WorldWideScience

Sample records for significantly increased plant

  1. Corruption Significantly Increases the Capital Cost of Power Plants in Developing Contexts

    Directory of Open Access Journals (Sweden)

    Kumar Biswajit Debnath

    2018-03-01

    Full Text Available Emerging economies with rapidly growing population and energy demand, own some of the most expensive power plants in the world. We hypothesized that corruption has a relationship with the capital cost of power plants in developing countries such as Bangladesh. For this study, we analyzed the capital cost of 61 operational and planned power plants in Bangladesh. Initial comparison study revealed that the mean capital cost of a power plant in Bangladesh is twice than that of the global average. Then, the statistical analysis revealed a significant correlation between corruption and the cost of power plants, indicating that higher corruption leads to greater capital cost. The high up-front cost can be a significant burden on the economy, at present and in the future, as most are financed through international loans with extended repayment terms. There is, therefore, an urgent need for the review of the procurement and due diligence process of establishing power plants, and for the implementation of a more transparent system to mitigate adverse effects of corruption on megaprojects.

  2. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    Directory of Open Access Journals (Sweden)

    Jonathon eMuller

    2014-10-01

    Full Text Available Buildings structures and surfaces are explicitly being used to grow plants, and these ‘urban plantings’ are typically designed for aesthetic value. Urban plantings also have the potential to contribute significant ‘ecological values’ by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban centre of Brisbane, Australia (subtropical climatic region over two, six week sampling periods characterised by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation, plant CO2 assimilation, soil CO2 efflux, and arthropod diversity.Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly - likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  3. Increasing rice plant growth by Trichoderma sp.

    Science.gov (United States)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  4. Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity.

    Science.gov (United States)

    Stefanaki, Anastasia; Kantsa, Aphrodite; Tscheulin, Thomas; Charitonidou, Martha; Petanidou, Theodora

    2015-01-01

    The architectural complexity of flower structures (hereafter referred to as floral complexity) may be linked to pollination by specialized pollinators that can increase the probability of successful seed set. As plant-pollinator systems become fragile, a loss of such specialized pollinators could presumably result in an increased likelihood of pollination failure. This is an issue likely to be particularly evident in plants that are currently rare. Using a novel index describing floral complexity we explored whether this aspect of the structure of flowers could be used to predict vulnerability of plant species to extinction. To do this we defined plant vulnerability using the Red Data Book of Rare and Threatened Plants of Greece, a Mediterranean biodiversity hotspot. We also tested whether other intrinsic (e.g. life form, asexual reproduction) or extrinsic (e.g. habitat, altitude, range-restrictedness) factors could affect plant vulnerability. We found that plants with high floral complexity scores were significantly more likely to be vulnerable to extinction. Among all the floral complexity components only floral symmetry was found to have a significant effect, with radial-flower plants appearing to be less vulnerable. Life form was also a predictor of vulnerability, with woody perennial plants having significantly lower risk of extinction. Among the extrinsic factors, both habitat and maximum range were significantly associated with plant vulnerability (coastal plants and narrow-ranged plants are more likely to face higher risk). Although extrinsic and in particular anthropogenic factors determine plant extinction risk, intrinsic traits can indicate a plant's proneness to vulnerability. This raises the potential threat of declining global pollinator diversity interacting with floral complexity to increase the vulnerability of individual plant species. There is potential scope for using plant-pollinator specializations to identify plant species particularly at

  5. Effect of increased renewables generation on operation of thermal power plants

    International Nuclear Information System (INIS)

    Eser, Patrick; Singh, Antriksh; Chokani, Ndaona; Abhari, Reza S.

    2016-01-01

    Highlights: • Impacts of increased renewables in central European transmission system are assessed. • Individual transmission lines and power plants of transmission system are modelled. • Starts and ramps of thermal power plants significantly increase with increased renewables. • Impact of renewables on thermal power plants is highly dependent on location. - Abstract: High spatial and temporal resolution optimal power flow simulations of the 2013 and 2020 interconnected grid in Central Western and Eastern Europe regions are undertaken to assess the impact of an increased penetration of renewables on thermal power plants. In contrast to prior studies, the present work models each individual transmission line and power plant within the two regions. Furthermore, for conventional plants, electricity costs are determined with respect to fuel type, nameplate capacity, operating condition and geographic location; cycling costs are modeled as function of the recent operational history. For renewable power plants, costs and available power are determined using mesoscale weather simulations and hydrology models. Countrywide validation of the simulations shows that all renewable and most conventional power production is predicted with less than 10% error. It is shown that the increased penetration of renewables in 2020 will induce a 4–23% increase in the number of starts of conventional plants. The number of load ramps significantly increases by 63–181%, which underlines the necessity for equipment manufacturers and utilities to adapt to scenarios of high penetration of renewables. The increased cycling operation of coal plants is shown to depend strongly on the power plant’s location and is mainly observed in Germany and the Czech Republic. Austrian coal plants are cycled less because they supply more base load power to southern Germany, where several nuclear power plants will be phased out by 2020. Thus there is a need for more transmission capacity along

  6. Effect of increased plant density and fertilizer dose on the yield of rice variety IR-6

    International Nuclear Information System (INIS)

    Amin, M.; Khan, M.A.; Khan, E.A.; Ramazan, M.

    2004-01-01

    An experiment to evaluate the effect of increased plant density and fertilizer dose on yield of rice variety IR-6 was conducted at the farm of Faculty of Agriculture, Gomal University Dera Ismail Khan. Increase plant density significantly increase number of panicles per square meter, sterility and straw yield while increased fertilizer dose of NPK increase plant height, sterility, normal kernels, and 1000 grain weight. Interaction of increased plant density and fertilizer dose was found to be non significant except sterility percentage and straw yield. However efforts are required for increasing yield per unit area of rice. (author)

  7. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    Science.gov (United States)

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review demonstrates the ecological significance of such plant secondary metabolites in the highly diverse interactions between insects and plants.

  8. The Significance of Ayurvedic Medicinal Plants

    Science.gov (United States)

    Kumar, Syal; Dobos, Gustav J.; Rampp, Thomas

    2016-01-01

    Traditional Indian medicine (ayurveda) is becoming increasingly popular, with many chronic conditions responding to it well. Most patients begin to take conventional medications as soon as their diagnoses are made, so ayurvedic treatments are usually undergone alongside and/or after conventional medical approaches. A detailed knowledge of the action of food, spices, and medicinal plants is needed in order to understand their potential influence fully. While societal use of ayurvedic plants and Indian spices is commonplace, without ill effect, the use of more concentrated products made from single plants, often in the form of teas or tablets, is of more concern. The mechanisms by which polyherbal drugs and their extracts act differ in many respects from the actions of single substances or synthetic drugs. Despite the fact that ayurvedic medicines are based on natural herbal materials, their safety depends on their method of administration, taking into account individuals’ needs and their specific disease conditions. PMID:27707902

  9. Increasing operational efficiency in a radioactive waste processing plant - 16100

    International Nuclear Information System (INIS)

    Turner, T.W.; Watson, S.N.

    2009-01-01

    The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively de-licensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to de-licensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990's, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as 'lean' and 'kaizen' have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant

  10. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.

    Science.gov (United States)

    Zhou, Cheng; Liu, Zhi; Zhu, Lin; Ma, Zhongyou; Wang, Jianfei; Zhu, Jian

    2016-10-25

    Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana . In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous melatonin significantly increased the soluble Fe content of shoots and roots, and decreased the levels of root cell wall Fe bound to pectin and hemicellulose, thus alleviating Fe deficiency-induced chlorosis. Intriguingly, melatonin treatments induced a significant increase of nitric oxide (NO) accumulation in roots of Fe-deficient plants, but not in those of polyamine-deficient ( adc2-1 and d-arginine-treated) plants. Moreover, the melatonin-alleviated leaf chlorosis was blocked in the polyamine- and NO-deficient ( nia1nia2noa1 and c-PTIO-treated) plants, and the melatonin-induced Fe remobilization was largely inhibited. In addition, the expression of some Fe acquisition-related genes, including FIT1 , FRO2 , and IRT1 were significantly up-regulated by melatonin treatments, whereas the enhanced expression of these genes was obviously suppressed in the polyamine- and NO-deficient plants. Collectively, our results provide evidence to support the view that melatonin can increase the tolerance of plants to Fe deficiency in a process dependent on the polyamine-induced NO production under Fe-deficient conditions.

  11. Transgenic plants with increased calcium stores

    Science.gov (United States)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  12. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L.

    Science.gov (United States)

    Praburaman, Loganathan; Park, Sung-Hee; Cho, Min; Lee, Kui-Jae; Ko, Jeong-Ae; Han, Sang-Sub; Lee, Sang-Hyun; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2017-01-01

    Microbe-assisted phytoremediation has been considered a promising measure for the remediation of heavy metal-polluted soil. The aim of this study was to assess the effect of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on growth and lead (Pb) and zinc (Zn) accumulation in Zea mays L. The strain GW103 exhibited plant growth-promoting traits such as indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic deaminase. Treatment of Z. mays L. plants with GW103 significantly increased 19, 31, and 52% of plant biomass and 10, 50, and 126% of chlorophyll a contents in Pb, Zn, and Pb + Zn-amended soils, respectively. Similarly, the strain GW103 significantly increased Pb and Zn accumulation in shoots and roots of Z. mays L., which were 77 and 25% in Pb-amended soil, 42 and 73% in Zn-amended soil, and 27 and 84% in Pb + Zn-amended soil. Furthermore, addition of GW103 increased 8, 12, and 7% of total protein content, catalase, and superoxide dismutase levels, respectively, in Z. mays L. plants. The results pointed out that isolate GW103 could potentially reduce the phytotoxicity of metals and increase Pb and Zn accumulation in Z. mays L. plant.

  13. Alleviatory activities in mycorrhizal tobacco plants subjected to increasing chloride in irrigation water

    Directory of Open Access Journals (Sweden)

    Ali Reza Safahani Langeroodi

    2017-03-01

    Full Text Available The effects of presence and absence of arbuscular mycorrhizal (AM+ and AM- fungus (AMF Glomus intraradices on agronomic and chemical characteristics of field-grown tobacco (Nicotiana tabacum L. Virginia type (cv. K-326 plants exposed to varying concentrations of chloride 10, 40, 70 and 100 mg Cl L–1 (C1-C4 were studied over two growing seasons (2012-2013. Mycorrhizal plants had significantly higher uptake of nutrients in shoots and number of leaves regardless of intensities of chloride stress. The cured leaves yields of AM+ plants under C2-C4 chloride stressed conditions were higher than AM- plants. Leaf chloride content increased in line with the increase of chloride level, while AMF colonised plants maintained low Cl content. AM+ plants produced tobacco leaves that contained significantly higher quantities of nicotine than AM- plants. AM inoculation ameliorated the chloride stress to some extent. Antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase as well as non-enzymatic antioxidants (ascorbic acid and glutathione also exhibited great variation with chloride treatment. Chloride stress caused great alterations in the endogenous levels of growth hormones with abscisic acid showing increment. AMF inoculated plants maintained higher levels of growth hormones and also allayed the negative impact of chloride. The level of 40 mg L–1 in combination with arbuscular mycorrhizal can be considered as the acceptable threshold to avoid adverse effects on Virginia tobacco.

  14. Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides.

    Science.gov (United States)

    Wu, Hao; Ismail, Mohannad; Ding, Jianqing

    2017-01-01

    Global warming could accelerate the spread of invasive species to higher latitudes and intensify their effects on native species. Here, we report results of two years of field surveys along a latitudinal gradient (21°N to 31°N) in southern China, to determine the species structure of the invasive plant Alternanthera philoxeroides community. We also performed a replacement series experiment (mono and mixed) to evaluate the effects of elevated temperature on the competitiveness of A. philoxeroides with the native co-occurring species Digitaria sanguinalis. In the field survey, we found that the dominance of A. philoxeroides increased with increasing of latitude gradient while cover of D. sanguinalis decreased. In monospecific plantings, artificial warming reduced the length of D. sanguinalis roots. In mixed plantings, warming reduced both A. philoxeroides abundance and D. sanguinalis stem length when A. philoxeroides was more prevalent in the planting. Warming also significantly reduced D. sanguinalis biomass, but increased that of A. philoxeroides. In addition, elevated temperatures significantly reduced the relative yield (RY) of D. sanguinalis, particularly when A. philoxeroides was planted in higher proportion in the plot. These results suggest that the invasiveness of A. philoxeroides increased with increasing latitude, and that warming may increase the effectiveness of its interspecific competition with D. sanguinalis. Hence, under global warming conditions, the harm to native species from A. philoxeroides would increase at higher latitudes. Our findings are critical for predicting the invasiveness of alien species under climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    Directory of Open Access Journals (Sweden)

    Yongchao Wang

    Full Text Available DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether and CCC (2-chloroethyltrimethyl- ammonium chloride have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012, using maize hybrid, Zhengdan 958 (ZD 958 at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68% from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69% and thousand kernel weight (TKW (by 8.57% and 6.55% from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs. In PCH-treated plants, bending strength and puncture strength were greater than other

  16. Tocopherol-deficient rice plants display increased sensitivity to photooxidative stress.

    Science.gov (United States)

    Chen, Defu; Chen, Haiwei; Zhang, Luhua; Shi, Xiaoli; Chen, Xiwen

    2014-06-01

    Tocopherols are lipophilic antioxidants that are synthesized exclusively in photosynthetic organisms. Despite extensive in vivo characterization of tocopherol functions in plants, their functions in the monocot model plant, rice, remain to be determined. In this study, transgenic rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) activity were generated. Silencing of HPT and TC resulted in up to a 98 % reduction in foliar tocopherol content relative to the control plants, which was also confirmed by transcript level analysis. When grown under normal conditions, HPT and TC transgenics showed no distinctive phenotype relative to the control plants, except a slight reduction in plant height and a slight decrease in the first leaf length. However, when exposed to high light at low temperatures, HPT and TC transgenics had a significantly higher leaf yellowing index than the control plants. The tocopherol-deficient plants decreased their total individual chlorophyll levels, their chlorophyll a/b ratio, and the maximum photochemical efficiency of photosystem II, whereas increased lipid peroxidation levels relative to the control plants. Tocopherol deficiency had no effect on ascorbate biosynthesis, but induced glutathione, antheraxanthin, and particularly zeaxanthin biosynthesis for compensation under stressful conditions. However, despite these compensation mechanisms, HPT and TC transgenics still exhibited altered phenotypes under high light at low temperatures. Therefore, it is suggested that tocopherols cannot be replaced and play an indispensable role in photoprotection in rice.

  17. Increase of hydroelectric power plant operation reliability

    International Nuclear Information System (INIS)

    Koshumbaev, M.B.

    2006-01-01

    The new design of the turbine of hydroelectric power plant (HPP) is executed in the form of a pipe with plates. Proposed solution allows increasing the hydroelectric power plant capacity at existing head and water flow. At that time the HPP turbine reliability is increase, its operation performances are improving. Design efficiency is effective mostly for small-scale and micro-HPP due to reliable operation, low-end technology, and harmless ecological application. (author)

  18. Increasing plant growth by modulating omega-amidase expression in plants

    Science.gov (United States)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  19. Effective Phytoextraction of Cadmium (Cd) with Increasing Concentration of Total Phenolics and Free Proline in Cannabis sativa (L) Plant Under Various Treatments of Fertilizers, Plant Growth Regulators and Sodium Salt.

    Science.gov (United States)

    Ahmad, Ayaz; Hadi, Fazal; Ali, Nasir

    2015-01-01

    The comparative effect of fertilizers (NPK), plant growth regulators (GA3, IAA, Zeatin) and sodium chloride (NaCl) on Cd phytoaccumulation, proline and phenolics production in Cannabis sativa was evaluated. Proline and phenolices were correlated with Cd contents in plant. Cd significantly reduced the plant growth. Fertilizers application (in combination) most significantly increased the growth (19 cm root and 47 cm shoot) on Cd contaminated soil. All treatments increased the Cd contents in plant tissues. This increase was highly significant in fertilizers treated plants (1101, 121 and 544 ppm in roots, stem and leaves respectively). Significantly positive correlation was found between Cd concentration and dry biomass of root (R2=0.7511) and leaves (R2=0.5524). All treatments significantly increased the proline and total phenolics and maximum was recorded in NaCl treated plants followed by fertilizers. Proline was higher in roots while phenolics in leaves. The correlation between proline and phenolics was positive in leaf (R2=0.8439) and root (R2=0.5191). Proline and phenolics showed positive correlation with Cd concentration in plant. Conclusively, fertilizers in combination seem to be the better option for Cd phytoextraction. Further investigation is suggested to study the role of phenolics and proline in Cd phytoextraction.

  20. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  1. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  2. The significance of plant life management

    International Nuclear Information System (INIS)

    Myrddin Davies, L.

    2000-01-01

    The paper carries a definition and describes Plant life and plant life management. It also describes the procedures and defines the categorisation of components giving examples and referring to key components. Examples of 'good practice and guidance' are given for the establishment and implementation of plant life management programmes. A description is given of recent and current IAEA activities under the aegis of the International Working Group on Nuclear Power Plant Life Management (IWG-LMNPP). Some of the future activities in this field are described. (author)

  3. On exergy analysis of industrial plants and significance of ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Berit

    2011-07-01

    The exergy analysis has been a relatively mature theory for more than 30 years. However, it is not that developed in terms of procedures for optimizing systems, which partly explains why it is not that common. Misconceptions and prejudices, even among scientists, are also partly to blame.The main objective of this work was to contribute to the development of an understanding and methodology of the exergy analysis. The thesis was mainly based on three papers, two of which provided very different examples from existing industrial systems in Norway, thus showing the societal perspective in terms of resource utilization and thermodynamics. The last paper and the following investigation were limited to certain aspects of ambient conditions. Two Norwegian operational plants have been studied, one operative for close to 30 years (Kaarstoe steam production and distribution system), while the other has just started its expected 30 years of production (Snoehvit LNG plant). In addition to mapping the current operational status of these plants, the study of the Kaarstoe steam production and distribution system concluded that the potential for increasing the thermodynamic performance by rather cautious actions was significant, whereas the study of the Snoehvit LNG plant showed the considerable profit which the Arctic location provided in terms of reduced fuel consumption. The significance of the ambient temperature led to the study of systems with two ambient bodies (i.e. ambient water and ambient air) of different temperatures, here three different systems were investigated: A regenerative steam injection gas turbine (RSTIG), a simple Linde air liquefaction plant (Air Liq) and an air-source heat pump water heater (HPWH). In particular, the effect of the chosen environment on exergy analysis was negligible for RSTIG, modest for Air Liq and critical for HPWH. It was found that the amount of exergy received from the alternative ambient body, compared to the main exergy flow of

  4. The significance of mineralogical analysis of Witwatersrand plant products

    International Nuclear Information System (INIS)

    Koen, G.M.; Snegg, J.A.

    1978-01-01

    The ore processor must obtain knowledge of the mode of occurrence of the mineral or minerals he tries to recover in order to be able to improve the extraction process or to increase the grade of the residues. The mineralogist can supply this information, thereby 1) enabling the metallurgist to take steps to improve the efficiency of the plant, 2) enabling planning of a more efficient future plant for processing similar ores, or 3) assisting in the planning of metallurgical testwork. Examples of such investigations are 1) treatment of free gold in the recovery plant, 2) deportment of gold in residues, 3) recovery of gold from thucholite, and 4) quantitative determination of the deportment of uranium (or gold) in head and in residue samples

  5. Increase of Internal CO2 of Cotton Plants by Methanol Application to Increase Yield

    International Nuclear Information System (INIS)

    Badron Zakaria; Darmawan; Nurlina Kasim; Joseph Saepuddin

    2004-01-01

    A field experiment has been conducted to increase internal CO 2 and Rubisco activity detected by 14 C and to determinate which factors influence this activities. Plant material used was cotton plants which internal CO 2 concentrations and Rubisco activity was observed at 35, 50, 65, 80 days after planting (DAP). Treatments applied were methanol with concentrations of 0%, 10%,20% and 30% at available water (AW) at 25-50% AW, 50-75% AW, 75-100% AW. Results obtained showed that application of methanol at concentration of 20% at 75-100% AW, increase internal CO 2 from 266.60 ppm to 295.10 ppm (11 % increase) and this will also increase Rubisco activity from 3.81 to 14.28 (μmol. CO 2 menit -1 (μmol. Rubisco -1 ). This increase is expected to push photosynthesis rate and result in increase cotton yield. The use of 14 C was satisfactorily detected the amount of carbon. (author)

  6. Methane dynamics in Northern Wetlands: Significance of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Joabsson, Anna

    2001-09-01

    The studies presented illustrate several different aspects of the impact of vascular plants on methane emissions from northern natural wetlands. The subject has been approached on different scales, ranging from the study of microbial substrates in the vicinity of a single plant root, to an attempt to extrapolate some of the results to the entire northern hemisphere north of 50 meridian. The main overall conclusions from the papers are that vascular plants affect net methane emissions 1) by offering an efficient route of transport to the atmosphere so that methane oxidation in oxic surface soils is avoided, and 2) by being sources of methanogenic substrate. The degree to which vascular wetland plants affect methane emissions seems to be dependent on species-specific differences in both the capacity to act as gas conduits and the exudation of labile carbon compounds to the soil. An intimate coupling between vascular plant production and methane emission was found in an Arctic tundra wetland, although other environmental variables (water table, temperature) also contributed significantly to the explained variation in methane exchange. Studies of vascular plant extidation of organic acids suggest that the available pool of methanogenic substrates is both qualitatively and quantitatively correlated to vascular plant production (photosynthetic rate). On global scales, vascular plant production as a single factor does not seem to be sufficient to explain the majority of variation in methane flux patterns. Based on comparable experiments at five different sites in the northwestern Eurasian and Greenlandic North, we suggest that mean seasonal soil temperature is the best predictor of methane exchange on broad spatial and temporal scales.

  7. Plant Explants Grown on Medium Supplemented with Fe3O4 Nanoparticles Have a Significant Increase in Embryogenesis

    Directory of Open Access Journals (Sweden)

    Inese Kokina

    2017-01-01

    Full Text Available Development of nanotechnology leads to the increasing release of nanoparticles in the environment that results in accumulation of different NPs in living organisms including plants. This can lead to serious changes in plant cultures which leads to genotoxicity. The aims of the present study were to detect if iron oxide NPs pass through the flax cell wall, to compare callus morphology, and to estimate the genotoxicity in Linum usitatissimum L. callus cultures induced by different concentrations of Fe3O4 nanoparticles. Two parallel experiments were performed: experiment A, where flax explants were grown on medium supplemented with 0.5 mg/l, 1 mg/l, and 1.5 mg/l Fe3O4 NPs for callus culture obtaining, and experiment B, where calluses obtained from basal MS medium were transported into medium supplemented with concentrations of NPs identical to experiment A. Obtained results demonstrate similarly in both experiments that 25 nm Fe3O4 NPs pass into callus cells and induce low toxicity level in the callus cultures. Nevertheless, calluses from experiment A showed 100% embryogenesis in comparison with experiment B where 100% rhizogenesis was noticed. It could be associated with different stress levels and adaptation time for explants and calluses that were transported into medium with Fe3O4 NPs supplementation.

  8. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  9. Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia.

    Science.gov (United States)

    Thomas, Evert; Vandebroek, Ina; Sanca, Sabino; Van Damme, Patrick

    2009-02-25

    Medicinal plant use was investigated in Apillapampa, a community of subsistence farmers located in the semi-arid Bolivian Andes. The main objectives were to identify the culturally most significant medicinal plant families and species in Apillapampa. A total of 341 medicinal plant species was inventoried during guided fieldtrips and transect sampling. Data on medicinal uses were obtained from fifteen local Quechua participants, eight of them being traditional healers. Contingency table and binomial analyses of medicinal plants used versus the total number of inventoried species per family showed that Solanaceae is significantly overused in traditional medicine, whereas Poaceae is underused. Also plants with a shrubby habitat are significantly overrepresented in the medicinal plant inventory, which most likely relates to their year-round availability to people as compared to most annual plants that disappear in the dry season. Our ranking of medicinal species according to cultural importance is based upon the Quality Use Agreement Value (QUAV) index we developed. This index takes into account (1) the average number of medicinal uses reported for each plant species by participants; (2) the perceived quality of those medicinal uses; and (3) participant consensus. According to the results, the QUAV index provides an easily derived and valid appraisal of a medicinal plant's cultural significance.

  10. Materials and methods to increase plant growth and yield

    Science.gov (United States)

    Kirst, Matias

    2017-05-16

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  11. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates.

    Science.gov (United States)

    Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen

    2018-09-01

    Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification.

    Science.gov (United States)

    Locato, Vittoria; Cimini, Sara; Gara, Laura De

    2013-01-01

    Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia, and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by "classical" breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defense responses.

  13. Strategies to increase Vitamin C in plants: from plant defence perspective to food biofortification

    Directory of Open Access Journals (Sweden)

    Vittoria eLocato

    2013-05-01

    Full Text Available Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by classical breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defence responses.

  14. Plant Responses to Increased UV-B Radiation: A Research Project

    Science.gov (United States)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    because there is anecdotal evidence of plant damage on the saguaros that has been linked to increased UV radiation, and (3) the forests of Nothofagus spp. and the steppe of Patagonia where the risk of plant damage at 35S is 5% and increases to as much as 15% at 55S due to increased UV-B radiation. Measurements of UV-B radiation impinging on the surface at 55S largely exceed the predicted UV-B radiation values at 50 latitude and 0% ozone depletion. Preliminary HPLC analyses of UV-B absorbing compounds in Nothofagus antartica, N. pumilio, N. betuloides and Rumex sp. in natural conditions show species-specific patterns. The spectrum of N. antartica grown at 38S differs significantly from that of N. antartica in natural conditions in Ushuaia (55S). These results suggest that the selected main area (Patagonia) is appropriate for assessing the problem and its magnitude and that Nothofagus is appropriate for our study.

  15. Plant based dietary supplement increases urinary pH

    Directory of Open Access Journals (Sweden)

    Rao A Venket

    2008-11-01

    Full Text Available Abstract Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement. Results Mean urinary pH statistically increased (p = 0.03 with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment. Conclusion Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body.

  16. Gas revenue increasingly significant

    International Nuclear Information System (INIS)

    Megill, R.E.

    1991-01-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities

  17. Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback.

    Science.gov (United States)

    Hol, W H Gera; de Boer, Wietse; ten Hooven, Freddy; van der Putten, Wim H

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota.

  18. Increasing Hermaphrodite Flowers using Plant Growth Regulators in Andromonoecious Jatropha curcas

    Directory of Open Access Journals (Sweden)

    DASUMIATI

    2014-09-01

    Full Text Available Jatropha curcas (JC is a crop with potential for use in biodiesel. Production of biodiesel requires plant seed as raw material, so the viability of JC for use in biodiesel will dependent greatly on the plant's production of flowers. Generally, this plant is monoecious, meaning it has both male and female flowers. However, very rarely JC plants may be andromonoecious. Andromonoecious specimens of JC produce hermaphrodite and male flowers in the same plant. The number of hermaphrodite flowers per inflorescence is generally low compared to the number of male flowers. The aim of this study was to increase the proportion of hermaphrodite flowers by using plant growth regulators (PGRs in andromonoecious JC. Our experiment was conducted in Randomized Block Design (RBD with 9 treatments, namely kinetin, GA3, and IAA with concentrations of 0 ppm as a control, 50 and 100 ppm of each PGRs. The treatments were applied to stem cuttings from each plant and repeated 4 times. PGRs were applied by spraying the leaves within the buds of each plant. Applications took place weekly beginning when the plants entered flower initiating phase, until inflorescence produced. Observations were conducted during the treatment period (10 weeks. Results showed that plants treated with IAA, GA3, and kinetin at 50 and 100 ppm produced increased inflorescence per plant. The increases measured were 155.4 and 92.9% of (IAA, 120.4 and 151% (GA3, 96.6 and 51.7% (kinetin respectively. In addition, we found that application and GA3 at concentrations of 50 and 100 ppm, and kinetin at 50 ppm, increased the number of hermaphrodite flowers per inflorescence by 50%, and increased the number of hermaphrodite flowers per plant by 275.6 and 183.1% (IAA, 219.5 and 254.1% (GA3, 162.9 and 103.1% (kinetin respectively. As would be expected, the number of fruit per plant increased in those specimens treated with IAA, GA3, and kinetin at 50 and 100 ppm. The increases measured were 301.7 and 167

  19. Riparian plant community responses to increased flooding: a meta-analysis.

    Science.gov (United States)

    Garssen, Annemarie G; Baattrup-Pedersen, Annette; Voesenek, Laurentius A C J; Verhoeven, Jos T A; Soons, Merel B

    2015-08-01

    A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta-analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta-analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both 'quiescence' and 'escape' proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient-rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain-fed lowland streams). Species richness usually increased at sites in desert and semi-arid climate regions (e.g. intermittent

  20. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.

    Science.gov (United States)

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-09-23

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning.

  1. Hanford Waste Vitrification Plant capacity increase options

    International Nuclear Information System (INIS)

    Larson, D.E.

    1996-04-01

    Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package

  2. The Applications to Increase Drought Tolerance of Plants

    Directory of Open Access Journals (Sweden)

    İlkay Yavaş

    2016-01-01

    Full Text Available Terminal drought is a major threat that adversely affects crop growth and metabolism, and limits the yield. Water stress causes many morphological, physiological and biochemical changes in plants. Plant height, root length, leaf area, fresh and dry biomass are reduced under drought stress. Besides, water stress causes the reduction of relative water content, the closure of stomata and decrease in photosynthesis and chlorophyll content. Antioxidant enzymes such as glutathione reductase (GR, superoxide dismutase (SOD, peroxidase (POD, ascorbat peroxidase (ASC, glutatiton (GSH, catalase (CAT enzyme activities, the indicator of oxidative stress malondialdehyde (MDA and proline levels also changes in drought conditions. Nutrient uptake by plants is prevented or restricted before grain development stage during drought conditions. Therefore the application of plant nutrients followed by micronutrient remobilization within plant is great importance. Osmoprotectants (cytokinin, mannitol, abscisic acid, proline, glycine betaine, polyamine etc. detoxify adverse effect of reactive oxygen species (ROS and alleviate drought stress. Exogenous plant growth promoting rhizobacteria (PGPR application encourage plant growth by colonizing the plant root and increase plants’ resistance to water stress. Besides, the farmers can use conservation tillage system in dry periods.

  3. The plant cytoskeleton controls regulatory volume increase.

    Science.gov (United States)

    Liu, Qiong; Qiao, Fei; Ismail, Ahmed; Chang, Xiaoli; Nick, Peter

    2013-09-01

    The ability to adjust cell volume is required for the adaptation to osmotic stress. Plant protoplasts can swell within seconds in response to hypoosmotic shock suggesting that membrane material is released from internal stores. Since the stability of plant membranes depends on submembraneous actin, we asked, whether this regulatory volume control depends on the cytoskeleton. As system we used two cell lines from grapevine which differ in their osmotic tolerance and observed that the cytoskeleton responded differently in these two cell lines. To quantify the ability for regulatory volume control, we used hydraulic conductivity (Lp) as readout and demonstrated a role of the cytoskeleton in protoplast swelling. Chelation of calcium, inhibition of calcium channels, or manipulation of membrane fluidity, did not significantly alter Lp, whereas direct manipulation of the cytoskeleton via specific chemical reagents, or indirectly, through the bacterial elicitor Harpin or activation of phospholipase D, was effective. By optochemical engineering of actin using a caged form of the phytohormone auxin we can break the symmetry of actin organisation resulting in a localised deformation of cell shape indicative of a locally increased Lp. We interpret our findings in terms of a model, where the submembraneous cytoskeleton controls the release of intracellular membrane stores during regulatory volume change. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Effect of Increase in Plant Density on Stem Yield and Sucrose Content in Two Sweet Sorghum Cultivars

    Directory of Open Access Journals (Sweden)

    A Soleymani

    2011-01-01

    Full Text Available Abstract In order to evaluate the effect of increase plant density on stalk yield and sucrose content in two sweet sorghum cultivars, an experiment was conducted at Research Farm of Isfahan University located at Zaghmar village. A split plot layout within a randomized complete block design with tree replication was used. Main plots were plant densities (100, 200, 300, 400, 500 and 600 thousand plant/ha and subplots were cultivars (Rio and Keller. The effect of plant density at hard dough harvest stage on plant height, stem diameter, number of tillers, stem fresh weight and juice yield were significant but had no significant effect on brix, sucrose percentage and purity. The highest juice yield and purity were produced by 400 thousand plants/ha. Keller was significantly superior for plant height, stem diameter, stem fresh weight, juice yield and brix at hard dough harvest stage as compared to Rio. Number of tiller per plant of Rio was significantly more than Keller. There were no significant difference between two cultivars for sucrose percentage and purity but sucrose percentage in Keller had highest as compared to Rio. Maximum stem fresh weight, juice yield, sucrose percentage and purity were obtained at hard dough harvest stag. On the basis of the results obtained, 400 thousand plant/ha plant density, Keller cultivar and hard dough harvest stage might be suitable for sweet sorghum production under the condition similar to the present study. Keywords: Sweet sorghum, Stem yield, Sucrose percentage, Harvesting stages

  5. A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid

    Directory of Open Access Journals (Sweden)

    Grace A. Hoysted

    2017-11-01

    Full Text Available Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L. host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida, and a phloem-sucking herbivore (Myzus persicae. The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests.

  6. Effects of increased solar ultraviolet radiation on terrestrial plants

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Teramura, A.H.; Tevini, M.; Bornman, J.F.; Björn, L.O.; Kulandaivelu, G.

    1995-01-01

    Physiological and developmental processes of plants are affected by UV-B radiation, even by the amount of UV-B in present-day sunlight. Plants also have several mechanisms to ameliorate or repair these effects and may acclimate to a certain extent to increased levels of UV-B. Nevertheless, plant growth can be directly affected by UV-B radiation. Response to UV-B also varies considerably among species and also cultivars of the same species. In agriculture, this may necessitate using more UV-B-tolerant cultivars and breeding new ones. In forests and grasslands, this will likely result in changes in species composition; therefore there are implications for the biodiversity in different ecosystems. Indirect changes caused by UV-B-such as changes in plant form, biomass allocation to parts of the plant, timing of developmental phases and secondary metabolism-may be equally, or sometimes more important than damaging effects of UV-B. These changes can have important implications for plant competitive balance, herbivory, plant pathogens, and biogeochemical cycles. These ecosystem-level effects can be anticipated, but not easily predicted or evaluated. Research at the ecosystem level for solar UV-B is barely beginning. Other factors, including those involved in climate change such as increasing CO2, also interact with UV-B. Such reactions are not easily predicted, but are of obvious importance in both agriculture and in nonagricultural ecosystems

  7. Increase in the activity of fructose-1,6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels.

    Science.gov (United States)

    Tamoi, Masahiro; Hiramatsu, Yoshie; Nedachi, Shigeki; Otori, Kumi; Tanabe, Noriaki; Maruta, Takanori; Shigeoka, Shigeru

    2011-05-01

    We generated transgenic tobacco plants with high levels of fructose-1,6-bisphosphatase expressing cyanobacterialfructose-1,6-/sedoheptulose-1,7-bisphosphatase in the cytosol. At ambient CO(2) levels (360 ppm), growth, photosynthetic activity, and fresh weight were unchanged but the sucrose/hexose/starch ratio was slightly altered in the transgenic plants compared with wild-type plants. At elevated CO(2) levels (1200 ppm), lateral shoot, leaf number, and fresh weight were significantly increased in the transgenic plants. Photosynthetic activity was also increased. Hexose accumulated in the upper leaves in the wild-type plants, while sucrose and starch accumulated in the lower leaves and lateral shoots in the transgenic plants. These findings suggest that cytosolic fructose-1,6-bisphosphatase contributes to the efficient conversion of hexose into sucrose, and that the change in carbon partitioning affects photosynthetic capacity and morphogenesis at elevated CO(2) levels.

  8. Risks of increased UV-B radiation: higher plants

    International Nuclear Information System (INIS)

    Rau, W.; Hofmann, H.

    1994-01-01

    The question pursued within the Bavarian climate research programme (BayFORKLIM) in the present context was as follows: Does the fact that UV-B radiation increases with growing site elevation mean that the low sensitivity of predominantly alpine plants compared with that of lowland plants is attributable to their different genetic constitution, possibly as a result of selective pressure and/or de alpine species have a greater capacity to develop protective mechanisms? Pairs and triplets of species belonging to the same genus but occuring at different site elevations were grown from seeds in a greenhouse that is, without UV-B. In order to determine their capacity to adapt to UV-B radiation, some of the plants were additionally exposed to UV-B for 5-6 weeks prior to sensitivity testing. Sensitivity was tested by exposing the plants to additional UV-B of different intensities in test chambers. Visible damage, ranging from light bronzing or yellowing to withering, served as an assessment criterion. Levels of UV-B absorbing substances (phenylpropane species, usually flavonoids) were also measured in these plants. The results obtained permit the following conclusions: The greater UV-B resistance of alpine species compared with that of lowland species of the same genus is not attributable to their genetic constitution but rather to their superior adaptability. Superior resistance is in part due to a greater accumulation of UV-B absorbing substances. Distinct differences in sensitivity between different genera could lead to population shifts within ecosystems as a result of increased UV-B radiation. (orig./KW) [de

  9. Climate warming could increase recruitment success in glacier foreland plants.

    Science.gov (United States)

    Mondoni, Andrea; Pedrini, Simone; Bernareggi, Giulietta; Rossi, Graziano; Abeli, Thomas; Probert, Robin J; Ghitti, Michele; Bonomi, Costantino; Orsenigo, Simone

    2015-11-01

    Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants. Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory. At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13-35 % higher) in all species except two. Survival and establishment was possible for 60-75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success. The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the

  10. Methods of increasing thermal efficiency of steam and gas turbine plants

    Science.gov (United States)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  11. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Science.gov (United States)

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  12. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Directory of Open Access Journals (Sweden)

    Ole Rechner

    Full Text Available Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm, violet (420 nm, blue (470 nm, or green (515 nm. We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates, and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants over control plants.

  13. Increasing carbon dioxide and the response of plants to this challenge

    International Nuclear Information System (INIS)

    Bazzaz, F.A.; Fajer, E.D.

    1992-01-01

    Discussed are the effects that increasing carbon dioxide concentrations in the air tend to have on the various types of plant. In the so-called C 3 group of plants globally elevated carbon dioxide levels may lead to increases in the rate of photosynthesis, even though these often appear to be only of a transient nature. The C 4 group of plants, however, clearly are at a disadvantage here. The attendant agricultural problems and resulting dangers to complete ecosystems including animals are described. Mention is also made of the possibility of using plants as carbon dioxide repositories. The urgent need for measures leading to a reduction of carbon dioxide emissions is strongly pointed out. (MG) [de

  14. Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels.

    Science.gov (United States)

    Weingärtner, Oliver; Bogeski, Ivan; Kummerow, Carsten; Schirmer, Stephan H; Husche, Constanze; Vanmierlo, Tim; Wagenpfeil, Gudrun; Hoth, Markus; Böhm, Michael; Lütjohann, Dieter; Laufs, Ulrich

    2017-05-01

    This double-blind, randomized, placebo-controlled, cross-over intervention-study was conducted in healthy volunteers to evaluate the effects of plant sterol ester supplemented margarine on cholesterol, non-cholesterol sterols and oxidative stress in serum and monocytes. Sixteen volunteers, average age 34 years, with no or mild hypercholesterolemia were subjected to a 4 week period of daily intake of 3g plant sterols per day supplied via a supplemented margarine on top of regular eating habits. After a wash-out period of one week, volunteers switched groups. Compared to placebo, a diet supplementation with plant sterols increased serum levels of plant sterols such as campesterol (+0.16±0.19mg/dL, p=0.005) and sitosterol (+0.27±0.18mg/dL, psynthesis such as desmosterol (+0.05±0.07mg/dL, p=0.006) as well as lathosterol (+0.11±0.16mg/dL, p=0.012). Cholesterol serum levels, however, were not changed significantly (+18.68±32.6mg/dL, p=0.052). These findings could not be verified in isolated circulating monocytes. Moreover, there was no effect on monocyte activation and no differences with regard to redox state after plant sterol supplemented diet. Therefore, in a population of healthy volunteers with no or mild hypercholesterolemia, consumption of plant sterol ester supplemented margarine results in increased concentrations of plant sterols and cholesterol synthesis markers without affecting total cholesterol in the serum, activation of circulating monocytes or redox state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing.

    Science.gov (United States)

    Bell, Luke; Yahya, Hanis Nadia; Oloyede, Omobolanle Oluwadamilola; Methven, Lisa; Wagstaff, Carol

    2017-04-15

    Five cultivars of Eruca sativa and a commercial variety of Diplotaxis tenuifolia were grown in the UK (summer) and subjected to commercial growth, harvesting and processing, with subsequent shelf life storage. Glucosinolates (GSL), isothiocyanates (ITC), amino acids (AA), free sugars, and bacterial loads were analysed throughout the supply chain to determine the effects on phytochemical compositions. Bacterial load of leaves increased significantly over time and peaked during shelf life storage. Significant correlations were observed with GSL and AA concentrations, suggesting a previously unknown relationship between plants and endemic leaf bacteria. GSLs, ITCs and AAs increased significantly after processing and during shelf life. The supply chain did not significantly affect glucoraphanin concentrations, and its ITC sulforaphane significantly increased during shelf life in E. sativa cultivars. We hypothesise that commercial processing may increase the nutritional value of the crop, and have added health benefits for the consumer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The evolutionary response of plants to increased UV-B radiation: Field studies with Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Trumbull, V.L.; Paige, K.N.

    1995-01-01

    The response of a species to any environmental change is determined by both phenotypic and evolutionary adjustments. To date, the majority of research concerning the response of terrestrial plants to increased UV-B radiation has focused on phenotypic adjustments. Recently we have initiated field studies aimed at assessing genetic variation for UV-B sensitivity within a natural population of Arabidopsis thaliana. This population consists of at least eight discrete genotypes that have been confirmed by RAPD analysis. We used an incomplete block design to assess the impact of UV-B (ambient and ambient + 6 kJ) and PAR (low and high) on these genotypes. The high UV-B treatment caused a significant reduction in fruit number and plant height while the high PAR treatment caused a significant increase in these variables. In addition, there was a marginally significant (p=0.1) UV-B x PAR x maternal line interaction for fruit number, indicating that genetic variation for UV-B sensitivity within this population depends on the PAR environment. The combination of high UV-B and high PAR caused a change in fruit number (relative to the ambient UV-B/high PAR treatment) ranging from an increase of 24% to a decrease of 47%. This range was much smaller in the low PAR treatment. These results indicate the potential for increased UV-B radiation to act as an agent of natural selection within this population

  17. Neonicotinoid Insecticides Alter Induced Defenses and Increase Susceptibility to Spider Mites in Distantly Related Crop Plants

    Science.gov (United States)

    Szczepaniec, Adrianna; Raupp, Michael J.; Parker, Roy D.; Kerns, David; Eubanks, Micky D.

    2013-01-01

    Background Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. Methodology/Principal Findings Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine amonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. Conclusions/Significance Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated. PMID

  18. Increased utilisation of existing biogas plants; Oekat utnyttjande av befintliga biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Mikael

    2007-09-15

    The purpose of this study is to analyse how existing biogas plants in Sweden could be utilised more efficiently, by increase the organic loading rate, and to calculate the cost efficiency of such measures. Biogas plants treating sewage sludge are currently operated with low organic loading rates and it is likely that there could be a considerable potential of increased utilisation of existing capacity. However, disposal costs of digested sewage sludge have a great impact on the economic result. Thus, the cost must be low, below 200 - 850 SEK/tonne DS, for co-digestion of sewage sludge and organic household waste to be economic competitive, compared to building of a new reactor. For co-digestion plants, using manure and organic waste as feedstock, it is not possible to say whether it is more economic to increase the utilisation of existing capacity or to increase the reactor volume. Therefore, more specific studies are required for individual plants and cases. Regarding the need for a more sophisticated monitoring and control of the biogas process, it can be established that the utilisation of sewage sludge digestion plants could be increased considerably without exceptionally high organic loading rates, thus probably without any additional monitoring and control. However, indicated prices for such applications are probably acceptable compared to establishing a new reactor. For co-digestion plants, the scope for investments is smaller and more dependent on the alternative cost for new reactors. Also, any process disturbances, which may appear even at low organic loading rates, could be very costly and result in costs in the same range as for monitoring and control equipment. Finally, the reader should observe that the analyses conducted here assume that funding and physical space for additional reactors is available at the existing site. If not, there could be situations where it is economic interesting to increase the organic loading rate although cost estimates

  19. Increasing the thermal efficiency of boiler plant

    Directory of Open Access Journals (Sweden)

    Uyanchinov Evgeniy

    2017-01-01

    Full Text Available The thermal efficiency increase of boiler plant is actual task of scientific and technical researches. The optimization of boiler operating conditions is task complex, which determine by most probable average load of boiler, operating time and characteristics of the auxiliary equipment. The work purpose – the determination of thermodynamic efficiency increase ways for boiler plant with a gas-tube boiler. The tasks, solved at the research are the calculation of heat and fuel demand, the exergetic analysis of boilerhouse and heat network equipment, the determination of hydraulic losses and exergy losses due to restriction. The calculation was shown that the exergy destruction can be reduced by 2.39% due to excess air reducing to 10%; in addition the oxygen enrichment of air can be used that leads to reducing of the exergy destruction rate. The processes of carbon deposition from the side of flame and processes of scale formation on the water side leads to about 4.58% losses of fuel energy at gas-tube boiler. It was shown that the exergy losses may be reduced by 2.31% due to stack gases temperature reducing to 148 °C.

  20. Increasing harvest maturity of whole-plant corn silage reduces methane

    NARCIS (Netherlands)

    Hatew, B.; Bannink, A.; Laar, van H.; Jonge, de L.H.; Dijkstra, J.

