WorldWideScience

Sample records for significantly increase soil

  1. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    Science.gov (United States)

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    and Rhodospirillaceae, were found to be the significantly increased by the BOF addition and the genus Lysobacter may identify members of this group effective in biological control-based plant disease management and the members of family Rhodospirillaceae had an important role in fixing molecular nitrogen. These results strengthen the understanding of responses to the BOF and possible interactions within bacterial communities in soil that can be associated with disease suppression and the accumulation of carbon and nitrogen. The increase of apple yields after the application of BOF might be attributed to the fact that the application of BOF increased SOM, and soil total nitrogen, and changed the bacterial community by enriching Rhodospirillaceae, Alphaprotreobateria, and Proteobacteria.

  2. Gas revenue increasingly significant

    International Nuclear Information System (INIS)

    Megill, R.E.

    1991-01-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities

  3. Engineering Significant of Swelling Soils

    OpenAIRE

    Behzad Kalantari

    2012-01-01

    This study describes some of the most important swelling characters of expansive soils when used as foundation materials to support various types of civil engineering structures. Expansive soils are considered among difficult foundation materials and expand upon wetting and shrink upon losing moisture. They are considered problematic soils for architectural and civil engineers. These types of soils may cause minor to major structural damages to pavements as well as buildings. It is therefore ...

  4. Soil physicochemical properties and their significance for ...

    African Journals Online (AJOL)

    Soil physicochemical properties and their significance for sustainable sugarcane production in Kesem Allaideghe plains irrigation project area, Eastern Ethiopia. ... In order to improve soil structure and water availability, addition of gypsum, plant residues and organic matter are recommended. Keywords: Soil survey ...

  5. Land use type significantly affects microbial gene transcription in soil.

    Science.gov (United States)

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.

  6. Significance of mineralogy in soil mechanics

    Directory of Open Access Journals (Sweden)

    Bojana Dolinar

    2002-12-01

    Full Text Available The research of consistency limits according to Atterberg is of key importance in soil mechanics because it determines, in a simple way, results of interactions between solid and liquid phases in soils, and thus provides possibility to classify them in groups withsimilar mechanic properties. In most cases, the results of these investigations provide a good basis for predicting other properties such as deformability, expansion, hydraulic conductivity and strength of soils. This proves that basis factors influencing the valuesof consistency limits and other mechanic properties are the same. It is known that the values of consistency limits primarily depend on the type and quantity of clay minerals in soils. The article focuses on experimental evidence of dependence between the quantityof water at the liquid limit for soils and type, portion and specific surface of clay grains.Experiments were performed with monomineral soils, their mixtures and composed samples of clay- and non-clay components. It was established that in parallel orientation of clay particles the quantity of water between grains at liquid limit is dependent on their external specific surface.

  7. Does soil compaction increase floods? A review

    Science.gov (United States)

    Alaoui, Abdallah; Rogger, Magdalena; Peth, Stephan; Blöschl, Günter

    2018-02-01

    Europe has experienced a series of major floods in the past years which suggests that flood magnitudes may have increased. Land degradation due to soil compaction from crop farming or grazing intensification is one of the potential drivers of this increase. A literature review suggests that most of the experimental evidence was generated at plot and hillslope scales. At larger scales, most studies are based on models. There are three ways in which soil compaction affects floods at the catchment scale: (i) through an increase in the area affected by soil compaction; (ii) by exacerbating the effects of changes in rainfall, especially for highly degraded soils; and (iii) when soil compaction coincides with soils characterized by a fine texture and a low infiltration capacity. We suggest that future research should focus on better synthesising past research on soil compaction and runoff, tailored field experiments to obtain a mechanistic understanding of the coupled mechanical and hydraulic processes, new mapping methods of soil compaction that combine mechanical and remote sensing approaches, and an effort to bridge all disciplines relevant to soil compaction effects on floods.

  8. Identification and paleoclimatic significance of magnetite nanoparticles in soils

    Science.gov (United States)

    Ahmed, Imad A. M.; Maher, Barbara A.

    2018-02-01

    In the world-famous sediments of the Chinese Loess Plateau, fossil soils alternate with windblown dust layers to record monsoonal variations over the last ˜3 My. The less-weathered, weakly magnetic dust layers reflect drier, colder glaciations. The fossil soils (paleosols) contain variable concentrations of nanoscale, strongly magnetic iron oxides, formed in situ during the wetter, warmer interglaciations. Mineralogical identification of the magnetic soil oxides is essential for deciphering these key paleoclimatic records. Formation of magnetite, a mixed Fe2+/Fe3+ ferrimagnet, has been linked to soil redox oscillations, and thence to paleorainfall. An opposite hypothesis states that magnetite can only form if the soil is water saturated for significant periods in order for Fe3+ to be reduced to Fe2+, and suggests instead the temperature-dependent formation of maghemite, an Fe3+-oxide, much of which ages subsequently into hematite, typically aluminum substituted. This latter, oxidizing pathway would have been temperature, but not rainfall dependent. Here, through structural fingerprinting and scanning transmission electron microscopy and electron energy loss spectroscopy analysis, we prove that magnetite is the dominant soil-formed ferrite. Maghemite is present in lower concentrations, and shows no evidence of aluminum substitution, negating its proposed precursor role for the aluminum-substituted hematite prevalent in the paleosols. Magnetite dominance demonstrates that magnetite formation occurs in well-drained, generally oxidizing soils, and that soil wetting/drying oscillations drive the degree of soil magnetic enhancement. The magnetic variations of the Chinese Loess Plateau paleosols thus record changes in monsoonal rainfall, over timescales of millions of years.

  9. Significance of foundation-soil separation in dynamic soil-structure interaction

    Science.gov (United States)

    Spyrakos, Constantine C.; Patel, P. N.

    1987-01-01

    THe dynamic response of flexible surface strip-foundations allowed to uplift is numerically obtained for externally applied forces of a transient time variation. The soil medium is represented by an isotropic, homogeneous and linear half-space. The soil is treated by a time domain boundary element method, while the flexible foundation is treated by the finite element method. It was concluded that intermediate relative stiffness leads to moderate deformations when uplift is permitted. Very flexible footings produce higher deformations in unilateral contact compared to bilateral contact, and thus should be considered in their design. Unilateral contact does not significantly increase deformations for stiff footings subjected to concentrated central loading. However, relatively large deformation differences occur when the loading is eccentric, necessitating consideration of uplift in their design.

  10. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  11. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  12. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  13. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na. We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring

  14. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  15. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  16. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil.

    Science.gov (United States)

    Ma, Hai-Yan; Yang, Bo; Wang, Hong-Wei; Yang, Qi-Yin; Dai, Chuan-Chao

    2016-01-15

    Continuous cropping practices cause a severe decline in peanut yield. The aim of this study was to investigate the remediation effect of Serratia marcescens on continuously cropped peanut soil. A pot experiment was conducted under natural conditions to determine peanut agronomic indices, soil microorganism characteristics, soil enzyme activities and antagonism ability to typical pathogens at different growth stages. Four treatments were applied to red soil as follows: an active fermentation liquor of S. marcescens (RZ-21), an equivalent sterilized fermentation liquor (M), an equivalent fermentation medium (P) and distilled water (CK). S. marcescens significantly inhibited the two typical plant pathogens Fusarium oxysporum A1 and Ralstonia solanacearum B1 and reduced their populations in rhizosphere soil. The RZ-21 treatment significantly increased peanut yield, vine dry weight, root nodules and taproot length by 62.3, 33, 72 and 61.4% respectively, followed by the M treatment. The P treatment also increased root nodules and root length slightly. RZ-21 also enhanced the activities of soil urease, sucrase and hydrogen peroxidase at various stages. In addition, RZ-21 and M treatments increased the average population of soil bacteria and decreased the average population of fungi in the three critical peanut growth stages, except for M in the case of the fungal population at flowering, thus balancing the structure of the soil microorganism community. This is the first report of S. marcescens being applied to continuously cropped peanut soil. The results suggest that S. marcescens RZ-21 has the potential to improve the soil environment and agricultural products and thus allow the development of sustainable management practices. © 2015 Society of Chemical Industry.

  17. The Significance of Land Cover Delineation on Soil Erosion Assessment.

    Science.gov (United States)

    Efthimiou, Nikolaos; Psomiadis, Emmanouil

    2018-04-25

    The study aims to evaluate the significance of land cover delineation on soil erosion assessment. To that end, RUSLE (Revised Universal Soil Loss Equation) was implemented at the Upper Acheloos River catchment, Western Central Greece, annually and multi-annually for the period 1965-92. The model estimates soil erosion as the linear product of six factors (R, K, LS, C, and P) considering the catchment's climatic, pedological, topographic, land cover, and anthropogenic characteristics, respectively. The C factor was estimated using six alternative land use delineations of different resolution, namely the CORINE Land Cover (CLC) project (2000, 2012 versions) (1:100,000), a land use map conducted by the Greek National Agricultural Research Foundation (NAGREF) (1:20,000), a land use map conducted by the Greek Payment and Control Agency for Guidance and Guarantee Community Aid (PCAGGCA) (1:5,000), and the Landsat 8 16-day Normalized Difference Vegetation Index (NDVI) dataset (30 m/pixel) (two approximations) based on remote sensing data (satellite image acquired on 07/09/2016) (1:40,000). Since all other factors remain unchanged per each RUSLE application, the differences among the yielded results are attributed to the C factor (thus the land cover pattern) variations. Validation was made considering the convergence between simulated (modeled) and observed sediment yield. The latter was estimated based on field measurements conducted by the Greek PPC (Public Power Corporation). The model performed best at both time scales using the Landsat 8 (Eq. 13) dataset, characterized by a detailed resolution and a satisfactory categorization, allowing the identification of the most susceptible to erosion areas.

  18. Medicinal significance of vegetables cultivated over minerals supplemented soil

    International Nuclear Information System (INIS)

    Bangash, J.A.; Arif, M.; Khan, F.; Khan, F.; Khan, A.S.

    2010-01-01

    Three winter season vegetables Fenugreek/Methi (Trigonella-foenum-graceum), Sarson (Brassica-campestris-var-sarson) and Garlic (Allium-sativum) were included in the present study to determine some of their mineral components and see if some of their mineral (Cr, Zn, Mn, Cu, Mg and Fe) content could be increased by supplementation through their roots. Thus calculated amount of Cr, Zn, Mn, Cu, Mg and Fe salts (as fertilizer) were applied in solution form to the roots of vegetables in different concentration as individual or in combinations. These vegetables were grown from seeds in the soil plot. After harvesting vegetables were dried, acid digested and analyzed for Cr, Mn, Zn, Cu, Fe and Mg on Hitachi Zeeman Japan Z-8000, Atomic Absorption Spectrophotometer. Thus in Fenugreek/Methi (Trigonella-foenum-graceum) total increase of Cr, Zn, Mn, Mg and Fe recorded was (10, 94, 10, 256 and 520) mg/Kg dry weight basis; in Sarson (Brassica-campestris-var-sarson) total increase of Cr, Zn, Mn and Mg recorded was (12, 30, 22 and 424) mg/Kg dry weight basis and ( Garlic) (Allium-sativum) total increase of Cr, Zn, Mn, Cu, Mg and Fe recorded was (14, 28, 4, 4, 116 and 10) mg/Kg dry weight basis. From the present study it can be concluded that by changing the soil minerals environment the uptake of required mineral content of vegetables, perhaps could be enhanced. This could play important role in management of diabetes control and also in the elimination of other deficiency diseases like anemia. (author)

  19. Toxicological significance of soil ingestion by wild and domestic animals

    Science.gov (United States)

    Beyer, W. Nelson; Fries, George F.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    Most wild and domestic animals ingest some soil or sediment, and some species may routinely, or under special circumstances, ingest considerable amounts. Ingested soil supplies nutrients, exposes animals to parasites and pathogens, and may play a role in developing immune systems.1 Soil ingestion is also sometimes the principal route of exposure to various environmental contaminants.2-7 Ingestion of soil and earthy material is defined as geophagy and may be either intentional or unintentional, occurring as an animal eats or grooms.

  20. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  1. Increasing cotton stand establishment in soils prone to soil crusting

    Science.gov (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  2. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    Science.gov (United States)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  3. Significance in the increase of women psychiatrists in Korea.

    Science.gov (United States)

    Kim, Ha Kyoung; Kim, Soo In

    2008-01-01

    The number of female doctors has increased in Korea; 18.9% (13,083) of the total medical doctors registered (69,097) were women in 2006, compared to 13.6% (2,216) in 1975. The proportion of female doctors will jump up by 2010 considering that nearly 40% of the medical students are women as of today. This trend has had strong influence on the field of psychiatry; the percentage of women psychiatrists rose from 1.6 (6)% to 18% (453), from 1975 to 2006 and now women residents comprise 39% (206) of all. This is not only a reflection of a social phenomenon of the increase in professional women but also attributed to some specific characteristics of the psychiatry. Psychiatric practice may come more natural to women. While clinical activities of women psychiatrists are expanding, there are few women leaders and much less women are involving in academic activities in this field as yet. Though there is less sexual discrimination in the field of psychiatry, women psychiatrists are still having a lot of difficulties in balancing work and family matters. Many women psychiatrists also report they've ever felt an implied discrimination in their careers. In this study, we are to identify the characteristics of women psychiatrists and to explore the significance of the increase in women psychiatrists in Korea and the situation in which they are.

  4. Habitat constraints on the functional significance of soil microbial communities

    Science.gov (United States)

    Nunan, Naoise; Leloup, Julie; Ruamps, Léo; Pouteau, Valérie; Chenu, Claire

    2017-04-01

    An underlying assumption of most ecosystem models is that soil microbial communities are functionally equivalent; in other words, that microbial activity under given set of conditions is not dependent on the composition or diversity of the communities. Although a number of studies have suggested that this assumption is incorrect, ecosystem models can adequately describe ecosystem processes, such as soil C dynamics, without an explicit description of microbial functioning. Here, we provide a mechanistic basis for reconciling this apparent discrepancy. In a reciprocal transplant experiment, we show that microbial communities are not always functionally equivalent. The data suggest that when the supply of substrate is restricted, then the functioning of different microbial communities cannot be distinguished, but when the supply is less restricted, the intrinsic functional differences among communities can be expressed. When the supply of C is restricted then C dynamics are related to the properties of the physical and chemical environment of the soil. We conclude that soil C dynamics may depend on microbial community structure or diversity in environments such as the rhizosphere or the litter layer, but are less likely to do so in oligotrophic environments such as the mineral layers of soil.

  5. Priority areas in the Soil Framework Directive : the significance of soil biodiversity and ecosystem services

    NARCIS (Netherlands)

    Rutgers, M.; Jagers op Akkerhuis, G.A.J.M.; Bloem, J.

    2010-01-01

    Seven soil threats are distinguished in the draft text of the Soil Framework Directive of the European Commission. Soil organic matter decline and soil compaction are the most relevant for the Netherlands due to intensive agricultural land management. Loss of soil biodiversity should be considered

  6. Evidence for the functional significance of diazotroph community structure in soil.

    Science.gov (United States)

    Hsu, Shi-Fang; Buckley, Daniel H

    2009-01-01

    Microbial ecologists continue to seek a greater understanding of the factors that govern the ecological significance of microbial community structure. Changes in community structure have been shown to have functional significance for processes that are mediated by a narrow spectrum of organisms, such as nitrification and denitrification, but in some cases, functional redundancy in the community seems to buffer microbial ecosystem processes. The functional significance of microbial community structure is frequently obscured by environmental variation and is hard to detect in short-term experiments. We examine the functional significance of free-living diazotrophs in a replicated long-term tillage experiment in which extraneous variation is minimized and N-fixation rates can be related to soil characteristics and diazotroph community structure. Soil characteristics were found to be primarily impacted by tillage management, whereas N-fixation rates and diazotroph community structure were impacted by both biomass management practices and interactions between tillage and biomass management. The data suggest that the variation in diazotroph community structure has a greater impact on N-fixation rates than do soil characteristics at the site. N-fixation rates displayed a saturating response to increases in diazotroph community diversity. These results show that the changes in the community structure of free-living diazotrophs in soils can have ecological significance and suggest that this response is related to a change in community diversity.

  7. Increasing the statistical significance of entanglement detection in experiments.

    Science.gov (United States)

    Jungnitsch, Bastian; Niekamp, Sönke; Kleinmann, Matthias; Gühne, Otfried; Lu, He; Gao, Wei-Bo; Chen, Yu-Ao; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-05-28

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

  8. Increasing the statistical significance of entanglement detection in experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jungnitsch, Bastian; Niekamp, Soenke; Kleinmann, Matthias; Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Lu, He; Gao, Wei-Bo; Chen, Zeng-Bing [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Chen, Yu-Ao; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Physikalisches Institut, Universitaet Heidelberg (Germany)

    2010-07-01

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. We show this to be the case for an error model in which the variance of an observable is interpreted as its error and for the standard error model in photonic experiments. Specifically, we demonstrate that the Mermin inequality yields a Bell test which is statistically more significant than the Ardehali inequality in the case of a photonic four-qubit state that is close to a GHZ state. Experimentally, we observe this phenomenon in a four-photon experiment, testing the above inequalities for different levels of noise.

  9. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  10. Greenhouse-gas emissions from soils increased by earthworms

    NARCIS (Netherlands)

    Lubbers, I.M.; Groenigen, van K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; Groenigen, van J.W.

    2013-01-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon

  11. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals

    Science.gov (United States)

    Keesstra, Saskia D.; Bouma, Johan; Wallinga, Jakob; Tittonell, Pablo; Smith, Pete; Cerdà, Artemi; Montanarella, Luca; Quinton, John N.; Pachepsky, Yakov; van der Putten, Wim H.; Bardgett, Richard D.; Moolenaar, Simon; Mol, Gerben; Jansen, Boris; Fresco, Louise O.

    2016-04-01

    In this forum paper we discuss how soil scientists can help to reach the recently adopted UN Sustainable Development Goals (SDGs) in the most effective manner. Soil science, as a land-related discipline, has important links to several of the SDGs, which are demonstrated through the functions of soils and the ecosystem services that are linked to those functions (see graphical abstract in the Supplement). We explore and discuss how soil scientists can rise to the challenge both internally, in terms of our procedures and practices, and externally, in terms of our relations with colleague scientists in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the following steps to be taken by the soil science community as a whole: (i) embrace the UN SDGs, as they provide a platform that allows soil science to demonstrate its relevance for realizing a sustainable society by 2030; (ii) show the specific value of soil science: research should explicitly show how using modern soil information can improve the results of inter- and transdisciplinary studies on SDGs related to food security, water scarcity, climate change, biodiversity loss and health threats; (iii) take leadership in overarching system analysis of ecosystems, as soils and soil scientists have an integrated nature and this places soil scientists in a unique position; (iii) raise awareness of soil organic matter as a key attribute of soils to illustrate its importance for soil functions and ecosystem services; (iv) improve the transfer of knowledge through knowledge brokers with a soil background; (v) start at the basis: educational programmes are needed at all levels, starting in primary schools, and emphasizing practical, down-to-earth examples; (vi) facilitate communication with the policy arena by framing research in terms that resonate with politicians in terms of the policy cycle or by considering drivers, pressures and responses affecting impacts of land

  12. Increased P diffusion as an explanation of increased P availability in flooded rice soils

    International Nuclear Information System (INIS)

    Turner, F.T.; Gilliam, J.W.

