of thin-film transistors based on silicon nitride passivation by excimer laser direct patterning

    International Nuclear Information System (INIS)

    Chen, Chao-Nan; Huang, Jung-Jie

    2013-01-01

    This study explored the removal of silicon nitride using KrF laser ablation technology with a high threshold fluence of 990 mJ/cm 2 . This technology was used for contact hole patterning to fabricate SiN x -passivation-based amorphous-silicon thin films in a transistor device. Compared to the photolithography process, laser direct patterning using KrF laser ablation technology can reduce the number of process steps by at least three. Experimental results showed that the mobility and threshold voltages of thin film transistors patterned using the laser process were 0.16 cm 2 /V-sec and 0.2 V, respectively. The device performance and the test results of gate voltage stress reliability demonstrated that laser direct patterning is a promising alternative to photolithography in the panel manufacturing of thin-film transistors for liquid crystal displays. - Highlights: ► KrF laser ablation technology is used to remove silicon nitride. ► A simple method for direct patterning contact-hole in thin-film-transistor device. ► Laser technology reduced processing by at least three steps

  14. Growth of YBCO superconducting thin films on CaF sub 2 buffered silicon

    CERN Document Server

    Bhagwat, S S; Patil, J M; Shirodkar, V S

    2000-01-01

    CaF sub 2 films were grown on silicon using the neutral cluster beam deposition technique. These films were highly crystalline and c-axis oriented. Superconducting YBCO thin films were grown on the Ca F sub 2 buffered silicon using the laser ablation technique. These films showed T sub c (onset) at 90 K and Tc(zero) at 86 K. X-ray diffraction analysis showed that the YBCO films were also oriented along the c-axis.

  15. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Keywords. Porous silicon; passivation; palladium; oxidation; XPS. Abstract. Nano porous silicon (PS) was formed on -type monocrystalline silicon of 2–5 cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its ...

  16. Thin film heat flux sensors for accurate transient and unidirectional heat transfer analysis

    International Nuclear Information System (INIS)

    Azerou, B; Garnier, B; Lahmar, J

    2012-01-01

    Heat flux measurement is needed in many heat transfer studies. For the best unbiased heat flux sensors (HFS), the heat flux is obtained using temperature measurements at different locations and also an inverse heat conduction method (function specification...) in order to calculate the heat flux. Systematic errors can come from the uncertainty in the wire thermocouples locations and from errors in the knowledge of distances between two consecutive wire thermocouples. The main idea in this work is to use thin film thermoresistances deposited on a flexible thin polymer substrate instead of wire thermocouples welded on metallic sample. The interest of using thin film thermoresistances instead of wire thermocouples is a lower disturbance due to the smaller thickness of the thin film sensors (typically less than 1μm) and a much better knowledge of the distances between the different thin film thermoresistances which are precisely defined in the mask used for the metallic thin film pattern fabrication. In this paper, we present the fabrication of the new heat flux sensor with thin film thermoresistances, the study of the effect of the self heating (due to Joule effect in thermoresistances) and the performances of this new HFS with the comparison with classical HFS using wire thermocouples. For this study, a symmetric experimental setup is used with metallic samples equipped with an etched foil heater and both classical and new HFS. For several heating conditions, it appears that a better accuracy is always obtained with the new HFS using thin film thermoresistances.

  17. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Gusain, Rashi [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Kokufu, Sho [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Bakshi, Paramjeet S. [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Khatri, Om P., E-mail: opkhatri@iip.res.in [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF{sub 6}) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF{sub 6} thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF{sub 6} thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF{sub 6} thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF{sub 6} thin film, the covalent interaction between ImPF{sub 6} ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  18. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, Pere; Chaabane, N; Kharchenko, A V; Tchakarov, S

    2004-01-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane-hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane-helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics

  19. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  20. Thermal conductivity of silicon nanocrystals and polystyrene nanocomposite thin films

    International Nuclear Information System (INIS)

    Juangsa, Firman Bagja; Muroya, Yoshiki; Nozaki, Tomohiro; Ryu, Meguya; Morikawa, Junko

    2016-01-01

    Silicon nanocrystals (SiNCs) are well known for their size-dependent optical and electronic properties; they also have the potential for low yet controllable thermal properties. As a silicon-based low-thermal conductivity material is required in microdevice applications, SiNCs can be utilized for thermal insulation. In this paper, SiNCs and polymer nanocomposites were produced, and their thermal conductivity, including the density and specific heat, was measured. Measurement results were compared with thermal conductivity models for composite materials, and the comparison shows a decreasing value of the thermal conductivity, indicating the effect of the size and presence of the nanostructure on the thermal conductivity. Moreover, employing silicon inks at room temperature during the fabrication process enables a low cost of fabrication and preserves the unique properties of SiNCs. (paper)

  1. Modeling and Analysis of Entropy Generation in Light Heating of Nanoscaled Silicon and Germanium Thin Films

    Directory of Open Access Journals (Sweden)

    José Ernesto Nájera-Carpio

    2015-07-01

    Full Text Available In this work, the irreversible processes in light heating of Silicon (Si and Germanium (Ge thin films are examined. Each film is exposed to light irradiation with radiative and convective boundary conditions. Heat, electron and hole transport and generation-recombination processes of electron-hole pairs are studied in terms of a phenomenological model obtained from basic principles of irreversible thermodynamics. We present an analysis of the contributions to the entropy production in the stationary state due to the dissipative effects associated with electron and hole transport, generation-recombination of electron-hole pairs as well as heat transport. The most significant contribution to the entropy production comes from the interaction of light with the medium in both Si and Ge. This interaction includes two processes, namely, the generation of electron-hole pairs and the transferring of energy from the absorbed light to the lattice. In Si the following contribution in magnitude comes from the heat transport. In Ge all the remaining contributions to entropy production have nearly the same order of magnitude. The results are compared and explained addressing the differences in the magnitude of the thermodynamic forces, Onsager’s coefficients and transport properties of Si and Ge.

  2. Electrical conductivity of free-standing mesoporous silicon thin films

    International Nuclear Information System (INIS)

    Khardani, M.; Bouaicha, M.; Dimassi, W.; Zribi, M.; Aouida, S.; Bessais, B.

    2006-01-01

    The effective electrical conductivity of free-standing p + -type porous silicon layers having porosities ranging from 30% to 80% was studied at both experimental and theoretical sides. An Effective Medium Approximation (EMA) model was used as a theoretical support. The porous silicon (PS) films were prepared by the electrochemical etching method for different values of the anodic current density. In order to model the PS electrical conductivity, the free-standing porous layer was assumed to be formed of three phases; vacuum, oxide and Si nanocrystallites. The analytical expression of the electrical conductivity of the Si nanocrystallites was established using the quantum confinement theory. This enables us to correlate the electrical conductivity of the mesoporous film to the value of the effective band gap energy estimated from the absorption coefficient. A perfect agreement between the theoretical and the experimental electrical conductivity values was obtained for all prospected PS porosities

  3. Ion induced segregation in gold nanostructured thin films on silicon

    International Nuclear Information System (INIS)

    Ghatak, J.; Satyam, P.V.

    2008-01-01

    We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au 2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 x 10 13 , 1 x 10 14 and 5 x 10 14 ions cm -2 at a high beam flux of 6.3 x 10 12 ions cm -2 s -1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 x 10 13 ions cm -2 ) transport has been found to be associated with the formation of gold silicide (Au 5 Si 2 ). At a high fluence value of 5 x 10 14 ions cm -2 , disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.

  4. Growth and Etch Rate Study of Low Temperature Anodic Silicon Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Akarapu Ashok

    2014-01-01

    Full Text Available Silicon dioxide (SiO2 thin films are most commonly used insulating films in the fabrication of silicon-based integrated circuits (ICs and microelectromechanical systems (MEMS. Several techniques with different processing environments have been investigated to deposit silicon dioxide films at temperatures down to room temperature. Anodic oxidation of silicon is one of the low temperature processes to grow oxide films even below room temperature. In the present work, uniform silicon dioxide thin films are grown at room temperature by using anodic oxidation technique. Oxide films are synthesized in potentiostatic and potentiodynamic regimes at large applied voltages in order to investigate the effect of voltage, mechanical stirring of electrolyte, current density and the water percentage on growth rate, and the different properties of as-grown oxide films. Ellipsometry, FTIR, and SEM are employed to investigate various properties of the oxide films. A 5.25 Å/V growth rate is achieved in potentiostatic mode. In the case of potentiodynamic mode, 160 nm thickness is attained at 300 V. The oxide films developed in both modes are slightly silicon rich, uniform, and less porous. The present study is intended to inspect various properties which are considered for applications in MEMS and Microelectronics.

  5. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    Science.gov (United States)

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  6. Effect of hydrogen passivation on polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Oswald, Jiří; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2005-01-01

    Roč. 487, - (2005), s. 152-156 ISSN 0040-6090 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogen passivation * polycrystalline silicon * photoluminescence * Raman spectroscopy * Si-H 2 * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.569, year: 2005

  7. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.

    2013-10-15

    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  8. Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Ledinský, Martin; Fejfar, Antonín; Vetushka, Aliaksi; Stuchlík, Jiří; Rezek, Bohuslav; Kočka, Jan

    2011-01-01

    Roč. 5, 10-11 (2011), s. 373-375 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) LC06040; GA MŠk(CZ) MEB061012; GA AV ČR KAN400100701; GA MŠk LC510 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous silicon * nanocrystalline silicon * thin films * atomic force microscopy * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.218, year: 2011

  9. Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ledinsky, Martin; Fejfar, Antonin; Vetushka, Aliaksei; Stuchlik, Jiri; Rezek, Bohuslav; Kocka, Jan [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i. Cukrovarnicka 10, 162 00 Praha 6 (Czech Republic)

    2011-11-15

    Local currents measured under standard conductive atomic force microscopy (C-AFM) conditions on microcrystalline silicon ({mu}c-Si:H) thin films were studied. It was shown that the AFM detection diode illuminating the AFM cantilever (see the figure on the right side) 100 x enhanced the current flows through the photosensitive {mu}c-Si:H layer. The local current map and current-voltage characteristics were measured under dark conditions. This study enables mapping of both the dark current and photocurrent. C-AFM cantilever illuminated by the detection diode during measurement on {mu}c-Si:H thin film. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  11. Ion beam analysis of thin films. Applications to porous silicon

    International Nuclear Information System (INIS)

    Ortega, C.; Grosman, A.; Morazzani, V.

    1995-01-01

    The aim of this paper is twofold: (1)- to present a summary of the fundamental interactions between ion beam (such as proton, deuteron or helium) of MeV energy and solids, interactions that are used in material analysis techniques such as Rutherford Backscattering Spectrometry (RBS), Elastic Recoil Detection Analysis (ERDA) and Nuclear Reaction Analysis (NRA), and (2)- to illustrate the use of these techniques to determine the composition of the surface and outer microns of material. Some examples will be given concerning porous silicon layers. (authors). 38 refs., 25 figs., 3 tabs

  12. Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Shao-Ze Tseng

    2014-01-01

    Full Text Available This paper describes a method for fabricating silicon heterojunction thin film solar cells with an ITO/p-type a-Si : H/n-type c-Si structure by radiofrequency magnetron sputtering. A short-circuit current density and efficiency of 28.80 mA/cm2 and 8.67% were achieved. Novel nanopatterned silicon wafers for use in cells are presented. Improved heterojunction cells are formed on a nanopatterned silicon substrate that is prepared with a self-assembled monolayer of SiO2 nanospheres with a diameter of 550 nm used as an etching mask. The efficiency of the nanopattern silicon substrate heterojunction cells was 31.49% greater than that of heterojunction cells on a flat silicon wafer.

  13. Geometric photovoltaics applied to amorphous silicon thin film solar cells

    Science.gov (United States)

    Kirkpatrick, Timothy

    Geometrically generalized analytical expressions for device transport are derived from first principles for a photovoltaic junction. Subsequently, conventional planar and unconventional coaxial and hemispherical photovoltaic architectures are applied to detail the device physics of the junction based on their respective geometry. For the conventional planar cell, the one-dimensional transport equations governing carrier dynamics are recovered. For the unconventional coaxial and hemispherical junction designs, new multi-dimensional transport equations are revealed. Physical effects such as carrier generation and recombination are compared for each cell architecture, providing insight as to how non-planar junctions may potentially enable greater energy conversion efficiencies. Numerical simulations are performed for arrays of vertically aligned, nanostructured coaxial and hemispherical amorphous silicon solar cells and results are compared to those from simulations performed for the standard planar junction. Results indicate that fundamental physical changes in the spatial dependence of the energy band profile across the intrinsic region of an amorphous silicon p-i-n junction manifest as an increase in recombination current for non-planar photovoltaic architectures. Despite an increase in recombination current, however, the coaxial architecture still appears to be able to surpass the efficiency predicted for the planar geometry, due to the geometry of the junction leading to a decoupling of optics and electronics.

  14. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming; Zhong, Zhaowei; Diallo, Elhadj; Wang, Zhihong; Yue, Weisheng

    2014-01-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  15. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming

    2014-10-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  16. Heterogenous integration of a thin-film GaAs photodetector and a microfluidic device on a silicon substrate

    International Nuclear Information System (INIS)

    Song, Fuchuan; Xiao, Jing; Udawala, Fidaali; Seo, Sang-Woo

    2011-01-01

    In this paper, heterogeneous integration of a III–V semiconductor thin-film photodetector (PD) with a microfluidic device is demonstrated on a SiO 2 –Si substrate. Thin-film format of optical devices provides an intimate integration of optical functions with microfluidic devices. As a demonstration of a multi-material and functional system, the biphasic flow structure in the polymeric microfluidic channels was co-integrated with a III–V semiconductor thin-film PD. The fluorescent drops formed in the microfluidic device are successfully detected with an integrated thin-film PD on a silicon substrate. The proposed three-dimensional integration structure is an alternative approach to combine optical functions with microfluidic functions on silicon-based electronic functions.

  17. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  18. Progress in thin-film silicon solar cells based on photonic-crystal structures

    Science.gov (United States)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  19. Surface Plasmon Enhanced Light Trapping in Metal/Silicon Nanobowl Arrays for Thin Film Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ruinan Sun

    2017-01-01

    Full Text Available Enhancing the light absorption in thin film silicon solar cells with nanophotonic and plasmonic structures is important for the realization of high efficiency solar cells with significant cost reduction. In this work, we investigate periodic arrays of conformal metal/silicon nanobowl arrays (MSNBs for light trapping applications in silicon solar cells. They exhibited excellent light-harvesting ability across a wide range of wavelengths up to infrared regimes. The optimized structure (MSNBsH covered by SiO2 passivation layer and hemisphere Ag back reflection layer has a maximal short-circuit density (Jsc 25.5 mA/cm2, which is about 88.8% higher than flat structure counterpart, and the light-conversion efficiency (η is increased two times from 6.3% to 12.6%. The double-side textures offer a promising approach to high efficiency ultrathin silicon solar cells.

  20. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  1. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  2. Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating

    Science.gov (United States)

    Rizal, Umesh; Swain, Bhabani S.; Rameshbabu, N.; Swain, Bibhu P.

    2018-01-01

    Amorphous silicon carbide (a-SiC:H) thin films were synthesized using trichloromethylsilane by a hot wire chemical vapor deposition process. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy to confirm its chemical bonding, structural network and composition of the a-SiC:H films. The optical microscopy images reveal that hydrogen dilution increased the surface roughness and pore density of a-SiC:H thin film. The Raman spectroscopy and FTIR spectra reveal chemical network consisting of Si-Si, C-C and Si-C bonds, respectively. The XRD spectroscopy and Raman spectroscopy indicate a-SiC:H still has short-range order. In addition, in vitro cytotoxicity test ensures the behavior of cell-semiconductor hybrid to monitor the proper coordination. The live-dead assays and MTT assay reveal an increase in green nucleus cell, and cell viability is greater than 88%, respectively, showing non-toxic nature of prepared a-SiC:H film. Moreover, the result indicated by direct contact assay, and cell prefers to adhere and proliferate on a-SiC:H thin films having a positive effect as artificial heart valve coating material.

  3. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  4. Study of some structural properties of hydrogenated amorphous silicon thin films prepared by radiofrequency cathodic sputtering

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Barhdadi, A.

    2001-08-01

    In this work, we have used the grazing X-rays reflectometry technique to characterise hydrogenated amorphous silicon thin films deposited by radio-frequency cathodic sputtering. Relfectometry measurements are taken immediately after films deposition as well as after having naturally oxidised their surfaces during a more or less prolonged stay in the ambient. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears when the stay in the ambient is so long. (author)

  5. Relation of nanoscale and macroscopic properties of mixed-phase silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Fejfar, Antonín; Vetushka, Aliaksi; Kalusová, V.; Čertík, Ondřej; Ledinský, Martin; Rezek, Bohuslav; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 207, č. 3 (2010), s. 582-586 ISSN 1862-6300 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : conductive atomic force microscopy (C-AFM) * mixed phase silicon thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.458, year: 2010 http://dx.doi.org/10.1002/pssa.200982907

  6. ZnO transparent conductive oxide for thin film silicon solar cells

    Science.gov (United States)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  7. Properties of non-stoichiometric nitrogen doped LPCVD silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, F.; Mahamdi, R. [Departement d' Electronique, Universite Mentouri, Constantine (Algeria); Beghoul, M.R. [Departement d' Electronique, Universite de Jijel (Algeria); Temple-Boyer, P. [CNRS, LAAS, Toulouse (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, Toulouse (France); Bouridah, H.

    2010-02-15

    The influence of nitrogen on the internal structure and so on the electrical properties of silicon thin films obtained by low-pressure chemical vapor deposition (LPCVD) was studied using several investigation methods. We found by using Raman spectroscopy and SEM observations that a strong relationship exists between the structural order of the silicon matrix and the nitrogen ratio in film before and after thermal treatment. As a result of the high disorder caused by nitrogen on silicon network during the deposit phase of films, the crystallization phenomena in term of nucleation and crystalline growth were found to depend upon the nitrogen content. Resistivity measurements results show that electrical properties of NIDOS films depend significantly on structural properties. It was appeared that for high nitrogen content, the films tend to acquire an insulator behavior. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing

    Science.gov (United States)

    Choi, Young-Hwan; Ryu, Han-Youl

    2018-04-01

    We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.

  9. Growth of (100)-highly textured BaBiO{sub 3} thin films on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ferreyra, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina); Marchini, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires (Argentina); Granell, P. [INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Golmar, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, UNSAM, Campus Miguelete, 1650 San Martín, Buenos Aires (Argentina); Albornoz, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); and others

    2016-08-01

    We report on the growth and characterization of non-epitaxial but (100)-highly textured BaBiO{sub 3} thin films on silicon substrates. We have found the deposition conditions that optimize the texture, and show that the textured growth is favoured by the formation of a BaO layer at the first growth stages. X-ray diffraction Φ-scans, together with the observation that the same textured growth is found on films grown on Pt and SiO{sub 2} buffered Si, demonstrate the absence of epitaxy. Finally, we have shown that our (100)-oriented BaBiO{sub 3} films can be used as suitable buffers for the growth of textured heterostructures on silicon, which could facilitate the integration of potential devices with standard electronics. - Highlights: • BaBiO{sub 3} thin films were grown on Si substrates and characterized. • Films prepared using optimized conditions are highly textured in the (100) direction. • The absence of in-plane texture was demonstrated by X-ray diffraction. • Our films are suitable buffers for the growth of (100)-textured oxide heterostructures.

  10. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    International Nuclear Information System (INIS)

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

    2015-01-01

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000 μm) and cavity height (e.g., 200–1000 nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25 000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al 2 O 3 and TiO 2 processes from Me 3 Al/H 2 O and TiCl 4 /H 2 O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes

  11. Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin

    2015-01-01

    The use of nanoparticles in solar cells has created many controversies. In this paper, different mechanisms of nanoparticles with different materials with diameters varying from 50 to 200 nm, surface coverage at 5, 20, and 60 %, and different locations are analyzed systematically for efficient light trapping in a thin-film c-Si solar cell. Mie theory and the finite difference time domain method are used for analysis to give a design principle with nanoparticles for the solar cell application. Metals exhibit plasmonic resonances and angular scattering, while dielectrics show anti-reflection and scattering in the incident direction. A table is given to summarize the advantages and disadvantages in different conditions. The silicon absorption enhancement with nanoparticles on top is mainly in the shorter wavelengths below 700 nm, and both Al and SiO 2 nanoparticles with diameter around 100 nm show the most significant enhancement. The silicon absorption enhancement with embedded nanoparticles takes place in the longer wavelengths over 700 nm, and Ag and SiO 2 nanoparticles with larger diameter around 200 nm perform better. However, the light absorbed by Ag nanoparticles will be converted to heat and will lead to decrease in cell efficiency; hence, the choice of metallic nanoparticles in applications to solar cells should be carefully considered. The design principle proposed in this work gives a guideline by choosing reasonable parameters for the different requirements in the application of thin-film solar cells

  12. Effect of silane/hydrogen ratio on microcrystalline silicon thin films by remote inductively coupled plasma

    Science.gov (United States)

    Guo, Y. N.; Wei, D. Y.; Xiao, S. Q.; Huang, S. Y.; Zhou, H. P.; Xu, S.

    2013-05-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by remote low frequency inductively coupled plasma (ICP) chemical vapor deposition system, and the effect of silane/hydrogen ratio on the microstructure and electrical properties of μc-Si:H films was systematically investigated. As silane/hydrogen ratio increases, the crystalline volume fraction Fc decreases and the ratio of the intensity of (220) peak to that of (111) peak drops as silane flow rate is increased. The FTIR result indicates that the μc-Si:H films prepared by remote ICP have a high optical response with a low hydrogen content, which is in favor of reducing light-induced degradation effect. Furthermore, the processing window of the phase transition region for remote ICP is much wider than that for typical ICP. The photosensitivity of μc-Si:H films can exceed 100 at the transition region and this ensures the possibility of the fabrication of microcrystalline silicon thin film solar cells with a open-circuit voltage of about 700 mV.

  13. Thin Film Magnetless Faraday Rotators for Compact Heterogeneous Integrated Optical Isolators (Postprint)

    Science.gov (United States)

    2017-06-15

    AFRL-RX-WP-JA-2017-0348 THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL ISOLATORS (POSTPRINT) Dolendra Karki...Interim 9 May 2016 – 1 December 2016 4. TITLE AND SUBTITLE THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL...transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth

  14. Suppression of photo-leakage current in amorphous silicon thin-film transistors by n-doped nanocrystalline silicon

    International Nuclear Information System (INIS)

    Lin, Hung-Chien; Ho, King-Yuan; Hsu, Chih-Chieh; Yan, Jing-Yi; Ho, Jia-Chong

    2011-01-01

    The reduction of photo-leakage current of amorphous silicon thin-film transistors (a-Si TFTs) is investigated and is found to be successfully suppressed by the use of an n-doped nanocrystalline silicon layer (n+ nc-Si) as an ohmic contact layer. The shallow-level defects of n+ nc-Si can become trapping centres of photo-induced electrons as the a-Si TFT is operated under light illumination. A lower oxygen concentration during n+ nc-Si deposition can increase the creation of shallow-level defects and improve the contrast ratio of active matrix organic light-emitting diode panels.

  15. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    International Nuclear Information System (INIS)

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-01-01

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n + -type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force

  16. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  17. In and Ga Codoped ZnO Film as a Front Electrode for Thin Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Duy Phong Pham

    2014-01-01

    Full Text Available Doped ZnO thin films have attracted much attention in the research community as front-contact transparent conducting electrodes in thin film silicon solar cells. The prerequisite in both low resistivity and high transmittance in visible and near-infrared region for hydrogenated microcrystalline or amorphous/microcrystalline tandem thin film silicon solar cells has promoted further improvements of this material. In this work, we propose the combination of major Ga and minor In impurities codoped in ZnO film (IGZO to improve the film optoelectronic properties. A wide range of Ga and In contents in sputtering targets was explored to find optimum optical and electrical properties of deposited films. The results show that an appropriate combination of In and Ga atoms in ZnO material, followed by in-air thermal annealing process, can enhance the crystallization, conductivity, and transmittance of IGZO thin films, which can be well used as front-contact electrodes in thin film silicon solar cells.

  18. Comparison of Light Trapping in Silicon Nanowire and Surface Textured Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Rion Parsons

    2017-04-01

    Full Text Available The optics of axial silicon nanowire solar cells is investigated and compared to silicon thin-film solar cells with textured contact layers. The quantum efficiency and short circuit current density are calculated taking a device geometry into account, which can be fabricated by using standard semiconductor processing. The solar cells with textured absorber and textured contact layers provide a gain of short circuit current density of 4.4 mA/cm2 and 6.1 mA/cm2 compared to a solar cell on a flat substrate, respectively. The influence of the device dimensions on the quantum efficiency and short circuit current density will be discussed.

  19. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  20. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Science.gov (United States)

    Chowdhury, A.; Schneider, J.; Dore, J.; Mermet, F.; Slaoui, A.

    2012-06-01

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns- V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation.

  1. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    International Nuclear Information System (INIS)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-01-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy ( + on the low temperature ( + ions to silicon neutrals (J + /J 0 ) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO 2 coated Si at temperatures below 400 degree sign C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects

  2. Photodecomposition of Hg - Photo - CVD monosilane. Application to hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Aka, B.

    1989-04-01

    The construction of a Hg-photo-CVD device is discussed. The system enables the manufacturing of hydrogenous thin films of amorphous silicon from monosilane compound. The reaction mechanisms taking place in the gaseous phase and at the surface, and the optimal conditions for the amorphous silicon film growth are studied. The analysis technique is based on the measurement of the difference between the condensation points of the gaseous components of the mixture obtained from the monosilane photolysis. A kinetic simplified model is proposed. Conductivity measurements are performed and the heat treatment effects are analyzed. Trace amounts of oxygen and carbon are found in the material. No Hg traces are detected by SIMS analysis [fr

  3. Optical Absorption and Visible Photoluminescence from Thin Films of Silicon Phthalocyanine Derivatives

    Directory of Open Access Journals (Sweden)

    Arturo Rodríguez Gómez

    2014-09-01

    Full Text Available The interest of microelectronics industry in new organic compounds for the manufacture of luminescent devices has increased substantially in the last decade. In this paper, we carried out a study of the usage feasibility of three organic bidentate ligands (2,6-dihydroxyanthraquinone, anthraflavic acid and potassium derivative salt of anthraflavic acid for the synthesis of an organic semiconductor based in silicon phthalocyanines (SiPcs. We report the visible photoluminescence (PL at room temperature obtained from thermal-evaporated thin films of these new materials. The surface morphology of these films was analyzed by atomic force microscopy (AFM and scanning electron microscopy (SEM. AFM indicated that the thermal evaporation technique is an excellent resource in order to obtain low thin film roughness when depositing these kinds of compounds. Fourier transform infrared spectroscopy (FTIR spectroscopy was employed to investigate possible changes in the intra-molecular bonds and to identify any evidence of crystallinity in the powder compounds and in the thin films after their deposition. FTIR showed that there was not any important change in the samples after the thermal deposition. The absorption coefficient (α in the absorption region reveals non-direct transitions. Furthermore, the PL of all the investigated samples were observed with the naked eye in a bright background and also measured by a spectrofluorometer. The normalized PL spectra showed a Stokes shift ≈ 0.6 eV in two of our three samples, and no PL emission in the last one. Those results indicate that the Vis PL comes from a recombination of charge carriers between conduction band and valence band preceded by a non-radiative relaxation in the conduction band tails.

  4. Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Haenel, T.; Lee, K.Y.; Rau, B.; Ruske, F.; Weber, T.; Gall, S.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (formerly Hahn-Meitner-Institut Berlin), Kekulestr. 5, D-12489 Berlin (Germany); Berginski, M.; Huepkes, J. [Institute of Photovoltaics, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2009-06-15

    The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 {omega} after 22 h annealing at 600 C and only slightly increases for a 200 s heat treatment at 900 C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 C. (author)

  5. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  6. Light trapping with plasmonic back contacts in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Ulrich Wilhelm

    2013-02-08

    Trapping light in silicon solar cells is essential as it allows an increase in the absorption of incident sunlight in optically thin silicon absorber layers. This way, the costs of the solar cells can be reduced by lowering the material consumption and decreasing the physical constraints on the material quality. In this work, plasmonic light trapping with Ag back contacts in thin-film silicon solar cells is studied. Solar cell prototypes with plasmonic back contacts are presented along with optical simulations of these devices and general design considerations of plasmonic back contacts. Based on three-dimensional electromagnetic simulations, the conceptual design of plasmonic nanostructures on Ag back contacts in thin-film silicon solar cells is studied in this work. Optimizations of the nanostructures regarding their ability to scatter incident light at low optical losses into large angles in the silicon absorber layers of the thin-film silicon solar cells are presented. Geometrical parameters as well as the embedding dielectric layer stack of the nanostructures on Ag layers are varied. Periodic as well as isolated hemispherical Ag nanostructures of dimensions above 200 nm are found to scatter incident light at high efficiencies and low optical losses. Hence, these nanostructures are of interest for light trapping in solar cells. In contrast, small Ag nanostructures of dimension below 100 nm are found to induce optical losses. At the surface of randomly textured Ag back contacts small Ag nanostructures exist which induce optical losses. In this work, the relevance of these localized plasmon induced optical losses as well as optical losses caused by propagating plasmons are investigated with regard to the reflectance of the textured back contacts. In state-of-the-art solar cells, the plasmon-induced optical losses are shifted out of the relevant wavelength range by incorporating a ZnO:Al interlayer of low refractive index at the back contact. The additional but

  7. Low-density silicon thin films for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2016-02-01

    Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

  8. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Li, Da; Kunz, Thomas; Wolf, Nadine; Liebig, Jan Philipp; Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard; Göken, Mathias; Brabec, Christoph J.

    2015-01-01

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm 2 aperture area on the graphite substrate. The optical properties of the SiN x /a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN x /a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN x /a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  9. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell

    Science.gov (United States)

    Zaki, A. A.; El-Amin, A. A.

    2017-12-01

    In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.

  10. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  11. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  12. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Neumüller, A.; Sergeev, O.; Vehse, M.; Agert, C.; Bereznev, S.; Volobujeva, O.; Ewert, M.; Falta, J.

    2016-01-01

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  13. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.; Agert, C. [NEXT ENERGY EWE Research Centre for Energy Technology at the University of Oldenburg, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg (Germany); Bereznev, S.; Volobujeva, O. [Department of Materials Science, Tallinn University of Technology, Ehitajate Tee 5, Tallinn 19086 (Estonia); Ewert, M.; Falta, J. [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen (Germany)

    2016-07-25

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  14. Hydrogenated amorphous silicon sensors based on thin film on ASIC technology

    CERN Document Server

    Despeisse, M; Anelli, G; Jarron, P; Kaplon, J; Rusack, R; Saramad, S; Wyrsch, N

    2006-01-01

    The performance and limitations of a novel detector technology based on the deposition of a thin-film sensor on top of processed integrated circuits have been studied. Hydrogenated amorphous silicon (a-Si:H) films have been deposited on top of CMOS circuits developed for these studies and the resulting "thin-film on ASIC" (TFA) detectors are presented. The leakage current of the a-Si:H sensor at high reverse biases turns out to be an important parameter limiting the performance of a TFA detector. Its detailed study and the pixel segmentation of the detector are presented. High internal electric fields (in the order of 10/sup 4/-10/sup 5/ V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in a-Si:H. Signal induction by generated carrier motion and speed in the a-Si:H sensor have been studied with a 660 nm pulsed laser on a TFA detector based on an ASIC integrating 5 ns peaking time pre- amplifiers. The measurement set-up also permits to study the depletion of the senso...

  15. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    Science.gov (United States)

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  16. Thin film silicon by a microwave plasma deposition technique: Growth and devices, and, interface effects in amorphous silicon/crystalline silicon solar cells

    Science.gov (United States)

    Jagannathan, Basanth

    Thin film silicon (Si) was deposited by a microwave plasma CVD technique, employing double dilution of silane, for the growth of low hydrogen content Si films with a controllable microstructure on amorphous substrates at low temperatures (prepared by this technique. Such films showed a dark conductivity ˜10sp{-6} S/cm, with a conduction activation energy of 0.49 eV. Film growth and properties have been compared for deposition in Ar and He carrier systems and growth models have been proposed. Low temperature junction formation by undoped thin film silicon was examined through a thin film silicon/p-type crystalline silicon heterojunctions. The thin film silicon layers were deposited by rf glow discharge, dc magnetron sputtering and microwave plasma CVD. The hetero-interface was identified by current transport analysis and high frequency capacitance methods as the key parameter controlling the photovoltaic (PV) response. The effect of the interface on the device properties (PV, junction, and carrier transport) was examined with respect to modifications created by chemical treatment, type of plasma species, their energy and film microstructure interacting with the substrate. Thermally stimulated capacitance was used to determine the interfacial trap parameters. Plasma deposition of thin film silicon on chemically clean c-Si created electron trapping sites while hole traps were seen when a thin oxide was present at the interface. Under optimized conditions, a 10.6% efficient cell (11.5% with SiOsb2 A/R) with an open circuit voltage of 0.55 volts and a short circuit current density of 30 mA/cmsp2 was fabricated.