    2016-01-01

    The objective of this study was to investigate the effects of increasing maturity of whole-plant corn at harvest on CH4 emissions by dairy cows consuming corn silage (CS) based diets. Whole-plant corn was harvested at a very early [25% dry matter (DM); CS25], early (28% DM; CS28), medium (32% DM;

  1. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  2. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    Science.gov (United States)

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  3. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Science.gov (United States)

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector

    Directory of Open Access Journals (Sweden)

    Xavier eMartini

    2014-05-01

    Full Text Available Interactions between plant pathogens and arthropods have been predominantly studied through the prism of herbivorous arthropods. Currently, little is known about the effect of plant pathogens on the third trophic level. This question is particularly interesting in cases where pathogens manipulate host phenotype to increase vector attraction and presumably increase their own proliferation. Indeed, a predator or a parasitoid of a vector may take advantage of this manipulated phenotype to increase its foraging performance. We explored the case of a bacterial pathogen, Candidatus Liberibacter asiaticus (Las, which modifies the odors released by its host plant (citrus trees to attract its vector, the psyllid Diaphorina citri. We found that the specialist parasitoid of D. citri, Tamarixia radiata, was attracted more toward Las-infected than uninfected plants. We demonstrated that this attractiveness was due to the release of methyl salicylate. Parasitization of D. citri nymphs on Las-infected plants was higher than on uninfected controls. Also, parasitization was higher on uninfected plants baited with methyl salicylate than on non-baited controls. This is the first report of a parasitoid ‘eavesdropping’ on a plant volatile induced by bacterial pathogen infection, which also increases effectiveness of host seeking behavior of its herbivorous vector.

  5. UNIRAM modeling for increased nuclear-plant availability and life extension

    International Nuclear Information System (INIS)

    O'Mara, R.L.

    1988-01-01

    At the start of a nuclear-power plant's design life of 40 years, most parts of the plant are effectively brand new, but some subcomponents have already experienced significant wear and aging effects. In short, the spectrum of where each component is in its life cycle at any time is quite broad, and this makes the prediction of the future availability of the plant a complex issue. Predictive models that account for the differential effects of aging, wear, and functional failure on the plant are desirable as a means to represent this complex behavior. This paper addresses the task of using a computer model to account for the relationships between components, systems, and plant availability, in the context of current and future needs, including eventual life extension. The computer model is based on the Electric Power Research Institute's (EPRI) code, UNIRAM, which has a large and growing user base among utilities

  6. Plants increase laccase activity in soil with long-term elevated CO2 legacy

    DEFF Research Database (Denmark)

    Partavian, Asrin; Mikkelsen, Teis Nørgaard; Vestergård, Mette

    2015-01-01

    [CO2] stimulate laccase activity. We incubated soil exposed to seven years of elevated or ambient field [CO2] in ambient or elevated [CO2] chambers for six months either with or without plants (Deschampsia flexuosa). Elevated chamber [CO2] increased D. flexuosa production and belowground respiration....... Interestingly, plants also grew larger in soil with an elevated [CO2] legacy. Plants stimulated soil microbial biomass, belowground respiration and laccase activity, and the plant-induced laccase stimulation was particularly apparent in soil exposed to long-term elevated [CO2] in the field, whereas laccase......Actively growing plants can stimulate mineralization of recalcitrant soil organic matter (SOM), and increased atmospheric [CO2] can further enhance such plant-mediated SOM degradation. Laccases are central for recalcitrant SOM decomposition, and we therefore hypothesized that plants and elevated...

  7. 75 FR 11575 - James A. Fitzpatrick Nuclear Power Plant Environmental Assessment and Finding of No Significant...

    Science.gov (United States)

    2010-03-11

    ... Power Plant Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory...), for the operation of the James A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County... the Final Environmental Statement for the James A. FitzPatrick Nuclear Power Plant, Docket No. 50-333...

  8. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    Science.gov (United States)

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  9. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava.

    Directory of Open Access Journals (Sweden)

    Isabel Ceballos

    Full Text Available The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF and plant roots. The fungi provide the plant with inorganic phosphate (P. The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.

  10. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Borch Nielsen, Peter; Boe-Hansen, Rasmus

    2018-01-01

    Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters...... groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH4+/L by a factor of 2–12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification...... was fully established, with ammonium effluent concentrations of water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time...

  11. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    FAO Silveira

    Full Text Available Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences of Miconia albicans (SW. Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS, shrublands (cerrado sensu strico, CE and woodlands (cerradão, CD. As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.

  12. Method of extracting significant trouble information of nuclear power plants using probabilistic analysis technique

    International Nuclear Information System (INIS)

    Shimada, Yoshio; Miyazaki, Takamasa

    2005-01-01

    In order to analyze and evaluate large amounts of trouble information of overseas nuclear power plants, it is necessary to select information that is significant in terms of both safety and reliability. In this research, a method of efficiently and simply classifying degrees of importance of components in terms of safety and reliability while paying attention to root-cause components appearing in the information was developed. Regarding safety, the reactor core damage frequency (CDF), which is used in the probabilistic analysis of a reactor, was used. Regarding reliability, the automatic plant trip probability (APTP), which is used in the probabilistic analysis of automatic reactor trips, was used. These two aspects were reflected in the development of criteria for classifying degrees of importance of components. By applying these criteria, a simple method of extracting significant trouble information of overseas nuclear power plants was developed. (author)

  13. TRANSGENIC PLANTS OF RAPE (BRASSICA NAPUS L. WITH GENE OSMYB4 HAVE INCREASED RESISTANCE TO SALTS OF HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Raldugina G.N.

    2012-08-01

    Full Text Available This work aims to study the response of the transgenic spring rape plants (Brassica napus L. var. ‘Westar’ with the rice transfactor-encoding gene Osmyb4 to treatment with salts of heavy metals (HM CuSO4 or ZnSO4 and accumulation in the leaves of biomass, metals, photosynthetic pigments, lipid peroxidation, and antioxidant compounds: total phenols, anthocyanins, and antioxidant enzyme activity superoxide dismutase (SOD and guaiacol peroxidase (POX were determined. Vegetatively propagated transgenic plants and wild-type plants were grown on Hoagland-Snyder medium at 24°C, then at the 5-6th leaves-stage, CuSO4 (in concentration 25-150 mM or ZnSO4 (500 - 5000 mM were added to the growth medium, and plants were exposed to the salts for 15 days. Under the action of small concentrations of salts, the results obtained for the transgenic and untransformed plants did not differ, but at high concentrations strong differences between transgenic and untransformed plants were observed. In transgenic plants, accumulation of biomass was greater. Carotene and xanthophyll were destroyed in transgenic plants less than in the untransformed plants. They have accumulated in their leaves more metal, especially Zn, reaching almost to the accumulation of 7 mg per g of dry biomass, bringing these plants to the hyperaccumulation of Zn. In the tissues of transgenic plants exposed to high concentrations of salts, the content of total phenols, anthocyanins, and low molecular weight compounds, that are responsible for protection against ROS, increased significantly. All these results indicate a greater stability of the transgenic plants to the action of heavy metals, as evidenced also by less activity of lipid peroxidases in their tissue: at high salt concentrations, malondialdehyde (MDA accumulated significantly less in transgenic plants than in non-transformed plant tissues. The greater stability of transgenic plants to stressful effect of HM is also evidenced by the

  14. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  15. Plant Density Effect in Different Planting Dates on Growth Indices, Yield and

    Directory of Open Access Journals (Sweden)

    F Azizi

    2013-04-01

    Full Text Available In order to determine the appropriate plant density in different planting dates for sweet corn cultivar KSC403su, an experiment was conducted using a randomized complete block design in split plot lay out with three replications at Seed and Plant Improvement Institute in Karaj in 2006. Three planting dates (22 May, 5 June and 22 June were assigned as main plots and three plant densities (65000, 75000 and 85000 plants per hectare were considered as sub plots. Effect of planting date on row/ear, 1000 kernels weight, biological yield and harvest index was significant at 1% probability level and it was significant at 5% probability level for kernels/ear row and grain yield. All traits decreased with postponement of planting date to 5 June except for row/ear, kernels/row and grain yield. More delay in planting from 22 May to 22 June caused that grain yield was decreased significantly about 32.5% (from 14.45 to 9.78 ton/ha. Effect of plant density was significant at 1% probability level for all the traits. All of the traits decreased significantly with increasing plant density except for biological yield. The highest grain yield was resulted from 65000 plants per hectare density (14.20 ton/ha. Interaction effect of planting date and plant density was significant at 5% probability level for biological yield and harvest index but it wasn’t significant for the other traits. Growth indices decreased with delay in planting date and increasing plant density. Only leaf area index increased in more plant densities. From the results of this experiment it might be resulted that appropriate planting date to produce the highest grain yield is 22 May to 5 June for sweet corn cultivar KSC403su and also the highest grain yield can obtain from 65000 plants per hectare density.

  16. Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Jia Fang

    2018-02-01

    Full Text Available Transgenic glyphosate-tolerant plants overproducing EPSPS (5-enolpyruvylshikimate-3-phosphate synthase may exhibit enhanced fitness in glyphosate-free environments. If so, introgression of transgenes overexpressing EPSPS into wild relative species may lead to increased competitiveness of crop-wild hybrids, resulting in unpredicted environmental impact. Assessing fitness effects of transgenes overexpressing EPSPS in a model plant species can help address this question, while elucidating how overproducing EPSPS affects the fitness-related traits of plants. We produced segregating T2 and T3Arabidopsis thaliana lineages with or without a transgene overexpressing EPSPS isolated from rice or Agrobacterium (CP4. For each of the three transgenes, we compared glyphosate tolerance, some fitness-related traits, and auxin (indole-3-acetic acid content in transgene-present, transgene-absent, empty vector (EV, and parental lineages in a common-garden experiment. We detected substantially increased glyphosate tolerance in T2 plants of transgene-present lineages that overproduced EPSPS. We also documented significant increases in fecundity, which was associated with increased auxin content in T3 transgene-present lineages containing rice EPSPS genes, compared with their segregating transgene-absent lineages, EV, and parental controls. Our results from Arabidopsis with nine transgenic events provide a strong support to the hypothesis that transgenic plants overproducing EPSPS can benefit from a fecundity advantage in glyphosate-free environments. Stimulated biosynthesis of auxin, an important plant growth hormone, by overproducing EPSPS may play a role in enhanced fecundity of the transgenic Arabidopsis plants. The obtained knowledge is useful for assessing environmental impact caused by introgression of transgenes overproducing EPSPS from any GE crop into populations of its wild relatives.

  17. Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants.

    Science.gov (United States)

    Fang, Jia; Nan, Peng; Gu, Zongying; Ge, Xiaochun; Feng, Yu-Qi; Lu, Bao-Rong

    2018-01-01

    Transgenic glyphosate-tolerant plants overproducing EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) may exhibit enhanced fitness in glyphosate-free environments. If so, introgression of transgenes overexpressing EPSPS into wild relative species may lead to increased competitiveness of crop-wild hybrids, resulting in unpredicted environmental impact. Assessing fitness effects of transgenes overexpressing EPSPS in a model plant species can help address this question, while elucidating how overproducing EPSPS affects the fitness-related traits of plants. We produced segregating T 2 and T 3 Arabidopsis thaliana lineages with or without a transgene overexpressing EPSPS isolated from rice or Agrobacterium ( CP4 ). For each of the three transgenes, we compared glyphosate tolerance, some fitness-related traits, and auxin (indole-3-acetic acid) content in transgene-present, transgene-absent, empty vector (EV), and parental lineages in a common-garden experiment. We detected substantially increased glyphosate tolerance in T 2 plants of transgene-present lineages that overproduced EPSPS. We also documented significant increases in fecundity, which was associated with increased auxin content in T 3 transgene-present lineages containing rice EPSPS genes, compared with their segregating transgene-absent lineages, EV, and parental controls. Our results from Arabidopsis with nine transgenic events provide a strong support to the hypothesis that transgenic plants overproducing EPSPS can benefit from a fecundity advantage in glyphosate-free environments. Stimulated biosynthesis of auxin, an important plant growth hormone, by overproducing EPSPS may play a role in enhanced fecundity of the transgenic Arabidopsis plants. The obtained knowledge is useful for assessing environmental impact caused by introgression of transgenes overproducing EPSPS from any GE crop into populations of its wild relatives.

  18. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...... the characteristic low compressibility and high friction giving much better conditions for root penetration increasing yield potentials. Furthermore, risk of drought in dry periods, and nutrient losses in wet periods in coarser soil types is also reduced...

  19. Tobacco expressing pap1 increases the responses to par and uv-a by enhancing soluble sugars and flavonoids and elevating plant protections

    International Nuclear Information System (INIS)

    Sompornpailin, K.; Kanthang, S.

    2015-01-01

    Five lines of transgenic tobacco over-expressing Production of Anthocyanin Pigment 1 (PAP1) cDNA were analysis of metabolic response against the radiation and their protection of the plant under tissue culture condition. PAP1 transgenic and wild type (WT) plants were treated with the radiations of photosynthetically activate radiation (PAR) or PAR combined with UV-A. All lines of transgenic significantly increased in amounts of p-coumaric acid, naringenin apigenin more than WT under both treatments. Additional UV-A radiating to plant rose up kaempferol content in WT plant (1.5 times) and in PAP1 transgenics (1.8 times). These transgenic plants treated under both conditions had also increased anthocyanin substances (pelargonidin) with significant value after compared to WT. Content of total soluble sugar (TSS) was related to the content of total flavonoids in transgenic. PAR combined with UV-A had a lower induction of the electrolyte leakage percentage and malondialdehyde (MDA) level in the transgenic leaf tissue compared to WT tissue. The metabolic substance levels were considered on its protection of plant cells. In transgenic tissue, the enhancement of apigenin level strongly diminished the increase level of electrolyte leakage while the levels of TSS, p-coumaric acid and naringinin less affected. Moreover, the increase levels of kaempferol and pelargonidin associated with the decrease level of MDA, while the TSS level reversely responded. The PAP1 transgenic increased response of light by adaptation of their metabolites (TSS, p-coumaric acid and flavonoids) consequently enhance parameter indicating protections of the cell. (author)

  20. Chemical intervention in plant sugar signalling increases yield and resilience

    Science.gov (United States)

    Griffiths, Cara A.; Sagar, Ram; Geng, Yiqun; Primavesi, Lucia F.; Patel, Mitul K.; Passarelli, Melissa K.; Gilmore, Ian S.; Steven, Rory T.; Bunch, Josephine; Paul, Matthew J.; Davis, Benjamin G.

    2016-12-01

    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

  1. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests.

    Science.gov (United States)

    Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng

    2016-04-01

    The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  2. The significance of human actions for plant safety

    International Nuclear Information System (INIS)

    Holloway, N.J.

    1988-01-01

    The occurrence of the Chernobyl accident and before it the accidents at Three Mile Island, Flixborough and Bhopal, together with lesser process plant accidents, has emphasised the potential danger of human errors in major hazard plant operations. The perception of human error, held by the majority of the public and containing a fair amount of truth for a simple perception, is of an unpredictable and uncontrollable force let loose within the safest of system designs, and able, by virtue of these properties, to override the best laid plans. In this paper, we review the nature of the human errors which most concern us in process plant operation, and consider some of the conceptual approaches which might bring these errors under the same type of control as has been achieved for random hardware failures. (author)

  3. Climate change will increase the naturalization risk from garden plants in Europe.

    Science.gov (United States)

    Dullinger, Iwona; Wessely, Johannes; Bossdorf, Oliver; Dawson, Wayne; Essl, Franz; Gattringer, Andreas; Klonner, Günther; Kreft, Holger; Kuttner, Michael; Moser, Dietmar; Pergl, Jan; Pyšek, Petr; Thuiller, Wilfried; van Kleunen, Mark; Weigelt, Patrick; Winter, Marten; Dullinger, Stefan; Beaumont, Linda

    2017-01-01

    Plant invasions often follow initial introduction with a considerable delay. The current non-native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non-native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. Europe. We selected all species naturalized anywhere in the world but not yet in Europe from the set of non-native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate.

  4. Plant diversity increases spatio?temporal niche complementarity in plant?pollinator interactions

    OpenAIRE

    Venjakob, Christine; Klein, Alexandra?Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-01-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four...

  5. Linking plant functional trait plasticity and the large increase in forest water use efficiency

    Science.gov (United States)

    Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Gough, Christopher M.; Fatichi, Simone

    2017-09-01

    Elevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux observations from Northern Hemisphere forests showed a large increase in inherent water use efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered by environmental change. We found that IWUE increased by 1.3% yr-1, which is less than previously reported but still larger than theoretical expectations. Numerical simulations with the Tethys-Chloris ecosystem model using temporally static plant functional traits cannot explain this increase. Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results show that trends in plant functional traits, equal to 1.0% yr-1, can explain the observed IWUE trends. Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, and energy fluxes with profound implications for both the monitoring of temporal changes in plant functional traits and their representation in Earth system models.

  6. Arabidopsis and Brachypodium distachyon Transgenic Plants Expressing Aspergillus nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens1[C][W][OA

    Science.gov (United States)

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.

    2013-01-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  7. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.

    Science.gov (United States)

    Kingston-Smith, A H; Marshall, A H; Moorby, J M

    2013-03-01

    Animal production is a fundamental component of the food supply chain, and with an increasing global population production levels are set to increase. Ruminant animals in particular are valuable in their ability to convert a fibre-rich forage diet into a high-quality protein product for human consumption, although this benefit is offset by inefficiencies in rumen fermentation that contribute to emission of significant quantities of methane and nitrogenous waste. Through co-operation between plant and animal sciences, we can identify how the nutritional requirements of ruminants can be satisfied by high-quality forages for the future. Selective forage plant breeding has supported crop improvement for nearly a century. Early plant breeding programmes were successful in terms of yield gains (4% to 5% per decade), with quality traits becoming increasingly important breeding targets (e.g. enhanced disease resistance and digestibility). Recently, demands for more sustainable production systems have required high yielding, high-quality forages that enable efficient animal production with minimal environmental impact. Achieving this involves considering the entire farm system and identifying opportunities for maximising nutrient use efficiency in both forage and animal components. Forage crops of the future must be able to utilise limited resources (water and nutrients) to maximise production on a limited land area and this may require us to consider alternative plant species to those currently in use. Furthermore, new breeding targets will be identified as the interactions between plants and the animals that consume them become better understood. This will ensure that available resources are targeted at delivering maximum benefits to the animal through enhanced transformation efficiency.

  8. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing.

    Science.gov (United States)

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2018-04-01

    Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to 4.90 g NH 4 + -N/m 3 /h, and

  9. Balance of the LVC plant with increase in 15 % of power

    International Nuclear Information System (INIS)

    Ortiz, J.J.; Hernandez, J.L.; Perusquia, R.; Castillo, A.; Montes, J.L.

    2005-01-01

    One of the tendencies in many power reactors has been to modify some operation conditions, in order to increasing the electricity generation. The Laguna Verde Nuclear power plant (CNLV) it has not been the exception and in the recent past an increment of 5% was made in the original nominal thermal power. In the face of the possibility of carrying out more modifications, a study was made in the one that one simulates an eventual increment of the power of the reactor in 15% of the original value. With this increment one carries out the balance of the plant and the thermodynamic properties were determined. With this purpose it was developed a computer tool to calculate the thermodynamic properties of the plant in several points of the power cycle, as well as to carry out energy and mass balances to determine the flows in the different extractions of steam of the turbines. The program is compared with the results to 100% and 105% of increase of power obtaining good results, for what it is concluded that the extrapolation to 115% of power increase is acceptable. (Author)

  10. Analysis of events significant with regard to safety of Bohunice V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Suchomel, J.; Maron, V.; Kmosena, J.

    1986-01-01

    An analysis was made of operating safety of the V-1 nuclear power plant in Jaslovske Bohunice for the years 1980 - 1983. Of the total number of 676 reported failures only three were events with special safety significance, namely a complete loss of power supply for own consumption from the power grid, a failure of pins on the collectors of steam generators, and a failure of the heads of heat technology inspection channels. The failures were categorized according to the systems used in the USSR and in the USA and compared with data on failures in nuclear power plants in the two countries. The conclusions show that the operation of the V-1 nuclear power plant achieves results which are fully comparable with those recorded in 9 WWER-440 power plants operating in various countries. The average coefficient of availability is 0.72 and ranks the power plant in the fourth place among the said 9 plants. A comparison of the individual power plant units showed that of the total number of 22, the first unit of the V-1 plant ranks fifth with a coefficient of 0.78 and the second unit with a coefficient of 0.69 ranks 15th. (Z.M.)

  11. Effect of increased regulation on capital costs and manual labor requirements of nuclear power plants

    International Nuclear Information System (INIS)

    Paik, S.; Schriver, W.R.

    1981-01-01

    An attempt is made to explain the impact of increasing governmental regulation on capital costs and labor requirements for constructing light water reactor (LWR) electric power plants. The principal factors contributing to these increases are: (1) market conditions and (2) increased regulation. General market conditions include additional costs attributable to price inflation of equipment, material, labor, and the increased cost of money. The central objective of this work is to estimate the impact of increasing regulation on plant costs and, conversely, on output. To do this it is necessary to isolate two opposing sets of forces which have been in operation during the period of major regulatory expansion: learning based upon plant design experience and economies of scale with increasing size (generating capacity) of newer plants. Conceptual models are specified to capture the independent effects of increasing regulation, learning, and economies of scale. Empirical results were obtained by estimating the models on data collected from industry experience during the 1967-1980 period. 23 refs

  12. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Sánchez, Miguel E. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Loqué, Dominique [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Lao, Jeemeng [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Catena, Michela [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Verhertbruggen, Yves [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Herter, Thomas [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Yang, Fan [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Harholt, Jesper [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C Denmark; Ebert, Berit [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C Denmark; Baidoo, Edward E. K. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Keasling, Jay D. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Chemical and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley CA USA; Scheller, Henrik V. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant and Microbial Biology, University of California, Berkeley CA USA; Heazlewood, Joshua L. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Ronald, Pamela C. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant Pathology and the Genome Center, University of California, Davis CA USA

    2015-01-14

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.

  13. The potential sensitivity of tropical plants to increased ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ziska, L.H.

    1996-01-01

    Little is known concerning the impact of stratospheric ozone depletion and increasing ultraviolet (UV)-B radiation on the phenology and growth of tropical plants. This is because, ostensibly, tropical plants are already exposed to relatively high levels of UV-B radiation (relative to a temperate environment) and should, therefore, possess a greater degree of tolerance to increased UV-B radiation. In this brief review I hope to show that, potentially, direct and indirect effects on photosynthesis, assimilate partitioning, phenology and biomass could occur in both tropical crops (e.g. cassava, rice) and native species (e.g. Cecropia obtusifolia (Bertol. Fl)., Tetramolopium humile (Gray), Nana sandwicensis L.). However, it should be noted that differences in sensitivity to UV-B radiation can be related to experimental conditions, and care should be taken to ensure that the quantity and quality of background solar radiation remains at near ambient conditions. Nevertheless, by integrating current and past studies on the impact of UV-B radiation on tropical species, I hope to be able to demonstrate that photosynthesis, morphology and growth in tropical plants could be directly affected by UV-B radiation and that UV-B radiation may be a factor in species and community dynamics in natural plant populations in the tropics

  14. Aging of concrete components and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1987-01-01

    Nuclear power currently supplies about 16% of the US electricity requirements, with the percentage expected to rise to 20% by 1990. Despite the increasing role of nuclear power in energy production, cessation of orders for new nuclear plants in combination with expiration of operating licenses for several plants in the next 15 to 20 years results in a potential loss of electrical generating capacity of 50 to 60 gigawatts during the time period 2005 to 2020. A potential timely and cost-effective solution to the problem of meeting future energy demand is available through extension of the service life of existing nuclear plants. Any consideration of plant life extension, however, must consider the concrete components in these plants, since they play a vital safety role. Under the USNRC Nuclear Plant Aging Research (NPAR) Program, a study was conducted to review operating experience and to provide background that will lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based structures. The approach followed was in conformance with the NPAR strategy

  15. Significant plant growth stimulation by composted as opposed to untreated Biochar

    Science.gov (United States)

    Kammann, Claudia; Messerschmidt, Nicole; Müller, Christoph; Steffens, Diedrich; Schmidt, Hans-Peter; Koyro, Hans-Werner

    2013-04-01

    The application of production-fresh, untreated biochar does not always result in yield improvements, in particular in temperate or boreal soils. Therefore the use of biochar for soil C sequestration, although desirable from a global change mitigation point of view, may never be implemented without proven and economically feasible pathways for biochar effects in agriculture. To investigate earlier reports of the beneficial effects of composting biochar (e.g. Fischer & Glaser, 2012) we conducted a fully replicated (n=3, +/- biochar) large-scale composting study at the Delinat Institute in Arbaz, Switzerland. The materials were manures (bovine, horse and chicken), straw, stone meal and composting was performed with our without +20 vol.% of a woody biochar (German Charcoal GmbH). Interestingly, the rotting temperature was significantly higher in the biochar-compost while C and N were retained to a certain extent. To investigate the effect of composting ("ageing") on biochar effects, a completely randomized full-factorial pot study was carried out in the greenhouse using the pseudo-cereal Chenopodium quinoa. The three factors used in the study were (I) type of biochar addition ("aged", "fresh", or zero BC), (II) addition of compost and (III) low and high application rates of a full NPK-fertilizer (equivalent to 28 and 140 kg N ha-1, NPK + micronutrients) in several doses. The growth medium was a poor loamy sand. Biochars and compost were all added at a rate of 2% (w/w) to the soil. From the start there was a considerable difference between the growth of Quinoa with the fresh compared to the aged biochar. The fresh biochar produced the well-known reduction in plant growth compared to the unamended control. This reduction was alleviated to a certain extent by the addition of either compost and/or increased fertilization. In contrast the co-composted biochar always resulted in a highly significant stimulation of the Quinoa yield (roots, shoots, inflorescences). This

  16. Increasing reliability of nuclear energy equipment and at nuclear power plants

    International Nuclear Information System (INIS)

    Ochrana, L.

    1997-01-01

    The Institute of Nuclear Energy at the Technical University in Brno cooperates with nuclear power plants in increasing their reliability. The teaching programme is briefly described. The scientific research programme of the Department of Heat and Nuclear Power Energy Equipment in the field of reliability is based on a complex systematic concept securing a high level of reliability. In 1996 the Department prepared a study dealing with the evaluation of the maintenance system in a nuclear power plant. The proposed techniques make it possible to evaluate the reliability and maintenance characteristics of any individual component in a nuclear power plant, and to monitor, record and evaluate data at any given time intervals. (M.D.)

  17. Examination of Energy Efficiency Increasing Measures in an Automobile Assembly Plant

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, energy consumption analysis was performed in a car assembly plant (Body-inWhite (BiW productions, painting processes, chassis and accessory assembly processes. Examined automobile assembly plant has a production capacity of 200,000 vehicles per year by working six days a week and three shifts a day. Highly energy consuming processes are determined. Energy efficiency increasing opportunities in energy consuming systems (paint shop, drying ovens, compressed air, heating and cooling systems and effects of current automotive assembly techniques on energy efficiency are examined. Most of the total energy in the studied plant is consumed in the paint shop. Considering annual energy consumption; paint shop is responsible for the %50 of total electrical energy and %70 of total natural gas consumption. Specific energy consumption of plant is calculated as 853 kWh (SET; 275 kWh for electricity consumption (SETe , and 578 kWh for natural gas (SETdg . By performing determined energy efficiency measures; SET of plant will reduce %1 for the SETe , and %5,7 for SETdg

  18. Biological, ecological and agronomic significance of plant phenolic ...

    African Journals Online (AJOL)

    Our understanding of some phenolic compounds in the last few decades has greatly improved. However, their biological, ecological and agronomical significance in the rhizosphere of most symbiotic legumes is much less clear. Further understanding of these biomolecules will increase our knowledge of their contribution in ...

  19. Analysis of plant height between male sterile plants obtained by space flight and male fertile plants in Maize

    International Nuclear Information System (INIS)

    Cao Moju; Huang Wenchao; Pan Guangtang; Rong Tingzhao; Zhu Yingguo

    2004-01-01

    F 2 fertility segregation population and the sister-cross fertility segregation population, which descended from the male sterile material, were analysed by their plant height of different growing stage between 2 populations of male sterile plants and male fertile plants. The plant height of different fertility plants come to the significance at 0.01 level in different stage through the whole growing period. The differences become more and more large with the development of plants, the maximum difference happens in adult stage. The increasing amount of different stage also shows significance at 0.01 level between two kinds of different fertility plants

  20. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum.

    Science.gov (United States)

    Soni, Sumit K; Singh, Rakshapal; Singh, Mangal; Awasthi, Ashutosh; Wasnik, Kundan; Kalra, Alok

    2014-05-01

    Pot culture experiments were performed under controlled greenhouse conditions to investigate whether four Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) were able to decrease Cr toxicity to Pisum sativum plants in artificially Cr(VI)-contaminated soil. The effect of pretreatment of soil with chromate-reducing bacteria on plant growth, chromate uptake, bioaccumulation, nodulation, and population of Rhizobium was found to be directly influenced by the time interval between bacterial treatment and seed sowing. Pretreatment of soil with SUCR140 (Microbacterium sp.) 15 days before sowing (T+15) showed a maximum increase in growth and biomass in terms of root length (93 %), plant height (94 %), dry root biomass (99 %), and dry shoot biomass (99 %). Coinoculation of Rhizobium with SUCR140 further improved the aforementioned parameter. Compared with the control, coinoculation of SUCR140+R showed a 117, 116, 136, and 128 % increase, respectively, in root length, plant height, dry root biomass, and dry shoot biomass. The bioavailability of Cr(VI) decreased significantly in soil (61 %) and in uptake (36 %) in SUCR140-treated plants; the effects of Rhizobium, however, either alone or in the presence of SUCR140, were not significant. The populations of Rhizobium (126 %) in soil and nodulation (146 %) in P. sativum improved in the presence of SUCR140 resulting in greater nitrogen (54 %) concentration in the plants. This study shows the usefulness of efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through decreased Cr toxicity and improved symbiotic relationship of the plants with Rhizobium. Further decrease in the translocation of Cr(VI) through improved nodulation by Rhizobium in the presence of efficient Cr-reducing bacterial strains could also decrease the accumulation of Cr in shoots.

  1. Evaluation and development of soil values for the pathway 'soil to plant'. Significance of mercury evaporation for the burden of plants

    International Nuclear Information System (INIS)

    Gaeth, S.; Schlueter, K.

    1998-05-01

    In cooperation with the Ad-hoc working group 'Transfer of heavy metals from soil to plant' of the Laenderarbeitsgemeinschaft Bodenschutz (LABO) the significance of mercury evaporation for the deduction of threshold values in respect of the impact via the pathway soil to plant was investigated. Mercury contamination of food- and feeding stuff plants was examined with special emphasis. For these purposes a lab experiment including three different soils with varying initial mercury load (background level, geogenic and anthropogenic contamination) and two different plant species (parsely and spinach) was carried out under defined conditions in closed lysimeters. Mercury uptake via the roots was minimised since the plants grew in isolated customary substrate which showed a low concentration of mercury. Thus, only the surrounding soil evaporated mercury. The concentrations of mercury in the plants in the background level treatment (0.1 mg Hg/kg dry soil) were 0.15 mg/kg dry matter (spinach) and 0.44 mg/kg dry matter (parsely). The treatment with anthropogenic contaminated soil (111 mg Hg/kg dry soil) resulted in concentrations in the two plants of 2.0 and 2.6 mg/kg dry matter, respectively. A comparable order of magnitude was achieved in the geogenic contaminated treatment (34 mg Hg/kg dry soil) with 2.1 mg/kg dry matter. Experiments conducted with radioactive 203 Hg showed in each case recoveries of 20 to 34% in the leaves regarding the evaporated Hg-tracer. Also in the stem and in the roots Hg-tracer could be detected, indicating a translocation within the plant from leaf to root. By means of a comprehensive literature study the state of the art for Hg-evaporation and Hg-uptake of plants was compiled. Comparing the experimental results with data derived from literature, the Hg-concentrations found are confirmed by results of other authors. (orig.) [de

  2. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    Science.gov (United States)

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  3. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.

    Science.gov (United States)

    Sudo, Emi; Suzuki, Yuji; Makino, Amane

    2014-11-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) strongly limits photosynthesis at lower CO2 concentration [CO2] whereas [corrected] Rubisco limitation is cancelled by elevated [CO2]. Therefore, increase or reduction in Rubisco content by transformation with a sense or an antisense RBCS construct are expected to alter the biomass production under different CO2 levels. RBCS-sense (125% Rubisco of wild-type) and -antisense (35% Rubisco of wild-type) rice (Oryza sativa L.) plants were grown for 63 days at three different CO2 levels: low [CO2] (28 Pa), normal [CO2] (40 Pa) and elevated [CO2] (120 Pa). The biomass of RBCS-sense plants was 32% and 15% greater at low [CO2] and normal [CO2] than that of the wild-type plants, respectively, but did not differ at elevated [CO2]. Conversely, the biomass of RBCS-antisense plants was the smallest at low [CO2]. Thus, overproduction of Rubisco was effective for biomass production at low [CO2]. Greater biomass production at low [CO2] in RBCS-sense plants was caused by an increase in the net assimilation rate, and associated with an increase in the amount of N uptake. Furthermore, Rubisco overproduction in RBCS-sense plants was also promoted at low [CO2]. Although it seems that low [CO2]-growth additionally stimulates the effect of RBCS overexpression, such a phenomenon observed at low [CO2] was mediated through an increase in total leaf N content. Thus, the dependence of the growth improvement in RBCS-sense rice on growth [CO2] was closely related to the degree of Rubisco overproduction which was accompanied not only by leaf N content but also by whole plant N content. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Gibberellins Promote Brassinosteroids Action and Both Increase Heterosis for Plant Height in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Songlin Hu

    2017-06-01

    Full Text Available Brassinosteroids (BRs and Gibberellins (GAs are two classes of plant hormones affecting plant height (PHT. Thus, manipulation of BR and GA levels or signaling enables optimization of crop grain and biomass yields. We established backcross (BC families, selected for increased PHT, in two elite maize inbred backgrounds. Various exotic accessions used in the germplasm enhancement in maize project served as donors. BC1-derived doubled haploid lines in the same two elite maize inbred backgrounds established without selection for plant height were included for comparison. We conducted genome-wide association studies to explore the genetic control of PHT by BR and GA. In addition, we used BR and GA inhibitors to compare the relationship between PHT, BR, and GA in inbred lines and heterozygotes from a physiological and biological perspective. A total of 73 genomic loci were discovered to be associated with PHT, with seven co-localized with GA, and two co-localized with BR candidate genes. PHT determined in field trials was significantly correlated with seedling stage BR and GA inhibitor responses. However, this observation was only true for maize heterozygotes, not for inbred lines. Path analysis results suggest that heterozygosity increases GA levels, which in turn promote BR levels. Thus, at least part of heterosis for PHT in maize can be explained by increased GA and BR levels, and seedling stage hormone inhibitor response is promising to predict heterosis for PHT.

  6. SIGNIFICANCE OF GALACTINOL AND RAFFINOSE FAMILY OLIGOSACCHARIDE SYNTHESIS IN PLANTS

    Directory of Open Access Journals (Sweden)

    Sonali eSengupta

    2015-08-01

    Full Text Available Abiotic stress induces differential expression of genes responsible for the synthesis of Raffinose series of Oligosaccharides (RFOs in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of Galactinol synthase (GolS; EC 2.4.1.123, a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose and Ajugose are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g. RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrate in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debateand their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.

  7. Most significant preliminary results of the probabilistic safety analysis on the Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Perdomo, Manuel

    1995-01-01

    Since 1990 the Group for PSA Development and Applications (GDA/APS) is working on the Level-1 PSA for the Juragua-1 NPP, as a part of an IAEA Technical Assistance Project. The main objective of this study, which is still under way, is to assess, in a preliminary way, the Reactor design safety to find its potential 'weak points' at the construction stage, using a eneric data base. At the same time, the study allows the PSA team to familiarize with the plant design and analysis techniques for the future operational PSA of the plant. This paper presents the most significant preliminary results of the study, which reveal some advantages of the safety characteristics of the plant design in comparison with the homologous VVER-440 reactors and some areas, where including slight modifications would improve the plant safety, considering the level of detail at which the study is carried out. (author). 13 refs, 1 fig, 2 tabs

  8. Improvements done at Heavy Water Plant (Manuguru) to increase the standards of environmental protection

    International Nuclear Information System (INIS)

    Rama Rao, V.V.S.; Gupta, R.V.; Pandey, B.L.

    1997-01-01

    The Heavy Water Plant at Manuguru is designed to produce 185 MTY of nuclear grade heavy water based on bithermal H 2 S-H 2 O exchange process and handles large inventory of H 2 S gas (about 400 MT). As H 2 S gas is very toxic, corrosive and hazardous in nature, extreme care has been taken in the design of plant, selection of equipment and materials adhering to stringent fabrication procedures and codes to ensure the production of heavy water in a safe manner. This paper highlights the improvements done at Heavy Water Plant (Manuguru) to increase the standards of environmental protection. The safety assessment of a hazardous plant is a continuous process. Apart from the extreme care taken in the design, construction, commissioning and operation of the plant, review of each and every safety related unusual occurrence by various levels of review committees as stipulated and speedy implementation of the recommendations goes in a long way in increasing the standards of environmental protection

  9. Dissecting the functional significance of non-catalytic carbohydrate binding modules in the deconstruction of plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center

    2017-03-16

    The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plant cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.

  10. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    Science.gov (United States)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  11. A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field

    International Nuclear Information System (INIS)

    Allen, D.J.; Nogues, S.; Morison, J.I.L.; Greenslade, P.D.; McLeod, A.R.; Baker, N.R.

    1999-01-01

    It has been suggested that field experiments which increase UV-B irradiation by a fixed amount irrespective of ambient light conditions (‘square-wave’), may overestimate the response of photosynthesis to UV-B irradiation. In this study, pea (Pisum sativum L.) plants were grown in the field and subjected to a modulated 30% increase in ambient UK summer UV-B radiation (weighted with an erythemal action spectrum) and a mild drought treatment. UV-A and ambient UV control treatments were also studied. There were no significant effects of the UV-B treatment on the in situ CO 2 assimilation rate throughout the day or on the light-saturated steady-state photosynthesis. This was confirmed by an absence of UV-B effects on the major components contributing to CO 2 assimilation; photosystem II electron transport, ribulose 1,5-bisphosphate regeneration, ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation, and stomatal conductance. In addition to the absence of an effect on photosynthetic activities, UV-B had no significant impact on plant biomass, leaf area or partitioning. UV-B exposure increased leaf flavonoid content. The UV-A treatment had no observable effect on photosynthesis or productivity. Mild drought resulted in reduced biomass, a change in partitioning away from shoots to roots whilst maintaining leaf area, but had no observable effect on photosynthetic competence. No UV-B and drought treatment interactions were observed on photosynthesis or plant biomass. In conclusion, a 30% increase in UV-B had no effects on photosynthetic performance or productivity in well-watered or droughted pea plants in the field. (author)

  12. Do invasive alien plants benefit more from global environmental change than native plants?

    Science.gov (United States)

    Liu, Yanjie; Oduor, Ayub M O; Zhang, Zhen; Manea, Anthony; Tooth, Ifeanna M; Leishman, Michelle R; Xu, Xingliang; van Kleunen, Mark

    2017-08-01

    Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO 2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta-analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above-mentioned global environmental change components. We found that elevated temperature and CO 2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: P = 0.051; increased precipitation: P = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (P = 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO 2 enrichment, may further increase the spread of invasive plants in the future. © 2017 John Wiley & Sons Ltd.

  13. Temporal Variation in the Estrogenicity of a Sewage Treatment Plant Effluent and its Biological Significance

    Science.gov (United States)

    This paper describes variations in the estrogenic potency of effluent from a "model" wastewater treatment plant in Duluth, MN, and explores the significance of these variations relative to sampling approaches for monitoring effluents and their toxicity to fish.

  14. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Science.gov (United States)

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  15. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb).

    Science.gov (United States)

    Saa, Sebastian; Olivos-Del Rio, Andres; Castro, Sebastian; Brown, Patrick H

    2015-01-01

    The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1) and another biostimulant derived from microbial fermentation (Bio-2). This experiment utilized 2-years-old almond plants over two growing seasons in a randomized complete design with a full 2 × 4 factorial structure with two soil potassium treatments (125 μg g(-1) of K vs. 5 μg g(-1)) and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2). Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants.

  16. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb

    Directory of Open Access Journals (Sweden)

    Sebastian eSaa

    2015-02-01

    Full Text Available The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1 and another biostimulant derived from microbial fermentation (Bio-2. This experiment utilized two-year-old almond plants over two growing seasons in a randomized complete design with a full 2 x 4 factorial structure with two soil potassium treatments (125 µg g-1 of K vs 5 µg g-1 and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2. Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants.

  17. Elicitor Mixtures Significantly Increase Bioactive Compounds, Antioxidant Activity, and Quality Parameters in Sweet Bell Pepper

    Directory of Open Access Journals (Sweden)

    Lina Garcia-Mier

    2015-01-01

    Full Text Available Sweet bell peppers are greatly appreciated for their taste, color, pungency, and aroma. Additionally, they are good sources of bioactive compounds with antioxidant activity, which can be improved by the use of elicitors. Elicitors act as metabolite-inducing factors (MIF by mimic stress conditions. Since plants rarely experience a single stress condition one by one but are more likely to be exposed to simultaneous stresses, it is important to evaluate the effect of elicitors on plant secondary metabolism as mixtures. Jasmonic acid (JA, hydrogen peroxide (HP, and chitosan (CH were applied to fruits and plants of bell pepper as mixtures. Bioactive compounds, antioxidant activity, and quality parameters were evaluated. The assessed elicitor cocktail leads to an increase in the variables evaluated (P ≤ 0.05 when applied to mature fruits after harvest, whereas the lowest values were observed in the treatment applied to immature fruits. Therefore, the application of the elicitor cocktail to harvested mature fruits is recommended in order to improve bioactive compounds and the antioxidant activity of sweet bell peppers.

  18. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  19. A comprehensive test of evolutionarily increased competitive ability in a highly invasive plant species

    Science.gov (United States)

    Joshi, Srijana; Gruntman, Michal; Bilton, Mark; Seifan, Merav; Tielbörger, Katja

    2014-01-01

    Background and Aims A common hypothesis to explain plants' invasive success is that release from natural enemies in the introduced range selects for reduced allocation to resistance traits and a subsequent increase in resources available for growth and competitive ability (evolution of increased competitive ability, EICA). However, studies that have investigated this hypothesis have been incomplete as they either did not test for all aspects of competitive ability or did not select appropriate competitors. Methods Here, the prediction of increased competitive ability was examined with the invasive plant Lythrum salicaria (purple loosestrife) in a set of common-garden experiments that addressed these aspects by carefully distinguishing between competitive effect and response of invasive and native plants, and by using both intraspecific and interspecific competition settings with a highly vigorous neighbour, Urtica dioica (stinging nettle), which occurs in both ranges. Key Results While the intraspecific competition results showed no differences in competitive effect or response between native and invasive plants, the interspecific competition experiment revealed greater competitive response and effect of invasive plants in both biomass and seed production. Conclusions The use of both intra- and interspecific competition experiments in this study revealed opposing results. While the first experiment refutes the EICA hypothesis, the second shows strong support for it, suggesting evolutionarily increased competitive ability in invasive populations of L. salicaria. It is suggested that the use of naturally co-occurring heterospecifics, rather than conspecifics, may provide a better evaluation of the possible evolutionary shift towards greater competitive ability. PMID:25301818

  20. Direct effects of warming increase woody plant abundance in a subarctic wetland.

    Science.gov (United States)

    Carlson, Lindsay G; Beard, Karen H; Adler, Peter B

    2018-03-01

    Both the direct effects of warming on a species' vital rates and indirect effects of warming caused by interactions with neighboring species can influence plant populations. Furthermore, herbivory mediates the effects of warming on plant community composition in many systems. Thus, determining the importance of direct and indirect effects of warming, while considering the role of herbivory, can help predict long-term plant community dynamics. We conducted a field experiment in the coastal wetlands of western Alaska to investigate how warming and herbivory influence the interactions and abundances of two common plant species, a sedge, Carex ramenskii , and a dwarf shrub, Salix ovalifolia . We used results from the experiment to model the equilibrium abundances of the species under different warming and grazing scenarios and to determine the contribution of direct and indirect effects to predict population changes. Consistent with the current composition of the landscape, model predictions suggest that Carex is more abundant than Salix under ambient temperatures with grazing (53% and 27% cover, respectively). However, with warming and grazing, Salix becomes more abundant than Carex (57% and 41% cover, respectively), reflecting both a negative response of Carex and a positive response of Salix to warming. While grazing reduced the cover of both species, herbivory did not prevent a shift in dominance from sedges to the dwarf shrub. Direct effects of climate change explained about 97% of the total predicted change in species cover, whereas indirect effects explained only 3% of the predicted change. Thus, indirect effects, mediated by interactions between Carex and Salix, were negligible, likely due to use of different niches and weak interspecific interactions. Results suggest that a 2°C increase could cause a shift in dominance from sedges to woody plants on the coast of western Alaska over decadal timescales, and this shift was largely a result of the direct effects

  1. Attributing Increased River Flooding in the Future: Hydrodynamic Downscaling Reveals Role of Plant Physiological Responses to Increased CO2 is First Order

    Science.gov (United States)

    Fowler, M. D.; Kooperman, G. J.; Pritchard, M. S.; Randerson, J. T.