    1976-01-01

    Phosphorus supply factors (capacity, kinetic, intensity, and diffusivity) and plant growth were the approaches used to assess P supply of flooded rice soils. Increases in the capacity, intensity and kinetic factors, as measured by E-value, solution P concentration, and soil P release rate to a distilled water 'sink' respectively, were unpronounced and infrequent upon water-saturation of ten soils. However, increases in the diffusivity factor, as measured by 32 P diffusion coefficients, were at least ten-fold as soil moisture increased. The greatest increases in P diffusion occurred as soil moisture increased beyond one-third bar. Using a P-fertilized soil or P treated powdered cellulose as the P source and a minus P nutrient solution to nourish a split root system with water and nutrients, data were obtained which suggested that P uptake and rice shoot growth (indicators of P availability) increased with increasing moisture level. Phosphorus uptake and rice-shoot growth were greatest when the soil or P treated cellulose were water-saturated. These data indicate that increased soil P availability upon flooding can be attributed to an increase in the diffusivity factor

  13. Redox Fluctuations Increase the Contribution of Lignin to Soil Respiration

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Timokhin, V.; Hammel, K.

    2014-12-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia has long been thought to suppress lignin decomposition, yet variation in oxygen (O2) availability in surface soils accompanying moisture fluctuations could potentially stimulate this process by generating reactive oxygen species via coupled biotic and abiotic iron (Fe) redox cycling. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl and propyl Cβ) to provide highly sensitive and specific measures of lignin mineralization not previously employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration, and cumulative methoxyl C mineralization was equivalent under static aerobic and fluctuating redox conditions despite lower total C mineralization in the latter treatment. Contributions of the highly stable Cβ to mineralization were also equivalent in static aerobic and fluctuating redox treatments during periods of O2 exposure, and nearly doubled in the fluctuating treatment after normalizing to cumulative O2 exposure. Oxygen fluctuations drove substantial net Fe reduction and oxidation, implying that reactive oxygen species generated during abiotic Fe oxidation likely contributed to the elevated contribution of lignin to C mineralization. Iron redox cycling provides a mechanism for lignin breakdown in soils that experience conditions unfavorable for canonical lignin-degrading organisms, and provides a potential mechanism for lignin depletion in soil organic matter during late-stage decomposition. Thus, close couplings between soil moisture, redox fluctuations, and lignin breakdown provide potential a link between climate variability and

  14. Microbial carbon pump and its significance for carbon sequestration in soils

    Science.gov (United States)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  15. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China

    International Nuclear Information System (INIS)

    Li, Lianzhen; Wu, Huifeng; Gestel, Cornelis A.M. van; Peijnenburg, Willie J.G.M.; Allen, Herbert E.

    2014-01-01

    The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg −1 ) and Zn (168 mg kg −1 ) in old apple orchards and Pb (73 mg kg −1 ) and Cd (0.57 mg kg −1 ) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl 2 -extractable soil concentrations (R 2  = 0.70, p < 0.001 for Cu; R 2  = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions. - Highlights: • Soil acidity of Chinese orchards increased with increasing fruit cultivation period. • Metal levels were enriched in topsoils after decades of horticultural cultivation. • Earthworm bioassays and chemical assays were used to assess metal bioavailability. • Earthworm Cu and Pb concentrations correlated with CaCl 2 -extractable concentrations. • Regular monitoring of soil conditions in old orchards and vineyards is recommended. - Long-term cultivation leads to increased acidification and metal accumulation in horticultural soils, with higher metal bioavailability to earthworms

  16. Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability

    NARCIS (Netherlands)

    Oram, N.J.; Van de Voorde, T.F.J.; Ouwehand, G.J.; Bezemer, T.M.; Mommer, Liesje; Jeffery, S.; van Groeningen, J.W.

    2014-01-01

    Soil amendment with biochar is currently proposed as a management strategy to improve soil quality and enhance plant productivity. Relatively little is known about how biochar affects plant competition, although it has been suggested that it can increase the competitive ability of legumes. This

  17. Charcoal Increases Microbial Activity in Eastern Sierra Nevada Forest Soils

    Directory of Open Access Journals (Sweden)

    Zachary W. Carter

    2018-02-01

    Full Text Available Fire is an important component of forests in the western United States. Not only are forests subjected to wildfires, but fire is also an important management tool to reduce fuels loads. Charcoal, a product of fire, can have major impacts on carbon (C and nitrogen (N cycling in forest soils, but it is unclear how these effects vary by dominant vegetation. In this study, soils collected from Jeffrey pine (JP or lodgepole pine (LP dominated areas and amended with charcoal derived from JP or LP were incubated to assess the importance of charcoal on microbial respiration and potential nitrification. In addition, polyphenol sorption was measured in unamended and charcoal-amended soils. In general, microbial respiration was highest at the 1% and 2.5% charcoal additions, but charcoal amendment had limited effects on potential nitrification rates throughout the incubation. Microbial respiration rates decreased but potential nitrification rates increased over time across most treatments. Increased microbial respiration may have been caused by priming of native organic matter rather than the decomposition of charcoal itself. Charcoal had a larger stimulatory effect on microbial respiration in LP soils than JP soils. Charcoal type had little effect on microbial processes, but polyphenol sorption was higher on LP-derived than JP-derived charcoal at higher amendment levels despite surface area being similar for both charcoal types. The results from our study suggest that the presence of charcoal can increase microbial activity in soils, but the exact mechanisms are still unclear.

  18. Is it real or apparent increased aggregate stability sometimes found in burned soils?

    Directory of Open Access Journals (Sweden)

    V. Arcenegui

    2013-05-01

    Full Text Available The increase in soil aggregate stability observed in many cases after burning is discussed in this paper. Soil samples under pine forest from two Mediterranean areas were collected for this experiment: acid soils from El Algibe Range (Los Alcornocales Natural Park, Cádiz, Southern Spain and calcareous soils of Sierra de la Grana (Alicante, Eastern Spain. In each case, soil aggregates (2 to 0.25 mm were selected and exposed to temperatures of 200, 250, 300, 500 and 700 oC during a 20-minutes period. In both cases weight loss after volatilization of substances and a significant destruction of aggregates with increasing temperature were observed. For acid soils, where organic matter is the main cementing agent, destruction of aggregates with temperature was more intense. Water repellency induced by combustion increased between 200 and 250 oC, also the remaining aggregates remaining increased within the initial size fraction after heating, increasing its stability. For temperatures above 300 oC, water repellency disappeared, although an increase in aggregate stability was observed, possibly due to changes in the mineral soil fraction. Therefore, it is concluded that burning may destroy part of the aggregates by combustion of organic matter, so selecting stable aggregates. Water repellency and transformations of soil minerals contribute to increased stability in selected aggregates.

  19. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China.

    Science.gov (United States)

    Wang, Yongsheng; Liu, Yansui; Liu, Ruliang; Zhang, Aiping; Yang, Shiqi; Liu, Hongyuan; Zhou, Yang; Yang, Zhengli

    2017-05-09

    The efficacy of biochar as an environmentally friendly agent for non-point source and climate change mitigation remains uncertain. Our goal was to test the impact of biochar amendment on paddy rice nitrogen (N) uptake, soil N leaching, and soil CH 4 and N 2 O fluxes in northwest China. Biochar was applied at four rates (0, 4.5, 9 and13.5 t ha -1 yr -1 ). Biochar amendment significantly increased rice N uptake, soil total N concentration and the abundance of soil ammonia-oxidizing archaea (AOA), but it significantly reduced the soil NO 3 - -N concentration and soil bulk density. Biochar significantly reduced NO 3 - -N and NH 4 + -N leaching. The C2 and C3 treatments significantly increased the soil CH 4 flux and reduced the soil N 2 O flux, leading to significantly increased net global warming potential (GWP). Soil NO 3 - -N rather than NH 4 + -N was the key integrator of the soil CH 4 and N 2 O fluxes. Our results indicate that a shift in abundance of the AOA community and increased rice N uptake are closely linked to the reduced soil NO 3 - -N concentration under biochar amendment. Furthermore, soil NO 3 - -N availability plays an important role in regulating soil inorganic N leaching and net GWP in rice paddies in northwest China.

  20. Improvements of soil quality for increased food production in Norway

    Science.gov (United States)

    Øygarden, Lillian; Klakegg, Ove; Børresen, Trond; Krogstad, Tore; Kjersti Uhlen, Anne

    2016-04-01

    Since the 1990ties, agricultural land in use in Norway has diminished and yields per hectare for cereals and forages have stagnated. An expert panel appointed to advice on how to increase Norwegian grain production emphasizes low profitability and poor soil quality as limiting factors. A White Paper from the Norwegian Government, Report No.9 (2011-2012), stated that the main goal for the agricultural sector is to increase food production proportional to the expected increase in population (20 % by 2030) in order to maintain self-sufficiency at the present level. This is the background for the interdisciplinary project AGROPRO "Agronomy for increased food production - Challenges and solutions" (2013 - 2017)" financed by the Norwegian research council. A mail goal is seeking possibilities for improvements in agronomic practices for increased and sustainable food production and to identify drivers and challenges for their implementation. Are the key to higher yields hidden in the soil? The paper present an overview of the research activities in the project and some results of the improvements of soil quality to minimize yield gap in cereal and forage production. Detailed new soil maps provide soil information on field scale of soil quality and the suitability for growing different crops like cereal production or vegetables. The detailed soil information is also beeing used for development and adaptation of the planning tool «Terranimo» to reduce risk of soil compaction.The farmer get available soil information for each field, provide information about the maschinery in use- tractors and equipment, tyres, pressure. The decision tool evaluate when the soil is suitable for tillage, calculate the risk of compaction for dry, moist and wet soil. New research data for compaction on Norwegian clay and silt soil are included. Climate change with wetter conditions gives challenges for growing cereals. The project is testing genetic variation in cereals for tolerance to water

  1. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-07-01

    At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density

  2. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    Science.gov (United States)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  3. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    Science.gov (United States)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  4. Increase of rotation angle of soil layers during plow operation

    Science.gov (United States)

    Vasilenko, VV; Afonichev, D. N.; Vasilenko, S. V.; Khakhulin, A. N.

    2018-03-01

    One of the advantages of plowing is the ability of the plow to hide the weed seeds deep into the soil. The depth of the embankment exceeds 10-12 cm, from there the weeds can not rise to the surface of the soil. They perish halfway. But for this, it is necessary to wrap the soil layers at an angle close to 180 °. Modern ploughs can not turn the layers of soil at an angle of more than 135 °, therefore the plow is required to be equipped with additional working elements. The aim of the study is to create an adaptation to the plow to expand the furrow before laying the next soil layer. In a wide furrow, the formation will completely tip, the previous layer will not interfere with it. The device is a set of vertical shields. Each shield is fixed behind the working body of the plow. It is installed with an angle of attack of 20-25 ° to move the previous layer to expand the furrow by 10-12 cm. The model and industrial samples of the plow have shown improved agrotechnical indicators. The average angle of the formation rotation was 177 °, the burial of plant residues in the soil increased from 61 to 99%. The field surface with blocks more than 5 cm decreased from 36.3 to 13.4%, the height of the ridges decreased from 7 to 4 cm. The force of soil pressure on the shield was measured by a strain gage. It is 130-330 N depending on the depth of processing and the speed of movement. The increase in power costs for the four-hull plow was 190-750 W. The coulters on the plow are unnecessary, and this saves energy more than its increase for shields.

  5. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Directory of Open Access Journals (Sweden)

    C. Bastianelli

    2017-07-01

    Full Text Available At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW are spreading southward at the expense of more productive closed-canopy black spruce–moss forests (MF. The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation

  6. Increasing Soil Organic Matter Enhances Inherent Soil Productivity while Offsetting Fertilization Effect under a Rice Cropping System

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhao

    2016-09-01

    Full Text Available Understanding the role of soil organic matter (SOM in soil quality and subsequent crop yield and input requirements is useful for agricultural sustainability. SOM is widely considered to affect a wide range of soil properties, however, great uncertainty still remains in identifying the relationships between SOM and crop yield due to the difficulty in separating the effect of SOM from other yield-limiting factors. Based on 543 on-farm experiments, where paired treatments with and without NPK fertilizer were conducted during 2005–2009, we quantified the inherent soil productivity, fertilization effect, and their contribution to rice yield and further evaluated their relationships with SOM contents under a rice cropping system in the Sichuan Basin of China. The inherent soil productivity assessed by rice grain yield under no fertilization (Y-CK was 5.8 t/ha, on average, and contributed 70% to the 8.3 t/ha of rice yield under NPK fertilization (Y-NPK while the other 30% was from the fertilization effect (FE. No significant correlation between SOM content and Y-NPK was observed, however, SOM content positively related to Y-CK and its contribution to Y-NPK but negatively to FE and its contribution to Y-NPK, indicating an increased soil contribution but a decreased fertilizer contribution to rice yield with increasing SOM. There were significantly positive relationships between SOM and soil available N, P, and K, indicating the potential contribution of SOM to inherent soil productivity by supplying nutrients from mineralization. As a result, approaches for SOM accumulation are practical to improve the inherent soil productivity and thereafter maintain a high crop productivity with less dependence on chemical fertilizers, while fertilization recommendations need to be adjusted with the temporal and spatial SOM variation.

  7. Nitrogen Fertilization Increases Cottonwood Growth on Old-Field Soil

    Science.gov (United States)

    B. G. Blackmon; E. H. White

    1972-01-01

    Nitrogen (150 lb ./acre as NH4N03 ) applied to a 6-year-old eastern cottonwood plantation in an old field on Commerce silt loam soil increased diameter, basal area, and volume growth by 200 percent over untreated controls. The plantation did not respond to 100 pounds P per acre from concentrated superphosphate.

  8. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    Science.gov (United States)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  9. Significant increase of Echinococcus multilocularis prevalencein foxes, but no increased predicted risk for humans

    NARCIS (Netherlands)

    Maas, M.; Dam-Deisz, W.D.C.; Roon, van A.M.; Takumi, K.; Giessen, van der J.W.B.

    2014-01-01

    The emergence of the zoonotic tapeworm Echinococcus multilocularis, causative agent ofalveolar echinococcosis (AE), poses a public health risk. A previously designed risk mapmodel predicted a spread of E. multilocularis and increasing numbers of alveolar echinococ-cosis patients in the province of

  10. Grazing disturbance increases transient but decreases persistent soil seed bank.

    Science.gov (United States)

    Ma, Miaojun; Walck, Jeffrey L; Ma, Zhen; Wang, Lipei; Du, Guozhen

    2018-04-30

    Very few studies have examined whether the impacts of grazing disturbance on soil seed banks occur directly or indirectly through aboveground vegetation and soil properties. The potential role of the seed bank in alpine wetland restoration is also unknown. We used SEM (structural equation modeling) to explore the direct effect of grazing disturbance on the seed bank and the indirect effect through aboveground vegetation and soil properties. We also studied the role of the seed bank on the restoration potential in wetlands with various grazing intensities: low (fenced, winter grazed only), medium (seasonally grazed), and high (whole-year grazed). For the seed bank, species richness and density per plot showed no difference among grazing intensities for each depth (0-5, 5-10, 10-15 cm) and for the whole depth (0-15 cm) in spring and summer. There was no direct effect of grazing disturbance on seed bank richness and density both in spring and summer, and also no indirect effect on the seed bank through its direct effect on vegetation richness and abundance. Grazing disturbance indirectly increased spring seed bank density but decreased summer seed bank density through its direct effect (negative correlation) on soil moisture and total nitrogen and its indirect effect on vegetation abundance. Species composition of the vegetation changed with grazing regime, but that of the seed bank did not. An increased trend of similarity between the seed bank and aboveground vegetation with increased grazing disturbance was found in the shallow depth and in the whole depth only in spring. Although there was almost no change in seed bank size with grazing intensities, grazing disturbance increased the quantity of transient seeds but decreased persistent seeds. Persistent seeds stored in the soil could play a crucial role in vegetation regeneration and in restoration of degraded wetland ecosystems. The seed bank should be an integral part of alpine wetland restoration programs.

  11. Increasing vaginal progesterone gel supplementation after frozen-thawed embryo transfer significantly increases the delivery rate

    DEFF Research Database (Denmark)

    Alsbjerg, Birgit; Polyzos, Nikolaos P; Elbaek, Helle Olesen

    2013-01-01

    The aim of this study was to evaluate the reproductive outcome in patients receiving frozen-thawed embryo transfer before and after doubling of the vaginal progesterone gel supplementation. The study was a retrospective study performed in The Fertility Clinic, Skive Regional Hospital, Denmark....... A total of 346 infertility patients with oligoamenorrhoea undergoing frozen-thawed embryo transfer after priming with oestradiol and vaginal progesterone gel were included. The vaginal progesterone dose was changed from 90mg (Crinone) once a day to twice a day and the reproductive outcome during the two...... rate (8.7% versus 20.5%, respectively; P=0.002). Doubling of the vaginal progesterone gel supplementation during frozen-thawed embryo transfer cycles decreased the early pregnancy loss rate, resulting in a significantly higher delivery rate. This study evaluated the reproductive outcome of 346 women...

  12. Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback.

    Science.gov (United States)

    Hol, W H Gera; de Boer, Wietse; ten Hooven, Freddy; van der Putten, Wim H

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota.

  13. Long- term manure exposure increases soil bacterial community potential for plasmid uptake

    DEFF Research Database (Denmark)

    Musovic, Sanin; Klümper, Uli; Dechesne, Arnaud

    2014-01-01

    Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive and main......Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive...... and maintain the plasmids. The community permissiveness increased up to 100% in communities derived from manured soil. While the plasmid transfer frequency was significantly influenced by both the type of plasmid and the agronomic treatment, the diversity of the transconjugal pools was purely plasmid dependent...