  17. Gas phase considerations for the deposition of thin film silicon solar cells by VHF-PECVD at low substrate temperatures

    NARCIS (Netherlands)

    Rath, J.K.; Verkerk, A.D.; Brinza, M.; Schropp, R.E.I.; Goedheer, W.J.; Krzhizhanovskaya, V.V.; Gorbachev, Y.E.; Orlov, K.E.; Khilkevitch, E.M.; Smirnov, A.S.

    2008-01-01

    Fabrication of thin film silicon solar cells on cheap plastics or paper-like substrate requires deposition process at very low substrate temperature, typically ≤ 100 °C. In a chemical vapor deposition process, low growth temperatures lead to materials with low density, high porosity, high disorder

  18. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  19. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    International Nuclear Information System (INIS)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi

    2002-01-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  20. MgB2 thin films on silicon nitride substrates prepared by an in situ method

    International Nuclear Information System (INIS)

    Monticone, Eugenio; Gandini, Claudio; Portesi, Chiara; Rajteri, Mauro; Bodoardo, Silvia; Penazzi, Nerino; Dellarocca, Valeria; Gonnelli, Renato S

    2004-01-01

    Large-area MgB 2 thin films were deposited on silicon nitride and sapphire substrates by co-deposition of Mg and B. After a post-annealing in Ar atmosphere at temperatures between 773 and 1173 K depending on the substrate, the films showed a critical temperature higher than 35 K with a transition width less than 0.5 K. The x-ray diffraction pattern suggested a c-axis preferential orientation in films deposited on amorphous substrate. The smooth surface and the good structural properties of these MgB 2 films allowed their reproducible patterning by a standard photolithographic process down to dimensions of the order of 10 μm and without a considerable degradation of the superconducting properties

  1. Nano imprint lithography of textures for light trapping in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Notta, J.B.; Pex, P.P.A.C. [ECN-Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands); Schipper, W.; Wilde, R. [Nanoptics GmbH, Innungsstrasse 5, 21244 Buchholz (Germany)

    2012-09-15

    Nano Imprint Lithography (NIL) is a versatile and commercially viable technology for fabrication of structures for light trapping in solar cells. We demonstrate the applicability of NIL in thin film silicon solar cells in substrate configuration, where NIL is used to fabricate a textured rear contact of the solar cells. We applied random structures, based on the natural texture of SnO:F grown by APCVD, and designed 2D periodic structures and show that for single junction {mu}c-Si cells these textured rear contacts lead to an increase of Jsc of more than 40 % in comparison to cells with flat rear contacts. Cells on optimized periodic textures showed higher fill factors which can be attributed to reduced microcrack formation, leading to less shunting in comparison to cells on random textures.

  2. Thin film silicon solar cells: advanced processing and characterization - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, Ch.

    2008-04-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out at the photovoltaics laboratory at the University of Neuchatel in Switzerland. The project aimed to demonstrate the production of high-efficiency thin-film silicon devices on flexible substrates using low cost processes. New ways of improving processing and characterisation are examined. The process and manufacturing know-how necessary to provide support for industrial partners within the framework of further projects is discussed. The authors state that the efficiency of most devices was significantly improved, both on glass substrates and on flexible plastic foils. The process reproducibility was also improved and the interactions between the different layers in the device are now said to be better understood. The report presents the results obtained and discusses substrate materials, transparent conductors, defect analyses and new characterisation tools. Finally, the laboratory infrastructure is described.

  3. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  4. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    International Nuclear Information System (INIS)

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  5. Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors

    International Nuclear Information System (INIS)

    Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.

    2005-01-01

    In this work, metal induced crystallization using nickel was employed to obtain polycrystalline silicon by crystallization of amorphous films for thin film transistor applications. The devices were produced through only one lithographic process with a bottom gate configuration using a new gate dielectric consisting of a multi-layer of aluminum oxide/titanium oxide produced by atomic layer deposition. The best results were obtained for TFTs with the active layer of poly-Si crystallized for 20 h at 500 deg. C using a nickel layer of 0.5 nm where the effective mobility is 45.5 cm 2 V -1 s -1 . The threshold voltage, the on/off current ratio and the sub-threshold voltage are, respectively, 11.9 V, 5.55x10 4 and 2.49 V/dec

  6. Aluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2016-11-01

    Full Text Available In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the silver (Ag back contact, resulting in a higher fill factor. The AlTi contact can achieve a solar cell conversion efficiency as high as that obtained from the Ag contact. These findings encourage the potential adoption of AlTi films as an alternative back contact to silver for silicon thin-film solar cells.

  7. Design and operation of grid-interactive thin-film silicon PV systems

    Science.gov (United States)

    Marion, Bill; Atmaram, Gobind; Lashway, Clin; Strachan, John W.

    Results are described from the operation of 11 thin-film amorphous silicon photovoltaic systems at three test facilities: the Florida Solar Energy Center, the New Mexico Solar Energy Institute, and Sandia National Laboratories. Commercially available modules from four US manufacturers are used in these systems, with array sizes from 133 to 750 W peak. Measured array efficiencies are from 3.1 to 4.8 percent. Except for one manufacturer, array peak power is in agreement with the calculated design ratings. For certain grid-connected systems, nonoptimal operation exists because the array peak power voltage is below the lower voltage limit of the power conditioning system. Reliability problems are found in two manufacturers' modules when shorts to ground and terminal corrosion occur. Array leakage current data are presented.

  8. Optical and electrical characteristics of zirconium oxide thin films deposited on silicon substrates by spray pyrolysis

    International Nuclear Information System (INIS)

    Aguilar-Frutis, M.; Araiza, J.J.; Falcony, C.; Garcia, M.

    2002-01-01

    The optical and electrical characteristics of zirconium oxide thin films deposited by spray pyrolysis on silicon substrates are reported. The films were deposited from a spraying solution of zirconium acetylacetonate in N,N-dimethylformamide using an ultrasonic mist generator on (100) Si substrates. The substrate temperature during deposition was in the range of 400 to 600 grad C. Deposition rates up to 16 A/sec were obtained depending on the spraying solution concentration and on the substrate temperature. A refraction index of the order of 2.0 was measured on these films by ellipsometry. The electrical characteristics of the films were determined from the capacitance and current versus voltage measurements. The addition of water mist during the spraying deposition process was also studied in the characteristics of the films. (Authors)

  9. Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells

    International Nuclear Information System (INIS)

    Fay, Sylvie; Steinhauser, Jerome; Nicolay, Sylvain; Ballif, Christophe

    2010-01-01

    Conductive zinc oxide (ZnO) grown by low pressure chemical vapor deposition (LPCVD) technique possesses a rough surface that induces an efficient light scattering in thin film silicon (TF Si) solar cells, which makes this TCO an ideal candidate for contacting such devices. IMT-EPFL has developed an in-house LPCVD process for the deposition of nanotextured boron doped ZnO films used as rough TCO for TF Si solar cells. This paper is a general review and synthesis of the study of the electrical, optical and structural properties of the ZnO:B that has been performed at IMT-EPFL. The influence of the free carrier absorption and the grain size on the electrical and optical properties of LPCVD ZnO:B is discussed. Transport mechanisms at grain boundaries are studied. It is seen that high doping of the ZnO grains facilitates the tunnelling of the electrons through potential barriers that are located at the grain boundaries. Therefore, even if these potential barriers increase after an exposition of the film to a humid atmosphere, the heavily doped LPCVD ZnO:B layers show a remarkable stable conductivity. However, the introduction of diborane in the CVD reaction induces also a degradation of the intra-grain mobility and increases over-proportionally the optical absorption of the ZnO:B films. Hence, the necessity to finely tune the doping level of LPCVD ZnO:B films is highlighted. Finally, the next challenges to push further the optimization of LPCVD ZnO:B films for thin film silicon solar cells are discussed, as well as some remarkable record cell results achieved with LPCVD ZnO:B as front electrode.

  10. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  11. Effect of Grain Boundaries on the Performance of Thin-Film-Based Polycrystalline Silicon Solar Cells: A Numerical Modeling

    Science.gov (United States)

    Chhetri, Nikita; Chatterjee, Somenath

    2018-01-01

    Solar cells/photovoltaic, a renewable energy source, is appraised to be the most effective alternative to the conventional electrical energy generator. A cost-effective alternative of crystalline wafer-based solar cell is thin-film polycrystalline-based solar cell. This paper reports the numerical analysis of dependency of the solar cell parameters (i.e., efficiency, fill factor, open-circuit voltage and short-circuit current density) on grain size for thin-film-based polycrystalline silicon (Si) solar cells. A minority carrier lifetime model is proposed to do a correlation between the grains, grain boundaries and lifetime for thin-film-based polycrystalline Si solar cells in MATLAB environment. As observed, the increment in the grain size diameter results in increase in minority carrier lifetime in polycrystalline Si thin film. A non-equivalent series resistance double-diode model is used to find the dark as well as light (AM1.5) current-voltage (I-V) characteristics for thin-film-based polycrystalline Si solar cells. To optimize the effectiveness of the proposed model, a successive approximation method is used and the corresponding fitting parameters are obtained. The model is validated with the experimentally obtained results reported elsewhere. The experimentally reported solar cell parameters can be found using the proposed model described here.

  12. Fatigue characteristics of polycrystalline silicon thin-film membrane and its dependence on humidity

    International Nuclear Information System (INIS)

    Tanemura, Tomoki; Yamashita, Shuichi; Wado, Hiroyuki; Takeuchi, Yukihiro; Tsuchiya, Toshiyuki; Tabata, Osamu

    2013-01-01

    This paper describes fatigue characteristics of a polycrystalline silicon thin-film membrane under different humidity evaluated by out-of-plane resonant vibration. The membrane, without the surface of sidewalls by patterning of photolithography and etching process, was applied to evaluate fatigue characteristics precisely against the changes in the surrounding humidity owing to narrower deviation in the fatigue lifetime. The membrane has 16 mm square-shaped multilayered films consisting of a 250 or 500 nm thick polysilicon film on silicon dioxide and silicon nitride underlying layers. A circular weight of 12 mm in diameter was placed at the center of the membrane to control the resonant frequency. Stress on the polysilicon film was generated by deforming the membrane oscillating the weight in the out-of-plane direction. The polysilicon film was fractured by fatigue damage accumulation under cyclic stress. The lifetime of the polysilicon membrane extended with lower relative humidity, especially at 5%RH. The results of the fatigue tests were well formulated with Weibull's statistics and Paris’ law. The dependence of fatigue characteristics on humidity has been quantitatively revealed for the first time. The crack growth rate indicated by the fatigue index decreased with the reduction in humidity, whereas the deviation of strength represented by the Weibull modulus was nearly constant against humidity. (paper)

  13. Disilane as a growth rate catalyst of plasma deposited microcrystalline silicon thin films

    Science.gov (United States)

    Dimitrakellis, P.; Kalampounias, A. G.; Spiliopoulos, N.; Amanatides, E.; Mataras, D.; Lahootun, V.; Coeuret, F.; Madec, A.

    2016-07-01

    The effect of small disilane addition on the gas phase properties of silane-hydrogen plasmas and the microcrystalline silicon thin films growth is presented. The investigation was conducted in the high pressure regime and for constant power dissipation in the discharge with the support of plasma diagnostics, thin film studies and calculations of discharge microscopic parameters and gas dissociation rates. The experimental data and the calculations show a strong effect of disilane on the electrical properties of the discharge in the pressure window from 2 to 3 Torr that is followed by significant raise of the electron number density and the drop of the sheaths electric field intensity. Deposition rate measurements show an important four to six times increase even for disilane mole fractions as low as 0.3 %. The deposition rate enhancement was followed by a drop of the material crystalline volume fraction but films with crystallinity above 40 % were deposited with different combinations of total gas pressure, disilane and silane molar ratios. The enhancement was partly explained by the increase of the electron impact dissociation rate of silane which rises by 40% even for 0.1% disilane mole fraction. The calculations of the gas usage, the dissociation and the deposition efficiencies show that the beneficial effect on the growth rate is not just the result of the increase of Si-containing molecules density but significant changes on the species participating to the deposition and the mechanism of the film growth are caused by the disilane addition. The enhanced participation of the highly sticking to the surface radical such as disilylene, which is the main product of disilane dissociation, was considered as the most probable reason for the significant raise of the deposition efficiency. The catalytic effect of such type of radical on the surface reactivity of species with lower sticking probability is further discussed, while it is also used to explain the restricted

  14. Disilane as a growth rate catalyst of plasma deposited microcrystalline silicon thin films

    International Nuclear Information System (INIS)

    Dimitrakellis, P.; Amanatides, E.; Mataras, D.; Kalampounias, A. G.; Spiliopoulos, N.; Lahootun, V.; Coeuret, F.; Madec, A.

    2016-01-01

    The effect of small disilane addition on the gas phase properties of silane-hydrogen plasmas and the microcrystalline silicon thin films growth is presented. The investigation was conducted in the high pressure regime and for constant power dissipation in the discharge with the support of plasma diagnostics, thin film studies and calculations of discharge microscopic parameters and gas dissociation rates. The experimental data and the calculations show a strong effect of disilane on the electrical properties of the discharge in the pressure window from 2 to 3 Torr that is followed by significant raise of the electron number density and the drop of the sheaths electric field intensity. Deposition rate measurements show an important four to six times increase even for disilane mole fractions as low as 0.3 %. The deposition rate enhancement was followed by a drop of the material crystalline volume fraction but films with crystallinity above 40 % were deposited with different combinations of total gas pressure, disilane and silane molar ratios. The enhancement was partly explained by the increase of the electron impact dissociation rate of silane which rises by 40% even for 0.1% disilane mole fraction. The calculations of the gas usage, the dissociation and the deposition efficiencies show that the beneficial effect on the growth rate is not just the result of the increase of Si-containing molecules density but significant changes on the species participating to the deposition and the mechanism of the film growth are caused by the disilane addition. The enhanced participation of the highly sticking to the surface radical such as disilylene, which is the main product of disilane dissociation, was considered as the most probable reason for the significant raise of the deposition efficiency. The catalytic effect of such type of radical on the surface reactivity of species with lower sticking probability is further discussed, while it is also used to explain the restricted

  15. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  16. Chemical and structural properties of polymorphous silicon thin films grown from dichlorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Macías, C.; Monroy, B.M.; Huerta, L.; Canseco-Martínez, M.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico); Picquart, M. [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, A.P. 55-534, 09340 México, D.F. (Mexico); Santoyo-Salazar, J. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, C.P. 07000 México, D.F. (Mexico); Sánchez, M.F. García [Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. I.P.N. 2580, Gustavo A. Madero, 07340 México .D.F. (Mexico); Santana, G., E-mail: gsantana@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico)

    2013-11-15

    We have examined the effects of hydrogen dilution (R{sub H}) and deposition pressure on the morphological, structural and chemical properties of polymorphous silicon thin films (pm-Si:H), using dichlorosilane as silicon precursor in the plasma enhanced chemical vapor deposition (PECVD) process. The use of silicon chlorinated precursors enhances the crystallization process in as grown pm-Si:H samples, obtaining crystalline fractions from Raman spectra in the range of 65–95%. Atomic Force Microscopy results show the morphological differences obtained when the chlorine chemistry dominates the growth process and when the plasma–surface interactions become more prominent. Augmenting R{sub H} causes a considerable reduction in both roughness and topography, demonstrating an enhancement of ion bombardment and attack of the growing surface. X-ray Photoelectron Spectroscopy results show that, after ambient exposure, there is low concentration of oxygen inside the films grown at low R{sub H}, present in the form of Si-O, which can be considered as structural defects. Instead, oxidation increases with deposition pressure and dilution, along with film porosity, generating a secondary SiO{sub x} phase. For higher pressure and dilution, the amount of chlorine incorporated to the film decreases congruently with HCl chlorine extraction processes involving atomic hydrogen interactions with the surface. In all cases, weak silicon hydride (Si-H) bonds were not detected by infrared spectroscopy, while bonding configurations associated to the silicon nanocrystal surface were clearly observed. Since these films are generally used in photovoltaic devices, analyzing their chemical and structural properties such as oxygen incorporation to the films, along with chlorine and hydrogen, is fundamental in order to understand and optimize their electrical and optical properties.

  17. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    Science.gov (United States)

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  18. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    Science.gov (United States)

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  19. Grafting of Ring-Opened Cyclopropylamine Thin Films on Silicon (100) Hydride via UV Photoionization.

    Science.gov (United States)

    Tung, J; Ching, J Y; Ng, Y M; Tew, L S; Khung, Y L

    2017-09-13

    The grafting of cyclopropylamine onto a silicon (100) hydride (Si-H) surface via a ring-opening mechanism using UV photoionization is described here. In brief, radicals generated from the Si-H surface upon UV irradiation were found to behave in classical hydrogen abstraction theory manner by which the distal amine group was first hydrogen abstracted and the radical propagated down to the cyclopropane moiety. This subsequently liberated the strained bonds of the cyclopropane group and initiated the surface grafting process, producing a thin film approximately 10-15 nm in height. Contact angle measurements also showed that such photoionization irradiation had yielded an extremely hydrophilic surface (∼21.3°) and X-ray photoelectron spectroscopy also confirmed the coupling was through the Si-C linkage. However, when the surface underwent high-temperature hydrosilylation (>160 °C), the reaction proceeded predominantly through the nucleophilic NH 2 group to form a Si-N linkage to the surface. This rendered the surface hydrophobic and hence suggested that the Si-H homolysis model may not be the main process. To the best of our knowledge, this was the first attempt reported in the literature to use photoionization to directly graft cyclopropylamine onto a silicon surface and in due course generate a highly rich NH-terminated surface that was found to be highly bioactive in promoting cell viability on the basis of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide studies.

  20. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yun [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)], E-mail: seungyun@etri.re.kr; Yoon, Sung-Min; Choi, Kyu-Jeong; Lee, Nam-Yeal; Park, Young-Sam; Ryu, Sang-Ouk; Yu, Byoung-Gon; Kim, Sang-Hoon; Lee, Sang-Heung [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2007-10-31

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures.

  1. The properties of nanocomposite aluminium-silicon based thin films deposited by filtered arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bendavid, A.; Martin, P.J.; Takikawa, H

    2002-12-02

    Thin films of aluminium silicon oxynitride have been deposited on conducting (100) silicon wafers by filtered arc deposition (FAD) under nitrogen and/or oxygen gas flow. The influence of the N{sub 2}/O{sub 2} flow ratio on the crystal structure, optical and mechanical properties has been investigated. The results of X-ray diffraction showed that the film structure comprised of an AlN crystallite with amorphous Si{sub 3}N{sub 4} and SiO{sub x}. The optical properties over the range of 350-800 nm were measured using spectroscopic ellipsometry and found to be strongly dependent on N{sub 2}/O{sub 2} flow ratio. The refractive index values of the films were measured to be in the range of 2.2-1.64 at a wavelength of 670 nm for oxygen flow range of 0-100%. The hardness of the films was found to be strongly dependent on the oxygen content in the film. The hardness range of the films was between 10 and 22 GPa and for the stress between 0.3 and 1.2 GPa.

  2. Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Song Dengyuan; Inns, Daniel; Straub, Axel; Terry, Mason L.; Campbell, Patrick; Aberle, Armin G.

    2006-01-01

    Polycrystalline silicon (poly-Si) thin-films are made on planar and textured glass substrates by solid phase crystallization (SPC) of in situ doped amorphous silicon (a-Si) deposited by electron-beam evaporation. These materials are referred to by us as EVA materials (SPC of evaporated a-Si). The properties of EVA poly-Si films are characterised by Raman microscopy, transmission electron microscopy, and X-ray diffraction. A narrow and symmetrical Raman peak at a wave number of about 520 cm -1 is observed for all samples, showing that the films are fully crystallized. X-ray diffraction (XRD) reveals that the films are preferentially (111)-oriented. Furthermore, the full width at half maximum of the dominant (111) XRD peaks indicates that the structural quality of the films is affected by the a-Si deposition temperature and the surface morphology of the glass substrates. A-Si deposition at 200 instead of 400 deg. C leads to an enhanced poly-Si grain size. On textured glass, the addition of a SiN barrier layer between the glass and the Si improves the poly-Si material quality. No such effect occurs on planar glass. Mesa-type solar cells are made from these EVA films on planar and textured glass. A strong correlation between the cells' current-voltage characteristics and their crystalline material quality is observed

  3. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  4. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Ali, H.

    2016-08-15

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  5. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  6. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    International Nuclear Information System (INIS)

    Yilbas, B.S.; Ali, H.

    2016-01-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  7. Surface and interface characterization of thin-film silicon solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Dominic

    2013-02-21

    The properties of Si thin films for solar cells, the interaction with different substrates and the influence of dopants are examined with synchrotron based x-ray spectroscopy - primarily X-ray emission spectroscopy (XES) and hard X-ray photoelectron spectroscopy (HAXPES). The films are studied as-deposited (i.e., amorphous, a-Si) and after conversion into polycrystalline (poly-Si) employing solid phase crystallization (SPC). Si L{sub 2,3} XES spectra of thin-film Si samples can be described by a superposition of a-Si and monocrystalline Si-wafer (c-Si) reference spectra. According to a quantification based on that superposition principle, none of the investigated samples are completely crystallized - a measurable a-Si component always remains (5-20 %) regardless of deposition and treatment conditions. Based on additional results from electron back scattering diffraction different models are developed which may explain this finding. According to these models, the remnant a-Si component can be attributed to amorphous/disordered material at the grain boundaries. Using one of these models, the thickness of this grain-surrounding material s could be approximated to be (1.5 {+-} 0.5) nm. Further investigations of the SPC process reveal a faster crystallization for boron-doped samples, and a slower crystallization for phosphorous-doped samples, when compared to the crystallization of undoped a Si:H thin films. The peculiarities of B K XES spectra (and observed changes upon SPC) indicate that boron could act as a nucleation center promoting crystallization. Si L{sub 2,3} XES spectra of a-Si:H and P-doped poly-Si exhibit spectral features above the valence band maximum at 100 eV that could be attributed to a-Si defect states and n{sup +}-dopant states, respectively. The SPC crystallization velocity of Si thin films on ZnO:Al/glass is found to be faster than that on SiNx/glass substrate. Multiple indications for oxidization at the poly-Si/ZnO:Al interface are found based on

  8. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    Science.gov (United States)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  9. Structural, optical and electrical properties of quasi-monocrystalline silicon thin films obtained by rapid thermal annealing of porous silicon layers

    International Nuclear Information System (INIS)

    Hajji, M.; Khardani, M.; Khedher, N.; Rahmouni, H.; Bessais, B.; Ezzaouia, H.; Bouchriha, H.

    2006-01-01

    Quasi-mono-crystalline silicon (QMS) layers have a top surface like crystalline silicon with small voids in the body. Such layers are reported to have a higher absorption coefficient than crystalline silicon at the interesting range of the solar spectrum for photovoltaic application. In this work we present a study of the structural, optical and electrical properties of quasimonocrystalline silicon thin films. Quasimonocrystalline silicon thin films were obtained from porous silicon, which has been annealed at a temperature ranging from 950 to 1050 deg. C under H 2 atmosphere for different annealing durations. The porous layers were prepared by conventional electrochemical anodization using a double tank cell and a HF / Ethanol electrolyte. Porous silicon is formed on highly doped p + -type silicon substrates that enable us to prevent back contacts for the anodization. Atomic Force Microscope (AFM) was used to study the morphological quality of the prepared layers. Optical properties were extracted from transmission and reflectivity spectra. Dark I-V characteristics were used to determine the electrical conductivity of quasimonocrystalline silicon thin films. Results show an important improvement of the absorption coefficient of the material and electrical conductivity reaches a value of twenty orders higher than that of starting mesoporous silicon

  10. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    Science.gov (United States)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  11. On the effects of hydrogenation of thin film polycrystalline silicon: A key factor to improve heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Qiu, Y.; Kunz, O.; Fejfar, Antonín; Ledinský, Martin; Teik Chan, B.; Gordon, I.; Van Gestel, D.; Venkatachalm, S.; Egan, R.

    2014-01-01

    Roč. 122, MAR (2014), s. 31-39 ISSN 0927-0248 R&D Projects: GA MŠk 7E10061; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional support: RVO:68378271 Keywords : silicon * thin films * polycrystalline * hydrogenation * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.337, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927024813006016

  12. High-Performance and Omnidirectional Thin-Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design.

    Science.gov (United States)

    Yu, Dongliang; Yin, Min; Lu, Linfeng; Zhang, Hanzhong; Chen, Xiaoyuan; Zhu, Xufei; Che, Jianfei; Li, Dongdong

    2015-11-01

    High-performance thin-film hydrogenated amorphous silicon solar cells are achieved by combining macroscale 3D tubular substrates and nanoscaled 3D cone-like antireflective films. The tubular geometry delivers a series of advantages for large-scale deployment of photovoltaics, such as omnidirectional performance, easier encapsulation, decreased wind resistance, and easy integration with a second device inside the glass tube. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  14. Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications.

    Science.gov (United States)

    Abdolvand, Reza; Lavasani, Hossein M; Ho, Gavin K; Ayazi, Farrokh

    2008-12-01

    This paper studies the application of lateral bulk acoustic thin-film piezoelectric-on-substrate (TPoS) resonators in high-frequency reference oscillators. Low-motional-impedance TPoS resonators are designed and fabricated in 2 classes--high-order and coupled-array. Devices of each class are used to assemble reference oscillators and the performance characteristics of the oscillators are measured and discussed. Since the motional impedance of these devices is small, the transimpedance amplifier (TIA) in the oscillator loop can be reduced to a single transistor and 3 resistors, a format that is very power-efficient. The lowest reported power consumption is approximately 350 microW for an oscillator operating at approximately 106 MHz. A passive temperature compensation method is also utilized by including the buried oxide layer of the silicon-on-insulator (SOI) substrate in the structural resonant body of the device, and a very small (-2.4 ppm/ degrees C) temperature coefficient of frequency is obtained for an 82-MHz oscillator.

  15. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage

    Science.gov (United States)

    Ali, Faizan; Liu, Xiaohua; Zhou, Dayu; Yang, Xirui; Xu, Jin; Schenk, Tony; Müller, Johannes; Schroeder, Uwe; Cao, Fei; Dong, Xianlin

    2017-10-01

    Motivated by the development of ultracompact electronic devices as miniaturized energy autonomous systems, great research efforts have been expended in recent years to develop various types of nano-structural energy storage components. The electrostatic capacitors characterized by high power density are competitive; however, their implementation in practical devices is limited by the low intrinsic energy storage density (ESD) of linear dielectrics like Al2O3. In this work, a detailed experimental investigation of energy storage properties is presented for 10 nm thick silicon-doped hafnium oxide anti-ferroelectric thin films. Owing to high field induced polarization and slim double hysteresis, an extremely large ESD value of 61.2 J/cm3 is achieved at 4.5 MV/cm with a high efficiency of ˜65%. In addition, the ESD and the efficiency exhibit robust thermal stability in 210-400 K temperature range and an excellent endurance up to 109 times of charge/discharge cycling at a very high electric field of 4.0 MV/cm. The superior energy storage performance together with mature technology of integration into 3-D arrays suggests great promise for this recently discovered anti-ferroelectric material to replace the currently adopted Al2O3 in fabrication of nano-structural supercapacitors.

  16. Internal friction study of microplasticity of aluminum thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Y.; Tanahashi, K.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-12-01

    Internal friction in aluminum thin films 0.2 to 2.0 {mu}m thick on silicon substrates has been investigated between 180 and 360 K as a function of strain amplitude by means of a free-decay method of flexural vibration. According to the constitutive equation, the internal friction in the film alone can be evaluated separately from the data on the film/substrate composite. The amplitude-dependent part of internal friction in aluminum films is found in the strain range approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction can be converted into the plastic strain as a function of the effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 in creases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of the microplastic deformation. At all temperatures examined, the microflow stress at a constant level of the plastic strain varies inversely with the film thickness, which qualitatively agrees with the variation in macroscopic yield stress. 36 refs., 7 figs.

  17. Dry-Transfer of Aligned Multiwalled Carbon Nanotubes for Flexible Transparent Thin Films

    Directory of Open Access Journals (Sweden)

    Matthew Cole

    2012-01-01

    Full Text Available Herein we present an inexpensive facile wet-chemistry-free approach to the transfer of chemical vapour-deposited multiwalled carbon nanotubes to flexible transparent polymer substrates in a single-step process. By controlling the nanotube length, we demonstrate accurate control over the electrical conductivity and optical transparency of the transferred thin films. Uniaxial strains of up to 140% induced only minor reductions in sample conductivity, opening up a number of applications in stretchable electronics. Nanotube alignment offers enhanced functionality for applications such as polarisation selective electrodes and flexible supercapacitor substrates. A capacitance of 17 F/g was determined for supercapacitors fabricated from the reported dry-transferred MWCNTs with the corresponding cyclic voltagrams showing a clear dependence on nanotube length.

  18. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  19. Enhancement of Heat and Mass Transfer in Mechanically Contstrained Ultra Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Drost; Jim Liburdy; Brian Paul; Richard Peterson

    2005-01-01

    Oregon State University (OSU) and the Pacific Northwest National Laboratory (PNNL) were funded by the U.S. Department of Energy to conduct research focused on resolving the key technical issues that limited the deployment of efficient and extremely compact microtechnology based heat actuated absorption heat pumps and gas absorbers. Success in demonstrating these technologies will reduce the main barriers to the deployment of a technology that can significantly reduce energy consumption in the building, automotive and industrial sectors while providing a technology that can improve our ability to sequester CO{sub 2}. The proposed research cost $939,477. $539,477 of the proposed amount funded research conducted at OSU while the balance ($400,000) was used at PNNL. The project lasted 42 months and started in April 2001. Recent developments at the Pacific Northwest National Laboratory and Oregon State University suggest that the performance of absorption and desorption systems can be significantly enhanced by the use of an ultra-thin film gas/liquid contactor. This device employs microtechnology-based structures to mechanically constrain the gas/liquid interface. This technology can be used to form very thin liquid films with a film thickness less then 100 microns while still allowing gas/liquid contact. When the resistance to mass transfer in gas desorption and absorption is dominated by diffusion in the liquid phase the use of extremely thin films (<100 microns) for desorption and absorption can radically reduce the size of a gas desorber or absorber. The development of compact absorbers and desorbers enables the deployment of small heat-actuated absorption heat pumps for distributed space heating and cooling applications, heat-actuated automotive air conditioning, manportable cooling, gas absorption units for the chemical process industry and the development of high capacity CO{sub 2} absorption devices for CO{sub 2} collection and sequestration. The energy

  20. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  1. The effect of energy and momentum transfer during magnetron sputter deposition of yttrium oxide thin films

    Science.gov (United States)

    Xia, Jinjiao; Liang, Wenping; Miao, Qiang; Depla, Diederik

    2018-05-01

    The influence of the ratio between the energy and the deposition flux, or the energy per arriving atom, on the growth of Y2O3 sputter deposited thin films has been studied. The energy per arriving atom has been varied by the adjustment of the discharge power, and/or the target-to-substrate distance. The relationship between the energy per arriving atom and the phase evolution, grain size, microstructure, packing density and residual stress was investigated in detail. At low energy per arriving atom, the films consist of the monoclinic B phase with a preferential (1 1 1) orientation. A minority cubic C phase appears at higher energy per arriving atom. A study of the thin film cross sections showed for all films straight columns throughout the thickness, typically for a zone II microstructure. The intrinsic stress is compressive, and increases with increasing energy per atom. The same trend is observed for the film density. Simulations show that the momentum transfer per arriving atom also scales with the energy per arriving atom. Hence, the interpretation of the observed trends as a function of the energy per arriving atom must be treated with care.

  2. Fabrication and magnetization measurement of Ni thin films on silicon substrate by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)], E-mail: dxzhao2000@yahoo.com.cn; Shen Dezhen; Zhang Jiying; Li Binghui; Lu Youming; Fan Xiwu [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)

    2008-02-29

    Ni thin films were electrodeposited on n-Si (100) substrate from the electrolytes containing Ni(CH{sub 3}COO){sub 2} and CH{sub 3}COONH{sub 4} at room temperature. The scanning electron microscope images of the films reveals the uniform distribution of the nickel all over the substrate surface, which illustrates that the fine Ni films on large scales could be obtained through the method of electrodeposition. Vibrating sample magnetometer measurement with the applied field parallel to the surface shows obvious hysteresis loops of the magnetic thin films. The morphology and magnetism of the Ni thin films evolves with the deposition time increasing. The effect of deposition conditions on the properties of the Ni thin films is investigated.

  3. Laser Welding of Silicon Foils for Thin-Film Solar Cell Manufacturing

    OpenAIRE

    Heßmann, Maik

    2014-01-01

    Thin-film solar module manufacturing is one of the most promising recent developments in photovoltaic research and has the potential to reduce production costs. As the necessity for competitive prices on the world market increases and manufacturers endeavor to bring down the cost of solar modules, thin-film technology is becoming more and more attractive. In this work a special technique was investigated which makes solar cell manufacturing more compatible with an industrial roll-to-roll proc...