    2017-12-01

    River flooding events, which are the most frequently occurring natural disaster today, are expected to become more frequent and intense in response to climate change. However, the magnitude of these changes remains debated, in part due to uncertainty in our understanding of the physical processes that contribute to these events and their representation in global climate models. While the intensification of precipitation has been shown to be a primary driver of increased flooding, plant physiological responses to increasing CO2 may also play an important role. As the atmospheric concentration of CO2 increases, plants may respond by reducing the width of their stomata (i.e. stomatal conductance), which can decrease water lost through transpiration and in turn maintain higher soil moisture levels. On long timescales, reduced transpiration has been shown to increase average runoff, but on short timescales elevated soil moisture can also increase instantaneous runoff by limiting the rate at which water is able to infiltrate the soil surface. Here, through hydrodynamic downscaling, we isolate the portion of flooding amplification that can be attributed to the physiological response to increasing CO2. This builds on a new analysis that has revealed such physiological effects can rival changes caused by the atmospheric response alone in the tails of the runoff distribution. We use a set of four simulations run with the Community Earth System Model: one pre-industrial control simulation and three others that are forced with four times CO2. In the three climate change simulations, the increased CO2 is applied only to the land-surface, only to the atmosphere, and to both, respectively. Thirty years of daily runoff from these experiments are used as input for the hydrodynamic CaMa-Flood model. Our results reveal that both the radiative and physiological responses to climate change contribute significantly to future changes in flood return period and inundated area. This

  2. Thermal power plant operating regimes in future British power systems with increasing variable renewable penetration

    International Nuclear Information System (INIS)

    Edmunds, Ray; Davies, Lloyd; Deane, Paul; Pourkashanian, Mohamed

    2015-01-01

    Highlights: • This work investigates thermal power operating regimes in future power systems. • Gas plants have low utilisation in the scenarios considered. • Ramping intensity increases for gas plants and pumped storage. • Coal plants frequently operate at minimum stable levels and start-ups increase. • Grid emission intensity and total emission production remains substantial. - Abstract: This work investigates the operational requirements of thermal power plants in a number of potential future British power systems with increasing variable renewable penetration. The PLEXOS Integrated Energy Model has been used to develop the market models, with PLEXOS employing mixed integer programming to solve the unit commitment and economic dispatch problem, subject to a number of constraints. Initially, a model of the British power system was developed and validated. Subsequently, a 2020 test model was developed to analyse a number of future system structures with differing fuel and carbon prices and generation mixes. The study has found that in three of the four scenarios considered, the utilisation of gas power plants will be relatively low, but remains fundamental to the security of supply. Also, gas plants will be subject to more intense ramping. The findings have consequent implications for energy policy as expensive government interventions may be required to prevent early decommissioning of gas capacity, should the prevailing market conditions not guarantee revenue adequacy.

  3. Increasing Vitamin C Content in Plant Foods to Improve Their Nutritional Value—Successes and Challenges

    Directory of Open Access Journals (Sweden)

    Daniel R. Gallie

    2013-08-01

    Full Text Available Vitamin C serves as a cofactor in the synthesis of collagen needed to support cardiovascular function, maintenance of cartilage, bones, and teeth, as well as being required in wound healing. Although vitamin C is essential, humans are one of the few mammalian species unable to synthesize the vitamin and must obtain it through dietary sources. Only low levels of the vitamin are required to prevent scurvy but subclinical vitamin C deficiency can cause less obvious symptoms such as cardiovascular impairment. Up to a third of the adult population in the U.S. obtains less than the recommended amount of vitamin C from dietary sources of which plant-based foods constitute the major source. Consequently, strategies to increase vitamin C content in plants have been developed over the last decade and include increasing its synthesis as well as its recycling, i.e., the reduction of the oxidized form of ascorbic acid that is produced in reactions back into its reduced form. Increasing vitamin C levels in plants, however, is not without consequences. This review provides an overview of the approaches used to increase vitamin C content in plants and the successes achieved. Also discussed are some of the potential limitations of increasing vitamin C and how these may be overcome.

  4. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges.

    Science.gov (United States)

    Gallie, Daniel R

    2013-08-30

    Vitamin C serves as a cofactor in the synthesis of collagen needed to support cardiovascular function, maintenance of cartilage, bones, and teeth, as well as being required in wound healing. Although vitamin C is essential, humans are one of the few mammalian species unable to synthesize the vitamin and must obtain it through dietary sources. Only low levels of the vitamin are required to prevent scurvy but subclinical vitamin C deficiency can cause less obvious symptoms such as cardiovascular impairment. Up to a third of the adult population in the U.S. obtains less than the recommended amount of vitamin C from dietary sources of which plant-based foods constitute the major source. Consequently, strategies to increase vitamin C content in plants have been developed over the last decade and include increasing its synthesis as well as its recycling, i.e., the reduction of the oxidized form of ascorbic acid that is produced in reactions back into its reduced form. Increasing vitamin C levels in plants, however, is not without consequences. This review provides an overview of the approaches used to increase vitamin C content in plants and the successes achieved. Also discussed are some of the potential limitations of increasing vitamin C and how these may be overcome.

  5. Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition.

    Science.gov (United States)

    Maron, John L; Laney Smith, Alyssa; Ortega, Yvette K; Pearson, Dean E; Callaway, Ragan M

    2016-08-01

    Plant-soil feedbacks and interspecific competition are ubiquitous interactions that strongly influence the performance of plants. Yet few studies have examined whether the strength of these interactions corresponds with the abundance of plant species in the field, or whether feedbacks and competition interact in ways that either ameliorate or exacerbate their effects in isolation. We sampled soil from two intermountain grassland communities where we also measured the relative abundance of plant species. In greenhouse experiments, we quantified the direction and magnitude of plant-soil feedbacks for 10 target species that spanned a range of abundances in the field. In soil from both sites, plant-soil feedbacks were mostly negative, with more abundant species suffering greater negative feedbacks than rare species. In contrast, the average response to competition for each species was unrelated with its abundance in the field. We also determined how competitive response varied among our target species when plants competed in live vs. sterile soil. Interspecific competition reduced plant size, but the strength of this negative effect was unchanged by plant-soil feedbacks. Finally, when plants competed interspecifically, we asked how conspecific-trained, heterospecific-trained, and sterile soil influenced the competitive responses of our target species and how this varied depending on whether target species were abundant or rare in the field. Here, we found that both abundant and rare species were not as harmed by competition when they grew in heterospecific-trained soil compared to when they grew in conspecific-cultured soil. Abundant species were also not as harmed by competition when growing in sterile vs. conspecific-trained soil, but this was not the case for rare species. Our results suggest that abundant plants accrue species-specific soil pathogens to a greater extent than rare species. Thus, negative feedbacks may be critical for preventing abundant species from

  6. Labour Mobility and Plant Performance in Denmark: The Significance of Related Inflows

    DEFF Research Database (Denmark)

    Timmermans, Bram; Boschma, Ron

    This paper investigates the impact of different types of labour mobility on plant performance, making use of the IDA-database that provides detailed information on all individuals and plants for the whole of Denmark. Our study shows that the effect of labour mobility can only be assessed when one...... performance. Moreover, intra-regional skilled labour mobility had a negative effect on plant performance in general, while the effect of inter-regional labour mobility depends on the type of skills that flow into the plant. We used a sophisticated indicator of revealed relatedness that measures the degree...... accounts for the type of skills that flow into the plant, and the degree to which these match the existing set of skills at the plant level. We found that the inflow of related skills has a positive impact on plant performance, while inflows of similar and unrelated skills have a negative effect on plant...

  7. A comprehensive test of evolutionarily increased competitive ability in a highly invasive plant species.

    Science.gov (United States)

    Joshi, Srijana; Gruntman, Michal; Bilton, Mark; Seifan, Merav; Tielbörger, Katja

    2014-12-01

    A common hypothesis to explain plants' invasive success is that release from natural enemies in the introduced range selects for reduced allocation to resistance traits and a subsequent increase in resources available for growth and competitive ability (evolution of increased competitive ability, EICA). However, studies that have investigated this hypothesis have been incomplete as they either did not test for all aspects of competitive ability or did not select appropriate competitors. Here, the prediction of increased competitive ability was examined with the invasive plant Lythrum salicaria (purple loosestrife) in a set of common-garden experiments that addressed these aspects by carefully distinguishing between competitive effect and response of invasive and native plants, and by using both intraspecific and interspecific competition settings with a highly vigorous neighbour, Urtica dioica (stinging nettle), which occurs in both ranges. While the intraspecific competition results showed no differences in competitive effect or response between native and invasive plants, the interspecific competition experiment revealed greater competitive response and effect of invasive plants in both biomass and seed production. The use of both intra- and interspecific competition experiments in this study revealed opposing results. While the first experiment refutes the EICA hypothesis, the second shows strong support for it, suggesting evolutionarily increased competitive ability in invasive populations of L. salicaria. It is suggested that the use of naturally co-occurring heterospecifics, rather than conspecifics, may provide a better evaluation of the possible evolutionary shift towards greater competitive ability. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition

    Science.gov (United States)

    John L. Maron; Alyssa Laney Smith; Yvette K. Ortega; Dean E. Pearson; Ragan M. Callaway

    2016-01-01

    Plant-soil feedbacks and interspecific competition are ubiquitous interactions that strongly influence the performance of plants. Yet few studies have examined whether the strength of these interactions corresponds with the abundance of plant species in the field, or whether feedbacks and competition interact in ways that either ameliorate or exacerbate their...

  9. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  10. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    Science.gov (United States)

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  11. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Science.gov (United States)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-08-01

    produce large quantities of nutrient rich litter. Where this community shift occurs, it could drive an increase in R beyond that expected from direct climate impacts on soil microbial activity alone. We identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits, and the importance of trophic interactions and species invasions or extinctions for ecosystem processes. A final, overarching challenge is how to link these observations and drivers across spatio-temporal scales to predict regional or global changes in R over long time periods. A more unified approach to understanding R, which integrates information about plant traits and community dynamics, will be essential for better understanding, simulating and predicting patterns of R across terrestrial ecosystems and its role within the earth-climate system.

  12. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    Science.gov (United States)

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant unde...

  13. Expanding the functional significance of automated control systems for the production process at hydroelectric plants

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.S.; Kononova, M.Yu.

    1993-01-01

    Automated control systems for the production process (ACS PP) have been successfully implemented in a number of hydroelectric plants in the Russian Federation. The circle of problems that can be solved using ACS PP can be conditionally divided into two classes: on-line/technological control, and production-technological control. This article describes successes and future directions for the solution of these two classes of problems. From the discussion, it is concluded (1) that the data base for existing ACS PP at hydroelectric plants can be successfully employed as points for monitoring the conservation of an environment of local significance; (2) that is is expedient to discuss the problem with organizations, including local control groups interested in the development of territorial-basin systems for ecological monitoring; and (3) that the initiative in creating local territorial-basin support points for monitoring should emanate from guidelines for hydroelectric plants with ACS PP. 3 refs., 2 figs

  14. Does plasticity in plant physiological traits explain the rapid increase in water use efficiency? An ecohydrological modeling approach

    Science.gov (United States)

    Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo

    2016-04-01

    The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.

  15. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    Science.gov (United States)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  16. Significance of earthquake risk in nuclear power plant probabilistic risk assessments

    International Nuclear Information System (INIS)

    Sues, R.H.; Amico, P.J.; Campbell, R.D.

    1990-01-01

    During the last eight years, approximately 25 utility-sponsored probabilistic risk assessments (PRAs) have been conducted for US nuclear reactors. Of these, ten have been published, seven of which have included complete seismic risk assessment. The results of the seven published PRAs are reviewed here in order to ascertain the significance of the risk due to earthquake initiating events. While PRA methodology has been in a state of development over the past seven years, and the results are subject to interpretation (as discussed in the paper), from the review conducted it is clear that earthquake-induced initiating events are important risk contributors. It is concluded that earthquake initiating events should not be dismissed, a priori, in any nuclear plant risk assessment. (orig.)

  17. Restoration solution of increased vibrations of the fan plant's support structure

    Directory of Open Access Journals (Sweden)

    Varju Đerđ

    2016-01-01

    Full Text Available This paper presents a restoration solution of increased vibration of the fan plant's support structure. Based on vibrodiagnostic tests and dynamic analysis, a technical solution of the problem is given with additional steel bracing. There is particular emphasis on the diagnosis and forming of a dynamic model.

  18. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    Science.gov (United States)

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  19. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal.

    Directory of Open Access Journals (Sweden)

    Xavier Martini

    Full Text Available The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama. CLas is the putative causal agent of huanglongbing (HLB, which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.

  20. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007–2010

    Directory of Open Access Journals (Sweden)

    Christopher J. Cifelli

    2016-07-01

    Full Text Available Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES 2007–2010 for persons two years and older (n = 17,387 were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i plant-based foods; (ii protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy; and (iii milk, cheese and yogurt. Scenarios (i and (ii had commensurate reductions in animal product intake. In both children (2–18 years and adults (≥19 years, the percent not meeting the Estimated Average Requirement (EAR decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that

  1. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress.

    Science.gov (United States)

    LeBlanc, Chantal; Zhang, Fei; Mendez, Josefina; Lozano, Yamile; Chatpar, Krishna; Irish, Vivian F; Jacob, Yannick

    2018-01-01

    The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double-stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on-target mutagenesis in plants using CRISPR/Cas9. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Effects of climate-induced increases in summer drought on riparian plant species : a meta-analysis

    NARCIS (Netherlands)

    Garssen, Annemarie G.; Verhoeven, Jos T. A.; Soons, Merel B.

    Frequency and duration of summer droughts are predicted to increase in the near future in many parts of the world, with considerable anticipated effects on riparian plant community composition and species richness. Riparian plant communities along lowland streams are characterised by high species

  3. Mineral composition of plants of family zygophyllaceae and euphorbiaceae

    International Nuclear Information System (INIS)

    Dastagir, G.; Hussain, F.

    2014-01-01

    In the present study with few exceptions, most of the minerals concentrations were higher in winter than in summer in all the investigated plants of family Zygophyllaceae and Euphorbiaceae. Calcium content in Fagonia cretica, Peganum harmala and Chrozophora tinctoria was significantly higher in winter than summer while in Tribulus terrestris and Ricinus communis it was significantly lower in winter. Potassium significantly increased in winter compared to summer in all the tested plants. Sodium in winter significantly differed in all the tested plants. Copper increased insignificantly in winter than summer in all plants. Mn also increased in winter as compared to summer in all the plants. The Mo was less in winter in F. cretica and T. terrestris while it increased in P. harmala, C. tinctoria and R. communis during winter and all plants means showed that they were significantly different from each other. Zinc was poor in winter than summer in F. cretica, P. harmala and T. terrestris, and it increased in C. tinctoria and R. communis. Aluminum was less in winter in F. cretica, P. harmala and R. communis which increased in T. terrestris and C. tinctoria winter. (author)

  4. Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants.

    Science.gov (United States)

    Kang, Le; Ji, Chang Yoon; Kim, Sun Ha; Ke, Qingbo; Park, Sung-Chul; Kim, Ho Soo; Lee, Hyeong-Un; Lee, Joon Seol; Park, Woo Sung; Ahn, Mi-Jeong; Lee, Haeng-Soon; Deng, Xiping; Kwak, Sang-Soo

    2017-08-01

    β-carotene, a carotenoid that plays a key photo-protective role in plants is converted into zeaxanthin by β-carotene hydroxylase (CHY-β). Previous work showed that down-regulation of IbCHY-β by RNA interference (RNAi) results in higher levels of β-carotene and total carotenoids, as well as salt stress tolerance, in cultured transgenic sweetpotato cells. In this study, we introduced the RNAi-IbCHY-β construct into a white-fleshed sweetpotato cultivar (cv. Yulmi) by Agrobacterium-mediated transformation. Among the 13 resultant transgenic sweetpotato plants (referred to as RC plants), three lines were selected for further characterization on the basis of IbCHY-β transcript levels. The RC plants had orange flesh, total carotenoid and β-carotene contents in storage roots were 2-fold and 16-fold higher, respectively, than those of non-transgenic (NT) plants. Unlike storage roots, total carotenoid and β-carotene levels in the leaves of RC plants were slightly increased compared to NT plants. The leaves of RC plants also exhibited tolerance to methyl viologen (MV)-mediated oxidative stress, which was associated with higher 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical-scavenging activity. In addition, RC plants maintained higher levels of chlorophyll and higher photosystem II efficiency than NT plants after 250 mM NaCl stress. Yield of storage roots did not differ significantly between RC and NT plants. These observations suggest that RC plants might be useful as a nutritious and environmental stress-tolerant crop on marginal lands around the world. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Expanding and modernising an aluminium plant increases production and reduces environmental pollution; Europas stoerste

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, Knut; Haaland, Leif

    2002-07-01

    At the time of writing, milk cannot be produced closer than 20 km to Norsk Hydro's aluminium factory at Sunndalsoera, Norway. Important environmental improvements are expected as the result of current modernisation and expansion of the factory. The 300 Soederberg cells which have been used for 50 years are being replaced by 340 new electrolysis cells that will produce 1900 kg aluminium per day each. This increases the annual production of aluminium from 66000 tonnes to 328800 tonnes. In addition there will be alloying metal and remelted, which increases the total production to 370000 tonnes when the plant is completed in 2004. At full production in the new plant in addition to the present plant, the electric power requirement increases to 4850 GWh. Although this is a rise in the energy consumption, the energy used per kg of aluminium produced goes down by 23 per cent. Current use of propane and oil will be replaced by liquid gas. When completed, the works will be the biggest aluminium works in Europe and the cleanest ones in the World.

  6. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  7. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Directory of Open Access Journals (Sweden)

    D. B. Metcalfe

    2011-08-01

    climate, many plant communities may shift towards dominance by fast growing plants which produce large quantities of nutrient rich litter. Where this community shift occurs, it could drive an increase in R beyond that expected from direct climate impacts on soil microbial activity alone.

    We identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits, and the importance of trophic interactions and species invasions or extinctions for ecosystem processes. A final, overarching challenge is how to link these observations and drivers across spatio-temporal scales to predict regional or global changes in R over long time periods. A more unified approach to understanding R, which integrates information about plant traits and community dynamics, will be essential for better understanding, simulating and predicting patterns of R across terrestrial ecosystems and its role within the earth-climate system.

  8. Improved productivity of the MSF (multi-stage flashing) desalination plant by increasing the TBT (top brine temperature)

    International Nuclear Information System (INIS)

    Hanshik, Chung; Jeong, Hyomin; Jeong, Kwang-Woon; Choi, Soon-Ho

    2016-01-01

    The evaporating process is very important in the system concerned with liquid foods, seawater distillation and wastewater treatment, which is to concentrate the aqueous solution by evaporating the pure water usually at a vacuum state. In general, the liquid concentration is performed through the membrane, electro-dialysis, and evaporation; the former are separation process and the latter is the phase change process. In this study, only the thermal process was treated for evaluating the specific energy consumption by changing the operating conditions of an existing MSF (multi-stage flashing) desalination plant, which is still dominant for a large scale distillation plant. This study shows the quantitative energy saving strategy in sweater distillation process and, additionally, indicates that the performance of the multi-stage evaporating system can be increased with the elevation of a TBT (top brine temperature). The calculated results were based on the operating data of the currently installed plants and suggests the alternative to improve the performance of the MSF desalination plant, which means that the energy saving can be achieved only by changing the operating conditions of the existing MSF plants. - Highlights: • Detailed operating principles of an multi-stage flashing (MSF) desalting process. • Improved freshwater productivity by increasing the top brine temperature (TBT). • Increased energy efficiency of an existing MSF plants by the TBT increase.

  9. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    OpenAIRE

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review d...

  10. The diversity of the pollen tube pathway in plants: towards an increasing control by the sporophyte

    Directory of Open Access Journals (Sweden)

    Jorge eLora

    2016-02-01

    Full Text Available Plants, unlike animals, alternate multicellular diploid and haploid generations in their life cycle. While this is widespread all along the plant kingdom, the size and autonomy of the diploid sporophyte and the haploid gametophyte generations vary along evolution. Vascular plants show an evolutionary trend towards a reduction of the gametophyte, reflected both in size and lifespan, together with an increasing dependence from the sporophyte. This has resulted in an overlooking of the importance of the gametophytic phase in the evolution of higher plants. This reliance on the sporophyte is most notorious along the pollen tube journey, where the male gametophytes have to travel a long way inside the sporophyte to reach the female gametophyte. Along evolution, there is a change in the scenery of the pollen tube pathway that favors pollen competition and selection. This trend, towards apparently making complicated what could be simple, appears to be related to an increasing control of the sporophyte over the gametophyte with implications for understanding plant evolution.

  11. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    Directory of Open Access Journals (Sweden)

    Annett Lipowsky

    Full Text Available Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants.We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae over a 5-year period in a grassland biodiversity experiment (Jena Experiment. We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds.Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these

  12. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    Science.gov (United States)

    Lipowsky, Annett; Roscher, Christiane; Schumacher, Jens; Schmid, Bernhard

    2012-01-01

    Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with

  13. Significance in the increase of women psychiatrists in Korea.

    Science.gov (United States)

    Kim, Ha Kyoung; Kim, Soo In

    2008-01-01

    The number of female doctors has increased in Korea; 18.9% (13,083) of the total medical doctors registered (69,097) were women in 2006, compared to 13.6% (2,216) in 1975. The proportion of female doctors will jump up by 2010 considering that nearly 40% of the medical students are women as of today. This trend has had strong influence on the field of psychiatry; the percentage of women psychiatrists rose from 1.6 (6)% to 18% (453), from 1975 to 2006 and now women residents comprise 39% (206) of all. This is not only a reflection of a social phenomenon of the increase in professional women but also attributed to some specific characteristics of the psychiatry. Psychiatric practice may come more natural to women. While clinical activities of women psychiatrists are expanding, there are few women leaders and much less women are involving in academic activities in this field as yet. Though there is less sexual discrimination in the field of psychiatry, women psychiatrists are still having a lot of difficulties in balancing work and family matters. Many women psychiatrists also report they've ever felt an implied discrimination in their careers. In this study, we are to identify the characteristics of women psychiatrists and to explore the significance of the increase in women psychiatrists in Korea and the situation in which they are.

  14. Significance of antioxidant potential of plants and its relevance to therapeutic applications.

    Science.gov (United States)

    Kasote, Deepak M; Katyare, Surendra S; Hegde, Mahabaleshwar V; Bae, Hanhong

    2015-01-01

    Oxidative stress has been identified as the root cause of the development and progression of several diseases. Supplementation of exogenous antioxidants or boosting endogenous antioxidant defenses of the body is a promising way of combating the undesirable effects of reactive oxygen species (ROS) induced oxidative damage. Plants have an innate ability to biosynthesize a wide range of non-enzymatic antioxidants capable of attenuating ROS- induced oxidative damage. Several in vitro methods have been used to screen plants for their antioxidant potential, and in most of these assays they revealed potent antioxidant activity. However, prior to confirming their in vivo therapeutic efficacy, plant antioxidants have to pass through several physiopharmacological processes. Consequently, the findings of in vitro and in vivo antioxidant potential assessment studies are not always the same. Nevertheless, the results of in vitro assays have been irrelevantly extrapolated to the therapeutic application of plant antioxidants without undertaking sufficient in vivo studies. Therefore, we have briefly reviewed the physiology and redox biology of both plants and humans to improve our understanding of plant antioxidants as therapeutic entities. The applications and limitations of antioxidant activity measurement assays were also highlighted to identify the precise path to be followed for future research in the area of plant antioxidants.

  15. Increasing efficiency and optimizing thermoelectric power plant equipment. Povyshenie effektivnosti i optimizatsiia teploenergeticheskikh ustanovok

    Energy Technology Data Exchange (ETDEWEB)

    Andriushchenko, A.I.

    1981-01-01

    The problems of increasing the efficiency and optimizing the operational conditions of a thermoelectric power plant and providing efficient operational conditions of the primary and auxillary equipment at a thermoelectric power plant are examined. Methodologies and designs for optimizing the primary parameters of the power-generating equipment based on economic factors are given. A number of recommendations for designing equipment based on the research results are given.

  16. Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress

    Directory of Open Access Journals (Sweden)

    Rumeau Dominique

    2009-11-01

    Full Text Available Abstract Background Vitamin B6 is a collective term for a group of six interconvertible compounds: pyridoxine, pyridoxal, pyridoxamine and their phosphorylated derivatives. Vitamin B6 plays essential roles as a cofactor in a range of biochemical reactions. In addition, vitamin B6 is able to quench reactive oxygen species in vitro, and exogenously applied vitamin B6 protects plant cells against cell death induced by singlet oxygen (1O2. These results raise the important question as to whether plants employ vitamin B6 as an antioxidant to protect themselves against reactive oxygen species. Results The pdx1.3 mutation affects the vitamin B6 biosynthesis enzyme, pyridoxal synthase (PDX1, and leads to a reduction of the vitamin B6 concentration in Arabidopsis thaliana leaves. Although leaves of the pdx1.3 Arabidopsis mutant contained less chlorophyll than wild-type leaves, we found that vitamin B6 deficiency did not significantly impact photosynthetic performance or shoot and root growth. Chlorophyll loss was associated with an increase in the chlorophyll a/b ratio and a selective decrease in the abundance of several PSII antenna proteins (Lhcb1/2, Lhcb6. These changes were strongly dependent on light intensity, with high light amplifying the difference between pdx1.3 and the wild type. When leaf discs were exposed to exogenous 1O2, lipid peroxidation in pdx1.3 was increased relative to the wild type; this effect was not observed with superoxide or hydrogen peroxide. When leaf discs or whole plants were exposed to excess light energy, 1O2-mediated lipid peroxidation was enhanced in leaves of the pdx1.3 mutant relative to the wild type. High light also caused an increased level of 1O2 in vitamin B6-deficient leaves. Combining the pdx1.3 mutation with mutations affecting the level of 'classical' quenchers of 1O2 (zeaxanthin, tocopherols resulted in a highly photosensitive phenotype. Conclusion This study demonstrates that vitamin B6 has a function in

  17. Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-11-01

    Full Text Available Schizolobium parahyba var. amazonicum (Huber ex Ducke occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF and plant growth-promoting rhizobacteria (PGPR on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce and Acaulospora sp. (Ac; two native strains of Rhizobium sp. (Rh1 and Rh2; and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2 in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1 were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  18. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    Science.gov (United States)

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  19. Using wind plant data to increase reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Valerie A. (Sandia National Laboratories, Livermore, CA); Ogilvie, Alistair B.; McKenney, Bridget L.

    2011-01-01

    Operators interested in improving reliability should begin with a focus on the performance of the wind plant as a whole. To then understand the factors which drive individual turbine performance, which together comprise the plant performance, it is necessary to track a number of key indicators. Analysis of these key indicators can reveal the type, frequency, and cause of failures and will also identify their contributions to overall plant performance. The ideal approach to using data to drive good decisions includes first determining which critical decisions can be based on data. When those required decisions are understood, then the analysis required to inform those decisions can be identified, and finally the data to be collected in support of those analyses can be determined. Once equipped with high-quality data and analysis capabilities, the key steps to data-based decision making for reliability improvements are to isolate possible improvements, select the improvements with largest return on investment (ROI), implement the selected improvements, and finally to track their impact.

  20. Root foraging increases performance of the clonal plant Potentilla reptans in heterogeneous nutrient environments.

    Science.gov (United States)

    Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A

    2013-01-01

    Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.

  1. Index of Cultural Significance as a Potential Tool for Conservation of Plants Diversity by Communities in The Kerinci Seblat National Park

    Directory of Open Access Journals (Sweden)

    Asvic Helida

    2015-12-01

    Full Text Available The Kerinci community is an Indonesian indigenous people who live in Kerinci Regency, Jambi Province. They have local knowledge of the surrounding vegetation that has become a cultural unifying factor within the community. The study reported here aimed to analyze the importance of plants of particular cultural significance and to review efforts to conserve these plants based on Kerinci cultural values. The study was conducted for eight months from October 2013 to May 2014 at three locations chosen purposively, they were Lempur Baru Village, Lama Tamiai Village and Ulu Jernih Village. The data was obtained using a participatory observation approach, based on key informant interviews, while the assessment of plant distribution was based on a whole-of-community viewpoint. The research data consisted of data on the botany of the plants, on the utilization of the plants and on assessment of plant distribution. Analysis of data for 234 plant species used a formula for index of cultural significance (ICS adopted from Turner (1988. The study showed that rice (Oryza sativa L. and cinnamon (Cinnamomum burmanni (Nees & T.Nees Blume are important plant species with values for the Cultural Index of 59 and 57 respectively, while the species known as 'inggu' (Ruta angustifolia (L. Pers had the lowest ICS, of 3. The 'Tri-Stimulus Amar' conservation analysis developed by Zuhud (2007 is seen as a useful model for considering the cultural values that motivate the Kerinci community's plant conservation actions.

  2. Significance of Two New Pleistocene Plant Records from Western Europe

    Science.gov (United States)

    Field, Michael H.; Velichkevich, Felix Y.; Andrieu-Ponel, Valerie; Woltz, Phillipe

    2000-09-01

    The first records of extinct Caulinia goretskyi (Dorofeev) Dorofeev (synonym Najas goretskyi Dorofeev) in western Europe and of Potamogeton occidentalis M.H. Field sp. nov. were obtained from plant macrofossil analyses of Middle Pleistocene temperate stage deposits exposed at Trez Rouz, Brittany, France. Palynological assemblages recovered suggest correlation with the Holsteinian Stage. This discovery greatly expands the western limit of the paleogeographical distribution of Caulinia goretskyi. The record of Potamogeton occidentalis indicates an affinity with the eastern Asiatic flora, as the fruits resemble those of the extant Potamogeton maackianus A. Bennett. Other extinct Pleistocene species related to P. maackianus have been described, and it is possible to follow the development of this group through the Pleistocene in the European fossil record. These new finds illustrate the importance of a complete paleobotanical approach (both plant macrofossil and palynological analyses). The plant macrofossil assemblages not only provide detailed insight into local vegetation and environment, because they are often not transported long distances (in temperate areas) and can frequently be identified to species level; they can also offer the opportunity to investigate Pleistocene evolutionary trends.

  3. Plant-fed versus chemicals-fed rhizobacteria of Lucerne: Plant-only teabags culture media not only increase culturability of rhizobacteria but also recover a previously uncultured Lysobacter sp., Novosphingobium sp. and Pedobacter sp.

    Science.gov (United States)

    Hegazi, Nabil A; Sarhan, Mohamed S; Fayez, Mohamed; Patz, Sascha; Murphy, Brian R; Ruppel, Silke

    2017-01-01

    In an effort to axenically culture the previously uncultivable populations of the rhizobacteria of Lucerne (Medicago sativa L.), we propose plant-only teabags culture media to mimic the nutritional matrix available in the rhizosphere. Here, we show that culture media prepared from Lucerne powder teabags substantially increased the cultivability of Lucerne rhizobacteria compared with a standard nutrient agar, where we found that the cultivable populations significantly increased by up to 60% of the total bacterial numbers as estimated by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). Cluster analysis of 16S rDNA Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) of cultivable Colony-Forming Units (CFUs) revealed a more distinct composition and separation of bacterial populations recovered on the plant-only teabags culture media than those developed on a standard nutrient agar. Further, the new plant medium gave preference to the micro-symbiont Sinorhizobium meliloti, and succeeded in isolating a number of not-yet-cultured bacteria, most closely matched to Novosphingobium sp., Lysobacter sp. and Pedobacter sp. The present study may encourage other researchers to consider moving from the well-established standard culture media to the challenging new plant-only culture media. Such a move may reveal previously hidden members of rhizobacteria, and help to further explore their potential environmental impacts.

  4. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  5. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants.

    Science.gov (United States)

    Mohamed, Heba Ibrahim; Akladious, Samia Ageeb

    2017-10-01

    The use of fungicides for an effective control of plant diseases has become crucial in the last decades in the agriculture system. Seeds of cotton plants were treated with systemic and contact fungicides to study the efficiency of seed dressing fungicides in controlling damping off caused by Rhizoctonia solani under greenhouse conditions and its effect on plant growth and metabolism. The results showed that Mon-cut showed the highest efficiency (67.99%) while each of Tondro and Hemixet showed the lowest efficiency (31.99%) in controlling damping off. Rhizolex T, Mon-cut and Tondro fungicides caused significant decrease in plant height, dry weight of plant, phytohormones, photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids but caused significant increases in total phenols, flavonoids, antioxidant enzymes, ascorbic acid, reduced glutathione, MDA and hydrogen peroxide as compared with untreated plants. On the other hand, the other fungicides (Maxim, Hemixet and Flosan) increased all the above recorded parameters as compared with untreated plants. Our results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities.

    Science.gov (United States)

    Baldwin, Andrew H; Jensen, Kai; Schönfeldt, Marisa

    2014-03-01

    Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no-migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (-14%) across latitudes in Europe and North America. Species richness and evenness of south-latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and

  7. Application of Endophytic Pseudomonas fluorescens and a Bacterial Consortium to Brassica napus Can Increase Plant Height and Biomass under Greenhouse and Field Conditions

    Directory of Open Access Journals (Sweden)

    Richard D. Lally

    2017-12-01

    Full Text Available Plant associated bacteria with plant growth promotion (PGP properties have been proposed for use as environmentally friendly biofertilizers for sustainable agriculture; however, analysis of their efficacy in the field is often limited. In this study, greenhouse and field trials were carried out using individual endophytic Pseudomonas fluorescens strains, the well characterized rhizospheric P. fluorescens F113 and an endophytic microbial consortium of 10 different strains. These bacteria had been previously characterized with respect to their PGP properties in vitro and had been shown to harbor a range of traits associated with PGP including siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC deaminase activity, and inorganic phosphate solubilization. In greenhouse experiments individual strains tagged with gfp and Kmr were applied to Brassica napus as a seed coat and were shown to effectively colonize the rhizosphere and root of B. napus and in addition they demonstrated a significant increase in plant biomass compared with the non-inoculated control. In the field experiment, the bacteria (individual and consortium were spray inoculated to winter oilseed rape B. napus var. Compass which was grown under standard North Western European agronomic conditions. Analysis of the data provides evidence that the application of the live bacterial biofertilizers can enhance aspects of crop development in B. napus at field scale. The field data demonstrated statistically significant increases in crop height, stem/leaf, and pod biomass, particularly, in the case of the consortium inoculated treatment. However, although seed and oil yield were increased in the field in response to inoculation, these data were not statistically significant under the experimental conditions tested. Future field trials will investigate the effectiveness of the inoculants under different agronomic conditions.

  8. Safety at basic nuclear facilities other than nuclear power plants. Lessons learned from significant events reported in 2011 and 2012

    International Nuclear Information System (INIS)

    2014-01-01

    The third report on the safety of basic nuclear installations in France other than power reactors presents an IRSN's analysis of significant events reported to the Nuclear Safety Authority in the years 2011 and 2012. It covers plants, laboratories, research reactors and facilities for the treatment, storage or disposal of waste. This report aims to contribute to a better understanding by stakeholders and more widely by the public of the safety and radiation protection issues associated with the operation of nuclear facilities, the progress made in terms of safety as well as the identified deficiencies. The main trend shows, once again, the significant role of organizational and human factors in the significant events that occurred in 2011 and 2012, of which the vast majority are without noteworthy consequences. Aging mechanisms are another major cause of equipment failure and require special attention. The report also provides IRSN's analysis of specific events that are particularly instructive for facility safety and a synthesis of assessments performed by IRSN on topics that are important for safety and radiation protection. IRSN also includes an overview of its analysis of measures proposed by licensees for increasing the safety of their facilities after the March 2011 accident at the Fukushima Daiichi nuclear power plant in Japan, which consist of providing a 'hardened safety core' to confront extreme situations (earthquake, flooding, etc.) that are unlikely but plausible and can bring about levels of hazards higher than those taken into account in the design of the facilities

  9. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    Science.gov (United States)

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  10. Nitric oxide overcomes Cd and Cu toxicity in in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase.

    Science.gov (United States)

    Khairy, Alaaldin Idris H; Oh, Mi Jeong; Lee, Seung Min; Kim, Da Som; Roh, Kwang Soo

    2016-06-01

    Toxic heavy metals such as cadmium (Cd) and copper (Cu) are global problems that are a growing threat to the environment. Despite some heavy metals are required for plant growth and development, others are considered toxic elements and do not play any known physiological role in plant cells. Elevated doses of Cd or Cu cause toxicity in plants and generate damages due to the stress condition and eventually cause a significant reduction in quantity and quality of crop plants. The nitric oxide (NO) donor sodium nitroprusside (SNP) is reported to alleviate the toxicity of some heavy metals like Cd and Cu. In the current study, the role of NO in alleviating stresses of Cd and Cu was investigated in in vitro -grown tobacco ( Nicotiana tabacum ) Based on plant growth, total chlorophyll contents, contents and activities of rubisco and rubisco activase. According to the results of this study, the growth and total chlorophyll contents of Cd/Cu stressed plants were hugely decreased in the absence of SNP, while the supplementation of SNP resulted in a significant increase of both fresh weight and total chlorophyll contents. Remarkable reductions of Rubisco and rubisco activase contents and activities were observed in Cd and Cu-induced plants. SNP supplementation showed the highest contents and activities of rubisco and rubisco activase compared to the control and Cu/Cd-stressed plants. Taken together, our findings suggest that SNP could play a protective role in regulation of plant responses to abiotic stresses such as Cd and Cu by enhancing Rubisco and Rubisco activase.

  11. Regional floras, a significant modern trend in plant taxonomy

    NARCIS (Netherlands)

    Steenis, van C.G.G.J.

    1959-01-01

    Besides through monographic work plant taxonomy has a second way of framing synthetic attempts and that is by compiling Florulas and Floras, containing a complete account of the flora of parts of the globe, of cities, islets, islands, states, countries, or continents. Irrespective of their style,

  12. THE SMALL BUT SIGNIFICANT AND NONTRANSITORY INCREASE IN PRICES (SSNIP TEST

    Directory of Open Access Journals (Sweden)

    Liviana Niminet

    2008-12-01

    Full Text Available The Small but Significant Nontransitory Increase in Price Test was designed to define the relevant market by concepts of product, geographical area and time. This test, also called the ,,hypothetical monopolistic test” is the subject of many researches both economical and legal as it deals with economic concepts as well as with legally aspects.

  13. Increased frequency of retinopathy of prematurity over the last decade and significant regional differences.

    Science.gov (United States)

    Holmström, Gerd; Tornqvist, Kristina; Al-Hawasi, Abbas; Nilsson, Åsa; Wallin, Agneta; Hellström, Ann

    2018-03-01

    Retinopathy of prematurity (ROP) causes childhood blindness globally in prematurely born infants. Although increased levels of oxygen supply lead to increased survival and reduced frequency of cerebral palsy, increased incidence of ROP is reported. With the help of a Swedish register for ROP, SWEDROP, national and regional incidences of ROP and frequencies of treatment were evaluated from 2008 to 2015 (n = 5734), as well as before and after targets of provided oxygen changed from 85-89% to 91-95% in 2014. Retinopathy of prematurity (ROP) was found in 31.9% (1829/5734) of all infants with a gestational age (GA) of <31 weeks at birth and 5.7% of the infants (329/5734) had been treated for ROP. Analyses of the national data revealed an increased incidence of ROP during the 8-year study period (p = 0.003), but there was no significant increase in the frequency of treatment. There were significant differences between the seven health regions of Sweden, regarding both incidence of ROP and frequency of treatment (p < 0.001). Comparison of regional data before and after the new oxygen targets revealed a significant increase in treated ROP in one region [OR: 2.24 (CI: 1.11-4.49), p = 0.024] and a borderline increase in one other [OR: 3.08 (CI: 0.99-9.60), p = 0.052]. The Swedish national ROP register revealed an increased incidence of ROP during an 8-year period and significant regional differences regarding the incidence of ROP and frequency of treatment. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions

    Science.gov (United States)

    Cohu, Christopher M.; Lombardi, Elizabeth; Adams, William W.; Demmig-Adams, Barbara

    2014-02-01

    Low levels of radiation during spaceflight increase the incidence of eye damage and consumption of certain carotenoids (especially zeaxanthin), via a whole-food-based diet (rather than from supplements), is recommended to protect human vision against radiation damage. Availability of fresh leafy produce has, furthermore, been identified as desirable for morale during long spaceflight missions. We report that only trace amounts of zeaxanthin are retained post-harvest in leaves grown under conditions conducive to rapid plant growth. We show that growth of plants under cool temperatures and very high light can trigger a greater retention of zeaxanthin, while, however, simultaneously retarding plant growth. We here introduce a novel growth condition—low growth light supplemented with several short daily light pulses of higher intensity—that also triggers zeaxanthin retention, but without causing any growth retardation. Moreover, two plant varieties with different hardiness exhibited a different propensity for zeaxanthin retention. These findings demonstrate that growth light environment and plant variety can be exploited to simultaneously optimize nutritional quality (with respect to zeaxanthin and two other carotenoids important for human vision, lutein and β-carotene) as well as biomass production of leafy greens suitable as bioregenerative systems for long-duration manned spaceflight missions.

  15. Retrofitting a Geothermal Plant with Solar and Storage to Increase Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangdong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McTigue, Joshua Dominic P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turchi, Craig S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Castro, Jose [Coso Operating Co.; Mungas, Greg [Hyperlight Energy; Kramer, Nick [Hyperlight Energy; King, John [Hyperlight Energy

    2017-10-04

    Solar hybridization using concentrating solar power (CSP) can be an effective approach to augment the power generation and power cycle efficiency of a geothermal power plant with a declining resource. Thermal storage can further increase the dispatchability of a geothermal/solar hybrid system, which is particularly valued for a national grid with high renewable penetration. In this paper, a hybrid plant design with thermal storage is proposed based on the requirements of the Coso geothermal field in China Lake, California. The objective is to increase the power production by 4 MWe. In this system, a portion of the injection brine is recirculated through a heat exchanger with the solar heat transfer fluid, before being mixed with the production well brine. In the solar heating loop the brine should be heated to at least 155 degrees C to increase the net power. The solar field and storage were sized based on solar data for China Lake. Thermal storage is used to store excess power at the high-solar-irradiation hours and generate additional power during the evenings. The solar field size, the type and capacity of thermal storage and the operating temperatures are critical factors in determining the most economic hybrid system. Further investigations are required to optimize the hybrid system and evaluate its economic feasibility.

  16. Evaluation of Significance of Diffusely Increased Bilateral Renal Uptake on Bone Scan

    International Nuclear Information System (INIS)

    Sung, Mi Sook; Yang, Woo Jin; Byun, Jae Young; Park, Jung Mi; Shinn, Kyung Sub; Bahk, Yong Whee

    1990-01-01

    Unexpected renal abnormality can be detected on bone scan using 99m Tc-MDP. The purpose of the study is to evaluate the diagnostic significance of diffusely increased bilateral renal uptake on bone scan. 1,500 bone scan were reviewed and 43 scans which showed diffusely increased bilateral renal uptake were selected for analysis. Laboratory findings for renal and liver function tests including routine urinalysis were reviewed in 43 patients. 26 of 43 case showed abnormality in urinalysis and renal function study. 20 of 43 cases showed abnormal liver function study and 3 of these cases were diagnosed as hepatorenal syndrome later. 13 of those 20 cases had liver cirrhosis with or without hepatoma. 12 of 43 cases showed abnormality both in renal and liver function studies. 2 of 43 cases showed diffusely increased bilateral renal uptake after chemotherapy for cancer but not on previous scans before chemotherapy. 2 of 43 cases showed hypercalcaemia and 8 of 43 cases had multifocal bone uptake due to metastasis or benign bone lesion. But the latter showed no hypercalcaemia at all. There was no significant correlation between increased renal uptake and MDP uptake in soft tissue other than kidneys. This study raised the possibility that the impaired liver and/or renal function may result in diffuse increase of bilateral renal uptake of MDP of unknown mechanism. It seems to need further study on this correlation.

  17. Evaluation of Significance of Diffusely Increased Bilateral Renal Uptake on Bone Scan

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Mi Sook; Yang, Woo Jin; Byun, Jae Young; Park, Jung Mi; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1990-03-15

    Unexpected renal abnormality can be detected on bone scan using {sup 99m}Tc-MDP. The purpose of the study is to evaluate the diagnostic significance of diffusely increased bilateral renal uptake on bone scan. 1,500 bone scan were reviewed and 43 scans which showed diffusely increased bilateral renal uptake were selected for analysis. Laboratory findings for renal and liver function tests including routine urinalysis were reviewed in 43 patients. 26 of 43 case showed abnormality in urinalysis and renal function study. 20 of 43 cases showed abnormal liver function study and 3 of these cases were diagnosed as hepatorenal syndrome later. 13 of those 20 cases had liver cirrhosis with or without hepatoma. 12 of 43 cases showed abnormality both in renal and liver function studies. 2 of 43 cases showed diffusely increased bilateral renal uptake after chemotherapy for cancer but not on previous scans before chemotherapy. 2 of 43 cases showed hypercalcaemia and 8 of 43 cases had multifocal bone uptake due to metastasis or benign bone lesion. But the latter showed no hypercalcaemia at all. There was no significant correlation between increased renal uptake and MDP uptake in soft tissue other than kidneys. This study raised the possibility that the impaired liver and/or renal function may result in diffuse increase of bilateral renal uptake of MDP of unknown mechanism. It seems to need further study on this correlation.

  18. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    International Nuclear Information System (INIS)

    Yang, Shih-Ying; Juang, Shin-Hun; Tsai, Shang-Yuan; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2012-01-01

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC 0−t and C max of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC 0−t of MTX by 55%. In addition, diclofenac enhanced the C max of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC 0−t and C max of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  19. GAMMA IRRADIATION OF SUGAR BEET SEEDS INDUCED PLANT RESISTANCE TO ROOT-KNOT NEMATODE MELOIDOGYNE INCOGNITA

    International Nuclear Information System (INIS)

    ABD EL FATTAH, A.I.; KAMEL, H.A.; EL-NAGDI, W.M.A.

    2008-01-01

    The main objective of this study was to investigate the effect of irradiation of sugar beet seeds on the plant resistance to root-knot nematode Meloidogyne incognita infection in addition to some morphological parameters, biochemical components and root technological characters. Relative to control (non-irradiated seeds), the obtained data showed that, all doses except 10 Gy significantly increased root length of un inoculated plants and the most effective dose was 200 Gy. All doses significantly decreased root diameter except 50 and 100 Gy. The 10 and 400 Gy significantly reduced root fresh weight while 50, 100 and 200 Gy caused non-significant increase. All doses significantly increased root fresh weight/dry weight than control. There was non-significant effect on the morphological parameters of the plants germinated from gamma irradiated seeds and inoculated with Meloidogyne incognita. Total chlorophyll of seed irradiated and un inoculated plants were significantly reduced by all doses except 200 Gy. All doses of gamma radiation caused non-significant decrease in the total chlorophyll of the infected plants. In un inoculated plants, a significant reduction in the total phenol was occurred due to all doses of gamma radiation. In contrast, in inoculated plants, 10 and 25 Gy caused significant reduction in the total phenol while 50 and 400 Gy caused significant increase in the total phenol.Significant increase in sucrose % was observed due to 10 Gy in the un inoculated plants. The 400 Gy caused significant decrease while other doses caused non-significant decrease in the sucrose %. In the inoculated plants, 50, 100 and 400 Gy caused significant increase in sucrose %. All doses significantly increased total soluble salts percent (TSS %) of either inoculated or un inoculated plants. Purity % was increased by all doses in the inoculated plants.The number of galls and egg masses were reduced gradually by increasing gamma doses and 100 Gy caused the highest reduction 89

  20. The Increased Content of Micronutrients in Celery, Carrot, Parsnip and Parsley Plants after Treatment with Sodium Naphthenate

    Directory of Open Access Journals (Sweden)

    Grbović Ljubica

    2016-08-01

    Full Text Available Young plants of celery, parsley, parsnip and carrot, grown in nutrient solution, were treated with sodium naphthenate (10−7 mol dm−3, applying foliar and root treatments. Both treatments affected the root content of all investigated elements present in the nutrient solution, but in a different way, depending on the plant species. An average change (increase/decrease in the contents of investigated essential elements was about 35%. Our experiments with naphthenate showed that this treatment may enhance the efficiency of essential elements uptake and increase its content in plants without changing concentration of these elements in the nutrient solution. Especially interesting results were obtained in the case of carrot, as increased contents were observed in the elements that are usually deficient in nutrition (Fe, Zn, Mn, whereas the other remained unchanged.