  14. Melanised endophytic fungi may increase stores of organic carbon in soil

    Science.gov (United States)

    McGee, Peter; Mukasa Mugerwa, Tendo

    2013-04-01

    The processes underlying the carbon cycle in soil, especially sequestration of organic carbon (OC), are poorly understood. Hydrolysis and oxidation reduce organic matter. Hydrolysis degrades linear organic molecules in aerobic and anaerobic conditions, though it is slower in anaerobic conditions. Aromatic compounds are only degraded by oxidation. Oxygen is by far the most common electron acceptor in soil. Anaerobic conditions preclude oxidation in soil and will result in the preservation of aromatic compounds so long as the conditions remain anaerobic. We experimentally tested this model using melanised endophytic fungi. Melanin is a polyaromatic compound that can be readily visualised, though is difficult to quantify. An endophytic association provides the fungus with an ongoing source of energy. Fungal hyphae elongate considerable distances in soil where they may colonise aggregates, the core of which may be anaerobic. The hypothesis we tested is that melanised endophytic fungi increase OC in soil. Seedlings of subterranean clover inoculated with single isolates were grown in split pots where the impact of the fungus could be quantified in the hyphal chamber, separated from the roots by a steel mesh. We found that melanised endophytic fungi significantly increased OC and aromatic carbon in a well-aggregated carbon-rich soil. OC increased by up to 17% within 14 weeks. Twenty out of 24 isolates statistically significantly increased and none decreased OC. Increases differed between fungal isolates. Increases in the hyphal chamber were independent of any change in OC associated with the roots of the host plant. The storage of OC in field soils is being explored. Inoculation of plant roots with melanised endophytic fungi offers one means whereby OC may be increased in field soils.

  15. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  16. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    Science.gov (United States)

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    and the litter C:N ratio resulted from an increase in respiration with the C:N ratio in combination with no significant effect of the litter C:N ratio on the soil microbial biomass C concentration. The results suggest that soil microorganisms respire more C both in absolute terms and per unit microbial biomass C when decomposing N-poor substrate. Thus, the findings indicate that atmospheric N deposition, leading to decreased litter C:N ratios, might decrease microbial respiration in soils. Together, the two studies show that the respiration rate per unit microbial biomass C is not constant but increases with the soil carbon-to-nutrient ratio. References Spohn, M; Chodak, M (2015): Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils, Soil Biology & Biochemistry 81, 128-133, doi:10.1016/j.soilbio.2014.11.008 Spohn, M (2014): Microbial respiration per unit microbial biomass depends on soil litter carbon-to-nitrogen ratio, Biogeosciences Discussions 11, 15037-15051, doi:10.5194/bgd-11-15037-2014

  17. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity.

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C; Nakamura, Jun; Tanguay, Robert L; Aitken, Michael D; Simonich, Staci L Massey

    2015-12-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p toxicity was measured in one polar soil extract fraction, postbioremediation (p soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.

  18. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    Science.gov (United States)

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  19. A possible mechanism relating increased soil temperature to forest decline

    International Nuclear Information System (INIS)

    Tomlinson, G.H.

    1993-01-01

    Nutrient cations are removed from the soil by uptake in biomass, and by leaching as a result of soil acidification. Such acidification results from acid deposition and/or from HNO 3 formed by mineralization and nitrification of humus, when at a rate in excess of the tree's nutritional requirements. This has been found to occur during and following periods of increased temperature and reduced rainfall. The cumulative loss of either Ca 2+ , Mg 2+ or K + by one or more of these processes, if greater than the amount released from the specific minerals in that soil, leads to nutrient deficiency, fine root mortality, poor growth, and eventually to die-back. Trees growing in soils derived from specific minerals in which there is a strong imbalance in the elements from which the exchangeable nutrients are formed, are vulnerable to nutrient deficiency. This paper discusses the relevance of earlier studies, when considered in relation to more recent findings. In Hawaii there have been frequent periods of increased temperature and drought resulting from the El Nino Southern Oscillation. This fact, when considered in relation to the relatively low K content, and its imbalance with Ca and Mg in the lava and volcanic ash on which the trees have grown, could result in K deficiency in the declining ohia trees. It is possible that the unusual periods of increased temperature and drought which have occurred in certain other localized areas may have led to the decline symptoms recently observed. In view of the threat of global warming, this possibility should be investigated. 39 refs., 3 figs., 2 tabs

  20. Nematodes Relevance in Soil Quality Management and their Significance as Biomarkers in Aquatic Substrates: Review.

    Science.gov (United States)

    Akpheokhai, Leonard I; Oribhabor, Blessing J

    2016-01-01

    The interaction of man with the ecosystem is a major factor causing environmental pollution and its attendant consequences such as climate change in our world today. Patents relating to nematodes' relevance in soil quality management and their significance as biomarkers in aquatic substrates were reviewed. Nematodes are useful in rapid, easy and inexpensive method for testing the toxicity of substance (e.g. aquatic substrates). This review paper sets out to examine and discuss the issue of soil pollution, functions of nematodes in soil and aquatic substrates as well as bio-indicators in soil health management in terrestrial ecology. The information used were on the basis of secondary sources from previous research. It is abundantly clear that the population dynamics of plant parasitic or free-living nematodes have useful potentials as biomonitor for soil health and other forms of environmental contamination through agricultural activities, industrial pollution and oil spillage, and the analysis of nematode community structure could be used as complementary information obtained from conventional soil testing approaches.

  1. Radon soil increases before volcano-tectonic earthquakes in Colombia

    International Nuclear Information System (INIS)

    Garzon, G.; Serna, D.; Diago, J.; Moran, C.

    2003-01-01

    Continuous studies of radon concentration changes in soils for the purpose of earthquake monitoring have been carried out in three colombian districts and in the edifices of Galeras and nevado del Ruiz volcanoes since 1995. In zones of active faulting have been measured radon soil emissions between 1000 and 2500 pCi/L. In an intersection of two active geological faults have been measured levels of 25 000 pCi/L. In the present work appears a compilation of examples of the registered anomalous radon emissions in several stations before earthquakes of tectonic character. Examples of registered radon increases before: (1) events of magnitudes between 2 and 4; (2) the occurrence of seismic swarms; and (3) the Quindio (Colombia) earthquake (M w = 6, 2) of January 1999, are described. A model of transport mechanism for the studied isotopes is presented. (orig.)

  2. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  3. Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M.; Daniell, Tim J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3−) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N2O production from soils. PMID:23264770

  4. Soil nitrate reducing processes – drivers, mechanisms for spatial variation and significance for nitrous oxide production

    Directory of Open Access Journals (Sweden)

    Madeline Eleanore Giles

    2012-12-01

    Full Text Available The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3-¬ and production of the potent greenhouse gas, nitrous oxide (N2O. A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub cm areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location and potential for N2O production from soils.

  5. Soil nitrate reducing processes - drivers, mechanisms for spatial variation, and significance for nitrous oxide production.

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M; Daniell, Tim J

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ([Formula: see text]) and production of the potent greenhouse gas, nitrous oxide (N(2)O). A number of factors are known to control these processes, including O(2) concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N(2)O production from soils.

  6. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux

    Science.gov (United States)

    Christian P. Giardina; Creighton M. Litton; Susan E. Crow; Gregory P Asner

    2014-01-01

    The universally observed exponential increase in soil-surface CO2 effux (‘soil respiration’; FS) with increasing temperature has led to speculation that global warming will accelerate soil organic carbon (SOC) decomposition, reduce SOC storage, and drive a positive feedback to future warming. However, interpreting temperature–FS relationships,...

  7. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition

    Science.gov (United States)

    Li, Quan; Lei, Zhaofeng; Song, Xinzhang; Zhang, Zhiting; Ying, Yeqing; Peng, Changhui

    2018-04-01

    Biochar amendment has been proposed as a strategy to improve acidic soils after overuse of nitrogen fertilizers. However, little is known of the role of biochar in soil microbial biomass carbon (MBC) and bacterial community structure and diversity after soil acidification induced by nitrogen (N) deposition. Using high-throughput sequencing of the 16S rRNA gene, we determined the effects of biochar amendment (BC0, 0 t bamboo biochar ha‑1 BC20, 20 t bamboo biochar ha‑1 and BC40, 40 t bamboo biochar ha‑1) on the soil bacterial community structure and diversity in Moso bamboo plantations that had received simulated N deposition (N30, 30 kg N ha‑1 yr‑1 N60, 60 kg N ha‑1 yr‑1 N90, 90 kg N ha‑1 yr‑1 and N-free) for 21 months. After treatment of N-free plots, BC20 significantly increased soil MBC and bacterial diversity, while BC40 significantly decreased soil MBC but increased bacterial diversity. When used to amend N30 and N60 plots, biochar significantly decreased soil MBC and the reducing effect increased with biochar amendment amount. However, these significant effects were not observed in N90 plots. Under N deposition, biochar amendment largely increased soil bacterial diversity, and these effects depended on the rates of N deposition and biochar amendment. Soil bacterial diversity was significantly related to the soil C/N ratio, pH, and soil organic carbon content. These findings suggest an optimal approach for using biochar to offset the effects of N deposition in plantation soils and provide a new perspective for understanding the potential role of biochar amendments in plantation soil.

  8. Harnessing the soil microbiome for increased drought resistance

    Science.gov (United States)

    Dr. Manter is a Research Soil Scientist in the Soil Management and Sugar Beet Research Unit (SMSBRU) of the USDA-Agricultural Research Service in Fort Collins, Colorado. His research examines soil biology and plant-microbial interactions aimed at optimizing soil health. Research emphasis is on dev...

  9. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    Directory of Open Access Journals (Sweden)

    Ulisses eNunes da Rocha

    2015-04-01

    Full Text Available Biological Soil Crusts (BSCs are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light and isolation strategies (media with varying nutrient availability and protection from oxidative stress we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology, 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.

  10. Carbon input increases microbial nitrogen demand, but not microbial nitrogen mining in boreal forest soils

    Science.gov (United States)

    Wild, Birgit; Alaei, Saeed; Bengtson, Per; Bodé, Samuel; Boeckx, Pascal; Schnecker, Jörg; Mayerhofer, Werner; Rütting, Tobias

    2016-04-01

    Plant primary production at mid and high latitudes is often limited by low soil N availability. It has been hypothesized that plants can indirectly increase soil N availability via root exudation, i.e., via the release of easily degradable organic compounds such as sugars into the soil. These compounds can stimulate microbial activity and extracellular enzyme synthesis, and thus promote soil organic matter (SOM) decomposition ("priming effect"). Even more, increased C availability in the rhizosphere might specifically stimulate the synthesis of enzymes targeting N-rich polymers such as proteins that store most of the soil N, but are too large for immediate uptake ("N mining"). This effect might be particularly important in boreal forests, where plants often maintain high primary production in spite of low soil N availability. We here tested the hypothesis that increased C availability promotes protein depolymerization, and thus soil N availability. In a laboratory incubation experiment, we added 13C-labeled glucose to a range of soil samples derived from boreal forests across Sweden, and monitored the release of CO2 by C mineralization, distinguishing between CO2 from the added glucose and from the native, unlabeled soil organic C (SOC). Using a set of 15N pool dilution assays, we further measured gross rates of protein depolymerization (the breakdown of proteins into amino acids) and N mineralization (the microbial release of excess N as ammonium). Comparing unamended control samples, we found a high variability in C and N mineralization rates, even when normalized by SOC content. Both C and N mineralization were significantly correlated to SOM C/N ratios, with high C mineralization at high C/N and high N mineralization at low C/N, suggesting that microorganisms adjusted C and N mineralization rates to the C/N ratio of their substrate and released C or N that was in excess. The addition of glucose significantly stimulated the mineralization of native SOC in soils

  11. Soil Hydrological Attributes of an Integrated Crop-Livestock Agroecosystem: Increased Adaptation through Resistance to Soil Change

    International Nuclear Information System (INIS)

    Liebig, M.A; Tanaka, D.L; Kronberg, S.L; Karn, J.F; Scholljegerdes, E.J

    2011-01-01

    Integrated crop-livestock systems have been purported to have significant agronomic and environmental benefits compared to specialized, single-enterprise production systems. However, concerns exist regarding the effect of livestock in integrated systems to cause soil compaction, thereby decreasing infiltration of water into soil. Such concerns are compounded by projections of more frequent high-intensity rainfall events from anticipated climate change, which would act to increase surface runoff and soil erosion. A study was conducted to evaluate the effects of residue management, frequency of hoof traffic, season, and production system (e.g., integrated annual cropping versus perennial grass) on infiltration rates from 2001 through 2008 in central North Dakota, USA. Imposed treatments had no effect on infiltration rate at three, six, and nine years after study establishment, implying that agricultural producers should not be concerned with inhibited infiltration in integrated annual cropping systems, where winter grazing is used. The use of no-till management, coupled with annual freeze/thaw and wet/dry cycles, likely conferred an inherent resistance to change in near-surface soil properties affecting soil hydrological attributes. Accordingly, caution should be exercised in applying these results to other regions or management systems.

  12. Excessive application of pig manure increases the risk of P loss in calcic cinnamon soil in China.

    Science.gov (United States)

    Yang, Yanju; Zhang, Haipeng; Qian, Xiaoqing; Duan, Jiannan; Wang, Gailan

    2017-12-31

    Soil phosphorus (P) is a critical factor affecting crop yields and water environmental quality. To investigate the degree of loss risk and forms of soil P in calcic cinnamon soil, the P fraction activities in soils were analysed using chemical methods, combined with an in situ field experiment. Seven treatments were set in this study, including control (unfertilized), no P fertilizer (No-P), mineral P fertilizer (Min-P), low (L-Man) and high (H-Man) quantities of pig manure, Min-P+L-Man, and Min-P+H-Man. The results showed that manure fertilizer could not only significantly increase maize yield but could also enhance the accumulation of soil P in organic and inorganic forms. After 23years of repeated fertilization, the soil Olsen-P contents respectively showed 64.7-, 43.7- and 31.9-fold increases in the Min-P+H-Man, Min-P+L-Man and H-Man treatments, while the soil Olsen-P in Min-P treatment only increased 23.7-fold. The soil Olsen-P thresholds ranged from 22.59 to 32.48mgkg -1 in calcic cinnamon soil to maintain a higher maize yield as well as a lower risk of P loss. Therefore, long-term excessive manure application could obviously raise the content of soil Olsen-P and increase the risk of P loss in calcic cinnamon soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C.; Nakamura, Jun; Tanguay, Robert L.; Aitken, Michael D.; Simonich, Staci L. Massey

    2015-01-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (pre-bioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (post-bioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, post-bioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental to xicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, post-bioremediation (p bioremediation (p bioremediation. The increased toxicity measured post-bioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase post-bioremediation. However, the increased toxicity measured post-bioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded. PMID:26200254

  14. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid......If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which...... (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover...

  15. Forest wildfire increases soil microbial biomass C:N:P stoichiometry in long-term effects

    Science.gov (United States)

    Zhou, Xuan

    2017-04-01

    Boreal forest fire strongly influences carbon (C) stock in permafrost soil by thawing permafrost table which accelerated microbe decomposition process. We studied soil microbial biomass stoichiometry in a gradient of four (3 yr, 25 yr, 46 yr and more than 100 yr) ages since fire in Canada boreal forest. Soil microbial biomass (MB) in long-term after fire is significantly higher than in short-term. MB C and nitrogen (N) were mainly dominated by corresponding soil element concentration and inorganic P, while MB phosphorus (P) changes were fully explained by soil N. Fire ages and soil temperature positively increased MB N and P, indicating the negative impact by fire. Microbial C:N:P gradually increased with fire ages from 15:2:1 to 76:6:1 and then drop down to 17:2:1 in the oldest fire ages. The degree of homeostasis of microbial C, N and P are close to 1 indicates non-homoeostasis within microbial elements, while it of C:N:P is close to 8 shows a strong homeostasis within element ratios and proved microbial stoichiometric ratio is not driven by soil element ratios. In conclusion, i) microbial biomass elements highly depends on soil nutrient supply rather than fire ages; ii) wildfire decreased microbial stoichiometry immediate after fire but increased with years after fire (YF) which at least 3 times higher than > 100 fire ages; iii) microbial biomass C, N and P deviated from strict homeostasis but C:N:P ratio reflects stronger homeostasis.

  16. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  17. Increasing atmospheric deposition nitrogen and ammonium reduced microbial activity and changed the bacterial community composition of red paddy soil.

    Science.gov (United States)

    Zhou, Fengwu; Cui, Jian; Zhou, Jing; Yang, John; Li, Yong; Leng, Qiangmei; Wang, Yangqing; He, Dongyi; Song, Liyan; Gao, Min; Zeng, Jun; Chan, Andy

    2018-03-27

    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha -1 when its ratio of NH 4 + /NO 3 - -N (R N ) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha -1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and R N (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha -1 ) had similar reduced effects on microbial activity. Furthermore, both ADN flux and R N significantly reduced soil bacterial alpha diversity (pADN flux and R N were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Bio fertilization of Cereal and Legume Crops for Increasing Soil available P Uptake Using Nuclear Technique

    International Nuclear Information System (INIS)

    Soliman, S.; El-Gandour, E. A.; El Gala, A. M.; Ishac, Y. Z.