  4. Effect of annealing temperature on optical and electrical properties of metallophthalocyanine thin films deposited on silicon substrate

    Directory of Open Access Journals (Sweden)

    Skonieczny R.

    2016-09-01

    Full Text Available The cobalt phthalocyanine (CoPc thin films (300 nm thick deposited on n-type silicon substrate have been studied using micro-Raman spectroscopy, atomic force spectroscopy (AFM and I-V measurement. The CoPc thin layers have been deposited at room temperature by the quasi-molecular beam evaporation technique. The micro-Raman spectra of CoPc thin films have been recorded in the spectral range of 1000 cm-1 to 1900 cm-1 using 488 nm excitation wavelength. Moreover, using surface Raman mapping it was possible to obtain information about polymorphic forms distribution (before and after annealing of metallophthalocyanine (α and β form from polarized Raman spectra. The I-V characteristics of the Au/CoPc/n-Si/Al Schottky barrier were also investigated. The obtained results showed that influence of the annealing process plays a crucial role in the ordering and electrical conductivity of the molecular structure of CoPc thin films deposited on n-type silicon substrate.

  5. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Hilali, Mohamed M; Banerjee, Sanjay; Sreenivasan, S V; Yang Shuqiang; Miller, Mike; Xu, Frank

    2012-01-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent. (paper)

  6. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    Science.gov (United States)

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  7. Non-classical polycrystalline silicon thin-film transistor with embedded block-oxide for suppressing the short channel effect

    International Nuclear Information System (INIS)

    Lin, Jyi-Tsong; Huang, Kuo-Dong; Hu, Shu-Fen

    2008-01-01

    In this paper, a polycrystalline silicon (polysilicon) thin-film transistor with a block oxide enclosing body, BTFT, is fabricated and investigated. By utilizing the block-oxide structure of thin-film transistors, the BTFT is shown to suppress the short channel effect. This proposed structure is formed by burying self-aligned oxide spacers along the sidewalls of the source and drain junctions, which reduces the P–N junction area, thereby reducing the junction capacitance and leakage current. Measurements demonstrate that the BTFT eliminates the punch-through effect even down to gate lengths of 1.5 µm, whereas the conventional TFT suffers serious short channel effects at this gate length

  8. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  9. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  10. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  11. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  12. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: alasbahibandar@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2013-10-15

    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  13. Thin film silicon on silicon nitride for radiation hardened dielectrically isolated MISFET's

    International Nuclear Information System (INIS)

    Neamen, D.; Shedd, W.; Buchanan, B.

    1975-01-01

    The permanent ionizing radiation effects resulting from charge trapping in a silicon nitride isolation dielectric have been determined for a total ionizing dose up to 10 7 rads (Si). Junction FET's, whose active channel region is directly adjacent to the silicon-silicon nitride interface, were used to measure the effects of the radiation induced charge trapping in the Si 3 N 4 isolation dielectric. The JFET saturation current and channel conductance versus junction gate voltage and substrate voltage were characterized as a function of the total ionizing radiation dose. The experimental results on the Si 3 N 4 are compared to results on similar devices with SiO 2 dielectric isolation. The ramifications of using the silicon nitride for fabricating radiation hardened dielectrically isolated MIS devices are discussed

  14. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    Science.gov (United States)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  15. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  16. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  17. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Shih, Huan-Yu; Chen, Miin-Jang; Lin, Ming-Chih; Chen, Liang-Yih

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH 3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH 3 . The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate. (paper)

  18. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  19. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    Science.gov (United States)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  20. Device and material characterization and analytic modeling of amorphous silicon thin film transistors

    Science.gov (United States)

    Slade, Holly Claudia

    Hydrogenated amorphous silicon thin film transistors (TFTs) are now well-established as switching elements for a variety of applications in the lucrative electronics market, such as active matrix liquid crystal displays, two-dimensional imagers, and position-sensitive radiation detectors. These applications necessitate the development of accurate characterization and simulation tools. The main goal of this work is the development of a semi- empirical, analytical model for the DC and AC operation of an amorphous silicon TFT for use in a manufacturing facility to improve yield and maintain process control. The model is physically-based, in order that the parameters scale with gate length and can be easily related back to the material and device properties. To accomplish this, extensive experimental data and 2D simulations are used to observe and quantify non- crystalline effects in the TFTs. In particular, due to the disorder in the amorphous network, localized energy states exist throughout the band gap and affect all regimes of TFT operation. These localized states trap most of the free charge, causing a gate-bias-dependent field effect mobility above threshold, a power-law dependence of the current on gate bias below threshold, very low leakage currents, and severe frequency dispersion of the TFT gate capacitance. Additional investigations of TFT instabilities reveal the importance of changes in the density of states and/or back channel conduction due to bias and thermal stress. In the above threshold regime, the model is similar to the crystalline MOSFET model, considering the drift component of free charge. This approach uses the field effect mobility to take into account the trap states and must utilize the correct definition of threshold voltage. In the below threshold regime, the density of deep states is taken into account. The leakage current is modeled empirically, and the parameters are temperature dependent to 150oC. The capacitance of the TFT can be

  1. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    International Nuclear Information System (INIS)

    Chen Sihai; Ma Hong; Wang Shuangbao; Shen Nan; Xiao Jing; Zhou Hao; Zhao Xiaomei; Li Yi; Yi Xinjian

    2006-01-01

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO 2 buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO 2 buffer layers is suitable for uncooled focal plane arrays applications

  2. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  3. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  4. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  5. Direct-current substrate bias effects on amorphous silicon sputter-deposited films for thin film transistor fabrication

    International Nuclear Information System (INIS)

    Jun, Seung-Ik; Rack, Philip D.; McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2005-01-01

    The effect that direct current (dc) substrate bias has on radio frequency-sputter-deposited amorphous silicon (a-Si) films has been investigated. The substrate bias produces a denser a-Si film with fewer defects compared to unbiased films. The reduced number of defects results in a higher resistivity because defect-mediated conduction paths are reduced. Thin film transistors (TFTs) that were completely sputter deposited were fabricated and characterized. The TFT with the biased a-Si film showed lower leakage (off-state) current, higher on/off current ratio, and higher transconductance (field effect mobility) than the TFT with the unbiased a-Si film

  6. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......O3 can be bonded to. Preliminary tests demonstrating a well-defined nanochannel system with-100 nm high channels successfully bonded and tests against leaks using optical fluorescence technique and transmission electron microscopy (TEM) characterization of liquid samples are also reported. Moreover...

  7. An alternative method to predict the S-shaped curve for logistic characteristics of phonon transport in silicon thin film

    International Nuclear Information System (INIS)

    Awad, M.M.

    2014-01-01

    The S-shaped curve was observed by Yilbas and Bin Mansoor (2013). In this study, an alternative method to predict the S-shaped curve for logistic characteristics of phonon transport in silicon thin film is presented by using an analytical prediction method. This analytical prediction method was introduced by Bejan and Lorente in 2011 and 2012. The Bejan and Lorente method is based on two-mechanism flow of fast “invasion” by convection and slow “consolidation” by diffusion.

  8. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  9. Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells.

    Science.gov (United States)

    Peters, M; Battaglia, C; Forberich, K; Bläsi, B; Sahraei, N; Aberle, A G

    2012-12-31

    Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized by an atomic force microscope. This structure is used for light trapping in thin-film microcrystalline silicon solar cells. Very good agreement is found in a first comparison between simulation and experimental results. The geometrical parameters of the stochastic structure are varied and it is found that the light trapping mainly depends on the aspect ratio (length/height). Furthermore, the maximum possible light trapping with this kind of stochastic structure geometry is investigated. In a second step, the stochastic structure is analysed and typical geometrical features are extracted, which are then arranged in a periodic structure. Investigating the light trapping properties of the periodic structure, we find that it performs very similar to the stochastic structure, in agreement with reports in literature. From the obtained results we conclude that a potential advantage of periodic structures for PV applications will very likely not be found in the absorption enhancement in the solar cell material. However, uniformity and higher definition in production of these structures can lead to potential improvements concerning electrical characteristics and parasitic absorption, e.g. in a back reflector.

  10. Thermal Stability of Copper-Aluminum Alloy Thin Films for Barrierless Copper Metallization on Silicon Substrate

    Science.gov (United States)

    Wang, C. P.; Dai, T.; Lu, Y.; Shi, Z.; Ruan, J. J.; Guo, Y. H.; Liu, X. J.

    2017-08-01

    Copper thin films with thickness of about 500 nm doped with different aluminum concentrations have been prepared by magnetron sputtering on Si substrate and their crystal structure, microstructure, and electrical resistivity after annealing at various temperatures (200°C to 600°C) for 1 h or at 400°C for different durations (1 h to 11 h) investigated by grazing-incidence x-ray diffraction (GIXRD) analysis, scanning electron microscopy (SEM), and four-point probe (FPP) measurements. Cu-1.8Al alloy thin film exhibited good thermal stability and low electrical resistivity (˜5.0 μΩ cm) after annealing at 500°C for 1 h or 400°C for 7 h. No copper silicide was observed at the Cu-Al/Si interface by GIXRD analysis or SEM for this sample. This result indicates that doping Cu thin film with small amounts of Al can achieve high thermal stability and low electrical resistivity, suggesting that Cu-1.8Al alloy thin film could be used for barrierless Cu metallization on Si substrate.

  11. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    International Nuclear Information System (INIS)

    Volpi, F.; Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-01-01

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, −2.8 to 1.5 GPa, and 2.0 to 2.8 g/cm 3 , respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen + porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly

  12. Photonic Structures for Light Trapping in Thin Film Silicon Solar Cells: Design and Experiment

    Directory of Open Access Journals (Sweden)

    Yi Ding

    2017-12-01

    Full Text Available One of the foremost challenges in designing thin-film silicon solar cells (TFSC is devising efficient light-trapping schemes due to the short optical path length imposed by the thin absorber thickness. The strategy relies on a combination of a high-performance back reflector and an optimized texture surface, which are commonly used to reflect and scatter light effectively within the absorption layer, respectively. In this paper, highly promising light-trapping structures based on a photonic crystal (PC for TFSCs were investigated via simulation and experiment. Firstly, a highly-reflective one-dimensional photonic crystal (1D-PC was designed and fabricated. Then, two types of 1D-PC-based back reflectors (BRs were proposed: Flat 1D-PC with random-textured aluminum-doped zinc oxide (AZO or random-textured 1D-PC with AZO. These two newly-designed BRs demonstrated not only high reflectivity and sufficient conductivity, but also a strong light scattering property, which made them efficient candidates as the electrical contact and back reflector since the intrinsic losses due to the surface plasmon modes of the rough metal BRs can be avoided. Secondly, conical two-dimensional photonic crystal (2D-PC-based BRs were investigated and optimized for amorphous a-SiGe:H solar cells. The maximal absorption value can be obtained with an aspect ratio of 1/2 and a period of 0.75 µm. To improve the full-spectral optical properties of solar cells, a periodically-modulated PC back reflector was proposed and experimentally demonstrated in the a-SiGe:H solar cell. This periodically-modulated PC back reflector, also called the quasi-crystal structure (QCS, consists of a large periodic conical PC and a randomly-textured Ag layer with a feature size of 500–1000 nm. The large periodic conical PC enables conformal growth of the layer, while the small feature size of Ag can further enhance the light scattering. In summary, a comprehensive study of the design, simulation

  13. Effects of substrate temperature on structural and electrical properties of SiO2-matrix boron-doped silicon nanocrystal thin films

    International Nuclear Information System (INIS)

    Huang, Junjun; Zeng, Yuheng; Tan, Ruiqin; Wang, Weiyan; Yang, Ye; Dai, Ning; Song, Weijie

    2013-01-01

    In this work, silicon-rich SiO 2 (SRSO) thin films were deposited at different substrate temperatures (T s ) and then annealed by rapid thermal annealing to form SiO 2 -matrix boron-doped silicon-nanocrystals (Si-NCs). The effects of T s on the micro-structure and electrical properties of the SiO 2 -matrix boron-doped Si-NC thin films were investigated using Raman spectroscopy and Hall measurements. Results showed that the crystalline fraction and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films both increased significantly when the T s was increased from room temperature to 373 K. When the T s was further increased from 373 K to 676 K, the crystalline fraction of 1373 K-annealed thin films decreased from 52.2% to 38.1%, and the dark conductivity reduced from 8 × 10 −3 S/cm to 5.5 × 10 −5 S/cm. The changes in micro-structure and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films were most possibly due to the different amount of Si-O 4 bond in the as-deposited SRSO thin films. Our work indicated that there was an optimal T s , which could significantly increase the crystallization and conductivity of Si-NC thin films. Also, it was illumined that the low-resistivity SiO 2 -matrix boron-doped Si-NC thin films can be achieved under the optimal substrate temperatures, T s .

  14. Microscopic hole-transfer efficiency in organic thin-film transistors studied with charge-modulation spectroscopy

    OpenAIRE

    Miyata, Kiyoshi; Tanaka, Shunsuke; Ishino, Yuuta; Watanabe, Kazuya; Uemura, Takafumi; Takeya, Jun; Sugimoto, Toshiki; Matsumoto, Yoshiyasu

    2015-01-01

    While the microscopic transfer properties of carriers are of primary importance for carrier transport of organic semiconductors, the mesoscopic features including the morphologies of grains and the structure of grain boundaries limit the overall carrier transport particularly in polycrystalline organic thin films. Thus the conventional evaluation methods of carrier mobility that rely on macroscopic properties such as I−V curves of devices are not capable to determine carrier transfer probabil...

  15. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    Science.gov (United States)

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir; Tischler, Jonathan R.; Tisdale, William A.; Walker, Brian J.

    2017-12-12

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  16. Thin-film solar cells

    International Nuclear Information System (INIS)

    Aberle, Armin G.

    2009-01-01

    The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films ('micromorph cells'). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.

  17. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  18. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  19. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  20. Cost reduction by using micro-fingers in thin film silicon modules

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Bosman, J.; Loffler, J.; Budel, T. [ECN Solar Energy, Petten (Netherlands)

    2013-06-15

    A finite element electrical model is described that can be used to calculate the performance of monolithic thin film photovoltaic modules. The model is suitable for all type of thin film modules, like e.g. p-i-n a-Si:H, CIGS and polymer based modules and it includes losses due to interconnection. Using this model a parameter study is performed for a-Si:H cells with the aim to reduce metal consumption in the cell and interconnection. It is shown that a reduction in metal consumption by a factor 1.3 can be achieved with only marginal loss in performance if short cell are used with very short fingers.

  1. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    International Nuclear Information System (INIS)

    Ray, Sekhar C.; Pong, W.F.; Papakonstantinou, P.

    2016-01-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp"3 network to sp"2 as evidenced by an increase of the sp"2 cluster and I_D/I_G ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp"2 cluster and I_D/I_G ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp"3-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp"3 and sp"2 contents are estimated from C K-edge XANES and VB-PES measurements.

  2. The Rayleigh law in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Guan, Yan; Liu, Xiaohua; Zhou, Dayu; Xu, Jin; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    A wealth of studies have confirmed that the low-field hysteresis behaviour of ferroelectric bulk ceramics and thin films can be described using Rayleigh relations, and irreversible domain wall motion across the array of pining defects has been commonly accepted as the underlying micro-mechanism. Recently, HfO 2 thin films incorporated with various dopants were reported to show pronounced ferroelectricity, however, their microscopic domain structure remains unclear till now. In this work, the effects of the applied electric field amplitude, frequency and temperature on the sub-coercive polarization reversal properties were investigated for 10 nm thick Si-doped HfO 2 thin films. The applicability of the Rayleigh law to ultra-thin ferroelectric films was first confirmed, indicating the existence of a multi-domain structure. Since the grain size is about 20-30 nm, a direct observation of domain walls within the grains is rather challenging and this indirect method is a feasible approach to resolve the domain structure. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The Rayleigh law in silicon doped hafnium oxide ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Yan; Liu, Xiaohua [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Zhou, Dayu [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China); Xu, Jin [Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian (China); Cao, Fei; Dong, Xianlin [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); Mueller, Johannes [Fraunhofer IPMS-CNT, Dresden (Germany); Schenk, Tony; Schroeder, Uwe [NaMLab gGmbH/TU Dresden (Germany)

    2015-10-15

    A wealth of studies have confirmed that the low-field hysteresis behaviour of ferroelectric bulk ceramics and thin films can be described using Rayleigh relations, and irreversible domain wall motion across the array of pining defects has been commonly accepted as the underlying micro-mechanism. Recently, HfO{sub 2} thin films incorporated with various dopants were reported to show pronounced ferroelectricity, however, their microscopic domain structure remains unclear till now. In this work, the effects of the applied electric field amplitude, frequency and temperature on the sub-coercive polarization reversal properties were investigated for 10 nm thick Si-doped HfO{sub 2} thin films. The applicability of the Rayleigh law to ultra-thin ferroelectric films was first confirmed, indicating the existence of a multi-domain structure. Since the grain size is about 20-30 nm, a direct observation of domain walls within the grains is rather challenging and this indirect method is a feasible approach to resolve the domain structure. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sekhar C., E-mail: Raysc@unisa.ac.za [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg (South Africa); Pong, W.F. [Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan (China); Papakonstantinou, P. [Nanotechnology and Integrated Bio-Engineering Centre, University of Ulster, Shore Road, Newtownabbey BT37 0QB (United Kingdom)

    2016-07-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp{sup 3} network to sp{sup 2} as evidenced by an increase of the sp{sup 2} cluster and I{sub D}/I{sub G} ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp{sup 2} cluster and I{sub D}/I{sub G} ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp{sup 3}-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp{sup 3} and sp{sup 2} contents are estimated from C K-edge XANES and VB-PES measurements.

  5. Process Simulation and Characterization of Substrate Engineered Silicon Thin Film Transistor for Display Sensors and Large Area Electronics

    International Nuclear Information System (INIS)

    Hashmi, S M; Ahmed, S

    2013-01-01

    Design, simulation, fabrication and post-process qualification of substrate-engineered Thin Film Transistors (TFTs) are carried out to suggest an alternate manufacturing process step focused on display sensors and large area electronics applications. Damage created by ion implantation of Helium and Silicon ions into single-crystalline n-type silicon substrate provides an alternate route to create an amorphized region responsible for the fabrication of TFT structures with controllable and application-specific output parameters. The post-process qualification of starting material and full-cycle devices using Rutherford Backscattering Spectrometry (RBS) and Proton or Particle induced X-ray Emission (PIXE) techniques also provide an insight to optimize the process protocols as well as their applicability in the manufacturing cycle

  6. Tribology of silicon-thin-film-coated SiC ceramics and the effects of high energy ion irradiation

    International Nuclear Information System (INIS)

    Kohzaki, Masao; Noda, Shoji; Doi, Harua

    1990-01-01

    The sliding friction coefficients and specific wear of SiC ceramics coated with a silicon thin film (Si/SiC) with and without subsequent Ar + irradiation against a diamond pin were measured with a pin-on-disk tester at room temperature in laboratory air of approximately 50% relative humidity without oil lubrication for 40 h. The friction coefficient of Ar + -irradiated Si/SiC was about 0.05 with a normal load of 9.8 N and remained almost unchanged during the 40 h test, while that of SiC increased from 0.04 to 0.12 during the test. The silicon deposition also reduced the specific wear of SiC to less than one tenth of that of the uncoated SiC. Effectively no wear was detected in Si/SiC irradiated to doses of over 2x10 16 ions cm -2 . (orig.)

  7. Increasing the deposition rate of microcrystalline and amorphous silicon thin films for photovoltaic applications - Phase IV: 1997-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report on behalf of the Swiss Federal Office of Energy (SFOE) describes Phase IV of the project to test the feasibility and usefulness of Very High Frequency (VHF) plasma operation in large-area reactors suitable for the production of solar cell panels using thinly-deposited micro-crystalline silicon films. The report discusses the results of fast-deposition tests and trials using high-current DC arcs and VHF techniques to obtain deposition rates and film quality suitable for industrial processes for the production of thin-film solar cell panels. The effects of alternative plasma chemistry were also studied by adding silicon tetrafluoride to the standard silane/hydrogen mixtures. The report is concluded with calculations for optimum radio-frequency (RF) contact configuration for large area reactors with 1 m{sup 2} electrodes.

  8. Polar and Nonpolar Gallium Nitride and Zinc Oxide based thin film heterostructures Integrated with Sapphire and Silicon

    Science.gov (United States)

    Gupta, Pranav

    This dissertation work explores the understanding of the relaxation and integration of polar and non-polar of GaN and ZnO thin films with Sapphire and silicon substrates. Strain management and epitaxial analysis has been performed on wurtzitic GaN(0001) thin films grown on c-Sapphire and wurtzitic non-polar a-plane GaN(11-20) thin films grown on r-plane Sapphire (10-12) by remote plasma atomic nitrogen source assisted UHV Pulsed Laser Deposition process. It has been established that high-quality 2-dimensional c-axis GaN(0001) nucleation layers can be grown on c-Sapphire by PLD process at growth temperatures as low as ˜650°C. Whereas the c-axis GaN on c-sapphire has biaxially negative misfit, the crystalline anisotropy of the a-plane GaN films on r-Sapphire results in compressive and tensile misfits in the two major orthogonal directions. The measured strains have been analyzed in detail by X-ray, Raman spectroscopy and TEM. Strain relaxation in GaN(0001)/Sapphire thin film heterostructure has been explained by the principle of domain matched epitaxial growth in large planar misfit system and has been demonstrated by TEM study. An attempt has been made to qualitatively understand the minimization of free energy of the system from the strain perspective. Analysis has been presented to quantify the strain components responsible for the compressive strain observed in the GaN(0001) thin films on c-axis Sapphire substrates. It was also observed that gallium rich deposition conditions in PLD process lead to smoother nucleation layers because of higher ad-atom mobility of gallium. We demonstrate near strain relaxed epitaxial (0001) GaN thin films grown on (111) Si substrates using TiN as intermediate buffer layer by remote nitrogen plasma assisted UHV pulsed laser deposition (PLD). Because of large misfits between the TiN/GaN and TiN/Si systems the TIN buffer layer growth occurs via nucleation of interfacial dislocations under domain matching epitaxy paradigm. X-ray and

  9. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Simashkevich, Alexei, E-mail: alexeisimashkevich@hotmail.com [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Serban, Dormidont; Bruc, Leonid; Curmei, Nicolai [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Hinrichs, Volker [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rusu, Marin [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-07-01

    The vapor phase pyrolysis deposition method was developed for the preparation of indium tin oxide (ITO) thin films with thicknesses ranging between 300 and 400 nm with the sheet resistance of 10–15 Ω/sq. and the transparency in the visible region of the spectrum over 80%. The layers were deposited on the (100) surface of the n-type silicon wafers with the charge carriers concentration of ~ 10{sup 15} cm{sup −3}. The morphology of the ITO layers deposited on Si wafers with different surface morphologies, e.g., smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) was investigated. The as-deposited ITO thin films consist of crystalline columns with the height of 300–400 nm and the width of 50–100 nm. Photovoltaic parameters of mono- and bifacial solar cells of Cu/ITO/SiO{sub 2}/n–n{sup +} Si/Cu prepared on Si (100) wafers with different surface structures were studied and compared. A maximum efficiency of 15.8% was achieved on monofacial solar cell devices with the textured Si surface. Bifacial photovoltaic devices from 100 μm thick Si wafers with the smooth surface have demonstrated efficiencies of 13.0% at frontal illumination and 10% at rear illumination. - Highlights: • ITO thin films prepared by vapor phase pyrolysis on Si (100) wafers with a smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) surface. • Monofacial ITO/SiO2/n-n+Si solar cells with an efficiency of 15.8% prepared and bifacial PV devices with front- and rear-side efficiencies up to 13% demonstrated. • Comparative studies of photovoltaic properties of solar cells with different morphologies of the Si wafer surface presented.

  10. Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    Directory of Open Access Journals (Sweden)

    Aleksandr L. Simonian

    2002-03-01

    Full Text Available Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS, ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.

  11. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  12. Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Ulrich W., E-mail: u.paetzold@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Meier, Matthias, E-mail: ma.meier@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Moulin, Etienne, E-mail: e.moulin@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Smirnov, Vladimir, E-mail: v.smirnov@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Pieters, Bart E., E-mail: b.pieters@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Rau, Uwe, E-mail: u.rau@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Carius, Reinhard, E-mail: r.carius@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2013-05-15

    In this work, we investigate the light trapping of thin-film silicon solar cells which apply plasmonic Ag back contacts with non-ordered Ag nanostructures. The preparation, characterization and three-dimensional electromagnetic simulations of these back contacts with various distributions of non-ordered Ag nanostructures are presented. The measured reflectance spectra of the Ag back contacts with non-ordered nanostructures in air are well reproduced in reflectance spectra derived from the three-dimensional electromagnetic simulations of isolated nanostructures on Ag back contacts. The light–matter interaction of these nanostructures is given by localized surface plasmons and, thus, the measured diffuse reflectance of the back contacts is attributed to plasmon-induced light scattering. A significant plasmonic light-trapping effect in n-i-p substrate-type μc-Si:H thin-film solar cell prototypes which apply a Ag back contact with non-ordered nanostructures is identified when compared with flat reference solar cells.

  13. Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Paetzold, Ulrich W.; Meier, Matthias; Moulin, Etienne; Smirnov, Vladimir; Pieters, Bart E.; Rau, Uwe; Carius, Reinhard

    2013-01-01

    In this work, we investigate the light trapping of thin-film silicon solar cells which apply plasmonic Ag back contacts with non-ordered Ag nanostructures. The preparation, characterization and three-dimensional electromagnetic simulations of these back contacts with various distributions of non-ordered Ag nanostructures are presented. The measured reflectance spectra of the Ag back contacts with non-ordered nanostructures in air are well reproduced in reflectance spectra derived from the three-dimensional electromagnetic simulations of isolated nanostructures on Ag back contacts. The light–matter interaction of these nanostructures is given by localized surface plasmons and, thus, the measured diffuse reflectance of the back contacts is attributed to plasmon-induced light scattering. A significant plasmonic light-trapping effect in n-i-p substrate-type μc-Si:H thin-film solar cell prototypes which apply a Ag back contact with non-ordered nanostructures is identified when compared with flat reference solar cells

  14. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Science.gov (United States)

    Reyes, R.; Cremona, M.; Achete, C. A.

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq3) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq3/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  15. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Av. Tupac Amaru SN, Lima (Peru); Cremona, M [Departamento de Fisica, PontifIcia Universidade Catolica de Rio de Janeiro, PUC-Rio, Cx. Postal 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Achete, C A, E-mail: rreyes@uni.edu.pe [Departamento de Engenheria Metalurgica e de Materiais, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq{sub 3}/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  16. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    International Nuclear Information System (INIS)

    Reyes, R; Cremona, M; Achete, C A

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq 3 ) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq 3 /Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  17. Grazing incidence X-ray fluorescence analysis of buried interfaces in periodically structured crystalline silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhauer, David; Preidel, Veit; Becker, Christiane [Young Investigator Group Nanostructured Silicon for Photovoltaic and Photonic Implementations (Nano-SIPPE), Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Pollakowski, Beatrix; Beckhoff, Burkhard [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Baumann, Jonas; Kanngiesser, Birgit [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany); Amkreutz, Daniel; Rech, Bernd [Institut Silizium Photovoltaik, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Back, Franziska; Rudigier-Voigt, Eveline [SCHOTT AG, Mainz (Germany)

    2015-03-01

    We present grazing incidence X-ray fluorescence (GIXRF) experiments on 3D periodically textured interfaces of liquid phase crystallized silicon thin-film solar cells on glass. The influence of functional layers (SiO{sub x} or SiO{sub x}/SiC{sub x}) - placed between glass substrate and silicon during crystallization - on the final carbon and oxygen contaminations inside the silicon was analyzed. Baring of the buried structured silicon surface prior to GIXRF measurement was achieved by removal of the original nano-imprinted glass substrate by wet-chemical etching. A broad angle of incidence distribution was determined for the X-ray radiation impinging on this textured surface. Optical simulations were performed in order to estimate the incident radiation intensity on the structured surface profile considering total reflection and attenuation effects. The results indicate a much lower contamination level for SiO{sub x} compared to the SiO{sub x}/SiC{sub x} interlayers, and about 25% increased contamination when comparing structured with planar silicon layers, both correlating with the corresponding solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Self-organized broadband light trapping in thin film amorphous silicon solar cells.

    Science.gov (United States)

    Martella, C; Chiappe, D; Delli Veneri, P; Mercaldo, L V; Usatii, I; Buatier de Mongeot, F

    2013-06-07

    Nanostructured glass substrates endowed with high aspect ratio one-dimensional corrugations are prepared by defocused ion beam erosion through a self-organized gold (Au) stencil mask. The shielding action of the stencil mask is amplified by co-deposition of gold atoms during ion bombardment. The resulting glass nanostructures enable broadband anti-reflection functionality and at the same time ensure a high efficiency for diffuse light scattering (Haze). It is demonstrated that the patterned glass substrates exhibit a better photon harvesting than the flat glass substrate in p-i-n type thin film a-Si:H solar cells.

  19. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...

  20. Compensation of decreased ion energy by increased hydrogen dilution in plasma deposition of thin film silicon solar cells at low substrate temperatures

    NARCIS (Netherlands)

    Verkerk, A.D.; de Jong, M.M.; Rath, J.K.; Brinza, M.; Schropp, R.E.I.; Goedheer, W.J.; Krzhizhanovskaya, V.V.; Gorbachev, Y.E.; Orlov, K.E.; Khilkevitch, E.M.; Smirnov, A.S.

    2009-01-01

    In order to deposit thin film silicon solar cells on plastics and papers, the deposition process needs to be adapted for low deposition temperatures. In a very high frequency plasma-enhanced chemical vapor deposition (VHF PECVD) process, both the gas phase and the surface processes are affected by

  1. Enhanced piezoelectric properties of (110)-oriented PbZr1−xTixO3 epitaxial thin films on silicon substrates at shifted morphotropic phase boundary

    NARCIS (Netherlands)

    Wan, X.; Houwman, Evert Pieter; Steenwelle, Ruud Johannes Antonius; van Schaijk, R.; Nguyen, Duc Minh; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    Piezoelectrical, ferroelectrical, and structural properties of epitaxial pseudocubic (110)pc oriented 500 nm thick PbZr1−xTixO3 thin films, prepared by pulsed laser deposition on (001) silicon substrates, were measured as a function of composition. The dependence of the measurement data on the Ti

  2. Electron spin resonance investigaton of semiconductor materials for application in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lihong

    2012-07-01

    to slight n-type character of undoped a-Si:H and {mu}c-Si:H. Therefore ESR evaluation leads to an underestimation of N{sub D} in the annealed states of highly crystalline {mu}c-Si:H. It has been concluded that N{sub S} in the exposed states represents N{sub D} more adequately than in the annealed states. 2. As the transparent conductive window layer, nominally undoped and Al-doped {mu}c-SiC:H thin films were prepared by hot-wire chemical vapor deposition (HWCVD). Samples with a wide range of crystallinity from highly crystalline (I{sup IR}{sub C} > 90%) to amorphous (I{sup IR}{sub C} = 0%) have been prepared with variation of the Monomethylsilane concentration (c{sub MMS}), the substrate and filament temperature (T{sub S}, T{sub F}), the gas pressure (p) and the Al-doping concentration (p{sub TMAl}/p{sub MMS}). In the nominally undoped {mu}c-SiC:H material, a high N{sub S} is observed over a wide range of crystallinity, whereas {sigma}{sub D} increases by 10 orders of magnitude up to 10{sup -2} S/cm as the material becomes more crystalline. The dramatic increase of {sigma}{sub D} has been attributed to both the higher material crystallinity and unintentional donor doping. The ESR spectrum changes from a broad featureless resonance in the low crystallinity material to a sharp line with a pair of distinct satellites in highly crystalline n-type {mu}c-SiC:H. The resonance center is constant at g = 2.003. The central resonance is associated with the paramagnetic states of Si- and/or C-vacancies (V{sub Si}, V{sub C}) at different charge states and dangling bonds (dbs) in disordered phases, and the observed hyperfine structure is speculated to be related to the unintentionally doped nitrogen. Al-doping leads to a compensation of donors. {sigma}{sub D} firstly dropped to the minimum of 10{sup -11} S/cm before increasing up to 4 x 10{sup -4} S/cm, while N{sub S} decreased to 5 x 10{sup 17} cm{sup -3} and then increased up to 2 x 10{sup 19} cm{sup -3}. Meanwhile, Al

  3. Micro-orientation control of silicon polymer thin films on graphite surfaces modified by heteroatom doping

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, Iwao, E-mail: shimoyama.iwao@jaea.go.jp [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Baba, Yuji [Fukushima Administrative Department, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Hirao, Norie [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan)

    2017-05-31

    Highlights: • Micro-orientation control method for organic polysilane thin films is proposed. • This method utilizes surface modification of graphite using heteroatom doping. • Lying, standing, and random orientations can be freely controlled by this method. • Micro-pattering of a polysilane film with controlled orientations is achieved. - Abstract: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is applied to study orientation structures of polydimethylsilane (PDMS) films deposited on heteroatom-doped graphite substrates prepared by ion beam doping. The Si K-edge NEXAFS spectra of PDMS show opposite trends of polarization dependence for non irradiated and N{sub 2}{sup +}-irradiated substrates, and show no polarization dependence for an Ar{sup +}-irradiated substrate. Based on a theoretical interpretation of the NEXAFS spectra via first-principles calculations, we clarify that PDMS films have lying, standing, and random orientations on the non irradiated, N{sub 2}{sup +}-irradiated, and Ar{sup +}-irradiated substrates, respectively. Furthermore, photoemission electron microscopy indicates that the orientation of a PDMS film can be controlled with microstructures on the order of μm by separating irradiated and non irradiated areas on the graphite surface. These results suggest that surface modification of graphite using ion beam doping is useful for micro-orientation control of organic thin films.