  1. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism.

    Science.gov (United States)

    Ras, R T; Koppenol, W P; Garczarek, U; Otten-Hofman, A; Fuchs, D; Wagner, F; Trautwein, E A

    2016-04-01

    Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored. The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)). Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178). Copyright © 2015 The Italian Society of

  2. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    Directory of Open Access Journals (Sweden)

    Yuyan An

    Full Text Available 5-aminolevulinic acid (ALA, a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn. plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC, and reduced leaf superoxide anion ([Formula: see text] production rate and malonaldehyde (MDA content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD and peroxidase (POD, root vigor, and activities of root alcohol dehydrogenase (ADH, and lactate dehydrogenase (LDH, indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance.

  3. Increased productivity in power plants by the computer-based information system PRAUT

    International Nuclear Information System (INIS)

    Hanbaba, P.

    1978-01-01

    Decrease of commissionning times, reduction of shut-down periods, avoiding of power reductions, fast adaption to load requirement variations act in the direction of increasing the productivity of a power plant. An essential contribution to this is provided by harmonized control, monitoring and communications concepts as realized, e.g. in the PRO-CONTROL system by Brown Boveri. (orig.) [de

  4. Increase net plant output through selective operation of the heat-rejection system

    International Nuclear Information System (INIS)

    Ostrowski, E.T.; Queenan, P.T.

    1987-01-01

    Depending on unit load and ambient meteorological conditions, a net increase of 800 to 5500 kW in plant output is possible for many generating units through optimized operation of the major motor-driven equipment in the heat-rejection system - the circulating water pumps and mechanical-draft cooling tower fans. This can be realised when the resulting decrease in auxiliary-power demand is greater than the decrease in gross electric generation caused by operating fewer pumps and/or fans. No capital expenditures are incurred and only operating procedures are involved so that the performance gains are achieved at no cost. The paper considers the application of this technique to nuclear power plants, pump optimization and the superimposition of fan and cooling tower performance curves

  5. Concrete component aging and its significance relative to life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.

    1986-09-01

    The objectives of this study are to (1) expand upon the work that was initiated in the first two Electric Power Research Institute studies relative to longevity and life extension considerations of safety-related concrete components in light-water reactor (LWR) facilities and (2) provide background that will logically lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based materials and components. These objectives are consistent with Nuclear Plant Aging Research (NPAR) Program goals: (1) to identify and characterize aging and service wear effects that, if unchecked, could cause degradation of structures, components, and systems and, thereby, impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring or of evaluating residual life of structures, components, and systems that will ensure timely detection of significant aging effects before loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  6. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Technical documentation

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Experimental and analytical considerations on the seismic effects evaluation criteria, such as analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings, were shown in this document and incorporated in new recommendations. (T. Tanaka)

  7. Development and application of a methodology for the analysis of significant human related event trends in nuclear power plants

    International Nuclear Information System (INIS)

    Cho, H.Y.

    1981-01-01

    A methodology is developed to identify and flag significant trends related to the safety and availability of U.S. commercial nuclear power plants. The development is intended to aid in reducing likelihood of human errors. To assure that the methodology can be easily adapted to various types of classification schemes of operation data, a data bank classified by the Transient Analysis Classification and Evaluation (TRACE) scheme is selected for the methodology. The significance criteria for human-initiated events affecting the systems and for events caused by human deficiencies were developed. Clustering analysis was used to verify the learning trend in multidimensional histograms. A computer code is developed based on the K-Means algorithm and applied to find the learning period in which error rates are monotonously decreasing with plant age. The Freeman-Tukey (F-T) deviates are used to select generic problems identified by a large positive value (here approximately over 2.0) for the deviate. The identified generic problems are: decision errors which are highly associated with reactor startup operations in the learning period of PWR plants (PWRs), response errors which are highly associated with Secondary Non-Nuclear Systems (SNS) in PWRs, and significant errors affecting systems and which are caused by response action are highly associated with startup reactor mode in BWRS

  8. An approach toward estimating the safety significance of normal and abnormal operating procedures in nuclear power plants

    International Nuclear Information System (INIS)

    Grant, T.F.; Harris, M.S.

    1989-01-01

    The Nuclear Regulatory Commission's TMI Action Plan calls for a long-term plan to upgrade operating procedures in nuclear power plants. The scope of Generic Issue Human Factors 4.4, which stems from this requirement, includes the recommendation of improvements in nuclear power plant normal and abnormal operating procedures (NOPs and AOPs) and the implementation of appropriate regulatory action. This paper will describe the objectives, methodologies, and results of a Battelle-conducted value impact assessment to determine the costs and benefits of having the NRC implement regulatory action that would specify requirements for the preparation of acceptable NOPs and AOPs by the Commission's nuclear power plant licensees. The results of this value impact assessment are expressed in terms of ten cost/benefit attributes that can be affected by the NRC regulatory action. Five of these attributes require the calculation of change in public risk that could be expected to result from the action which, in this case, required determining the safety significance of NOPs and AOPs. In order to estimate this safety significance, a multi-step methodology was created that relies on an existing Probabilistic Risk Assessment (PRA) to provide a quantitative framework for modeling the role of operating procedures. The purpose of this methodology is to determine what impact the improvement of NOPs and AOPs would have on public health and safety

  9. Effects of Increased UVB radiation on plant-insect interactions: Plantago lanceolata and Junonia coenia

    International Nuclear Information System (INIS)

    McCloud, E.S.; Berenbaum, M.R.

    1993-01-01

    Seeds of P. lanceolata were collected from a local population and 4 replicates of 42 maternal families were grown for 90 days in the greenhouse with at two levels of supplemental UVB radiation (6 and 12 kJ day -1 BE 300 ). Higher UVB radiation increased leaf hair density and decreased plant size during early growth; family identity affected these also. Leaves excised from a subset of the plants were fed to ultimate instar larvae of J. coenia and assayed for iridoids. Increased UVB radiation did not alter the iridoid content of the leaves or the growth of the larvae. In a separate experiment, P. lanceolata growing under the two levels of UVB irradiation were infested with neonate larvae and larval growth was monitored. Larval growth was not markedly altered by enhanced UVB. These findings suggest that increased UVB is unlikely to alter the suitability of P. lanceolata as a host for J. coenia

  10. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  11. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.

    Science.gov (United States)

    Hadi, Fazal; Ali, Nasir; Fuller, Michael Paul

    2016-10-01

    Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2  = 0.793, 0.807 and 0.739) and leaves (R 2  = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2  = 0.668, 0.694 and 0.673) and leaves (R 2  = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  12. Increasing plant density in eastern United States broccoli production systems to maximize marketable head yields

    Science.gov (United States)

    Increased demand for fresh market broccoli (Brassica oleracea L. var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern commercial markets. Thus, a plant density study was carried ...

  13. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato

    Science.gov (United States)

    Antoniou, Anastasis; Tsolakidou, Maria-Dimitra; Stringlis, Ioannis A.; Pantelides, Iakovos S.

    2017-01-01

    Suppressive composts represent a sustainable approach to combat soilborne plant pathogens and an alternative to the ineffective chemical fungicides used against those. Nevertheless, suppressiveness to plant pathogens and reliability of composts are often inconsistent with unpredictable effects. While suppressiveness is usually attributed to the compost’s microorganisms, the mechanisms governing microbial recruitment by the roots and the composition of selected microbial communities are not fully elucidated. Herein, the purpose of the study was to evaluate the impact of a compost on tomato plant growth and its suppressiveness against Fusarium oxysporum f. sp. lycopersici (Foxl) and Verticillium dahliae (Vd). First, growth parameters of tomato plants grown in sterile peat-based substrates including 20 and 30% sterile compost (80P/20C-ST and 70P/30C-ST) or non-sterile compost (80P/20C and 70P/30C) were evaluated in a growth room experiment. Plant height, total leaf surface, and fresh and dry weight of plants grown in the non-sterile compost mixes were increased compared to the plants grown in the sterile compost substrates, indicating the plant growth promoting activity of the compost’s microorganisms. Subsequently, compost’s suppressiveness against Foxl and Vd was evaluated with pathogenicity experiments on tomato plants grown in 70P/30C-ST and 70P/30C substrates. Disease intensity was significantly less in plants grown in the non-sterile compost than in those grown in the sterile compost substrate; AUDPC was 2.3- and 1.4-fold less for Foxl and Vd, respectively. Moreover, fungal quantification in planta demonstrated reduced colonization in plants grown in the non-sterile mixture. To further investigate these findings, we characterized the culturable microbiome attracted by the roots compared to the unplanted compost. Bacteria and fungi isolated from unplanted compost and the rhizosphere of plants were sequence-identified. Community-level analysis revealed

  14. Increased Rate of NAD Metabolism Shortens Plant Longevity by Accelerating Developmental Senescence in Arabidopsis.

    Science.gov (United States)

    Hashida, Shin-Nosuke; Itami, Taketo; Takahara, Kentaro; Hirabayashi, Takayuki; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2016-11-01

    NAD is a well-known co-enzyme that mediates hundreds of redox reactions and is the basis of various processes regulating cell responses to different environmental and developmental cues. The regulatory mechanism that determines the amount of cellular NAD and the rate of NAD metabolism remains unclear. We created Arabidopsis thaliana plants overexpressing the NAD synthase (NADS) gene that participates in the final step of NAD biosynthesis. NADS overexpression enhanced the activity of NAD biosynthesis but not the amounts of NAD + , NADH, NADP + or NADPH. However, the amounts of some intermediates were elevated, suggesting that NAD metabolism increased. The NAD redox state was greatly facilitated by an imbalance between NAD generation and degradation in response to bolting. Metabolite profiling and transcriptional analysis revealed that the drastic modulation of NAD redox homeostasis increased tricarboxylic acid flux, causing the ectopic generation of reactive oxygen species. Vascular bundles suffered from oxidative stress, leading to a malfunction in amino acid and organic acid transportation that caused early wilting of the flower stalk and shortened plant longevity, probably due to malnutrition. We concluded that the mechanism regulating the balance between NAD synthesis and degradation is important in the systemic plant response to developmental cues during the growth-phase transition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Performance evaluation recommendations and manuals of nuclear power plants outdoor significant civil structures earthquake resistance

    International Nuclear Information System (INIS)

    2005-06-01

    Performance evaluation recommendations and manuals of nuclear power plants outdoor significant civil structures earthquake resistance have been updated in June 2005 by the Japan Society of Civil Engineers. Based on experimental and analytical considerations on the recommendations of May 2002, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been evaluated and incorporated in new recommendations. (T. Tanaka)

  16. Spices, condiments and medicinal plants in Ethiopia, their taxonomy and agricultural significance

    NARCIS (Netherlands)

    Jansen, P.C.M.

    1981-01-01

    The book is the third in a series of publications on useful plants of Ethiopia. It describes 12 spices and condiments and 13 medicinal plants, both from a taxonomic and an agricultural viewpoint.

    The extensive botanical description of each taxon is accompanied by a full-page

  17. Increasing Water System Efficiency with Ultrafiltration Pre-treatment in Power Plants

    International Nuclear Information System (INIS)

    Majamaa, Katariina; Suarez, Javier; Gasia Eduard

    2012-09-01

    Water demineralization with reverse osmosis (RO) membranes has a long and successful history in water treatment for power plants. As the industry strives for more efficient, reliable and compact water systems, pressurized hollow-fiber ultrafiltration (UF) has become an increasingly appealing pre-treatment technology. Compared to conventional, non- membrane based pretreatments, ultrafiltration offers higher efficiency in the removal of suspended solids, microorganisms and colloidal matter, which are all common causes for operational challenges experienced in the RO systems. In addition, UF is more capable of handling varying feed water qualities and removes the risk of particle carry-over often seen with conventional filtration techniques. Ultrafiltration is a suitable treatment technology for various water types from surface waters to wastewater, and the more fluctuating or challenging the feed water source is, the better the benefits of UF are seen compared to conventional pretreatments. Regardless of the feed water type, ultrafiltration sustains a constant supply of high quality feed water to downstream RO, allowing a more compact and cost efficient RO system design with improved operational reliability. A detailed focus on the design and operational aspects and experiences of two plants is provided. These examples demonstrate both economical UF operation and tangible impact of RO process improvement. Experience from these plants can be leveraged to new projects. (authors)

  18. [Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens].

    Science.gov (United States)

    Vetchinkina, E M; Komakhina, V V; Vysotskii, D A; Zaitsev, D V; Smirnov, A N; Babakov, A V; Komakhin, R A

    2016-09-01

    The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.

  19. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.

    Science.gov (United States)

    Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier

    2017-07-01

    The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.

  20. Programs to improve plant performance

    International Nuclear Information System (INIS)

    Felmus, N.L.

    1987-01-01

    Looking toward the 1990's, we see a period in which our industry will face the challenge of improving the performance of the nuclear plants which are built and operating. The skills and technology are at hand to make good plant performance a reality and we believe the time has come to use them to achieve that end. As reserve margins decline, utilities and their regulators will increasingly seek to tap the unexploited capacity tied up in plants operating below their optimum availability. This paper describes a number of the programs, plant improvements and operations improvements which can yield a significant increase in nuclear plant availability and capacity factor now and into the 1990's. (author)

  1. Increased and Altered Fragrance of Tobacco Plants after Metabolic Engineering Using Three Monoterpene Synthases from Lemon

    Science.gov (United States)

    Lücker, Joost; Schwab, Wilfried; van Hautum, Bianca; Blaas, Jan; van der Plas, Linus H. W.; Bouwmeester, Harro J.; Verhoeven, Harrie A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one plant by crossings, we show that it is possible to increase the amount and alter the composition of the blend of monoterpenoids produced in tobacco plants. The transgenic tobacco plant line with the three introduced monoterpene synthases is emitting β-pinene, limonene, and γ-terpinene and a number of side products of the introduced monoterpene synthases, from its leaves and flowers, in addition to the terpenoids emitted by wild-type plants. The results show that there is a sufficiently high level of substrate accessible for the introduced enzymes. PMID:14718674

  2. The significance of the pilot conditioning plant (PKA) for spent fuel management

    International Nuclear Information System (INIS)

    Willax, H.O.

    1996-01-01

    The pilot conditioning plant (PKA) is intended as a multi-purpose facility and thus may serve various purposes involved in the conditioning or disposal of spent fuel elements or radwaste. Its design as a pilot plant permits development and trial of various methods and processes for fuel element conditioning, as well as for radwaste conditioning. (orig./DG) [de

  3. Method to control the persons permitted to enter plants with increased security requirements and personnel lock for such plants

    International Nuclear Information System (INIS)

    Blaser, E.; Eickhoff, H.; Tretschoks, W.

    1978-01-01

    The personnel lock for a plant with increased security requirements, e.g. a nuclear power plant, has got two lock gates. Only persons whose right to enter has been established by the control equipment will be admitted to the lock chamber. For this purpose an identification recess is built in front of the first access to the lock chamber, where size, weight and the contours of the persons wanting to enter are roughly measured and compared with a code card carried along. The weight is established by a balance forming part of the base of the recess. By means of contact surfaces in the region of knees, upper thigh, chest and shoulder an upright position of the person is guaranteed. Scanning of the physical dimensions is performed with laser, infrared and light barriers. (DG) [de

  4. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering

    Directory of Open Access Journals (Sweden)

    Philip David Bates

    2012-07-01

    Full Text Available The unique properties of vegetable oils from different plants utilized for food, industrial feedstocks, and fuel is dependent on the fatty acid (FA composition of triacylglycerol (TAG. Plants can use two main pathways to produce diacylglycerol (DAG, the immediate precursor molecule to TAG synthesis: 1 De novo DAG synthesis, and 2 conversion of the membrane lipid phosphatidylcholine (PC to DAG. The FA esterified to PC are also the substrate for FA modification (e.g. desaturation, hydroxylation, etc., such that the FA composition of PC-derived DAG can be substantially different than that of de novo DAG. Since DAG provides two of the three FA in TAG, the relative flux of TAG synthesis from de novo DAG or PC-derived DAG can greatly affect the final oil FA composition. Here we review how the fluxes through these two alternate pathways of DAG/TAG synthesis are determined and present evidence that suggests which pathway is utilized in different plants. Additionally, we present examples of how the endogenous DAG synthesis pathway in a transgenic host plant can produce bottlenecks for engineering of plant oil FA composition, and discuss alternative strategies to overcome these bottlenecks to produce crop plants with designer vegetable oil compositions.

  5. Increased installation in existing hydro power plants. Potentials and costs; Oekt installasjon i eksisterende kraftverk. Potensial og kostnader

    Energy Technology Data Exchange (ETDEWEB)

    Stensby, Kjell Erik (ed.)

    2011-06-15

    This report seeks to highlight the costs associated with increased installed capacity of existing hydropower plants. Five selected power plant is further studied. Furthermore, given an overview of the technical possibilities of power expansions in Norway. (AG)

  6. Hybrid combined cycle power plant

    International Nuclear Information System (INIS)

    Veszely, K.

    2002-01-01

    In case of re-powering the existing pressurised water nuclear power plants by the proposed HCCPP solution, we can increase the electricity output and efficiency significantly. If we convert a traditional nuclear power plant unit to a HCCPP solution, we can achieve a 3.2-5.5 times increase in electricity output and the achievable gross efficiency falls between 46.8-52% and above, depending on the applied solution. These figures emphasise that we should rethink our power plant technologies and we have to explore a great variety of HCCPP solutions. This may give a new direction in the development of nuclear reactors and power plants as well.(author)

  7. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2015-01-01

    Under specific conditions, flashing light enhances the photosynthesis rate in comparison to continuous illumination. Here we show that a combination of flashing light and continuous background light with the same integrated photon dose as continuous or flashing light alone can be used to significantly enhance photosynthesis and increase microalgae growth. To test this hypothesis, the green microalga Dunaliella salina was exposed to three different light regimes: continuous light, flashing light, and concomitant application of both. Algal growth was compared under three different integrated light quantities; low, intermediate, and moderately high. Under the combined light regime, there was a substantial increase in all algal growth parameters, with an enhanced photosynthesis rate, within 3days. Our strategy demonstrates a hitherto undescribed significant increase in photosynthesis and algal growth rates, which is beyond the increase by flashing light alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis.

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute

  9. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor

  10. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    DEFF Research Database (Denmark)

    Lekberg, Ylva; Gibbons, Sean; Rosendahl, Søren

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge...... plant provenance.The ISME Journal advance online publication, 14 March 2013; doi:10.1038/ismej.2013.41....

  11. New ways enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation

    International Nuclear Information System (INIS)

    Goncharova, N. V; Zebrakova, I. V.; Matsko, V. P.; Kislushko, P. M.

    1994-01-01

    After Chernobyl nuclear accident it has become very important to seek new ways of enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation. It is found that by optimizing the vital activity processes in plants, is possible to reduce radionuclide uptake. A great number of biologically active compounds have been tested, which increased the disease resistance of plants and simultaneously activated the physiological and biochemical processes that control the transport of micro- and macroelements (radionuclide included) and their 'soil-root-stem-leaf' redistribution. (author)

  12. Shell Canada Limited application for increased throughput sour gas plant - Caroline Field : decision 97-5

    International Nuclear Information System (INIS)

    1998-06-01

    The Alberta Energy and Utilities Board considered an application by Shell Canada Limited to amend its existing Caroline Gas plant approval. Shell desires to add additional cooling equipment to enhance gas processing during the warmer months. Interveners raised several concerns, including the impact of the existing operation on the environment, and the health and safety of the community. Shell stated that the proposed increased throughput of sour gas would result in a 21 per cent increase in sulphur inlet, but that the emissions of SO 2 would still remain below the currently-approved daily maximum level of 45 t/d. Shell also stated that the proposed project would have no impact on flaring duration or frequency. The Board reviewed the evidence filed, and considered the comments of the participants made at a pre-hearing on June 11, 1996. The Board's assessment was that a public hearing was necessary to address Shell's application. The Board also expressed the belief that the scope of the public hearing should be limited to the possible impacts that may occur from the processing of incremental raw inlet gas and sulphur. A hearing date of July 22, 1996 was set. Having regard to the evidence which the Board received and considered, the Board declared itself satisfied that the technical changes to the plant were satisfactory and that the applied-for plant modifications would meet regulatory standards. The Board also believed that the approval of the application to increase throughput at the plant would be in the public interest. Accordingly, the Board declared its readiness to approve the application provided that Shell agreed to meet certain specified conditions. tab., 1 fig

  13. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    Science.gov (United States)

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  14. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.

    Science.gov (United States)

    Kim, Eun Yu; Seo, Young Sam; Park, Ki Youl; Kim, Soo Jin; Kim, Woo Taek

    2014-11-15

    The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23(fyp) and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Jobs for partners - significant stabilization factor for personnel of East Slovakia nuclear power plant

    International Nuclear Information System (INIS)

    Uvirova, E.

    1987-01-01

    The problem is discussed of employment of the wives of operating personnel of the nuclear power plant to be built in East Slovakia. It is expected that almost a half of the number of the wives have completed secondary education with final examination. A list is presented of openings best suitable for women. It is estimated that jobs for 1,580 women will have to be provided of which number 253 will be specialized jobs in health care and education. An increased number of vacancies are expected to be available, especially in the Kosice and Presov towns. (J.B.). 4 tabs., 4 refs

  16. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    Science.gov (United States)

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    and Rhodospirillaceae, were found to be the significantly increased by the BOF addition and the genus Lysobacter may identify members of this group effective in biological control-based plant disease management and the members of family Rhodospirillaceae had an important role in fixing molecular nitrogen. These results strengthen the understanding of responses to the BOF and possible interactions within bacterial communities in soil that can be associated with disease suppression and the accumulation of carbon and nitrogen. The increase of apple yields after the application of BOF might be attributed to the fact that the application of BOF increased SOM, and soil total nitrogen, and changed the bacterial community by enriching Rhodospirillaceae, Alphaprotreobateria, and Proteobacteria.

  17. Revenue opportunities for gas plants arising from electricity deregulation

    International Nuclear Information System (INIS)

    Bachmann, G.C.

    1999-01-01

    A brief overview of deregulation in the electric power industry and an explanation of how these changes can be used to increase revenues of gas processing plants is provided. Deregulation in the electric power industry provides the potential to significantly reduce energy costs for the gas plant and allows technology to be applied to make a better use of a valuable commodity. Owners and operators of gas processing plants increase their operating income by taking advantage of co-generation systems which provide heat and electrical energy to the gas plant. Such an application has three revenue streams, the main one being the power sales to the gas plant, the second one heat sales, and the third increased revenues from the gas plant through a reduction of overall costs, not to mention significantly reduced downtime. Further savings are possible through diversion of excess energy produced to other facilities owned by the gas plant owner

  18. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Hyungmin Rho

    2018-03-01

    Full Text Available Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions.

  19. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum.

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2015-05-01

    Full Text Available The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol or a defect (in the npq1-2 mutant of violaxanthin de-epoxidase (VDE abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.

  20. Significance of Increasing n-3 PUFA Content in Pork on Human Health.

    Science.gov (United States)

    Ma, Xianyong; Jiang, Zongyong; Lai, Chaoqiang

    2016-01-01

    Evidence for the health-promoting effects of food rich in n-3 polyunsaturated fatty acids (n-3 PUFA) is reviewed. Pork is an important meat source for humans. According to a report by the US Department of Agriculture ( http://www.ers.usda.gov/topics ), the pork consumption worldwide in 2011 was about 79.3 million tons, much higher than that of beef (48.2 million tons). Pork also contains high levels of unsaturated fatty acids relative to ruminant meats (Enser, M., Hallett, K., Hewett, B., Fursey, G. A. J. and Wood, J. D. (1996) . Fatty acid content and composition of English beef, lamb, and pork at retail. Meat Sci. 44:443-458). The available literature indicates that the levels of eicosatetraenoic and docosahexaenoic in pork may be increased by fish-derived or linseed products, the extent of which being dependent on the nature of the supplementation. Transgenic pigs and plants show promise with high content of n-3 PUFA and low ratio of n-6/n-3 fatty acids in their tissues. The approaches mentioned for decreasing n-6/n-3 ratios have both advantages and disadvantages. Selected articles are critically reviewed and summarized.

  1. Expression of Beta-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2015-01-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the etiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript was confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography (HPLC, MS-TOF) data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (g-1DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to 5-fold in BGL1 transgenic flowers. The present study opens the possibility of increasing artemisinin content by manipulating trichomes density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. PMID:26360801

  2. Effect of cadmium on plants of oilseed rape

    International Nuclear Information System (INIS)

    Pesko, M.

    2010-01-01

    The aim of this work was to study the influence of some production parameters of hydroponically grown plants of new Czech species of oilseed rape Opponent by cadmium and determine the amount of cadmium accumulated in plant organs. Studying the effect of cadmium on plants of new Czech species of oilseed rape Opponent confirmed that application of metal reduced the length and also fresh and dry weight of plant organs, while the inhibitory effect of Cd with increasing concentration of metal in solution increased. Plant roots responded to toxic effect of Cd more responsive. As a result of Cd applications occurred a significant decrease of content of assimilation pigments (chlorophyll a, chlorophyll b, carotenoids) in plant leaves. Species of rape Opponent is a significant Cd battery, and for these plants is characterized by a high rate of translocation of this metal into the shoots.

  3. Ecological significance and complexity of N-source preference in plants.

    Science.gov (United States)

    Britto, Dev T; Kronzucker, Herbert J

    2013-10-01

    Plants can utilize two major forms of inorganic N: NO3(-) (nitrate) and NH4(+) (ammonium). In some cases, the preference of one form over another (denoted as β) can appear to be quite pronounced for a plant species, and can be an important determinant and predictor of its distribution and interactions with other species. In many other cases, however, assignment of preference is not so straightforward and must take into account a wide array of complex physiological and environmental features, which interact in ways that are still not well understood. This Viewpoint presents a discussion of the key, and often co-occurring, factors that join to produce the complex phenotypic composite referred to by the deceptively simple term 'N-source preference'. N-source preference is much more complex a biological phenomenon than is often assumed, and general models predicting how it will influence ecological processes will need to be much more sophisticated than those that have been so far developed.

  4. Plant responses to increased inundation and salt exposure: interactive effects on tidal marsh productivity

    Science.gov (United States)

    Flooding and high salinity generally induce physiological stress in wetland vascular plants which may increase in intensity with sea-level rise (SLR). We tested the effects of these factors on seedling growth in a transplant experiment in a macrotidal estuary in the Pacific North...

  5. Local acceptance of existing biogas plants in Switzerland

    International Nuclear Information System (INIS)

    Soland, Martin; Steimer, Nora; Walter, Götz

    2013-01-01

    After the Swiss government's decision to decommission its five nuclear power plants by 2035, energy production from wind, biomass, biogas and photovoltaic is expected to increase significantly. Due to its many aspects of a direct democracy, high levels of public acceptance are necessary if a substantial increase in new renewable energy power plants is to be achieved in Switzerland. A survey of 502 citizens living near 19 biogas plants was conducted as the basis for using structural equation modeling to measure the effects of perceived benefits, perceived costs, trust towards the plant operator, perceived smell, information received and participation options on citizens’ acceptance of “their” biogas plant. Results show that local acceptance towards existing biogas power plants is relatively high in Switzerland. Perceived benefits and costs as well as trust towards the plant operator are highly correlated and have a significant effect on local acceptance. While smell perception and information received had a significant effect on local acceptance as well, no such effect was found for participation options. Reasons for the non-impact of participation options on local acceptance are discussed, and pathways for future research are presented. - Highlights: • Acceptance of biogas plants by local residents in Switzerland is relatively high. • Local acceptance is highly affected by perceived outcomes and citizens’ trust. • Smell perception increases perceived costs and reduces perceived benefits and trust. • Information offers reduce perceived costs and increase trust and perceived benefits. • Participation offers do not have any effect on local acceptance

  6. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  7. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication

    Directory of Open Access Journals (Sweden)

    Youli eYao

    2013-03-01

    Full Text Available In the past, we showed that local infection of tobacco leaves with either Tobacco mosaic virus (TMV or Oilseed rape mosaic virus (ORMV resulted in a systemic increase in the homologous recombination frequency (HRF. Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 hours post infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  8. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  9. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant.

    Science.gov (United States)

    Cassina, L; Tassi, E; Pedron, F; Petruzzelli, G; Ambrosini, P; Barbafieri, M

    2012-09-15

    Mercury-contaminated soils from a petrochemical plant in southern Italy were investigated to assess the phytoextraction efficiency of crop plants treated with the phytohormone, cytokinine (CK foliar treatment), and with the thioligand, ammonium thiosulfate (TS, soil application). Plant biomass, evapotranspiration, Hg uptake and distribution in plant tissues following treatment were compared. Results indicate the effectiveness of CK in increasing plant biomass and the evapotranspiration rate while TS treatment promoted soil Hg solubility and availability. The simultaneous addition of CK and TS treatments increased Hg uptake and translocation in both tested plants with up to 248 and 232% in Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) respectively. B. juncea was more effective in Hg uptake, whereas H. annuus gave better response regarding plant biomass production. The effectiveness of the treatments was confirmed by the calculation of Hg phytoextraction and evaluation of labile-Hg residue in the soil after plant growth. In one growing cycle the plants subject to simultaneous CK and TS treatment significantly reduced labile-Hg pools that were characterized by the soil sequential extraction, but did not significantly affect the pseudototal metal content in the soil. Results support the use of plant growth regulators in the assisted phytoextraction process for Hg-contaminated soils. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The challenge of increasing vitamin C content in plant foods.

    Science.gov (United States)

    Cruz-Rus, Eduardo; Amaya, Iraida; Valpuesta, Victoriano

    2012-09-01

    The term "vitamin" is used to define a number of organic compounds that have to be obtained from different foods because the organism itself cannot synthesize them in the quantities needed to sustain life. Vitamin C is the common name for L-ascorbic acid. In humans, the principal role of this molecule is to scavenge reactive oxygen species, due to its antioxidant capacity, and to serve as cofactor for many enzymes. A deficiency of L-ascorbic acid is traditionally linked to human diseases such as scurvy. Plant foods are the principal source of L-ascorbic acid for humans. There is a high variability of L-ascorbic acid content in the various plant organs that are used for human consumption. This diversity is related to the specific functions played by L-ascorbic acid in the different plant tissues. The net content of L-ascorbic acid in plants is determined through a balance of the activities of different biosynthetic, recycling, and catabolic pathways. Here we review the importance of L-ascorbic acid for human health, the current knowledge on its metabolism and function in plants, and the efforts that have already been made by genetic modification to improve its content in plant organs used for human food. We provide a current and forward looking perspective of how plant science can contribute to improving the L-ascorbic acid content in crop species using gene transformation, quantitative trait loci and association mapping-based approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The retirement cliff: Power plant lives and their policy implications

    International Nuclear Information System (INIS)

    Rode, David C.; Fischbeck, Paul S.; Páez, Antonio R.

    2017-01-01

    This paper examines more than a century of U.S. power plant additions and retirements in conjunction with several decades of utility capital investment data. While policy analyses often invoke assumptions of power plant book life, relatively little analysis has focused on the physical life of power-generating assets. The average age of the U.S. generator fleet has increased significantly over time despite continued investment, in part because more recent investment has tended to focus on shorter-lived assets. This may be due in part to risk-averse power sector investors and lenders responding rationally to regulatory uncertainty in a deregulated market environment. Power plant retirement trends suggest that the pace of retirements will increase significantly in the decade after 2030 for most reasonable estimates of physical life. These capital investment trends have important consequences for carbon policy and highlight the importance of including consideration of the longer term—particularly when evaluating more significant decarbonization policies. - Highlights: • Many policy analyses neglect the physical lives of power plants. • A large database of U.S. power plant additions and retirements is examined. • The average age of power plants has steadily increased despite growing investment. • Long-term CO 2 reduction strategies are challenged by increases in plant retirements.

  12. Plant nominal power uprating offers attractive possibilities

    International Nuclear Information System (INIS)

    Bruyere, Michel

    2004-01-01

    Increasing the rated thermal power of an existing plant represents a particularly profitable way for a plant operator to increase electricity production. For PWR plants, a 5% increase in power can, in fact, generally be achieved without significantly modifying systems and equipments based upon the margin in the original design. Larger power increases can be achieved in the case of S.G. replacement. Based on recent analysis of a 3 loop PWR, 900 MWe, up to 12% power uprating is feasible with an appropriate replacement S.G. The general rule is to perform power uprating without significant increase of average primary temperature. This is mainly a result of consideration of S.G. tube corrosion, of fuel clad corrosion and of core safety margins (DNBR margins in particular). This paper will present a general overview of the analyses for large power uprating: program of work, main conclusions on the following items: 1. Safety demonstration (accident analysis, safeguard systems capacity verification, required protection setpoints modifications...) 2. Normal operation review (possible consequences of power uprating on the plant maneuverability and on the fuel management performances) 3. Systems and components mechanical integrity review and potential effect on the plant lifetime of the new operating conditions

  13. Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants.

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2016-03-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the aetiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β-glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript were confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography, time of flight mass spectrometer data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (per g DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to five-fold in BGL1 transgenic flowers. This study opens the possibility of increasing artemisinin content by manipulating trichomes' density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Increasing flexibility of coal power plant by control system modifications

    Directory of Open Access Journals (Sweden)

    Marušić Ante

    2016-01-01

    Full Text Available Expanding implementation of intermittent renewable energy sources has already started to change the role of thermal power plants in energy systems across Europe. Traditionally base load plants are now forced to operate as peaking plants. A familiar transition in upcoming years is expected in Croatia and coal power plant operators are preparing accordingly. To evaluate cycling capabilities and control system operation for flexible operation of selected 210 MW coal plant, series of tests with different load gradients were performed and results were thoroughly analyzed. Two possible “bottlenecks” are identified, thermal stress in superheater header, and achievable ramping rate considering operational limitations of coal feeders, firing system and evaporator dynamics. Several unexpected readings were observed, usually caused by malfunctioning sensors and equipment, resulting in unexpected oscillations of superheated steam temperature. Based on superheater geometry and experimental data, maximal steam temperature gradient during ramping was evaluated. Since thermal stress was well inside the safety margins, the simulation model of the whole boiler was used to evaluate achievable ramping on electric side.

  15. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems.

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M; Ooi, Ying W

    2018-05-01

    Climate change is lengthening the growing season of the Northern Hemisphere extratropical terrestrial ecosystems, but little is known regarding the timing and dynamics of the peak season of plant activity. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations and atmospheric CO 2 concentration and δ 13 C isotope measurements at Point Barrow (Alaska, USA, 71°N) to study the dynamics of the peak of season (POS) of plant activity. Averaged across extratropical (>23°N) non-evergreen-dominated pixels, NDVI data show that the POS has advanced by 1.2 ± 0.6 days per decade in response to the spring-ward shifts of the start (1.0 ± 0.8 days per decade) and end (1.5 ± 1.0 days per decade) of peak activity, and the earlier onset of the start of growing season (1.4 ± 0.8 days per decade), while POS maximum NDVI value increased by 7.8 ± 1.8% for 1982-2015. Similarly, the peak day of carbon uptake, based on calculations from atmospheric CO 2 concentration and δ 13 C data, is advancing by 2.5 ± 2.6 and 4.3 ± 2.9 days per decade, respectively. POS maximum NDVI value shows strong negative relationships (p POS days. Given that the maximum solar irradiance and day length occur before the average POS day, the earlier occurrence of peak plant activity results in increased plant productivity. Both the advancing POS day and increasing POS vegetation greenness are consistent with the shifting peak productivity towards spring and the increasing annual maximum values of gross and net ecosystem productivity simulated by coupled Earth system models. Our results further indicate that the decline in autumn NDVI is contributing the most to the overall browning of the northern high latitudes (>50°N) since 2011. The spring-ward shift of peak season plant activity is expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget. © 2017

  16. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri.

    Directory of Open Access Journals (Sweden)

    Dara G Stockton

    Full Text Available Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a whether development on specific host plant species influenced host plant preference in mature D. citri; and b the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate

  17. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri.

    Science.gov (United States)

    Stockton, Dara G; Martini, Xavier; Patt, Joseph M; Stelinski, Lukasz L

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area

  18. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  19. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Performance evaluation examples

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Based on experimental and analytical considerations, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been incorporated in new recommendations. This document shows outdoor civil structures earthquake resistance and endurance performance evaluation examples based on revised recommendations. (T. Tanaka)

  20. Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Li, Heng; Zhang, Rongxue; Ma, Lei; Dong, Jiangli; Wang, Tao

    2015-10-01

    Lignin is a component of the cell wall that is essential for growth, development, structure and pathogen resistance in plants, but high lignin is an obstacle to the conversion of cellulose to ethanol for biofuel. Genetically modifying lignin and cellulose contents can be a good approach to overcoming that obstacle. Alfalfa (Medicago sativa L.) is rich in lignocellulose biomass and used as a model plant for the genetic modification of lignin in this study. Two key enzymes in the lignin biosynthesis pathway-hydroxycinnamoyl -CoA:shikimate hydroxycinnamoyl transferase (HCT) and coumarate 3-hydroxylase (C3H)-were co-downregulated. Compared to wild-type plants, the lignin content in the modified strain was reduced by 38%, cellulose was increased by 86.1%, enzyme saccharification efficiency was increased by 10.9%, and cell wall digestibility was increased by 13.0%. The modified alfalfa exhibited a dwarf phenotype, but normal above ground biomass. This approach provides a new strategy for reducing lignin and increasing cellulose contents and creates a new genetically modified crop with enhanced value for biofuel. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  2. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants.

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-05-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  3. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization.

    Science.gov (United States)

    Lingua, Guido; Bona, Elisa; Manassero, Paola; Marsano, Francesco; Todeschini, Valeria; Cantamessa, Simone; Copetta, Andrea; D'Agostino, Giovanni; Gamalero, Elisa; Berta, Graziella

    2013-08-06

    Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.

  4. Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Pseudomonads Increases Anthocyanin Concentration in Strawberry Fruits (Fragaria x ananassa var. Selva in Conditions of Reduced Fertilization

    Directory of Open Access Journals (Sweden)

    Elisa Gamalero

    2013-08-01

    Full Text Available Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.

  5. Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Pseudomonads Increases Anthocyanin Concentration in Strawberry Fruits (Fragaria x ananassa var. Selva) in Conditions of Reduced Fertilization

    Science.gov (United States)

    Lingua, Guido; Bona, Elisa; Manassero, Paola; Marsano, Francesco; Todeschini, Valeria; Cantamessa, Simone; Copetta, Andrea; D’Agostino, Giovanni; Gamalero, Elisa; Berta, Graziella

    2013-01-01

    Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry. PMID:23924942

  6. Significant increase of surface ozone at a rural site, north of eastern China

    Directory of Open Access Journals (Sweden)

    Z. Ma

    2016-03-01

    Full Text Available Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov–Zurbenko (KZ filter method was performed on the maximum daily average 8 h (MDA8 concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003–2015, with an average rate of 1.13 ± 0.01 ppb year−1 (R2 = 0.92. It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  7. Plant Host Finding by Parasitic Plants: A New Perspective on Plant to Plant Communication

    OpenAIRE

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much d...

  8. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  9. Human factors: a major issue in plant aging

    International Nuclear Information System (INIS)

    Widrig, R.D.

    1985-07-01

    Human factors issues will be of great significance in the safe and reliable operation of aging nuclear power plants, and they may be more important than materials/component-type issues. Human actions can accelerate or decelerate te physical aging process. And an aging plant can have significant negative implications on staff performance and actions. Some examples include difficulties in attracting and retaining good managers, financial decisions based on a short and uncertain remaining plant life, difficulties in replacing retiring staff, increased maintenance complexity, and increased burden on training. These problems can be dealt with more effectively by early recognition and a well conceived mitigation effort

  10. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Science.gov (United States)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-03-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon balance of terrestrial ecosystems under climate change. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Plant species consistently exhibit cohesive suites of traits, linked to contrasting life history strategies, which exert a variety of impacts on R. As such, we propose that plant community shifts towards dominance by fast growing plants with nutrient rich litter could provide a major, though often neglected, positive feedback to climate change. Within vegetation types, belowground carbon flux will mainly be controlled by photosynthesis, while amongst vegetation types this flux will be more dependent upon the specific characteristics of the plant life form. We also make the case that community composition, rather than diversity, is usually the dominant control on ecosystem processes in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community, or modulates the occurrence of major natural disturbances. We show that climate-vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. This situation could, however, be relatively easily improved with targeted experimental and field studies. Finally, we identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits

  11. Increase plant safety and reduce cost by implementing risk-informed in-service inspection programs

    International Nuclear Information System (INIS)

    Billington, A.; Monette, P.

    2001-01-01

    The idea behind the program is that it is possible to 'inspect less, but inspect better'. In other words, the risk-informed In-Service Inspection (ISI) process is used to improve the effectiveness of examination of piping components, i.e. concentrate inspection resources and enhance inspection strategies on high safety significant locations, and reduce inspection requirements on others. The Westinghouse Owners Group (WOG) risk-informed ISI process has already been applied for full scope (Millstone 3, Surry 1) and limited scope (Beznau, Ringhals 4, Asco, Turkey Point 3). By examining the high safety significant piping segments for the different fluid piping systems, the total piping core damage frequency is reduced. In addition, more than 80% of the risk associated with potential pressure boundary failures is addressed with the WOG risk-informed ISI process, while typically less that 50% of this same risk is addressed by the current inspection programs. The risk-informed ISI processes are used to improve the effectiveness of inspecting safety-significant piping components, to reduce inspection requirements on other piping components, to evaluate improvements to plant availability and enhanced safety measures, including reduction of personnel radiation exposure, and to reduce overall Operation and Maintenance (O and M) costs while maintaining regulatory compliance. A description of the process as well as benefits from past projects is presented, since the methodology is applicable for WWER plant design. (author)

  12. Increase plant safety and reduce cost by implementing risk-informed In-Service Inspection programs

    International Nuclear Information System (INIS)

    Billington, A.; Monette, P.; Doumont, C.

    2000-01-01

    The idea behind the program is that it is possible to 'inspect less, but inspect better'. In other words, the risk-informed In-Service Inspection (ISI) process is used to improve the effectiveness of examination of piping components, i.e. concentrate inspection resources and enhance inspection strategies on high safety significant locations, and reduce inspection requirements on others. The Westinghouse Owners Group (WOG) risk-informed ISI process has already been applied for full scope (Millstone 3, Surry 1) and limited scope (Beznau, Ringhals 4, Asco, Turkey Point 3). By examining the high safety significant piping segments for the different fluid piping systems, the total piping core damage frequency is reduced. In addition, more than 80% of the risk associated with potential pressure boundary failures is addressed with the WOG risk-informed ISI process, while typically less than 50% of this same risk is addressed by the current inspection programs. The risk-informed ISI processes are used: to improve the effectiveness of inspecting safety-significant piping components; to reduce inspection requirements on other piping components; to evaluate improvements to plant availability and enhanced safety measures, including reduction of personnel radiation exposure; and to reduce overall Operation and Maintenance (O and M) costs while maintaining regulatory compliance. A description of the process as well as benefits of past projects is presented, since the methodology is applicable for VVER plant design. (author)

  13. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Velde Van de, A.; Burtak, F.

    2001-01-01

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  14. Off-stream Pumped Storage Hydropower plant to increase renewable energy penetration in Santiago Island, Cape Verde

    Science.gov (United States)

    Barreira, Inês; Gueifão, Carlos; Ferreira de Jesus, J.

    2017-04-01

    In order to reduce the high dependence on imported fuels and to meet the ongoing growth of electricity demand, Cape Verde government set the goal to increase renewable energy penetration in Santiago Island until 2020. To help maximize renewable energy penetration, an off-stream Pumped Storage Hydropower (PSH) plant will be installed in Santiago, in one of the following locations: Chã Gonçalves, Mato Sancho and Ribeira dos Picos. This paper summarizes the studies carried out to find the optimal location and connection point of the PSH plant in Santiago’s electricity network. This goal was achieved by assessing the impact of the PSH plant, in each location, on power system stability. The simulation tool PSS/E of Siemens was used to study the steady-state and dynamic behavior of the future (2020) Santiago MV grid. Different scenarios of demand and renewable resources were created. Each hydro unit of the PSH plant was modeled as an adjustable speed reversible turbine employing a DFIM. The results show that Santiago’s grid with the PSH plant in Chã Gonçalves is the one that has the best performance.

  15. Eleventh-year results of fertilization, herbaceous, and woody plant control in a loblolly pine plantation

    Science.gov (United States)

    James D. Haywood; Allan E. Tiarks

    1990-01-01

    Through 11 years, fertilization at planting significantly increased the stemwood volume (outside bark) per loblolly pine (Pinus taeda L.) on an intensively prepared moderately well-drained fine sandy loam site in northern Louisiana. Four years of herbaceous plant control significantly increased pine survival, and because herbaceous plant control...

  16. Risk based maintenance to increase safety and decrease costs

    International Nuclear Information System (INIS)

    Phillips, J.H.