    2004-01-01

    Application of N and P in uncommon sources such as N 2 -fixers and AM fungi considered as an important source to save money and reduce pollution. In this concern, two pot experiments were carried out in sandy soils, to study the role of these neutral organisms in increasing the fertility of sandy soil. Wheat and faba bean were used. Seeds of wheat or faba bean were inoculated with Azotobacter or Rhizobium and planted in soils inoculated with and without AM fungi. A 20 mg P/kg soil in the form of single super phosphate (15.5 % P 2 O 5 ) or rock-P (26.6% P 2 O 5 ) were applied in the first experiment while KH 2 PO 4 was added in the second one. Dry weight, spore number, root infection, total and specific P were also determined. Maximum shoot growth were gained when either, wheat or faba bean inoculated with mycorrhizae and N2-fixers relative to the control. it was reached to 54 and 73%, respectively. Phosphorus uptake for shoots of both wheat and faba bean had been significantly increased upon inoculating with AM and/or Azotobacter or Rhizobium. Addition of fertilizer P help to identify the P uptake from soil or fertilizer. Mycorrhizal plants induced significant increase in Pdff by about 39 and 27% over inoculated with Azotobacter for wheat and Rhizobium for faba bean and it reached to 95 and 79% when inoculated with combined inoculation. This may be due to AM fungi absorb more available P than do nonmycorrhizal roots. FUE was increased from about 5 to 10% for wheat; 6 to 19% for faba bean. It can be concluded that, bio fertilizers can increase crop production and soil fertility. Rock-P might be recommended as a source of P fertilizer to be applied with AM fungi. (Authors)

  19. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    Science.gov (United States)

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  20. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    Directory of Open Access Journals (Sweden)

    Ren Bai

    2017-05-01

    Full Text Available Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2 techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai, an Oxisol (Leizhou, and an Ultisol (Taoyuan along four profile depths (up to 70 cm in depth in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  1. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    Science.gov (United States)

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and

  2. Jerusalem artichoke decreased salt content and increased diversity of bacterial communities in the rhizosphere soil in the coastal saline zone

    Science.gov (United States)

    Shao, Tianyun; Li, Niu; Cheng, Yongwen; Long, Xiaohua; Shao, Hongbo; Zed, Rengel

    2017-04-01

    Soil salinity is one of the main environmental constraints that restrict plant growth and agricultural productivity; however, utilization of salt-affected land can bring substantial benefits. This study used an in-situ remediation method by planting Jerusalem artichoke in naturally occurring saline alkali soils with different salinity (high salinity (H, >4.0 g•salt kg-1 soil), moderate salinity (M, 2.0-4.0 g•salt kg-1 soil) and low salinity (L, 1.0-2.0 g•salt kg-1 soil) in the coastal saline zone in southeast China in comparison with the respective controls without Jerusalem artichoke planting (undisturbed soil). Soil pH and salinity increased sequentially from the rhizosphere to the bulk soil and the unplanted controls. The activity of neutral phosphatase and invertase decreased in the order L > M > H, whereas that of catalase was reverse. The minimum content of calcite, muscovite and quartz, and maximum content of chlorite and albite, were found in the control soils. Planting of Jerusalem artichoke enhanced bacterial microflora in saline alkali soil. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. The number of Operational Taxonomic Units (OTU) in the rhizosphere soil was, respectively, 1.27, 1.02 and 1.25 times higher compared with the bulk soil, suggesting that Jerusalem artichoke played a significant role in increasing abundance and diversity of soil microbial populations. The study showed that Jerusalem artichoke could be used to improve saline alkali soil by enriching bacterial communities, enhancing the activity of phosphatase and invertase, and decreasing soil salinity.

  3. Significance of agricultural row structure on the microwave emissivity of soils

    Science.gov (United States)

    Promes, P. M.; Jackson, T. J.; O'Neill, P. E.

    1987-01-01

    A series of field experiments was carried out to extend the data base available for verifying agricultural row effect models of emissivity. The row effects model was used to simulate a data base from which an algorithm could be developed to account for row effects when the scene dielectric constant and small-scale roughness are unknown. One objective of the study was to quantify the significance of row structure and to develop a practical procedure for removing the effects of periodic row structure on the microwave emissivity of a soil in order to use the emissivity values to estimate the soil moisture. A second objective was to expand the data set available for model verification through field observations using a truck-mounted 1.4-GHz microwave radiometer.

  4. Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation

    Science.gov (United States)

    Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen

    2014-05-01

    Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic

  5. An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest.

    Science.gov (United States)

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2018-04-01

    World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change

  6. Fungi benefit from two decades of increased nutrient availability in tundra heath soil.

    Science.gov (United States)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils. Furthermore, the different functional responses suggest that the biomass increase found in both fertilized and warmed plots was mediated via different mechanisms.

  7. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    Science.gov (United States)

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  8. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain

    Directory of Open Access Journals (Sweden)

    Congcong Shen

    2016-07-01

    Full Text Available The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500 to 2200 m on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0, we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC. This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  9. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem

    Science.gov (United States)

    Johnson, Shannon L.; Kuske, Cheryl R.; Carney, Travis D.; Housman, David C.; Gallegos-Graves, La Verne; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are common and ecologically important members of dryland ecosystems worldwide, where they stabilize soil surfaces and contribute newly fixed C and N to soils. To test the impacts of predicted climate change scenarios on biocrusts in a dryland ecosystem, the effects of a 2–3 °C increase in soil temperature and an increased frequency of smaller summer precipitation events were examined in a large, replicated field study conducted in the cold desert of the Colorado Plateau, USA. Surface soil biomass (DNA concentration), photosynthetically active cyanobacterial biomass (chlorophyll a concentration), cyanobacterial abundance (quantitative PCR assay), and bacterial community composition (16S rRNA gene sequencing) were monitored seasonally over 2 years. Soil microbial biomass and bacterial community composition were highly stratified between the 0–2 cm depth biocrusts and 5–10 cm depth soil beneath the biocrusts. The increase in temperature did not have a detectable effect on any of the measured parameters over 2 years. However, after the second summer of altered summer precipitation pattern, significant declines occurred in the surface soil biomass (avg. DNA concentration declined 38%), photosynthetic cyanobacterial biomass (avg. chlorophyll a concentration declined 78%), cyanobacterial abundance (avg. gene copies g−1 soil declined 95%), and proportion of Cyanobacteria in the biocrust bacterial community (avg. representation in sequence libraries declined 85%). Biocrusts are important contributors to soil stability, soil C and N stores, and plant performance, and the loss or reduction of biocrusts under an altered precipitation pattern associated with climate change could contribute significantly to lower soil fertility and increased erosion and dust production in dryland ecosystems at a regional scale.

  10. Potential for Increasing Soil Nutrient Availability via Soil Organic Matter Improvement Using Pseudo Panel Data

    NARCIS (Netherlands)

    Chavez Clemente, M.D.; Berentsen, P.B.M.; Oenema, O.; Oude Lansink, A.G.J.M.

    2014-01-01

    Fixed and random effect models were applied to a pseudo-panel data built of soil analysis reports from tobacco farms to analyze relationships between soil characteristics like soil organic matter (SOM) and soil nitrogen (N), phosphorous (P) and potassium (K) and to explore the potential for

  11. Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils.

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei

    2016-11-01

    Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO 2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO 2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO 2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO 2 (700 μmol mol -1 ) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO 2  + heavy metals than under ambient CO 2 . The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO 2 ; and elevated CO 2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO 2 compared to ambient CO 2 . The combination of both metals and elevated CO 2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO 2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Exponential increase of publications related to soil water repellency

    NARCIS (Netherlands)

    Dekker, L.W.; Oostindie, K.; Ritsema, C.J.

    2005-01-01

    Soil water repellency is much more wide-spread than formerly thought. During the last decades, it has been a topic of study for soil scientists and hydrologists in at least 21 States of the USA, in Canada, Australia, New Zealand, Mexico, Colombia, Chile, Congo, Nepal, India, Hong Kong, Taiwan,

  13. 'Cabernet Sauvignon' grape anthocyanin increased by soil conservation practices

    Science.gov (United States)

    Cover crops and no-till (mown) systems provide multiple benefits to vineyard soils such as improvements in soil organic matter and reductions in erosion and dust generation. Understanding the effects of such practices on grape attributes will contribute to the sustainability of the production system...

  14. Calcium soil amendment increases resistance of potato to blackleg ...

    African Journals Online (AJOL)

    This study shows that calcium soil amendments reduce blackleg and soft rot diseases under Zimbabwe's growing seasons in red fersiallitic soils. Compound S produces better results in potato production than compound D and farmers should be encouraged to use compound S when growing potatoes. Key words: potato ...

  15. Significant impacts of nutrient enrichment on High Arctic vegetation and soils despite two decades of recovery

    Science.gov (United States)

    Street, L. E.; Burns, N. R.; Woodin, S. J.

    2012-04-01

    We re-visit a unique field manipulation study in Svalbard to assess the long-term recovery of plant species composition, leaf tissue chemistry and total ecosystem carbon storage from nutrient enrichment. The experiment was established in 1991. The original aim was to quantify the 'critical load' of nitrogen (N) for tundra; that is, the minimum rate of N deposition affecting ecosystem structure and function. Dissolved N was applied to heath vegetation, both alone and in combination with phosphorous (P), during the growing season over three years. The rates of N addition were lower than in most other nutrient manipulation studies, and were designed to represent typical rates of deposition in the Scottish highlands (50 kg N ha-1 yr-1) and maximum deposition rates experienced in the Arctic (10 kg N ha-1 yr-1). Significant changes in shrub cover, the greenness and N content of the moss layer, and the extent of ecosystem N saturation had occurred by the end of the treatment period. After 18 years of recovery without further treatment, we assessed primary productivity using CO2 flux measurements, and the 'greenness' of vegetation using the Normalised Difference Vegetation Index. We made destructive measurements of above- and below-ground carbon and nutrient stocks, quantified species composition and sampled leaf tissue for chemical analysis. Total carbon storage in organic soils and vegetation was c. 40 % lower in the plots treated with 50 kg N ha-1 yr-1 compared to controls. Species composition in N treated plots also differed significantly, but there was no clear treatment effect on primary productivity. Where 50 kg N ha-1 yr-1 was applied in combination with P (at 5 kg P ha-1 yr-1 ), organic carbon storage was c. 70 % greater than controls, the vegetation was greener, and primary productivity higher. Effects of the treatments were also still clearly apparent in moss tissue nutrient status, even at the lower nitrogen application rate. Our results imply that the effects

  16. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    Science.gov (United States)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha-1•yr-1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  17. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil.

    Science.gov (United States)

    Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue

    2018-02-01

    Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.

  18. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    Science.gov (United States)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  19. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China

    NARCIS (Netherlands)

    Li, Lianzhen; Wu, Huifeng; van Gestel, C.A.M.; Peijnenburg, W.J.G.M.; Allen, Herbert E.

    2014-01-01

    The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods

  20. Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils.

    Science.gov (United States)

    Ranjan, Kshitij; Paula, Fabiana S; Mueller, Rebecca C; Jesus, Ederson da C; Cenciani, Karina; Bohannan, Brendan J M; Nüsslein, Klaus; Rodrigues, Jorge L M

    2015-01-01

    The Amazon rainforest is well known for its rich plant and animal diversity, but its bacterial diversity is virtually unexplored. Due to ongoing and widespread deforestation followed by conversion to agriculture, there is an urgent need to quantify the soil biological diversity within this tropical ecosystem. Given the abundance of the phylum Verrucomicrobia in soils, we targeted this group to examine its response to forest-to-pasture conversion. Both taxonomic and phylogenetic diversities were higher for pasture in comparison to primary and secondary forests. The community composition of Verrucomicrobia in pasture soils was significantly different from those of forests, with a 11.6% increase in the number of sequences belonging to subphylum 3 and a proportional decrease in sequences belonging to the class Spartobacteria. Based on 99% operational taxonomic unit identity, 40% of the sequences have not been detected in previous studies, underscoring the limited knowledge regarding the diversity of microorganisms in tropical ecosystems. The abundance of Verrucomicrobia, measured with quantitative PCR, was strongly correlated with soil C content (r = 0.80, P = 0.0016), indicating their importance in metabolizing plant-derived carbon compounds in soils.

  1. Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China.

    Science.gov (United States)

    Liu, Chen; Wang, Honglan; Tang, Xiangyu; Guan, Zhuo; Reid, Brian J; Rajapaksha, Anushka Upamali; Ok, Yong Sik; Sun, Hui

    2016-01-01

    A hydrologically contained field study, to assess biochar (produced from mixed crop straws) influence upon soil hydraulic properties and dissolved organic carbon (DOC) leaching, was conducted on a loamy soil (entisol). The soil, noted for its low plant-available water and low soil organic matter, is the most important arable soil type in the upper reaches of the Yangtze River catchment, China. Pore size distribution characterization (by N2 adsorption, mercury intrusion, and water retention) showed that the biochar had a tri-modal pore size distribution. This included pores with diameters in the range of 0.1-10 μm that can retain plant-available water. Comparison of soil water retention curves between the control (0) and the biochar plots (16 t ha(-1) on dry weight basis) demonstrated biochar amendment to increase soil water holding capacity. However, significant increases in DOC concentration of soil pore water in both the plough layer and the undisturbed subsoil layer were observed in the biochar-amended plots. An increased loss of DOC relative to the control was observed upon rainfall events. Measurements of excitation-emission matrix (EEM) fluorescence indicated the DOC increment originated primarily from the organic carbon pool in the soil that became more soluble following biochar incorporation.

  2. Hydrodynamic behaviour of crusted soils in the Sahel: a possible cause for runoff increase?

    Science.gov (United States)

    Malam Abdou, M.; Vandervaere, J.-P.; Bouzou Moussa, I.; Descroix, L.

    2012-04-01

    Crusted soils are in extension in the Sahel. As rainfall has decreased over the past decades (it is now increasing again in the central Sahel) and no significant change was observed in rainfall intensity and in its time and space distribution, it is supposed that land use management is the main cause for crusts cover increase. Fallow shortening, lack of manure, and land overexploitation (wood harvesting, overgrazing) are frequently cited as main factors of soil degradation. Based on field measurements in some small catchments of Western Niger, the hydrodynamics behaviour of the newly crusted soils of this area is described, mostly constituted by erosion crusts. A strong fall in soil saturated conductivity and in the active porosity as well as a rise in bulk density all lead to a quick onset of runoff production. Results are shown from field experiments in sedimentary and basement areas leading to similar conclusions. In both contexts, runoff plot production was measured at the rain event scale from 10-m2 parcels as well as at the catchment outlet. Soil saturated conductivity was reduced by one order of magnitude when crusting occurs, leading to a sharp runoff coefficient increase, from 4% in a weeded millet field and 10% in an old fallow to more than 60% in a erosion-crusted topsoil at the plot scale. At the experimental catchment scale, runoff coefficient has doubled in less than 20 years. In pure Sahelian basins, this resulted in endorheism breaching, and in a widespread river discharge increase. For some right bank tributaries of the Niger River, discharge is three times higher now than before the drought years, in spite of the remaining rainfall deficit. On the other hand, a general increase in flooding hazard frequency is observed in the whole Sahelian stripe. The role of surface crusts in the Sahel is discussed leading to the implementation of new experiments in the future.

  3. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  4. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France

    Science.gov (United States)

    Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire

    2017-04-01

    Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in

  5. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems

    Directory of Open Access Journals (Sweden)

    Jeda Palmer

    2017-05-01

    Full Text Available Soil organic carbon (SOC is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity. Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were

  6. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems.

    Science.gov (United States)

    Palmer, Jeda; Thorburn, Peter J; Biggs, Jody S; Dominati, Estelle J; Probert, Merv E; Meier, Elizabeth A; Huth, Neil I; Dodd, Mike; Snow, Val; Larsen, Joshua R; Parton, William J

    2017-01-01

    Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally

  7. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat

    NARCIS (Netherlands)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-01-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil

  8. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Science.gov (United States)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-08-01

    produce large quantities of nutrient rich litter. Where this community shift occurs, it could drive an increase in R beyond that expected from direct climate impacts on soil microbial activity alone. We identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits, and the importance of trophic interactions and species invasions or extinctions for ecosystem processes. A final, overarching challenge is how to link these observations and drivers across spatio-temporal scales to predict regional or global changes in R over long time periods. A more unified approach to understanding R, which integrates information about plant traits and community dynamics, will be essential for better understanding, simulating and predicting patterns of R across terrestrial ecosystems and its role within the earth-climate system.

  9. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Ramos, Silvia M. [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Av. Instituto Politecnico Nacional 2508, C.P. 07000 Mexico, D.F. (Mexico); Alvarez-Bernal, Dioselina [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Av. Instituto Politecnico Nacional 2508, C.P. 07000 Mexico, D.F. (Mexico); Dendooven, Luc [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Av. Instituto Politecnico Nacional 2508, C.P. 07000 Mexico, D.F. (Mexico)]. E-mail: dendoove@cinvestav.mx

    2006-06-15

    The removal of phenanthrene, anthracene and benzo(a)pyrene added at three different concentrations was investigated with or without earthworms (Eisenia fetida) within 11 weeks. Average anthracene removal by the autochthonous micro-organisms was 23%, 77% for phenanthrene and 13% for benzo(a)pyrene, while it was 51% for anthracene, 47% for benzo(a)pyrene and 100% for phenanthrene in soil with earthworms. At 50 and 100 mg phenanthrene kg{sup -1} E. fetida survival was 91% and 83%, but at 150 mg kg{sup -1} all died within 15 days. Survival of E. fetida in soil amended with anthracene {<=}1000 mg kg{sup -1} and benzo(a)pyrene {<=}150 mg kg{sup -1} was higher than 80% and without weight loss compared to the untreated soil. Only small amounts of PAHs were detected in the earthworms. It was concluded that E. fetida has the potential to remove large amounts of PAHs from soil, but more work is necessary to elucidate the mechanisms involved. - Addition of earthworms, Eisenia fetida, accelara removal of polycyclic aromatic hydrocarbons from soil.

  10. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil

    International Nuclear Information System (INIS)

    Contreras-Ramos, Silvia M.; Alvarez-Bernal, Dioselina; Dendooven, Luc

    2006-01-01

    The removal of phenanthrene, anthracene and benzo(a)pyrene added at three different concentrations was investigated with or without earthworms (Eisenia fetida) within 11 weeks. Average anthracene removal by the autochthonous micro-organisms was 23%, 77% for phenanthrene and 13% for benzo(a)pyrene, while it was 51% for anthracene, 47% for benzo(a)pyrene and 100% for phenanthrene in soil with earthworms. At 50 and 100 mg phenanthrene kg -1 E. fetida survival was 91% and 83%, but at 150 mg kg -1 all died within 15 days. Survival of E. fetida in soil amended with anthracene ≤1000 mg kg -1 and benzo(a)pyrene ≤150 mg kg -1 was higher than 80% and without weight loss compared to the untreated soil. Only small amounts of PAHs were detected in the earthworms. It was concluded that E. fetida has the potential to remove large amounts of PAHs from soil, but more work is necessary to elucidate the mechanisms involved. - Addition of earthworms, Eisenia fetida, accelara removal of polycyclic aromatic hydrocarbons from soil

  11. Does the increased air humidity affect soil respiration and carbon stocks?

    Science.gov (United States)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    Climate manipulation experiments at ecosystem-scale enable us to simulate, investigate and predict changes in carbon balance of forest ecosystems. Considering the predicted increase in air humidity and precipitation for northern latitudes, this work aimed at investigating the effect of increased air humidity on soil respiration, distribution of soil organic matter (SOM) among pools having different turnover times, and microbial, fine root and rhizome biomass. The study was carried out in silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in a Free Air Humidity Manipulation (FAHM) experimental facility containing three humidified (H; on average 7% above current ambient levels since 2008) and three control (C) plots. Soil respiration rates were measured monthly during the growing season using a closed dynamic chamber method. Density fractionation was adopted to separate SOM into two light fractions (free and aggregate-occluded particulate organic matter, fPOM and oPOM respectively), and one heavy fraction (mineral-associated organic matter, MOM). The fine root and rhizome biomass and microbial data are presented for silver birch stands only. In 2011, after 4 growing seasons of humidity manipulation soil organic carbon contents were significantly higher in C plots than H plot (13.5 and 12.5 g C kg-1, respectively), while soil respiration tended to be higher in the latter. Microbial biomass and basal respiration were 13 and 14% higher in H plots than in the C plots, respectively. Twice more fine roots of trees were estimated in H plots, while the total fine root and rhizome biomass (tree + understory) was similar in C and H plots. Fine root turnover was higher for both silver birch and understory roots in H plots. Labile SOM light fractions (fPOM and oPOM) were significantly smaller in H plots with respect to C plots (silver birch and hybrid aspen stands together), whereas no differences were observed in the

  12. Faster turnover of new soil carbon inputs under increased atmospheric CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Osenberg, Craig W; Terrer, César; Carrillo, Yolima; Dijkstra, Feike A; Heath, James; Nie, Ming; Pendall, Elise; Phillips, Richard P; Hungate, Bruce A

    2017-10-01

    Rising levels of atmospheric CO 2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO 2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO 2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO 2 concentrations may be smaller than previously assumed. © 2017 John Wiley & Sons Ltd.