  4. Nanoparticle size and morphology control using ultrafast laser induced forward transfer of Ni thin films

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Abere, Michael J.; Schrider, Keegan J.; Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-08-26

    We have developed a nanoparticle (NP) printing technique using Ni thin film lift-off from glass substrates after ultrafast irradiation in air. Unique interactions of ultrafast laser pulses with thin films allow for control over NP faceting and size distributions. Control is achieved by changing the laser fluence, film thickness, and film-substrate distance. We demonstrate 20 nm Ni film removal from substrates and rapid NP printing, with size distributions centered at a 6 nm diameter. When the Ni film thickness is lowered to 10 nm, NPs are printed with distributions peaked at a 2 nm diameter.

  5. Induced nano-scale self-formed metal-oxide interlayer in amorphous silicon tin oxide thin film transistors.

    Science.gov (United States)

    Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao

    2018-03-07

    Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.

  6. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    Science.gov (United States)

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  7. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  8. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  9. Growth, etching, and stability of sputtered ZnO:Al for thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jorj Ian

    2011-07-01

    Aluminum-doped zinc oxide (ZnO:Al) can fulfill many requirements in thin-film solar cells, acting as (1) a transparent contact through which the incident light is transmitted, (2) part of the back reflector, and (3) a source of light scattering. Magnetron sputtered ZnO:Al thin-films are highly transparent, conductive, and are typically texturized by post-deposition etching in a dilute hydrochloric acid (HCl) solution to achieve light scattering. The ZnO:Al thin-film electronic and optical properties, as well as the surface texture after etching, depend on the deposition conditions and the post-deposition treatments. Despite having been used in thin-film solar cells for more than a decade, many aspects regarding the growth, effects of heat treatments, environmental stability, and etching of sputtered ZnO:Al are not fully understood. This work endeavors to further the understanding of ZnO:Al for the purpose improving silicon thin-film solar cell efficiency and reducing ZnO:Al production costs. With regard to the growth of ZnO:Al, the influence of various deposition conditions on the resultant electrical and structural properties and their evolution with film thickness were studied. The surface electrical properties extracted from a multilayer model show that while carrier concentration of the surface layer saturates already at film thickness of 100 nm, the surface mobility continues to increases with film thickness, and it is concluded that electronic transport across grain boundaries limits mobility in ZnO:Al thin films. ZnO:Al deposited onto a previously etched ZnO:Al surface grows epitaxially, preserving both the original orientation and grain structure. Further, it is determined that a typical ZnO:Al used in thin-film silicon solar cells grows Zn-terminated on glass substrates. Concerning the affects of heat treatments and stability, it is demonstrated that a layer of amorphous silicon can protect ZnO:Al from degradation during annealing, and the mobility of Zn

  10. Logistic characteristics of phonon transport in silicon thin film: the S-curve

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Mansoor, S. Bin

    2013-10-01

    The logistic characteristics of the averaged heat flux are investigated across the thin film incorporating the S-curve. Temporal behaviour of the heat flux vector is computed using the Boltzmann transport equation. The dispersion relations are introduced to account for the frequency dependent phonon transport across the film. The influence of film width on the characteristics of the averaged heat flux is also examined. It is found that temporal behaviour of the averaged heat flux follows the S-curve. The S-curve characteristics change for different film widths. The time to reach 95% steady value of the averaged heat flux is short for the film with small widths, which is attributed to the ballistic behaviour of phonons in the film.

  11. Dynamics of solid thin-film dewetting in the silicon-on-insulator system

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, E; Cheynis, F; Leroy, F; Mueller, P [Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) CNRS UPR 3118, Aix-Marseille Universite, 13288 Marseille (France); Pierre-Louis, O, E-mail: muller@cinam.univ-mrs.fr [LPMCN, Universite Lyon 1, 43 Bd du 11 novembre, 69622 Villeurbane (France)

    2011-04-15

    Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO{sub 2} substrates. During annealing (T>700 deg. C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO{sub 2} is mediated by surface-diffusion driven by surface free-energy minimization.

  12. Dynamics of solid thin-film dewetting in the silicon-on-insulator system

    Science.gov (United States)

    Bussmann, E.; Cheynis, F.; Leroy, F.; Müller, P.; Pierre-Louis, O.

    2011-04-01

    Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.

  13. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Guan, Yan; Vopson, Melvin M.; Xu, Jin; Liang, Hailong; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    HfO 2 -based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO 2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2E c ), the reversal process is dominated by the thermal activation on domain wall motion and domain nucleation; while in the high-field regime (E > 2E c ), a non-equilibrium nucleation-limited-switching mechanism dominates the reversal process. The optimum field for ferroelectric random access memory (FeRAM) applications was determined to be around 2.0 MV/cm, which translates into a 2.0 V potential applied across the 10 nm thick films

  14. Raman spectra of amorphous silicon thin films deposited by glow discharge

    International Nuclear Information System (INIS)

    Bustarret, E.; Alvarez, F.; Brenzikofer, R.; Vilche Pena, A.; Chambouleyron, I.

    1983-01-01

    The local disorder present in films of a-Si:H and a-Si sub(x) N 1 - sub(x):H has been studied through first order Raman spectroscopy, using the 5145A line of an Argon laser in a backscattering geometry at room temperature. This allowed us to compare thin films deposited in two different reactors where the capacitively coupled glow-discharge was produced either in a 'cross field' or a 'parallel field' geometry. Gaseous mixtures of SiH 4 , N 2 , He and Ar have been used in both cases. The systematic variation of the preparation parameters leads to a whole class of 'alloys' including partially micro-crystallized films. (Author) [pt

  15. RAMAN spectra of amorphous silicon thin films deposited by glow discharges

    International Nuclear Information System (INIS)

    Bustarret, E.; Alvarez, F.; Brenzikofer, R.; Vilche Pena, A.; Chambouleyron, I.

    1983-01-01

    The local disorder present in films of a-Si:H and a-Si x N 1-x :H has been studied through first order Raman spectroscopy, using the 5145A line of an Argon laser in a backscattering geometry at room temperature. This allowed us to compare thin films deposited in two different reactors where the capacitively coupled glow-discharge was produced either in a ''cross field'' or a ''parallel field'' geometry. Gaseous mixtures of SiH 4 . N 2 , He and Ar have been used in both cases. The systematic variation of the preparation parameters leads to a whole class of ''alloys'' including partially micro-crysttalized films. (author) [pt

  16. Dynamics of solid thin-film dewetting in the silicon-on-insulator system

    International Nuclear Information System (INIS)

    Bussmann, E; Cheynis, F; Leroy, F; Mueller, P; Pierre-Louis, O

    2011-01-01

    Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO 2 substrates. During annealing (T>700 deg. C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO 2 is mediated by surface-diffusion driven by surface free-energy minimization.

  17. Pulsed Laser deposition of Al2O3 thin film on silicon

    International Nuclear Information System (INIS)

    Lamagna, A.; Duhalde, S.; Correra, L.; Nicoletti, S.

    1998-01-01

    Al 2 O 3 thin films were fabricated by pulsed laser deposition (PLD) on Si 3 N 4 /Si, to improve the thermal and electrical isolation of gas sensing devices. The microstructure of the films is analysed as a function of the deposition conditions (laser fluence, oxygen pressure, target-substrate distance and substrate temperature). X-ray analysis shows that only a sharp peak that coincides with the corundum (116) reflection can be observed in all the films. But, when they are annealed at temperatures above 1,200 degree centigrade, a change in the crystalline structure of some films occurs. The stoichiometry and morphology of the films with and without thermal treatment are compared using environmental scanning electron microscopy (SEM) and EDAX analysis. (Author) 14 refs

  18. Logistic characteristics of phonon transport in silicon thin film: the S-curve

    International Nuclear Information System (INIS)

    Yilbas, B.S.; Mansoor, S. Bin

    2013-01-01

    The logistic characteristics of the averaged heat flux are investigated across the thin film incorporating the S-curve. Temporal behaviour of the heat flux vector is computed using the Boltzmann transport equation. The dispersion relations are introduced to account for the frequency dependent phonon transport across the film. The influence of film width on the characteristics of the averaged heat flux is also examined. It is found that temporal behaviour of the averaged heat flux follows the S-curve. The S-curve characteristics change for different film widths. The time to reach 95% steady value of the averaged heat flux is short for the film with small widths, which is attributed to the ballistic behaviour of phonons in the film

  19. Physical properties of lanthanum monosulfide thin films grown on (100) silicon substrates

    Science.gov (United States)

    Cahay, M.; Garre, K.; Wu, X.; Poitras, D.; Lockwood, D. J.; Fairchild, S.

    2006-06-01

    Thin films of lanthanum monosulfide (LaS) have been deposited on Si (100) substrates by pulsed laser deposition. The films are golden yellow in appearance with a mirrorlike surface morphology and a sheet resistance around 0.1 Ω/□, as measured using a four-probe measurement technique. The thin films are characterized by atomic force microscopy (AFM), x-ray diffraction (XRD) analysis, high resolution transmission electron microscopy (HRTEM), ellipsometry, and Raman spectroscopy. The root-mean-square variation of (1 μm thick) film surface roughness measured over a 1 μm2 area by AFM was found to be 1.74 nm. XRD analysis of fairly thick films (micrometer size) reveals the growth of the cubic rocksalt structure with a lattice constant of 5.863(7) A˚, which is close to the bulk LaS value. HRTEM images reveal that the films are comprised of nanocrystals separated by regions of amorphous material. Two beam bright field TEM images show that there is a strain contrast in the Si substrate right under the interface with the LaS film and penetrating into the Si substrate. This suggests that there is an initial epitaxial-like growth of the LaS film on the Si substrate that introduces a strain as a result of the 8% lattice mismatch between the film and substrate. Ellipsometry measurements of the LaS films are well characterized by a Drude-Lorentz model from which an electron concentration of about 2.52×1022 cm-3 and a mobility around 8.5 cm2/V s are derived. Typical crystalline LaS features were evident in Raman spectra of the films, but the spectra also revealed their disordered (polycrystalline) nature.

  20. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    Science.gov (United States)

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-01-29

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.

  1. Microscratch testing method for systematic evaluation of the adhesion of atomic layer deposited thin films on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kilpi, Lauri, E-mail: Lauri.Kilpi@vtt.fi; Ylivaara, Oili M. E.; Vaajoki, Antti; Puurunen, Riikka L.; Ronkainen, Helena [VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT (Finland); Malm, Jari [Department of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014 (Finland); Sintonen, Sakari [Department of Micro- and Nanosciences, Aalto University School of Electrical Engineering, P.O. Box 13500, FI-00076 AALTO (Finland); Tuominen, Marko [ASM Microchemistry Oy, Pietari Kalmin katu 1 F 2, FIN-00560 Helsinki (Finland)

    2016-01-15

    The scratch test method is widely used for adhesion evaluation of thin films and coatings. Usual critical load criteria designed for scratch testing of coatings were not applicable to thin atomic layer deposition (ALD) films on silicon wafers. Thus, the bases for critical load evaluation were established and the critical loads suitable for ALD coating adhesion evaluation on silicon wafers were determined in this paper as L{sub CSi1}, L{sub CSi2}, L{sub CALD1}, and L{sub CALD2}, representing the failure points of the silicon substrate and the coating delamination points of the ALD coating. The adhesion performance of the ALD Al{sub 2}O{sub 3}, TiO{sub 2}, TiN, and TaCN+Ru coatings with a thickness range between 20 and 600 nm and deposition temperature between 30 and 410 °C on silicon wafers was investigated. In addition, the impact of the annealing process after deposition on adhesion was evaluated for selected cases. The tests carried out using scratch and Scotch tape test showed that the coating deposition and annealing temperature, thickness of the coating, and surface pretreatments of the Si wafer had an impact on the adhesion performance of the ALD coatings on the silicon wafer. There was also an improved load carrying capacity due to Al{sub 2}O{sub 3}, the magnitude of which depended on the coating thickness and the deposition temperature. The tape tests were carried out for selected coatings as a comparison. The results show that the scratch test is a useful and applicable tool for adhesion evaluation of ALD coatings, even when carried out for thin (20 nm thick) coatings.

  2. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  3. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Science.gov (United States)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-01

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×1016 atoms/cm3) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  4. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  5. Ferroelectricity, Piezoelectricity, and Dielectricity of 0.06PMnN-0.94PZT(45/55 Thin Film on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-01-01

    Full Text Available The high piezoelectricity and high quality factor ferroelectric thin films are important for electromechanical applications especially the micro electromechanical system (MEMS. The ternary compound ferroelectric thin films 0.06Pb(Mn1/3, Nb2/3O3 + 0.94Pb(Zr0.45, Ti0.55O3 (0.06PMnN-0.94PZT(45/55 were deposited on silicon(100 substrates by RF magnetron sputtering method considering that Mn and Nb doping will improve PZT properties in this research. For comparison, nondoped PZT(45/55 films were also deposited. The results show that both of thin films show polycrystal structures with the main (111 and (101 orientations. The transverse piezoelectric coefficients are e31,eff=−4.03 C/m2 and e31,eff=-3.5 C/m2, respectively. These thin films exhibit classical ferroelectricity, in which the coercive electric field intensities are 2Ec=147.31 kV/cm and 2Ec=135.44 kV/cm, and the saturation polarization Ps=30.86 μC/cm2 and Ps=17.74 μC/cm2, and the remnant polarization Pr=20.44 μC/cm2 and Pr=9.87 μC/cm2, respectively. Moreover, the dielectric constants and loss are εr=681 and D=5% and εr=537 and D=4.3%, respectively. In conclusion, 0.06PMnN-0.94PZT(45/55 thin films act better than nondoped films, even though their dielectric constants are higher. Their excellent ferroelectricity, piezoelectricity, and high power and energy storage property, especially the easy fabrication, integration realizable, and potentially high quality factor, make this kind of thin films available for the realistic applications.

  6. Spectroscopy and structural properties of amorphous and nanocrystalline silicon carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Halindintwali, Sylvain; Knoesen, D.; Julies, B.A.; Arendse, C.J.; Muller, T. [University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Gengler, Regis Y.N.; Rudolf, P.; Loosdrecht, P.H.M. van [Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen (Netherlands)

    2011-09-15

    Amorphous SiC:H thin films were grown by hot wire chemical vapour deposition from a SiH{sub 4}/CH{sub 4}/H{sub 2} mixture at a substrate temperature below 400 C. Thermal annealing in an argon environment up to 900 C shows that the films crystallize as {mu}c-Si:H and SiC with a porous microstructure that favours an oxidation process. By a combination of spectroscopic tools comprising Fourier transform infrared, Raman scattering and X-rays photoelectron spectroscopy we show that the films evolve from the amorphous SiH{sub x}/SiCH{sub 2} structure to nanocrystalline Si and SiC upon annealing at a temperature of 900 C. A strong RT photoluminescence peak of similar shape has been observed at around 420 nm in both as-deposited and annealed samples. Time-resolved luminescence measurements reveal that this peak is fast decaying with lifetimes ranging from 0.5 to {proportional_to}1.1 ns. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Wunderlich, Bernhard K; Klitzing, Regine V; Bausch, Andreas R

    2007-03-27

    The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.

  8. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Directory of Open Access Journals (Sweden)

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  9. Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Maheshwar Shrestha

    2018-03-01

    Full Text Available Low-temperature growth of microcrystalline silicon (mc-Si is attractive for many optoelectronic device applications. This paper reports a detailed comparison of optical properties, microstructure, and morphology of amorphous silicon (a-Si thin films crystallized by furnace annealing and flash lamp annealing (FLA at temperatures below the softening point of glass substrate. The initial a-Si films were grown by plasma enhanced chemical vapor deposition (PECVD. Reflectance measurement indicated characteristic peak in the UV region ~280 nm for the furnace annealed (>550 °C and flash lamp annealed films, which provided evidence of crystallization. The film surface roughness increased with increasing the annealing temperature as well as after the flash lamp annealing. X-ray diffraction (XRD measurement indicated that the as-deposited samples were purely amorphous and after furnace crystallization, the crystallites tended to align in one single direction (202 with uniform size that increased with the annealing temperature. On the other hand, the flash lamp crystalized films had randomly oriented crystallites with different sizes. Raman spectroscopy showed the crystalline volume fraction of 23.5%, 47.3%, and 61.3% for the samples annealed at 550 °C, 650 °C, and with flash lamp, respectively. The flash lamp annealed film was better crystallized with rougher surface compared to furnace annealed ones.

  10. Nanoimprint lithography of light trapping patterns in sol-gel coatings for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Heijna, M.; Loffler, J.; Van Aken, B.B.; Soppe, W.J. [ECN Solar Energy, Petten (Netherlands); Borg, H.; Peeters, P. [OM and T, Eindhoven (Netherlands)

    2008-04-15

    For thin-film silicon solar cells, light trapping schemes are of uppermost importance to harvest all available sunlight. Typically, randomly textured TCO front layers are used to scatter the light diffusively in p-i-n cells on glass. Here, we investigate methods to texture the back contact with both random and periodic textures, for use in n-i-p cells on opaque foil. We applied an electrically insulating SiOx-polymer coating on a stainless steel substrate, and textured this barrier layer by nanoimprint. On this barrier layer the back contact is deposited for further use in the solar cell stack. Replication of masters with various random and periodic patterns was tested, and, using scanning electron microscopy, replicas were found to compare well with the originals. Masters with U-grooves of various sub micrometer widths have been used to investigate the optimal dimensions of regular patterns for light trapping in the silicon layers. Angular reflection distributions were measured to evaluate the light scattering properties of both periodic and random patterns. Diffraction gratings show promising results in scattering the light to specific angles, enhancing the total internal reflection in the solar cell.

  11. Optical modelling of thin-film silicon solar cells deposited on textured substrates

    International Nuclear Information System (INIS)

    Krc, J.; Zeman, M.; Smole, F.; Topic, M.

    2004-01-01

    Optical modelling is used to investigate effects of light scattering in amorphous silicon and microcrystalline silicon solar cells. The role of enhanced haze parameter and different angular distribution function of scattered light is analyzed. Results of optical simulation show that enhanced haze parameter compared to that of Asahi U-type SnO 2 :F does not improve external quantum efficiency and short-circuit current density of amorphous silicon solar cell significantly, whereas for microcrystalline silicon solar cell the improvement is larger. Angular distribution function affects the external quantum efficiency and the short-circuit current density significantly

  12. Application of Localized Surface Plasmons for the Enhancement of Thin-Film Amorphous Silicon Solar Cells

    Science.gov (United States)

    Hungerford, Chanse D.

    Photovoltaics (PV) is a rapidly growing electricity source and new PV technologies are continually being developed. Increasing the efficiency of PV will continue to drive down the costs of solar installations. One area of research that is necessary for increasing PV performance is light management. This is especially true for thin-film devices that are unable to maximize absorption of the solar spectrum in a single pass. Methods for light trapping include texturing, high index nanostructures, nanophotonic structures, and plasmonics. This research focus on the use of plasmonic structures, in this case metallic nanoparticles, to increase the power conversion efficiency of solar cells. Three different designs are investigated. First was an a-Si:H solar cell, approximately 300nm thick, with a rear reflector consisting of metallic nanoparticles and a mirror. This structure is referred to as a plasmonic back reflector. Simulations indicate that a maximum absorption increase of 7.2% in the 500nm to 800nm wavelength range is possible versus a flat reference. Experiments did not show enhancement, likely due to absorption in the transparent conducting oxide and the parasitic absorption in the small metallic nanoparticles. The second design was an a-Si:H solar cell with embedded metal nanoparticles. Experimental devices were successfully fabricated by breaking the i-layer deposition into two steps and introducing colloidal nanoparticles between the two depositions. These devices performed worse than the controls, but the results provide proof that fabrication of such a device is possible and may be improved in the future. Suggestions for improvements are discussed. The final device investigated was an ultra-thin, undoped solar cell. The device used an absorber layer solar cells. This is likely due to fabrication issues that can be solved and suggestions are discussed.

  13. Enhanced electrical properties in solution-processed InGaZnO thin-film transistors by viable hydroxyl group transfer process

    Science.gov (United States)

    Kim, Do-Kyung; Jeong, Hyeon-Seok; Kwon, Hyeok Bin; Kim, Young-Rae; Kang, Shin-Won; Bae, Jin-Hyuk

    2018-05-01

    We propose a simple hydroxyl group transfer method to improve the electrical characteristics of solution-processed amorphous InGaZnO (IGZO) thin-film transistors (TFTs). Tuned poly(dimethylsiloxane) elastomer, which has a hydroxyl group as a terminal chemical group, was adhered temporarily to an IGZO thin-film during the solidification step to transfer and supply sufficient hydroxyl groups to the IGZO thin-film. The transferred hydroxyl groups led to efficient hydrolysis and condensation reactions, resulting in a denser metal–oxygen–metal network being achieved in the IGZO thin-film compared to the conventional IGZO thin-film. In addition, it was confirmed that there was no morphological deformation, including to the film thickness and surface roughness. The hydroxyl group transferred IGZO based TFTs exhibited enhanced electrical properties (field-effect mobility of 2.21 cm2 V‑1 s‑1, and on/off current ratio of 106) compared to conventional IGZO TFTs (field-effect mobility of 0.73 cm2 V‑1 s‑1 and on/off current ratio of 105).

  14. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Directory of Open Access Journals (Sweden)

    Wanshun Zhao

    2013-04-01

    Full Text Available We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD. The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM. Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films.

  15. Annealing of polycrystalline thin film silicon solar cells in water vapour at sub-atmospheric pressures

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Píč, Vlastimil; Benda, V.; Fejfar, Antonín

    2014-01-01

    Roč. 54, č. 5 (2014), s. 341-347 ISSN 1210-2709 R&D Projects: GA MŠk 7E10061 EU Projects: European Commission(XE) 240826 - PolySiMode Grant - others:AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : passivation * water vapour * thin film solar cell * polycrystalline silicon (poly-Si) * multicrys- talline silicon (m-Si) * Suns-VOC Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use

  16. Type of precursor and synthesis of silicon oxycarbide (SiOxCyH) thin films with a surfatron microwave oxygen/argon plasma

    International Nuclear Information System (INIS)

    Walkiewicz-Pietrzykowska, Agnieszka; Espinos, J. P.; Gonzalez-Elipe, Agustin R.

    2006-01-01

    Siliconelike thin films (i.e., SiO x C y H z ) were prepared in a microwave plasma enhanced chemical vapor deposition reactor from structurally different organosilicon precursors [i.e., hexamethyldisiloxane (HMDSO), dimethylsilane (DMS), and tetramethylsilane (TMS)]. The films were deposited at room temperature by using different oxygen/argon ratios in the plasma gas. By changing the type of precursor and the relative concentration of oxygen in the plasma, thin films with different compositions (i.e., O/C ratio) and properties are obtained. In general, raising the oxygen concentration in the plasma produces the progressive removal of the organic moieties from the films whose composition and structure then approach those of silicon dioxide. The deposition rate was highly dependent on the type of precursor, following the order HMDSO>>DMS>TMS. The polarizabilities, optical band gaps, and surface free energy of the films also depended on the thin film composition and structure. It is proposed that the Si-O bonds existing in HMDSO is the main factor controlling the distinct reactivity of this precursor and is also responsible for the different compositions and properties of the SiO x C y H z thin films prepared with very low or no oxygen in the plasma gas

  17. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  18. Composition and optical properties tunability of hydrogenated silicon carbonitride thin films deposited by reactive magnetron sputtering

    Science.gov (United States)

    Bachar, A.; Bousquet, A.; Mehdi, H.; Monier, G.; Robert-Goumet, C.; Thomas, L.; Belmahi, M.; Goullet, A.; Sauvage, T.; Tomasella, E.

    2018-06-01

    Radiofrequency reactive magnetron sputtering was used to deposit hydrogenated amorphous silicon carbonitride (a-SiCxNy:H) at 400 °C by sputtering a silicon target under CH4 and N2 reactive gas mixture. Rutherford backscattering spectrometry revealed that the change of reactive gases flow rate (the ratio R = FN2/(FN2+FCH4)) induced a smooth chemical composition tunability from a silicon carbide-like film for R = 0 to a silicon nitride-like one at R = 1 with a large area of silicon carbonitrides between the two regions. The deconvolution of Fourier Transform InfraRed and X-ray photoelectron spectroscopy spectrum highlighted a shift of the chemical environment of the deposited films corresponding to the changes seen by RBS. The consequence of these observations is that a control of refractive index in the range of [1.9-2.5] at λ = 633 nm and optical bandgap in the range [2 eV-3.8 eV] have been obtained which induces that these coatings can be used as antireflective coatings in silicon photovoltaic cells.

  19. Stress in ion-beam assisted silicon dioxide and tantalum pentoxide thin films

    International Nuclear Information System (INIS)

    Sirotkina, Natalia

    2003-01-01

    Ta 2 O 5 and SiO 2 thin films, deposited at room temperature by ion-beam sputtering (IBS) and dual ion-beam sputtering (DIBS), and SiO 2 films, deposited by reactive e-beam evaporation and ion-assisted deposition, were studied. The energy (150-600 eV) and ion-to-atom arrival ratio (0.27-2.0) of assisting argon and oxygen ions were varied. Influence of deposition conditions (deposition system geometry, nature and amount of gas in the chamber, substrate cleaning and ion-assistance parameters) on films properties (stress, composition, refractive index n 500nm and extinction coefficient k 500nm ) was investigated. A scanning method, based on substrate curvature measurements by laser reflection and stress calculation using the Stoney equation, was employed. RBS showed that stoichiometric Ta 2 O 5 films contain impurities of Ar, Fe and Mo. Stoichiometric SiO 2 films also contain Ta impurity. Argon content increases with ion bombardment and, at maximum incorporation, argon bubbles are registered by TEM. XPS studies are complicated by surface contaminations and preferential sputtering. Evaporated SiO 2 films show +100 MPa stress (+ is tensile, - compressive). With 300 eV Ar + bombardment, stress changes to -200 MPa, n 500nm decreases (1.56-1.49) and k 500nm increases (1.4x10 -4 - 1.8x10 -3 ). Of all studied IBS conditions, stress in SiO 2 (-560 MPa) and Ta 2 O 5 (-350 MPa) films depends only on sputtering gas species and oxygen entry point into the chamber. With argon and oxygen bombardment stress in IBS SiO 2 films decreases to -380 MPa and below the stress measurement system resolution, respectively. While Ar + bombardment of Ta 2 O 5 films leads to increase in stress to -490 MPa, the effect of oxygen assistance depends on ion energy. The observed behaviour was related to the total recoil density. In DIBS SiO 2 and Ta 2 O 5 films n 500nm varies in the region of 1.5-1.59 and 2.13-2.20 and k 500nm is below 5.5x10 -3 and 8.5x10 -3 , respectively. The refractive index

  20. Enhancement of silicon using micro-patterned surfaces of thin films

    Directory of Open Access Journals (Sweden)

    E Kaivosoja

    2010-04-01

    Full Text Available Micro-textured biomaterials might enhance cytocompatibility of silicon-based micro-electro-mechanical system (bio-MEMS dummies. Photolithography-physical vapour deposition was used to produce diamond-like carbon (DLC or Ti squares and circles on silicon, and also their inverse replicas; then DLC and Ti were compared for their guiding potential, using a SaOS-2 cell model. Scanning electron microscopy at 48 hours indicated cells were well-spread on large-sized patterns (several cells on one pattern and assumed the geometrical architecture of underlying features. Medium-sized patterns (slightly smaller than solitary indicator cells were inhabited by singular cells, which stretched from one island to another, assuming longitudinal or branching morphologies. On small-sized patterns (much smaller than individual cells cells covered large micro-textured areas, but cellular filopodia bypassed the bare silicon. Immunofluorescence and confocal laser scanning microscopy indicated that the actin cytoskeleton and vinculin-containing adhesion junctions were present on the patterned areas, but not on the bare silicon. Cell density/coverage disclosed a 3.4-3.7-fold preference for the biomaterial patterns over silicon substrate (p < 0.001. Differences in the cellular response between materials were lost at 120 hours when cells were confluent. The working hypothesis was proven; enhancement by micro-patterning depends on the pattern size, shape and material and can be used to improve biocompatibility during the initial integration phase of the device.

  1. Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes.

    Science.gov (United States)

    Novo, Pedro; Prazeres, Duarte Miguel França; Chu, Virginia; Conde, João Pedro

    2011-12-07

    Microfluidic technology has the potential to decrease the time of analysis and the quantity of sample and reactants required in immunoassays, together with the potential of achieving high sensitivity, multiplexing, and portability. A lab-on-a-chip system was developed and optimized using optical and fluorescence microscopy. Primary antibodies are adsorbed onto the walls of a PDMS-based microchannel via microspotting. This probe antibody is then recognised using secondary FITC or HRP labelled antibodies responsible for providing fluorescence or chemiluminescent and colorimetric signals, respectively. The system incorporated a micron-sized thin-film hydrogenated amorphous silicon photodiode microfabricated on a glass substrate. The primary antibody spots in the PDMS-based microfluidic were precisely aligned with the photodiodes for the direct detection of the antibody-antigen molecular recognition reactions using chemiluminescence and colorimetry. The immunoassay takes ~30 min from assay to the integrated detection. The conditions for probe antibody microspotting and for the flow-through ELISA analysis in the microfluidic format with integrated detection were defined using antibody solutions with concentrations in the nM-μM range. Sequential colorimetric or chemiluminescence detection of specific antibody-antigen molecular recognition was quantitatively detected using the photodiode. Primary antibody surface densities down to 0.182 pmol cm(-2) were detected. Multiplex detection using different microspotted primary antibodies was demonstrated.

  2. Simultaneous optical and electrical modeling of plasmonic light trapping in thin-film amorphous silicon photovoltaic devices

    Science.gov (United States)

    Gandhi, Keyur K.; Nejim, Ahmed; Beliatis, Michail J.; Mills, Christopher A.; Henley, Simon J.; Silva, S. Ravi P.

    2015-01-01

    Rapid prototyping of photovoltaic (PV) cells requires a method for the simultaneous simulation of the optical and electrical characteristics of the device. The development of nanomaterial-enabled PV cells only increases the complexity of such simulations. Here, we use a commercial technology computer aided design (TCAD) software, Silvaco Atlas, to design and model plasmonic gold nanoparticles integrated in optoelectronic device models of thin-film amorphous silicon (a-Si:H) PV cells. Upon illumination with incident light, we simulate the optical and electrical properties of the cell simultaneously and use the simulation to produce current-voltage (J-V) and external quantum efficiency plots. Light trapping due to light scattering and localized surface plasmon resonance interactions by the nanoparticles has resulted in the enhancement of both the optical and electrical properties due to the reduction in the recombination rates in the photoactive layer. We show that the device performance of the modeled plasmonic a-Si:H PV cells depends significantly on the position and size of the gold nanoparticles, which leads to improvements either in optical properties only, or in both optical and electrical properties. The model provides a route to optimize the device architecture by simultaneously optimizing the optical and electrical characteristics, which leads to a detailed understanding of plasmonic PV cells from a design perspective and offers an advanced tool for rapid device prototyping.

  3. Nanocrystalline Sr{sub 2}CeO{sub 4} thin films grown on silicon by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perea, Nestor [Posgrado en Fisica de Materiales, CICESE-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B.C., 22860 (Mexico); Hirata, G.A. [Centro de Ciencias de la Materia Condensada-UNAM, Km. 107 Carretera Tijuana Ensenada, Ensenada, B.C. 22860 (Mexico)]. E-mail: hirata@ccmc.unam.mx

    2006-02-21

    Blue-white luminescent Sr{sub 2}CeO{sub 4} thin films were deposited by using pulsed laser ablation ({lambda} = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr{sub 2}CeO{sub 4} grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr{sub 2}CeO{sub 4} however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems.

  4. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  5. Label-free electrical determination of trypsin activity by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Serr, Andreas; Wunderlich, Bernhard K; Bausch, Andreas R

    2007-10-08

    A silicon-on-insulator (SOI) based thin film resistor is employed for the label-free determination of enzymatic activity. We demonstrate that enzymes, which cleave biological polyelectrolyte substrates, can be detected by the sensor. As an application, we consider the serine endopeptidase trypsin, which cleaves poly-L-lysine (PLL). We show that PLL adsorbs quasi-irreversibly to the sensor and is digested by trypsin directly at the sensor surface. The created PLL fragments are released into the bulk solution due to kinetic reasons. This results in a measurable change of the surface potential allowing for the determination of trypsin concentrations down to 50 ng mL(-1). Chymotrypsin is a similar endopeptidase with a different specificity, which cleaves PLL with a lower efficiency as compared to trypsin. The activity of trypsin is analyzed quantitatively employing a kinetic model for enzyme-catalyzed surface reactions. Moreover, we have demonstrated the specific inactivation of trypsin by a serine protease inhibitor, which covalently binds to the active site of the enzyme.