    2000-01-01

    Risk-Based techniques have been developed for commercial nuclear power plants for the last eight years by a team working through the ASME Center for Research and Technology Development (CRTD). System boundaries and success criteria is defined using the Probabilistic Risk Analysis or Probabilistic Safety Analysis developed to meet the Individual Plant Evaluation. Final ranking of components is by a plant expert panel similar to the one developed for the Maintenance Rule. Components are identified as being high risk-significant or low risk-significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of plants. Results from the first risk-based inspection pilot plant indicates safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. Pilot studies on risk-based testing indicate that about 60% of pumps and 25 to 30% of valves in plants are high safety-significant The reduction in inspection and testing reduces the person-rem exposure and resulting in further increases in safety. These techniques have been documented in publications by the ASME CRTD which are referenced. (author)

  17. Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition

    International Nuclear Information System (INIS)

    Chen Juan; Wu Feihua; Liu Tingwu; Chen Lei; Xiao Qiang; Dong Xuejun; He Junxian; Pei Zhenming; Zheng Hailei

    2012-01-01

    To assess the potential contribution of nitric oxide (NO) emission from the plants grown under the increasing nitrogen (N) deposition to atmospheric NO budget, the effects of simulated N deposition on NO emission and various leaf traits (e.g., specific leaf area, leaf N concentration, net photosynthetic rate, etc.) were investigated in 79 plant species classified by 13 plant functional groups. Simulated N deposition induced the significant increase of NO emission from most functional groups, especially from conifer, gymnosperm and C 3 herb. Moreover, the change rate of NO emission was significantly correlated with the change rate of various leaf traits. We conclude that the plants grown under atmospheric N deposition, especially in conifer, gymnosperm and C 3 herb, should be taken into account as an important biological source of NO and potentially contribute to atmospheric NO budget. - Highlights: ► Simulated N deposition induces the significant increase of NO emission from plants. ► The increased NO emission is closely related to leaf N level and net photosynthesis. ► Abundant nitrite accumulation is a reason of NO emission induced by excess N input. ► The plants grown under N deposition potentially contribute to atmospheric NO budget. - Simulated N deposition induced a significant increase of NO emission from 79 plants.

  18. Development of Plant Control Diagnosis Technology and Increasing Its Applications

    Science.gov (United States)

    Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru

    A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.

  19. Modernisation of the Olkiluoto nuclear power plant increases the power production efficiency under safe limits

    International Nuclear Information System (INIS)

    Valkeapaeae, R.

    1995-01-01

    Teollisuuden Voima Oy published the efficiency increment plans as a part of the modernisation of the Olkiluoto nuclear power plant. The power of the reactor units, originally designed for 660 MW will now be increased for a second time. The former improvements were made in 1994. The power of the units was increased to 710 MW. After this new renovation the power of the both units will be 830-840 MW. (2 figs.)

  20. Do plants modulate biomass allocation in response to petroleum pollution?

    Science.gov (United States)

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-01-01

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution. PMID:20484231

  1. Automation technology in power plants

    International Nuclear Information System (INIS)

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  2. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ying [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Juang, Shin-Hun [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Tsai, Shang-Yuan; Chao, Pei-Dawn Lee [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Hou, Yu-Chi, E-mail: hou5133@gmail.com [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China)

    2012-08-15

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC{sub 0−t} and C{sub max} of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC{sub 0−t} of MTX by 55%. In addition, diclofenac enhanced the C{sub max} of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC{sub 0−t} and C{sub max} of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  3. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare).

    Science.gov (United States)

    Hebbern, Christopher A; Laursen, Kristian Holst; Ladegaard, Anne H; Schmidt, Sidsel B; Pedas, Pai; Bruhn, Dan; Schjoerring, Jan K; Wulfsohn, Dvoralai; Husted, Søren

    2009-03-01

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (F(v)/F(m)) was reduced from 0.83 in Mn-sufficient control plants to below 0.5 in Mn-starved plants. Leaf Mn concentrations declined from 30 to 7 microg Mn g(-1) dry weight in control and Mn-starved plants, respectively. Mn-starved plants had up to four-fold higher transpiration than control plants. Stomatal closure and opening upon light/dark transitions took place at the same rate in both Mn treatments, but the nocturnal leaf conductance for water vapour was still twice as high in Mn-starved plants compared with the control. The observed increase in transpiration was substantiated by (13)C-isotope discrimination analysis and gravimetric measurement of the water consumption, showing significantly lower water use efficiency in Mn-starved plants. The extractable wax content of leaves of Mn-starved plants was approximately 40% lower than that in control plants, and it is concluded that the increased leaf conductance and higher transpirational water loss are correlated with a reduction in the epicuticular wax layer under Mn deficiency.

  4. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    Directory of Open Access Journals (Sweden)

    Guillem Segarra

    Full Text Available Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  5. Ageing of significant to safety structure elements of nuclear power plants

    International Nuclear Information System (INIS)

    Maksimovas, G.; Ramanauskiene, A.; Ziliukas, A.

    1999-01-01

    The paper analyzes the ageing problems of structure elements in nuclear power plants. The standard documents and principal parts of the ageing evaluation program are presented. The ageing evaluation model is being worked out and degradation mechanisms of different atomic reactor materials are being compared. (author)

  6. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    Science.gov (United States)

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Introduction of fuel GE14 in the nuclear power plant of Laguna Verde for the extended increase of power

    International Nuclear Information System (INIS)

    Hernandez M, N.; Vargas A, A. F.; Cardenas J, J. B.; Contreras C, P.

    2008-01-01

    The project of extended increase of power responds to a necessity of electrical energy in the country, increasing the thermal exit of the reactors of the nuclear power plant of Laguna Verde of 2027 MWt to 2317 MWt. In order to support this transition, changes will make in the configuration of the reactor core and in the operation strategies of the cycle, also they will take initiatives to optimize the economy in fuel cycle. At present in both reactors of the nuclear plant of Laguna Verde fuel GE12 is used. The fuel GE14 presents displays with respect to the GE12, some improvements in the mechanical design and consequently in its performance generally. Between these improvements we can mention: 1. Spacers of high performance. 2. Shielding with barrier. 3. Filter for sweepings d ebris a nd 4. Fuel rods of minor partial length. The management of nuclear power plants has decided to introduce the use of fuel GE14 in Laguna Verde in the reload 14 for Unit 1 and of the reload 10 for Unit 2. The process of new introduction fuel GE14 consists of two stages, first consists on subjecting the one new design of fuel to the regulator organism in the USA: Nuclear Regulatory Commission, in Mexico the design must be analyzed and authorized by the National Commission of Nuclear Safety and Safeguards, for its approval of generic form, by means of the demonstration of the fulfillment with the amendment 22 of GESTAR II, the second stage includes the specific analyses of plant to justify the use of the new fuel design in a reload core. The nuclear plant of Laguna Verde would use some of the results of the security analyses that have been realized for the project of extended increase of power with fuel GE14, to document the specific analyses of plant with the new fuel design. The result of the analyses indicates that the reload lots are increased of 116-120 assemblies in present conditions (2027 MWt) to 140-148 assemblies in conditions of extended increase of power (2317 MWt). (Author)

  8. GM plants with increased tolerance to unfavourable environment – benefits and potential risks

    OpenAIRE

    Djilianov, Dimitar

    2015-01-01

    Contemporary agriculture faces the great challenges to meet the increasing demands of the society for food and row materials and the progressing global warming. To solve these problems we need to develop new crop varieties with high yield and highly tolerant to abitoic stress and at the same time to ensure sustainable development of the society and environment. In this respect it is expected that modern biotechnologies will help plant breeding. The development of genetically modified crop...

  9. Plant's adaptive response under UV-B-radiation influence

    International Nuclear Information System (INIS)

    Danil'chenko, O.A.; Grodzinskij, D.M.

    2002-01-01

    Reduction of ozone layer, owing to anthropogenic contamination of an atmosphere results in increase of intensity of UV-radiation and shift of its spectrum in the short-wave side that causes strengthening of various biological effects of irradiation. Consequences of these processes may include increase of injuring of plants and decrease of productivity of agricultural crops to increased UV levels. The important significance in the plant's adaptation to different unfavorable factors has the plant's radioadaptive answer. It has been shown that radioadaptation of plants occurred not only after irradiation with g-radiation in low doses but after UV-rays action . Reaction of radioadaptation it seems to be nonspecific phenomenon in relation to type radiations

  10. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings.

    Science.gov (United States)

    Yang, Shou-Jun; Zhang, Zhong-Lan; Xue, Yuan-Xia; Zhang, Zhi-Fen; Shi, Shu-Yi

    2014-12-01

    Apple trees are often subject to severe salt stress in China as well as in the world that results in significant loss of apple production. Therefore this study was carried out to evaluate the response of apple seedlings inoculated with abuscular mycorrhizal fungi under 0, 2‰, 4‰ and 6‰ salinity stress levels and further to conclude the upper threshold of mycorrhizal salinity tolerance. The results shows that abuscular mycorrhizal fungi significantly increased the root length colonization of mycorrhizal apple plants with exposure time period to 0, 2‰ and 4‰ salinity levels as compared to non-mycorrhizal plants, however, percent root colonization reduced as saline stress increased. Salinity levels were found to negatively correlate with leaf relative turgidity, osmotic potential irrespective of non-mycorrhizal and mycorrhizal apple plants, but the decreased mycorrhizal leaf turgidity maintained relative normal values at 2‰ and 4‰ salt concentrations. Under salt stress condition, Cl - and Na + concentrations clearly increased and K + contents obviously decreased in non-mycorrhizal roots in comparison to mycorrhizal plants, this caused mycorrhizal plants had a relatively higher K + /Na + ratio in root. In contrast to zero salinity level, although ascorbate peroxidase and catalase activities in non-inoculated and inoculated leaf improved under all saline levels, the extent of which these enzymes increased was greater in mycorrhizal than in non-mycorrhizal plants. The numbers of survived tree with non-mycorrhization were 40, 20 and 0 (i.e., 66.7%, 33.3% and 0) on the days of 30, 60 and 90 under 4‰ salinity, similarly in mycorrhization under 6‰ salinity 40, 30 and 0 (i.e., 66.7%, 50% and 0) respectively. These results suggest that 2‰ and 4‰ salt concentrations may be the upper thresholds of salinity tolerance in non-mycorrhizal and mycorrhizal apple plants, respectively.

  11. Changes in leaf Δ13C of herbarium plant species during the last 3 centuries of CO2 increase

    International Nuclear Information System (INIS)

    Peñuelas, J.; Azcón-Bieto, J.

    1992-01-01

    Δ 13 C were determined for herbarium specimens of 12 C 3 plants (trees, shrubs and herbs) collected during the last 240 years in Catalonia, an area with a Mediterranean climate. Values were 19.91 (S.E. = 0.32, n= 21) for 1750–1760, 19–86 (S.E. = 0.21, n= 49) for 1850–1890 and 19.95 (S.E. = 0.29, n= 25) for 1925–1950, and decreased significantly to 18.87 (S.E. = 0.31, n= 29) for 1982–1988. More irregular temporal changes were found in Δ 13 C of two C 4 species, but they also suggest a decrease in discrimination in recent decades. These results suggest that either carbon assimilation rates have increased or stomatal conductance has decreased, and therefore, that there has been an increase in water use efficiency over the last few decades. (author)

  12. Method for increasing the resistance of a plant or a part thereof to a pathogen, method for screening the resistance of a plant or part thereof to a pathogen, and use thereof

    OpenAIRE

    Wit, de, P.; Stergiopoulos, I.; Kema, G.H.J.

    2011-01-01

    (EN)The present invention relates to the field of plant biotechnology. More in particular, the present invention relates to methods for increasing the resistance of a plant or part thereof that is susceptible to infection with a pathogen comprising an ortholog of the Avr4 protein of Cladosporium fulvum, wherein said plant is not a tomato or tobacco plant. The invention also relates to methods for screening the resistance of a plant or a part thereof to at least one pathogen, wherein said path...

  13. Pot experiments on the influence of increasing substrate humus content on N utilization of 15N- urea by forage plants

    International Nuclear Information System (INIS)

    Oberdoerster, U.; Markgraf, G.

    1984-01-01

    The soils used for graded soil-quartz mixtures were taken from the A/sub p/ horizon both of loess-chernozem and deep-loam fallow soil. The plants used in the experiments included annual rye grass, feed oats/oil radish, and green maize/mustard. The yields extended with increasing soil content, mainly by growing utilization of soil N. Because of the special effect of the organic soil substrate the returns with chernozem admixture surpassed those with fallow soil admixture. Under these experimental conditions no significant relation was found between both the fertilizer N absorption and N utilization of urea and humus quality and quantity. (author)

  14. Pot experiments on the influence of increasing substrate humus content on N utilization of /sup 15/N- urea by forage plants

    Energy Technology Data Exchange (ETDEWEB)

    Oberdoerster, U.; Markgraf, G. (Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion)

    1984-01-01

    The soils used for graded soil-quartz mixtures were taken from the A/sub p/ horizon both of loess-chernozem and deep-loam fallow soil. The plants used in the experiments included annual rye grass, feed oats/oil radish, and green maize/mustard. The yields extended with increasing soil content, mainly by growing utilization of soil N. Because of the special effect of the organic soil substrate the returns with chernozem admixture surpassed those with fallow soil admixture. Under these experimental conditions no significant relation was found between both the fertilizer N absorption and N utilization of urea and humus quality and quantity.

  15. Uptake of organic nitrogen by plants

    Science.gov (United States)

    Torgny Nasholm; Knut Kielland; Ulrika. Ganeteg

    2009-01-01

    Languishing for many years in the shadow of plant inorganic nitrogen (N) nutrition research, studies of organic N uptake have attracted increased attention during the last decade. The capacity of plants to acquire organic N, demonstrated in laboratory and field settings, has thereby been well established. Even so, the ecological significance of organic N uptake for...

  16. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants.

    Science.gov (United States)

    Jutras, Philippe V; D'Aoust, Marc-André; Couture, Manon M-J; Vézina, Louis-Philippe; Goulet, Marie-Claire; Michaud, Dominique; Sainsbury, Frank

    2015-09-01

    Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Body weight loss, reduced urge for palatable food and increased release of GLP-1 through daily supplementation with green-plant membranes for three months in overweight women.

    Science.gov (United States)

    Montelius, Caroline; Erlandsson, Daniel; Vitija, Egzona; Stenblom, Eva-Lena; Egecioglu, Emil; Erlanson-Albertsson, Charlotte

    2014-10-01

    The frequency of obesity has risen dramatically in recent years but only few effective and safe drugs are available. We investigated if green-plant membranes, previously shown to reduce subjective hunger and promote satiety signals, could affect body weight when given long-term. 38 women (40-65 years of age, body mass index 25-33 kg/m(2)) were randomized to dietary supplementation with either green-plant membranes (5 g) or placebo, consumed once daily before breakfast for 12 weeks. All individuals were instructed to follow a three-meal paradigm without any snacking between the meals and to increase their physical activity. Body weight change was analysed every third week as was blood glucose and various lipid parameters. On days 1 and 90, following intake of a standardized breakfast, glucose, insulin and glucagon-like peptide 1 (GLP-1) in plasma were measured, as well as subjective ratings of hunger, satiety and urge for different palatable foods, using visual analogue scales. Subjects receiving green-plant membranes lost significantly more body weight than did those on placebo (p weight loss with green-plant extract was 5.0 ± 2.3 kg compared to 3.5 ± 2.3 kg in the control group. Consumption of green-plant membranes also reduced total and LDL-cholesterol (p meal tests performed on day 1 and day 90 demonstrated an increased postprandial release of GLP-1 and decreased urge for sweet and chocolate on both occasions in individuals supplemented with green-plant membranes compared to control. Waist circumference, body fat and leptin decreased in both groups over the course of the study, however there were no differences between the groups. In conclusion, addition of green-plant membranes as a dietary supplement once daily induces weight loss, improves obesity-related risk-factors, and reduces the urge for palatable food. The mechanism may reside in the observed increased release of GLP-1. Copyright © 2014 The Authors. Published by Elsevier Ltd

  18. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa.

    Science.gov (United States)

    Zhang, Xuemei; Yang, Xiaoyan; Wang, Hongbin; Li, Qinchun; Wang, Haijuan; Li, Yanyan

    2017-04-01

    A pot experiment was conducted to compare the content of endogenous trans-zeatin (Z), plant arsenic (As) uptake and physiological indices in the fronds of As-hyperaccumulator (Pteris cretica var. nervosa) and non-hyperaccumulator (Pteris ensiformis). Furthermore, a stepwise regression method was used to study the relationship among determined indices, and the time-course effect of main indices was also investigated under 100mg/kg As stress with time extension. In the 100-200mg/kg As treatments, plant height showed no significant difference and endogenous Z content significantly increased in P. cretica var. nervosa compared to the control, but a significant decrease of height and endogenous Z was observed in P. ensiformis. The concentrations of As (III) and As (V) increased significantly in the fronds of two plants, but this increase was much higher in P. cretica var. nervosa. Compared to the control, the contents of chlorophyll and soluble protein were significantly increased in P. cretica var. nervosa but decreased in P. ensiformis in the 200mg/kg As treatment, respectively. A significant positive correlation was found between the contents of endogenous Z and total As in P. cretica var. nervosa, but such a correlation was not found in P. ensiformis. Additionally, in the time-course effect experiment, a peak value of each index was appeared in the 43rd day in two plants, except for chlorophyll in P. ensiformis, but this value was significantly higher in P. cretica var. nervosa than that in P. ensiformis. In conclusion, a higher endogenous Z content contributed to As accumulation of P. cretica var. nervosa under As stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Plant growth-promoting bacteria: mechanisms and applications.

    Science.gov (United States)

    Glick, Bernard R

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  20. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Bernard R. Glick

    2012-01-01

    Full Text Available The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  1. Report of the ASSET (Assessment of Safety Significant Events Team) mission to the Cernavoda nuclear power plant in Romania 8-12 August 1994 Division of Nuclear Safety. Root cause analysis of a significant event that occurred during commissioning of unit 1

    International Nuclear Information System (INIS)

    1994-01-01

    The IAEA Assessment of Safety Significant Events Team (ASSET) report presents the results of the team's investigation of a significant event that occurred during commissioning of Unit 1 of Cernavoda nuclear power plant. The results, conclusions and suggestions presented herein reflect the views of the ASSET experts. They are provided for consideration by the responsible authorities in Romania. The ASSET team's views presented in this report are based on visits to the plant, on review of documentation made available by the operating organization and on discussions with utility personnel. The report is intended to enhance operational safety at Cernavoda by proposing improvements to the policy for the prevention of incidents at the plant. The report includes, as a usual practice, the official response of the Regulatory Body and Operating Organization to the ASSET recommendations. Figs

  2. Use of organic fertilizer and bio fertilizer in a modern planting system to increase the productivity of vanilla plant

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Phua Choo Kwai Hoe; Shyful Azizi Abdul Rahman; Mohd Fajri Osman; Latiffah Noordin; Abdul Razak Ruslan; Maizatul Akmam Mhd Nasir; Hazlina Abdullah; Amirul Azmi Supuan; Misman Sumin; Ahamad Sahali Mardi; Khairuddin Abdul Rahim

    2010-01-01

    Vanilla is a plant belonging to the orchid family and native to Mexico. In Malaysia, research and cultivation of vanilla plants are becoming more popular and intensive because the plant has a high commercial value. Fertilizing of vanilla plants is important to enhance the nutrients needed by the plants for growth and vanilla pod production. In 1999, research in MARDI showed that the use of chemical fertilizer NPK (15:15:15) was suitable for vanilla plants. For plants that have not produced vanilla pods foliar fertilizer must be sprayed and foliar fertilizer application must be reduced at pod production stage. The fertilizer programme is almost similar to those of other vanilla producing countries such as Indonesia and Mexico. In Indonesia, studies on organic farming of vanilla have been conducted. They have produced chemical-free vanilla fertilizer products such as Bio-Fob, Bio-TRIBA and Organo TRIBA Compost. We in Malaysian Nuclear Agency conducted a study on the effects of organic and bio fertilizers on vanilla at the vanilla experimental plot. This plot adopts the modern system of vanilla planting. The study involved the use of organic and bio fertilizer products produced in Nuclear Malaysia such as Organik NF, plant growth promoter and phosphate solubiliser and imported commercial orchid mycorrhizal bio fertilizer from Korea. The application of these fertilizers is by placing the fertilizers on the planting media in poly bags with replications according to the treatments. Observations were made weekly for 15 weeks by measuring of parameters including the bud growth and leaf number. These data are plotted in graphical form for evaluation.(author)

  3. Unpreferred plants affect patch choice and spatial distribution of European brown hares

    Science.gov (United States)

    Kuijper, D. P. J.; Bakker, J. P.

    2008-11-01

    Many herbivore species prefer to forage on patches of intermediate biomass. Plant quality and forage efficiency are predicted to decrease with increasing plant standing crop which explains the lower preference of the herbivore. However, often is ignored that on the long-term, plant species composition is predicted to change with increasing plant standing crop. The amount of low-quality, unpreferred food plants increases with increasing plant standing crop. In the present study the effects of unpreferred plants on patch choice and distribution of European brown hare in a salt-marsh system were studied. In one experiment, unpreferred plants were removed from plots. In the second experiment, plots were planted with different densities of an unpreferred artificial plant. Removal of unpreferred plants increased hare-grazing pressure more than fivefold compared to unmanipulated plots. Planting of unpreferred plants reduced hare-grazing pressure, with a significant reduction of grazing already occurring at low unpreferred plant density. Spatial distribution of hares within this salt-marsh system was related to spatial arrangement of unpreferred plants. Hare-grazing intensity decreased strongly with increasing abundance of unpreferred plants despite a high abundance of principal food plants. The results of this study indicate that plant species replacement is an important factor determining patch choice and spatial distribution of hares next to changing plant quality. Increasing abundance of unpreferred plant species can strengthen the decreasing patch quality with increasing standing crop and can decrease grazing intensity when preferred food plants are still abundantly present.

  4. Increasing the genetic variance of rice protein through mutation breeding techniques

    International Nuclear Information System (INIS)

    Ismachin, M.

    1975-01-01

    Recommended rice variety in Indonesia, Pelita I/1 was treated with gamma rays at the doses of 20 krad, 30 krad, and 40 krad. The seeds were also treated with EMS 1%. In M 2 generation, the protein content of seeds from the visible mutants and from the normal looking plants were analyzed by DBC method. No significant increase in the genetic variance was found on the samples treated with 20 krad gamma, and on the normal looking plants treated by EMS 1%. The mean value of the treated samples were mostly significant decrease compared with the mean value of the protein distribution in untreated samples (control). Since significant increase in genetic variance was also found in M 2 normal looking plants - treated with gamma at the doses of 30 krad and 40 krad -selection of protein among these materials could be more valuable. (author)

  5. A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zumrut Biber Muftuler, F.; Ayfer Yurt Kilcar; Perihan Unak

    2015-01-01

    Plant origin products having anticancer properties come into prominence due to widespread of cancer. There is significant increase on the usage of plant origin products and their purification to investigate the potential use at the treatment and diagnosis. Plant origin radiolabeled compounds have been attracting more scientific attention since the achievement of earlier researches. Furthermore, plant extracts are consumed quite a lot with unknown side effects of their contents. Researchers focus on investigation of their interactions with radiopharmaceuticals. Current review is carried out to evaluate the contribution of plant extracts for the development of new plant origin radiolabeled ( 125 / 131 I, 99m Tc) compounds for imaging and/or therapy and to investigate the interaction of plant extracts with radiopharmaceuticals. (author)

  6. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    Science.gov (United States)

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  7. Cooling Tower Optimization A Simple Way to Generate Green Megawatts and to Increase the Efficiency of a Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.

    2014-07-01

    The profitability of nuclear power plants is worldwide challenged by low electricity prices. One hand low cost shale gas is offering a low price electricity production , other hand additional taxes on fuel are reducing the operating income of nuclear power stations. The optimization of cooling towers can help to increase the efficiency and profit of a nuclear power plant. (Author)

  8. Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton

    Directory of Open Access Journals (Sweden)

    Ting-ting Xie

    2016-01-01

    Full Text Available Cotton produces more biomass and economic yield when cluster planting pattern (three plants per hole than in a traditional planting pattern (one plant per hole, even at similar plant densities, indicating that individual plant growth is promoted by cluster planting. The causal factors for this improved growth induced by cluster planting pattern, the light interception, canopy microclimate and photosynthetic rate of cotton were investigated in an arid region of China. The results indicated that the leaf area index and light interception were higher in cluster planting, and significantly different from those in traditional planting during the middle and late growth stages. Cotton canopy humidity at different growth stages was increased but canopy temperatures were reduced by cluster planting. In the later growth stage of cluster planting, the leaf chlorophyll content was higher and the leaf net photosynthetic rate and canopy photosynthetic rate were significantly increased in comparing with traditional planting pattern. We concluded that differences in canopy light interception and photosynthetic rate were the primary factors responsible for increased biomass production and economic yield in cluster planting compared with the traditional planting of cotton.

  9. Regional and global significance of nuclear energy

    International Nuclear Information System (INIS)

    Schilling, H.D.

    1995-01-01

    Measures to combat poverty and improve the standard of living in countries of the Third World will inevitably boost global demand for energy, and energy conservation measures will not be able to offset this increase. Nuclear energy will regain significance in the framework of approaches adopted to resolve the energy problem, which primarily is an ecologic problem created by an extremely large flow of materials. The extraordinarily high energy density of nuclear fuels can contribute to markedly reduce the flow of materials; and at that, electric energy is an efficient substitute for primary energy forms. Thus nuclear electricity generation is of double benefit to the ecology. Engineering goals in nuclear technology thus gain a service aspect, with progress in power plant engineering and design aiming not only at enhanced engineered safety, but also at regaining public acceptance of and confidence in nuclear power plant technology. (orig./UA) [de

  10. Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters.

    Science.gov (United States)

    Jin, Shuangxia; Kanagaraj, Anderson; Verma, Dheeraj; Lange, Theo; Daniell, Henry

    2011-01-01

    Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA(1) and GA(4) levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts.

  11. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    Science.gov (United States)

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants.

  12. Ejectors of power plants turbine units efficiency and reliability increasing

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Kuptsov, V. K.; Murmanskii, I. B.; Brodov, Yu. M.; Zhelonkin, N. V.; Khaet, S. I.

    2017-11-01

    The functioning of steam turbines condensation systems influence on the efficiency and reliability of a power plant a lot. At the same time, the condensation system operating is provided by basic ejectors, which maintain the vacuum level in the condenser. Development of methods of efficiency and reliability increasing for ejector functioning is an actual problem of up-to-date power engineering. In the paper there is presented statistical analysis of ejector breakdowns, revealed during repairing processes, the influence of such damages on the steam turbine operating reliability. It is determined, that 3% of steam turbine equipment breakdowns are the ejector breakdowns. At the same time, about 7% of turbine breakdowns are caused by different ejector malfunctions. Developed and approved design solutions, which can increase the ejector functioning indexes, are presented. Intercoolers are designed in separated cases, so the air-steam mixture can’t move from the high-pressure zones to the low-pressure zones and the maintainability of the apparatuses is increased. By U-type tubes application, the thermal expansion effect of intercooler tubes is compensated and the heat-transfer area is increased. By the applied nozzle fixing construction, it is possible to change the distance between a nozzle and a mixing chamber (nozzle exit position) for operating performance optimization. In operating conditions there are provided experimental researches of more than 30 serial ejectors and also high-efficient 3-staged ejector EPO-3-80, designed by authors. The measurement scheme of the designed ejector includes 21 indicator. The results of experimental tests with different nozzle exit positions of the ejector EPO-3-80 stream devices are presented. The pressure of primary stream (water steam) is optimized. Experimental data are well-approved by the calculation results.

  13. Natural genetic variation in stomatal response can help to increase acclimation of plants to dried environments

    NARCIS (Netherlands)

    Aliniaeifard, S.; Meeteren, Van U.

    2018-01-01

    In the current century, global warming is becoming an alarming issue causing an increase in the area of barren lands. Arid and semi-arid regions are characterised with shortage of water in both under- and above-ground environments. Plants with high water use efficiency should be considered for

  14. Polyploidization increases meiotic recombination frequency in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Rehmsmeier Marc

    2011-04-01

    Full Text Available Abstract Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.

  15. Use of nondestructive evaluation methods to improve power plant availability

    International Nuclear Information System (INIS)

    Weber, R.M.

    1985-01-01

    On an ever-increasing basis, utilities are relying on nondestructive evaluation (NDE) as a management and planning tool. In addition to the conventional ASME Code and Technical Specification-required examinations, progressive utilities are utilizing NDE sampling programs to monitor existing conditions and search for potential situations affecting plant safety and reliability. Improved NDE detection and sizing procedures give management personnel the accurate information needed to make the ''go/no go'' decisions on repair programs which can significantly affect plant availability. As the burden of regulatory-imposed inspection requirements increases, plant personnel are increasingly cognizant that NDE is a significant factor in their plant's outage schedule. Whether an outage is scheduled or forced, NDE becomes part of each plant's program to assure the safety and reliability of its critical components. Knowledge and planning of NDE application is important because of the time expended in examination performance and subsequent data evaluation. Managers who are knowledgeable in NDE application can effectively improve plant availability by scheduling NDE as an integral part of their maintenance programs. Examination results can then be used in making decisions directly affecting availability

  16. Plant-microbial association in petroleum and gas exploration sites in the state of Assam, north-east India-significance for bioremediation.

    Science.gov (United States)

    Sarma, Hemen; Islam, N F; Prasad, M N V

    2017-03-01

    The state of Assam in north-east India gained popularity in Asia because of discovery of oil. Pollution due to petroleum and gas exploration is a serious problem in Assam. Oil and gas exploration by various agencies in Assam resulted in soil pollution due to hydrocarbons (HCs) and heavy metals (HMs). Bioremediation gained considerable significance in addressing petroleum hydrocarbon polluted sites in various parts of the world. In this investigation, we have observed 15 species of plants belonging to grass growing on the contaminated soils. Among 15 species of grasses, 10 species with high important value index (IVI) were found to be better adapted. The highest IVI is exhibited by Axonopus compressus (21.41), and this grass can be identified as key ecological tool in the rehabilitation of the degraded site. But no definite correlation between the IVI and the biomass of the various grass existed in the study sites. Chemical study of rhizosphere (RS) and non-rhizosphere (NRS) soil of these grasses revealed both aromatic and aliphatic compounds (M.W. 178-456). Four-ring pyrene was detected in NRS soil but not in RS soil. Microbiological study of RS and NRS soil showed high colony-forming unit (CFU) of HC-degrading microbes in RS compared to NRS. The increased microbial catabolism in RS soil established the fact that pyrene is transformed to aliphatic compounds. Metals in RS soil ranged from (in mg kg -1 ) 222.6 to 267.3 (Cr), 854 to 956 (Pb) and 180 to 247 (Ni), but despite the very high total metal concentration in RS and NRS soil, the CaCl 2 -extracted metals were relatively low in RS soil (1.04 for Cr, 0.56 for Pb, 0.35 for Ni). Plants with the highest uptake of metals were Leersia hexandra (36.43 mg Cr kg -1 ) and Kyllinga brevifolia (67.73 mg Pb kg -1 and 40.24 mg Ni kg -1 ). These plant species could be potentially exploited for biomonitoring and bioremediation. Out of 15 plant species, 8 of them have high percentages of cellulose, crude fibres, lignin

  17. Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity

    Science.gov (United States)

    Coruzzi, Gloria [New York, NY; Gutierrez, Rodrigo A [Santiago, CL; Nero, Damion C [Woodside, NY

    2012-04-10

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  18. Hepatic nuclear sterol regulatory binding element protein 2 abundance is decreased and that of ABCG5 increased in male hamsters fed plant sterols.

    Science.gov (United States)

    Harding, Scott V; Rideout, Todd C; Jones, Peter J H

    2010-07-01

    The effect of dietary plant sterols on cholesterol homeostasis has been well characterized in the intestine, but how plant sterols affect lipid metabolism in other lipid-rich tissues is not known. Changes in hepatic cholesterol homeostasis in response to high dietary intakes of plant sterols were determined in male golden Syrian hamsters fed hypercholesterolemia-inducing diets with and without 2% plant sterols (wt:wt; Reducol, Forbes Meditech) for 28 d. Plasma and hepatic cholesterol concentrations, cholesterol biosynthesis and absorption, and changes in the expression of sterol response element binding protein 2 (SREBP2) and liver X receptor-beta (LXRbeta) and their target genes were measured. Plant sterol feeding reduced plasma total cholesterol, non-HDL cholesterol, and HDL cholesterol concentrations 43% (P 6-fold (P = 0.029) and >2-fold (P sterol-fed hamsters compared with controls. Plant sterol feeding also increased fractional cholesterol synthesis >2-fold (P sterol feeding increased hepatic protein expression of cytosolic (inactive) SREBP2, decreased nuclear (active) SREBP2, and tended to increase LXRbeta (P = 0.06) and ATP binding cassette transporter G5, indicating a differential modulation of the expression of proteins central to cholesterol metabolism. In conclusion, high-dose plant sterol feeding of hamsters changes hepatic protein abundance in favor of cholesterol excretion despite lower hepatic cholesterol concentrations and higher cholesterol fractional synthesis.

  19. Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant

    Science.gov (United States)

    Lauren P. Waller; Ragan M. Callaway; John N. Klironomos; Yvette K. Ortega; John L. Maron

    2016-01-01

    1. Arbuscular mycorrhizal (AM) fungi can exert a powerful influence on the outcome of plant–plant competition. Since some exotic plants interact differently with soil biota such as AM fungi in their new range, range-based shifts in AM responsiveness could shift competitive interactions between exotic and resident plants, although this remains poorly studied. 2. We...

  20. N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions.

    Science.gov (United States)

    Marusic, Carla; Pioli, Claudio; Stelter, Szymon; Novelli, Flavia; Lonoce, Chiara; Morrocchi, Elena; Benvenuto, Eugenio; Salzano, Anna Maria; Scaloni, Andrea; Donini, Marcello

    2018-03-01

    Anti-CD20 recombinant antibodies are among the most promising therapeutics for the treatment of B-cell malignancies such as non-Hodgkin lymphomas. We recently demonstrated that an immunocytokine (2B8-Fc-hIL2), obtained by fusing an anti-CD20 scFv-Fc antibody derived from C2B8 mAb (rituximab) to the human interleukin 2 (hIL-2), can be efficiently produced in Nicotiana benthamiana plants. The purified immunocytokine (IC) bearing a typical plant protein N-glycosylation profile showed a CD20 binding activity comparable to that of rituximab and was efficient in eliciting antibody-dependent cell-mediated cytotoxicity (ADCC) of human PBMC against Daudi cells, indicating its fuctional integrity. In this work, the immunocytokine devoid of the typical xylose/fucose N-glycosylation plant signature (IC-ΔXF) and the corresponding scFv-Fc-ΔXF antibody not fused to the cytokine, were obtained in a glyco-engineered ΔXylT/FucT N. benthamiana line. Purification yields from agroinfiltrated plants amounted to 20-35 mg/kg of leaf fresh weight. When assayed for interaction with FcγRI and FcγRIIIa, IC-ΔXF exhibited significantly enhanced binding affinities if compared to the counterpart bearing the typical plant protein N-glycosylation profile (IC) and to rituximab. The glyco-engineered recombinant molecules also exhibited a strongly improved ADCC and complement-dependent cytotoxicity (CDC). Notably, our results demonstrate a reduced C1q binding of xylose/fucose carrying IC and scFv-Fc compared to versions that lack these sugar moieties. These results demonstrate that specific N-glycosylation alterations in recombinant products can dramatically affect the effector functions of the immunocytokine, resulting in an overall improvement of the biological functions and consequently of the therapeutic potential. © 2017 Wiley Periodicals, Inc.

  1. Potato yield and quality as a function of the plant density

    Directory of Open Access Journals (Sweden)

    Eero Varis

    1975-05-01

    Full Text Available The effects of potato plant density on yield quantity and quality were investigated at the Hankkija Plant Breeding Institute from 1971-73, using seed rates of 1600, 3200 and 4800 kg/ha, and seed sizes of 40, 80 and 120 g. The varieties used were Ijsselster and Record. The number of stems per m2 rose with increasing seed rate and with increasing seed size. Stem number increased with seed rate faster for small seed than for large. The response in stem number was greater for Ijsselster than for Record. The number of stems per seed tuber fell as the plant density rose. The number of tubers per m2 altered in the same direction as the number of stems, but less responsively. The reason for this was that the number of tubers per stem decreased with increasing plant density. The tuber yield showed a continual increase with increasing plant density. At the lowest stem densities (less than 20—25 stems/m2 small seed gave better results than other sizes, but at the higher plant densities, the importance of seed size faded away and the yield was dependant on the plant density alone. Net yield (gross yield 2 x seed rate, however, was higher the smaller the seed used, whatever the stem density. Tuber size decreased when plant density increased, the proportion of large tubers diminishing most, especially when small seed was used. The proportion of small tubers altered more for Ijsselster than for Record. Seed size and seed rate did not on average significantly affect the proportion of Class I potatoes, though small seed gave results slightly better than other sizes. The starch content of the yield rose when the seed rate was increased (16.0-16.3 -16.5 % and fell with increasing seed size (16.5 16.2 16.1 %. The maximum variation was 15.8-16.7 %. The specific gravity distribution improved with increasing plant density. Raw discolouration of the tubers did not alter significantly as the plant density rose. Blackening of the tubers decreased with increasing plant

  2. Exogenous application of plant growth regulators increased the total ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... the exogenous application of flavonoids reports plant growth regulation ... method used for extraction and quantification of endogenous gibberellins was ... 365 nm) while separation was done on a C18 reverse-phase HPLC.

  3. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface.

    Science.gov (United States)

    McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen

    2016-11-11

    Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.

  4. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  5. Influence of fly dust from coking plants on some biological processes of plants

    Energy Technology Data Exchange (ETDEWEB)

    Masek, V

    1972-03-01

    The influence of three typical samples of fly dust from a coking plant on enzymatic reactions, photosynthesis, chlorophyll concentration in leaves of bean plants was studied. The hydrolysis of starch with amylases and of the albumen with pepsin at 37 C and the inversion of sacharosis by invertase in a buffered environment were also examined. None of the three dust samples had a significant effect on enzymatic reactions. Applying the dust samples to the leaves of young bean plants reduced the intensity of photosynthesis and chlorophyll concentration. In aqueous extracts, the dust samples liberated only small quantities of nutrients, plants which were grown in a dust suspension showed no increase of dry substance and growth rate. A stimulating effect of the dust samples on root growth was determined. Mixing the dust samples with the soil influenced the accessibility of water to plants. 17 references, 6 figures, 9 tables.

  6. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    -adenosyl-L-methionine (SAM were also decreased in these plants, apparently leading to decreased transmethylation capacity. The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity. Conclusion Expression of the HC-Pro RSS mimics transcriptional changes previously shown to occur in plants infected with intact viruses (e.g. Tobacco etch virus, TEV. The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins.

  7. Effects of Soil Quality Enhancement on Pollinator-Plant Interactions

    Directory of Open Access Journals (Sweden)

    Yasmin J. Cardoza

    2012-01-01

    Full Text Available Both biotic and abiotic factors can affect soil quality, which can significantly impact plant growth, productivity, and resistance to pests. However, the effects of soil quality on the interactions of plants with beneficial arthropods, such as pollinators, have not been extensively examined. We studied the effects of vermicompost (earthworm compost, VC soil amendment on behavioral and physiological responses of pollinators to flowers and floral resources, using cucumbers, Cucumis sativus, as our model system. Results from experiments conducted over three field seasons demonstrated that, in at least two out of three years, VC amendment significantly increased visit length, while reducing the time to first discovery. Bumblebee (Bombus impatiens workers that fed on flowers from VC-amended plants had significantly larger and more active ovaries, a measure of nutritional quality. Pollen fractions of flowers from VC-grown plants had higher protein compared to those of plants grown in chemically fertilized potting soil. Nectar sugar content also tended to be higher in flowers from VC-grown plants, but differences were not statistically significant. In conclusion, soil quality enhancement, as achieved with VC amendment in this study, can significantly affect plant-pollinator interactions and directly influences pollinator nutrition and overall performance.

  8. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

  9. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Directory of Open Access Journals (Sweden)

    Regina S Redman

    Full Text Available Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization.These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  10. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Science.gov (United States)

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  11. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    Science.gov (United States)

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  12. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Fuliang; Meng, Hengkai; Zhang, Yanping; Li, Yin

    2016-11-01

    Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Four planting devices for planting no-till maize

    Directory of Open Access Journals (Sweden)

    Osei Bonsu Patterson

    2015-05-01

    Full Text Available An experiment was conducted at the CSIR-Crops Research Institute (CSIR-CRI Experimental station at Ejura in Ghana to compare the efficiency of four devices for planting no-till maize: Tractor drawn seeder, Chinese made jab planter, Locally made jab planter and a Cutlass. It took two (2 hours 48 minutes to plant one hectare of maize with the tractor drawn seeder, which was significantly (p less than 1% faster than all the planting methods. Cutlass was the slowest planting device lasting more than 14 hours per hectare. There was no significant difference in planting time between the Chinese planter and local planter. Economic analysis showed that cutlass planting produced the highest net benefit, whilst tractor drawn seeder produced the least benefit. In this study cutlass planting was done with precision by collaborating farmers. In actual farm situation however, hired laborers (planting gangs often plant in haste which often results in poor plant population leading to low yields. Tractor drawn seeders or jab planters could reduce drudgery in planting and encourage farm expansion.

  14. Nuclear plant data systems - some emerging directions

    International Nuclear Information System (INIS)

    Johnson, R.D.; Humphress, G.B.; McCullough, L.D.; Tashjian, B.M.

    1983-01-01

    Significant changes have occurred in recent years in the nuclear power industry to accentuate the need for data systems to support information flow and decision making. Economic conditions resulting in rapid inflation and larger investments in new and existing plants and the need to plan further ahead are primary factors. Government policies concerning environmental control, as well as minimizing risk to the public through increased nuclear safety regulations on operating plants are additional factors. The impact of computer technology on plant data systems, evolution of corporate and plant infrastructures, future plant data, system designs and benefits, and decision making capabilities and data usage support are discussed. (U.K.)

  15. Cooperative biogas plants. Economic results and analyses. Status report 1998

    International Nuclear Information System (INIS)

    Hjort-Gregersen, K.

    1998-11-01

    The years 1995 - 1998 have been characterised by stabilisation of operation and economy of the Danish co-operative biogas plants. Most of the plants have obtained increasingly better economic results although the increase has been less significant than during earlier periods. There are several reasons for the increase. Most of the plants have been able to increase the sales income because of larger amounts of biomass available resulting in an increased biogas production. Furthermore it has been possible to contain the income level for biomass receipt. Several plants have established gas collection in storage tanks, which has resulted in increased gas yield. The operational stability related to both technique and processes have improved. The operational costs have been stabilised and are under control at most of the plants. The improved economic results have resulted in most of the plants having a satisfactory operation and economy. However, it must be stressed that some of the oldest plants have not been able to settle the investment dept at normal conditions. Also some, even rather new plants, still are in a difficult economic situation. Most of the plants established in the 90'ies have had a good start both operationally and economically. Thus the economic risk of establishing a plant has been reduced compared to earlier years. Generally the prerequisites for establishing a biogas plant are favourable economic conditions and quality assurance of the project. (LN)

  16. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-02-01

    Full Text Available Abstract Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2 is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78% and a corresponding reduction in polyunsaturated fatty acids (Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60 in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha

  17. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    2016-01-01

    Abstract Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant-available water capacity (AWC) and plant growth in diverse soil types still needs to be explored. A pot experiment......, the reduced water regime significantly affected plant growth and water consumption, whereas the effect was less pronounced in the coarse sand. Irrespective of the soil type, both GBs increased AWC by 17–42%, with the highest absolute effect in the coarse sand. The addition of SGB to coarse sand led...

  18. The year 2000 power plant

    International Nuclear Information System (INIS)

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies

  19. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe.

    Science.gov (United States)

    Tian, Qiuying; Liu, Nana; Bai, Wenming; Li, Linghao; Chen, Jiquan; Reich, Peter B; Yu, Qiang; Guo, Dali; Smith, Melinda D; Knapp, Alan K; Cheng, Weixin; Lu, Peng; Gao, Yan; Yang, An; Wang, Tianzuo; Li, Xin; Wang, Zhengwen; Ma, Yibing; Han, Xingguo; Zhang, Wen-Hao

    2016-01-01

    Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.

  20. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    Science.gov (United States)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  1. Small seed size increases the potential for dispersal of wetland plants by ducks

    NARCIS (Netherlands)

    Soons, M.B.; van der Vlugt, C.; van Lith, B.; Heil, G.W.; Klaassen, M.R.J.

    2008-01-01

    1. Long-distance dispersal (LDD) is important in plants of dynamic and ephemeral habitats. For plants of dynamic wetland habitats, waterfowl are generally considered to be important LDD vectors. However, in comparison to the internal (endozoochorous) dispersal of terrestrial plants by birds,

  2. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    Science.gov (United States)

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  3. Testing and diagnosis of the cause of increased vibration of the fan plant's support structure

    Directory of Open Access Journals (Sweden)

    Varju Đerđ

    2015-01-01

    Full Text Available This paper presents a procedure of determining the causes of increased vibration of a fan plant and its support structure in the PUC 'Subotička toplana'. Excessive vibrations were observed following the installation of the frequency converter, thus a methodological approach of testing-analysis-diagnosis has been applied. Based on the definition of the causes of this problem, the paper also suggests possible repair procedures.

  4. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii.