  13. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...... the characteristic low compressibility and high friction giving much better conditions for root penetration increasing yield potentials. Furthermore, risk of drought in dry periods, and nutrient losses in wet periods in coarser soil types is also reduced...

  14. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2015-01-01

    Under specific conditions, flashing light enhances the photosynthesis rate in comparison to continuous illumination. Here we show that a combination of flashing light and continuous background light with the same integrated photon dose as continuous or flashing light alone can be used to significantly enhance photosynthesis and increase microalgae growth. To test this hypothesis, the green microalga Dunaliella salina was exposed to three different light regimes: continuous light, flashing light, and concomitant application of both. Algal growth was compared under three different integrated light quantities; low, intermediate, and moderately high. Under the combined light regime, there was a substantial increase in all algal growth parameters, with an enhanced photosynthesis rate, within 3days. Our strategy demonstrates a hitherto undescribed significant increase in photosynthesis and algal growth rates, which is beyond the increase by flashing light alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    International Nuclear Information System (INIS)

    Yang, Shih-Ying; Juang, Shin-Hun; Tsai, Shang-Yuan; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2012-01-01

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC 0−t and C max of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC 0−t of MTX by 55%. In addition, diclofenac enhanced the C max of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC 0−t and C max of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  16. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy

    Directory of Open Access Journals (Sweden)

    Suvendu Das

    2017-09-01

    Full Text Available Livestock waste composts with minimum inorganic fertilizer as a soil amendment in low-input intensive farming are a feasible agricultural practice to improve soil fertility and productivity and to mitigate soil degradation. The key benefits of the practice rely on the activities of soil microorganisms. However, the role of different livestock composts [composted cattle manure (CCM vs. composted swine manure (CSM] on soil microbes, their activities and the overall impact on soil fertility and productivity in a flooded paddy remains elusive. This study compares the effectiveness of CCM and CSM amendment on bacterial communities, activities, nutrient availability, and crop yield in a flooded rice cropping system. We used deep 16S amplicon sequencing and soil enzyme activities to decipher bacterial communities and activities, respectively. Both CCM and CSM amendment significantly increased soil pH, nutrient availability (C, N, and P, microbial biomass, soil enzyme activities indicative for C and N cycles, aboveground plant biomass and grain yield. And the increase in above-mentioned parameters was more prominent in the CCM treatment compared to the CSM treatment. The CCM amendment increased species richness and stimulated copiotrophic microbial groups (Alphaproteobacteria, Betaproteobacteria, and Firmicutes which are often involved in degradation of complex organic compounds. Moreover, some dominant species (e.g., Azospirillum zeae, Azospirillum halopraeferens, Azospirillum rugosum, Clostridium alkalicellulosi, Clostridium caenicola, Clostridium termitidis, Clostridium cellulolyticum, Magnetospirillum magnetotacticum, Pleomorphomonas oryzae, Variovorax boronicumulans, Pseudomonas xanthomarina, Pseudomonas stutzeri, and Bacillus niacini which have key roles in plant growth promotion and/or lignocellulose degradation were enhanced under CCM treatment compared to CSM treatment. Multivariate analysis revealed that soil pH and available carbon (C and

  17. Increased frequency of retinopathy of prematurity over the last decade and significant regional differences.

    Science.gov (United States)

    Holmström, Gerd; Tornqvist, Kristina; Al-Hawasi, Abbas; Nilsson, Åsa; Wallin, Agneta; Hellström, Ann

    2018-03-01

    Retinopathy of prematurity (ROP) causes childhood blindness globally in prematurely born infants. Although increased levels of oxygen supply lead to increased survival and reduced frequency of cerebral palsy, increased incidence of ROP is reported. With the help of a Swedish register for ROP, SWEDROP, national and regional incidences of ROP and frequencies of treatment were evaluated from 2008 to 2015 (n = 5734), as well as before and after targets of provided oxygen changed from 85-89% to 91-95% in 2014. Retinopathy of prematurity (ROP) was found in 31.9% (1829/5734) of all infants with a gestational age (GA) of <31 weeks at birth and 5.7% of the infants (329/5734) had been treated for ROP. Analyses of the national data revealed an increased incidence of ROP during the 8-year study period (p = 0.003), but there was no significant increase in the frequency of treatment. There were significant differences between the seven health regions of Sweden, regarding both incidence of ROP and frequency of treatment (p < 0.001). Comparison of regional data before and after the new oxygen targets revealed a significant increase in treated ROP in one region [OR: 2.24 (CI: 1.11-4.49), p = 0.024] and a borderline increase in one other [OR: 3.08 (CI: 0.99-9.60), p = 0.052]. The Swedish national ROP register revealed an increased incidence of ROP during an 8-year period and significant regional differences regarding the incidence of ROP and frequency of treatment. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    Science.gov (United States)

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  19. Integration of information on climate, soil and cultivar to increase ...

    African Journals Online (AJOL)

    BH660 shows higher water productivity (9.46 kgmm-1 of rainfall) under 2*MMP tillage than late plantings in experimental years. About 84 % of the variability in grain yield (BH660), 88% (Bolondie), 76% (A-511) and 70% (Limat) can be explained by the available soil water in crop root zone at planting. Hence, integration of ...

  20. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil

    Energy Technology Data Exchange (ETDEWEB)

    Silvia M. Contreras-Ramos; Dioselina Alvarez-Bernal; Luc Dendooven [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Mexico (Mexico)

    2006-06-15

    The removal of phenanthrene, anthracene and benzo(a)pyrene added at three different concentrations was investigated with or without earthworms (Eisenia fetida) within 11 weeks. Average anthracene removal by the autochthonous micro-organisms was 23%, 77% for phenanthrene and 13% for benzo(a)pyrene, while it was 51% for anthracene, 47% for benzo(a)pyrene and 100% for phenanthrene in soil with earthworms. At 50 and 100 mg phenanthrene kg{sup -1} E. fetida survival was 91% and 83%, but at 150 mg kg{sup -1} all died within 15 days. Survival of E. fetida in soil amended with anthracene {<=}1000 mg kg{sup -1} and benzo(a)pyrene {<=}150 mg kg{sup -1} was higher than 80% and without weight loss compared to the untreated soil. Only small amounts of PAHs were detected in the earthworms. It was concluded that E. fetida has the potential to remove large amounts of PAHs from soil, but more work is necessary to elucidate the mechanisms involved.

  1. THE SMALL BUT SIGNIFICANT AND NONTRANSITORY INCREASE IN PRICES (SSNIP TEST

    Directory of Open Access Journals (Sweden)

    Liviana Niminet

    2008-12-01

    Full Text Available The Small but Significant Nontransitory Increase in Price Test was designed to define the relevant market by concepts of product, geographical area and time. This test, also called the ,,hypothetical monopolistic test” is the subject of many researches both economical and legal as it deals with economic concepts as well as with legally aspects.

  2. Avoidance bio-assays may help to test the ecological significance of soil pollution

    International Nuclear Information System (INIS)

    Martinez Aldaya, Maite; Lors, Christine; Salmon, Sandrine; Ponge, Jean-Francois

    2006-01-01

    We measured the short-term (100 min) avoidance of a soil heavily polluted by hydrocarbons by the soil springtail Folsomia candida, at six rates of dilution in a control, unpolluted soil. We compared the results with those of long-term (40-day) population tests. Five strains were compared, of varying geographical and ecological origin. When pure, the polluted soil was lethal in the long-term and avoided in the short-term by all strains. Avoidance tests, but not population tests, were able to discriminate between strains. Avoidance thresholds differed among strains. Two ecological consequences of the results were discussed: (i) toxic compounds may kill soil animals or deprive them from food, resulting in death of populations, (ii) pollution spots can be locally deprived of fauna because of escape movements of soil animals. Advantages and limitations of the method have been listed, together with proposals for their wider use in soil ecology and ecotoxicology. - Polluted soils are avoided by soil animals, a phenomenon which can be used as a cheap, sensitive tool for the early detection of environmental risk

  3. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Directory of Open Access Journals (Sweden)

    D. B. Metcalfe

    2011-08-01

    climate, many plant communities may shift towards dominance by fast growing plants which produce large quantities of nutrient rich litter. Where this community shift occurs, it could drive an increase in R beyond that expected from direct climate impacts on soil microbial activity alone.

    We identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits, and the importance of trophic interactions and species invasions or extinctions for ecosystem processes. A final, overarching challenge is how to link these observations and drivers across spatio-temporal scales to predict regional or global changes in R over long time periods. A more unified approach to understanding R, which integrates information about plant traits and community dynamics, will be essential for better understanding, simulating and predicting patterns of R across terrestrial ecosystems and its role within the earth-climate system.

  4. Evaluation of Significance of Diffusely Increased Bilateral Renal Uptake on Bone Scan

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Mi Sook; Yang, Woo Jin; Byun, Jae Young; Park, Jung Mi; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1990-03-15

    Unexpected renal abnormality can be detected on bone scan using {sup 99m}Tc-MDP. The purpose of the study is to evaluate the diagnostic significance of diffusely increased bilateral renal uptake on bone scan. 1,500 bone scan were reviewed and 43 scans which showed diffusely increased bilateral renal uptake were selected for analysis. Laboratory findings for renal and liver function tests including routine urinalysis were reviewed in 43 patients. 26 of 43 case showed abnormality in urinalysis and renal function study. 20 of 43 cases showed abnormal liver function study and 3 of these cases were diagnosed as hepatorenal syndrome later. 13 of those 20 cases had liver cirrhosis with or without hepatoma. 12 of 43 cases showed abnormality both in renal and liver function studies. 2 of 43 cases showed diffusely increased bilateral renal uptake after chemotherapy for cancer but not on previous scans before chemotherapy. 2 of 43 cases showed hypercalcaemia and 8 of 43 cases had multifocal bone uptake due to metastasis or benign bone lesion. But the latter showed no hypercalcaemia at all. There was no significant correlation between increased renal uptake and MDP uptake in soft tissue other than kidneys. This study raised the possibility that the impaired liver and/or renal function may result in diffuse increase of bilateral renal uptake of MDP of unknown mechanism. It seems to need further study on this correlation.

  5. Evaluation of Significance of Diffusely Increased Bilateral Renal Uptake on Bone Scan

    International Nuclear Information System (INIS)

    Sung, Mi Sook; Yang, Woo Jin; Byun, Jae Young; Park, Jung Mi; Shinn, Kyung Sub; Bahk, Yong Whee

    1990-01-01

    Unexpected renal abnormality can be detected on bone scan using 99m Tc-MDP. The purpose of the study is to evaluate the diagnostic significance of diffusely increased bilateral renal uptake on bone scan. 1,500 bone scan were reviewed and 43 scans which showed diffusely increased bilateral renal uptake were selected for analysis. Laboratory findings for renal and liver function tests including routine urinalysis were reviewed in 43 patients. 26 of 43 case showed abnormality in urinalysis and renal function study. 20 of 43 cases showed abnormal liver function study and 3 of these cases were diagnosed as hepatorenal syndrome later. 13 of those 20 cases had liver cirrhosis with or without hepatoma. 12 of 43 cases showed abnormality both in renal and liver function studies. 2 of 43 cases showed diffusely increased bilateral renal uptake after chemotherapy for cancer but not on previous scans before chemotherapy. 2 of 43 cases showed hypercalcaemia and 8 of 43 cases had multifocal bone uptake due to metastasis or benign bone lesion. But the latter showed no hypercalcaemia at all. There was no significant correlation between increased renal uptake and MDP uptake in soft tissue other than kidneys. This study raised the possibility that the impaired liver and/or renal function may result in diffuse increase of bilateral renal uptake of MDP of unknown mechanism. It seems to need further study on this correlation.

  6. Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use?

    Science.gov (United States)

    Inagaki, Thiago Massao; de Moraes Sá, João Carlos; Caires, Eduardo Fávero; Gonçalves, Daniel Ruiz Potma

    2017-12-01

    Field experiments have been used to explain how soil organic carbon (SOC) dynamics is affected by lime and gypsum applications, however, how SOC storage occurs is still debatable. We hypothesized that although many studies conclude that Ca-based soil amendments such as lime and gypsum may lead to SOC depletion due to the enhancement of microbial activity, the same does not occur under conservation agriculture conditions. Thus, the objective of this study was to elucidate the effects of lime and gypsum applications on soil microbial activity and SOC stocks in a no-till field and in a laboratory incubation study simulating no-till conditions. The field experiment was established in 1998 in a clayey Oxisol in southern Brazil following a completely randomized blocks design with a split-plot arrangement and three replications. Lime and gypsum were surface applied in 1998 and reapplied in 2013. Undisturbed soil samples were collected before the treatments reapplications, and one year after. The incubation experiment was carried out during 16months using these samples adding crop residues on the soil surface to simulate no-till field conditions. Lime and gypsum applications significantly increased the labile SOC stocks, microbial activity and soil fertility attributes in both field and laboratory experiments. Although the microbial activity was increased, no depletion of SOC stocks was observed in both experiments. Positive correlations were observed between microbial activity increase and SOC gains. Labile SOC and Ca 2+ content increase leads to forming complex with mineral soil fractions. Gypsum applications performed a higher influence on labile SOC pools in the field than in the laboratory experiment, which may be related to the presence of active root system in the soil profile. We conclude that incubation experiments using lime and gypsum in undisturbed samples confirm that soil microbial activity increase does not deplete SOC stocks under conservation agriculture

  7. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Fuliang; Meng, Hengkai; Zhang, Yanping; Li, Yin

    2016-11-01

    Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Fire increases the risk of higher soil N2O emissions from Mediterranean Macchia ecosystems

    DEFF Research Database (Denmark)

    Karhu, Kristiina; Dannenmann, M.; Kitzler, B.

    2015-01-01

    on climate change. However, the potential importance of indirect GHG emissions due to changes in soil biological and chemical properties after fire is less well known. Increased soil mineral nitrogen (N) concentrations after fire pose a risk for increased emissions of gaseous N, but studies on the post......-fire N2O production and soil N turnover rates (mineralization, nitrification, microbial immobilization, denitrification) are still rare. We determined N2O production, rates of N turnover and pathways for N2O production from the soil of burned and unburned plots of a Macchia shrubland in central Spain...... using a 15N labelling approach. Measurements were initiated before the controlled burning and continued for up to half a year after fire. Fire markedly increased the risk of N2O emissions from soil through denitrification (N2O production rate was 3 to ≈30 times higher in burned soils compared to control...

  9. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

    Directory of Open Access Journals (Sweden)

    F. Fécan

    1999-01-01

    Full Text Available Large-scale simulation of the soil-derived dust emission in semi-arid regions needs to account for the influence of the soil moisture on the wind erosion threshold. Soil water retention consists of molecular adsorption on the soil grain surface and capillary forces between the grain. Interparticle capillary forces (characterized by the moisture tension are the main factor responsible for the increase of the wind erosion threshold observed when the soil moisture increases. When the soil moisture content is close to but smaller than the maximum amount of adsorbed water, w' (depending on the soil texture, these capillary forces are considered as not strong enough to significantly increase the erosion threshold. An expression of the moisture tension as a function of soil moisture and w' is derived from retention curves. From this expression, a parametrization of the ratio of the wet to dry erosion thresholds has been developed as a function of soil moisture and soil texture. The coefficients of this parametrization have been determined by using experimental data from the literature. An empirical relationship between w' and soil clay content has been established. The erosion threshold ratios simulated for different soil textures were found to be in good agreement with the experimental data.Key words. Atmospheric composition and structure (Aerosols and particles · Hydrology (soil moisture

  10. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.

    Directory of Open Access Journals (Sweden)

    Mingsheng Fan

    Full Text Available OBJECTIVE: China's food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution's technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. METHODS: The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. RESULTS: Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s - the increase ranged from 0.73 to 1.76 Mg/ha for China's major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. CONCLUSIONS: Thus, without an improvement in inherent soil productivity, the 'Agricultural Miracle in China' would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving

  11. Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil

    Science.gov (United States)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul

    2018-02-01

    Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.

  12. Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime.

    Science.gov (United States)

    Li, Jing; Liu, Yu-Rong; Cui, Li-Juan; Hu, Hang-Wei; Wang, Jun-Tao; He, Ji-Zheng

    2017-11-01

    Increasing efforts have been devoted to exploring the impact of environmental stresses on soil bacterial communities, but the work on the archaeal community is seldom. Here, we constructed microcosm experiments to investigate the responses of archaeal communities to the subsequent dry-rewetting (DW) disturbance in two contrasting soils (fluvo-aquic and red soil) after 6 years of copper pollution. Ten DW cycles were exerted on the two soils with different copper levels, followed by a 6-week recovery period. In both soils, archaeal diversity (Shannon index) in the high copper-level treatments increased over the incubation period, and archaeal community structure changed remarkably as revealed by the non-metric multidimensional scaling ordinations. In both soils, copper pollution altered the response of dominant operational taxonomic units (OTUs) to the DW disturbance. Throughout the incubation and recovery period, the resistance of archaeal abundance to the DW disturbance was higher in the copper-polluted soils than soils without pollution. Taken together, copper pollution altered the response of soil archaeal diversity and community composition to the DW disturbance and increased the resistance of the archaeal abundance. These findings have important implications for understanding soil microbial responses to ongoing environmental change.

  13. Regenerating degraded soils and increasing water use efficiency on vegetable farms in Uruguay through ecological intensification

    NARCIS (Netherlands)

    Alliaume, F.

    2016-01-01

    This thesis investigated alternative soil management strategies for vegetable crop systems and their hypothesized effects on increasing systems resilience by sequestering soil carbon, increasing the efficiency of water use, and reducing erosion. The goal was to contribute knowledge on and tools

  14. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis.