  6. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  7. Mechanics of silicon nitride thin-film stressors on a transistor-like geometry

    Directory of Open Access Journals (Sweden)

    S. Reboh

    2013-10-01

    Full Text Available To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate can reach much higher values than the full sheet reference. This is an important insight for advanced technology nodes where the vertical contribution of such liners is predominant over the horizontal part.

  8. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. Development of thin film solar cell manufacturing technologies (Development of low-cost large-area module manufacturing technologies, and development of technologies to manufacture amorphous silicon/thin film poly-crystalline silicon hybrid thin film solar cells); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (tei cost daimenseki module seizo kaihatsu (oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (amorphous silicon / usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Developmental research has been performed on large-area low-cost manufacturing technologies on hybrid thin film solar cells of amorphous silicon and poly-crystalline silicon. This paper summarizes the achievements in fiscal 1999. The research has been performed on a texture construction formed naturally on silicon surface, and thin film poly-crystalline silicon cells with STAR structure having a rear side reflection layer to increase light absorption. The research achievements during the current fiscal year may be summarized as follows: the laser scribing technology for thin film poly-crystalline silicon was established, which is important for modularization, making fabrication of low-cost and large-area modules possible; a stabilization efficiency of 11.3% was achieved in a hybrid mini module comprising of ten-stage series integrated amorphous silicon and thin film poly-crystalline silicon; structures different hybrid modules were discussed, whereas an initial efficiency of 10.3% (38.78W) was achieved in a sub-module having a substrate size of 910 mm times 455 mm; and feasibility of forming large-area hybrid modules was demonstrated. (NEDO)

  9. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis

    Science.gov (United States)

    Hirsch, Ulrike; Ruehl, Marco; Teuscher, Nico; Heilmann, Andreas

    2018-04-01

    A major drawback to otherwise highly efficient membrane-based desalination techniques like reverse osmosis (RO) is the susceptibility of the membranes to biofouling. In this work, a combination of plasma activation, plasma bromination and surface-initiated atom transfer radical polymerization (si-ATRP) of hydrophilic and zwitterionic monomers, namely hydroxyethyl methacrylate (HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), was applied to generate non-specific, anti-adhesive coatings on thin film composite (TFC) membranes. The antifouling effect of the coatings was shown by short-time batch as well as long-time steady state cultivation experiments with the microorganism Pseudomonas fluorescens. It could be shown that plasma functionalization and polymerization is possible on delicate thin film composite membranes without restricting their filtration performance. All modified membranes showed an increased resistance towards the adhesion of Pseudomonas fluorescens. On average, the biofilm coverage was reduced by 51.4-12.6% (for HEMA, SBMA, and MPC), the highest reduction was monitored for MPC with a biofilm reduction by 85.4%. The hydrophilic coatings applied did not only suppress the adhesion of Pseudomonas fluorescens, but also significantly increase the permeate flux of the membranes relative to uncoated membranes. The stability of the coatings was however not ideal and will have to be improved for future commercial use.

  10. Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates

    NARCIS (Netherlands)

    Bhamla, M.S.; Balemans, C.; Fuller, G.G.

    2015-01-01

    We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show

  11. Microcrystalline bottom cells in large area thin film silicon MICROMORPH™ solar modules

    Czech Academy of Sciences Publication Activity Database

    Hoetzel, J.E.; Caglar, O.; Cashmore, J.S.; Goury, C.; Kalaš, J.; Klindworth, M.; Kupich, M.; Leu, G.F.; Lindic, M.H.; Losio, P.A.; Mates, Tomáš; Mereu, B.; Roschek, T.; Sinicco, I.

    2016-01-01

    Roč. 157, Dec (2016), s. 178-189 ISSN 0927-0248 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * material quality * PECVD * Raman crystallinity * grading * micromorph Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.784, year: 2016

  12. Internal structure of mixed phase hydrogenated silicon thin films made at 39 degrees

    Czech Academy of Sciences Publication Activity Database

    Bronsveld, P.C.P.; Rath, J.K.; Schropp, R.E.I.; Mates, Tomáš; Fejfar, Antonín; Rezek, Bohuslav; Kočka, Jan

    2006-01-01

    Roč. 89, - (2006), 051922/1-051922/3 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z10100521 Keywords : transmission electron microscope * atomic force microscope * silicon films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  13. Optical bar code recognition of methyl salicylate (MES) for environmental monitoring using fluorescence resonance energy transfer (FRET) on thin films

    Science.gov (United States)

    Smith, Clint; Tatineni, Balaji; Anderson, John; Tepper, Gary

    2006-10-01

    Fluorescence resonance energy transfer (FRET) is a process in which energy is transferred nonradiatively from one fluorophore (the donor) in an excited electron state to another, the chromophore (the acceptor). FRET is distinctive in its ability to reveal the presence of specific recognition of select targets such as the nerve agent stimulant Methyl Salicylate (MES) upon spectroscopic excitation. We introduce a surface imprinted and non-imprinted thin film that underwent AC-Electrospray ionization for donor-acceptor pair(s) bound to InGaP quantum dots and mesoporous silicate nanoparticles. The donor-acceptor pair used in this investigation included MES (donor) and 6-(fluorescein-5-(and-6)- carboxamido) hexanoic acid, succinimidyl ester bound to InGaP quantum dots (acceptor). MES was then investigated as a donor to various acceptor fluorophore: InGaP: mesoporous silicate nanoparticle layers.

  14. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Wildermuth, D.; Goodman, C.; Fujieda, I.

    1992-07-01

    We describe the characteristics of thin (1 μm) and thick (> 30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-ray, γ rays and thermal neutrons. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For thermal neutron detection we use thin (2∼5 μm) gadolinium converters on 30 μm thick a-Si:H diodes. For direct detection of minimum ionizing particles and others with high resistance to radiation damage, we use the thick p-i-n diode arrays. Diode and amorphous silicon readouts as well as polysilicon pixel amplifiers are described

  15. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  16. Raman mapping of microcrystalline silicon thin films with high spatial resolution

    Czech Academy of Sciences Publication Activity Database

    Ledinský, Martin; Vetushka, Aliaksi; Stuchlík, Jiří; Fejfar, Antonín; Kočka, Jan

    2010-01-01

    Roč. 7, 3-4 (2010), s. 704-707 ISSN 1862-6351 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : Raman * atomic force microscopy * microcrystalline silicon Subject RIV: BM - Solid Matter Physics ; Magnetism http://www3.interscience.wiley.com/journal/123277609/abstract

  17. Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests

    International Nuclear Information System (INIS)

    Merle, B.; Goeken, M.

    2011-01-01

    A bulge test setup was used to determine the fracture toughness of amorphous low-pressure chemical vapor deposited (LPCVD) silicon nitride films with various thicknesses in the range 40-108 nm. A crack-like slit was milled in the center of each free-standing film with a focused ion beam, and the membrane was deformed in the bulge test until failure occurred. The fracture toughness K IC was calculated from the pre-crack length and the stress at failure. It is shown that the membrane is in a transition state between pure plane-stress and plane-strain which, however, had a negligible influence on the measurement of the fracture toughness, because of the high brittleness of silicon nitride and its low Young's modulus over yield strength ratio. The fracture toughness K IC was found to be constant at 6.3 ± 0.4 MPa m 1/2 over the whole thickness range studied, which compares well with bulk values. This means that the fracture toughness, like the Young's modulus, is a size-independent quantity for LPCVD silicon nitride. This presumably holds true for all amorphous brittle ceramic materials.

  18. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Srinath, S; Reddy, K P J

    2015-01-01

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  19. Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film

    International Nuclear Information System (INIS)

    Wong, Basil T.; Francoeur, Mathieu; Bong, Victor N.-S.; Mengüç, M. Pinar

    2014-01-01

    Near-field thermal radiative exchange between two objects is typically more effective than the far-field thermal radiative exchange as the heat flux can increase up to several orders higher in magnitudes due to tunneling of evanescent waves. Such an interesting phenomenon has started to gain its popularity in nanotechnology, especially in nano-gap thermophotovoltaic systems and near-field radiative cooling of micro-/nano-devices. Here, we explored the existence of thermal gradient within an n-doped silicon thin film when it is subjected to intensive near-field thermal radiative heating. The near-field radiative power density deposited within the film is calculated using the Maxwell equations combined with fluctuational electrodynamics. A phonon Monte Carlo simulation is then used to assess the temperature gradient by treating the near-field radiative power density as the heat source. Results indicated that it is improbable to have temperature gradient with the near-field radiative heating as a continuous source unless the source comprises of ultra-short radiative pulses with a strong power density. - Highlights: • This study investigates temperature distribution in an n-doped silicon thin film. • Near-field radiative heating is treated as a volumetric phenomenon. • The temperature gradient is computed using phonon MC simulation. • Temperature of thin film can be approximated as uniform for radiation calculations. • If heat source is a pulsed radiation, a temperature gradient can be established

  20. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of thin-film solar cell manufacturing technology (Development of low-cost large-area module manufacturing technology - Development of application type novel-structure thin-film solar cell manufacturing technology - Development of amorphous silicon/thin-film polycrystalline silicon hybrid thin-film solar cell manufacturing technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / tei cost daimenseki module seizo gijutsu kaihatsu (oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu / amorphous silicon/usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The project aims to manufacture the above for the development of low-cost high-efficiency practical cells. Technologies were developed to homogeneously fabricate films with an average efficiency of 10% or more in a 100mm times 85mm area in a STAR (naturally surface texture and enhanced absorption with a back reflector) structure thin-film polycrystalline silicon (poly-Si) solar cell. The texture shape was improved for a higher light trapping effect and a STAR structure cell highly sensitive to long wavelengths and fit for use for a hybrid cell bottom layer was obtained. Various cells were examined for temperature characteristics, and it was found that thin-film poly-Si cells present a temperature coefficient equal to or less than that of bulk single-crystal silicon systems, and hybrid cells a temperature coefficient similar to that of a-Si systems. The technology was applied to a hybrid solar cell in which an a-Si cell was placed on STAR structure thin film poly-Si cells, and a resultant 3-layer a-Si/poly-Si/poly-Si cell exhibited a stabilization factor of 12.0% after 550 hours of optical irradiation. (NEDO)

  1. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    Institute of Scientific and Technical Information of China (English)

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films,including AZO/Ag/Al,AZO/Ag/nickelchromium alloy (NiCr),and AZO/Ag/NiCr/Al,are utilized as the back reflectors of p-i-n amorphous silicon germanium thin film solar cells.NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion,which increases the short circuit current density of solar cell.NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization,the higher efficiency of solar cell is achieved.The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best.The initial conversion efficiency is achieved to be 8.05%.

  2. Annealing in water vapor as a new method for improvement of silicon thin film properties

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Ogane, A.; Uraoka, Y.; Fuyuki, T.

    2006-01-01

    Roč. 352, - (2006), s. 955-958 ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SM/300/1/03; GA MŽP(CZ) SN/3/172/05; GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.362, year: 2006

  3. Determination of density of band-gap states of hydrogenated amorphous silicon suboxide thin films

    International Nuclear Information System (INIS)

    Bacioglu, A.

    2005-01-01

    Variation of density of gap states of PECVD silicon suboxide films with different oxygen concentrations was evaluated through electrical and optical measurements. Optical transmission and constant photocurrent method (CPM) were used to determine absorption coefficient as a function of photon energy. From these measurements the localized density of states between the valance band mobility edge and Fermi level has been determined. To determine the variation of conduction band edge, steady state photoconductivity (SSPC), photoconductivity response time (PCRT) and transient photoconductivity (TPC) measurements were utilized. Results indicate that the conduction and valance band edges, both, widen monotonically with oxygen content

  4. Improvement in switching characteristics and long-term stability of Zn-O-N thin-film transistors by silicon doping

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsuji

    2017-06-01

    Full Text Available The effects of silicon doping on the properties of Zn-O-N (ZnON films and on the device characteristics of ZnON thin-film transistors (TFTs were investigated by co-sputtering silicon and zinc targets. Silicon doping was effective at decreasing the carrier concentration in ZnON films; therefore, the conductivity of the films can be controlled by the addition of a small amount of silicon. Doped silicon atoms also form bonds with nitrogen atoms, which suppresses nitrogen desorption from the films. Furthermore, Si-doped ZnON-TFTs are demonstrated to exhibit less negative threshold voltages, smaller subthreshold swings, and better long-term stability than non-doped ZnON-TFTs.

  5. Fabrication of polycrystalline silicon thin films on glass substrates using fiber laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Dao, Vinh Ai; Han, Kuymin; Heo, Jongkyu; Kyeong, Dohyeon; Kim, Jaehong; Lee, Youngseok; Kim, Yongkuk; Jung, Sungwook; Kim, Kyunghae [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.k [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of)

    2009-05-29

    Laser crystallization of amorphous silicon (a-Si), using a fiber laser of {lambda} = 1064 nm wavelength, was investigated. a-Si films with 50 nm thickness deposited on glass were prepared by a plasma enhanced chemical vapor deposition. The infrared fundamental wave ({lambda} = 1064 nm) is not absorbed by amorphous silicon (a-Si) films. Thus, different types of capping layers (a-CeO{sub x}, a-SiN{sub x}, and a-SiO{sub x}) with a desired refractive index, n and thickness, d were deposited on the a-Si surface. Crystallization was a function of laser energy density, and was performed using a fiber laser. The structural properties of the crystallized films were measured via Raman spectra, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The relationship between film transmittance and crystallinity was discussed. As the laser energy density increased from 10-40 W, crystallinity increased from 0-90%. However, the higher laser density adversely affected surface roughness and uniformity of the grain size. We found that favorable crystallization and uniformity could be accomplished at the lower energy density of 30 W with a-SiO{sub x} as the capping layer.

  6. X-ray absorption study of silicon carbide thin film deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Monaco, G.; Suman, M.; Garoli, D.; Pelizzo, M.G.; Nicolosi, P.

    2011-01-01

    Silicon carbide (SiC) is an important material for several applications ranging from electronics to Extreme UltraViolet (EUV) space optics. Crystalline cubic SiC (3C-SiC) has a wide band gap (near 2.4 eV) and it is a promising material to be used in high frequency and high energetic electronic devices. We have deposited, by means of pulsed laser deposition (PLD), different SiC films on sapphire and silicon substrates both at mild (650 o C) and at room temperature. The resulted films have different structures such as: highly oriented polycrystalline, polycrystalline and amorphous which have been studied by means of X-ray absorption spectroscopy (XAS) near the Si L 2,3 edge and the C K edge using PES (photoemission spectroscopy) for the analysis of the valence bands structure and film composition. The samples obtained by PLD have shown different spectra among the grown films, some of them showing typical 3C-SiC absorption structure, but also the presence of some Si-Si and graphitic bonds.

  7. Research of morphology and structure of 3C–SiC thin films on silicon by electron microscopy and X-ray diffractometry

    Directory of Open Access Journals (Sweden)

    Alexander S. Gusev

    2015-12-01

    Full Text Available Thin films of silicon carbide possessing unique properties attract increasing attention of researchers both in the field of semiconductor physics and in the technology of new semiconductor devices for high power, RF and optoelectronics. The growth of the production of silicon carbide based devices promotes the search for more resource saving and safe SiC layer synthesis technologies. Potential method is pulse laser deposition (PLD in vacuum. This technology does not require the use of chemically aggressive and explosive gases and allows forming thin and continuous coatings with thicknesses of from several nanometers at relatively low substrate temperatures. Submicron thickness silicon carbide films have been grown on single crystal silicon by vacuum laser ablation of a ceramic target. The physical and technological parameters of silicon carbide thin film low temperature synthesis by PLD have been studied and, in particular, the effect of temperature and substrate crystalline orientation on the composition, structural properties and morphology of the surface of the experimental specimens has been analyzed. At above 500 °C the crystalline β-SiC phase forms on Si (100 and (111. At a substrate temperature of 950 °C the formation of textured heteroepitaxial 3C–SiC films was observed.

  8. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Drewery, J.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.

    1994-10-01

    We describe the characteristics of thin (1 μm) and thick (>30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. Deposition techniques using helium dilution, which produce samples with low stress are described. Pixel arrays for flux exposures can be readout by transistor, single diode or two diode switches. Polysilicon charge sensitive pixel amplifiers for single event detection are described. Various applications in nuclear, particle physics, x-ray medical imaging, neutron crystallography, and radionuclide chromatography are discussed

  9. Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates.

    Science.gov (United States)

    Bhamla, M Saad; Balemans, Caroline; Fuller, Gerald G

    2015-07-01

    We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show that these surfactant layers extend the lifetime of the aqueous films. The films eventually "dewet" by the nucleation and growth of dry areas and the onset of this dewetting can be controlled by the surface rheology of the DPPC layer. We thus demonstrate that increasing the interfacial rheology of the DPPC layer leads to stable films that delay dewetting. We also show that dewetting can be exploited to controllably pattern the underlying curved SiHy substrates with DPPC layers. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Emi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472 (Japan); Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ikenoue, Hiroshi [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  11. Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition

    International Nuclear Information System (INIS)

    Shima, Yukari; Hasuyama, Hiroki; Kondoh, Toshiharu; Imaoka, Yasuo; Watari, Takanori; Baba, Koumei; Hatada, Ruriko

    1999-01-01

    Silicon oxynitride (SiO x N y ) films (0.1-0.7 μm) were produced on Si (1 0 0), glass and 316L stainless steel substrates by ion beam assisted deposition (IBAD) using Si evaporation and the concurrent bombardment with a mixture of 200 eV N 2 and Ar, or O 2 and Ar ions. Adhesion was evaluated by pull-off tests. Film hardness was measured by a nanoindentation system with AFM. The measurement of internal stress in the films was carried out by the Stoney method. The film structure was examined by GXRD. XPS was employed to measure the composition of films and to analyze the chemical bonds. The dependence of mechanical properties on the film thickness and the processing temperature during deposition was studied. Finally, the relations between the mechanical properties of the films and the correlation with corrosion-protection ability of films are discussed and summarized

  12. Artificial neural systems using memristive synapses and nano-crystalline silicon thin-film transistors

    Science.gov (United States)

    Cantley, Kurtis D.

    Future computer systems will not rely solely on digital processing of inputs from well-defined data sets. They will also be required to perform various computational tasks using large sets of ill-defined information from the complex environment around them. The most efficient processor of this type of information known today is the human brain. Using a large number of primitive elements (˜1010 neurons in the neocortex) with high parallel connectivity (each neuron has ˜104 synapses), brains have the remarkable ability to recognize and classify patterns, predict outcomes, and learn from and adapt to incredibly diverse sets of problems. A reasonable goal in the push to increase processing power of electronic systems would thus be to implement artificial neural networks in hardware that are compatible with today's digital processors. This work focuses on the feasibility of utilizing non-crystalline silicon devices in neuromorphic electronics. Hydrogenated amorphous silicon (a-Si:H) nanowire transistors with Schottky barrier source/drain junctions, as well as a-Si:H/Ag resistive switches are fabricated and characterized. In the transistors, it is found that the on-current scales linearly with the effective width W eff of the channel nanowire array down to at least 20 nm. The solid-state electrolyte resistive switches (memristors) are shown to exhibit the proper current-voltage hysteresis. SPICE models of similar devices are subsequently developed to investigate their performance in neural circuits. The resulting SPICE simulations demonstrate spiking properties and synaptic learning rules that are incredibly similar to those in biology. Specifically, the neuron circuits can be designed to mimic the firing characteristics of real neurons, and Hebbian learning rules are investigated. Finally, some applications are presented, including associative learning analogous to the classical conditioning experiments originally performed by Pavlov, and frequency and pattern

  13. A comparative chemical network study of HWCVD deposited amorphous silicon and carbon based alloys thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P., E-mail: bibhuprasad.swain@gmail.com [Centre for Materials Science and Nanotechnology, Sikkim Manipal Institute of Technology, Majitar, Rangpo Sikkim (India); Swain, Bhabani S.; Hwang, Nong M. [Thin Films and Microstructure Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-03-05

    Highlights: • a-SiC:H, a-SiN:H, a-C:H and a-SiCN:H films were deposited by hot wire chemical vapor deposition. • Evolution of microstructure of a-SiCN:H films deposited at different NH{sub 3} flow rate were analyzed. • The chemical network of Si and C based alloys were studied by FTIR and Raman spectroscopy. -- Abstract: Silicon and carbon based alloys were deposited by hot wire chemical vapor deposition (HWCVD). The microstructure and chemical bonding of these films were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron microscopy revealed various microstructures were observed for a-C:H, a-SiC:H, a-SiN:H, a-CN:H and a-SiCN:H films. The microstructure of SiN:H films showed agglomerate spherical grains while a-C:H films showed more fractal surface with branched microstructure. However, a-SiC:H, a-CN:H and a-SiCN:H indicated uniform but intermediate surface fractal microstructure. A series of a-SiCN:H films were deposited with variation of NH{sub 3} flow rate. The nitrogen incorporation in a-SiCN:H films alter the carbon network from sp{sup 2} to sp{sup 3} bonding The detail chemical bonding of amorphous films was analyzed by curve fitting method.

  14. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2018-06-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  15. The effects of varying plasma parameters on silicon thin film growth by ECR plasma CVD

    International Nuclear Information System (INIS)

    Summers, S.; Reehal, H.S.; Shirkoohi, G.H.

    2001-01-01

    The technique of electron cyclotron resonance (ECR) plasma enhanced chemical vapour deposition (PECVD) is increasingly being used in electronic and photonic device applications. ECR offers a number of advantages including improved control of the deposition process, less damage to the growing film and the possibility of high deposition rates. ECR occurs in a plasma under appropriate magnetic and electric field conditions. In most cases, as in our system, this is achieved with a combination of 2.45 GHz microwave radiation and a 0.0875 T magnetic field, due to the use of standardized microwave supplies. We have studied the effects on silicon film growth of changing the magnetic field configuration to produce one or more planes of ECR within the system, and of changing the positions of the plane(s) relative to the deposition substrate. The films were grown in silane-hydrogen discharges. The magnetic field in our system was provided by two electromagnets. It was measured experimentally for a number of operating current values and then a detailed profile achieved by modelling using a proprietary software package. A process condition discharge under identical magnetic field configurations to growth was analysed by the use of a Langmuir probe and the results correlated with film properties determined by Raman spectroscopy and Dektak profilometry. (author)

  16. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2017-11-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  17. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  18. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  19. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  20. Ferroelectrics onto silicon prepared by chemical solution deposition methods: from the thin film to the self-assembled systems

    Directory of Open Access Journals (Sweden)

    Calzada, M. L.

    2006-06-01

    Full Text Available The work of the authors during the last years on ferroelectric thin and ultra-thin films deposited by Chemical Solution Deposition (CSD onto silicon based substrates is reviewed in this paper. Ferroelectric layers integrated with silicon substrates have potential use in the new micro/nanoelectronic devices. Two hot issues are here considered: 1 the use of low processing temperatures of the ferroelectric film, with the objective of not producing any damage on the different elements of the device heterostructure, and 2 the downscaling of the ferroelectric material with the aim of achieving the high densities of integration required in the next generation of nanoelectronic devices. The UV-assisted Rapid Thermal Processing has successfully been used in our laboratory for the fabrication of ferroelectric films at low temperatures. Preliminary results on the CSD preparation of nanosized ferroelectric structures are shown.

    Este artículo revisa el trabajo realizado por los autores durante los últimos años sobre lámina delgada y ultra-delgada ferroeléctrica preparada mediante el depósito químico de disoluciones (CSD sobre substratos de silicio. Las películas ferroeléctricas integradas con silicio tienen potenciales usos en los nuevos dispositivos micro/nanoelectrónicos. Dos aspectos claves son aquí considerados: 1 el uso de bajas temperaturas de procesado de la lámina ferroeléctrica, con el fin de no dañar los diferentes elementos que forman la heteroestructura del dispositivo y 2 la disminución de tamaño del material ferroeléctrico con el fin de conseguir las altas densidades de integración requeridas en la próxima generación de dispositivos nanoelectróncos. Los procesos térmicos rápidos asistidos con irradiación UV se están usando en nuestro laboratorio para conseguir la fabricación del material ferroeléctrico a temperaturas bajas compatibles con la tecnología del silicio. Se muestran resultados preliminares sobre

  1. On the interactions of nitriles and fluoro-substituted pyridines with silicon tetrafluoride: Computations and thin film IR spectroscopy

    Science.gov (United States)

    Hora, Nicholas J.; Wahl, Benjamin M.; Soares, Camilla; Lara, Skylee A.; Lanska, John R.; Phillips, James A.

    2018-04-01

    The nature of the interactions between silicon tetrafluoride and series of nitrogen bases, including nitriles (RCN, with R > CH3), pyridine, and various fluoro-substituted pyridines, has been investigated via quantum-chemical computations, low-temperature IR spectroscopy, and bulk reactivity experiments. Using (primarily) M06 with the 6-311+G(2df,2pd) basis set, we obtained equilibrium structures, binding energies, harmonic frequencies, and N-Si potentials in the gas-phase and in bulk dielectric media for an extensive series of 1:1 molecular complexes, including: C6H5CH2CN-SiF4, CH3CH2CN-SiF4, (CH3)3CCN-SiF4, C5H5N-SiF4, 4-FC5H4N-SiF4, 3,5-C5F2H3N-SiF4, 2,6-C5F2H3N-SiF4 and 3,4,5-C5F3H2N-SiF4. In addition, for the analogous 2:1 complexes of pyridine and 3,5-difluororpyridine, we obtained equilibrium structures, binding energies, and harmonic frequencies. The N-Si distances in the 1:1 nitrile complexes are fairly long, ranging from 2.84 Å to 2.88 Å, and the binding energies range from 4.0 to 4.2 kcal/mol (16.7-17.6 kJ/mol). Also, computations predict extremely anharmonic N-Si potentials, for which the inner portions of the curve are preferentially stabilized in dielectric media, which predict an enhancement of these interactions in condensed-phases. However, we see no evidence of bulk reactivity between C6H5CH2CN, CH3CH2CN, or (CH3)3CCN and SiF4, nor any significant interaction between (CH3)3CCN and SiF4 in low temperature IR spectra of solid, (CH3)3CCN/SiF4 thin films. Conversely, the interactions in four of the five 1:1, pyridine-SiF4 complexes are generally stronger; binding energies range from 5.7 to 9.6 kcal/mol (23.8-40.2 kJ/mol), and correspondingly the N-Si distances are relatively short (2.12-2.25 Å). The exception is 2,6-C5F2H3N-SiF4, for which the binding energy is only 3.6 kcal/mol (15.1 kJ/mol), and the N-Si distance is quite long (3.12 Å). In addition, both pyridine and 3,5-difluororpyridine were found to form stable reaction products with SiF4

  2. Thin films

    International Nuclear Information System (INIS)

    Strongin, M.; Miller, D.L.

    1976-01-01

    This article reviews the phenomena that occur in films from the point of view of a solid state physicist. Films form the basis for many established and developing technologies. Metal layers have always been important for optical coatings and as protective coatings. In the most sophisticated cases, films and their interaction on silicon surfaces form the basis of modern electronic technology. Films of silicon, GaAs and composites of these materials promise to lead to practical photovoltaic devices

  3. Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling

    Science.gov (United States)

    Feinaeugle, Matthias; Horak, Peter; Sones, Collin L.; Lippert, Thomas; Eason, Rob W.

    2014-09-01

    In this study, we investigate both experimentally and numerically laser-induced forward transfer (LIFT) of thin films to determine the role of a thin polymer layer coating the receiver with the aim of modifying the rate of deceleration and reduction of material stress preventing intact material transfer. A numerical model of the impact phase during LIFT shows that such a layer reduces the modelled stress. The evolution of stress within the transferred deposit and the substrate as a function of the thickness of the polymer layer, the transfer velocity and the elastic properties of the polymer are evaluated. The functionality of the polymer layer is verified experimentally by LIFT printing intact 1- m-thick bismuth telluride films and polymeric light-emitting diode pads onto a layer of 12-m-thick polydimethylsiloxane and 50-nm-thick poly(3,4-ethylenedioxythiophene) blended with poly(styrenesulfonate) (PEDOT:PSS), respectively. Furthermore, it is demonstrated experimentally that the introduction of such a compliant layer improves adhesion between the deposit and its substrate.

  4. Experimental study of the hysteresis in hydrogenated amorphous silicon thin-film transistors for an active matrix organic light-emitting diode

    International Nuclear Information System (INIS)

    Lee, Jae-Hoon; Shin, Kwang-Sub; Park, Joong-Hyun; Han, Min-Koo

    2006-01-01

    An experimental scheme for validating the cause of the hysteresis phenomenon in hydrogenated amorphous-silicon-thin-film transistors (a-Si:H TFTs) is reported. A different gate starting voltage to the desired gate voltage has been considered to prove an effect of filling an acceptor-like or donor-like state in the interface. The integration time of the semiconductor parameter analyzer has also been controlled to investigate the effect between the de-trapping rate and hysteresis. The experimental results show that the previous data voltage in the (n-1)th frame affects the OLED current in the (n)th frame.

  5. Suppression effect of silicon (Si on Er3+ 1.54μm excitation in ZnO thin films

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2016-08-01

    Full Text Available We have investigated the photoluminescence (PL characteristics of ZnO:Er thin films on Si (100 single crystal and SiO2-on-silicon (SiO2 substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS, X-ray diffraction (XRD and atomic force microscope (AFM were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS. Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT, PL (1.54μm intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er3+ 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er3+ was very low when compared with silicon nanocrystal (Si-NC. Both made the PL (1.54μm intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  6. Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo; Lu, Fei, E-mail: lufei@sdu.edu.cn; Fan, Ranran [School of Information Science and Engineering, Shandong University, Jinan, Shandong 250100 (China); Ma, Changdong [Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250100 (China)

    2016-08-15

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  7. Influence of silicon orientation and cantilever undercut on the determination of the Young’s modulus of thin films

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    The Young’s modulus of thin films can be determined by deposition on a micronsized Si cantilever and measuring the resonance frequency before and after deposition. The accuracy of the method depends strongly on the initial determination of the mechanical properties and dimensions of the cantilever.

  8. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10 −3 Ω·cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10 −3 Ω·cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube-silicon solar cells.

    Science.gov (United States)

    Stolz, Benedikt W; Tune, Daniel D; Flavel, Benjamin S

    2016-01-01

    Recent results in the field of carbon nanotube-silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning - in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube-silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  10. Morphology and stress study of nanostructured porous silicon as a substrate for PbTe thin films growth by electrochemical process

    Directory of Open Access Journals (Sweden)

    Claudia Renata Borges Miranda

    2004-12-01

    Full Text Available Porous silicon layers (PSL were produced by stain etching from a HF:HNO3 500:1 mixture with etching time varying in the range of 1 up to 10 min. The samples have presented nanometric porosity as a function of etching time, characteristic of heavily doped p type silicon. The residual stress and the correlation length of the layers were obtained through the analysis of the micro-Raman spectra using a phonon confinement model including a term to account for the amorphous phase. The residual compressive stress tends to increase as expected due to the contribution of smaller crystallites to be more representative as the etching time increases. PbTe thin films were electrodeposited on PSL from aqueous alkaline solutions of Pb(CH3COO2, disodium salt of ethylendiaminetetraacetic acid (EDTA and TeO2 by galvanostatic and potentiostatic method. It was also obtained nanostructured PbTe thin films with polycrystalline morphology evidenced by X-ray Diffraction (XRD spectra. Scanning Electron Microscopy (SEM analysis has demonstrated good films reproducibility with an average grain size of 100 nm.

  11. High-rate deposition of epitaxial layers for efficient low-temperature thin film epitaxial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, L.; Schmidt, J.; Wagner, T.A.; Bergmann, R.B. [Stuttgart Univ. (Germany). Inst. of Physical Electronics

    2001-07-01

    Low-temperature deposition of Si for thin-film solar cells has previously been hampered by low deposition rates and low material quality, usually reflected by a low open-circuit voltage of these solar cells. In contrast, ion-assisted deposition produces Si films with a minority-carrier diffusion length of 40 {mu}m, obtained at a record deposition rate of 0.8 {mu}m/min and a deposition temperature of 650{sup o}C with a prebake at 810{sup o}C. A thin-film Si solar cell with a 20-{mu}m-thick epitaxial layer achieves an open-circuit voltage of 622 mV and a conversion efficiency of 12.7% without any light trapping structures and without high-temperature solar cell process steps. (author)

  12. Near infrared photoluminescence of the hydrogenated amorphous silicon thin films with in-situ embedded silicon nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Stuchlík, Jiří; Purkrt, Adam; Ledinský, Martin; Kupčík, Jaroslav

    2017-01-01

    Roč. 61, č. 2 (2017), s. 136-140 ISSN 0862-5468 R&D Projects: GA ČR GC16-10429J Grant - others:AV ČR(CZ) KONNECT-007 Program:Bilaterální spolupráce Institutional support: RVO:68378271 ; RVO:61388980 Keywords : amorphous silicon * chemical vapor deposition * photothermal deflection spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Inorganic and nuclear chemistry (UACH-T) Impact factor: 0.439, year: 2016

  13. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    Energy Technology Data Exchange (ETDEWEB)

    Bin Mansoor, Saad; Sami Yilbas, Bekir, E-mail: bsyilbas@kfupm.edu.sa

    2015-08-15

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron–phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.