    Science.gov (United States)

    Wang, Yu Cheng; Qu, Guan Zheng; Li, Hong Yan; Wu, Ying Jie; Wang, Chao; Liu, Gui Feng; Yang, Chuan Ping

    2010-02-01

    Superoxide dismutases (SODs) play important role in stress tolerance of plants. In this study, an MnSOD gene (TaMnSOD) from Tamarix androssowii, under the control of the CaMV35S promoter, was introduced into poplar (Populus davidiana x P. bolleana). The physiological parameters, including SOD activity, malondialdehyde (MDA) content, relative electrical conductivity (REC) and relative weight gain, of transgenic lines and wild type (WT) plants, were measured and compared. The results showed that SOD activity was enhanced in transgenic plants, and the MDA content and REC were significantly decreased compared to WT plants when exposed to NaCl stress. In addition, the relative weight gains of the transgenic plants were 8- to 23-fold of those observed for WT plants after NaCl stress for 30 days. The data showed that the SOD activities that increased in transgenic lines are 1.3-4-folds of that increased in the WT plant when exposed to NaCl stress. Our analysis showed that increases in SOD activities as low as 0.15-fold can also significantly enhance salt tolerance in transgenic plants, suggesting an important role of increased SOD activity in plant salt tolerance

  5. Experimental restoration of a fen plant community after peat mining

    Energy Technology Data Exchange (ETDEWEB)

    Cobbaert, D.; Rochefort, L.; Price, J.S. [Univ. Laval, Sainte-Foy (Canada). Dept. de Phytologie

    2004-11-01

    Methods: The effectiveness of introducing fen plants with the application of donor diaspore material was tested. The donor diaspore material, containing seeds, rhizomes, moss fragments, and other plant propagules, was collected from two different types of natural fens. We tested whether the application of straw mulch would increase fen species cover and biodiversity compared to control plots without straw mulch. Terrace levels of different peat depths (15 cm, 40 cm, and 56 cm) were created to test the effects of different environmental site conditions on the success of re-vegetation. Results: Applying donor seed bank from natural fens was found to significantly increase fen plant cover and richness after the two growing seasons. Straw mulch proved to significantly increase fen plant richness. The intermediate terrace level (40 cm) had the highest fen plant establishment. Compared to reference sites, the low terrace level (15 cm) was richer in base cations, whereas the high terrace level (56 cm) was much drier. Conclusions: The application of donor diaspore material was demonstrated as an effective technique for establishing vascular fen plants. Further rewetting measures are considered necessary at the restoration site to create a fen ecosystem rather than simply restoring some fen species (Location: Riviere-du-Loup peatland, southern Quebec, Canada at 100 m a.s.l.)

  6. Method for increasing the resistance of a plant or a part thereof to a pathogen, method for screening the resistance of a plant or part thereof to a pathogen, and use thereof

    NARCIS (Netherlands)

    Wit, de P.; Stergiopoulos, I.; Kema, G.H.J.

    2011-01-01

    (EN)The present invention relates to the field of plant biotechnology. More in particular, the present invention relates to methods for increasing the resistance of a plant or part thereof that is susceptible to infection with a pathogen comprising an ortholog of the Avr4 protein of Cladosporium

  7. System-wide emissions implications of increased wind power penetration.

    Science.gov (United States)

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  8. Health effects of an increased protein intake on kidney function and colorectal cancer risk factors, including the role of animal and plant protein sources – the PREVIEW project

    DEFF Research Database (Denmark)

    Møller, Grith

    intake, including the role of animal and plant protein in pre-diabetic, overweight or obese individuals on health outcomes: markers of kidney function and putative risk factors for colorectal cancer as well as insulin sensitivity and kidney function in healthy individuals. The thesis is based on PREVIEW......, especially plant protein, on insulin sensitivity and kidney function. In paper II, the aim of the study was to assess the effect after one year of a higher protein intake on kidney function, measured by in creatinine clearance. This was investigated in pre-diabetic older adults based on a sub-group of 310...... pre-diabetic individuals included in the PREVIEW RCT. We found that a higher protein intake was associated with a significant increase in urea to creatinine ratio and serum urea after one year. There were no associations between increased protein intake and creatinine clearance, estimated glomerular...

  9. Fast neutron induced increase of flowering in portulaca grandiflora linn

    International Nuclear Information System (INIS)

    Abraham, V.; Desai, B.M.

    1975-01-01

    Unbranched cuttings were exposed to fast neutron doses of 71-284 rads and planted along with unirradiated controls. There was a significant increase in the numbers of flowers in the treated populations due to the increased production of primary and secondary branches. (MG) [de

  10. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  11. Increased heavy metal tolerance of cowpea plants by dual ...

    African Journals Online (AJOL)

    Through biological inoculation technology, the bacterial-mycorrhizal-legume tripartite symbiosis in artificially heavy metal polluted soil was documented and the effects of dual inoculation with arbuscular mycorrhizal (AM) fungus and Rhizobium (N-fixing bacteria, NFB) on the host plant cowpea (Vigna sinensis) in pot ...

  12. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    Science.gov (United States)

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  13. Engineering works for increasing earthquake resistance of Hamaoka nuclear power plant

    International Nuclear Information System (INIS)

    Oonishi, Yoshihiro; Kondou, Makoto; Hattori, Kazushi

    2007-01-01

    The improvement works of the ground of outdoor piping and duct system of Hamaoka-3, one of engineering works for increasing earthquake resistance of the plant, are reported. The movable outdoor piping systems were moved. SJ method, one of the high-pressure jet mixing method, improved the ground between the duct and the unmoved light oil tank on the western side, and the environmental ground. The other places were improved by the concrete replacement works. The results of ground treated by SJ method showed the high quality of stiffness and continuity. Outline of engineering works, execution of concrete replacement works, the high-pressure jet mixing method, SJ method, the quality control and treatment of the generated mud by SJ method are reported. A seismic response analysis, execution facilities, construction planning, working diagram, improvement work conditions of three methods, and steps of SJ method are illustrated. (S.Y.)

  14. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  15. Power plant perspectives for sugarcane mills

    International Nuclear Information System (INIS)

    Bocci, E.; Di Carlo, A.; Marcelo, D.

    2009-01-01

    Biomass, integral to life, is one of the main energy sources that modern technologies could widely develop, overcoming inefficient and pollutant uses. The sugarcane bagasse is one of the more abundant biomass. Moreover, the fluctuating sugar and energy prices force the sugarcane companies to implement improved power plants. Thanks to a multiyear collaboration between University of Rome and University of Piura and Chiclayo, this paper investigates, starting from the real data of an old sugarcane plant, the energy efficiency of the plant. Furthermore, it explores possible improvements as higher temperature and pressure Rankine cycles and innovative configurations based on gasifier plus hot gas conditioning and gas turbine or molten carbonate fuel cells. Even if the process of sugar extraction from sugarcane and the relative Rankine cycles power plants are well documented in literature, this paper shows that innovative power plant configurations can increase the bagasse-based cogeneration potential. Sugarcane companies can become electricity producers, having convenience in the use of sugarcane leaves and trash (when it is feasible). The worldwide implementation of advanced power plants, answering to a market competition, will improve significantly the renewable electricity produced, reducing CO 2 emissions, and increasing economic and social benefits.

  16. Increasing the statistical significance of entanglement detection in experiments.

    Science.gov (United States)

    Jungnitsch, Bastian; Niekamp, Sönke; Kleinmann, Matthias; Gühne, Otfried; Lu, He; Gao, Wei-Bo; Chen, Yu-Ao; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-05-28

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

  17. Does SO{sub 2} fumigation change the chemical defense of woody plants: the effect of short-term SO{sub 2} fumigation on the metabolism of deciduous Salix Myrsinifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Julkunen-Tiitto, R.; Lavola, A.; Kainulainen, P. [University of Joensuu, Joensuu (Finland). Dept. of Biology

    1995-08-01

    The effect of a moderate increase in atmospheric sulfur dioxide on the production of phenolic secondary chemicals, soluble sugars and phytomass distribution within plants was investigated in six willow ({ital Salix myrsinifolia Salisb}) clones. The plants were cultivated for 3 weeks under 0.11 ppm of SO{sub 2} (300{mu}g m{sup -3}). The production of salicin and chlorogenic acid was significantly reduced under increased SO{sub 2}. However, salicortin, 2{prime}-O-acetylsalicortin, (+)-catechin and two unknown phenolics did not show any clear trend. The increase in SO{sub 2} did not affect the glucose, fructose and sucrose contents. The final weight of the SO{sub 2}-treatment plants was significantly greater than that of the control plants: the leaf, stem and root phytomass was from 14 to 48% greater under increased SO{sub 2}. All the clones showed the same trend, although there was a significant variation in phytomass production. Results indicate, although not consistently, that even a short-term exposure of enhanced atmospheric SO{sub 2} may change moderately the accumulation pattern of willow phenolics. 20 refs., 2 tabs.

  18. Transgenic tobacco overexpressing Brassica juncea HMG-CoA synthase 1 shows increased plant growth, pod size and seed yield.

    Directory of Open Access Journals (Sweden)

    Pan Liao

    Full Text Available Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS, the second enzyme in the mevalonate (MVA pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1 in comparison to vector-transformed tobacco, (ii higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant

  19. Increase of efficiency of plant materials heat treatment in tubular reactors

    Directory of Open Access Journals (Sweden)

    A. V. Golubkovich

    2016-01-01

    Full Text Available In agriculture products of pyrolysis of plant materials in the form of waste of the main production can be applied as a source of heat and electric power. Besides, their use prevents ecological pollution of the soil and the atmosphere. Pyrolysis plants can be used for work with tubular reactors anywhere. Due to them farmers can dry grain, using waste heat of diesel generators, heatgenerators, boiler plants and receiving thus gaseous products, liquid and firm fractions. A technology based on cyclic and continuous plant mass movement by a piston in a pipe from a loading site to a place of unloading of a firm phase consistently through cameras of drying, pyrolysis, condensation of gaseous products. Exhaust furnace gases with a temperature up to 600 degrees Celsius are given countercurrent material movement from a power equipment. The gaseous, liquid and firm products from the pyrolysis camera are used for heat and electric power generation. Calculation of parameters of subdrying and pyrolysis cameras is necessary for effective and steady operation of the tubular reactor. The authors determined the speed of raw materials movement, and also duration of drying and pyrolysis in working chambers. An analysis of a simplified mathematical model of process was confirmed with results of experiments. Models of heat treatment of wet plant materials in tubular reactors are worked out on a basis of equality of speeds of material movement in the reactor and distribution of a temperature front in material on radius. The authors defined estimated characteristic for determination of tubular reactor productivity and size of heat, required for drying and pyrolysis.

  20. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Madonna, Valentina; Di Lelio, Ilaria; Esposito, Francesco; Avitabile, Concetta; Romanelli, Alessandra; Guerrieri, Emilio; Vitiello, Alessia; Pennacchio, Francesco; Rao, Rosa; Corrado, Giandomenico

    2017-11-14

    Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.

  1. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  2. Behavior of pea saber plants (Canavalia ensiformis (L) DC)) ontenus from seeds exposed to increasing doses of gamma radiation

    International Nuclear Information System (INIS)

    Kalonji, M.A.; Mudibu wa Kabangu, J.; Tshilenge-Djim, P.; Tshivuila, T.D.; Gaza, O.C.

    2003-01-01

    The present trial has carried out in order to determine the optimal value of usable treatment for seeds exposed to the gamma radiances. Seeds of Canavalia ensiformis presenting a rate of humidity of 15% have been submitted to the increasing doses of irradiation (source Cesium 137) of 10, 20, 30, 40 and 50 Krads. After germination, plants generated from these seeds have been observed in a completely randomized blocks experimental design, including six treatments and three repetitions. Observations concerned the vegetative parameters (germination percent, height, diameter to the collar, number of ramification, surface of leaves), the generative parameters (number of pod by plant, length and width of pods, number of seeds by pod, weights of 100 seeds) and the morphological changes on distortions of plants during their vegetative development. Results permitted to determine that the optimal value of treatment is located to 10 Krads. This dose induced a high rate of seed germination, vigorous plants with a high number of ramifications. The yield parameters obtained with 10 and 20 Krads, excepted the weight of 100 seeds, have been lower than to those obtained with the control. This is the consequence of the increase of the pod dimension and the size of seeds. All treatments superior to 30 Krads have been lethal. Materials treated to 10 and 20 Krads are under observation for the second generation.

  3. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses.

    Science.gov (United States)

    Pruthvi, V; Rama, N; Parvathi, M S; Nataraja, K N

    2017-05-01

    Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Bolted Flanged Connection for Critical Plant/Piping Systems

    International Nuclear Information System (INIS)

    Efremov, Anatoly

    2006-01-01

    A novel type of Bolted Flanged Connection with bolts and gasket manufactured on a basis of advanced Shape Memory Alloys is examined. Presented approach combined with inverse flexion flange design of plant/piping joint reveals a significant increase of internal pressure under conditions of a variety of operating temperatures relating to critical plant/piping systems. (author)

  5. The cultural significance of plants of the Pernambuco indians: The Xucuru case

    Directory of Open Access Journals (Sweden)

    Laise de Holanda Cavalcanti Andrade

    2004-05-01

    Full Text Available The Index of Cultural Significance (ICS created at the end of the 1980´s, aims to register the value of each vegetable species and to disclose its importance for the biological and cultural survival of a traditional community. Initially, the ISC was considered and applied in aboriginal communities in Canada and the United States. Aiming to verify its applicability for Brazilian aboriginal groups, it was used in the present work to evaluate the cultural meaning of the useful species for the Xucuru tribe, in pesqueira county, Pernambuco. In Brazil, it is the first time that this index has been used with a northeastern aboriginal community, the Xucuru, one of the seven tribes remaining in Pernambuco. From informal interviews, 97 useful species were registered among trees, shrubs and grass growing in the Pedra D’Água forest (Humid Ororobá-Forest, in yards, and in small cultivated areas in the village. The ISC provided a numeric order of importance for the plants registered in the Xucuru tribe, much like the one observed in the field. Musa paradisiaca was the species of greatest meaning for the community (ICS 120, followed by Rosmarinum officinalis (ICS 92, Xerophyta plicata (ICS 88, Aspidosperma sp. (ICS 84 and Cymbopogon citratus (ISC 80. The place of distinct prominence for non-native species of the area (exotic evidences the importance that such species have acquired in the Xucuru culture.

  6. Safety significance of inadvertent operation of motor-operated valves in nuclear power plants

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.; Carbonaro, J.F.; Hall, R.E.

    1994-01-01

    Concerns about the consequences of valve mispositioning were brought to the forefront following an event at Davis Besse in 1985. The concern related to the ability to reposition open-quotes position-changeableclose quotes motor-operated valves (MOVs) from the control room in the event of their inadvertent operation and was documented in U.S. Nuclear Regulatory Commission (USNRC) Bulletin 85-03 and Generic Letter (GL) 89-10. The mispositioned MOVs may not be able to be returned to their required position due to high differential pressure or high flow conditions across the valves. The inability to reposition such valves may have significantly safety consequences, as in the Davis Besse event. However, full consideration of such mispositioning in safety analyses and in MOV test programs can be labor intensive and expensive. Industry raised concerns that consideration of position-changeable valves under GL 89-10 would not decrease the probability of core damage to an extent that would justify licensee costs. As a response, Brookhaven National Laboratory has conducted separate scoping studies for both boiling water reactors (BWRs) and pressurized water reactors (PWRs) using probabilistic risk assessment (PRA) techniques to determine if such valve mispositioning by itself is significant to safety. The approach used internal events PRA models to survey the order of magnitude of the risk-significance of valve mispositioning by considering the failure of selected position-changeable MOVs. The change in core damage frequency was determined for each valve considered, and the results were presented as a risk increase ratio for each of four assumed MOV failure rates. The risk increase ratios resulting from this failure rate sensitivity study can be used as a basis for a determination of the risk-significance of the MOV mispositioning issues for BWRs and PWRs

  7. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  8. Plant movements and climate warming

    DEFF Research Database (Denmark)

    De Frenne, Pieter; Coomes, David A.; De Schrijver, An

    2014-01-01

    environments can establish in nonlocal sites. •We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional...... range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. •We found significantly positive effects of the difference between the temperature of the sites of seed and soil...... collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently ‘colder’ soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant...

  9. Modernization and power increase nuclear power plant Laguna Verde (Mexico)

    International Nuclear Information System (INIS)

    Garcia-Serrano, J. L.; Merino, A.; Ruiz Gutierrez, L.

    2011-01-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Uprate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4 years (82007-2010), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. (Author)

  10. Cold hardiness increases with age in juvenile Rhododendron populations

    Directory of Open Access Journals (Sweden)

    Rajeev eArora

    2014-10-01

    Full Text Available Winter survival in woody plants is controlled by environmental and genetic factors that affect the plant's ability to cold acclimate. Because woody perennials are long-lived and often have a prolonged juvenile (pre-flowering phase, it is conceivable that both chronological and physiological age factors influence adaptive traits such as stress tolerance. This study investigated annual cold hardiness (CH changes in several hybrid Rhododendron populations based on Tmax, an estimate of the maximum rate of freezing injury (ion leakage in cold-acclimated leaves from juvenile progeny. Data from F2 and backcross populations derived from R. catawbiense and R. fortunei parents indicated significant annual increases in Tmax ranging from 3.7 to to 6.4 C as the seedlings aged from 3 to 5 years old. A similar yearly increase (6.7° C was observed in comparisons of 1- and 2-year-old F1 progenies from a R. catawbiense x R. dichroanthum cross. In contrast, CH of the mature parent plants (> 10 years old did not change significantly over the same evaluation period. In leaf samples from a natural population of R. maximum, CH evaluations over two years resulted in an average Tmax value for juvenile 2- to 3- year- old plants that was 9.2 C lower than the average for mature (~30 years old plants. . A reduction in CH was also observed in three hybrid rhododendron cultivars clonally propagated by rooted cuttings (ramets - Tmax of 4-year-old ramets was significantly lower than the Tmax estimates for the 30- to 40-year-old source plants (ortets. In both the wild R. maximum population and the hybrid cultivar group, higher accumulation of a cold-acclimation responsive 25kDa leaf dehydrin was associated with older plants and higher CH. The feasibility of identifying hardy phenotypes at juvenile period and research implications of age-dependent changes in CH are discussed.

  11. Effect of planting density and growing media on growth and yield of strawberry

    International Nuclear Information System (INIS)

    Tariq, R.; Qureshi, K.M.; Hassan, I.; Rasheed, M.; Qureshi, U.S.

    2013-01-01

    Strawberry (Fragaria ananasa), belonging to Rosaceae family, is a rich source of vitamins and minerals with delicate flavors. It is perishable crop which is exceedingly in demand for its taste, profitability, high yield and good quality. To make the plant growth successful in the container, the requirement of special media is very important step because plant growth is largely depended on the physiochemical properties of the growing media used. Winter strawberry production in a greenhouse using high plant densities and various media may be a viable alternative to open-field production system. Planting density can be increased thrice by using different production systems. Studies were conducted to see the impact of different planting densities and media on growth and yield of strawberry. The treatments were T 1 = Control, with normal planting distance of 30 cm x 60 cm and growing media silt, sand and farm yard manure (FYM); T 2 = 15 cm 2 x 30 cm and silt, sand and FYM; T 3 = 30 cm x 60 cm and coir; T 4 = 15 cm x 30 cm and coir; T 5 = 30 cm x 60 cm and peat moss; T 6 = 15 cm x 30 cm and 5 6 peat moss. Results showed that plants grown at low planting distance on all growth media showed more pronounced results as compared to high planting distance. Plants grown in peat moss at both planting densities moderately increased the plant height, canopy size, leaf area, number of fruits, fruit size, fruit weight and titratable acidity. A significant increase in fresh and dry weight of leaves, number of leaves, fruit yield in term of fruit number, fruit size and fruit weight, and fruit quality with high ascorbic acid contents were observed. On the other hand, plants grown in silt, sand and FYM (1 : 1 : 1) at both planting densities showed significant increment in vegetative growth resulting in early flowering with more flowers per plant, better fruit setting and fruit set percentage, greater fruit size and weight but fruit number per plant was reduced which lowered the overall

  12. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Boe, Kanokwan; Ellegaard, L.

    2005-01-01

    A study on 18 full-scale centralized biogas plants was carried out in order to find significant operational factors influencing productivity and stability of the plants. It was found that the most plants were operating relatively stable with volatile fatty acids (VFA) concentration below 1.5 g....../l. VFA concentration increase was observed in occasions with dramatic overloading or other disturbances such as operational temperature changes. Ammonia was found to be a significant factor for stability. A correlation between increased residual biogas production and high ammonia was found. When ammonia...

  13. [Distribution of HCB discharged from a chemical plant in plants].

    Science.gov (United States)

    Chen, Jing; Wang, Lin-Ling; Lu, Xiao-Hua; Yuan, Song-Hu; Liu, Xi-Xiang; Wang, Yue; Zhao, Qian; Mei, Ling-Fang

    2009-04-15

    The distribution characteristics of hexachlorobenzene (HCB) in plant and rhizosphere soil in contamination conduit, a nearby river and a cropland were studied and the impact factors were also discussed. The results are summarized as follows: the range of the HCB concentration in plant and rhizosphere soil in investigation area were respectively from 4.45 microg x kg(-1) to 1,189.89 microg x kg(-1) (dw) and from 27.93 microg x kg(-1) to 3,480.71 microg x kg(-1) (dw). Higher enrichment of HCB in woodplant than herbs due to higher fat concentration in woodplant in the contamination conduit and the rich concentrtion factor of woodplant and herbs were 0.41-2.55 and 0.01-1.34. The range of HCB concentrations in plants in nearby croplands was significantly wide (4.45-333.1 microg x kg(-1)) while HCB concentrations in different parts of plant were various, e.g. HCB concentrations in fruit, root and shoot of taro were 318.77 microg x kg(-1), 281.02 microg x kg(-1) and 10.94 microg x kg(-1). There was a remarkable positive relation between the concentrations of HCB in plant and fat concentration of plant while no relativity between the concentrations of HCB in plant and those in ground soils in the contamination conduit and cropland. The concentration levels of HCB in plant and rhizosphere soil in river were dramatically decreased with increasing distance from contaminated conduit. There was a remarkable positive relation between the concentrations of HCB in plant and those in ground soils but no relation between concentrations of HCB in plant and fat concentration of plant in river. The distribution characteristics of HCB in plants were influenced by contaminated levels, fat concentration and Partition-transfer model.

  14. Danish emission inventories for stationary combustion plants. Inventories until 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, M.; Hjelgaard, K.

    2010-10-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, NH{sub 3}, particulate matter, heavy metals, dioxins, HCB and PAH. The CO{sub 2} emission in 2008 was 16 % lower than in 1990. However, fluctuations in the emission level are large as a result of electricity import/export. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However, the emission has decreased in recent years due to structural changes in the Danish electricity market. The N{sub 2}O emission was higher in 2008 than in 1990 but the fluctuations in the time-series are significant. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants. (Author)

  15. In vitro propagation of cordyline plant using electromagnetic waves

    International Nuclear Information System (INIS)

    EL-Sharnouby, M.E.

    2007-01-01

    Shoot tips of cordyline terminals were cultured in vitro on different media (MS. NN and A) to select the best culture medium. Explants were subjected to different cytokines, microwaves periods, auxins and agriculture media. The results showed that MS was the best culture medium. The maximum number of shoots as well as per plant and number of leaves per plant were produced on MS medium supplemented with 4 mg/l 2ip. Exposing the plantlets to microwave irradiation for one minute caused the best proliferation rate, comparing control plantlets. The addition of auxin IBA at concentrate 2 mg/I to culture medium gave a significant increasing in number of roots and root length. Acclimatization culture medium containing peatmoss, sand and loam at equal volume parts gave a significant increasing in plant growth and greening than other acclimatization treatments

  16. On the advisability of nuclear power plant construction and some solutions on their safety increase

    International Nuclear Information System (INIS)

    Sokolov, I.N.

    1989-01-01

    Neccesity in a further development of nuclear power in the USSR is proved. Specific features of layouts of nuclear heat supplying plants with increased safety including WWER-440, WWER-1000 and VK-50 reactors are considered. It is stressed that even under the most incredible accidents referring to the class of hypothetic ones, radioactive effect on the population, according to evaluations by experts, whould be much lower than maximum admissible one according to the existing standards

  17. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity.

    Science.gov (United States)

    Gherardi, Laureano A; Sala, Osvaldo E

    2015-12-01

    Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6-year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant. Functional diversity showed a positive response to increased variability due to increased evenness. Dominant grasses decreased and rare plant functional types increased in abundance because grasses showed a hump-shaped response to precipitation with a maximum around modal precipitation, whereas rare species peaked at high precipitation values. Increased functional diversity ameliorated negative effects of precipitation variability on primary production. Rare species buffered the effect of precipitation variability on the variability in total productivity because their variance decreases with increasing precipitation variance. © 2015 John Wiley & Sons Ltd/CNRS.

  18. Finding of no significant impact proposed corrective action for the Northeast Site at the Pinellas Plant in Largo, Florida

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-0976) of the proposed corrective action for the Northeast Site at the Pinellas Plant in Largo, Florida. The Northeast Site contains contaminated groundwater that would be removed, treated, and discharged to the Pinellas County Sewer System. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 U.S.C.4321 et.seq. Therefore, the preparation of an environmental impact statement is not required and the DOE is issuing this Finding of No Significant Impact (FONSI).

  19. How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau.

    Science.gov (United States)

    Zeng, Quanchao; Liu, Yang; Xiao, Li; Huang, Yimei

    2017-09-25

    Overgrazing is a severe problem in several regions in Northwestern China and has caused serious land degradation. Secondary natural succession plays an important role in the accumulation of soil carbon and nitrogen contents. Estimating the effects of grazing exclusion on soil quality and plant diversity will improve our understanding of the succession process after overgrazing and promote judicious management of degraded pastures. This experiment was designed to measure soil properties and plant diversity following an age chronosequence of grasslands (ages ranged from one year, 12 years, 20 years, and 30 years) in Northwestern China. The results showed that continuous fencing resulted in a considerable increase in plant coverage, plant biomass (above- and below-ground biomass), and plant diversity, which can directly or indirectly improve the accumulation of soil organic carbon and total nitrogen content. The plant coverage and the above- and below-ground biomass linearly increased along the succession time, whereas soil organic C and N contents showed a significant decline in the first 12 years and, subsequently, a significant increase. The increased plant biomass caused an increase in soil organic carbon and soil total nitrogen. These results suggested that soil restoration and plant cover were an incongruous process. Generally, soil restoration is a slow process and falls behind vegetation recovery after grazing exclusion. Although the accumulation of soil C and N stocks needed a long term, vegetation restoration was a considerable option for the degraded grassland due to the significant increase of plant biomass, diversity, and soil C and N stocks. Therefore, fencing with natural succession should be considered in the design of future degraded pastures.

  20. Should Exotic Eucalyptus be Planted in Subtropical China: Insights from Understory Plant Diversity in Two Contrasting Eucalyptus Chronosequences.

    Science.gov (United States)

    Wu, Jianping; Fan, Houbao; Liu, Wenfei; Huang, Guomin; Tang, Jianfu; Zeng, Ruijin; Huang, Jing; Liu, Zhanfeng

    2015-11-01

    Although Eucalyptus is widely planted in South China, whose effects on native biodiversity are unclear. The objective of this study was to quantify the richness and composition of understory plants in two contrasting Eucalyptus chronosequences in South China. One was in Zhangzhou City with plantation age of 2, 4, and 6 years after clear-cutting Chinese fir forests, while the other was in Heshan City with plantation age of 2, 3, and 24 years that reforested on barren lands. Results showed that the richness of understory plants and functional groups was not significantly altered in the Zhangzhou chronosequence, while increased in the 24-year-old plantations, with a significantly larger proportion of woody plants than the younger plantations for the Heshan chronosequence. Moreover, a higher richness of woody plants accompanied by a lower richness of herbaceous species was detected in the Zhangzhou chronosequence compared with the Heshan one. To balance the need for pulp production and plant diversity conservation, we suggest that intercropping approaches between exotic Eucalyptus plantations and native forests should be considered in the fast rotation Eucalyptus plantations. However, Eucalyptus plantations may be used as pioneer species to sustain ecosystem functioning for the degraded lands.

  1. Effect of potassium supply on drought resistance in sorghum: plant growth and macronutrient content

    International Nuclear Information System (INIS)

    Asgharipour, M.R.; Heidari, M.

    2011-01-01

    Nowadays, the main limiting natural resource is widely considered to be water. Therefore, research into crop management practices that enhance drought resistance and plant growth when water supply is limited has become increasingly essential. This study was conducted to evaluate the effect of potassium (K) nutritional status on the drought resistance of grain sorghum during 2009. Drought stress by reducing the yield components, especially the number of panicle per plant and one-hundred grain weight reduced grain yield and greatest yield (3499 kg ha/sup -1/) obtained at full irrigation. Potassium sulfate increased grain and biological yield by 28% and 22%, respectively compared to control through improving growth conditions. Drought stress increased the N content, while reduced water availability decreased the K and Na in plant. No K fertilized plants had the lowest leaf K and N and highest Na concentrations. Chlorophyll content increased significantly with increase in K supply and increased frequency of irrigation. Interaction effect of drought stress and potassium sulfate on all studied traits except chlorophyll content was significant and optimum soil K levels protects plants from drought. These observations indicate that adequate K nutrition can improve drought resistance of sorghum. (author)

  2. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    Science.gov (United States)

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  3. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    Directory of Open Access Journals (Sweden)

    Yong-Soon Park

    2015-09-01

    Full Text Available Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  4. Reliability of the emergency AC power system at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.; Campbell, D.J.; Baranowsky, P.W.

    1983-01-01

    The reliability of the emergency ac power systems typical of most nuclear power plants was estimated, and the cost and increase in reliability for several improvements were estimated. Fault trees were constructed based on a detailed design review of the emergency ac power systems of 18 nuclear plants. The failure probabilities used in the fault trees were calculated from extensive historical data collected from Licensee Event Reports (LERs) and from operating experience information obtained from nuclear plant licensees. No one or two improvements can be made at all plants to significantly increase the industry-average emergency ac power system reliability; rather the most beneficial improvements are varied and plant specific. Improvements in reliability and the associated costs are estimated using plant specific designs and failure probabilities

  5. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense

    Science.gov (United States)

    Carrillo, Angel; Li, Ching; Bashan, Yoav

    2002-08-01

    Acidification of the rhizosphere of cactus seedlings (giant cardon, Pachycereus pringlei) after inoculation with the plant growth-promoting bacterium Azospirillum brasilense Cd, in the presence or absence of ammonium and nitrate, was studied to understand how to increase growth of cardon seedlings in poor desert soils. While ammonium enhanced rhizosphere and liquid culture acidification, inoculation with the bacteria enhanced it further. On the other hand, nitrate increased pH of the rhizosphere, but combined with the bacterial inoculation, increase in pH was significantly smaller. Bacterial inoculation with ammonium enhanced plant growth.

  6. Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    2018-06-01

    Full Text Available Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, or not inoculated. After the microbiome was established, the root lesion nematode Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly reduced on soybean plants inoculated with the microbiome from maize or soybean compared to tomato or bulk soil, or the uninoculated control. In the analogous experiment with tomato plants inoculated with either P. penetrans or the root knot nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato reduced root invasion by P. penetrans and M. incognita compared to microbiomes from soybean or bulk soil. Reproduction of M. incognita on tomato followed the same trend, and it was best suppressed by the tomato rhizosphere microbiome. In split-root experiments with soybean and tomato plants, a systemic effect of the inoculated rhizosphere microbiomes on root invasion of P. penetrans was shown. Furthermore, some transplanted microbiomes slightly enhanced plant growth compared to uninoculated plants. The microbiomes from maize rhizosphere and bulk soil increased the fresh weights of roots and shoots of soybean plants, and microbiomes from soybean rhizosphere and bulk soil increased the fresh weights of roots and shoots of tomato plants. Nematode invasion did not affect plant growth in these short-term experiments. In

  7. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Directory of Open Access Journals (Sweden)

    Christine Fischer

    Full Text Available BACKGROUND: Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs. In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i direct, probably by modifying the pore spectrum and (ii indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. CONCLUSIONS/SIGNIFICANCE: Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  8. Release of Hormones from Conjugates: Chloroplast Expression of β-Glucosidase Results in Elevated Phytohormone Levels Associated with Significant Increase in Biomass and Protection from Aphids or Whiteflies Conferred by Sucrose Esters1[C][OA

    Science.gov (United States)

    Jin, Shuangxia; Kanagaraj, Anderson; Verma, Dheeraj; Lange, Theo; Daniell, Henry

    2011-01-01

    Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA1 and GA4 levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts. PMID:21068365

  9. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  10. Improvement of plant reliability in PT. Badak LNG plant

    International Nuclear Information System (INIS)

    Achmad, S.; Somantri, A.

    1997-01-01

    PT. Badak's LNG sales commitment has been steadily increasing, therefore, there has been more emphasis to improve and maintain the LNG plant reliability. From plant operation historical records, Badak LNG plant experienced a high number of LNG process train trips and down time for 1977 through 1988. The highest annual number of LNG plant trips (50 times) occurred in 1983 and the longest LNG process train down time (1259 train-hours) occurred in 1988. Since 1989, PT. Badak has been able to reduce the number of LNG process train trips and down time significantly. In 1994 the number of LNG process train trips and was 18 times and the longest LNG process train down time was 377 train-hours. This plant reliability improvement was achieved by implementing plant reliability improvement programs beginning with the design of the new facilities and continuing with the maintenance and modification of the existing facilities. To improve reliability of the existing facilities, PT. Badak has been implementing comprehensive maintenance programs, to reduce the frequency and down time of the plant, such as Preventive and Predictive Maintenance as well as procurement material improvement since PT. Badak location is in a remote area. By implementing the comprehensive reliability maintenance, PT. Badak has been able to reduce the LNG process train trips to 18 and down time to 337 train hours in 1994 with the subsequent maintenance cost reduction. The average PT. Badak plant availability from 1985 to 1995 is 94.59%. New facilities were designed according to the established PT. Badak design philosophy, master plan and specification. Design of new facilities was modified to avoid certain problems from past experience. (au)

  11. Better and more efficient collaboration for increased use of field fuel in heating plants; Baettre och effektivare samverkan foer oekad anvaendning av aakerbraenslen i vaermeverken

    Energy Technology Data Exchange (ETDEWEB)

    Arkeloev, Olof (Agrovaest, Skara (Sweden)); Hellstroem, Chris; Hollsten, Ronnie (KanEnergi Sweden AB, Skara (Sweden)); Lindh, Carina (LRF Konsult, Skara (Sweden))

    2010-05-15

    Despite that the potential for field fuels in SW Sweden is great and that the combustion characteristics of fuels are known, the interest for field fuels has been low from farmers and heating plants. The purpose of the project is to identify why the introduction of field fuel into heating plants is going so slow and to suggest possible solutions. Field fuel is missing the general structure and tradition that is found in forest fuels in terms of harvesting, processing, logistics and business models. The overall long-term objective is a better and more effective cooperation between heating plants, farmers and logistic companies for the increased use of field fuels in heating plants. The potential for field fuel in the area is great but won't be sufficient to cover the need. The raw materials that exist today and are deemed will be relevant in the future are willow, straw and grain kernel. We have divided the heating plants into two groups; Small plants with a furnace less than 35 MW, and large plants with an effect over 35 MW. Common to both small and large heating plants is that there must be a willingness to receive and combust field fuels for the share of field fuels to increase. For the small heating plants to be able to receive and combust field fuels the knowledge of the combustion properties of these fuels must increase. Larger heating plants have better opportunities to use field fuels in their boilers when it comes to the technology and the know how. They have a more controlled handling and receiving of fuels. It is not uncommon that storing and blending of fuels will take place at their own facility. They also have more experience of handling a larger number of suppliers at the same time. The heating plants would like to see standardization in terms of fuel characteristics, and they prefer to obtain approximately the same burning performance regardless of delivery date. Today, the small heating plants do not have the routines to manage multiple small

  12. Effects of gamma irradiation on antioxidants of medicinal plants

    International Nuclear Information System (INIS)

    Jetawattana, Suwimol; Chaichantipyuth, Chaiyo

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased

  13. Effects of gamma irradiation on antioxidants of medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Jetawattana, Suwimol [The irradiation research for agriculture program, Office of Atoms for Peace, BK (Thailand); Chaichantipyuth, Chaiyo [Faculty of Pharmacy, Chulalongkorn University, BK (Thailand)

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased.

  14. Branch Development of Five-Year-Old Betula alnoides Plantations in Response to Planting Density

    Directory of Open Access Journals (Sweden)

    Chun-Sheng Wang

    2018-01-01

    Full Text Available Branch development in the lower part of stem is critical to both early stem growth and wood quality of the most valuable section of tree, and its regulation through planting density has always been greatly concerned. Here the effect of planting density on branch development was examined in a five-year-old plantation of Betula alnoides with six planting densities (625, 833, 1111, 1250, 1667, and 2500 stems per hectare (sph in Guangdong Province, South China. Branch quantity (number, proportion, and density, morphology (diameter, length, and angle, position (height and orientation, and branch status (dead or alive were investigated for 54 dominant or co-dominant trees under six treatments of planting density after the growth of each tree was measured. Factors influencing branch development were also explored by mixed modelling. The results showed that the mean tree heights of 1250 and 1667 sph treatments were higher than those of other planting density treatments. The quantity of live branches decreased with increasing planting density. However, planting density had no significant effect on the number of all branches, and there existed no remarkable difference in branch number and proportion among four orientations. As for branch morphology, only the largest branch diameter had a significantly negative correlation with planting density. In addition, high planting density significantly increased the height of the largest branch within the crown. Mixed effects models indicated that branch diameter, length, and angle were closely correlated with each other, and they were all in positively significant correlation to the branch height at the stem section below six meters. It was concluded that properly increasing planting density will promote natural pruning, improve early branch control, and be beneficial for wood production from the most valuable section of the stem.

  15. Increasing the statistical significance of entanglement detection in experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jungnitsch, Bastian; Niekamp, Soenke; Kleinmann, Matthias; Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Lu, He; Gao, Wei-Bo; Chen, Zeng-Bing [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Chen, Yu-Ao; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Physikalisches Institut, Universitaet Heidelberg (Germany)

    2010-07-01

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. We show this to be the case for an error model in which the variance of an observable is interpreted as its error and for the standard error model in photonic experiments. Specifically, we demonstrate that the Mermin inequality yields a Bell test which is statistically more significant than the Ardehali inequality in the case of a photonic four-qubit state that is close to a GHZ state. Experimentally, we observe this phenomenon in a four-photon experiment, testing the above inequalities for different levels of noise.

  16. Increase of efficiency of the photosynthetic device of plants by gene updating.

    Directory of Open Access Journals (Sweden)

    О. І. Рудник-Іващенко

    2011-07-01

    Full Text Available In the information advantages of plants of agricultural crops with photosynthesis C4 before plants of type C3 are shined. By means of genetically-modified designs uses introductions such C4 a metabolism, or its part the estimation of possibilities is spent to the main agricultural crops with C3 a metabolism.

  17. Plant pollinator networks along a gradient of urbanisation.

    Science.gov (United States)

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits ("open flowers" and "tubular flowers"). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of specialist flower-visitors. To complete this functional approach, studies

  18. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Poisonous plants of the United States

    Science.gov (United States)

    Poisonous plants cause significant economic losses to the livestock industry throughout the world from death losses, abortions, birth defects, increased veterinary care, and other related factors. This chapter is not intended to be all-inclusive, but provides current research information on importan...

  20. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth

    Directory of Open Access Journals (Sweden)

    Xiangying Wei

    2016-10-01

    Full Text Available Ericoid mycorrhizal (ERM fungi are specifically symbiotic with plants in the family Ericaceae. Little is known thus far about their symbiotic establishment and subsequent nitrogen (N uptake at the molecular level. The present study devised a system for establishing a symbiotic relationship between Rhododendron fortunei Lindl. and an ERM fungus (Oidiodendron maius var. maius strain Om19, quantified seedling growth and N uptake, and compared transcriptome profiling between colonized and uncolonized roots using RNA-Seq. The Om19 colonization induced 16,892 genes that were differentially expressed in plant roots, of which 14,364 were upregulated and 2,528 were downregulated. These genes included those homologous to ATP-binding cassette transporters, calcium/calmodulin-dependent kinases, and symbiosis receptor-like kinases. N metabolism was particularly active in Om19-colonized roots, and 51 genes were upregulated, such as nitrate transporters, nitrate reductase, nitrite reductase, ammonium transporters, glutamine synthetase, and glutamate synthase. Transcriptome analysis also identified a series of genes involving endocytosis, Fc-gamma R-mediated phagocytosis, glycerophospholipid metabolism, and GnRH signal pathway that have not been reported previously. Their roles in the symbiosis require further investigation. The Om19 colonization significantly increased N uptake and seedling growth. Total N content and dry weight of colonized seedlings were 36.6% and 46.6% greater than control seedlings. This is the first transcriptome analysis of a species from the family Ericaceae colonized by an ERM fungus. The findings from this study will shed light on the mechanisms underlying symbiotic relationships of ericaceous species with ERM fungi and the symbiosis-resultant N uptake and plant growth.

  1. Arctic plants are capable of sustained responses to long-term warming

    Directory of Open Access Journals (Sweden)

    Robert T. Barrett

    2016-05-01

    Full Text Available Previous studies have shown that Arctic plants typically respond to warming with increased growth and reproductive effort and accelerated phenology, and that the magnitude of these responses is likely to change over time. We investigated the effects of long-term experimental warming on plant growth (leaf length and reproduction (inflorescence height, reproductive phenology and reproductive effort using 17–19 years of measurements collected as part of the International Tundra Experiment (ITEX at sites near Barrow and Atqasuk, Alaska. During the study period, linear regressions indicated non-significant tendencies towards warming air temperatures at our study sites. Results of our meta-analyses on the effect size of experimental warming (calculated as Hedges’ d indicated species generally responded to warming by increasing inflorescence height, increasing leaf length and flowering earlier, while reproductive effort did not respond consistently. Using weighted least-squares regressions on effect sizes, we found a significant trend towards dampened response to experimental warming over time for reproductive phenology. This tendency was consistent, though non-significant, across all traits. A separate analysis revealed significant trends towards reduced responses to experimental warming during warmer summers for all traits. We therefore propose that tendencies towards dampened plant responses to experimental warming over time are the result of regional warming. These results show that Arctic plants are capable of sustained responses to warming over long periods of time but also suggest that, as the region continues to warm, factors such as nutrient availability, competition and herbivory will become more limiting to plant growth and reproduction than temperature.

  2. Finding of no significant impact: Interim storage of enriched uranium above the maximum historical level at the Y-12 Plant Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the Proposed Interim Storage of Enriched Uranium Above the Maximum Historical Storage Level at the Y-12 Plant, Oak Ridge, Tennessee (DOE/EA-0929, September, 1994). The EA evaluates the environmental effects of transportation, prestorage processing, and interim storage of bounding quantities of enriched uranium at the Y-12 Plant over a ten-year period. The State of Tennessee and the public participated in public meetings and workshops which were held after a predecisional draft EA was released in February 1994, and after the revised pre-approval EA was issued in September 1994. Comments provided by the State and public have been carefully considered by the Department. As a result of this public process, the Department has determined that the Y-12 Plant-would store no more than 500 metric tons of highly enriched uranium (HEU) and no more than 6 metric tons of low enriched uranium (LEU). The bounding storage quantities analyzed in the pre-approval EA are 500 metric tons of HEU and 7,105.9 metric tons of LEU. Based on-the analyses in the EA, as revised by the attachment to the Finding of No Significant Impact (FONSI), DOE has determined that interim storage of 500 metric tons of HEU and 6 metric tons of LEU at the Y-12 Plant does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement (EIS) is not required and the Department is issuing this FONSI

  3. Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment.

    Science.gov (United States)

    Varga, Sandra

    2015-03-01

    • Arbuscular mycorrhizal fungi usually enhance overall plant performance, yet their effects on seed germination and early plant establishment, crucial steps in plant cycles, are generally overlooked. In gynodioecious species, sexual dimorphism in these traits has been reported, with females producing seeds that germinate at a faster rate than seeds from hermaphrodites.• Using the gynodioecious plant Geranium sylvaticum, I investigated in a greenhouse experiment whether the presence of arbuscular mycorrhizal spores affects seed germination and early plant establishment, examining at the same time whether the sex of the mother producing the seeds also influences these parameters and whether sex-specific interactions between these two factors exist.• The presence of arbuscular mycorrhizal spores in the soil decreased seed germination, did not affect plant survival, but did increase plant growth. Moreover, no significant differences in seed traits were detected between the sexes of the plants producing the seeds.• This study demonstrates that arbuscular mycorrhizal fungi may have contrasting effects for plants during early life stages and that mycorrhizal effects can take place even at the precolonization stage. © 2015 Botanical Society of America, Inc.

  4. Effect of Plant Density and Weed Interference on Yield and Yied Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    S. Sarani

    2018-01-01

    Full Text Available Introduction Weed control is an essential part of all crop production systems. Weeds reduce yields by competing with crops for water, nutrients, and sunlight. Weeds also directly reduce profits by hindering harvest operations, lowering crop quality, and producing chemicals which are harmful to crop plants. Plant density is an efficient management tool for maximizing grain yield by increasing the capture of solar radiation within the canopy, which can significantly affect development of crop-weed association. The response of yield and yield components to weed competition varies by crop and weeds species and weeds interference duration. The objective of the present study was to evaluate the effect of weed interference periods and plant density on the yield and yield components of sorghum. Materials and Methods In order to study the effect of plant density and weeds interference on weeds traits, yield and yield components of sorghum (Var. Saravan, an experiment was conducted as in factorial based on a randomized complete block design with three replications at the research field of Islamic Azad University, Birjand Branch in South Khorasan province during year of 2013. Experimental treatments consisted of three plant density (10, 20 and 30 plants m-2 and four weeds interference (weed free until end of growth season, interference until 6-8 leaf stage, interference until stage of panicle emergence, interference until end of growth season. Measuring traits included the panicle length, number of panicle per plant, number of panicle per m2, number of seed per panicle, 1000-seed weight, seed yield, biological yield, number and weight of weeds per m2. Weed sampling in each plot have done manually from a square meter and different weed species counted and oven dried at 72 °C for 48 hours. MSTAT-C statistical software used for data analysis and means compared with Duncan multiple range test at 5% probability level. Results and Discussion Results showed that

  5. Cost benefit justification of nuclear plant reliability improvement

    International Nuclear Information System (INIS)

    El-Sayed, M.A.H.; Abdelmonem, N.M.