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute

  15. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor

  16. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations

    Directory of Open Access Journals (Sweden)

    Arthur P. A. Pereira

    2018-04-01

    Full Text Available Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0–20 cm and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E and A. mangium (A plantations, pure E. grandis plantations with N fertilizer (E+N and an E. grandis, and A. mangium intercropped plantations (E+A. The results showed that intercropped plantations (E+A increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient (qCO2 showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our

  17. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations

    Science.gov (United States)

    Pereira, Arthur P. A.; Zagatto, Maurício R. G.; Brandani, Carolina B.; Mescolotti, Denise de Lourdes; Cotta, Simone R.; Gonçalves, José L. M.; Cardoso, Elke J. B. N.

    2018-01-01

    Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0–20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis, and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient (qCO2) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results are

  18. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations.

    Science.gov (United States)

    Pereira, Arthur P A; Zagatto, Maurício R G; Brandani, Carolina B; Mescolotti, Denise de Lourdes; Cotta, Simone R; Gonçalves, José L M; Cardoso, Elke J B N

    2018-01-01

    Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0-20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis , and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient ( q CO 2 ) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results

  19. The significance of denitrification of applied nitrogen in fallow and cropped rice soils under different flooding regimes. Pt. 1

    International Nuclear Information System (INIS)

    Fillery, I.R.P.; Vlek, P.L.G.

    1982-01-01

    The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the 15 N balance, after either first accounting for NH 3 volatilization or by analyzing the 15 N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of 15 N from the soil-plant systems depended on the soil, being about 20% - 25% for the silt loams and only 10% - 12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied 15 N. Loss of 15 N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of 15 N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods. (orig.)

  20. Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga)

    DEFF Research Database (Denmark)

    de Dato, Giovanbattista Domenico; De Angelis, Paolo; Sirca, Costantino

    2010-01-01

    the soil and air night-time temperatures and to reduce water input from precipitation. The objective was to analyze the extent to which higher temperatures and a drier climate influence soil CO2 emissions in the short term and on an annual basis. The microclimate was manipulated in field plots (about 25 m2...... temperature probe. The seasonal pattern of soil CO2 efflux was characterized by higher rates during the wet vegetative season and lower rates during the dry non-vegetative season (summer). The Warming treatment did not change SR fluxes at any sampling date. The Drought treatment decreased soil CO2 emissions...... on only three of 10 occasions during 2004. The variation of soil respiration with temperature and soil water content did not differ significantly among the treatments, but was affected by the season. The annual CO2 emissions were not significantly affected by the treatments. In the semi-arid Mediterranean...

  1. Pedodiversity and Its Significance in the Context of Modern Soil Geography

    Science.gov (United States)

    Krasilnikov, P. V.; Gerasimova, M. I.; Golovanov, D. L.; Konyushkova, M. V.; Sidorova, V. A.; Sorokin, A. S.

    2018-01-01

    Methodological basics of the study and quantitative assessment of pedodiversity are discussed. It is shown that the application of various indices and models of pedodiversity can be feasible for solving three major issues in pedology: a comparative geographical analysis of different territories, a comparative historical analysis of soil development in the course of landscape evolution, and the analysis of relationships between biodiversity and pedodiversity. Analogous geographic concepts of geodiversity and landscape diversity are also discussed. Certain limitations in the use of quantitative estimates of pedodiversity related to their linkage to the particular soil classification systems and with the initial soil maps are considered. Problems of the interpretation of the results of pedodiversity assessments are emphasized. It is shown that scientific explanations of biodiversity cannot be adequately applied in soil studies. Promising directions of further studies of pedodiversity are outlined. They include the assessment of the functional diversity of soils on the basis of data on their properties, integration with geostatistical methods of evaluation of soil variability, and assessment of pedodiversity on different scales.

  2. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Science.gov (United States)

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  3. The contribution of human agricultural activities to increasing evapotranspiration is significantly greater than climate change effect over Heihe agricultural region.

    Science.gov (United States)

    Zou, Minzhong; Niu, Jun; Kang, Shaozhong; Li, Xiaolin; Lu, Hongna

    2017-08-18

    Evapotranspiration (ET) is a major component linking the water, energy, and carbon cycles. Understanding changes in ET and the relative contribution rates of human activity and of climate change at the basin scale is important for sound water resources management. In this study, changes in ET in the Heihe agricultural region in northwest China during 1984-2014 were examined using remotely-sensed ET data with the Soil and Water Assessment Tool (SWAT). Correlation analysis identified the dominant factors that influence change in ET per unit area and those that influence change in total ET. Factor analysis identified the relative contribution rates of the dominant factors in each case. The results show that human activity, which includes factors for agronomy and irrigation, and climate change, including factors for precipitation and relative humidity, both contribute to increases in ET per unit area at rates of 60.93% and 28.01%, respectively. Human activity, including the same factors, and climate change, including factors for relative humidity and wind speed, contribute to increases in total ET at rates of 53.86% and 35.68%, respectively. Overall, in the Heihe agricultural region, the contribution of human agricultural activities to increased ET was significantly greater than that of climate change.

  4. Significant increase of surface ozone at a rural site, north of eastern China

    Directory of Open Access Journals (Sweden)

    Z. Ma

    2016-03-01

    Full Text Available Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov–Zurbenko (KZ filter method was performed on the maximum daily average 8 h (MDA8 concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003–2015, with an average rate of 1.13 ± 0.01 ppb year−1 (R2 = 0.92. It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  5. Effects of increased temperature and CO{sub 2} on soil quality

    Energy Technology Data Exchange (ETDEWEB)

    Ogner, G.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The Norwegian Forest Research Institute has studied the effects of increased CO{sub 2} and temperature on forest soil, soil leachate and plants in an open top chamber experiment. The purpose was to analyze the changes in soil parameters and the leaching of elements. Nitrate and aluminium received special attention. The growth of Norway spruce and birch was followed, and its impact on the soil parameters. Preliminary results indicate that the temperature increase of the soil and consequently an increased turnover of soil organic matter had the major effect on the quality of soil leachates. CO{sub 2} was less important. Leaching of NO{sub 3}{sup -} was high from control lysimeters with moss cover. Lysimeters with birch hardly leached NO{sub 3}{sup -} at all. Spruce is in an intermediate position. Increased leaching of Al{sup n+} is found for moss lysimeters. Leachates from birch lysimeters have high concentrations of Al{sup n+} only at the end of the growth seasons. Plant growth is to some extent increased by the CO{sub 2} treatment. Birch grew well in all lysimeters and all treatments, spruce developed clear symptoms of stress. This result does not fit with the increased availability of nutrients in soil solution

  6. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils

    Science.gov (United States)

    Brzostek, E. R.; Phillips, R.; Dragoni, D.; Drake, J. E.; Finzi, A. C.

    2011-12-01

    The mobilization of nitrogen (N) from soil organic matter in temperate forest soils is controlled by the microbial production and activity of extracellular enzymes. The exudation of carbon (C) by tree roots into the rhizosphere may subsidize the microbial production of extracellular enzymes in the rhizosphere and increase the access of roots to N. The objective of this research was to investigate whether rates of root exudation and the resulting stimulation of extracellular enzyme activity in the rhizosphere (i.e., rhizosphere effect) differs between tree species that form associations with ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. This research was conducted at two temperate forest sites, the Harvard Forest (HF) in Central MA and the Morgan Monroe State Forest (MMSF) in Southern IN. At the HF, we measured rates of root exudation and the rhizosphere effects on enzyme activity, N cycling, and C mineralization in AM and ECM soils. At the MMSF, we recently girdled AM and ECM dominated plots to examine the impact of severing belowground C allocation on rhizosphere processes. At both sites, the rhizosphere effect on proteolytic, chitinolytic and ligninolytic enzyme activities was greater in ECM soils than in AM soils. In particular, higher rates of proteolytic enzyme activity increased the availability of amino acid-N in ECM rhizospheres relative to the bulk soils. Further, this stimulation of enzyme activity was directly correlated with higher rates of C mineralization in the rhizosphere than in the bulk soil. Although not significantly different between species, root exudation of C comprised 3-10% of annual gross primary production at the HF. At the MMSF, experimental girdling led to a larger decline in soil respiration and enzyme activity in ECM plots than in AM plots. In both ECM and AM soils, however, girdling resulted in equivalent rates of enzyme activity in rhizosphere and corresponding bulk soils. The results of this study contribute to the

  7. Evaluation of the increasing in the LRd soil natural radioactivity as result of phosphogypsum application

    International Nuclear Information System (INIS)

    Parreira, Paulo S.; Appoloni, Carlos R.; Paula, Fernando R. de

    1997-01-01

    The aim of this paper is to analyze the detection sensitiveness for the radionuclides from 238 U and 232 Th series present in a LRd soil from the Londrina City region, to verify the amount of radioactivity increase in that soil due to the use of phosphogypsum, and as a preliminary phase for a detailed investigation on the behaviour of those elements in agricultural soils. (author). 11 refs., 3 tab

  8. Green manure addition to soil increases grain zinc concentration in bread wheat.

    Directory of Open Access Journals (Sweden)

    Forough Aghili

    Full Text Available Zinc (Zn deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower, ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF, and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs.

  9. Reduction of exchangeable calcium and magnesium in soil with increasing pH

    Directory of Open Access Journals (Sweden)

    Miyazawa Mário

    2001-01-01

    Full Text Available A laboratory study was conducted with soil samples and synthetic solutions to investigate possible mechanisms related with reduction in KCl exchangeable Ca and Mg with increasing pH. Increasing soil pH over 5.3 with CaCO3 added to the soil and with NaOH solution added to soil/KCl suspension increased adsorptions of Ca and Mg. The reduction of Mg was greater than Ca and was related to the concentration of soil exchangeable Al. The decreases of soluble Ca and Mg following addition of Al in synthetic solution were at pH > 7.5. The isomorphic coprecipitation reaction with Al compounds may be the most possible mechanism responsible for the decrease of exchangeable Ca and Mg with increasing pH. Possible chemical reactions are presented.

  10. Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition

    International Nuclear Information System (INIS)

    Xu Guoliang; Schleppi, Patrick; Li Maihe; Fu Shenglei

    2009-01-01

    The response of specific groups of organisms, like Collembola to atmospheric nitrogen (N) deposition is still scarcely known. We investigated the Collembola community in a subalpine forest (Alptal, Switzerland) as subjected for 12 years to an experimentally increased N deposition (+25 on top of ambient 12 kg N ha -1 year -1 ). In the 0-5 cm soil layer, there was a tendency of total Collembola densities to be lower in N-treated than in control plots. The density of Isotomiella minor, the most abundant species, was significantly reduced by the N addition. A tendency of lower Collembola group richness was observed in N-treated plots. The Density-Group index (d DG ) showed a significant reduction of community diversity, but the Shannon-Wiener index (H') was not significantly affected by the N addition. The Collembola community can be considered as a bioindicator of N inputs exceeding the biological needs, namely, soil N saturation. - Collembola community, which was significantly affected by a long-term N addition experiment, can be considered as a bioindicator of N saturation.

  11. Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guoliang, E-mail: xugl@scbg.ac.c [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Schleppi, Patrick; Li Maihe [Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf (Switzerland); Fu Shenglei, E-mail: sfu@scib.ac.c [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China)

    2009-07-15

    The response of specific groups of organisms, like Collembola to atmospheric nitrogen (N) deposition is still scarcely known. We investigated the Collembola community in a subalpine forest (Alptal, Switzerland) as subjected for 12 years to an experimentally increased N deposition (+25 on top of ambient 12 kg N ha{sup -1} year{sup -1}). In the 0-5 cm soil layer, there was a tendency of total Collembola densities to be lower in N-treated than in control plots. The density of Isotomiella minor, the most abundant species, was significantly reduced by the N addition. A tendency of lower Collembola group richness was observed in N-treated plots. The Density-Group index (d{sub DG}) showed a significant reduction of community diversity, but the Shannon-Wiener index (H') was not significantly affected by the N addition. The Collembola community can be considered as a bioindicator of N inputs exceeding the biological needs, namely, soil N saturation. - Collembola community, which was significantly affected by a long-term N addition experiment, can be considered as a bioindicator of N saturation.

  12. Effects of the increased radium content in soil on the soil fauna

    International Nuclear Information System (INIS)

    Krivolutskij, D.A.; Druk, A.Ya.; Semenova, L.M.; Semyashkina, T.M.; Mikhal'tsova, Z.A.

    1978-01-01

    The effect of elevated radioactive background due to the presence of natural radionuclide of radium-226 on soil animals has been studied. The areas being studied (1-2 hectares) had the elevated radioactivity ranging from 50 to 4000 μR/hour and were located on an over-flood-lands terrace with meadow vegetation in the mid-taiga subzone. Histological examination of tegmental epithelium and middle intestine (tissues in direct contact with radium-contaminated soil) was performed on Dendrobaena octaedra (Sav.) and Dendrodrillus rubidus (Sav.) collected from areas with 4000μR/hour radioactivity. A comparison of the results with data obtained earlier for surface animals inhabiting the same areas has corroborated that settled animals inhabiting contaminated areas for a long time suffer from retardation of development and disturbances in the functioning of body epithelium and of the intestine. The effect of radiation on soil animals can be observed in areas with far lower radioactivity (100-200μR/hour), probably due to their closer contact with radium-contaminated soil. The most convenient object for monitoring of the effects of elevated background radioactivity is the earthworm, which is irradiated not only from outside but also from the smallowed soil

  13. Simulation study of soil water and heat dynamics at two sites with significant preferential flow

    Science.gov (United States)

    Votrubova, J.; Vogel, T.; Dohnal, M.; Tesar, M.

    2012-04-01

    Numerical models based on two hydraulically contrasting flow domains coupled through a simple transfer formula have become a useful tool for modeling both water flow and associated substance transport in structured soils. A comparative numerical study focused on the preferential flow effects on the soil heat transport is presented. Sites located in two different headwater catchments were included. Experimental catchment Liz is situated in a forested mountain area of Sumava Mts. in the southern part of the Czech Republic (altitude: 830 m, mean annual temperature: 6.3°C, mean annual precipitation: 861 mm). Uhlirska catchment is located in the north-west of the Czech Republic in Jizera Mts. and is currently undergoing reforestation (altitude: 820 m, mean annual temperature: 4.6°C, mean annual precipitation: 1400 mm). Both sites are instrumented for monitoring of the relevant meteorological and hydrological variables, as well as the soil moisture and temperature distribution. Changes of the soil water content and temperature during vegetation season were simulated. Model performance was qualitatively evaluated and shown to replicate the field measurements. The soils' heat budgets and the preferential flow effect thereon was compared and analyzed.

  14. Assessment of radiological significance of naturally occurring radionuclides in soil and rock matrices around Kakrapar environment

    International Nuclear Information System (INIS)

    Patra, A.K.; Jaison, T.J.; Baburajan, A.; Hegde, A.G.

    2008-01-01

    The activity and gamma-absorbed dose rate due to the naturally occurring radionuclides in the terrestrial environment such as 238 U, 232 Th and 40 K were determined in soil and rock samples collected around Kakrapar Atomic Power Plant site, using gamma-ray spectrometry. The mean concentration levels measured in Kakrapar soil from naturally occurring radioisotopes such as 238 U, 232 Th and 40 K are lower than the corresponding global average values obtained in worldwide soil. The external hazard index (Hex) and absorbed gamma dose rate in air outdoors is observed to be 0.04-0.18 and 3.1-14.1 nGy h -1 , respectively. (authors)

  15. Contaminant transport in soils and its significance in the design of waste management facilities

    International Nuclear Information System (INIS)

    Barbour, S.L.; Krahn, J.

    1984-01-01

    Transport of contaminants in soils is governed by advection, dispersion, geochemical mass transfer and decay in the case of radioactive materials. Advection is the process whereby the contaminant is being carried along by moving water. Dispersion arises from mechanical mixing due to velocity distributions between soil particles and molecular diffusion. Geochemical mass transfer retards the migration because of adsorption and/or precipitation. Decay results in a decrease of contaminant concentrations for radioactive materials. Studies on the effectiveness of a cutoff wall in granular soils beneath a tailings dyke show that the most important parameter is the groundwater flow velocity. It not only controls the advective transport but also directly affects the dispersive component and the attenuation that may be obtained through adsorption and decay

  16. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils

    Science.gov (United States)

    Huang, Zhang-Ting; Li, Yong-Fu; Jiang, Pei-Kun; Chang, Scott X.; Song, Zhao-Liang; Liu, Juan; Zhou, Guo-Mo

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0-40 cm soil layer in bamboo plantations increased by 217 Mg C ha-1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha-1 yr-1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha-1 yr-1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change.

  17. One stone, two birds: silica nanospheres significantly increase photocatalytic activity and colloidal stability of photocatalysts

    Science.gov (United States)

    Rasamani, Kowsalya D.; Foley, Jonathan J., IV; Sun, Yugang

    2018-03-01

    Silver-doped silver chloride [AgCl(Ag)] nanoparticles represent a unique class of visible-light-driven photocatalysts, in which the silver dopants introduce electron-abundant mid-gap energy levels to lower the bandgap of AgCl. However, free-standing AgCl(Ag) nanoparticles, particularly those with small sizes and large surface areas, exhibit low colloidal stability and low compositional stability upon exposure to light irradiation, leading to easy aggregation and conversion to metallic silver and thus a loss of photocatalytic activity. These problems could be eliminated by attaching the small AgCl(Ag) nanoparticles to the surfaces of spherical dielectric silica particles with submicrometer sizes. The high optical transparency in the visible spectral region (400-800 nm), colloidal stability, and chemical/electronic inertness displayed by the silica spheres make them ideal for supporting photocatalysts and significantly improving their stability. The spherical morphology of the dielectric silica particles can support light scattering resonances to generate significantly enhanced electric fields near the silica particle surfaces, on which the optical absorption cross-section of the AgCl(Ag) nanoparticles is dramatically increased to promote their photocatalytic activity. The hybrid silica/AgCl(Ag) structures exhibit superior photocatalytic activity and stability, suitable for supporting photocatalysis sustainably; for instance, their efficiency in the photocatalytic decomposition of methylene blue decreases by only ˜9% even after ten cycles of operation.

  18. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    Science.gov (United States)

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  19. [Significant increase in the colonisation of Staphylococcus aureus among medical students during their hospital practices].