  14. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    International Nuclear Information System (INIS)

    Bin Mansoor, Saad; Sami Yilbas, Bekir

    2015-01-01

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron–phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system

  15. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  16. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  17. Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire

    Directory of Open Access Journals (Sweden)

    Jaeyeong Lee

    2017-12-01

    Full Text Available The separation of graphene grown on metallic catalyst by chemical vapor deposition (CVD is essential for device applications. The transfer techniques of graphene from metallic catalyst to target substrate usually use the chemical etching method to dissolve the metallic catalyst. However, this causes not only high material cost but also environmental contamination in large-scale fabrication. We report a bubble transfer method to transfer graphene films to arbitrary substrate, which is nondestructive to both the graphene and the metallic catalyst. In addition, we report a type of metallic catalyst, which is 700 nm of Cu on sapphire substrate, which is hard enough to endure against any procedure in graphene growth and transfer. With the Cr adhesion layer between sapphire and Cu film, electrochemically delaminated graphene shows great quality during several growth cycles. The electrochemical bubble transfer method can offer high cost efficiency, little contamination and environmental advantages.

  18. Scattering properties of textured TCO substrates in thin-film silicon solar cells; Streuverhalten von texturierten TCO-Substraten in Silizium-Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Melanie

    2009-04-27

    In this PhD thesis the scattering properties of textured transparent conducting oxides (TCO) for the application in thin-film silicon solar cells are investigated. The main focus is the correlation between the nanotextured surface and its scattering behaviour. Therefore a ray tracing model based on geometric optics and atomic force microscopy data is developed. Simulation results are compared and discussed with measurements of angle resolved scattering in the far field and experimentally determined scanning near field microscopy data in the near field. Besides, simulation results obtained by applying geometric optics and solutions of the Maxwell equation in the near field are compared and discussed. The scattering properties of TCO-air and TCO-silicon interfaces are considered. (orig.)

  19. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%

    Science.gov (United States)

    Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao

    2015-05-01

    We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.

  20. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Jessen, Bjarke Sørensen; Whelan, Patrick Rebsdorf

    2015-01-01

    We demonstrate an electrochemical method - which we term oxidative decoupling transfer (ODT) - for transferring chemical vapor deposited graphene from physically deposited copper catalyst layers. This copper oxidation-based transfer technique is generally applicable to copper surfaces...... - up to 100 mm diameter films are demonstrated here - and exhibit a low Raman D:G peak ratio and a homogenous and continuous distribution of sheet conductance mapped by THz time-domain spectroscopy. By applying a fixed potential of -0.4 V vs. an Ag/AgCl reference electrode - significantly below...

  1. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan

    2014-04-22

    The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface. This knowledge is essential to many semiconductor nanoparticle based devices, including photocatalytic waste degradation and dye sensitized solar cells.

  2. Experimental investigations of laser-induced forward transfer process of organic thin films

    International Nuclear Information System (INIS)

    Thomas, Benjamin; Alloncle, Anne Patricia; Delaporte, Philippe; Sentis, Marc; Sanaur, Sebastien; Barret, Michael; Collot, Philippe

    2007-01-01

    This paper deals with transfer induced by laser of thin layers of a conducting polymer, the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), for applications in plastic electronics. This relatively simple technique of direct writing offers the ability to make surface micro-patterning by localized deposits of material. The study of the various mechanisms (ablation, transfer and deposit) has been carried out according to different conditions of irradiation: wavelength (from ultraviolet to infrared radiation), pulse duration (nanosecond and sub-nanosecond) and fluence. The morphology of the transferred patterns has been analyzed by optical microscopy and scanning electronic microscopy. Our objective is to understand the different mechanisms involved in the process in order to optimize it in terms of geometrical resolution while preserving the properties of the transferred material

  3. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  4. Effect of oxygen to argon flow ratio on the properties of Al-doped ZnO films for amorphous silicon thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yang-Shih [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Lien, Shui-Yang, E-mail: syl@mdu.edu.tw [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Huang, Yung-Chuan [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Wang, Chao-Chun [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Liu, Chueh-Yang [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Nautiyal, Asheesh [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chungli, 320 Taoyuan, Taiwan, ROC (China); Wuu, Dong-Sing [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Lee, Shuo-Jun [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chungli, 320 Taoyuan, Taiwan, ROC (China)

    2013-02-01

    Transparent conductive oxide thin films in solar cell fabrication have attracted much attention due to their high conductivity and transmittance. In this paper, we have investigated the aluminum-doped zinc oxide (AZO) thin films prepared by radiofrequency magnetron sputtering on Asahi U-type SnO{sub 2} glass with different O{sub 2}/Ar flow ratios in vacuum chamber. Furthermore, the micro-structural, electrical, and optical properties of AZO/SnO{sub 2} films were studied. The change in O{sub 2}/Ar flow ratios is found to significantly affect the haze value, and slightly affect electrical resistivity and transmittance of the films. Afterward, the fabricated AZO thin films with different O{sub 2}/Ar flow ratios were used for building the solar cell devices. The current–voltage and external quantum efficiency characteristics were investigated for the solar cell devices. The optimized O{sub 2}/Ar flow ratio of 3 for solar device shows the best efficiency of 10.41%, and a 20% increase in short-circuit current density compared to typical Asahi solar cells. - Highlights: ► A thin Al-doped zinc oxide (AZO) film has been deposited on SnO{sub 2} substrates. ► The AZO film deposited at an O{sub 2}/Ar ratio of 3 shows low resistivity and high haze. ► The AZO film contains tiny grains that enhance light scattering. ► The amorphous silicon solar cell with the AZO layer shows a 20% increase in Jsc.

  5. Effect of deposition distance on thickness and microstructure of silicon thin film produced by electron beam evaporation; Efeito da distancia de deposicao na espessura e microestrutura de filme fino obtido por evaporacao por feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, T.F.; Ramanery, F.P.; Branco, J.R.T. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte, MG (Brazil)], e-mail: thalitaqui@yahoo.com.br; Cunha, M.A. [Acos Especiais Itabira S.A. (Acesita), Belo Horizonte, MG (Brazil)

    2006-07-01

    The interest for materials with new characteristics and properties made thin films an area of highest research interest. Silicon thin films have been widely used in solar cells, being the main active layer. In this work, the effect of deposition distance on thickness and microstructure of silicon films was investigated. The electron beam evaporation technique with argon plasma assistance was used to obtain films on stainless steel 304, Fe-Si alloy and soda lime glass. The experiments were made varying electron beam current and deposition pressure. The results are discussed based on Hertz-Knudsen's law and thin films microstructure evolution models. The samples were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction and profilometer. (author)

  6. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  7. Organic thin film transistors with polymer brush gate dielectrics synthesized by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Pinto, J.C.; Whiting, G.L.; Khodabakhsh, S.

    2008-01-01

    , synthesized by atom transfer radical polymerization (ATRP), were used to fabricate low voltage OFETs with both evaporated pentacene and solution deposited poly(3-hexylthiophene). The semiconductor-dielectric interfaces in these systems were studied with a variety of methods including scanning force microscopy...

  8. High quality β-FeSi2 thin films prepared on silicon (100) by using pulsed laser ablation of Fe target

    International Nuclear Information System (INIS)

    Xu, S.C.; Yang, C.; Liu, M.; Jiang, S.Z.; Ma, Y.Y.; Chen, C.S.; Gao, X.G.; Sun, Z.C.; Hu, B.; Wang, C.C.; Man, B.Y.

    2012-01-01

    High quality β-FeSi 2 thin films have been fabricated on silicon (100) substrate by the pulsed laser deposition (PLD) technique with the Fe and sintered FeSi 2 targets. The crystalline quality and surface morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. These results indicate that the samples prepared with a Fe target can acquire a better crystalline quality and a smoother surface than those with a sintered FeSi 2 target. The reasons were discussed with subsurface superheating mechanism. The intrinsic PL spectrum attributed to the interband transition of β-FeSi 2 for all the samples was compared, showing that the film prepared with Fe target can acquire a good PL property by optimizing experimental parameters. It is suggested that sputtering Fe on Si substrate by the pulsed laser offers a cheap and convenient way to prepare the β-FeSi 2 thin films. -- Highlights: ► β-FeSi 2 films were fabricated by PLD technique with the Fe and FeSi 2 targets. ► The films prepared with Fe target have good crystalline quality and smooth surface. ► The Fe target prepared film acquired a high PL intensity. ► Sputtering Fe on Si substrate offers a convenient way to prepare the β-FeSi 2 films.

  9. Effect of PECVD deposition parameters on structural and optoelectronics properties of hydrogenated polymorphous silicon thin films deposited by dichlorosilane for implementation in solar cells

    International Nuclear Information System (INIS)

    Álvarez-Macías, C.; Hernández González, Oscar Daniel; Barrera Calva, Enrique; Gómez González, L.; Santana, G.

    2015-01-01

    Hydrogenated polymorphous silicon (pm-Si: H) thin films were deposited at room temperature by plasma enhanced chemical vapor deposition (PECVD) using SiH2Cl2 as precursor gas. We examine the effect of deposition pressure (250 y 500 mTorr) and H2 dilution (flow rates 25, 50, 75 y 100 sccm) on the structural and optoelectronics properties. The nano-structural properties was confirmed by Raman spectroscopy studies in terms of the changes in crystallite sizes and their volume fractions. On the other hand, by FTIR analysis we notice bond configurations associated to photostability of the nanostructures, which was confirmed by Light soaking experiments during 250h. We found a tunable band gap and important behaviors on the electronic transport properties measurements for samples with high and low incorporation of oxygen whose compositions were determined by XPS measurements. Understanding structural and chemical properties of pm- Si: H thin films is key towards optimizing their electrical and optical properties for applications in solar cells. (full text)

  10. Photolithographic patterning of nanocrystalline europium-titanate Eu2Ti2O7 thin films on silicon substrates

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jan; Boháček, Jan; Vytykáčová, Soňa; Buršík, Jiří; Puchý, V.; Robert, D.; Kašík, Ivan

    2017-01-01

    Roč. 209, December (2017), s. 216-219 ISSN 0167-577X Grant - others:AV ČR(CZ) SAV-16-17 Program:Bilaterální spolupráce Institutional support: RVO:67985882 ; RVO:68081723 Keywords : Magnetic materials * Rare earth compounds * Thin films * Photolithography Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UFM-A) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (UFM-A) Impact factor: 2.572, year: 2016

  11. Research and development of photovoltaic power system. Development of novel technologies for fabrication of high quality silicon thin films for solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Kohinshitsu silicon usumaku sakusei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for development of novel technologies for fabrication of high quality thin films of silicon for solar cells. The study on the mechanisms and effects of chemical annealing reveals that the film structure greatly varies depending on substrate temperature during the hydrotreatment process, based on the tests with substrate temperature, deposition of superthin film (T1) and hydrotreatment (T2) as the variable parameters. Chemical annealing at low temperature produces a high-quality a-Si:H film of low defect content. The study on fabrication of thin polycrystalline silicon films at low temperature observes on real time the process of deposition of the thin films on polycrystalline silicon substrates, where a natural oxide film is removed beforehand from the substrate. The results indicate that a thin polycrystalline silicon film of 100% crystallinity can be formed even on a polycrystalline silicon substrate by controlling starting gas composition and substrate temperature. The layer-by-layer method is used as the means for forming the seed crystals on a glass substrate, where deposition and hydrotreatment are repeated alternately, to produce the thin crystalline silicon films of high crystallinity. 3 figs.

  12. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    Science.gov (United States)

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  13. Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

    2014-06-16

    The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-μm thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550 °C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450 °C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550 °C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450 °C, which limits the solar cell performance by n = 2 recombination, and a performance degradation is expected due to severe shunting.

  14. Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass

    Energy Technology Data Exchange (ETDEWEB)

    Rau, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)], E-mail: bjoern.rau@helmholtz-berlin.de; Weber, T.; Gorka, B.; Dogan, P.; Fenske, F.; Lee, K.Y.; Gall, S.; Rech, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)

    2009-03-15

    In this report, we discuss the influence of rapid thermal annealing (RTA) on the performance of polycrystalline Si (poly-Si) thin-film solar cells on glass where the poly-Si layers are differently prepared. The first part presents a comprehensive study of RTA treatments on poly-Si thin-films made by solid phase crystallization (SPC) (standard material of CSG Solar AG, Thalheim). By varying both plateau temperature (up to 1050 deg. C) and duration (up to 1000 s) of the annealing profile, we determined the parameters for a maximum open-circuit voltage (V{sub OC}). In addition, we applied our standard plasma hydrogenation treatment in order to passivate the remaining intra-grain defects and grain boundaries by atomic hydrogen resulting in a further increase of V{sub OC}. We found, that the preceding RTA treatment increases the effect of hydrogenation already at comparable low RTA temperatures. The effect on hydrogenation increases significantly with RTA temperature. In a second step we investigated the effect of the RTA and hydrogenation on large-grained poly-Si films based on the epitaxial thickening of poly-Si seed layers.

  15. Optimization of charge-carrier generation in amorphous-silicon thin-film tandem solar cell backed by two-dimensional metallic surface-relief grating

    Science.gov (United States)

    Civiletti, Benjamin J.; Anderson, Tom H.; Ahmad, Faiz; Monk, Peter B.; Lakhtakia, Akhlesh

    2017-08-01

    The rigorous coupled-wave approach was implemented in a three-dimensional setting to calculate the chargecarrier-generation rate in a thin-film solar cell with multiple amorphous-silicon p-i-n junctions. The solar cell comprised a front antireflection window; three electrically isolated p-i-n junctions in tandem; and a periodically corrugated silver back-reflector with hillock-shaped corrugations arranged on a hexagonal lattice. The differential evolution algorithm (DEA) was used to maximize the charge-carrier-generation rate over a set of selected optical and electrical parameters. This optimization exercise minimized the bandgap of the topmost i-layer but all other parameters turned out to be uninfluential. More importantly, the exercise led to a configuration that would very likely render the solar cell inefficient. Therefore, another optimization exercise was conducted to maximize power density. The resulting configuration was optimal over all parameters.

  16. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    International Nuclear Information System (INIS)

    Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.

    2009-01-01

    Dielectric properties of Ba 0.7 Sr 0.3 TiO 3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  17. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    Science.gov (United States)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-07-01

    Dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  18. Gas-temperature control in VHF- PECVD process for high-rate (>5 nm/s) growth of microcrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sobajima, Yasushi; Higuchi, Takuya; Chantana, Jakapan; Toyama, Toshihiko; Sada, Chitose; Matsuda, Akihisa; Okamoto, Hiroaki [Graduate School of Engineering Science, Osaka University, Toyonaka City (Japan)

    2010-04-15

    Surface-heating phenomenon by the radiation from high density plasma during growth of microcrystalline silicon ({mu}c-Si:H) thin films at high rate (> 5 nm/sec) is one of the crucial issues to be solved for obtaining high quality intrinsic-layer material for solar cells. We have utilized an optical emission spectroscopy (OES) in the plasma to observe the time evolution of gas temperature during film growth as well as the film-growth rate under {mu}c-Si:H deposition conditions at high rate. Gas temperature has been successfully controlled by changing total flow rate of monosilane (SiH{sub 4})/hydrogen (H{sub 2}) gas mixture, leading to a drastic improvement of optoelectronic properties in the resulting {mu}c-Si:H. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Leakage current suppression with a combination of planarized gate and overlap/off-set structure in metal-induced laterally crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki

    2018-04-01

    A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.

  20. Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.

    Science.gov (United States)

    Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk

    2017-10-11

    We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO 2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO 2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; V OC = 0.73 V, J SC = 15.4 mA·cm -2 , and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m -2 ), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO 2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only J SC through improved ICT but also V OC through the evenly distributed sensitizer surface coverage.

  1. Highly oriented thin films of a substituted oligo(para-phenylenevinylene) on friction-transferred PTFE substrates

    NARCIS (Netherlands)

    Gill, R.E; Hadziioannou, G; Lang, P.; Garnier, F.; Wittmann, J.C.

    Communication: Highly oriented thin films of oligo(p-phenylenevinylene)s, oligoPPVs, provide information about the structure of polyPPV and structure-property relationships. It is shown that deposition of a substituted oligoPPV onto highly preoriented PTFE substrates leads to highly oriented thin

  2. Homotopy Perturbation Method for Thin Film Flow and Heat Transfer over an Unsteady Stretching Sheet with Internal Heating and Variable Heat Flux

    Directory of Open Access Journals (Sweden)

    I-Chung Liu

    2012-01-01

    Full Text Available We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM. The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.

  3. Pulsed laser induced heat transfer from a phthalocyanine-based thin film to a Bi, Al-substituted DyIG substrate: photothermal demagnetization observed by magnetic circular dichroism and numerical analysis.

    Science.gov (United States)

    Karasawa, Masanobu; Ishii, Kazuyuki

    2018-05-03

    We have investigated the demagnetization of a ferrimagnetic substrate, Bi, Al-substituted dysprosium iron garnet (Bi0.8Dy2.2Fe4.3Al0.7O12), based on selective pulsed laser irradiation of a molecular thin film consisting of μ-oxo-bis[hydroxyl{2,9(or 10),16(or 17),23(or 24)-tetra-tert-butylphthalocyanato}silicon] ((SiPc)2) and poly(vinylidene fluoride), and succeeded in reproducing photothermal energy transfer from a molecular thin film to an inorganic magnetic substrate in a submicrometer-order and a submicrosecond time scale using numerical analysis. After the instant temperature rise due to nanosecond pulsed laser irradiation of the (SiPc)2-based film, followed by heat transfer from the film to the neighboring magnetic substrate, demagnetization of the magnetic substrate was spectroscopically monitored by the decrease in its magnetic circular dichroism (MCD) intensity. The MCD intensity decreased with increasing pulsed laser energy, which reflects the fact that the submicrometer-order region of the substrate was demagnetized as a result of temperature rise reaching high Curie temperature. This heat transfer phenomenon resulting in the demagnetization of the magnetic substrate was numerically analyzed in a submicrometer-order and a submicrosecond time scale using the finite difference method: the demagnetized regions were calculated to be the same order of magnitude as those experimentally evaluated. These results would provide a more detailed understanding of photothermal energy transfer in organic-inorganic hybrid materials, which would be useful for developing photofunctional materials.

  4. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density

    International Nuclear Information System (INIS)

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-01-01

    Stable n-doping of WSe 2 using thin films of SiN x deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN x act to dope WSe 2 thin flakes n-type via field-induced effect. The electron concentration in WSe 2 can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN x through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe 2 junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe 2 n-MOSFETs with a mobility of ∼70 cm 2 /V s

  5. Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers.

    Science.gov (United States)

    Cao, Dezhong; Xiao, Hongdi; Gao, Qingxue; Yang, Xiaokun; Luan, Caina; Mao, Hongzhi; Liu, Jianqiang; Liu, Xiangdong

    2017-08-17

    Herein, a lift-off mesoporous GaN-based thin film, which consisted of a strong phase-separated InGaN/GaN layer and an n-GaN layer, was fabricated via an electrochemical etching method in a hydrofluoric acid (HF) solution for the first time and then transferred onto quartz or n-Si substrates, acting as photoanodes during photoelectrochemical (PEC) water splitting in a 1 M NaCl aqueous solution. Compared to the as-grown GaN-based film, the transferred GaN-based thin films possess higher and blue-shifted light emission, presumably resulting from an increase in the surface area and stress relaxation in the InGaN/GaN layer embedded on the mesoporous n-GaN. The properties such as (i) high photoconversion efficiency, (ii) low turn-on voltage (-0.79 V versus Ag/AgCl), and (iii) outstanding stability enable the transferred films to have excellent PEC water splitting ability. Furthermore, as compared to the film transferred onto the quartz substrate, the film transferred onto the n-Si substrate exhibits higher photoconversion efficiency (2.99% at -0.10 V) due to holes (h + ) in the mesoporous n-GaN layer that originate from the n-Si substrate.

  6. Functional Design of Dielectric-Metal-Dielectric-Based Thin-Film Encapsulation with Heat Transfer and Flexibility for Flexible Displays.

    Science.gov (United States)

    Kwon, Jeong Hyun; Choi, Seungyeop; Jeon, Yongmin; Kim, Hyuncheol; Chang, Ki Soo; Choi, Kyung Cheol

    2017-08-16

    In this study, a new and efficient dielectric-metal-dielectric-based thin-film encapsulation (DMD-TFE) with an inserted Ag thin film is proposed to guarantee the reliability of flexible displays by improving the barrier properties, mechanical flexibility, and heat dissipation, which are considered to be essential requirements for organic light-emitting diode (OLED) encapsulation. The DMD-TFE, which is composed of Al 2 O 3 , Ag, and a silica nanoparticle-embedded sol-gel hybrid nanocomposite, shows a water vapor transmission rate of 8.70 × 10 -6 g/m 2 /day and good mechanical reliability at a bending radius of 30 mm, corresponding to 0.41% strain for 1000 bending cycles. The electrical performance of a thin-film encapsulated phosphorescent organic light-emitting diode (PHOLED) was identical to that of a glass-lid encapsulated PHOLED. The operational lifetimes of the thin-film encapsulated and glass-lid encapsulated PHOLEDs are 832 and 754 h, respectively. After 80 days, the thin-film encapsulated PHOLED did not show performance degradation or dark spots on the cell image in a shelf-lifetime test. Finally, the difference in lifetime of the OLED devices in relation to the presence and thickness of a Ag film was analyzed by applying various TFE structures to fluorescent organic light-emitting diodes (FOLEDs) that could generate high amounts of heat. To demonstrate the difference in heat dissipation effect among the TFE structures, the saturated temperatures of the encapsulated FOLEDs were measured from the back side surface of the glass substrate, and were found to be 67.78, 65.12, 60.44, and 39.67 °C after all encapsulated FOLEDs were operated at an initial luminance of 10 000 cd/m 2 for sufficient heat generation. Furthermore, the operational lifetime tests of the encapsulated FOLED devices showed results that were consistent with the measurements of real-time temperature profiles taken with an infrared camera. A multifunctional hybrid thin-film encapsulation

  7. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  8. Development of Hydrogenated Microcrystalline Silicon-Germanium Alloys for Improving Long-Wavelength Absorption in Si-Based Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Yen-Tang Huang

    2014-01-01

    Full Text Available Hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H alloys were developed for application in Si-based thin-film solar cells. The effects of the germane concentration (RGeH4 and the hydrogen ratio (RH2 on the μc-Si1-xGex:H alloys and the corresponding single-junction thin-film solar cells were studied. The behaviors of Ge incorporation in a-Si1-xGex:H and μc-Si1-xGex:H were also compared. Similar to a-Si1-xGex:H, the preferential Ge incorporation was observed in μc-Si1-xGex:H. Moreover, a higher RH2 significantly promoted Ge incorporation for a-Si1-xGex:H, while the Ge content was not affected by RH2 in μc-Si1-xGex:H growth. Furthermore, to eliminate the crystallization effect, the 0.9 μm thick absorbers with a similar crystalline volume fraction were applied. With the increasing RGeH4, the accompanied increase in Ge content of μc-Si1-xGex:H narrowed the bandgap and markedly enhanced the long-wavelength absorption. However, the bias-dependent EQE measurement revealed that too much Ge incorporation in absorber deteriorated carrier collection and cell performance. With the optimization of RH2 and RGeH4, the single-junction μc-Si1-xGex:H cell achieved an efficiency of 5.48%, corresponding to the crystalline volume fraction of 50.5% and Ge content of 13.2 at.%. Compared to μc-Si:H cell, the external quantum efficiency at 800 nm had a relative increase by 33.1%.

  9. A novel method to achieve selective emitter for silicon solar cell using low cost pattern-able a-Si thin films as the semi-transparent phosphorus diffusion barrier

    International Nuclear Information System (INIS)

    Chen, Da Ming; Liang, Zong Cun; Zhuang, Lin; Lin, Yang Huan; Shen, Hui

    2012-01-01

    Highlights: ► a-Si thin films as semitransparent phosphorus diffusion barriers for solar cell. ► a-Si thin films on silicon wafers were patterned by the alkaline solution. ► Selective emitter was formed with patterned a-Si as diffusion barrier for solar cell. -- Abstract: Selective emitter for silicon solar cell was realized by employing a-Si thin films as the semi-transparent diffusion barrier. The a-Si thin films with various thicknesses (∼10–40 nm) were deposited by the electron-beam evaporation technique. Emitters with sheet resistances from 37 to 145 Ω/□ were obtained via POCl 3 diffusion process. The thickness of the a-Si diffusion barrier was optimized to be 15 nm for selective emitter in our work. Homemade mask which can dissolve in ethanol was screen-printed on a-Si film to make pattern. The a-Si film was then patterned in KOH solution to form finger-like design. Selective emitter was obtainable with one-step diffusion with patterned a-Si film on. Combinations of sheet resistances for the high-/low-level doped regions of 39.8/112.1, 36.2/88.8, 35.4/73.9 were obtained. These combinations are suitable for screen-printed solar cells. This preparation method of selective emitter based on a-Si diffusion barrier is a promising approach for low cost industrial manufacturing.

  10. Single and multijunction silicon based thin film solar cells on a flexible substrate with absorber layers made by hot-wire CVD

    Science.gov (United States)

    Li, Hongbo

    2007-09-01

    With the worldwide growing concern about reliable energy supply and the environmental problems of fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic systems, can play a major role in the urgently needed energy transition in electricity production. Solar cells based on thin film silicon and its alloys are a promising candidate that is capable of fulfilling the fast increasing demand of a reliable solar cell supply. The conventional method to deposit silicon thin films is based on plasma enhanced chemical vapour deposition (PECVD) techniques, which have the disadvantage of increasing film inhomogeneity at a high deposition rate when scaling up for the industrial production. In this thesis, we study the possibility of making high efficiency single and multijunction thin film silicon solar cells with the so-called hot-wire CVD technique, in which no strong electromagnetic field is involved in the deposition. Therefore, the up-scaling for industrial production is straightforward. We report and discuss our findings on the correlation of substrate surface rms roughness and the main output parameter of a solar cell, the open circuit voltage Voc of c-Si:H n i p cells. By considering all the possible reasons that could influence the Voc of such cells, we conclude that the near linear correlation of Voc and substrate surface rms roughness is the result the two most probable reasons: the unintentional doping through the cracks originated near the valleys of the substrate surface due to the in-diffusion of impurities, and the high density electrical defects formed by the collision of columnar silicon structures. Both of them relate to the morphology of substrate surface. Therefore, to have the best cell performance on a rough substrate surface, a good control on the substrate surface morphology is necessary. Another issue influencing the performance of c-Si:H solar cells is the

  11. Controllable Growth of Large-Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film

    Science.gov (United States)

    Lin, Ziyuan; Zhao, Yuda; Zhou, Changjian; Zhong, Ren; Wang, Xinsheng; Tsang, Yuen Hong; Chai, Yang

    2015-12-01

    Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration of gaseous MoS2, which has been shown a both thermodynamic and kinetic growth factor. A single-crystal monolayer MoS2 larger than 300 μm was successfully grown by suppressing the nuclei density and supplying sufficient source. Furthermore, we present a facile process of transferring the centimeter scale MoS2 assisted with a copper thin film. Our results show the absence of observable residues or wrinkles after we transfer MoS2 from the growth substrates onto flat substrates using this technique, which can be further extended to transfer other two-dimensional layered materials.

  12. Highly Oriented Growth of Piezoelectric Thin Films on Silicon Using Two-Dimensional Nanosheets as Growth Template Layer.

    Science.gov (United States)

    Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus

    2016-11-16

    Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.

  13. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    Science.gov (United States)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  14. Effect of TCO/μc-Si:H Interface Modification on Hydrogenated Microcrystalline Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Shin-Wei Liang

    2013-01-01

    Full Text Available The effects of H2 plasma exposure on optical, electrical, and structural properties of fluorine-doped tin oxide (FTO and AZO/FTO substrates have been investigated. With increasing the time of H2-plasma exposure, the hydrogen radical and ions penetrated through the FTO surface to form more suboxides such as SnO and metallic Sn, which was confirmed by the XPS analysis. The Sn reduction on the FTO surface can be effectively eliminated by capping the FTO with a very thin layer of sputtered aluminum-doped zinc oxide (AZO, as confirmed by the XPS analysis. By using the AZO/FTO as front TCO with the subsequent annealing, the p-i-n μc-Si:H cell exhibited a significantly enhanced JSC from 15.97 to 19.40 mA/cm2 and an increased conversion efficiency from 5.69% to 7.09%. This significant enhancement was ascribed to the effective elimination of the Sn reduction on the FTO surface by the thin AZO layer during the Si-based thin-film deposition with hydrogen-rich plasma exposure. Moreover, the subsequent annealing of the sputtered AZO could lead to less defects as well as a better interface of AZO/FTO.

  15. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  16. Nanosphere lithography applied to magnetic thin films

    Science.gov (United States)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  17. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  18. Porting of the transfer-matrix method for multilayer thin-film computations on graphics processing units

    Science.gov (United States)

    Limmer, Steffen; Fey, Dietmar

    2013-07-01

    Thin-film computations are often a time-consuming task during optical design. An efficient way to accelerate these computations with the help of graphics processing units (GPUs) is described. It turned out that significant speed-ups can be achieved. We investigate the circumstances under which the best speed-up values can be expected. Therefore we compare different GPUs among themselves and with a modern CPU. Furthermore, the effect of thickness modulation on the speed-up and the runtime behavior depending on the input data is examined.

  19. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  20. Effect of atomic layer deposited Al2O3:ZnO alloys on thin-film silicon photovoltaic devices

    Science.gov (United States)

    Abdul Hadi, Sabina; Dushaq, Ghada; Nayfeh, Ammar

    2017-12-01

    In this work, we present the effects of the Al2O3:ZnO ratio on the optical and electrical properties of aluminum doped ZnO (AZO) layers deposited by atomic layer deposition, along with AZO application as the anti-reflective coating (ARC) layer and in heterojunction configurations. Here, we report complex refractive indices for AZO layers with different numbers of aluminum atomic cycles (ZnO:Al2O3 = 1:0, 39:1, 19:1, and 9:1) and we confirm their validity by fitting models to experimental data. Furthermore, the most conductive layer (ZnO:Al2O3 = 19:1, conductivity ˜4.6 mΩ cm) is used to fabricate AZO/n+/p-Si thin film solar cells and AZO/p-Si heterojunction devices. The impact of the AZO layer on the photovoltaic properties of these devices is studied by different characterization techniques, resulting in the extraction of recombination and energy band parameters related to the AZO layer. Our results confirm that AZO 19:1 can be used as a low cost and effective conductive ARC layer for solar cells. However, AZO/p-Si heterojunctions suffer from an insufficient depletion region width (˜100 nm) and recombination at the interface states, with an estimated potential barrier of ˜0.6-0.62 eV. The work function of AZO (ZnO:Al2O3 = 19:1) is estimated to be in the range between 4.36 and 4.57 eV. These material properties limit the use of AZO as an emitter in Si solar cells. However, the results imply that AZO based heterojunctions could have applications as low-cost photodetectors or photodiodes, operating under relatively low reverse bias.

  1. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  2. The effect of the silver nanoparticles on the dynamics of singlet-singlet energy transfer of luminophores in thin films of polyvinyl alcohol

    International Nuclear Information System (INIS)

    Bryukhanov, V.V.; Samusev, I.G.; Slezhkin, V.A.; Tsibul'nikova, A.V.

    2014-01-01

    The effect of ablated silver nanoparticles (ANP) on the dynamics of non-radiative inductance-resonance energy transfer and phosphorescence in the donor-acceptor pair of molecules of eosin and methylene blue (MB) luminophores embedded in thin films of polyvinyl alcohol have been investigated. Increased fluorescence intensity of donor (eosin) and acceptor (MB) molecules, as well as a growth of the dipole-dipole transfer efficiency have been obtained under the resonant excitation of the silver ANP surface plasmons in the absorption band of the donor energy. The luminescence quantum yields and the fluorescence lifetimes have been measured. The energy transfer constants, degree of polarization and fluorescence anisotropy have been determined. (authors)

  3. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-03-01

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  4. Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 1 February 2005 - 31 July 2008

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P. C.; Williams, G. A.

    2009-09-01

    Electron spin resonance and nuclear magnetic resonance was done on amorphous silicon samples (modules with a-Si:H and a-SixGe1-x:H intrinsic layer) to study defects that contribute to Staebler-Wronski effect.

  5. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  6. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon

  7. Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates

    International Nuclear Information System (INIS)

    Rusop, M.; Uma, K.; Soga, T.; Jimbo, T.