    1985-01-01

    The design of the secondary steam loop of the nuclear power plant has a significant effect on the reliability of the plant. Moreover, the necessity to cool a reactor safely has increased the reliability demanded from the system. The rapidly rising construction costs and fuel prices in recent years have stimulated a great deal in optimizing the productivity of a nuclear power plant through reliability improvement of the secondary steamloop and the reactor cooling system. A method for evaluating the reliability of steam loop and cooling system of a nuclear power plant is presented. The method utilizes the cut-set technique. The developed method can be easily used to show to what extent the overall reliability of the nuclear plant is affected by the possible failures in the steam and cooling subsystem. A model for calculating the increase in the nuclear plant productivity resulting from a proposed improvement in the two subsystems reliability is discussed. The model takes into account the capital cost of spare parts for several components, replacement energy, operating and maintenance costs

  6. Cherokee Adaptation to the Landscape of the West and Overcoming the Loss of Culturally Significant Plants

    Science.gov (United States)

    Vick, R. Alfred

    2011-01-01

    Plant species utilized by Cherokees have been documented by several authors. However, many of the traditional uses of plants were lost or forgotten in the generations following the Trail of Tears. The pressures of overcoming the physical and psychological impact of the removal, adapting to a new landscape, rebuilding a government, rebuilding…

  7. Danish emission inventories for stationary combustion plants. Inventories until year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, M.; Hjelgaard, K.

    2009-10-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO{sub 2} emission in 2007 was 10% lower than in 1990. However fluctuations in the emission level are large as a result of electricity import/export. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However the emission has decreased in recent years due to structural changes in the Danish electricity market. The N{sub 2}O emission was higher in 2007 than in 1990 but the fluctuations in the timeseries are significant. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants. (author)

  8. Utility requirements for advanced LWR passive plants

    International Nuclear Information System (INIS)

    Yedidia, J.M.; Sugnet, W.R.

    1992-01-01

    LWR Passive Plants are becoming an increasingly attractive and prominent option for future electric generating capacity for U.S. utilities. Conceptual designs for ALWR Passive Plants are currently being developed by U.S. suppliers. EPRI-sponsored work beginning in 1985 developed preliminary conceptual designs for a passive BWR and PWR. DOE-sponsored work from 1986 to the present in conjunction with further EPRI-sponsored studies has continued this development to the point of mature conceptual designs. The success to date in developing the ALWR Passive Plant concepts has substantially increased utility interest. The EPRI ALWR Program has responded by augmenting its initial scope to develop a Utility Requirements Document for ALWR Passive Plants. These requirements will be largely based on the ALWR Utility Requirements Document for Evolutionary Plants, but with significant changes in areas related to the passive safety functions and system configurations. This work was begun in late 1988, and the thirteen-chapter Passive Plant Utility Requirements Document will be completed in 1990. This paper discusses the progress to date in developing the Passive Plant requirements, reviews the top-level requirements, and discusses key issues related to adaptation of the utility requirements to passive safety functions and system configurations. (orig.)

  9. Resolving the Role of Plant NAD-Glutamate Dehydrogenase: III. Overexpressing Individually or Simultaneously the Two Enzyme Subunits Under Salt Stress Induces Changes in the Leaf Metabolic Profile and Increases Plant Biomass Production.

    Science.gov (United States)

    Tercé-Laforgue, Thérèse; Clément, Gilles; Marchi, Laura; Restivo, Francesco M; Lea, Peter J; Hirel, Bertrand

    2015-10-01

    NAD-dependent glutamate dehydrogenase (NAD-GDH) of higher plants has a central position at the interface between carbon and nitrogen metabolism due to its ability to carry out the deamination of glutamate. In order to obtain a better understanding of the physiological function of NAD-GDH under salt stress conditions, transgenic tobacco (Nicotiana tabacum L.) plants that overexpress two genes from Nicotiana plumbaginifolia individually (GDHA and GDHB) or simultaneously (GDHA/B) were grown in the presence of 50 mM NaCl. In the different GDH overexpressors, the NaCl treatment induced an additional increase in GDH enzyme activity, indicating that a post-transcriptional mechanism regulates the final enzyme activity under salt stress conditions. A greater shoot and root biomass production was observed in the three types of GDH overexpressors following growth in 50 mM NaCl, when compared with the untransformed plants subjected to the same salinity stress. Changes in metabolites representative of the plant carbon and nitrogen status were also observed. They were mainly characterized by an increased amount of starch present in the leaves of the GDH overexpressors as compared with the wild type when plants were grown in 50 mM NaCl. Metabolomic analysis revealed that overexpressing the two genes GDHA and GDHB, individually or simultaneously, induced a differential accumulation of several carbon- and nitrogen-containing molecules involved in a variety of metabolic, developmental and stress-responsive processes. An accumulation of digalactosylglycerol, erythronate and porphyrin was found in the GDHA, GDHB and GDHA/B overexpressors, suggesting that these molecules could contribute to the improved performance of the transgenic plants under salinity stress conditions. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Development of the Risk-Based Inspection Techniques and Pilot Plant Activities

    International Nuclear Information System (INIS)

    Phillips, J.H.

    1997-01-01

    Risk-based techniques have been developed for commercial nuclear power plants. System boundaries and success criteria is defined using the probabilistic risk analysis or probabilistic safety analysis developed to meet the individual plant evaluation. Final ranking of components is by a plant expert panel similar to the one developed for maintenance rule. Components are identified as being high risk-significant or low-risk significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of pilot plants. Results from the first risk-based inspection pilot plant indicates that safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. The reduction in inspection reduces the person-rem exposure resulting in further increases in safety. These techniques have been documented in publication by the ASME CRTD

  11. New approach to the problem of increasing the environmental protection during a severe accident at a nuclear power plant

    International Nuclear Information System (INIS)

    Kulyukhin, S.A.; Mikheev, N.B.; Kamenskaya, A.N.; Rumer, I.A.; Kazakevich, M.Z.; Novichenko, V.L.

    1996-01-01

    Although the probability of severe accidents is very low (less than 10 -5 ), these accidents have very hazardous consequences and can lead to an extensive contamination of the territory with radioactive compounds (e.g., Chernobyl accident in 1986). To minimize the consequences of such accidents at nuclear power plants (NPP), much attention is being given to operational safety issues. Particular emphasis has been placed on the in-depth protection, i.e., a multilevel protection. In order to increase the efficiency of available systems of environmental protection in both operating and projected NPPs, we have developed a new concept based on the use of man-made hydrophilic aerosols that can form mixed aerosol particles with radio-aerosols. The fundamental investigations performed have shown that the resulting mixed aerosols incorporate radio-aerosols with particle size less that 0.1 μm. These radio-aerosols acquire the properties of the macro-aerosols; i.e., hydrophobic aerosols become hydrophilic. The use of hydrophilic macro-aerosols allows the scrubber efficiency to be increased with respect to hydrophobic cesium aerosols (with particle size less than 0.1μ) by a factor of more than 50. Simultaneously, for operating NPPs supplied with under-containment pressure-relief system, we suggest a decontamination setup of a new type. This setup can work both of the decontamination of the vapor-air flow cesium and iodine radio-aerosols is 10 5 - 10 7 . As to the NPP projects now under development, the use of man-made aerosols under the containment at the time of an accident will allow the sedimentation rate of radio-aerosols to be significantly increased, and this will ensure a rapid removal of radioactivity from under the containment. Our investigations have shown that ammonium chloride increases the sedimentation rate of nano-metric cesium radio-aerosol particles by a factor of more than 100. Thus, an almost complete trapping of radio-aerosols through the use of man

  12. Significant increase of Echinococcus multilocularis prevalencein foxes, but no increased predicted risk for humans

    NARCIS (Netherlands)

    Maas, M.; Dam-Deisz, W.D.C.; Roon, van A.M.; Takumi, K.; Giessen, van der J.W.B.

    2014-01-01

    The emergence of the zoonotic tapeworm Echinococcus multilocularis, causative agent ofalveolar echinococcosis (AE), poses a public health risk. A previously designed risk mapmodel predicted a spread of E. multilocularis and increasing numbers of alveolar echinococ-cosis patients in the province of

  13. Air pollution impedes plant-to-plant communication, but what is the signal?

    Science.gov (United States)

    Blande, James D; Li, Tao; Holopainen, Jarmo K

    2011-07-01

    Since the first reports that undamaged plants gain defensive benefits following exposure to damaged neighbors, the idea that plants may signal to each other has attracted much interest. There has also been substantial debate concerning the ecological significance of the process and the evolutionary drivers. Part of this debate has centered on the distance over which signaling between plants occurs in nature. In a recent study we showed that an ozone concentration of 80 ppb, commonly encountered in nature, significantly reduces the distance over which plant-plant signaling occurs in lima bean. We went on to show that degradation of herbivore-induced plant volatiles by ozone is the likely mechanism for this. The key question remaining from our work was that if ozone is degrading the signal in transit between plants, which chemicals are responsible for transmitting the signal in purer air? Here we present the results of a small scale experiment testing the role of the two most significant herbivore-induced terpenes and discuss our results in terms of other reported functions for these chemicals in plant-plant signaling.

  14. Compost and residues from biogas plant as potting substrates for salt-tolerant and salt-sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    Cam Van, Do Thi

    2013-08-01

    proportions of compost and additives (Styromull or Perlite). The results show that the large percentage (> 50% by volume) of compost in the substrate had negative effects on plant growth and nutrient uptake (N, P, K, Mg and Na) because of its high salt content in compost-based substrates. However, both yield formation and nutrient uptake of the studied plants when grown in peat-based substrates significantly increased comparing to those of compost-based substrates and almost gained the level of the control. Especially, the growth of Salvia was significantly improved. Consequently, compost-based media (with more than 50% of compost) may not be recommended for salt sensitive ornamental plants, while less than 25% volume of compost incorporated with Peat creates favorable peat-based substrates which reasonably enhanced growth of Pelargonium and Salvia. Investigating antibiotic uptake by cabbage (Brassica oleracea var. capitata f. abba) from the manure-amended soils containing high and low carbon content spiked with the two antibiotics Chlortetracycline and Sulfamethazine was targeted as the third objective. The input concentrations of the studied antibiotics were 100, 200 and 400 {mu}g/kg regarded to their present concentration range in Chinese top soils. The antibiotics in plant materials were analyzed by HPLC-MS after extraction. The results reveal that the presence of available high carbon content in the soil increased crop yield of cabbage. However antibiotics were not detected in the cabbage materials according to the antibiotic employment with the initial studied concentrations. It may be concluded that with the small amounts of antibiotics applied to the soils, there is no risk of uptake of antibiotics by plants.

  15. Atmospheric transformation of plant volatiles disrupts host plant finding

    Science.gov (United States)

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-09-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.

  16. Effect of planting methods, seed density and nitrogen phosphorus (NP) fertilizer levels on sweet corn (Zea maYs L.)

    International Nuclear Information System (INIS)

    Amin, M.; Razzaq, A.; Ullah, R.

    2006-01-01

    A field experiment was conducted to evaluate the effect of planting methods, seed density and nitrogen phosphorus (NP) fertilizer levels on emergence m/sup -2/ growth and grain yield of sweet corn. The fertilizer and interaction of fertilizer x seed density had significant negative effect with increasing level while seed density had a positive effect with increased density on emergence per m/sup 2/. Increased seed density significantly reduced plant growth which increased with application of higher fertilizer dose. The grain yield was improves by ridge planting methods, increased seed density and increased fertilizer levels. The highest grain yield (3,553.50 kg ha/sup-1/) of sweet corn plants was recorded in ridge planting method with highest NP fertilizer level of 300:150 kg ha/sup 1/ and 4 seeds hill/sup -1/. The lowest grain yield (3,493.75 kg ha/sup -1/) of sweet corn was observed in flat sowing planting method with 120:75 NP level and 2 seeds hill/sup -1/ seed density. The ridge planting rank first then furrow and flat planting methods on basis of grain yield per hectare. The sweet corn plant yield was high with 4 seeds hill/sup -1/ compared with 2 seeds hill/sup -1/. (author)

  17. Physiological and biochemical responses of thyme plants to some antioxidants

    Directory of Open Access Journals (Sweden)

    SALWA A. ORABI

    2014-11-01

    Full Text Available Orabi SA, Talaat IM, Balbaa LK. 2014. Physiological and biochemical responses of thyme plants to some antioxidants. Nusantara Bioscience 6: 118-125. Two pot experiments were conducted to investigate the effect of tryptophan, nicotinamide and α-tocopherol (each at 50 and 100 mg/L on plant growth, essential oil yield and its main constituents. All treatments significantly promoted plant height, and increased fresh and dry mass (g/plant of thyme (Thymus vulgaris L.. The treatment with 100 mg/L nicotinamide showed increasing in total potassium mainly in the first cut. Total soluble sugars, oil percentage and oil yield and protein recorded increments with tryptophan treatments. Treatment of Thymus plants with 100 mg/L nicotinamide observed the highest percentage of thymol (67.61%. Oxygenated compounds recorded the highest value with 50 mg/L α-tocopherol treatment, while the maximum non-oxygenated ones resulted from the application of 100 mg/L nicotinamide. All treatments under study significantly affected the activity of oxidoreductase enzymes (POX and PPO. Nicotinamide at the concentration of 100 mg/L recorded the highest increments in APX and GR and the lowest values in oxidoreductase enzyme activities added to the lowest values of lipid peroxidation to enhance the best protection of thyme plants.

  18. Increasing the capacity of the NEAG natural gas processing plants; Kapazitaetssteigerung der Erdgasaufbereitungsanlagen der NEAG

    Energy Technology Data Exchange (ETDEWEB)

    Rest, W.; Weiss, A. [Mobil Erdgas-Erdoel GmbH, Celle (Germany)

    1998-12-31

    The fact that new deposits of sour natural gas were found in the concessions at Scholen/Wesergebirgsvorland and that a sour gas pipeline was built from the BEB-operated field in South-Oldenburg increased the sour gas volume handled by the North German Natural Gas Processing Company (NEAG) so much, that capacities had to be stepped up. This paper describes the measures taken to increase capacities. Various interesting process engineering methods employed to remove bottlenecks in the parts of the plant are described in detail. These refer to the modification of the baffle plates in the high-pressure absorber of the Purisolwashers NEAG I, as well as in the expansion tank and the purified gas waher of the NEAG III washing plant as well as comprehensive modifications of the MODOP-flue gas scrubber NEAG III (orig.) [Deutsch] Neue Sauergasfunde in den Konzessionen Scholen/Wiehengebirgsvorland sowie der Bau der Sauergasverbindungsleitung aus dem von BEB operierten Feldesbereich Sued-Oldenburg haben die der Norddeutschen Erdgas-Aufbereitungsgesellschaft (NEAG) in Voigtei angebotenen Sauergasmengen soweit erhoeht, dass eine Kapazitaetserhoehung notwendig wurde. Im Rahmen des Vortrages werden die Massnahmen zur Kapazitaetssteigerung vorgestellt. Einige verfahrenstechnisch besonders interessante Loesungen zur Beseitigung von Engpaessen in Anlagenteilen werden detailliert beschrieben. Es handelt sich hierbei um die Modifikation der Einbauten im Hochdruckabsorber der Purisolwaesche NEAG I, im Entspannungsbehaelter und Reingaswaescher der Waesche NEAG III sowie umfangreiche Aenderungen im Bereich der MODOP-Abgasreinigungsanlage NEAG III. (orig.)

  19. Combined production of fish and plants in recirculating water

    Energy Technology Data Exchange (ETDEWEB)

    Naegel, L.C.A.

    1977-01-01

    A pilot plant of ca 2000 l of recirculating fresh water for intensive fish production was constructed in a controlled-environment greenhouse. The feasibility was examined of using nutrients from fish wastewater, mainly oxidized nitrogenous compounds, for plant production, combined with an activated sludge system for water purification. The reduction of nitrates, formed during the extended aeration process by nitrifying bacteria, was not sufficient by higher plants and unicellular algae alone to reduce the nitrate concentration in our system significantly. An additional microbial denitrification step had to be included to effect maximal decrease in nitrogenous compounds. For fish culture in the pilot plant Tilapia mossambica and Cyprinus carpio were chosen as experimental fishes. Both fish species showed significant weight increases during the course of the experiment. Ice-lettuce and tomatoes were tested both in recirculating water and in batch culture. The unicellular algae Scenedesmus spp. were grown in a non-sterile batch culture. All plants grew well in the wastewater without additional nutrients. Determination of the physical and chemical parameters for optimum water purification, the most suitable ratio of denitrification by plants and by microorganisms, and the most favourable fish and plant species for combined culture in recirculating water are important and of current interest in view of the increasing demand for clean, fresh water, and the pressing need to find new ways of producing protein for human nutrition under prevailing conditions of an exponentially expanding world population.

  20. Integrated control centre concepts for CANDU power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Davey, E.C.; Lapointe, P.A.; Shah, R.R.

    1990-01-01

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre

  1. Integrated control centre concepts for CANDU power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lupton, L. R.; Davey, E. C.; Lapointe, P. A.; Shah, R. R.

    1990-01-15

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre.

  2. Stress tolerant plants

    OpenAIRE

    Rubio, Vicente; Iniesto Sánchez, Elisa; Irigoyen Miguel, María Luisa

    2014-01-01

    [EN] The invention relates to transgenic plants and methods for modulating abscisic acid (ABA) perception and signal transduction in plants. The plants find use in increasing yield in plants, particularly under abiotic stress.

  3. Increase of power and efficiency of the 900 MW supercritical power plant through incorporation of the ORC

    Science.gov (United States)

    Ziółkowski, Paweł; Mikielewicz, Dariusz; Mikielewicz, Jarosław

    2013-12-01

    The objective of the paper is to analyse thermodynamical and operational parameters of the supercritical power plant with reference conditions as well as following the introduction of the hybrid system incorporating ORC. In ORC the upper heat source is a stream of hot water from the system of heat recovery having temperature of 90 °C, which is additionally aided by heat from the bleeds of the steam turbine. Thermodynamical analysis of the supercritical plant with and without incorporation of ORC was accomplished using computational flow mechanics numerical codes. Investigated were six working fluids such as propane, isobutane, pentane, ethanol, R236ea and R245fa. In the course of calculations determined were primarily the increase of the unit power and efficiency for the reference case and that with the ORC.

  4. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Science.gov (United States)

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  5. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA).

    Science.gov (United States)

    Felker-Quinn, Emmi; Schweitzer, Jennifer A; Bailey, Joseph K

    2013-03-01

    Ecological explanations for the success and persistence of invasive species vastly outnumber evolutionary hypotheses, yet evolution is a fundamental process in the success of any species. The Evolution of Increased Competitive Ability (EICA) hypothesis (Blossey and Nötzold 1995) proposes that evolutionary change in response to release from coevolved herbivores is responsible for the success of many invasive plant species. Studies that evaluate this hypothesis have used different approaches to test whether invasive populations allocate fewer resources to defense and more to growth and competitive ability than do source populations, with mixed results. We conducted a meta-analysis of experimental tests of evolutionary change in the context of EICA. In contrast to previous reviews, there was no support across invasive species for EICA's predictions regarding defense or competitive ability, although invasive populations were more productive than conspecific native populations under noncompetitive conditions. We found broad support for genetically based changes in defense and competitive plant traits after introduction into new ranges, but not in the manner suggested by EICA. This review suggests that evolution occurs as a result of plant introduction and population expansion in invasive plant species, and may contribute to the invasiveness and persistence of some introduced species.

  6. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.

    Science.gov (United States)

    Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G

    2016-05-01

    Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools. © 2015 John Wiley & Sons Ltd.

  7. Towards engineering increased pantothenate (Vitamin B5) levels in plants

    CSIR Research Space (South Africa)

    Chakauya, E

    2008-11-01

    Full Text Available Pantothenate (vitamin B5) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway...

  8. Plant-Adapted Escherichia coli Show Increased Lettuce Colonizing Ability, Resistance to Oxidative Stress and Chemotactic Response

    Science.gov (United States)

    Dublan, Maria de los Angeles; Ortiz-Marquez, Juan Cesar Federico; Lett, Lina; Curatti, Leonardo

    2014-01-01

    Background Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. Methods/Principal Findings This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. Conclusion/Significance These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues. PMID:25313845

  9. Screening of plants for phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  10. Plant selection and soil legacy enhance long-term biodiversity effects.

    Science.gov (United States)

    Zuppinger-Dingley, Debra; Flynn, Dan F B; De Deyn, Gerlinde B; Petermann, Jana S; Schmid, Bernhard

    2016-04-01

    Plant-plant and plant-soil interactions can help maintain plant diversity and ecosystem functions. Changes in these interactions may underlie experimentally observed increases in biodiversity effects over time via the selection of genotypes adapted to low or high plant diversity. Little is known, however, about such community-history effects and particularly the role of plant-soil interactions in this process. Soil-legacy effects may occur if co-evolved interactions with soil communities either positively or negatively modify plant biodiversity effects. We tested how plant selection and soil legacy influence biodiversity effects on productivity, and whether such effects increase the resistance of the communities to invasion by weeds. We used two plant selection treatments: parental plants growing in monoculture or in mixture over 8 yr in a grassland biodiversity experiment in the field, which we term monoculture types and mixture types. The two soil-legacy treatments used in this study were neutral soil inoculated with live or sterilized soil inocula collected from the same plots in the biodiversity experiment. For each of the four factorial combinations, seedlings of eight species were grown in monocultures or four-species mixtures in pots in an experimental garden over 15 weeks. Soil legacy (live inoculum) strongly increased biodiversity complementarity effects for communities of mixture types, and to a significantly weaker extent for communities of monoculture types. This may be attributed to negative plant-soil feedbacks suffered by mixture types in monocultures, whereas monoculture types had positive plant-soil feedbacks, in both monocultures and mixtures. Monocultures of mixture types were most strongly invaded by weeds, presumably due to increased pathogen susceptibility, reduced biomass, and altered plant-soil interactions of mixture types. These results show that biodiversity effects in experimental grassland communities can be modified by the evolution of

  11. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J. G.; Dominguez, J.

    2009-07-01

    Abstract Post transplant success after nursery stage is strongly influenced by plant morphology. Cultural practices strongly shape plant morphology, and substrate choice is one of the most determining factors. Peat is the most often used amendment in commercial potting substrates, involving the exploitation of non-renewable resources and the degradation of highly valuable peatland ecosystems and therefore alternative substrates are required. Here the feasibility of replacing peat by compost or vermicompost for the production of tomato plants in nurseries was investigated through the study of the effect of increasing proportions of these substrates (0%, 10%, 20%, 50%, 75% and 100%) in target plant growth and morphological features, indicators of adequate post-transplant growth and yield. Compost and vermicompost showed to be adequate substrates for tomato plant growth. Total replacement of peat by vermicompost was possible while doses of compost higher than 50% caused plant mortality. Low doses of compost (10 and 20%) and high doses of vermicompost produced significant increases in aerial and root biomass of the tomato plants. In addition these treatments improved significantly plant morphology (higher number of leaves and leaf area, and increased root volume and branching). The use of compost and vermicompost constitute an attractive alternative to the use of peat in plant nurseries due to the environmental benefits involved but also due to the observed improvement in plant quality. Additional key words: peat moss, plant nursery, soil-less substrate, Solanum lycopersicum L. (Author) 37 refs.

  12. Requirements and operation of decentralised power plants in the changing power market

    International Nuclear Information System (INIS)

    Hoenings, Norbert; Hornig, Niels; Steinbach, Sebastian

    2014-01-01

    E.ON plans and realises distributed industrial power plants on the basis of contracting schemes. Target is to reduce energy costs without investment by the customer himself. Gas turbine CHP plants are very flexible and offer many possibilities for the operator to adjust optimally to a constantly changing energy market. This aspect is becoming increasingly important due to the increasing share of renewables. However, the economic situation for CHP plants has deteriorated significantly, due to the current market situation distorted by the subsidised renewable power generation. (orig.)

  13. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, Elzbieta, E-mail: elo@mb.au.dk [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Przybylowicz, Wojciech; Orlowski, Dariusz [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Turnau, Katarzyna [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Mesjasz-Przybylowicz, Jolanta [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa)

    2011-12-15

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: > The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. > Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. > Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. > Mycorrhizal colonization affected concentration and uptake of other elements. > Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  14. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    International Nuclear Information System (INIS)

    Orlowska, Elzbieta; Przybylowicz, Wojciech; Orlowski, Dariusz; Turnau, Katarzyna; Mesjasz-Przybylowicz, Jolanta

    2011-01-01

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: → The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. → Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. → Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. → Mycorrhizal colonization affected concentration and uptake of other elements. → Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  15. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    Science.gov (United States)

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  16. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhou, C; Ma, Z Y; Zhu, L; Guo, J S; Zhu, J; Wang, J F

    2015-12-17

    The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants' adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment. Alfalfa plants that overexpressed EsMcsu1 had a higher ABA content than wild-type (WT) plants under drought stress conditions. Furthermore, levels of reactive oxygen species (ROS), ion leakage, and malondialdehyde were lower in the transgenic plants than in the WT plants after drought treatment, suggesting that the transgenic plants experienced less ROS-mediated damage. However, the expression of several stress-responsive genes, antioxidant enzyme activity, and osmolyte (proline and total soluble sugar) levels in the transgenic plants were higher than those in the WT plants after drought treatment. Therefore, EsMcsu1 overexpression improved drought tolerance in alfalfa plants by activating a series of ABA-mediated stress responses.

  17. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    Science.gov (United States)

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement.

  18. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105).

    Science.gov (United States)

    Rungin, Siriwan; Indananda, Chantra; Suttiviriya, Pavinee; Kruasuwan, Worarat; Jaemsaeng, Ratchaniwan; Thamchaipenet, Arinthip

    2012-10-01

    An endophytic Streptomyces sp. GMKU 3100 isolated from roots of a Thai jasmine rice plant (Oryza sativa L. cv. KDML105) showed the highest siderophore production on CAS agar while phosphate solubilization and IAA production were not detected. A mutant of Streptomyces sp. GMKU 3100 deficient in just one of the plant growth promoting traits, siderophore production, was generated by inactivation of a desD-like gene encoding a key enzyme controlling the final step of siderophore biosynthesis. Pot culture experiments revealed that rice and mungbean plants inoculated with the wild type gave the best enhancement of plant growth and significantly increased root and shoot biomass and lengths compared with untreated controls and siderophore-deficient mutant treatments. Application of the wild type in the presence or absence of ferric citrate significantly promoted plant growth of both plants. The siderophore-deficient mutant clearly showed the effect of this important trait involved in plant-microbe interaction in enhancement of growth in rice and mungbean plants supplied with sequestered iron. Our results highlight the value of a substantial understanding of the relationship of the plant growth promoting properties of endophytic actinomycetes to the plants. Endophytic actinomycetes, therefore, can be applied as potentially safe and environmentally friendly biofertilizers in agriculture.

  19. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  20. Effect of space flight on seeds and plant growth of Dianthus barbatus in SP1

    International Nuclear Information System (INIS)

    Yang Xuejun; Teng Wenjun; Yuan Xiaohuan; Chao Gongping; Zhang Jianfang; Sun Zhenyuan

    2011-01-01

    The dry seeds of Dianthus barbatus were carried by recoverable satellite No.21 of China, and seeds were sown after returning back to the ground. The growth characteristic were observed, including seed vitality, emergence rate, plant growth and chlorophyll content of SP 1 generation. The results showed that the seed vitality, emergence rate and plant height, flower stalk length in SP 1 generation were significantly decreased and the floret size were significantly increased. The leaf width, chlorophyll content and chlorophyll a/b ratio decreased, while crown diameter and floret number increased in SP 1 generation plants. (authors)

  1. of Effect of different organic materials on plant growth

    Directory of Open Access Journals (Sweden)

    mehrnosh eskandari

    2009-06-01

    Full Text Available Using organic matter, such as, peat and vermicompost as soil amendment, increases aeration, water infiltration, water holding capacity and nutrients of soil . A greenhouse experiment was performed to study the effect of organic materials on plant growth characteristics, total biomass and grain weight of chickpea with four treatments; 1 Soil + 3% peat (PS, 2 Sterile soil + 3% peat (SPS, 3 Soil + vermicompost (1:6 (VCS, 4 control (C in a completely randomized design with four replications. The results showed that the maximum germination percentage, number of branch and number of pod per plant were observed in SPS treatment due to the avoidance of harmful microbial impacts. Plant height in this treatment reduced, whereas, no significant differences in total dry matter per plant and dry weight of chickpea per plant were observed compared to control. Plant growth consist of plant height, number of branch and number of pod per plant in vermicompost and soil + peat treatment reduced in the early stages probably because of plant - microbes interaction effects. Application of vermicompost increased fresh and dry weight, pod dry weight and single grain weight, probably due to more plant nutrient availability in this treatment when compared with other treatments.

  2. Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase.

    Science.gov (United States)

    Nakajima, Katsuyuki; Tokita, Yoshiharu; Sakamaki, Koji; Shimomura, Younosuke; Kobayashi, Junji; Kamachi, Keiko; Tanaka, Akira; Stanhope, Kimber L; Havel, Peter J; Wang, Tao; Machida, Tetsuo; Murakami, Masami

    2017-02-01

    Previous large population studies reported that non-fasting plasma triglyceride (TG) reflect a higher risk for cardiovascular disease than TG in the fasting plasma. This is suggestive of the presence of higher concentration of remnant lipoproteins (RLP) in postprandial plasma. TG and RLP-TG together with other lipids, lipoproteins and lipoprotein lipase (LPL) in both fasting and postprandial plasma were determined in generally healthy volunteers and in patients with coronary artery disease (CAD) after consuming a fat load or a more typical moderate meal. RLP-TG/TG ratio (concentration) and RLP-TG/RLP-C ratio (particle size) were significantly increased in the postprandial plasma of both healthy controls and CAD patients compared with those in fasting plasma. LPL/RLP-TG ratio demonstrated the interaction correlation between RLP concentration and LPL activity The increased RLP-TG after fat consumption contributed to approximately 90% of the increased plasma TG, while approximately 60% after a typical meal. Plasma LPL in postprandial plasma was not significantly altered after either type of meal. Concentrations of RLP-TG found in the TG along with its particle size are significantly increased in postprandial plasma compared with fasting plasma. Therefore, non-fasting TG determination better reflects the presence of higher RLP concentrations in plasma. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Perception of volatiles produced by UVC-irradiated plants alters the response to viral infection in naïve neighboring plants.

    Science.gov (United States)

    Yao, Youli; Danna, Cristian H; Ausubel, Frederick M; Kovalchuk, Igor

    2012-07-01

    Interplant communication of stress via volatile signals is a well-known phenomenon. It has been shown that plants undergoing stress caused by pathogenic bacteria or insects generate volatile signals that elicit defense response in neighboring naïve plants. Similarly, we have recently shown that naïve plants sharing the same gaseous environment with UVC-exposed plants exhibit similar changes in genome instability as UVC-exposed plants. We found that methyl salicylate (MeSA) and methyl jasmonate (MeJA) serve as volatile signals communicating genome instability (as measured by an increase in the homologous recombination frequency). UVC-exposed plants produce high levels of MeSA and MeJA, a response that is missing in an npr1 mutant. Concomitantly, npr1 mutants are impaired in communicating the signal leading to genome instability, presumably because this mutant does not develop new necrotic lesion after UVC irradiation as observed in wt plants. To analyze the potential biological significance of such plant-plant communication, we have now determined whether bystander plants that receive volatile signals from UVC-irradiated plants, become more resistant to UVC irradiation or infection with oilseed rape mosaic virus (ORMV). Specifically, we analyzed the number of UVC-elicited necrotic lesions, the level of anthocyanin pigments, and the mRNA levels corresponding to ORMV coat protein and the NPR1-regulated pathogenesis-related protein PR1 in the irradiated or virus-infected bystander plants that have been previously exposed to volatiles produced by UVC-irradiated plants. These experiments showed that the bystander plants responded similarly to control plants following UVC irradiation. Interestingly, however, the bystander plants appeared to be more susceptible to ORMV infection, even though PR1 mRNA levels in systemic tissue were significantly higher than in the control plants, which indicates that bystander plants could be primed to strongly respond to bacterial

  4. Plant capacity uprating problems and solutions

    International Nuclear Information System (INIS)

    Bruster, L.H.; Nicholson, J.M.

    1992-01-01

    The changing economics associated with electric power generation require producers and suppliers of electrical energy to adopt new strategies for production and pricing. New challenges face utility managers as they attempt to position themselves to be low-cost producers of electricity. Owner/operators of nuclear power plants have many strategies and tactics by which to establish or maintain their competitive positions as electric power producers. One simple approach is to increase plant output without investing significant capital in new facilities. This paper reports that this objective can be accomplished by extending the operation of nuclear plants into their stretch power rating, or to higher core power levels if system/component margins permit

  5. Soil and plant response to used potassium silicate drilling fluid application.

    Science.gov (United States)

    Yao, Linjun; Anne Naeth, M

    2015-10-01

    Use of drilling waste generated from the oil and gas industry for land reclamation has potential to be a practical and economical means to improve soil fertility and to decrease landfills. A four month greenhouse experiment with common barley (Hordeum vulgare L.) on three different textured soils was conducted to determine soil and plant response to incorporated or sprayed potassium silicate drilling fluid (PSDF). Two PSDF types (used once, used twice) were applied at six rates (10, 20, 30, 40, 60, 120m(3)ha(-1)) as twelve PSDF amendments plus a control (non PSDF). Effects of PSDF amendment on plant properties were significant, and varied through physiological growth stages. Barley emergence and below ground biomass were greater with used once than used twice PSDF at the same application rate in clay loam soil. Used twice PSDF at highest rates significantly increased barley above ground biomass relative to the control in loam and sand soil. All PSDF treatments significantly increased available potassium relative to the control in all three soils. Soil electrical conductivity and sodium adsorption ratio increased with PSDF addition, but not to levels detrimental to barley. Soil quality rated fair to poor with PSDF amendments in clay loam, and reduced plant performance at the highest rate, suggesting a threshold beyond which conditions are compromised with PSDF utilization. PSDF application method did not significantly affect plant and soil responses. This initial greenhouse research demonstrates that PSDF has potential as a soil amendment for reclamation, with consideration of soil properties and plant species tolerances to determine PSDF types and rates to be used. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-03-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  7. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  8. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  9. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  10. Effect of Calcium Levels on Strontium Uptake by Canola Plants Grown on Different Texture Soils

    International Nuclear Information System (INIS)

    El-Shazly, A.A.; Rezk, M. A.; Abdel-Sabour, M.F.; Mousa, E.A.; Mostafa, M.A.Z.; Lotfy, S.M.; Farid, I.M.; Abbas, M.H.H.; Abbas, H.H.

    2016-01-01

    Canola is considered aphytoremediator where, it can remove adequate quantities of heavy metals when grown on polluted soils.This study aimed to investigate growth performance of canola plants grown on clayey non-calcareous, sandy non-calcareous and sandy clay loam calcareous soils with different CaCO 3 contents. These soils were artificially contaminated with 100 mg Sr kg -1 and cultivated with canola plants under three levels of applied calcium i.e. 0, 60 and 85 mg Ca kg -1 in the form of CaCl 2 . The grown plants were kept under the green house conditions until (pot experiment) maturity. Afterwards, plants were harvested, separated into shoots, roots and seeds, and analyzed for their contents of calcium and strontium. Application of calcium to the sandy soil increased Ca uptake by canola plants whereas, Sr uptake, plant growth and seed yield were reduced. In the other soils, Ca and Sr uptake values were increased with minimized Ca rate. Such increases were associated with significant increases in the plant biomass and crop yield in the clayey soil; whereas, in the sandy clay loam calcareous soil, such increases were insignificant. Increasing the dose of the applied Ca (its higher rate) was associated with significant reduction in the plant growth and seed yield in these two soils. Both the biological concentration factor and the biological accumulation factors were relatively high (>1). The biological transfer factor was also high indicating high translocation of Sr from root to shoot. However, Sr translocation decreased with Ca applications. Accordingly canola plants are highly recommended for phytoextraction of Sr from polluted soils

  11. Plant stress signalling: understanding and exploiting plant-plant interactions.

    Science.gov (United States)

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  12. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.

    Science.gov (United States)

    Zebelo, Simon A; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E

    2012-11-01

    Tomato plants respond to herbivory by emitting volatile organic compounds (VOCs), which are released into the surrounding atmosphere. We analyzed the tomato herbivore-induced VOCs and tested the ability of tomato receiver plants to detect tomato donor volatiles by analyzing early responses, including plasma membrane potential (V(m)) variations and cytosolic calcium ([Ca²⁺](cyt)) fluxes. Receiver tomato plants responded within seconds to herbivore-induced VOCs with a strong V(m) depolarization, which was only partly recovered by fluxing receiver plants with clean air. Among emitted volatiles, we identified by GC-MS some green leaf volatiles (GLVs) such as (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, the monoterpene α-pinene, and the sesquiterpene β-caryophyllene. GLVs were found to exert the stronger V(m) depolarization, when compared to α-pinene and β-caryophyllene. Furthermore, V(m) depolarization was found to increase with increasing GLVs concentration. GLVs were also found to induce a strong [Ca²⁺](cyt) increase, particularly when (Z)-3-hexenyl acetate was tested both in solution and with a gas. On the other hand, α-pinene and β-caryophyllene, which also induced a significant V(m) depolarization with respect to controls, did not exert any significant effect on [Ca²⁺](cyt) homeostasis. Our results show for the first time that plant perception of volatile cues (especially GLVs) from the surrounding environment is mediated by early events, occurring within seconds and involving the alteration of the plasma membrane potential and the [Ca²⁺](cyt) flux. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    OpenAIRE

    Glick, Bernard R.

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and pla...

  14. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Science.gov (United States)

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  15. Globalization and loss of plant knowledge: challenging the paradigm.

    Science.gov (United States)

    Vandebroek, Ina; Balick, Michael J

    2012-01-01

    The erosion of cultural knowledge and traditions as a result of globalization and migration is a commonly reported phenomenon. We compared one type of cultural knowledge about medicinal plants (number of plants reported to treat thirty common health conditions) among Dominican laypersons who self-medicate with plants and live in rural or urban areas of the Dominican Republic (DR), and those who have moved to New York City (NYC). Many plants used as medicines were popular Dominican food plants. These plants were reported significantly more often by Dominicans living in NYC as compared to the DR, and this knowledge was not age-dependent. These results contradict the popular paradigm about loss of cultural plant knowledge and is the first study to report a statistically measurable increase in this type of knowledge associated with migration.

  16. Improved safety of the system 80+TM standard plants design through increased diversity and redundancy of safety systems

    International Nuclear Information System (INIS)

    Matzie, Regis A.; Carpentino, Frederick L.; Robertson, James E.

    1996-01-01

    Safely systems in the System 80+ TM Standard Plant are designed with more redundancy, diversity and simplicity than earlier nuclear power plant designs. These gains were accomplished by an evolutionary process that preserved the desirable and proven features in currently operating nuclear plants, while improving reliability and defense-in-depth. The System 80+ safety systems are the primary contributors to a core damage frequency that is more than 100 times lower than 1980's vintage U. S. designs, including the predecessor System 80 R standard nuclear steam supply system (NSSS) design. The System 80+ design includes significant improvements to the safety injection system, emergency feedwater system, shutdown cooling system, containment spray system, reactor coolant gas vent system, and to their vital support systems. These improvements enhance performance for traditional design basis events and significantly reduce the probability of a severe accident. The System 80+ design also incorporates safety systems to mitigate a severe accident. The added systems include the rapid depressurization system, the in-containment refueling water storage tank, the cavity flooding system. These systems fully address the U. S. Nuclear Regulatory Commission's (US NRC) severe accident policy. The System 80+ safety systems are integrated with the System 80+ Nuclear Island (NI) design. The NI general arrangement provides quadrant separation of the safety systems for protection from fire and flooding, and large equipment pull spaces and lay down areas for maintenance. This paper will describe the System 80+ safety systems advanced design features, the improved accident prevention and mitigation capabilities, and startup, operating and maintenance benefits

  17. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  18. Increase of atmospheric CO2 promotes phytoplankton productivity

    NARCIS (Netherlands)

    Schippers, P.; Lürling, M.F.L.L.W.; Scheffer, M.

    2004-01-01

    It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show

  19. Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng Soon; Kwak, Sang Soo; Kwon, Hye Gyung [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    The gamma radiation-induced changes of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in callus cultures of cassava (Manihot esculenta) and sweet potato (Ipomoea batatas) were investigated. Both cell lines irradiated with 50 and 70 Gy on 7 days after subculture inhibited significantly the cell growth by 50% and 80% at 14 days after treatment (DAT), respectively. In 70 Gy irradiated with cassava calli SOD and POD specific activities increased by 4 and 2.5 folds at 14 DAT, respectively, whereas CAT activity was not affected. When sweet potato calli were irradiated 10 Gy POD activity showed the highest at 14 DAT, whereas the CAT activity was not affected. In the transgenic tobacco plants that overexpress swpal encoding anionic POD cDNA or swpnl encoding neutral POD cDNA, POD and SOD activities were not significantly increased after {gamma}-radiation treatment, but swpal-plants showed a higher activity than that of swpnl-or non-transgenic plants. Plant growth was severely inhibited showing a well correlation with the dose of radiation. Specially, {gamma}-radiation affected growth of shoot apical meristem. (author). 32 refs., 7 figs.

  20. Optimization of organic contaminant and toxicity testing analytical procedures for estimating the characteristics and environmental significance of natural gas processing plant waste sludges

    International Nuclear Information System (INIS)

    Novak, N.

    1990-10-01

    The Gas Plant Sludge Characterization Phase IIB program is a continuation of the Canadian Petroleum Association's (CPA) initiatives to characterize sludge generated at gas processing plants. The objectives of the Phase IIB project were to develop an effective procedure for screening waste sludges or centrifuge/leachate generated from sludge samples for volatile, solvent-soluble and water-soluble organics; verify the reproducibility of the three aquatic toxicity tests recommended as the battery of tests for determining the environmental significance of sludge centrifugates or leachates; assess the performance of two terrestrial toxicity tests in determining the environmental significance of whole sludge samples applied to soil; and to assess and discuss the reproducibility and cost-effectiveness of the sampling and analytical techniques proposed for the overall sludge characterization procedure. Conclusions and recommendations are provided for sludge collection, preparation and distribution, organic analyses, toxicity testing, project management, and procedure standardization. The three aquatic and two terrestrial toxicity tests proved effective in indicating the toxicity of complex mixtures. 27 refs., 3 figs., 59 tabs

  1. Determination of Properties of Selected Fresh and Processed Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Shirley G. Cabrera

    2015-11-01

    Full Text Available The study aimed to determine the chemical properties, bioactive compounds, antioxidant activity and toxicity level of fresh and processed medicinal plants such as corn (Zea mays silk, pancitpancitan (Peperomiapellucida leaves, pandan (Pandanus amaryllifolius leaves, and commercially available tea. The toxicity level of the samples was measured using the Brine Shrimp Lethality Assay (BSLA. Statistical analysis was done using Statistical Package for Social Sciences (SPSS. Results showed that in terms of chemical properties there is significant difference between fresh and processed corn silk except in crude fiber content was noted. Based on proximate analyses of fresh and processed medicinal plants specifically in terms of % moisture, %crude protein and % total carbohydrates were also observed. In addition, there is also significant difference on bioactive compound contents such as total flavonoids and total phenolics between fresh and processed corn silk except in total vitamin E (TVE content. Pandan and pancit-pancitan showed significant difference in all bioactive compounds except in total antioxidant content (TAC. Fresh pancit-pancitan has the highest total phenolics content (TPC and TAC, while the fresh and processed corn silk has the lowest TAC and TVE content, respectively. Furthermore, results of BSLA for the three medicinal plants and commercially available tea extract showed after 24 hours exposure significant difference in toxicity level was observed. The percentage mortality increased with an increase in exposure time of the three medicinal plants and tea extract. The results of the study can served as baseline data for further processing and commercialization of these medicinal plants.

  2. Priming of antiherbivore defensive responses in plants

    Institute of Scientific and Technical Information of China (English)

    Jinwon Kim; Gary W.Felton

    2013-01-01

    Defense priming is defined as increased readiness of defense induction.A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses,both biotic and abiotic,and upon the following stimulus,induce defenses more quickly and strongly.For instance,some plants previously exposed to herbivore-inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding.Research on priming of antiherbivore defense has been limited to the HIPV-mediated mechanism until recently,but significant advances were made in the past three years,including non-HIPV-mediated defense priming,epigenetic modifications as the molecular mechanism of priming,and others.It is timely to consider the advances in research on defense priming in the plantinsect interactions.

  3. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Social marketing campaign significantly associated with increases in syphilis testing among gay and bisexual men in San Francisco.

    Science.gov (United States)

    Montoya, Jorge A; Kent, Charlotte K; Rotblatt, Harlan; McCright, Jacque; Kerndt, Peter R; Klausner, Jeffrey D

    2005-07-01

    Between 1999 and 2002, San Francisco experienced a sharp increase in early syphilis among gay and bisexual men. In response, the San Francisco Department of Public Health launched a social marketing campaign to increase testing for syphilis, and awareness and knowledge about syphilis among gay and bisexual men. A convenience sample of 244 gay and bisexual men (18-60 years of age) were surveyed to evaluate the effectiveness of the campaign. Respondents were interviewed to elicit unaided and aided awareness about the campaign, knowledge about syphilis, recent sexual behaviors, and syphilis testing behavior. After controlling for other potential confounders, unaided campaign awareness was a significant correlate of having a syphilis test in the last 6 months (odds ratio, 3.21; 95% confidence interval, 1.30-7.97) compared with no awareness of the campaign. A comparison of respondents aware of the campaign with those not aware also revealed significant increases in awareness and knowledge about syphilis. The Healthy Penis 2002 campaign achieved its primary objective of increasing syphilis testing, and awareness and knowledge about syphilis among gay and bisexual men in San Francisco.

  5. Human factor - an important reserve in increasing efficiency and safety of nuclear power plants

    International Nuclear Information System (INIS)

    Simunek, P.

    1982-01-01

    It is demonstrated that the relationship between man and technical equipment in a nuclear power plant should be studied using the systems analysis approach. The consistent use of ergonomic knowledge in nuclear power plants makes it possible with relatively small additional expenditure to achieve considerable economic effect. The establishment is therefore suggested of a workplace to coordinate the use of applied ergonomics in nuclear power plants. (Ha)

  6. Aphrodisiac properties of some Zimbabwean medicinal plants ...

    African Journals Online (AJOL)

    treated with M. whitei and E. capensis, aloe and pumpkin seeds showing an increase in sexual performance in terms of intromissions and ejaculatory latency which also improved sexual sensation and coupulatory efficiency. The formulations of plants under investigation showed significant aphrodisiac properties.

  7. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains.