    Science.gov (United States)

    Rodríguez-Avial, Carmen; Alvarez-Novoa, Andrea; Losa, Azucena; Picazo, Juan J

    2013-10-01

    Staphylococcus aureus is a pathogen of major concern. The emergence of methicillin-resistant S. aureus (MRSA) has increasingly complicated the therapeutic approach of hospital-acquired infections. Surveillance of MRSA and control measures must be implemented in different healthcare settings, including screening programs for carriers. Our first aim was to determine the prevalence of methicillin-susceptible S. aureus (MSSA) and MRSA nasal carriage in medical students from the Clínico San Carlos Hospital (Madrid). As the MRSA carrier rate in healthcare workers is higher than in the general population, we hypothesised that carrier rate could be increased during their clinical practice in their last three years. We performed an epidemiologic al study of the prevalence of S. aureus colonisation among a group of medical students, who were sampled in 2008 in their third-year, and in 2012 when this class was in its sixth year. We have found a significant increase in MSSA carriage, from 27% to 46%. There were no MRSA colonisations in the third-year, but one was found in the sixth-year group. The large majority of strains (89%) of strains were resistant to penicillin, and 27% to erythromycin and clindamycin. As 19 coagulase-negative Staphylococcus MR were also identified, a horizontal transfer of genes, such as mecA gene to S. aureus, could have occurred. Medical students are both, at risk for acquiring, and a potential source of nosocomial pathogens, mainly MSSA. Therefore, they should take special care for hygienic precautions, such as frequent and proper hand washing, while working in the hospital. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  20. Earthworms Contribute to Increased Turnover in Biochar Amended Soils

    Science.gov (United States)

    With increased interest in bioenergy production from pyrolysis, biochar is likely to become a widely available co-product. Research on using biochar as a source of fertility or to increase carbon sequestration is growing; however, land application of biochar is likely to impact the biotic component...

  1. Evaluation and development of soil values for the pathway 'soil to plant'. Significance of mercury evaporation for the burden of plants

    International Nuclear Information System (INIS)

    Gaeth, S.; Schlueter, K.

    1998-05-01

    In cooperation with the Ad-hoc working group 'Transfer of heavy metals from soil to plant' of the Laenderarbeitsgemeinschaft Bodenschutz (LABO) the significance of mercury evaporation for the deduction of threshold values in respect of the impact via the pathway soil to plant was investigated. Mercury contamination of food- and feeding stuff plants was examined with special emphasis. For these purposes a lab experiment including three different soils with varying initial mercury load (background level, geogenic and anthropogenic contamination) and two different plant species (parsely and spinach) was carried out under defined conditions in closed lysimeters. Mercury uptake via the roots was minimised since the plants grew in isolated customary substrate which showed a low concentration of mercury. Thus, only the surrounding soil evaporated mercury. The concentrations of mercury in the plants in the background level treatment (0.1 mg Hg/kg dry soil) were 0.15 mg/kg dry matter (spinach) and 0.44 mg/kg dry matter (parsely). The treatment with anthropogenic contaminated soil (111 mg Hg/kg dry soil) resulted in concentrations in the two plants of 2.0 and 2.6 mg/kg dry matter, respectively. A comparable order of magnitude was achieved in the geogenic contaminated treatment (34 mg Hg/kg dry soil) with 2.1 mg/kg dry matter. Experiments conducted with radioactive 203 Hg showed in each case recoveries of 20 to 34% in the leaves regarding the evaporated Hg-tracer. Also in the stem and in the roots Hg-tracer could be detected, indicating a translocation within the plant from leaf to root. By means of a comprehensive literature study the state of the art for Hg-evaporation and Hg-uptake of plants was compiled. Comparing the experimental results with data derived from literature, the Hg-concentrations found are confirmed by results of other authors. (orig.) [de

  2. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.

    Science.gov (United States)

    Ambebe, Titus F; Dang, Qing-Lai

    2009-11-01

    White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.

  3. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    Science.gov (United States)

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  4. Plants increase laccase activity in soil with long-term elevated CO2 legacy

    DEFF Research Database (Denmark)

    Partavian, Asrin; Mikkelsen, Teis Nørgaard; Vestergård, Mette

    2015-01-01

    [CO2] stimulate laccase activity. We incubated soil exposed to seven years of elevated or ambient field [CO2] in ambient or elevated [CO2] chambers for six months either with or without plants (Deschampsia flexuosa). Elevated chamber [CO2] increased D. flexuosa production and belowground respiration....... Interestingly, plants also grew larger in soil with an elevated [CO2] legacy. Plants stimulated soil microbial biomass, belowground respiration and laccase activity, and the plant-induced laccase stimulation was particularly apparent in soil exposed to long-term elevated [CO2] in the field, whereas laccase......Actively growing plants can stimulate mineralization of recalcitrant soil organic matter (SOM), and increased atmospheric [CO2] can further enhance such plant-mediated SOM degradation. Laccases are central for recalcitrant SOM decomposition, and we therefore hypothesized that plants and elevated...

  5. Skipping one or more dialysis sessions significantly increases mortality: measuring the impact of non-adherence

    Directory of Open Access Journals (Sweden)

    Eduardo Gottlieb

    2014-06-01

    Full Text Available Introduction: Non-adherence to the prescribed dialysis sessions frequency ranges from 2% to 50% of patients. The objective of this study was to evaluate the impact of detecting and measuring the non-adherence to the prescribed dialysis frequency and to determine the importance of a multidisciplinary approach with the aim of improving adherence. Methods: longitudinal cohort study including 8,164 prevalent hemodialysis patients in April 2010, with more than 90 days of treatment, in Fresenius Medical Care Argentina units that were monitored for 3 years. The survey evaluated: interruption of at least one dialysis session in a month or reduction at least 10 minutes of a dialysis session in a month, during 6 months prior to the survey. Relative mortality risks were evaluated among groups. Results: 648 patients (7.9% interrupted dialysis sessions: 320 (3.9% interrupted one session per month and 328 (4.01% interrupted more than one session per month. After 3 years monitoring, 349 patients (53.8 % remained active in hemodialysis and 299 were inactive due to different reasons: 206 deceased (31.8 %, 47 transfers or monitoring losses (7.25 %, 36 transplanted (5.55 %, 8 changes to PD modality (1.2% and 2 recovered their kidney function (0.3 %.Interrupting one session per month significantly increased the mortality risk comparing both groups (interrupters and non-interrupters: RR 2.65 (IC 95% 2.24 – 3.14. Interrupting more than one dialysis session also increased significantly mortality risk comparing to the non-interrupters: RR 2.8 (IC 95% 2.39 – 3.28. After 3 years monitoring, 41.6 % of interrupters at the beginning had improved their adherence through a multidisciplinary program of quality improvement. Conclusion: Global mortality was greater among patients who interrupted dialysis sessions. A considerable proportion of interrupter patients at the beginning modified their behavior through the implementation of a multidisciplinary program of quality

  6. Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring.

    Directory of Open Access Journals (Sweden)

    Angelica B Bernal

    Full Text Available BACKGROUND: We have shown recently that maternal undernutrition (UN advanced female pubertal onset in a manner that is dependent upon the timing of UN. The long-term consequence of this accelerated puberty on ovarian function is unknown. Recent findings suggest that oxidative stress may be one mechanism whereby early life events impact on later physiological functioning. Therefore, using an established rodent model of maternal UN at critical windows of development, we examined maternal UN-induced changes in offspring ovarian function and determined whether these changes were underpinned by ovarian oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: Our study is the first to show that maternal UN significantly reduced primordial and secondary follicle number in offspring in a manner that was dependent upon the timing of maternal UN. Specifically, a reduction in these early stage follicles was observed in offspring born to mothers undernourished throughout both pregnancy and lactation. Additionally, antral follicle number was reduced in offspring born to all mothers that were UN regardless of whether the period of UN was restricted to pregnancy or lactation or both. These reductions were associated with decreased mRNA levels of genes critical for follicle maturation and ovulation. Increased ovarian protein carbonyls were observed in offspring born to mothers UN during pregnancy and/or lactation and this was associated with peroxiredoxin 3 hyperoxidation and reduced mRNA levels; suggesting compromised antioxidant defence. This was not observed in offspring of mothers UN during lactation alone. CONCLUSIONS: We propose that maternal UN, particularly at a time-point that includes pregnancy, results in reduced offspring ovarian follicle numbers and mRNA levels of regulatory genes and may be mediated by increased ovarian oxidative stress coupled with a decreased ability to repair the resultant oxidative damage. Together these data are suggestive of

  7. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Myriocin significantly increases the mortality of a non-mammalian model host during Candida pathogenesis.

    Directory of Open Access Journals (Sweden)

    Nadja Rodrigues de Melo

    Full Text Available Candida albicans is a major human pathogen whose treatment is challenging due to antifungal drug toxicity, drug resistance and paucity of antifungal agents available. Myrocin (MYR inhibits sphingosine synthesis, a precursor of sphingolipids, an important cell membrane and signaling molecule component. MYR also has dual immune suppressive and antifungal properties, potentially modulating mammalian immunity and simultaneously reducing fungal infection risk. Wax moth (Galleria mellonella larvae, alternatives to mice, were used to establish if MYR suppressed insect immunity and increased survival of C. albicans-infected insects. MYR effects were studied in vivo and in vitro, and compared alone and combined with those of approved antifungal drugs, fluconazole (FLC and amphotericin B (AMPH. Insect immune defenses failed to inhibit C. albicans with high mortalities. In insects pretreated with the drug followed by C. albicans inoculation, MYR+C. albicans significantly increased mortality to 93% from 67% with C. albicans alone 48 h post-infection whilst AMPH+C. albicans and FLC+C. albicans only showed 26% and 0% mortalities, respectively. MYR combinations with other antifungal drugs in vivo also enhanced larval mortalities, contrasting the synergistic antifungal effect of the MYR+AMPH combination in vitro. MYR treatment influenced immunity and stress management gene expression during C. albicans pathogenesis, modulating transcripts putatively associated with signal transduction/regulation of cytokines, I-kappaB kinase/NF-kappaB cascade, G-protein coupled receptor and inflammation. In contrast, all stress management gene expression was down-regulated in FLC and AMPH pretreated C. albicans-infected insects. Results are discussed with their implications for clinical use of MYR to treat sphingolipid-associated disorders.

  9. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    International Nuclear Information System (INIS)

    Hsieh, Yi-Chen; Lien, Li-Ming; Chung, Wen-Ting; Hsieh, Fang-I; Hsieh, Pei-Fan; Wu, Meei-Maan; Tseng, Hung-Pin; Chiou, Hung-Yi; Chen, Chien-Jen

    2011-01-01

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 μg/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 μg/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 μg/l). - Highlights: →Arsenic metabolic genes might be associated with carotid atherosclerosis. → A case

  10. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Lien, Li-Ming [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan (China); Chung, Wen-Ting [Department of Neurology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsieh, Fang-I; Hsieh, Pei-Fan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Wu, Meei-Maan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Tseng, Hung-Pin [Department of Neurology, Lotung Poh-Ai Hospital, I-Lan, Taiwan (China); Chiou, Hung-Yi, E-mail: hychiou@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Chen, Chien-Jen [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China)

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  11. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    Science.gov (United States)

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  12. Increased Mortality in Diabetic Foot Ulcer Patients: The Significance of Ulcer Type

    Science.gov (United States)

    Chammas, N. K.; Hill, R. L. R.; Edmonds, M. E.

    2016-01-01

    Diabetic foot ulcer (DFU) patients have a greater than twofold increase in mortality compared with nonulcerated diabetic patients. We investigated (a) cause of death in DFU patients, (b) age at death, and (c) relationship between cause of death and ulcer type. This was an eleven-year retrospective study on DFU patients who attended King's College Hospital Foot Clinic and subsequently died. A control group of nonulcerated diabetic patients was matched for age and type of diabetes mellitus. The cause of death was identified from death certificates (DC) and postmortem (PM) examinations. There were 243 DFU patient deaths during this period. Ischaemic heart disease (IHD) was the major cause of death in 62.5% on PM compared to 45.7% on DC. Mean age at death from IHD on PM was 5 years lower in DFU patients compared to controls (68.2 ± 8.7 years versus 73.1 ± 8.0 years, P = 0.015). IHD as a cause of death at PM was significantly linked to neuropathic foot ulcers (OR 3.064, 95% CI 1.003–9.366, and P = 0.049). Conclusions. IHD is the major cause of premature mortality in DFU patients with the neuropathic foot ulcer patients being at a greater risk. PMID:27213157

  13. Factors associated with an increased risk of vertebral fracture in monoclonal gammopathies of undetermined significance

    International Nuclear Information System (INIS)

    Piot, J M; Royer, M; Schmidt-Tanguy, A; Hoppé, E; Gardembas, M; Bourrée, T; Hunault, M; François, S; Boyer, F; Ifrah, N; Renier, G; Chevailler, A; Audran, M; Chappard, D; Libouban, H; Mabilleau, G; Legrand, E; Bouvard, B

    2015-01-01

    Monoclonal gammopathies of undetermined significance (MGUS) have been shown to be associated with an increased risk of fractures. This study describes prospectively the bone status of MGUS patients and determines the factors associated with vertebral fracture. We included prospectively 201 patients with MGUS, incidentally discovered, and with no known history of osteoporosis: mean age 66.6±12.5 years, 48.3% women, 51.7% immunoglobulin G (IgG), 33.3% IgM and 10.4% IgA. Light chain was kappa in 64.2% patients. All patients had spinal radiographs and bone mineral density measurement in addition to gammopathy assessment. At least one prevalent non-traumatic vertebral fracture was discovered in 18.4% patients and equally distributed between men and women. Fractured patients were older, had a lower bone density and had also more frequently a lambda light chain isotype. Compared with patients with κ light chain, the odds ratio of being fractured for patients with λ light chain was 4.32 (95% confidence interval 1.80–11.16; P=0.002). These results suggest a high prevalence of non-traumatic vertebral fractures in MGUS associated with lambda light chain isotype and not only explained by low bone density

  14. Biological 12C-13C fractionation increases with increasing community-complexity in soil microcosms

    DEFF Research Database (Denmark)

    Yang, Weijun; Magid, Jakob; Christensen, Søren

    2014-01-01

    -rates and determine the trophic level of organisms in biological systems. While it is widely accepted that 15N-accumulates in natural food-chains, it is disputed to which extent this is the case for C-13. We constructed sand-microcosms inoculated with a dilution series of soil organisms and amended with glucose......Isotope fractionation is a ubiquitous phenomenon in natural ecosystems. When chemical elements move through food chains, natural isotope ratios change because biological processes tend to discriminate against heavier isotopes. This effect can be used to trace flows of matter, estimate process...

  15. The grey areas in soil pollution risk mapping : The distinction between cases of soil pollution and increased background levels

    NARCIS (Netherlands)

    Gaast, N. van der; Leenaers, H.; Zegwaard, J.

    1998-01-01

    The progress of soil clean up in the Netherlands is severely hindered by the lack of common agreement on how to describe the grey areas of increased background levels of pollutants. In this study practical methods are proposed in which background levels are described as distribution functions within

  16. Soil biogeochemistry properties vary between two boreal forest ecosystems in Quebec: significant differences in soil carbon, available nutrients and iron and aluminium crystallinity

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-04-01

    At the northernmost extent of the managed forest in Quebec, the boreal forest is currently undergoing an ecological transition from closed-canopy black spruce-moss forests towards open-canopy lichen woodlands, which spread southward. Our study aim was to determine whether this shift could impact soil properties on top of its repercussions on forest productivity or carbon storage. We studied the soil biogeochemical composition of three pedological layers in moss forests (MF) and lichen woodlands (LW) north of the Manicouagan crater in Quebec. The humus layer (FH horizons) was significantly thicker and held more carbon, nitrogen and exchangeable Ca and Mg in MF plots than in LW plots. When considering mineral horizons, we found that the deep C horizon had a very close composition in both ecosystem plots, suggesting that the parent material was of similar geochemical nature. This was expected as all selected sites developed from glacial deposit. Multivariate analysis of surficial mineral B horizon showed however that LW B horizon displayed higher concentrations of Al and Fe oxides than MF B horizon, particularly for inorganic amorphous forms. Conversely, main exchangeable base cations (Ca, Mg) were higher in B horizon of MF than that of LW. Ecosystem types explained much of the variations in the B horizon geochemical composition. We thus suggest that the differences observed in the geochemical composition of the B horizon have a biological origin rather than a mineralogical origin. We also showed that total net stocks of carbon stored in MF soils were three times higher than in LW soils (FH + B horizons, roots apart). Altogether, we suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the of vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental

  17. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.

    Science.gov (United States)

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-09-23

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning.

  18. Significant yield increases from control of leaf diseases in maize - an overlooked problem?!

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup

    2012-01-01

    The area of maize has increased in several European countries in recent years. In Denmark, the area has increased from 10,000 ha in 1980 to 185,000 ha in 2011. Initially only silage maize was cultivated in Denmark, but in more recent years the area of grain maize has also increased. Farms growing...

  19. Earthworms (Amynthas spp. increase common bean growth, microbial biomass, and soil respiration

    Directory of Open Access Journals (Sweden)

    Julierme Zimmer Barbosa

    2017-10-01

    Full Text Available Few studies have evaluated the effect of earthworms on plants and biological soil attributes, especially among legumes. The objective of this study was to evaluate the influence of earthworms (Amynthas spp. on growth in the common bean (Phaseolus vulgaris L. and on soil biological attributes. The experiment was conducted in a greenhouse using a completely randomized design with five treatments and eight repetitions. The treatments consisted of inoculation with five different quantities of earthworms of the genus Amynthas (0, 2, 4, 6, and 8 worms per pot. Each experimental unit consisted of a plastic pot containing 4 kg of soil and two common bean plants. The experiment was harvested 38 days after seedling emergence. Dry matter and plant height, soil respiration, microbial respiration, microbial biomass, and metabolic quotient were determined. Earthworm recovery in our study was high in number and mass, with all values above 91.6% and 89.1%, respectively. In addition, earthworm fresh biomass decreased only in the treatment that included eight earthworms per pot. The presence of earthworms increased the plant growth and improved soil biological properties, suggesting that agricultural practices that favor the presence of these organisms can be used to increase the production of common bean, and the increased soil CO2 emission caused by the earthworms can be partially offset by the addition of common bean crop residues to the soil.

  20. Grape yield, and must compounds of 'Cabernet Sauvignon' grapevine in sandy soil with potassium contents increasing

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2016-08-01

    Full Text Available ABSTRACT: Content of exchangeable potassium (K in t soil may influence on its content in grapevines leaves, grape yield, as well as, in must composition. The study aimed to assess the interference of exchangeable K content in the soil on its leaf content, production and must composition of 'Cabernet Sauvignon' cultivar. In September 2011, in Santana do Livramento (RS five vineyards with increasing levels of exchangeable K in the soil were selected. In the 2012/13 and 2013/14 harvests, the grape yield, yield components, total K content in the leaves in full bloom and berries veraison were evaluated. Values of total soluble sugar (TSS, pH, total titratable acidity (TTA, total polyphenols and anthocyanins were evaluated in the must. Exchangeable K content increase in soil with sandy surface texture increased its content in leaves collected during full flowering and in berries and must pH; however, it did not affect production of the 'Cabernet Sauvignon'.