    2006-01-01

    Zinc oxide (ZnO) thin films have been prepared by pulsed laser deposition (PLD) technique at room temperature on quartz and single crystal silicon (1 0 0) substrates. The oxygen ambient gas pressure was attained at 6 Torr during the deposition. The deposited films were post-growth annealed in air at various annealing temperatures for 30 min. The X-ray diffraction (XRD), optical and electrical properties have been measured to study the properties of the films as a function of annealing temperatures. XRD has shown the strength of (0 0 2) peak increases and FWHM value decreases as the annealing temperatures increases from 200 to 600 deg. C. The post-growth annealed at 600 deg. C show dominant c-axis oriented hexagonal wurtize crystal structure and exhibit high average transmittance about 85% in the visible region and very sharp absorption edge at 376 nm with energy band gap of approximately 3.46 eV. Electrical measurement indicates the resistivity decreases with the annealing temperatures up to 600 deg. C, after which it increases with higher annealing temperatures at 800 deg. C. The complex of oxygen vacancy in the ZnO films may be the source of low conductivity in undoped ZnO films

  8. Single-crystal-like GdNdO{sub x} thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziwei; Xiao, Lei; Liang, Renrong, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn; Shen, Shanshan; Xu, Jun; Wang, Jing, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn [Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2016-06-15

    Single-crystal-like rare earth oxide thin films on silicon (Si) substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdO{sub x} (GNO) film was deposited using a high-temperature sputtering process at 500°C. A Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} mixture was used as the sputtering target, in which the proportions of Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  9. Sub-bandgap optical absorption spectroscopy of hydrogenated microcrystalline silicon thin films prepared using hot-wire CVD (Cat-CVD) process

    International Nuclear Information System (INIS)

    Goktas, O.; Isik, N.; Okur, S.; Gunes, M.; Carius, R.; Klomfass, J.; Finger, F.

    2006-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films with different silane concentration (SC) have been prepared using the HW-CVD technique. Dual beam photoconductivity (DBP), photothermal deflection spectroscopy (PDS), and transmission measurements have been used to investigate the optical properties of the μc-Si:H films. Two different sub-bandgap absorption, α(hν), methods have been applied and analyzed to obtain a better insight into the electronic states involved. A good agreement has been obtained in the absorption spectrum obtained from the PDS and DBP measurements at energies above the bandgap. Differences between PDS and DBP spectra exist below the bandgap energy where DBP spectra always give lower α(hν) values and show a dependence on the SC. For some films, differences exist in the α(hν) spectra when the DBP measurements are carried out through the film and substrate side. In addition, for some films, there remains fringe pattern left on the spectrum after the calculation of the fringe-free absorption spectrum, which indicates structural inhomogeneities present throughout the film

  10. Light scattering effect of ITO:Zr/AZO films deposited on periodic textured glass surface morphologies for silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahzada Qamar [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Kwon, Gi Duk; Kim, Sunbo; Balaji, Nagarajan; Shin, Chonghoon; Kim, Sangho; Khan, Shahbaz; Pribat, Didier [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Raja, Jayapal; Lee, Youn-Jung [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Razaq, Aamir [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Velumani, S. [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Department of Electrical Engineering (SEES), Mexico City (Mexico); Yi, Junsin [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of)

    2015-09-15

    Various SF{sub 6}/Ar plasma-textured periodic glass surface morphologies for high transmittance, haze ratio and low sheet resistance of ITO:Zr films are reported. The SF{sub 6}/Ar plasma-textured glass surface morphologies were changed from low aspect ratio to high aspect ratio with the increase in RF power from 500 to 600 W. The micro- and nano-size features of textured glass surface morphologies enhanced the haze ratio in visible as well as NIR wavelength region. Micro-size textured features also influenced the sheet resistance and electrical characteristics of ITO:Zr films due to step coverage. The ITO:Zr/AZO bilayer was used as front TCO electrode for p-i-n amorphous silicon thin film solar cells with current density-voltage characteristics as: V{sub oc} = 875 mV, FF = 70.90 %, J{sub sc} = 11.31 mA/cm{sup 2}, η = 7.02 %. (orig.)

  11. Optical constants of silicon-like (Si:Ox:Cy:Hz) thin films deposited on quartz using hexamethyldisiloxane in a remote RF hollow cathode discharge plasma

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2008-01-01

    Deposition of amorphous silicon-like (Si:O x :C y :H z ) thin films in a remote RF hollow cathode discharge plasma using Hexamethyldisoloxane as monomer and Ar as feed gas; has been investigated for films optical constants and plasma diagnostic as a function of RF power (100-300 W) and precursor flow rate (1-10 sccm). Plasma diagnostic has been performed using optical emission spectroscopy (OES). The optical constants (refractive index, extinction coefficient and dielectric constant) have been obtained by reflection/transmission measurements in the range 300-700 nm. It is found that the refractive index increases from 1.92 to 1.97 with increasing power from 100 to 300 W, and from 1.70 to 1.92 with increasing precursor flow rate from 1 to 10 sccm. The optical energy-band gap E g and the optical-absorption tail ΔE have been estimated from optical absorption spectra, it is found that E g decreases from 3.28 eV to 3.14 eV with power increase from 100 to 300 W, and from 3.54 eV to 3.28 eV with precursor flow rate increase from 1 to 10 sccm. ΔE is found to increase with applied RF power and precursor flow rate increase. The dependence of optical constants on deposition parameters has been correlated to plasma OES. (author)

  12. Single-crystal-like GdNdOx thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Directory of Open Access Journals (Sweden)

    Ziwei Wang

    2016-06-01

    Full Text Available Single-crystal-like rare earth oxide thin films on silicon (Si substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdOx (GNO film was deposited using a high-temperature sputtering process at 500°C. A Gd2O3 and Nd2O3 mixture was used as the sputtering target, in which the proportions of Gd2O3 and Nd2O3 were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  13. Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Sana; Dimassi, Wissem; Ali Tebai, Mohamed; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by plasma enhanced chemical vapor deposition (PECVD) method at low temperature (400 C) using high rf power (60 W). The structural and optical properties of these films are systematically investigated as a function of the flow rate of hydrogen (F{sub H2}).The surface morphology is analyzed by atomic force microscopy (AFM). The characterization of these films with low angle X-ray diffraction revealed that the crystallite size in the films tends to decrease with increase in (F{sub H2}). The Fourier transform infrared (FTIR) spectroscopic analysis showed that at low values of (F{sub H2}),the hydrogen bonding in Si:H films shifts from di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2})n complexes to the mono-hydrogen (Si-H) bonding configuration. Finally, for these optimized conditions, the deposition rate decreases with increasing (F{sub H2}). (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon

    Science.gov (United States)

    Guo, Bing; Qiu, Z. R.; Wong, K. S.

    2003-04-01

    We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.

  15. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture application type thin film solar cells with new structure (development of technologies to manufacture amorphous silicon and thin film poly-crystal silicon hybrid thin film solar cells); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (amorphous silicon/usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was performed with an objective to manufacture amorphous silicon and thin film poly-crystal silicon hybrid solar cells with large area and at low cost, being a high-efficiency next generation solar cell. The research was performed based on a principle that low-cost substrates shall be used, that a manufacturing process capable of forming amorphous silicon films with large area shall be based on, and that silicon film with as thin as possible thickness shall be used. Fiscal 1997 has started research and development on making the cells hybrid with amorphous silicon cells. As a result of the research and development, such achievements have been attained as using texture structure on the rear layer in thin poly-crystal silicon film solar cells with a thickness of two microns, and having achieved conversion efficiency of 10.1% by optimizing the junction interface forming conditions. A photo-deterioration test was carried out on hybrid cells which combine the thin poly-crystal silicon film cells having STAR structure with the amorphous silicon cells. Stabilization efficiency of 11.5% was attained after light has been irradiated for 500 hours or longer. (NEDO)

  16. Effect of Substrates on the Dynamic Properties of Inkjet-Printed Ag Thin Films

    Directory of Open Access Journals (Sweden)

    Deokman Kim

    2018-01-01

    Full Text Available The dynamic properties of inkjet-printed Ag thin films on flexible substrates were measured using flexural wave propagation. The Ag nanoparticle suspension was inkjet-printed on polyimide (PI, silicon wafer, and glass. The effects of flexible substrates on the dynamic properties of the films were investigated. Beam-shaped Ag-printed substrates were fabricated by pico-second laser pulse cutting. The wave approach was presented to analyze the vibrations of the thin film on the substrates. The Young’s modulus and loss factor of the Ag thin films with the substrates were represented by the combined bending stiffness of the bilayer beam. The vibration response of the base-excited cantilever was measured using an accelerometer and laser Doppler vibrometer (LDV. Vibration transfers were analyzed to obtain dynamic characteristics of the Ag-printed bilayer beam. The substrate affects the reduction of the Ag thin film thickness during the sintering process and surface roughness of the film. The proposed method based on the wave approach allows measurement of the dynamic properties regardless of the ratio of the modulus between the thin film and substrate.

  17. Electronic charge transfer in cobalt doped fullerene thin films and effect of energetic ion impacts by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Thakur, P.; Kumar, Amit; Gautam, S.; Chae, K.H.

    2011-01-01

    We report on the electronic charge transfer in cobalt doped fullerene thin films by means of near-edge x-ray-absorption fine structure (NEXAFS) spectroscopy measurement. Co-doped fullerene films were prepared by co-deposition technique and subjected to energetic ion irradiation (120 MeV Au) for possibly alignment or interconnect of randomly distributed metal particles. Polarization dependent NEXAFS spectra revealed the alignment of Co and C atoms along the irradiated ionic path. The structural changes in Co-doped as-deposited and ion irradiated fullerene films were investigated by means of Raman spectroscopy measurements. Downshift of pentagonal pinch mode A g (2) in Raman spectroscopy indicated the electronic charge transfer from Co atom to fullerene molecules, which is further confirmed by NEXAFS at C K-edge for Co-doped fullerene films.

  18. Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Feinaeugle, M., E-mail: m.feinaeugle@utwente.nl [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Gregorčič, P. [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000, Ljubljana (Slovenia); Heath, D.J. [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Mills, B., E-mail: bm602@orc.soton.ac.uk [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Eason, R.W. [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2017-02-28

    Highlights: • Laser-induced backward transfer was investigated by time-resolved shadowgraphy. • Flyer velocity was a function of carrier, donor thickness, delay and fluence. • We investigated the fluence window for intact transfer and the role of the receiver. • Donor-crater profile variation was studied for different ejection regimes. • Conditions for intact and fragmented flyers were determined. - Abstract: We have studied the transfer regimes and dynamics of polymer flyers from laser-induced backward transfer (LIBT) via time-resolved shadowgraphy. Imaging of the flyer ejection phase of LIBT of 3.8 μm and 6.4 μm thick SU-8 polymer films on germanium and silicon carrier substrates was performed over a time delay range of 1.4–16.4 μs after arrival of the laser pulse. The experiments were carried out with 150 fs, 800 nm pulses spatially shaped using a digital micromirror device, and laser fluences of up to 3.5 J/cm{sup 2} while images were recorded via a CCD camera and a spark discharge lamp. Velocities of flyers found in the range of 6–20 m/s, and the intact and fragmented ejection regimes, were a function of donor thickness, carrier and laser fluence. The crater profile of the donor after transfer and the resulting flyer profile indicated different flyer ejection modes for Si carriers and high fluences. The results contribute to better understanding of the LIBT process, and help to determine experimental parameters for successful LIBT of intact deposits.

  19. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  20. High efficiency high rate microcrystalline silicon thin-film solar cells deposited at plasma excitation frequencies larger than 100 MHz

    Czech Academy of Sciences Publication Activity Database

    Strobel, C.; Leszczynska, B.; Merkel, U.; Kuske, J.; Fischer, D.D.; Albert, M.; Holovský, Jakub; Michard, S.

    2015-01-01

    Roč. 143, Dec (2015), 347-353 ISSN 0927-0248 R&D Projects: GA MŠk 7E12029 EU Projects: European Commission(XE) 283501 - Fast Track Institutional support: RVO:68378271 Keywords : VHF * PECVD * microcrystalline silicon * solar cell * high rate * high efficiency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  1. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Casas Espinola, J.L. [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Vergara Hernandez, E. [UPIITA—Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Khomenkova, L., E-mail: khomen@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, 03028 Kyiv (Ukraine); Delachat, F.; Slaoui, A. [ICube, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2 (France)

    2015-04-30

    Si-rich Silicon nitride films were grown on silicon substrates by plasma enhanced chemical vapor deposition. The film stoichiometry was controlled via the variation of NH{sub 3}/SiH{sub 4} ratio from 0.45 up to 1.0. Thermal annealing at 1100 °C for 30 min in the nitrogen flow was applied to form the Si nanocrystals in the films that have been investigated by means of photoluminescence and Raman scattering methods, as well as transmission electron microscopy. Several emission bands have been detected with the peak positions at: 2.8–3.0 eV, 2.5–2.7 eV, 2.10–2.25 eV, and 1.75–1.98 eV. The temperature dependences of photoluminescence spectra were studied with the aim to confirm the types of optical transitions and the nature of light emitting defects in silicon nitride. The former three bands were assigned to the defects in silicon nitride, whereas the last one (1.75–1.98 eV) was attributed to the exciton recombination inside of Si nanocrystals. The photoluminescence mechanism is discussed. - Highlights: • Substoichiometric silicon nitride films were grown by PECVD technique. • The variation of the NH{sub 3}/SiH{sub 4} ratio controls excess Si content in the films. • Both Si nanocrystals and amorphous Si phase were observed in annealed films. • Temperature evolution of carrier recombination via Si nanocrystals and host defects.

  2. Silicon supported lipid-DNA thin film structures at varying temperature studied by energy dispersive X-ray diffraction and neutron reflectivity.

    Science.gov (United States)

    Domenici, F; Castellano, C; Dell'Unto, F; Albinati, A; Congiu, A

    2011-11-01

    Non-viral gene transfection by means of lipid-based nanosystems, such as solid supported lipid assemblies, is often limited due to their lack of stability and the consequent loss of efficiency. Therefore not only a detailed thermo-lyotropic study of these DNA-lipid complexes is necessary to understand their interaction mechanisms, but it can also be considered as a first step in conceiving and developing new transfection biosystems. The aim of our study is a structural characterization of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)-dimethyl-dioctadecyl-ammonium bromide (DDAB)-DNA complex at varying temperature using the energy dispersive X-ray diffraction (EDXD) and neutron reflectivity (NR) techniques. We have shown the formation of a novel thermo-lyotropic structure of DOPC/DDAB thin film self-organized in multi-lamellar planes on (100)-oriented silicon support by spin coating, thus enlightening its ability to include DNA strands. Our NR measurements indicate that the DOPC/DDAB/DNA complex forms temperature-dependent structures. At 65°C and relative humidity of 100% DNA fragments are buried between single lamellar leaflets constituting the hydrocarbon core of the lipid bilayers. This finding supports the consistency of the hydrophobic interaction model, which implies that the coupling between lipid tails and hypo-hydrated DNA single strands could be the driving force of DNA-lipid complexation. Upon cooling to 25°C, EDXD analysis points out that full-hydrated DOPC-DDAB-DNA can switch in a different metastable complex supposed to be driven by lipid heads-DNA electrostatic interaction. Thermotropic response analysis also clarifies that DOPC has a pivotal role in promoting the formation of our observed thermophylic silicon supported lipids-DNA assembly. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Heat transfer analysis of MHD thin film flow of an unsteady second grade fluid past a vertical oscillating belt.

    Directory of Open Access Journals (Sweden)

    Taza Gul

    Full Text Available This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM and Optimal Homotopy Asymptotic Method (OHAM. The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.

  4. Heat Transfer Analysis of MHD Thin Film Flow of an Unsteady Second Grade Fluid Past a Vertical Oscillating Belt

    Science.gov (United States)

    Gul, Taza; Islam, Saeed; Shah, Rehan Ali; Khan, Ilyas; Khalid, Asma; Shafie, Sharidan

    2014-01-01

    This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed. PMID:25383797

  5. Nanostructured thin films as functional coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Manoj A; Tadvani, Jalil K; Tung, Wing Sze; Lopez, Lorena; Daoud, Walid A, E-mail: Walid.Daoud@sci.monash.edu.au [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia)

    2010-06-15

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  6. Self-assembled monolayer resists and nanoscale lithography of silicon dioxide thin films by chemically enhanced vapor etching (CEVE)

    Science.gov (United States)

    Pan, M.; Yun, M.; Kozicki, M. N.; Whidden, T. K.

    1996-10-01

    We report on the use of electron-beam exposed monolayers of undecylenic acid in the etch rate enhancement of silicon dioxide films in HF vapor for the formation of nanoscale features in the oxide. Variations of the etching characteristics with electron beam parameters are examined and the results analyzed in terms of proposed models of the etching mechanism. Apparent variations in the relative concentrations of etch initiator with the thermal history of the samples prior to etching provides support for the dominant etch initiator within this system as the carboxylic acid moiety bound at the oxide surface. Other variations in the etching characteristics are discussed in terms of differences in localized concentrations of hydrocarbon crosslinks and the effect that this has upon the etch initiation. The process has been employed in the production of features in silicon dioxide surface masks with sizes down to 50 nm.

  7. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal; Jabbour, Ghassan E.

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  8. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S; Ridge, Claron J.; Rö tzer, Marian David; Zwaschka, Gregor; Braun, Thomas; D'Elia, Valerio; Basset, Jean-Marie; Schweinberger, Florian Frank; Gü nther, Sebastian; Heiz, Ueli

    2015-01-01

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly

  9. Complex nano-patterning of structural, optical, electrical and electron emission properties of amorphous silicon thin films by scanning probe

    Czech Academy of Sciences Publication Activity Database

    Fait, Jan; Čermák, Jan; Stuchlík, Jiří; Rezek, Bohuslav

    2018-01-01

    Roč. 428, Jan (2018), s. 1159-1165 ISSN 0169-4332 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : amorphous silicon * nano-templates * nanostructures * electrical conductivity * electron emission * atomic force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  10. Thin film polycrystalline silicon solar cells. Quarterly technical progress report No. 3, 1 April 1980-30 June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, K. R.; Rice, M. J.; Legge, R.; Ellis, R. J.

    1980-06-01

    During this third quarter of the program, the high pressure plasma (hpp) deposition process has been thoroughly evaluated using SiHCl/sub 3/ and SiCl/sub 4/ silicon source gases, by the gas chromatographic analysis of the effluent gases from the reactor. Both the deposition efficiency and reactor throughput rate were found to be consistently higher for hpp mode of operation compared to conventional CVD mode. The figure of merit for various chlorosilanes as a silicon source gas for hpp deposition is discussed. A new continuous silicon film deposition scheme is developed, and system design is initiated. This new system employs gas interlocks and eliminates the need for gas curtains which have been found to be problematic. Solar cells (2 cm x 2 cm area) with AM1 efficiencies of up to 12% were fabricated on RTR grain enhanced hpp deposited films. The parameters of a 12% cell under simulated AM1 illumination were: V/sub OC/ = 0.582 volts, J/sub SC/ = 28.3 mA/cm/sup 2/ and F.F. = 73.0%.

  11. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  12. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  13. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  14. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  15. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  16. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    Science.gov (United States)

    Shibuya, Keisuke; Sawa, Akihito

    2015-10-01

    We systematically examined the effects of the substrate temperature (TS) and the oxygen pressure (PO2) on the structural and optical properties polycrystalline V O2 films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O2 phase was formed at a TS ≥ 450 °C at PO2 values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O2 films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O2 on the surface of the silicon substrate. An apparent change in the refractive index across the metal-insulator transition (MIT) temperature was observed in V O2 films grown at a TS of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the TS and PO2, and was maximal for a V O2 film grown at 450 °C under 20 mTorr. Based on the results, we derived the PO2 versus 1/TS phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O2 films on silicon platforms.

  17. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    Directory of Open Access Journals (Sweden)

    Keisuke Shibuya

    2015-10-01

    Full Text Available We systematically examined the effects of the substrate temperature (TS and the oxygen pressure (PO2 on the structural and optical properties polycrystalline V O2 films grown directly on Si(100 substrates by pulsed-laser deposition. A rutile-type V O2 phase was formed at a TS ≥ 450 °C at PO2 values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O2 films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O2 on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT temperature was observed in V O2 films grown at a TS of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the TS and PO2, and was maximal for a V O2 film grown at 450 °C under 20 mTorr. Based on the results, we derived the PO2 versus 1/TS phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O2 films on silicon platforms.

  18. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Hazra, Purnima; Jit, S.

    2014-01-01

    This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In this work, silicon nanowire arrays were prepared on p-type (100)-oriented Si substrate by an electroless metal deposition and etching method with the help of ultrasonication. After that, catalyst-free deposition of zinc oxide (ZnO) nanowires on a silicon nanowire (SiNW) array substrate was done by utilizing a simple and cost-effective thermal evaporation technique without using a buffer layer. The SEM and XRD techniques are used to show the quality of the as-grown ZnO nanowire film. The junction properties of the diode are evaluated by measuring current—voltage and capacitance—voltage characteristics. The diode has a well-defined rectifying behavior with a rectification ratio of 190 at ±2 V, turn-on voltage of 0.5 V, and barrier height is 0.727 eV at room temperature under dark conditions. The photodetection parameters of the diode are investigated in the bias voltage range of ±2 V. The diode shows responsivity of 0.8 A/W at a bias voltage of 2 V under UV illumination (wavelength = 365 nm). The characteristics of the device indicate that it can be used for UV detection applications in nano-optoelectronic and photonic devices. (semiconductor devices)

  19. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  20. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  1. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  2. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  3. High resolution x-ray scattering studies of strain in epitaxial thin films of yttrium silicide grown on silicon (111)

    International Nuclear Information System (INIS)

    Marthinez-Miranda, L.J.; Santiago-Aviles, J.J.; Siegal, M.P.; Graham, W.R.; Heiney, P.A.

    1990-01-01

    The authors have used high resolution grazing incidence x-ray scattering (GIXS) to study the in- plane and out-of-plane structure of epitaxial YSi 2-x films grown on Si(111), with thicknesses ranging from 85 Angstrom to 510 Angstrom. Their results indicate that the films are strained, and that film strain increases as a function of thickness, with lattice parameters varying from a = 3.846 Angstrom/c = 4.142 Angstrom for the 85 Angstrom film to a = 3.877 Angstrom/c = 4.121 Angstrom for the 510 Angstrom film. The authors correlate these results with an increase in pinhole areal coverage as a function of thickness. In addition, the authors' measurements show no evidence for the existence of ordered silicon vacancies in the films

  4. Growth of nanocrystalline silicon thin film with layer-by-layer technique for fast photo-detecting applications

    International Nuclear Information System (INIS)

    Lin, C.-Y.; Fang, Y.-K.; Chen, S.-F.; Lin, P.-C.; Lin, C.-S.; Chou, T.-H; Hwang, J.S.; Lin, K.I.

    2006-01-01

    High mobility nanocrystalline silicon (nc-Si) films with layer-by-layer technique for fast photo-detecting applications were studied. The structure and morphology of films were studied by means of XRD, micro-Raman scattering, SEM and AFM. The Hall mobility and absorption properties have been investigated and found they were seriously affected by the number of layers in growing, i.e., with increasing of layer number, Hall mobility increased but absorption coefficient decreased. The optimum layer number of nc-Si films for fast near-IR photo-detecting is 7 with film thickness of 1400 nm, while that for fast visible photo-detecting is 17 with film thickness of 3400 nm

  5. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Ke, Cangming; Sahraei, Nasim; Aberle, Armin G.; Stangl, Rolf; Peters, Ian Marius

    2015-01-01

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t + -i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlO x ) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlO x parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t + -i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm 2 , according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed

  6. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    International Nuclear Information System (INIS)

    Hongsingthong, Aswin; Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran; Konagai, Makoto

    2013-01-01

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF 4 ) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass

  7. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hongsingthong, Aswin, E-mail: aswin.hongsingthong@nectec.or.th [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Konagai, Makoto [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, NE-15, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2013-06-30

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF{sub 4}) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass.

  8. Molecular tailoring of interfaces for thin film on substrate systems

    Science.gov (United States)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  9. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  10. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  11. Biomimetic spiral grating for stable and highly efficient absorption in crystalline silicon thin-film solar cells

    KAUST Repository

    Hou, Jin; Hong, Wei; Li, Xiaohang; Yang, Chunyong; Chen, Shaoping

    2017-01-01

    By emulating the phyllotaxis structure of natural plants, which has an efficient and stable light capture capability, a two-dimensional spiral grating is introduced on the surface of crystalline silicon solar cells to obtain both efficient and stable light absorption. Using the rigorous coupled wave analysis method, the absorption performance on structural parameter variations of spiral gratings is investigated firstly. Owing to diffraction resonance and excellent superficies antireflection, the integrated absorption of the optimal spiral grating cell is raised by about 77 percent compared with the conventional slab cell. Moreover, though a 15 percent deviation of structural parameters from the optimal spiral grating is applied, only a 5 percent decrease of the absorption is observed. This reveals that the performance of the proposed grating would tolerate large structural variations. Furthermore, the angular and polarization dependence on the absorption of the optimized cell is studied. For average polarizations, a small decrease of only 11 percent from the maximum absorption is observed within an incident angle ranging from −70 to 70 degrees. The results show promising application potentials of the biomimetic spiral grating in the solar cell.

  12. Biomimetic spiral grating for stable and highly efficient absorption in crystalline silicon thin-film solar cells

    KAUST Repository

    Hou, Jin

    2017-09-12

    By emulating the phyllotaxis structure of natural plants, which has an efficient and stable light capture capability, a two-dimensional spiral grating is introduced on the surface of crystalline silicon solar cells to obtain both efficient and stable light absorption. Using the rigorous coupled wave analysis method, the absorption performance on structural parameter variations of spiral gratings is investigated firstly. Owing to diffraction resonance and excellent superficies antireflection, the integrated absorption of the optimal spiral grating cell is raised by about 77 percent compared with the conventional slab cell. Moreover, though a 15 percent deviation of structural parameters from the optimal spiral grating is applied, only a 5 percent decrease of the absorption is observed. This reveals that the performance of the proposed grating would tolerate large structural variations. Furthermore, the angular and polarization dependence on the absorption of the optimized cell is studied. For average polarizations, a small decrease of only 11 percent from the maximum absorption is observed within an incident angle ranging from −70 to 70 degrees. The results show promising application potentials of the biomimetic spiral grating in the solar cell.

  13. Correlation of the crystal orientation and electrical properties of silicon thin films on glass crystallized by line focus diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Huang, J.; Teal, A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Suntech R& D Australia, Botany, NSW 2019 (Australia); Varlamov, S.; Green, M.A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-06-30

    In this work, crystallographic orientation of polycrystalline silicon films on glass formed by continuous wave diode laser crystallization was studied. Most of the grain boundaries were coincidence lattice Σ3 twin boundaries and other types of boundaries such as, Σ6, Σ9, and Σ21 were also frequently observed. The highest photoluminescence signal and mobility were observed for a grain with (100) orientation in the normal direction. X-ray diffraction results showed the highest occupancies between 41 and 70% along the (110) orientation. However, the highest occupancies changed to (100) orientation when a 100 nm thick SiO{sub x} capping layer was applied. Suns-Voc measurement and photoluminescence showed that higher solar cell performance is obtained from the cell crystallized with the capping layer, which is suspected from increased occupancies of (100) orientation. - Highlights: • Linear grains parallel to the scan direction formed with high density. • Σ3 coincidence lattice (CSL) boundaries found inside a grain • Grain boundaries exhibit various CSL boundaries such as Σ9, Σ18, and Σ27. • Grain with < 100 > orientation in normal direction showed highest electrical properties. • Improved voltage observed when percentage of < 100 > normal orientation is increased.

  14. Effect of TiO{sub 2} nanopatterns on the performance of hydrogenated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joon-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Yang, Ji-Hwan; Lim, Koeng Su [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Han, Kang-Soo; Kim, Yang-Doo; Lee, Heon; Song, Jun-Hyuk [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Kyoung-Kook [Department of Nano-Optical Engineering, Korea Polytechnic University, Gyeonggi 429-793 (Korea, Republic of); Seong, Tae-Yeon, E-mail: tyseong@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-07-31

    We investigate how TiO{sub 2} nanopatterns formed onto ZnO:Al (AZO) films affect the performance of hydrogenated amorphous silicon (a-Si:H) solar cells. Scanning electron microscopy results show that the dome-shaped TiO{sub 2} nanopatterns (300 nm in diameter) having a period of 500 nm are formed onto AZO films and vary from 60 to 180 nm in height. Haze factor increases with an increase in the height of the nanopatterns in the wavelength region below 530 nm. Short circuit current density also increases with an increase in the height of the nanopatterns. As the nanopatterns increases in height, the fill factor of the cells slightly increases, reaches maximum (0.64) at 100 nm, and then decreases. Measurements show that a-Si:H solar cells fabricated with 100 nm-high TiO{sub 2} nanopatterns exhibit the highest conversion efficiency (6.34%) among the solar cells with the nanopatterns and flat AZO sample. - Highlights: Black-Right-Pointing-Pointer We investigated the height effect of TiO{sub 2} nanopatterns on the a-Si:H solar cells. Black-Right-Pointing-Pointer Light scattering and anti-reflection were introduced by TiO{sub 2} nanopatterns. Black-Right-Pointing-Pointer a-Si:H Solar cells with the 100 nm-high TiO{sub 2} nanopatterns showed highest efficiency.

  15. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications.

    Science.gov (United States)

    Guo, Xiaoying; Li, Huan; Ahn, Bok Yeop; Duoss, Eric B; Hsia, K Jimmy; Lewis, Jennifer A; Nuzzo, Ralph G

    2009-12-01

    Fabrication of 3D electronic structures in the micrometer-to-millimeter range is extremely challenging due to the inherently 2D nature of most conventional wafer-based fabrication methods. Self-assembly, and the related method of self-folding of planar patterned membranes, provide a promising means to solve this problem. Here, we investigate self-assembly processes driven by wetting interactions to shape the contour of a functional, nonplanar photovoltaic (PV) device. A mechanics model based on the theory of thin plates is developed to identify the critical conditions for self-folding of different 2D geometrical shapes. This strategy is demonstrated for specifically designed millimeter-scale silicon objects, which are self-assembled into spherical, and other 3D shapes and integrated into fully functional light-trapping PV devices. The resulting 3D devices offer a promising way to efficiently harvest solar energy in thin cells using concentrator microarrays that function without active light tracking systems.

  16. Effects of specific adsorption of copper (II) ion on charge transfer reaction at the thin film LiMn2O4 electrode/aqueous electrolyte interface

    International Nuclear Information System (INIS)

    Nakayama, N.; Yamada, I.; Huang, Y.; Nozawa, T.; Iriyama, Y.; Abe, T.; Ogumi, Z.

    2009-01-01

    This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn 2 O 4 thin film electrode/aqueous solution (1 mol dm -3 LiNO 3 ) interface. The zeta potential of LiMn 2 O 4 particles showed a negative value in 1 x 10 -2 mol dm -3 LiNO 3 aqueous solution, while it was measured as positive in the presence of 1 x 10 -2 mol dm -3 Cu(NO 3 ) 2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO 3 ) 2 was estimated to be 35 kJ mol -1 , which was ca. 10 kJ mol -1 larger than that observed in the solution without Cu(NO 3 ) 2 . These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction

  17. Oriented thin films of mixture of a low-bandgap polymer and a fullerene derivative prepared by friction-transfer method

    Science.gov (United States)

    Tanigaki, Nobutaka; Mizokuro, Toshiko; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-02-01

    We have been studying oriented thin films of polymers fabricated by the friction-transfer method, which allows the alignment of a variety of conjugated polymers into highly oriented films. In this study, we prepared oriented blend films of a mixture of a low-bandgap polymer, poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7), and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), which is a promising combination for application in organic solar cells. We obtained oriented blend films of PTB7 and PC71BM by the friction-transfer method from a solid block. Polarized UV-visible spectra show that the PTB7 chains were aligned parallel to the friction direction in the blend films. Grazing-incidence X-ray diffraction (GIXD) studies with synchrotron radiation suggested that the preferred orientation of PTB7 crystallites was face-on in the blend films. The GIXD results also showed the high uniaxial orientation of PTB7 chains in blend films. Photovoltaic devices were fabricated using the friction-transferred blend films of the PTB7 and PC71BM. These bulk heterojunction devices showed better performance than planar heterojunction devices fabricated using pure friction-transferred PTB7 films.

  18. Interfacial phonon scattering and transmission loss in >1 μm thick silicon-on-insulator thin films

    Science.gov (United States)

    Jiang, Puqing; Lindsay, Lucas; Huang, Xi; Koh, Yee Kan

    2018-05-01

    Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. To better understand the interfacial scattering of phonons and to test the validity of Ziman's theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1-10 μm and a temperature range of 100-300 K. The Si /SiO2 interface roughness was determined to be 0.11 ±0.04 nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. We derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.