    Directory of Open Access Journals (Sweden)

    Chun-Juan Wang

    Full Text Available Our previous work showed that a consortium of three plant growth-promoting rhizobacterium (PGPR strains (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21, termed as BBS for short, was a promising biocontrol agent. The present study investigated its effect on drought tolerance in cucumber plants. After withholding watering for 13 days, BBS-treated cucumber plants had much darker green leaves and substantially lighter wilt symptoms than control plants. Compared to the control, the BBS treatment decreased the leaf monodehydroascorbate (MDA content and relative electrical conductivity by 40% and 15%, respectively; increased the leaf proline content and the root recovery intension by 3.45-fold and 50%, respectively; and also maintained the leaf chlorophyll content in cucumber plants under drought stress. Besides, in relation to the control, the BBS treatment significantly enhanced the superoxide dismutase (SOD activity and mitigated the drought-triggered down-regulation of the expression of the genes cAPX, rbcL, and rbcS encoding cytosolic ascorbate peroxidase, and ribulose-1,5-bisphosphate carboxy/oxygenase (Rubisco large and small subunits, respectively, in cucumber leaves. However, 1-aminocyclopropane-1-carboxylate (ACC deaminase activity was undetected in none of the culture solutions of three BBS constituent strains. These results indicated that BBS conferred induced systemic tolerance to drought stress in cucumber plants, by protecting plant cells, maintaining photosynthetic efficiency and root vigor and increasing some of antioxidase activities, without involving the action of ACC deaminase to lower plant ethylene levels.

  8. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  9. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants.

    Science.gov (United States)

    Islam, Md Rashedul; Madhaiyan, M; Deka Boruah, Hari P; Yim, Woojong; Lee, Gillseung; Saravanan, V S; Fu, Qingling; Hu, Hongqing; Sa, Tongmin

    2009-10-01

    The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1- aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia (NH3). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

  10. Using a botanical garden to assess factors influencing the colonization of exotic woody plants by phyllophagous insects.

    Science.gov (United States)

    Kirichenko, Natalia; Kenis, M

    2016-09-01

    The adoption of exotic plants by indigenous herbivores in the region of introduction can be influenced by numerous factors. A botanical garden in Western Siberia was used to test various hypotheses on the adaptation of indigenous phyllophagous insects to exotic plants invasions, focusing on two feeding guilds, external leaf chewers and leaf miners. A total of 150 indigenous and exotic woody plant species were surveyed for insect damage, abundance and species richness. First, exotic woody plants were much less damaged by chewers and leaf miners than native plants, and the leaf miners' species richness was much lower on exotic than native plants. Second, exotic woody plants having a congeneric species in the region of introduction were more damaged by chewers and hosted a more abundant and species-rich community of leaf miners than plants without native congeneric species. Third, damage by chewers significantly increased with the frequency of planting of exotic host plants outside the botanical garden, and leaf miners' abundance and species richness significantly increased with residence time in the garden. Finally, no significant relationship was found between insect damage or abundance and the origin of the exotic plants. Besides the ecological implications of the results, this study also illustrates the potential of botanical gardens to test ecological hypotheses on biological invasions and insect-plant interactions on a large set of plant species.

  11. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    Science.gov (United States)

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of auxin and thiamine interaction effect on PAL activity and phenolic compounds content in vegetative growth stage of soybean plants

    Directory of Open Access Journals (Sweden)

    nazi nadernejad

    2017-08-01

    Full Text Available Soybean (Glycin max L. is one of the most important oily seeds in the world. This plant is rich in protein and unsaturated fats, and plays a significant role in human health with phenolic compounds and flavonoids. Indole Butyric Acid (IBA is a plant growth regulator that plays a key role in producing phenolic compounds and increasing the antioxidant capacity of the plant. Thiamine is one of the important vitamins in strengthening the immune system and increasing the resistance to environmental stresses in the plant's growth stages. Regarding the effect of hormone auxin and thiamine on the production of phenolic compounds as one of the antioxidant compounds in growth stages, the aim of this study was to investigate the effect of the two compounds in two stages of soybean growth and compare their effect on phenolic compounds changes in order to Detecting higher antioxidant capacity in environmental stress tolerance. For this purpose, the DPX cultivar of soybean seeds were prepared from Dezful Agriculture Research Center and planted in perlite containing flowers. The plants were planted under factorial design under IBA treatments with three concentrations of 0, 10 and 50 and thiamine with three concentrations of 0, 50 and 200. Extraction and evaluation of phenolic compounds, anthocyanins and pigments in leaves were performed. Data were analyzed using Duncan's test at a significant level of 5%. The results showed that the combined use of auxin and thiamine increased the carotenoid content in both phases and caused a significant increase in phenolic content. Application of auxin alone reduced auxin and thiamine the anthocyanin content significantly in both phases, but did not have a significant effect on phenolic content. The results showed that the PAL activity of the phenolic and anthocyanin content increased significantly in the 9-leaf stage compared to 3-leaf. Generally, the results showed that interaction effect between auxin and thiamine on

  13. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  14. Technical diagnostics - equipment monitoring for increasing safety and availability of nuclear power plants

    International Nuclear Information System (INIS)

    Sturm, A.; Foerster, R.

    1977-01-01

    Utilization of technical diagnostics in equipment monitoring of nuclear power plants for ensuring nuclear safety, economic availability, and for decision making on necessary maintenance is reviewed. Technical diagnostics is subdivided into inspection and early detection of malfunctions. Moreover, combination of technical diagnostics and equipment monitoring, integration of technical diagnostics into maintenance strategy, and problems of introducing early detection of malfunctions into maintenance management of nuclear power plants are also discussed. In addition, a compilation of measuring techniques used in technical diagnostics has been made. The international state of the art of equipment monitoring in PWR nuclear power plants is illustrated by description of the sound and vibration measuring techniques. (author)

  15. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation.

    Science.gov (United States)

    Bennett, John O; Yu, Oliver; Heatherly, Larry G; Krishnan, Hari B

    2004-12-15

    To circumvent drought conditions persisting during seed fill in the mid-south U.S. soybean production region, researchers have developed the early soybean (Glycine max [L.] Merr.) production system (ESPS), which entails early planting of short-season varieties. Because soybean supplies a preponderance of the world's protein and oil and consumption of soy-based foods has been associated with multiple health benefits, the effects of this agronomic practice on seed quality traits such as protein, oil, and isoflavones should be investigated. Four cultivars of soybean, two from maturity group IV and two from maturity group V, were planted in April (ESPS) and May (traditional) in a two-year study at Stoneville, MS. Near-infrared analysis of soybean seed was utilized to determine the percentages of protein and oil. Dependent upon variety, the oil content of the early-planted crop was increased by 3-8%, whereas protein was not significantly changed. Visualization of protein extracts fractionated by sodium dodecyl sulfate-polyacrylamide electrophoresis and fluorescence two-dimensional difference gel electrophoresis revealed that early planting did not affect the relative accumulation of the major seed-storage proteins; thus, protein composition was equal to that of traditionally cultivated soybeans. Maturity group IV cultivars contained a higher percentage of oil and a lower percentage of protein than did the maturity group V cultivars, regardless of planting date. Gas chromatographic separation of fatty acids revealed that the percentages of saturated and unsaturated fatty acids were not significantly altered by planting date. Methanol extracts of seed harvested from different planting dates when analyzed by high-performance liquid chromatography showed striking differences in isoflavone content. Dependent upon the variety, total isoflavone content was increased as much as 1.3-fold in early-planted soybeans. Irrigation enhanced the isoflavone content of both early- and

  16. The Exogenous Amelioration Roles of Growth Regulators on Crop Plants Grow under Different Osmotic Potential

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2014-03-01

    Full Text Available The production of fresh and dry matter of maize, wheat, cotton, broad and parsley plants show a variable response to the elevation of salinity stress. The production of fresh and dry matter of shoots and roots in wheat and broad bean plants tended to decrease with increasing NaCl concentration, salt stress progressively decrease in fresh and dry matter yield of maize plants. The increase in salinization levels induced a general insignificant change in production of fresh and dry matter of both organs of parsley plants. However, salinity induced a marked increase in the values of fresh and dry matter yields of cotton plants grown at the lowest level (-0.3 MPa NaCl and a reduction at higher salinization levels. Leaf area of unsprayed plants was excesivly decreased with the rise of osmotic stress levels especially at higher salinity levels of maize, wheat, cotton, and broad bean and parsley plants. the total pigments concentration decreased with rise of salinization levels in maize and cotton, these contents remained more or less un affected up to the level of 0.6 MPa NaCl in wheat and up to 0.9 MPa in parsley plants, there above, they were significantly reduced with increasing salinity levels. In broad bean plants the total pigments contents showed a non-significant alterations at all salinity stress. Spraying the vegetative parts of the five tested plants with 200 ppm of either GA3 or kinetin completely ameliorated the deleterious effect of salinity in fresh, dry matter, leaf area and pigment contents.

  17. Elevated O3 enhances the attraction of whitefly-infested tomato plants to Encarsia formosa

    Science.gov (United States)

    Cui, Hongying; Su, Jianwei; Wei, Jianing; Hu, Yongjian; Ge, Feng

    2014-01-01

    We experimentally examined the effects of elevated O3 and whitefly herbivory on tomato volatiles, feeding and oviposition preferences of whiteflies and behavioural responses of Encarsia formosa to these emissions on two tomato genotypes, a wild-type (Wt) and a jasmonic acid (JA) defence-enhanced genotype (JA-OE, 35S). The O3 level and whitefly herbivory significantly increased the total amount of volatile organic compounds (VOCs), monoterpenes, green leaf volatiles (GLVs), and aldehyde volatiles produced by tomato plants. The 35S plants released higher amount of total VOCs and monoterpene volatiles than Wt plants under O3+herbivory treatments. The feeding and oviposition bioassays showed that control plants were preferred by adult whiteflies whereas the 35S plants were not preferred by whiteflies. In the Y-tube tests, O3+herbivory treatment genotypes were preferred by adult E. Formosa. The 35S plants were preferred by adult E. formosa under O3, herbivory and O3+herbivory treatments. Our results demonstrated that elevated O3 and whitefly herbivory significantly increased tomato volatiles, which attracted E. formosa and reduced whitefly feeding. The 35S plants had a higher resistance to B. tabaci than Wt plant. Such changes suggest that the direct and indirect defences of resistant genotypes, such as 35S, could strengthen as the atmospheric O3 concentration increases. PMID:24939561

  18. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

    Directory of Open Access Journals (Sweden)

    Kathy E Schwinn

    2014-11-01

    Full Text Available Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida] and Eustoma grandiflorum (lisianthus plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor (ROSEA1 that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related bHLH transcription factor transgene (LEAF COLOR, LC, which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1×35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment accumulation in the petal throat region, and the anthers changed from yellow to purple colour. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1×35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.

  19. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

    Science.gov (United States)

    Schwinn, Kathy E.; Boase, Murray R.; Bradley, J. Marie; Lewis, David H.; Deroles, Simon C.; Martin, Cathie R.; Davies, Kevin M.

    2014-01-01

    Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related basic helix-loop-helix TF transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high-light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1 × 35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment in the petal throat region, and the anthers changed from yellow to purple pigmentation. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1 × 35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants. PMID:25414715

  20. Swiss solar power statistics 2007 - Significant expansion

    International Nuclear Information System (INIS)

    Hostettler, T.

    2008-01-01

    This article presents and discusses the 2007 statistics for solar power in Switzerland. A significant number of new installations is noted as is the high production figures from newer installations. The basics behind the compilation of the Swiss solar power statistics are briefly reviewed and an overview for the period 1989 to 2007 is presented which includes figures on the number of photovoltaic plant in service and installed peak power. Typical production figures in kilowatt-hours (kWh) per installed kilowatt-peak power (kWp) are presented and discussed for installations of various sizes. Increased production after inverter replacement in older installations is noted. Finally, the general political situation in Switzerland as far as solar power is concerned are briefly discussed as are international developments.

  1. Effect of planting density on fruit size, light-interception and photosynthetic activity of vertically trained watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) plants

    International Nuclear Information System (INIS)

    Watanabe, S.; Nakano, Y.; Okano, K.

    2003-01-01

    Summary The effect of planting density on fruit size of vertically trained watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) plants was investigated with regard to light - interception characteristics and photosynthetic production. Watermelon plants, grafted on bottle gourd, were grown in a glasshouse at different planting densities. Two vines per plant were allowed to grow and trained vertically. One hand-pollinated fruit per plant was set around the 15th node on either vine. The solar radiation and photosynthetic rate of individual leaves during fruit development period were determined by an integrated solarimeter film and a portable photosynthesis system, respectively. Fruit size was significantly decreased as the planting density increased, whereas soluble solids content of the fruits was affected little. The solar radiation and the photosynthetic rate of the individual leaves gradually decreased as the leaf position became lower at all planting densities on account of shading; those at lower leaves tended to decrease as the planting density increased. Fruit size was closely related to both the total solar radiation and the photosynthetic production per plant. In conclusion, the difference in fruit size among the planting densities is attributed to the photosynthetic productivity of the whole plant, which is mainly a function of the total solar radiation. This paper appears to be the first trial relating the influence of light interception and photosynthetic rates in high density plantings of vertically trained watermelon plants on fruit size

  2. The Effect of Plant Growth Promoting Bacteria on Transplants Growth and Lettuce Yield in Organic Production

    Directory of Open Access Journals (Sweden)

    Szczech Magdalena

    2016-12-01

    Full Text Available Application of beneficial bacterial strain B125 (Enterobacter sp. and strain PZ9 (Bacillus sp. in lettuce transplants production significantly enhanced seed germination and plant biomass. The best effect was obtained when the mixture of B125 and PZ9 was used. Combined application of these bacteria significantly increased transplants biomass, which was about 45% higher than that in the control. However, after planting these transplants in organic field, generally, there were no differences in yield and nutrient content in plants treated and not treated with the bacteria, except for nitrogen and vitamin C. The lettuce grown from transplants treated with bacterial mixture B125 + PZ9 contained significantly higher nitrogen than plants from other treatments. Opposite to nitrogen, bacterial applications decreased the amount of vitamin C. The growth and organic lettuce composition was affected by planting time. The yield was higher in spring, but the concentration of nutrients in these plants was lower than that in plants harvested in autumn. Climatic and light conditions in the late season were the reasons for increased dry matter content, minerals, phenolic compounds, and vitamin C, as well as high concentration of nitrates.

  3. Fine-grained recognition of plants from images.

    Science.gov (United States)

    Šulc, Milan; Matas, Jiří

    2017-01-01

    Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition "in the wild". We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition "in the wild". The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition "in the wild" where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.

  4. Effect of Weed Interference on Yield and Agronomical Characteristics of Fenugreek (Trigonella foenum gracum in Different Plant Density under Birjand Conditions

    Directory of Open Access Journals (Sweden)

    R Baradaran

    2016-02-01

    grain yield, plant height, biological yield, number of branches per plant and harvest index were measured. Ultimate performance were measured when the plant pods were yellow and dried. At the beginning of each plot five plants randomly chosen to measure the morphological characteristics and traits in yield components were recorded and then removed 50 cm of the margins of the plot, the rest were taken to determine the function. Analysis of variance and statistical analysis was performed using SAS and Excel softwares, Mean comparison was done by Duncan test at 5 percent. Results and Discussion Analysis of variance showed that the density and weed interference were significant at 1 and 5 percent, respectively. The interaction between density and weed interference on yield was significant at 5% level too. By prolonging the period of weed interference, the yield fell to the lowest amount of weeding treatments. The significance of the interaction between density and weed interference represents different responses in different levels of compression performance is to weed competition. In general, the choice of planting density and suitable crop can reduce weeds, increase competitive ability of the crop and increase its performance. Biological yield was significantly affected by the plant density. The density of planting, the maximum density of 40 plants (325.56 grams per square meter and the lowest density of 10 plants (232.66 grams per square meter and biomass production. Biological yield was not affected significantly by weed interference. Although by increasing time interval of weeding time (up to 20 days biological yield decreased from 280.49 to 257.49, but this reduction was not significant. The interaction between planting density and weed interference on biological performance was not significant. Most biological yield was achieved in the absence of weeds. This is not unexpected because the availability of a large part of the resources cause more shoots in plant during

  5. Efficiency improvement of thermal coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hourfar, D. [VEBA Kraftwerke Ruhr Ag, Gelsenkirchen (Germany)

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  6. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-01-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production. PMID:26941044

  7. Globalization and Loss of Plant Knowledge: Challenging the Paradigm

    Science.gov (United States)

    Vandebroek, Ina; Balick, Michael J.

    2012-01-01

    The erosion of cultural knowledge and traditions as a result of globalization and migration is a commonly reported phenomenon. We compared one type of cultural knowledge about medicinal plants (number of plants reported to treat thirty common health conditions) among Dominican laypersons who self-medicate with plants and live in rural or urban areas of the Dominican Republic (DR), and those who have moved to New York City (NYC). Many plants used as medicines were popular Dominican food plants. These plants were reported significantly more often by Dominicans living in NYC as compared to the DR, and this knowledge was not age-dependent. These results contradict the popular paradigm about loss of cultural plant knowledge and is the first study to report a statistically measurable increase in this type of knowledge associated with migration. PMID:22662184

  8. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    Neuenkamp, Lena; Moora, Mari; Öpik, Maarja; Davison, John; Gerz, Maret; Männistö, Minna; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2018-01-25

    Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Role of plant growth regulators on oil yield and biodiesel production of linseed (linum usitatissimum l)

    International Nuclear Information System (INIS)

    Faizanullah, A.; Bano, A.; Nosheen, A.

    2010-01-01

    A field experiment was conducted to compare the effect of plant growth regulators (PGRs) viz. kinetin (K), chlorocholine chloride (CCC) and salicylic acid (SA) on seed yield, oil content and oil quality of Linseed (Linum usitatissimum L) cv. Chandni with a new perspective to biodiesel production. The growth regulators (10-6M) were applied as seed soaking for 10 h prior to cultivation. Kinetin significantly increased the number of capsules/plant, seed number/capsule, 1000 seed weight and total seed yield (kg/h). The growth regulators increased the seed oil content maximum being in kinetin and CCC treatments. Kinetin and CCC significantly decreased the oil acid value, free fatty acid content (% oleic acid) and increased the pH of oil. Nevertheless, SA significantly decreased the oil specific gravity and did not alter the pH. Only kinetin significantly increased the oil iodine value. The oil extracted from seeds of kinetin and CCC treated plants showed maximum conversion (% w/w) to methyl esters/biodiesel after transesterification. It can be inferred that PGRs can be utilized successfully for improving the biodiesel yield of linseed. (author)

  10. An assessment of the radiological significance of consuming wild foods collected near the Sellafield nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Fulker, M.J.; McKay, K.; Jackson, D.; Leonard, D.R.P.

    1996-01-01

    Extensive monitoring of conventional agricultural produce in the vicinity of the BNFL Sellafield plant is undertaken, by both the operator and the Ministry of Agriculture, Fisheries and Food, to determine levels of radioactivity and douses arising to the consumer Monitoring is also undertaken, albeit less extensively, for market garden and domestic produce. By contrast, few data exist with respect to levels of radioactivity in 'wild foods' (e.g. hedgerow fruits, field mushrooms etc.) or associated consumption habits. It has been postulated that such foodstuffs could contribute an appreciable radiation exposure dose to groups of high level consumers, potentially including members of the existing identified critical group for local agricultural produce. This paper assess the actual radiological significance of wild foods collected near Sellafield. (author)

  11. Bison grazing increases arthropod abundance and diversity in a tallgrass prairie.

    Science.gov (United States)

    Moran, Matthew D

    2014-10-01

    How grazing-induced ecosystem changes by ungulates indirectly affect other consumers is a question of great interest. I investigated the effect of grazing by American Bison (Bos bison L.) on an arthropod community in tallgrass prairie. Grazing increased the abundance of arthropods, an increase that was present in both herbivorous and carnivorous assemblages, but not in detritivores. The increase in herbivores and reduction in plant biomass from grazing resulted in an arthropod herbivore load almost three times higher in grazed plots compared with controls. Among herbivores, the sap-feeding insect guild was dramatically more abundant, while chewing herbivores were not affected. Herbivorous and carnivorous arthropod richness was higher in grazed plots, although the response was strongest among herbivores. Arthropod abundance on individual grasses and forbs was significantly higher in grazed areas, while plant type had no effect on abundance, indicating that the change was ecosystem-wide and not simply in response to a reduction in grass biomass from grazing. The response of arthropods to grazing was strongest in the early part of the growing season. Published research shows that ungulate grazing, although decreasing available biomass to other consumers, enhances plant quality by increasing nitrogen level in plants. The arthropod results of this study suggest higher plant quality outweighs the potential negative competitive effects of plant biomass removal, although other activities of bison could not be ruled out as the causative mechanism. Because arthropods are extremely abundant organisms in grasslands and a food source for other consumers, bison may represent valuable management tools for maintaining biodiversity.

  12. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  13. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    Science.gov (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Serum sterol responses to increasing plant sterol intake from natural foods in the Mediterranean diet.

    Science.gov (United States)

    Escurriol, Verónica; Cofán, Montserrat; Serra, Mercè; Bulló, Mónica; Basora, Josep; Salas-Salvadó, Jordi; Corella, Dolores; Zazpe, Itziar; Martínez-González, Miguel A; Ruiz-Gutiérrez, Valentina; Estruch, Ramón; Ros, Emilio

    2009-09-01

    Phytosterols in natural foods are thought to inhibit cholesterol absorption. The Mediterranean diet is rich in phytosterol-containing plant foods. To assess whether increasing phytosterol intake from natural foods was associated with a cholesterol-lowering effect in a substudy of a randomized trial of nutritional intervention with Mediterranean diets for primary cardiovascular prevention (PREDIMED study). One hundred and six high cardiovascular risk subjects assigned to two Mediterranean diets supplemented with virgin olive oil (VOO) or nuts, which are phytosterol-rich foods, or advice on a low-fat diet. Outcomes were 1-year changes in nutrient intake and serum levels of lipids and non-cholesterol sterols. Average phytosterol intake increased by 76, 158 and 15 mg/day in participants assigned VOO, nuts and low-fat diets, respectively. Compared to participants in the low-fat diet group, changes in outcome variables were observed only in those in the Mediterranean diet with nuts group, with increases in intake of fibre, polyunsaturated fatty acids and phytosterols (P natural foods appear to be bioactive in cholesterol lowering.

  15. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit.

    Science.gov (United States)

    Lima, J V; Lobato, A K S

    2017-01-01

    Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in Φ PSII , q P and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N , E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a , Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a , Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in Φ PSII , q P and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea

  16. The Importance of the Circadian Clock in Regulating Plant Metabolism

    Directory of Open Access Journals (Sweden)

    Jin A Kim

    2017-12-01

    Full Text Available Carbohydrates are the primary energy source for plant development. Plants synthesize sucrose in source organs and transport them to sink organs during plant growth. This metabolism is sensitive to environmental changes in light quantity, quality, and photoperiod. In the daytime, the synthesis of sucrose and starch accumulates, and starch is degraded at nighttime. The circadian clock genes provide plants with information on the daily environmental changes and directly control many developmental processes, which are related to the path of primary metabolites throughout the life cycle. The circadian clock mechanism and processes of metabolism controlled by the circadian rhythm were studied in the model plant Arabidopsis and in the crops potato and rice. However, the translation of molecular mechanisms obtained from studies of model plants to crop plants is still difficult. Crop plants have specific organs such as edible seed and tuber that increase the size or accumulate valuable metabolites by harvestable metabolic components. Human consumers are interested in the regulation and promotion of these agriculturally significant crops. Circadian clock manipulation may suggest various strategies for the increased productivity of food crops through using environmental signal or overcoming environmental stress.

  17. Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and woodland area in Southern Ontario

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2013-06-01

    Full Text Available Fungal communities forming associations with plant roots have generally been described as ranging from symbiotic to parasitic. Disruptions to these associations consequently can have significant impacts on native plant communities. We examined how invasion by Vincetoxicum rossicum, a plant native to Europe, can alter both the arbuscular mycorrhizal fungi, as well as the general fungal communities associating with native plant roots in both field and woodland sites in Southern Ontario. In two different sites in the Greater Toronto Area, we took advantage of invasion by V. rossicum and neighbouring uninvaded sites to investigate the fungal communities associating with local plant roots, including goldenrod (Solidago spp., wild red raspberry (Rubus idaeus, Canada anemone (Anemone canadensis, meadow rue (Thalictrum dioicum, and wild ginger (Asarum canadense. Fungi colonizing roots were characterized with terminal restriction fragment length polymorphism (T-RFLP analysis of amplified total fungal (TF and arbuscular mycorrhizal fungal (AMF ribosomal fragments. We saw a significant effect of the presence of this invader on the diversity of TF phylotypes colonizing native plant roots, and a composition shift of both the TF and AMF community in native roots in both sites. In native communities invaded by V. rossicum, a significant increase in richness and colonization density of TF suggests that invaders such as V. rossicum may be able to influence the composition of soil fungi available to natives, possibly via mechanisms such as increased carbon provision or antibiosis attributable to unique root exudates.

  18. A fungal root symbiont modifies plant resistance to an insect herbivore.

    Science.gov (United States)

    Borowicz, Victoria A

    1997-11-01

    Vesicular-arbuscular mycorrhizal (VAM) fungi are common root-colonizing symbionts that affect nutrient uptake by plants and can alter plant susceptibility to herbivores. I conducted a factorial experiment to test the hypotheses that colonization by VAM fungi (1) improves soybean (Glycine max) tolerance to grazing by folivorous Mexican bean beetle (Epilachna varivestis), and (2) indirectly affects herbivores by increasing host resistance. Soybean seedlings were inoculated with the VAM fungus Glomus etunicatum or VAM-free filtrate and fertilized with high-[P] or low-[P] fertilizer. After plants had grown for 7 weeks first-instar beetle larvae were placed on bagged leaves. Growth of soybean was little affected by grazing larvae, and no effects of treatments on tolerance of soybeans to herbivores were evident. Colonization by VAM fungus doubled the size of phosphorus-stressed plants but these plants were still half the size of plants given adequate phosphorus. High-[P] fertilizer increased levels of phosphorus and soluble carbohydrates, and decreased levels of soluble proteins in leaves of grazed plants. Colonization of grazed plants by VAM fungus had no significant effect on plant soluble carbohydrates, but increased concentration of phosphorus and decreased levels of proteins in phosphorus-stressed plants to concentrations similar to those of plants given adequate phosphorus. Mexican bean beetle mass at pupation, pupation rate, and survival to eclosion were greatest for beetles reared on phosphorus-stressed, VAM-colonized plants, refuting the hypothesis that VAM colonization improves host plant resistance. VAM colonization indirectly affected performance of Mexician bean beetle larvae by improving growth and nutrition of the host plant.

  19. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants.

    Science.gov (United States)

    Benekos, Kostantinos; Kissoudis, Christos; Nianiou-Obeidat, Irini; Labrou, Nikolaos; Madesis, Panagiotis; Kalamaki, Mary; Makris, Antonis; Tsaftaris, Athanasios

    2010-10-01

    Plant glutathione transferases (GSTs) superfamily consists of multifunctional enzymes and forms a major part of the plants herbicide detoxification enzyme network. The tau class GST isoenzyme GmGSTU4 from soybean, exhibits catalytic activity towards the diphenyl ether herbicide fluorodifen and is active as glutathione-dependent peroxidase (GPOX). Transgenic tobacco plants of Basmas cultivar were generated via Agrobacterium transformation. The aim was to evaluate in planta, GmGSTU4's role in detoxifying the diphenyl ether herbicides fluorodifen and oxyfluorfen and the chloroacetanilides alachlor and metolachlor. Transgenic tobacco plants were verified by PCR and Southern blot hybridization and expression of GmGSTU4 was determined by RT-PCR. Leaf extracts from transgenic plants showed moderate increase in GST activity towards CDNB and a significant increase towards fluorodifen and alachlor, and at the same time an increased GPOX activity towards cumene hydroperoxide. GmGSTU4 overexpressing plants when treated with 200 μM fluorodifen or oxyfluorfen exhibited reduced relative electrolyte leakage compared to wild type plants. Moreover all GmGSTU4 overexpressing lines exhibited significantly increased tolerance towards alachlor when grown in vitro at 7.5 mg/L alachlor compared to wild type plants. No significant increased tolerance was observed to metolachlor. These results confirm the contribution of this particular GmGSTU4 isoenzyme from soybean in the detoxification of fluorodifen and alachlor, and provide the basis towards the development of transgenic plants with improved phytoremediation capabilities for future use in environmental cleanup of herbicides. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Nuclear power plants. The market for services, retrofitting, construction of new plants and dismantling of older plants in Europe through 2030

    International Nuclear Information System (INIS)

    Briese, Dirk; Hoemske, Tom

    2010-01-01

    The power plant scene in Europe is characterized by new power plant projects and retrofitting projects everywhere. This is due to the ageing of existing power plants and to increasing energy demand. Currently, there are projects for 48 power plant units with an installed capacity of 70 GW. According to a study of the nuclear power plant sector, about 16 GW will probably be constructed prior to 2030. The reference scenario presented in this article assumes a dynamic increase of 15 thousand million Euros per annum through 2016/2018. (orig.)

  1. Thallium contamination in arable soils and vegetables around a steel plant-A newly-found significant source of Tl pollution in South China.

    Science.gov (United States)

    Liu, Juan; Luo, Xuwen; Wang, Jin; Xiao, Tangfu; Chen, Diyun; Sheng, Guodong; Yin, Meiling; Lippold, Holger; Wang, Chunlin; Chen, Yongheng

    2017-05-01

    Thallium (Tl) is a highly toxic rare element. Severe Tl poisoning can cause neurological brain damage or even death. The present study was designed to investigate contents of Tl and other associated heavy metals in arable soils and twelve common vegetables cultivated around a steel plant in South China, a newly-found initiator of Tl pollution. Potential health risks of these metals to exposed population via consumption of vegetables were examined by calculating hazard quotients (HQ). The soils showed a significant contamination with Tl at a mean concentration of 1.34 mg/kg. The Tl levels in most vegetables (such as leaf lettuce, chard and pak choy) surpassed the maximum permissible level (0.5 mg/kg) according to the environmental quality standards for food in Germany. Vegetables like leaf lettuce, chard, pak choy, romaine lettuce and Indian beans all exhibited bioconcentration factors (BCF) and transfer factors (TF) for Tl higher than 1, indicating a hyperaccumulation of Tl in these plants. Although the elevated Tl levels in the vegetables at present will not immediately pose significant non-carcinogenic health risks to residents, it highlights the necessity of a permanent monitoring of Tl contamination in the steel-making areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Effect of Plant Density on Photosynthesis and Growth Indices of Henna (Lowsonia inermis L. Ecotypes

    Directory of Open Access Journals (Sweden)

    A Pasandi Pour

    2018-05-01

    highest average of this trait. This difference could be due to physiological, morphological and chemical factors as well as allocating pattern of photosyntates, all affects the relative growth rate. The maximum value of stomatal conductance was recorded for Shahdad ecotype (234.6 mmol m-2 s-1, that was not significantly different with Bam ecotypes (229.6 mmol m-2 s-1. There are some reports showing that the number of stomata per unit of leaf area may be changed with plant species and varieties. The differences in studied densities were statistically significant for the measured traits. Results showed that the maximum of CGR was recorded for 100 plants m-2 density. Increase in CGR at the higher densities could be due to the increased number of plants per unit area producing a higher leaf area index. In this research LAI increased with increasing in planting density and the highest average of this trait was obtained from 100 plants m-2. LAD and BMD were affected significantly by planting density. The results of mean comparisons showed that average of LAD and BMD decreased with increasing in plant density from 50 to 100 plants m-2. The same result was obtained for net photosynthesis, transpiration rate and stomatal conductance. Low net photosynthesis in 100 plants m-2 density could be due to high competition between plants for light and food absorption, increase in shading and consequently increasing in respiration. The results showed that total dry yield and leaf dry yield were significantly affected by planting densities. The highest and lowest values of mentioned traits belonged to densities of 100 and 25 plants m-2 respectively. Conclusions Generally between ecotypes evaluated in terms of performance, there was no difference in Kerman weather conditions. Also the highest yield was belonged to100 plants m-2 density. It should be noted that henna is a perennial plant and this planting density for the first year is economically justified but for more than one year old

  3. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Science.gov (United States)

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  4. Plant clonal integration mediates the horizontal redistribution of soil resources, benefiting neighbouring plants

    Directory of Open Access Journals (Sweden)

    Xuehua eYe

    2016-02-01

    Full Text Available Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor microsite could be translocated within a clonal network, released into different (recipient microsites and subsequently used by neighbour plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbours. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighbouring A. ordosica, which increased growth of the neighbouring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighbouring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  5. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    Science.gov (United States)

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  6. Photoinduced toxicity of fluoranthene on germination and early development of plant seedling.

    Science.gov (United States)

    Kummerová, Marie; Kmentová, Eva

    2004-07-01

    The influence of light on phytotoxicity of increased concentration (2, 5, 10 mg/l) of intact fluoranthene (FLT) and photomodified fluoranthene (phFLT) diluted in experimental solutions was investigated. The germination rate of lettuce (Lactuca sativa L.), onion (Allium cepa L.) and tomato (Lycopersicum esculentum L.) seeds and some parameters of seedlings primary growth of these plant species were used as laboratory indicators of phytotoxicity. Among them a length of root and shoot, their dry weight and a content of photosynthetic pigments in shoot were measured. The results demonstrated that the higher concentration (5 and 10 mg/l) of FLT and especially of phFLT significantly inhibited the germination rate of seeds and the length of root and shoot seedlings of all plant species. Decreased production of biomass expressed by dry weight of root and shoot was found in lettuce seedlings under the inhibitory effect of FLT and phFLT. An increased concentration of FLT and phFLT did not exhibit an unambiguous effect on the content of photosynthetic pigments in shoot of experimental plants. Only the highest concentration (10 mg/l) of FLT significantly increased content of chlorophylls a and b in lettuce, onion and tomato plants and content of carotenoids in lettuce and onion. Light intensified a significant inhibitory effect of phFLT in the most testified parameters of germination and seedling growth.

  7. Economic Injury Level of the Neotropical Brown Stink Bug Euschistus heros (F.) on Cotton Plants.

    Science.gov (United States)

    Soria, M F; Degrande, P E; Panizzi, A R; Toews, M D

    2017-06-01

    In Brazil, the Neotropical brown stink bug, Euschistus heros (F.) (Hemiptera: Pentatomidae), commonly disperses from soybeans to cotton fields. The establishment of an economic treatment threshold for this pest on cotton crops is required. Infestation levels of adults of E. heros were evaluated on cotton plants at preflowering, early flowering, boll filling, and full maturity by assessing external and internal symptoms of injury on bolls, seed cotton/lint production, and fiber quality parameters. A completely randomized experiment was designed to infest cotton plants in a greenhouse with 0, 2, 4, 6, and 8 bugs/plant, except at the full-maturity stage in which only infestation with 8 bugs/plant and uninfested plants were evaluated. Results indicated that the preflowering, early-flowering, and full-maturity stages were not affected by E. heros. A linear regression model showed a significant increase in the number of internal punctures and warts in the boll-filling stage as the population of bugs increased. The average number of loci with mottled immature fibers was significantly higher at 4, 6, and 8 bugs compared with uninfested plants with data following a quadratic regression model. The seed and lint cotton was reduced by 18 and 25% at the maximum level of infestation (ca. 8 bugs/plant) in the boll-filling stage. The micronaire and yellowing indexes were, respectively, reduced and increased with the increase of the infestation levels. The economic injury level of E. heros on cotton plants at the boll-filling stage was determined as 0.5 adult/plant. Based on that, a treatment threshold of 0.1 adult/plant can be recommended to avoid economic losses.

  8. Plant mortality and natural selection may increase biomass yield in switchgrass swards

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is an important candidate for bioenergy feedstock production, prompting significant efforts to increase the number of breeding programs and the output of those programs. The objective of this experiment was to determine the potential utility of natural selection for...

  9. Loose parts, vibration and leakage monitoring methods and systems to increase availability, transparency and lifetime of power plants

    International Nuclear Information System (INIS)

    Streicher, V.; Jax, P.; Ruthrof, K.

    1987-01-01

    This paper deals with three stand-alone-systems as an aid to check the mechanical integrity of the primary circuit of nuclear power plants. The main goals of these systems are early detection of faults and malfunctions, the facilitation of fault clearance, the avoidance of sequential damage and reduction of inspection time and cost. Obviously the proper application of the systems as well as the measures they induce and make possible increase the availability of the plant and contribute to lifetime extension. In order to detect, identify and pinpoint the changes in component structure such as loosened connections, broken parts or components, loose or loosened particles, fatigued materials, cracks and leaks, specialized monitoring systems were developed by KWU (Kraftwerk Union AG) during the last ten years. Requirements concerning vibration, loose parts and leakage monitoring are part of German guidelines and safety standards. Therefore systems for these applications are implemented in most of the nuclear power plants in Western Germany. This paper presents newly developed, microprocessor-based systems for loose parts monitoring, vibration monitoring and leakage monitoring and also includes specific case histories for the different topics

  10. Recycling of cattle dung, biogas plant-effluent and water hyacinth in vermiculture

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, P.R.; Bai, R.K. [Madurai Kamaraj Univ. (India)

    1995-08-01

    The efficiency of recycling cattle dung, anaerobically digested cattle dung (biogas plant-effluent) and water hyacinth (Eichhornia crassipes) by culture of the earthworm Megascolex sp. was studied. The growth of the earthworms was increased by 156, 148 and 119% in soil supplemented with water hyacinth, cattle dung and biogas plant-effluent, respectively. The growth rate of the earthworms was increased significantly by raw cattle dung and water hyacinth over that by biodigested slurry. (author)

  11. Effects of biofertilizers on N-uptake (N-15) of corn (Zea mays L.) plant at early growth-stage

    International Nuclear Information System (INIS)

    Taufiq Bachtiar; Anggi Nico Flatian; Nurrobifahmi; Setiyo Hadi Waluyo

    2016-01-01

    Were studied in pot experiment at the green house in PAIR-BATAN. Broth culture of Azotobacter vinelandii (A), Bacillus cereus (B), Bacillus megaterium (C), and a mixture of those three microbes (ABC) were used as bio-fertilizers, and applied directly on plant grown in pots. Randomized Block Design (RBD) was used in this experiment with six treatments and four replicates. The measured parameters were nitrogen (N) uptake, N derived from the soil, N derived from fertilizer, and plant dry weight. These parameters were determined at 20 days after planting. N derived from bio-fertilizer and N derived from soil were determined by N-15 isotope technique. The results showed that ABC treatment most significantly increase the total N plant (142,42 %) and plant dry weight plant (129.03 %) by the control plant. Based on N-15 isotope technique analysis showed that the significantly contribution to increase N plant was found in ABC treatment (67.92 %). (author)

  12. Optimum voltage of auxiliary systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Segawa, Motomichi

    1979-01-01

    In the power plants in Japan, their unit power output has been greatly enhanced since the introduction of new powerful thermal power plants from 1950's to 1960's. In both thermal and nuclear power plants, 1,000 MW machines have been already in operation. The increase of unit power output results in the increase of in-plant load capacity. Of these the voltage adopted for in-plant low voltage systems is now mainly 440 V at load terminals, and the voltage for in-plant high voltage systems has been changing to 6 kV level via 3 kV and 4 kV levels. As plant capacity increases, the load of low voltage systems significantly increases, and it is required to raise the voltage of 400 V level. By the way, the low voltage in AC is specified to be not higher than 600 V. This makes the change within the above range comparatively easy. Considering these conditions, it is recommended to change the voltage for low voltage systems to 575 V at power source terminals and 550 V at load terminals. Some merits in constructing power systems and in economy by raising the voltage were examined. Though demerits are also found, they are only about 15% of total merits. The most advantageous point in raising the voltage is to be capable of increasing the supplying range to low voltage system loads. (Wakatsuki, Y.)

  13. Balance of the LVC plant with increase in 15 % of power; Balance de planta de la CLV con aumento del 15 % de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, J.J.; Hernandez, J.L.; Perusquia, R.; Castillo, A.; Montes, J.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jjortiz@nuclear.inin.mx

    2005-07-01

    One of the tendencies in many power reactors has been to modify some operation conditions, in order to increasing the electricity generation. The Laguna Verde Nuclear power plant (CNLV) it has not been the exception and in the recent past an increment of 5% was made in the original nominal thermal power. In the face of the possibility of carrying out more modifications, a study was made in the one that one simulates an eventual increment of the power of the reactor in 15% of the original value. With this increment one carries out the balance of the plant and the thermodynamic properties were determined. With this purpose it was developed a computer tool to calculate the thermodynamic properties of the plant in several points of the power cycle, as well as to carry out energy and mass balances to determine the flows in the different extractions of steam of the turbines. The program is compared with the results to 100% and 105% of increase of power obtaining good results, for what it is concluded that the extrapolation to 115% of power increase is acceptable. (Author)

  14. Measures to increase the availability of electronic control units, illustrated by examples from power plant engineering

    International Nuclear Information System (INIS)

    Schmidt, R.

    1976-01-01

    The availibility of electric control units in the power plant engineering is increased by a decentralized construction, redundant current supply. miniaturized electronic modules, short-circuit-safe outputs, efficient protection of the wiring against over-voltage and intensive control of the afferent cables against wire break and short circuits. To reduce disturbing and damaging influences on the control multiple earthings should be avoided, the inductive coupling of distrubances should be reduced by parallel earth wires, and cable shields handled according to the prescriptions should reduce influences on the capacity. (orig.) [de

  15. Increase of the efficiency of SNCR plants; Steigerung der Effizienz von SNCR-Anlagentechnik

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Joerg [VWT Ing.-Buero, Schwandorf (Germany); Gotthardt, Wolfgang; Rieger, Konrad; Franke, Thomas [ZMS Schwandorf (Germany); Krueger, Sascha [IBK - Verfahrenstechnik, Bad Berka (Germany)

    2012-07-01

    A simple und economic SNCR technique is described which meets the future limiting values for nitrogen oxide and ammonia slip for municipal waste, biomass and RDF incineration plants. The injection of the reduction agent into the flue gas flow is the weak point in the existing systems. The suitability of the system could be tested successfully in the Schwandorf municipal waste incineration plant. (orig.).

  16. Chemical Weed Control Increases Survival and Growth in Hardwood Plantings

    Science.gov (United States)

    Gayne G. Erdmann

    1967-01-01

    In a plantation of four hardwood species on a silt loam soil planted to 1-0 stock, 4 pounds of active atrazine or simazine controlled weeds effectively without injuring the trees. Chemical weed control was better on plowed and disked ground than on unprepared ground. Yellow-poplar and white ash grew faster on prepared ground. Black walnut and red oak did not respond...

  17. Electricity supply. Older plants' impact on reliability and air quality

    International Nuclear Information System (INIS)

    England-Joseph, Judy A.; Adams, Charles M.; Wood, David G.; Feehan, Daniel J.; Veal, Howard F.; Skeen, John H. III; Koenigs, Melvin J.; Lichtenfeld, David I.; Seretakis, Pauline J.

    1990-09-01

    Life extension of fossil fuel plants is a relatively recent phenomenon; thus, utilities have little experience to demonstrate the longer-term operating reliability of plants with an extended service life. While utility industry officials and government and industry studies express optimism that these plants will continue to operate reliably, the officials and the studies also caution that it is too soon to determine how pursuing life extension will affect the reliability of the nation's electricity supply. According to DOE, the number of fossil fuel generating units' 30 years old or older is expected to increase from about 2,500 in 1989 to roughly 3,700 in 1998, increasing such plants' share of overall generating capacity from 13 percent in 1989 to 27 percent in 1998. EPA estimates that with existing air quality requirements, fossil fuel plant emissions will increase steadily during the coming decade. Proposed acid rain control legislation, which would affect many plants that may have their service life extended, would require utilities to significantly reduce emissions by the year 2000 but would allow utilities flexibility in deciding how and where to achieve the reductions. If such legislation is enacted, utilities generally are expected to find reducing emissions from existing plants more cost-effective than replacing them and to continue extending plants' service life. Officials of DOE and utility organizations expressed concern, however, that EPA could decide, as it did for one plant in 1988, that alterations made in extending the service life of plants exempted from the Clean Air Act would result in increased emissions and thus cause the altered plants to lose their exemption. According to the officials, the additional costs of achieving the Clean Air Act's standards could discourage some life extension projects. However, such decisions by EPA could also reduce the nation's total power plant emissions by eliminating an existing incentive to retain exempt

  18. Relationship between Hexokinase and the Aquaporin PIP1 in the Regulation of Photosynthesis and Plant Growth

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Attia, Ziv; Secchi, Francesca; Zwieniecki, Maciej; Holbrook, N. Michele; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Granot, David

    2014-01-01

    Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO2 and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO2 conductance (g m). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO2 conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO2. PMID:24498392

  19. Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth.

    Directory of Open Access Journals (Sweden)

    Gilor Kelly

    Full Text Available Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO₂ and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1, a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO₂ conductance (g(m. Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO₂ conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO₂.

  20. Photochemical oxidants injury in rice plants. III. Effect of ozone on physiological activities in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Saka, H

    1978-01-01

    Experiments were made to determine the effect of photochemical oxidants on physiological activities of rice plants. Rice plants were fumigated with ozone at concentrations of 0.12-0.20 ppm for 2-3 hr to investigate acute injury and at 0.05 and 0.09 ppm for daily exposure from 3.0 leaf stage to assess the effect of ozone on growth. It was observed that malondialdehyde produced by disruption of the components of the membrane increased in the leaves exposed to ozone. Ozone reduced the RuBP-carboxylase activity in both young and old leaves 12-24 hr after fumigation. In the young leaves the activity of this enzyme recovered to some extent after 48 hr, but it did not show any recovery in the old leaves. On the other hand, ozone remarkably increased the peroxidase activity and slightly increased acid phosphatase in all leaves. Abnormally high ethylene evolution and oxygen uptake were detected in leaves soon after ozone fumigation. In general, high molecular protein and chlorophyll contents in the detached leaves decreased with incubation in dark, particularly in the old ones. These phenomena were more accelerated by ozone fumigation. Kinetin and benzimidazole showed significant effects on chlorophyll retention in ozone-exposed leaves. Reduction of plant growth and photosynthetic rate was recognized even in low concentration of ozone in daily exposure at 0.05 and 0.09 ppm. From these results it was postulated that ozone may cause the senescence of leaves in rice plants.