  19. High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate

    International Nuclear Information System (INIS)

    Qin, Guoxuan; Yuan, Hao-Chih; Ma, Zhenqiang; Yang, Hongjun; Zhou, Weidong

    2011-01-01

    Inexpensive polycrystalline Si (poly-Si) with large grain size is highly desirable for flexible electronics applications. However, it is very challenging to directly deposit high-quality poly-Si on plastic substrates due to processing constrictions, such as temperature tolerance and residual stress. In this paper, we present our study on poly-Si membranes that are stress free and most importantly, are transferrable to any substrate including a low-temperature polyethylene terephthalate (PET) substrate. We formed poly-Si-on-insulator by first depositing small-grain size poly-Si on an oxidized Si wafer. We then performed high-temperature annealing for recrystallization to obtain larger grain size. After selective doping on the poly-Si-on-insulator, buried oxide was etched away. By properly patterning the poly-Si layer, residual stress in the released poly-Si membranes was completely relaxed. The flat membrane topology allows the membranes to be print transferred to any substrates. High-performance TFTs were demonstrated on the transferred poly-Si membranes on a PET substrate

  20. FY 1977 Annual report on Sunshine Project results. Research and development of photovoltaic power generation systems (Research and development of particle nonacceleration growth type silicon thin-film crystals); 1977 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Ryushi hikasoku seichogata silicon usumaku kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    As part of the research and development project for producing photovoltaic power generation systems at reduced cost, the R and D efforts are made for producing particle nonacceleration growth type silicon thin-film crystals. The research items are (1) research on thin-film crystals, and (2) research on cell-structuring method. The item (1) studies quantities, types and electrical properties of impurities and crystal defects in the polycrystalline ingots, produced by the Czochralski method from metal grade silicon and purified metal grade silicon stocks. Next, the substrate prepared above is coated with a thin film of silicon by the vapor-phase growth method with dichlorosilane as the source, to evaluate the thin-film crystals by measuring the crystal defects and lifetime of small numbers of carriers. The item (2) studies the effects of the solder dipping method. In addition, unevenness of photoelectric current is analyzed by a laser scanning microscope, to investigate the effects of the secondary impurities and crystal defects in the substrate crystals on photoelectric current. As a result, it is found that conversion efficiency is improved by grading the hole concentration in the p-type activated layer. The targets of 10 to 20 m{sup 2} as the area and 7 to 8% as the conversion efficiency are attained by preparing the crystals again. (NEDO)

  1. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of low-cost/large-area modules (Development of production technology of application type new structure thin film solar cells/Development of production technology of amorphous silicon-thin film polycrystal silicon hybrid thin film solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Tei cost dai menseki mojuru seizo gijutsu kaihatsu (Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, Amorufasusilicon hakumaku takessho silicon hybrid hakumaku taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of developing the application type new structure thin film solar cell that is low-cost, high-efficient and practical, a developmental study was made of production technology of amorphous silicon/thin film polycrystal silicon hybrid thin film solar cells, and the FY 2000 results were reported. In the study of the heightening of efficiency of the small area hybrid cell, a structure was adopted in which a transparent intermediate layer was installed between a-Si cell and bottom poly-Si cell, and the initial efficiency of 14.0% was obtained in the small area cell 1cm square. As to the large area hybrid module, the initial efficiency of 11.7% and maximum output of 44.9W were achieved in the large area substrate module with a size of 910 x 455mm. In the indoor/outdoor evaluation of the output of hybrid modules, conducted were the outdoor measurement and the output measurement made every season under the mock spectral light in two-light simulator. In summer, F.F. was improved by spectral gain and anneal effect, and the effective output about 8% higher was recognized in the module after stabilization. (NEDO)

  2. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  3. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  4. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  5. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  6. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  7. The state of the art of thin-film photovoltaics

    International Nuclear Information System (INIS)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future

  8. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Cangming; Sahraei, Nasim; Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Stangl, Rolf [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Peters, Ian Marius

    2015-06-28

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t{sup +}-i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlO{sub x}) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlO{sub x} parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t{sup +}-i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm{sup 2}, according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed.

  9. Preparation and optical characterization of DNA-riboflavin thin films

    Science.gov (United States)

    Paulson, Bjorn; Shin, Inchul; Kong, Byungjoo; Sauer, Gregor; Dugasani, Sreekantha Reddy; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Oh, Kyunghwan

    2016-09-01

    Thin films of DNA biopolymer thin film are fabricated by a drop casting process on glass and silicon substrates, as well as freestanding. The refractive index is measured by elliposmetry and in bulk DNA film the refractive index is shown to be increased in the 600 to 900 nm DNA transparency window by doping with riboflavin. Further analysis with FT-IR, Raman, and XRD are used to determine whether binding between riboflavin and DNA occurs.

  10. Research and development of photovoltaic power system. Characterization and control of surface/interface recombination velocity of crystalline silicon thin films; Taiyoko hatsuden system no kenkyu kaihatsu. Silicon kessho usumaku ni okeru hyomen kaimen saiketsugo sokudo no hyoka to seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on characterization and control of surface/interface recombination velocity of crystalline silicon thin films. To optimize design and manufacture of solar cells, it is necessary to identify correctly resistance factor (or doping) of bulk of materials, bulk minority carrier life, and recombination velocity on surface, passivation interface and electrode interface. A group in the Hokkaido University has been working since a few years ago on development of non-contact and non-destructive photo-luminescence surface level spectroscopy (PLS{sup 3}). A new non-contact C-V method was also introduced. Using these methods, basic discussions were given on possibility of separate measurements on surface/interface and bulk characteristics of solar cell materials. The PLS{sup 3} method and the non-contact C-V method were used for experimental discussions on evaluation of silicon mono-crystalline and poly-crystalline materials. Discussions were given on separate evaluations by using the DLTS method. 10 figs., 2 tabs.

  11. Direct observation of multivalent states and 4 f →3 d charge transfer in Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Vasili, H. B.; Casals, B.; Cichelero, R.; Macià, F.; Geshev, J.; Gargiani, P.; Valvidares, M.; Herrero-Martin, J.; Pellegrin, E.; Fontcuberta, J.; Herranz, G.

    2017-07-01

    Due to their large magneto-optic responses, rare-earth-doped yttrium iron garnets, Y3F e5O12 (YIG), are highly regarded for their potential in photonics and magnonics. Here, we consider the case of Ce-doped YIG (Ce-YIG) thin films, in which substitutional C e3 + ions are magnetic because of their 4 f1 ground state. In order to elucidate the impact of Ce substitution on the magnetization of YIG, we have carried out soft x-ray spectroscopy measurements on Ce-YIG films. In particular, we have used the element specificity of x-ray magnetic circular dichroism to extract the individual magnetization curves linked to Ce and Fe ions. Our results show that Ce doping triggers a selective charge transfer from Ce to the Fe tetrahedral sites in the YIG structure. This, in turn, causes a disruption of the electronic and magnetic properties of the parent compound, reducing the exchange coupling between the Ce and Fe magnetic moments and causing atypical magnetic behavior. Our work is relevant for understanding magnetism in rare-earth-doped YIG and, eventually, may enable a quantitative evaluation of the magneto-optical properties of rare-earth incorporation into YIG.

  12. Microstructure of Thin Films

    Science.gov (United States)

    1990-02-07

    Proceedings, Thin film Technologies II, 652, 256-263, (1986) B. Schmitt, J.P. Borgogno, G. Albrand and E. Pelletier, "In situ and air index measurements...34 SPIE Proceedings, "Optical Components and Systems", 805, 128 (1987) 11 B. Schmitt, J.P. Borgogno, G. Albrand and E. Pelletier. "In situ and air index...aT , m..a, lot,, o ,,f,02,d I4 k -1-1..... autocovariance lengths, less than 0.5 um, indicate that , 514n, ob0 o p’,Ofclllc....,,o,,oy0,1- agua sblrt

  13. Superconducting oxypnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reisner, Andreas; Kidszun, Martin; Reich, Elke; Holzapfel, Bernhard; Schultz, Ludwig; Haindl, Silvia [IFW Dresden, Institute of Metallic Materials (Germany); Thersleff, Thomas [Uppsala University, Angstrom Laboratory (Sweden)

    2012-07-01

    We present an overview on the oxypnictide thin film preparation. So far, only LaAlO{sub 3} (001) single crystalline substrates provided a successful growth using pulsed laser deposition in combination with a post annealing process. Further experiments on the in-situ deposition will be reported. The structure of the films was investigated by X-ray diffractometry and transmission electron microscopy. Transport properties were measured with different applied fields to obtain a magnetic phase diagram for this new type of superconductor.

  14. Mechanics of Thin Films

    Science.gov (United States)

    1992-02-06

    and the second geometry was that of squat cylinders (diameter 6.4 mm, height 6.4 mm). These two geometries were tested in thermal shock tests, and a...milder [13]. More recently, Lau, Rahman and stressa nce ntrati, tha n films of lmalla rat ve spc Delale calculated the free edge singularity for stress...thickness of 3 mm); the second geometry was that As an example of the shielding effect of thin films, we of squat cylinders (diameter 6.4 mm, height 6.4

  15. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  16. Investigation and optimization of series connection of thin-film silicon solar modules; Untersuchung und Optimierung der Serienverschaltung von Silizium-Duennschicht-Solarmodulen

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Stefan

    2010-07-01

    The integrated series connection is an important and elementary part of a thin-film silicon solar module. The series connection leads to a reduction of Ohmic losses and an increase of the module voltage. After their deposition the different functional layers of a solar module must be patterned selectively to form a series connection. First the front contact, then the absorber, and finally the back contact is locally removed. The first step and the last step are needed to separate the contact layers (isolation step), the absorber patterning is used to expose the front contact and prepare the series interconnection. Usually laser ablation is used for patterning. The patterning of the front contact is overall a noncritical step. Therefore, this thesis exclusively investigates mechanisms that limit the process window of the absorber patterning and the back contact patterning. Especially for the absorber patterning on SnO{sub 2}-substrates the process window is very narrow. As too high pulse energies create a barrier layer on the SnO{sub 2}-window layer, which restricts the current flow in a series connected module. This barrier layer probably consists of SiO{sub 2} or an alloy of (Sn,Si)O{sub 2}. It arrises from redeposition of evaporated silicon. Ablation of the absorber without creating a barrier layer is only possible, when the silicon is not evaporated. Here the ablation is induced by the explosive out-diffusion of hydrogen from the silicon layer. On ZnO-substrates no significant barrier formation occurs. For this reason the process window is very broad. Patterning the back contact is the last isolation step. It is mainly restricted by an unavoidable deterioration of the absorber as well as a possible ablation of the window layer. The deterioration of the absorber in the vicinity of the patterning groove leads to parasitic dark currents for amorphous and for microcrystalline solar cells. The parasitic dark currents decrease the efficiency {eta} of a patterned

  17. Optical, Electrical, and Crystal Properties of TiO2 Thin Films Grown by Atomic Layer Deposition on Silicon and Glass Substrates

    Science.gov (United States)

    Kupa, I.; Unal, Y.; Cetin, S. S.; Durna, L.; Topalli, K.; Okyay, A. K.; Ates, H.

    2018-05-01

    TiO2 thin films have been deposited on glass and Si(100) by atomic layer deposition (ALD) technique using tetrakis(diethylamido)titanium(IV) and water vapor as reactants. Thorough investigation of the properties of the TiO2/glass and TiO2/Si thin films was carried out, varying the deposition temperature in the range from 100°C to 250°C while keeping the number of reaction cycles fixed at 1000. Physical and material property analyses were performed to investigate optical and electrical properties, composition, structure, and morphology. TiO2 films grown by ALD may represent promising materials for future applications in optoelectronic devices.

  18. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  19. Electrochemical ion transfer mediated by a lipophilic Os(ii)/Os(iii) dinonyl bipyridyl probe incorporated in thin film membranes.

    Science.gov (United States)

    Jansod, Sutida; Wang, Lu; Cuartero, Maria; Bakker, Eric

    2017-09-28

    A new lipophilic dinonyl bipyridyl Os(ii)/Os(iii) complex successfully mediates ion transfer processes across voltammetric thin membranes. An added lipophilic cation-exchanger may impose voltammetric anion or cation transfer waves of Gaussian shape that are reversible and repeatable. The peak potential is found to shift with the ion concentration in agreement with the Nernst equation. The addition of tridodecylmethylammonium nitrate to the polymeric film dramatically reduces the peak separation from 240 mV to 65 mV, and the peak width to a near-theoretical value of 85 mV, which agrees with a surface confined process. It is suggested that the cationic additive serves as a phase transfer catalyst.

  20. Organic charge transfer phase formation in thin films of the BEDT-TTF/TCNQ donor-acceptor system

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Keller, K.; Huth, M.

    2009-01-01

    We have performed charge transfer phase formation studies on the donor/acceptor system bis-(ethylendithio)tetrathiafulvalene (BEDT-TTF)/tetracyanoquinodimethane,(TCNQ) by means of physical vapor deposition. We prepared donor/acceptor bilayer structures on glass and Si(100)/SiO substrates held...

  1. Thin films: Past, present, future

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  2. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  3. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  4. Phonon transport across nano-scale curved thin films

    International Nuclear Information System (INIS)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-01-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  5. Thin film solar cell technology in Germany

    International Nuclear Information System (INIS)

    Diehl, W.; Sittinger, V.; Szyszka, B.

    2005-01-01

    Within the scope of limited nonrenewable energy resources and the limited capacity of the ecosystem for greenhouse gases and nuclear waste, sustainability is one important target in the future. Different energy scenarios showed the huge potential for photovoltaics (PV) to solve this energy problem. Nevertheless, in the last decade, PV had an average growth rate of over 20% per year. In 2002, the solar industry delivered more than 500 MWp/year of photovoltaic generators [A. Jaeger-Waldau, A European Roadmap for PV R and D, E-MRS Spring Meeting, (2003)]. More than 85% of the current production involves crystalline silicon technologies. These technologies still have a high cost reduction potential, but this will be limited by the silicon feedstock. On the other hand the so-called second generation thin film solar cells based on a-Si, Cu(In,Ga)(Se,S 2 (CIGS) or CdTe have material thicknesses of a few microns as a result of their direct band gap. Also, the possibility of circuit integration offers an additional cost reduction potential. Especially in Germany, there are a few companies who focus on thin film solar cells. Today, there are two manufacturers with production lines: the Phototronics (PST) division of RWE-Schott Solar with a-Si thin film technology and the former Antec Solar GmbH (now Antec Solar Energy GmbH) featuring the CdTe technology. A pilot line based on CIGS technology is run by Wuerth Solar GmbH. There is also a variety of research activity at other companies, namely, at Shell Solar, Sulfurcell Solartechnik GmbH, Solarion GmbH and the CIS-Solartechnik GmbH. We will give an overview on research activity on various thin film technologies, as well as different manufacturing and production processes in the companies mentioned above. (Author)

  6. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  7. Extending the 3ω method: thermal conductivity characterization of thin films.

    Science.gov (United States)

    Bodenschatz, Nico; Liemert, André; Schnurr, Sebastian; Wiedwald, Ulf; Ziemann, Paul

    2013-08-01

    A lock-in technique for measurement of thermal conductivity and volumetric heat capacity of thin films is presented. The technique is based on the 3ω approach using electrical generation and detection of oscillatory heat along a thin metal strip. Thin films are deposited onto the backside of commercial silicon nitride membranes, forming a bilayer geometry with distinct thermal parameters. Stepwise comparison to an adapted heat diffusion model delivers these parameters for both layers. Highest sensitivity is found for metallic thin films.

  8. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  9. Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer

    Science.gov (United States)

    Meshcheryakov, Yuri P.; Shugaev, Maxim V.; Mattle, Thomas; Lippert, Thomas; Bulgakova, Nadezhda M.

    2013-11-01

    This paper presents a theoretical analysis of the processes in thin solid films irradiated by short and ultrashort laser pulses in the regimes of film structuring and laser-induced forward transfer. The regimes are considered at which vaporization of the film materials is insignificant and film dynamics is governed mainly by mechanical processes. Thermoelastoplastic modeling has been performed for a model film in one- and two-dimensional geometries. A method has been proposed to estimate the height of microbumps produced by nanosecond laser irradiation of solid films. Contrary to femtosecond laser pulses, in nanosecond pulse regimes, stress waves across the film are weak and cannot induce film damage. The main role in laser-induced dynamics of irradiated films is played by radial thermal stresses which lead to the formation of a bending wave propagating along the film and drawing the film matter to the center of the irradiation spot. The bending wave dynamics depends on the hardness of the substrate underlying the film. The causes of the receiver substrate damage sometimes observed upon laser-induced forward transfer in the scheme of the direct contact between the film and the receiver are discussed.

  10. Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} thin films on all-oxide layers buffered silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Hien Thu [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Houwman, Evert; Boota, Muhammad [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Dekkers, Matthijn [SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Vu, Hung Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Rijnders, Guus [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-12-15

    Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectric properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between

  11. Simulation and Experimental Study of Photogeneration and Recombination in Amorphous-Like Silicon Thin Films Deposited by 27.12 MHz Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Chia-Hsun Hsu

    2013-01-01

    Full Text Available Amorphous-like silicon (a-Si:H-like thin films are prepared by 27.12 MHz plasma-enhanced chemical vapor deposition technique. The films are applied to p-i-n single junction thin film solar cells with varying i-layer thickness to observe the effects on the short-circuit current density, as well as the open-circuit voltage, fill factor, and conversion efficiency. The most significant experimental result is that Jsc has two different behaviors with increasing the i-layer thickness, which can be related to carrier collection efficiency in the long wavelength region. Furthermore, technology computer-aided design simulation software is used to gain better insight into carrier generation and recombination of the solar cells, showing that for the i-layer thickness of 200 to 300 nm the generation dominates the carrier density and thus Jsc, whereas for the i-layer thickness of 300 to 400 nm the recombination becomes the leading factor. The simulation results of cell performances are in good agreement with experimental data, indicating that our simulation has great reliability. In addition, the a-Si:H-like solar cells have low light-induced degradation, which in turn can have a great potential to be used for stable and high-efficiency solar cells.

  12. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    International Nuclear Information System (INIS)

    Wang, Quan; Zhang, Yanmin; Hu, Ran; Ren, Naifei; Ge, Daohan

    2013-01-01

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases

  13. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Yanmin; Hu, Ran; Ren, Naifei [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); Ge, Daohan [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-11-14

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

  14. Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Swati Arora

    2017-01-01

    Full Text Available Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te and bismuth (Bi were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD and scanning electron microscopy (SEM to show granular growth.

  15. Transmission Electron Microscopy of Amorphous Tandem Thin-Film Silicon Modules Produced by A Roll-to-Roll Process on Plastic Foil

    DEFF Research Database (Denmark)

    Couty, P.; Duchamp, Martial; Söderström, K.

    2011-01-01

    An improvement of the photo-current is expected when amorphous silicon solar cells are grown on a ZnO texture. A full understanding of the relationship between cell structure and electrical performance is essential for the rapid development of high efficiency VHF-tandem cells on textured substrates...... a control-lost of shape fidelity is used to smooth the texture and make it compatible with subsequent layer growth. Then, we present the electrical performances of the most promising reference solar cell single junction which was obtained on a roll-to-roll foil. Finally, a tandem amorphous/amorphous Si....... At first, we present the systematic study where amorphous cells are grown on ZnO based textures. For varying the texture, the same original master LPCVD ZnO was successively transferred to nickel molds and finally transferred to the plastic foil by roll-to-roll process. From TEM images, we show how...

  16. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  17. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  18. Transmission Electron Microscopy of the Textured Silver Back Reflector of a Thin Film Silicon Solar Cell: From Crystallography to Optical Absorption

    DEFF Research Database (Denmark)

    Duchamp, Martial; Söderström, K.; Jeangros, Q.

    2011-01-01

    The study of light trapping in amorphous, microcrystalline and micromorph thin-film Si solar cells is an important and active field of investigation. It has been demonstrated that the use of a rough Ag back-reflector lead to an increase of short circuit current but also to losses through...... the creation of surface plasmon polaritons. Here, we use transmission electron microscopy (TEM) techniques to study the grain structure of a Ag thin-film that was sputtered on top of 2-μm-thick rough ZnO layer - defects, such as twin-boundaries have been observed. A smoothing of the top Ag surface was also...... observed after ex-situ annealing. Electron energy-loss spectroscopy with a monochromatic beam was used to measure the surface plasmon resonance with nm spatial resolution. 1 eV and 3 eV Ag surface plasmon resonances have been observed on as-grown layers. Such measurements provide valuable information about...

  19. Enhanced electrical and magnetic properties in La0.7Sr0.3MnO3 thin films deposited on CaTiO3-buffered silicon substrates

    Directory of Open Access Journals (Sweden)

    C. Adamo

    2015-06-01

    Full Text Available We investigate the suitability of an epitaxial CaTiO3 buffer layer deposited onto (100 Si by reactive molecular-beam epitaxy (MBE for the epitaxial integration of the colossal magnetoresistive material La0.7Sr0.3MnO3 with silicon. The magnetic and electrical properties of La0.7Sr0.3MnO3 films deposited by MBE on CaTiO3-buffered silicon (CaTiO3/Si are compared with those deposited on SrTiO3-buffered silicon (SrTiO3/Si. In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO3 buffer layer. These results are relevant to device applications of La0.7Sr0.3MnO3 thin films on silicon substrates.

  20. On the origin of the changes in the opto-electrical properties of boron-doped zinc oxide films after plasma surface treatment for thin-film silicon solar cell applications

    Science.gov (United States)

    Le, Anh Huy Tuan; Kim, Youngkuk; Lee, Youn-Jung; Hussain, Shahzada Qamar; Nguyen, Cam Phu Thi; Lee, Jaehyung; Yi, Junsin

    2018-03-01

    The modification of the steep and sharp valleys on the surface of the boron-doped zinc oxide (BZO) front electrodes by plasma surface treatment is a critical process for avoiding a significant reduction in the electrical performance of thin-film silicon solar cells. In this work, we report the origin of the changes in the electrical and optical properties of the BZO films that occur after this process. On the basis of an analysis of the chemical states, we found an improvement of the carrier concentration along with the treatment time that was mainly due to an increase of the oxygen vacancy. This indicated a deficiency of the oxygen in the BZO films under argon-ion bombardment. The red-shift of the A1 longitudinal optical mode frequency in the Raman spectra that was attributed to the existence of vacancy point defects within the films also strengthened this argument. The significant reduction of the haze ratio as well as the appearance of interference peaks on the transmittance spectra as the treatment time was increased were mainly due to the smoothing of the film surface, which indicated a degradation of the light-scattering capability of the BZO films. We also observed a gain of the visible-region transmittance that was attributed to the decrease of the thickness of the BZO films after the plasma surface treatment, instead of the crystallinity improvement. On the basis of our findings, we have proposed a further design rule of the BZO front electrodes for thin-film silicon solar cell applications.

  1. Valence control of cobalt oxide thin films by annealing atmosphere

    International Nuclear Information System (INIS)

    Wang Shijing; Zhang Boping; Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping

    2011-01-01

    The cobalt oxide (CoO and Co 3 O 4 ) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH 3 OCH 2 CH 2 OH and Co(NO 3 ) 2 .6H 2 O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co 3 O 4 thin film was obtained by annealing in air at 300-600, and N 2 at 300, and transferred to CoO thin film by raising annealing temperature in N 2 . The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  2. Chemical solution deposition of CaCu3Ti4O12 thin film

    Indian Academy of Sciences (India)

    Administrator

    CaCu3Ti4O12; thin film; chemical solution deposition; dielectric properties. 1. Introduction. The CaCu3Ti4O12. (CCTO) compound has recently attracted considerable ... and Kelvin probe force microscopy (Chung et al 2004). Intrinsic .... SEM images of CCTO thin films as a function of sintering temperature. silicon based ...

  3. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  4. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  5. Subtle Raman signals from nano-diamond and β-SiC thin films

    International Nuclear Information System (INIS)

    Kuntumalla, Mohan Kumar; Ojha, Harish; Srikanth, Vadali Venkata Satya Siva

    2013-01-01

    Micro Raman scattering experiments are carried out in pursuit of subtle but discernable signals from nano-diamond and β-SiC thin films. The thin films are synthesized using microwave plasma assisted chemical vapor deposition technique. Raman scattering experiments in conjunction with scanning electron microscopy and x-ray diffraction were carried out to extract microstructure and phase information of the above mentioned thin films. Certain subtle Raman signals have been identified in this work. In the case of nanodiamond thin films, Raman bands at ∼ 485 and ∼ 1220 cm −1 are identified. These bands have been assigned to the nanodiamond present in nanodiamond thin films. In the case of nano β-SiC thin films, optical phonons are identified using surface enhanced Raman scattering. - Highlights: ► Subtle Raman signals from nano-diamond and β-silicon carbide related thin films. ► Raman bands at ∼ 485 and ∼ 1220 cm −1 from nanodiamond thin films are identified. ► Longitudinal optical phonon from nano β-silicon carbide thin films is identified

  6. Effect of hydrogen doping on the properties of Al and F co-doped ZnO films for thin film silicon solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Yang, Tung-Hsin

    2016-04-30

    Aluminum and fluorine co-doped zinc oxide (AFZO) thin films were prepared in Ar + H{sub 2} atmospheres by rf magnetron sputtering at room temperature. The structural, electrical, and optical properties of the prepared films were investigated using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Hall-effect measurement, X-ray photoelectron spectroscopy, and ultraviolet–visible spectrometry, and their dependence on deposition atmosphere (i.e. H{sub 2} / (H{sub 2} + Ar) ratio) was studied. The resulting films showed a (0 0 2) diffraction peak, indicating a typical wurtzite structure, and the optimal film crystallinity was obtained with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%. The electrical resistivity of AFZO films decreased to 9.16 × 10{sup −4} Ω-cm, which was lower than ZnO:Al and ZnO:F films due to double doping effect of Al and F. The resistivity further decreased to below 5 × 10{sup −4} Ω-cm for the AFZO film with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%–5%. All the films regardless of hydrogen content displayed high transmittances (> 92%) in the visible wavelength range. Applying the developed AFZO films as front transparent electrodes, amorphous Si thin film solar cells were fabricated and the open-circuit voltage, fill factor, and efficiency of the cell with the hydrogenated AFZO film were improved in contrast to those without the hydrogenated film. - Highlights: • H{sub 2} doping improves optoelectronic properties of Al, F co-doped ZnO (AFZO) films. • Resistivity of AFZO films decreases to 4.4 × 10{sup −4} Ω-cm with the 3% H{sub 2}/(Ar + H{sub 2}) ratio. • AFZO films show high average visible transmittances of above 92%. • Efficiency of a-Si thin film solar cells is improved by AFZO:H as front electrode.

  7. Impact of deposition temperature on the properties of SnS thin films grown over silicon substrate—comparative study of structural and optical properties with films grown on glass substrates

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-11-01

    Tin sulfide (SnS) thin films were chemically deposited over silicon substrate in a temperature range of 250 °C-400 °C. The effects of deposition temperature on the structural, morphological and optical properties of the films were evaluated. All films present an orthorhombic SnS structure with a preferred orientation along (040). High absorption coefficients (in the range of 105 cm-1) were found for all obtained films with an increase in α value when deposition temperature decreases. Furthermore, the effects of substrate type were investigated based on comparison between the present results and those obtained for SnS films grown under the same deposition conditions but over glass substrate. The results suggest that the formation of SnS films onto glass substrate is faster than onto silicon substrate. It is found that the substrate nature affects the orientation growth of the films and that SnS films deposited onto Si present more defects than those deposited onto glass substrate. The optical transmittance is also restricted by the substrate type, mostly below 1000 nm. The obtained results for SnS films onto silicon suggest their promising integration within optoelectronic devices.

  8. Preventing Thin Film Dewetting via Graphene Capping.

    Science.gov (United States)

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thin film structures and phase stability

    International Nuclear Information System (INIS)

    Clemens, B.M.; Johnson, W.L.

    1990-01-01

    This was a two day symposium, with invited and contributed papers as well as an evening poster session. The first day concentrated on solid state reactions with invited talks by Lindsay Greer from the University of Cambridge, King Tu from IBM Yorktown Heights, and Carl Thompson from MIT. Professor Greer observed that the diffusion of Zr is 10 6 times slower than that of Ni in amorphous NiZr, confirming that Ni is the mobile species in solid state amorphization. King Tu explained the formation of metastable phases in this film diffusion couples by the concept of maximum rate of free energy change. Carl Thompson discussed the formation of amorphous phases in metal silicon systems, and discussed a two stage nucleation and growth process. The contributed papers also generated discussion on topics such as phase segregation, amorphous silicide formation, room temperature oxidation of silicon, and nucleation during ion beam irradiation. There was a lively poster session on Monday evening with papers on a wide variety of topics covering the general area of thin film science. The second day had sessions Epitaxy and Multilayer Structure I and II, with the morning focussing on epitaxial and heteroepitaxial growth of thin films. Robin Farrow of IBM Almaden led off with an invited talk where he reported on some remarkable success he and his co-workers have had in growing single crystal epitaxial thin films and superlattices of silver, iron, cobalt and platinum on GaAs. This was followed by several talks on epitaxial growth and characterization. The afternoon focused on interfaces and structure of multilayered materials. A session on possible stress origins of the supermodulus effect was highlighted by lively interaction from the audience. Most of the papers presented at the symposium are presented in this book

  10. Low resistance polycrystalline diamond thin films deposited by hot ...

    Indian Academy of Sciences (India)

    Administrator

    silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemi- cal vapour ... the laser spot was focused on the sample surface using a ... tative spectra of diamond thin films with a typical dia-.

  11. Electrical characteristics of top contact pentacene organic thin film

    Indian Academy of Sciences (India)

    Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+ -Si) ...

  12. Evolution of the mechanical and tribological properties of DLC thin films doped with low-concentration hafnium on 316L steel

    Science.gov (United States)

    Qi, Meng; Xiao, Jianrong; Gong, Chenyang; Jiang, Aihua; Chen, Yong

    2018-01-01

    Low concentrations (stainless steel and silicon (1 0 0) substrates by magnetron sputtering to attain superior mechanical and tribological properties. Ar and CH4 were used as source gases. The microstructure, chemical composition, and morphology of the Hf-DLC thin films in various concentrations were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. Results showed that Hf species transferred from the particulate microstructure to Hf carbide phases, and the surface roughness increased monotonically with increasing Hf concentration. Moreover, the hardness and elastic modulus exhibited high values when the doped Hf concentration was 0.42 at%. Similarly, the tribological behaviors and wear life of Hf-DLC thin films had a low friction coefficient and excellent wear resistance at 0.42 at% Hf concentration. Therefore, 0.42 at% Hf is an optimal doping concentration to improve the mechanical and tribological properties of DLC thin films. Generally, the use of low-concentration Hf doping into DLC thin films is novel, and the present results provide guidance for the selection of suitable and effective concentration to optimize Hf-DLC thin films with superior performance.

  13. Thin film solar cells: research in an industrial perspective.

    Science.gov (United States)

    Edoff, Marika

    2012-01-01

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  14. Preparation of Ta Te2 thin films by laser ablation

    International Nuclear Information System (INIS)

    Zidan, M.D.; Alkhwam, M.; Alkhasm, M.

    2006-03-01

    The laser ablation system consisting of a vacuum chamber and Nd-YAG laser has been built for deposition TaTe 2 on three different substrates (Silicon, glass, and Aluminium). The surface topography of the prepared thin films has been studied by atomic force microscopy (AFM). TaTe 2 powder was characterized by using x-ray diffraction. The crystallinity of the thin films was examined by x-ray diffraction (XRD). The results show no peaks corresponding TaTe 2 , but there are some indications to the Ta 3 N 5 . (author)

  15. Electroluminescence Spectrum Shift with Switching Behaviour of Diamond Thin Films

    Institute of Scientific and Technical Information of China (English)

    王小平; 王丽军; 张启仁; 姚宁; 张兵临

    2003-01-01

    We report a special phenomenon on switching behaviour and the electroluminescence (EL) spectrum shift of doped diamond thin films. Nitrogen and cerium doped diamond thin films were deposited on a silicon substrate by microwave plasma-assisted chemical vapour deposition system and other special techniques. An EL device with a three-layer structure of nitrogen doped diamond/cerium doped diamond/SiO2 thin films was made. The EL device was driven by a direct-current power supply. Its EL character has been investigated, and a switching behaviour was observed. The EL light emission colour of diamond films changes from yellow (590nm) to blue (454 nm) while the switching behaviour appears.

  16. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  17. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  18. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  19. Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, C.; Dorcioman, G.; Miroiu, F.M.; Socol, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Gittard, S.D.; Miller, P.R.; Narayan, R.J. [Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599-7575 (United States); Enculescu, M. [National Institute for Materials Physics, PO Box MG-7, Bucharest-Magurele (Romania); Chrisey, D.B. [Tulane University, Department of Physics and Engineering Physics, New Orleans, LA (United States)

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer–drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA–gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer–drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  20. Thin films for precision optics

    International Nuclear Information System (INIS)

    Araujo, J.F.; Maurici, N.; Castro, J.C. de

    1983-01-01

    The technology of producing dielectric and/or metallic thin films for high precision optical components is discussed. Computer programs were developed in order to calculate and register, graphically, reflectance and transmittance spectra of multi-layer films. The technology of vacuum evaporation of several materials was implemented in our thin-films laboratory; various films for optics were then developed. The possibility of first calculate film characteristics and then produce the film is of great advantage since it reduces the time required to produce a new type of film and also reduces the cost of the project. (C.L.B.) [pt