  1. Soil nitrate reducing processes drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    OpenAIRE

    Giles, M.; Morley, N.; Baggs, E.M.; Daniell, T.J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium\\ud (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for\\ud the loss of nitrate (NO−\\ud 3 ) and production of the potent greenhouse gas, nitrous oxide (N2O).\\ud A number of factors are known to control these processes, including O2 concentrations and\\ud moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms\\ud responsible for the ...

  2. Time series modelling of increased soil temperature anomalies during long period

    Science.gov (United States)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  3. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps.

    Science.gov (United States)

    Wieser, Gerhard; Grams, Thorsten E E; Matyssek, Rainer; Oberhuber, Walter; Gruber, Andreas

    2015-03-01

    This study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra L. at the treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3 and 1.0 °C at 5, 10 and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapour, so that water-use efficiency stayed unchanged as confirmed by needle δ(13)C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Application of Bioameliorant and Biofertilizers to Increase the Soil Health and Rice Productivity

    Directory of Open Access Journals (Sweden)

    Tualar Simarmata

    2016-10-01

    Full Text Available The major rice intensity of diseases in Indonesia was increased significantly and has caused a yield loss of up to 20–30%. The experiments had been conducted to investigate the effect of bioameliorant or composted straw (CS combined with consortia of biofertilizers (CB and biocontrol agent to restore the soil health and promote the induced systemic resistance (ISR for increasing the rice productivity. The experiment arranged as randomized block design consisted of 12 treatments (0, 2.5, 5.0 and 7.5 ton of CS per ha combined with 400 g of CB and 200 g inoculant of CB + 200 g inoculant of Trichoderma sp and was provided with three replications. The experimental results revealed that application of 2.5–7.5 ton per ha of bioameliorant combined with 400 g per ha of CB and 400 g Trichoderma sp has increased the ISR and enhanced the rice productivity significantly. The brown spot, sheath rice blight and bacterial leaf blight diseases were reduced from 16.7% to 3.3–8.0%, 20% to 4–10%, 24% to 2.7–4.7% and 20.7% to 8–14.0%, respectively at 7 weeks after transplanting. In addition, the rice grain yield was increased from about 7.1 ton ha−1 to 7.9–10.1 ton per ha.

  5. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    Science.gov (United States)

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-02

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.

  6. Pinon-juniper reduction increases soil water availability of the resource growth pool

    Science.gov (United States)

    Bruce A. Roundy; Kert Young; Nathan Cline; April Hulet; Richard F. Miller; Robin J. Tausch; Jeanne C. Chambers; Ben Rau

    2014-01-01

    Managers reduce piñon (Pinus spp.) and juniper (Juniperus spp.) trees that are encroaching on sagebrush (Artemisia spp.) communities to lower fuel loads and increase cover of desirable understory species. All plant species in these communities depend on soil water held at > −1.5 MPa matric potential in the upper 0.3 m of soil for nutrient...

  7. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  8. Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals.

    Science.gov (United States)

    Meers, E; Tack, F M G; Van Slycken, S; Ruttens, A; Du Laing, G; Vangronsveld, J; Verloo, M G

    2008-01-01

    The contamination of soils by trace metals has been an unfortunate sideeffect of industrialization. Some of these contaminants can interfere with vulnerable enduses of soil, such as agriculture or nature, already at relatively low levels of contamination. Reversely, conventional civil-technical soil-remediation techniques are too expensive to remediate extended areas of moderately contaminated soil. Phytoextraction has been proposed as a more economic complementary approach to deal with this specific niche of soil contamination. However, phytoextraction has been shown to be a slow-working process due to the low amounts of metals that can be annually removed from the soil under normal agronomic conditions. Therefore, extensive research has been conducted on process optimization by means of chemically improving plant availability and the uptake of heavy metals. A wide range of potential amendments has been proposed in the literature, with considerable attention being spent on aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA). However, these compounds have received increasing criticism due to their environmental persistence and associated risks for leaching. This review presents an overview of potential soil amendments that can be employed for enhancing metal uptake by phytoextraction crops, with a distinct focus on more degradable alternatives to persistent compounds such as EDTA.

  9. Presence of gingivitis and periodontitis significantly increases hospital charges in patients undergoing heart valve surgery.

    Science.gov (United States)

    Allareddy, Veerasathpurush; Elangovan, Satheesh; Rampa, Sankeerth; Shin, Kyungsup; Nalliah, Romesh P; Allareddy, Veerajalandhar

    2015-01-01

    To examine the prevalence and impact of gingivitis and periodontitis in patients having heart valve surgical procedures. Nationwide Inpatient Sample for the years 2004-2010 was used. All patients who had heart valve surgical procedures were selected. Prevalence of gingivitis/periodontitis was examined in these patients. Impact of gingivitis/periodontitis on hospital charges, length of stay, and infectious complications was examined. 596,190 patients had heart valve surgical procedures. Gingivitis/periodontitis was present in 0.2 percent. Outcomes included: median hospital charges ($175,418 with gingivitis/ periodontitis versus $149,353 without gingivitis/periodontitis) and median length of stay (14 days with gingivitis/periodontitis versus 8 days without gingivitis/periodontitis). After adjusting for the effects of patient- and hospital-level confounding factors, hospital charges and length of stay were significantly higher (p gingivitis/periodontitis compared to their counterparts. Further, patients with gingivitis/periodontitis had significantly higher odds for having bacterial infections (OR = 3.41, 95% CI = 2.33-4.98, p gingivitis/periodontitis. Presence of gingivitis and periodontitis is associated with higher risk for bacterial infections and significant hospital resource utilization.

  10. Transabdominal cerclage: the significance of dual pathology and increased preterm delivery.

    Science.gov (United States)

    Farquharson, Roy G; Topping, Joanne; Quenby, Siobhan M

    2005-10-01

    Transabdominal cerclage is a recognised treatment for cervical weakness with a history of recurrent mid-trimester loss and a failed elective vaginal suture. The emergence of dual pathology, such as antiphospholipid syndrome and bacterial vaginosis, is associated with an increased risk of preterm delivery (RR 2.34, 95% CI 1.15-5.8). The first 40 cases are described where strict adherence to an investigation protocol and consistent treatment plan has been implemented.

  11. Significance of radon exposures in developing cleanup criteria for radium-contaminated soil at the Weldon Spring Site

    International Nuclear Information System (INIS)

    Blunt, D.L.; Peterson, J.M.; Hillman, D.J.

    1993-10-01

    The Weldon Spring site, located in St. Charles County, Missouri, is included on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) is currently conducting cleanup activities at the site. This paper discusses the significance of radon exposures that may result from radium-contaminated soil and the approach currently being taken at the Weldon Spring site to address this issue

  12. Clinical significance of increased lung/heart ratio in 210Tl stress myocardial image

    International Nuclear Information System (INIS)

    Liu Zaoli; Chang Fengqin; Zhang Fengge; Wang Xiaoyuan; Liu Liuhua

    1990-01-01

    230 cases were studied with 201 Tl stress image. The results showed that the lung/heart ratio closely correlated with the presence and severity of coronary heart disease (CHD). Among them, 18 cases (7.8%) showed significantly elevated lung/heart ratio (> 0.50). It was confirmed that all of the 18 cases have severe CHD with left ventricular insufficiency. The author emphasizes that measurement of the lung/heart ratio during 201 Tl stress myocardial image may be useful for the assessment of the severity, evalation of the left ventricular function and judgement of prognosis in CHD

  13. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2016-03-01

    Full Text Available Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1 using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing

  14. Corruption Significantly Increases the Capital Cost of Power Plants in Developing Contexts

    Directory of Open Access Journals (Sweden)

    Kumar Biswajit Debnath

    2018-03-01

    Full Text Available Emerging economies with rapidly growing population and energy demand, own some of the most expensive power plants in the world. We hypothesized that corruption has a relationship with the capital cost of power plants in developing countries such as Bangladesh. For this study, we analyzed the capital cost of 61 operational and planned power plants in Bangladesh. Initial comparison study revealed that the mean capital cost of a power plant in Bangladesh is twice than that of the global average. Then, the statistical analysis revealed a significant correlation between corruption and the cost of power plants, indicating that higher corruption leads to greater capital cost. The high up-front cost can be a significant burden on the economy, at present and in the future, as most are financed through international loans with extended repayment terms. There is, therefore, an urgent need for the review of the procurement and due diligence process of establishing power plants, and for the implementation of a more transparent system to mitigate adverse effects of corruption on megaprojects.

  15. Modern environmental health hazards: a public health issue of increasing significance in Africa.

    Science.gov (United States)

    Nweke, Onyemaechi C; Sanders, William H

    2009-06-01

    Traditional hazards such as poor sanitation currently account for most of Africa's environmentally related disease burden. However, with rapid development absent appropriate safeguards for environment and health, modern environmental health hazards (MEHHs) may emerge as critical contributors to the continent's disease burden. We review recent evidence of human exposure to and health effects from MEHHs, and their occurrence in environmental media and consumer products. Our purpose is to highlight the growing significance of these hazards as African countries experience urbanization, industrial growth, and development. We reviewed published epidemiologic, exposure, and environmental studies of chemical agents such as heavy metals and pesticides. The body of evidence demonstrates ongoing environmental releases of MEHHs and human exposures sometimes at toxicologically relevant levels. Several sources of MEHHs in environmental media have been identified, including natural resource mining and processing and automobile exhaust. Biomonitoring studies provided direct evidence of human exposure to metals such as mercury and lead and pesticides such as p,p'-dichlorodiphenyltrichloroethane (DDT) and organophosphates. Land and water resource pollution and industrial air toxics are areas of significant data gaps, notwithstanding the presence of several emitting sources. Unmitigated MEHH releases and human exposure have implications for Africa's disease burden. For Africans encumbered by conditions such as malnutrition that impair resilience to toxicologic challenges, the burden may be higher. A shift in public health policy toward accommodating the emerging diversity in Africa's environmental health issues is necessary to successfully alleviate the burden of avoidable ill health and premature death for all its communities now and in the future.

  16. Management options to increase soil organic matter and nitrogen availability in cultivated drylands

    International Nuclear Information System (INIS)

    Grace, P.R.

    1998-01-01

    Cropping of dryland soils in marginal regions with an emphasis on economic rather than ecological sustainability has generally led to decline in soil organic matter reserves and hence nutrient availability. Outputs commonly exceed inputs, with degradation of soil structure, reduction in infiltration and increase in runoff. Biological productivity is severely affected, leading to a vicious cycle of events usually culminating in decreased N release, excessive soil loss and ultimately desertification. Reducing the incidence of bare fallow, increasing crop-residue retention, strategic N-fertilizer application and shifting to cereal-legume rotations (as opposed to monocultures) and intercropping can slow the spiral. Simulation models such as DSSAT and SOCRATES provide suitable and easy-to-use platforms to evaluate these management strategies in terms of soil organic matter accumulation and yield performance. Through the linkage of these models to global information systems and the use of spatial-characterization software to identify zones of similarity, it is now possible to examine the transportability and risk of a particular management strategy under a wide range of climatic and soil conditions. (author)

  17. Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction

    Directory of Open Access Journals (Sweden)

    Sers Christine T

    2010-12-01

    Full Text Available Abstract Background While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species. Results We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (MLH1, PMS2, EPHB4 and could confirm more than 73% of them based on evidence in the literature. Conclusions The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.

  18. Increased Body Mass Index during Therapy for Childhood Acute Lymphoblastic Leukemia: A Significant and Underestimated Complication

    Directory of Open Access Journals (Sweden)

    Helen C. Atkinson

    2015-01-01

    Full Text Available Objective & Design. We undertook a retrospective review of children diagnosed with acute lymphoblastic leukemia (ALL and treated with modern COG protocols (n=80 to determine longitudinal changes in body mass index (BMI and the prevalence of obesity compared with a healthy reference population. Results. At diagnosis, the majority of patients (77.5% were in the healthy weight category. During treatment, increases in BMI z-scores were greater for females than males; the prevalence of obesity increased from 10.3% to 44.8% (P<0.004 for females but remained relatively unchanged for males (9.8% to 13.7%, P=0.7. Longitudinal analysis using linear mixed-effects identified associations between BMI z-scores and time-dependent interactions with sex (P=0.0005, disease risk (P<0.0001, age (P=0.0001, and BMI z-score (P<0.0001 at diagnosis and total dose of steroid during maintenance (P=0.01. Predicted mean BMI z-scores at the end of therapy were greater for females with standard risk ALL irrespective of age at diagnosis and for males younger than 4 years of age at diagnosis with standard risk ALL. Conclusion. Females treated on standard risk protocols and younger males may be at greatest risk of becoming obese during treatment for ALL. These subgroups may benefit from intervention strategies to manage BMI during treatment for ALL.

  19. Big data integration shows Australian bush-fire frequency is increasing significantly.

    Science.gov (United States)

    Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath

    2016-02-01

    Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift.

  20. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    Science.gov (United States)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

  1. Increasing Efficiency of Soil Fertility Map for Rice Cultivation Using Fuzzy Logic, AHP and GIS

    Directory of Open Access Journals (Sweden)

    javad seyedmohammadi

    2017-02-01

    Full Text Available Introduction: With regard to increasing population of country, need to high agricultural production is essential. The most suitable method for this issue is high production per area unit. Preparation much food and other environmental resources with conservation of biotic resources for futures will be possible only with optimum exploitation of soil. Among effective factors for the most production balanced addition of fertilizers increases production of crops higher than the others. With attention to this topic, determination of soil fertility degree is essential tobetter use of fertilizers and right exploitation of soils. Using fuzzy logic and Analytic Hierarchy Process (AHP could be useful in accurate determination of soil fertility degree. Materials and Methods: The study area (at the east of Rasht city is located between 49° 31' to 49° 45' E longitude and 37° 7' to 37° 27' N latitude in north of Guilan Province, northern Iran, in the southern coast of the Caspian sea. 117 soil samples were derived from0-30 cm depth in the study area. Air-dried soil samples were crushed and passed through a 2mm sieve. Available phosphorus, potassium and organic carbon were determined by sodium bicarbonate, normal ammonium acetate and corrected walkly-black method, respectively. In the first stage, the interpolation of data was done by kriging method in GIS context. Then S-shape membership function was defined for each parameter and prepared fuzzy map. After determination of membership function weight parameters maps were determined using AHP technique and finally soil fertility map was prepared with overlaying of weighted fuzzy maps. Relative variance and correlation coefficient criteria used tocontrol groups separation accuracy in fuzzy fertility map. Results and Discussion: With regard to minimum amounts of parameters looks some lands of study area had fertility difficulty. Therefore, soil fertility map of study area distinct these lands and present soil

  2. Circulatory nucleosome levels are significantly increased in early and late-onset preeclampsia.

    Science.gov (United States)

    Zhong, Xiao Yan; Gebhardt, Stefan; Hillermann, Renate; Tofa, Kashefa Carelse; Holzgreve, Wolfgang; Hahn, Sinuhe

    2005-08-01

    Elevations in circulatory DNA, as measured by real-time PCR, have been observed in pregnancies with manifest preeclampsia. Recent reports have indicated that circulatory nucleosome levels are elevated in the periphery of cancer patients. We have now examined whether circulatory nucleosome levels are similarly elevated in cases with preeclampsia. Maternal plasma samples were prepared from 17 cases with early onset preeclampsia (34 weeks gestation) with 10 matched normotensive controls. Levels of circulatory nucleosomes were quantified by commercial ELISA (enzyme-linked immunosorbant assay). The level of circulatory nucleosomes was significantly elevated in both study preeclampsia groups, compared to the matched normotensive control group (p = 0.000 and p = 0.001, respectively). Our data suggests that preeclampsia is associated with the elevated presence of circulatory nucleosomes, and that this phenomenon occurs in both early- and late-onset forms of the disorder. Copyright 2005 John Wiley & Sons, Ltd.

  3. Using organic matter to increase soil fertility in Burundi: potentials and limitations

    Science.gov (United States)

    Kaboneka, Salvator

    2015-04-01

    Agriculture production in Burundi is dominated by small scale farmers (0.5 ha/household) who have only very limited access to mineral inputs. In the past, farmers have relied on fallow practices combined with farm yard manures to maintain and improve soil fertility. However, due to the high population growth and high population density (370/km²), fallow practices are nowadays no longer feasible, animal manures cannot be produced in sufficient quantities to maintain soil productivity and food insecurity has become a quasi permanent reality. Most Burundian soils are characterized by 1:1 types of clay minerals (kaolinite) and are acidic in nature. Such soils are of very low cation exchange capacity (CEC). To compare the effect of % clays and % organic matter (% C), correlations tests have been conducted between the two parameters and the CEC. It was found that in high altitude kaolinitic and acidic soils, CEC was highly correlated to % C and less correlated to % clay, suggesting that organic matter could play an important role in improving fertility and productivity of these soils. Based on these findings, additional studies have been conducted to evaluate the fertilizer and soil amendment values of animal manures (cattle, goat, chicken), and leguminous (Calliandra calothyrsus, Gliricidia sepium, Senna simea, Senna spectabilis) and non-leguminous (Tithonia diversifolia) foliar biomass. It was observed that chicken manure significantly reduces Al3+ levels in acidic soils, while Tithonia diversifolia outperforms in nutrient releases compared to the commonly known leguminous agroforestry shrubs and trees indicated above. Although the above mentioned organic sources can contribute to the soil nutrients supply, the quantities potentially available on farm are generally small. The only solution is to supplement these organic sources with other organic sources (compost, organic household waste), chemical fertilizers and mineral amendments (lime) to achieve Integrated Soil

  4. Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest

    Science.gov (United States)

    John L. Campbell; Anne M. Socci; Pamela H. Templer

    2014-01-01

    The depth and duration of snow pack is declining in the northeastern United States as a result of warming air temperatures. Since snow insulates soil, a decreased snow pack can increase the frequency of soil freezing, which has been shown to have important biogeochemical implications. One of the most notable effects of soil freezing is increased inorganic nitrogen...

  5. TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses.

    Science.gov (United States)

    Kotsiou, Eleni; Okosun, Jessica; Besley, Caroline; Iqbal, Sameena; Matthews, Janet; Fitzgibbon, Jude; Gribben, John G; Davies, Jeffrey K

    2016-07-07

    Donor T-cell immune responses can eradicate lymphomas after allogeneic hematopoietic stem cell transplantation (AHSCT), but can also damage healthy tissues resulting in harmful graft-versus-host disease (GVHD). Next-generation sequencing has recently identified many new genetic lesions in follicular lymphoma (FL). One such gene, tumor necrosis factor receptor superfamily 14 (TNFRSF14), abnormal in 40% of FL patients, encodes the herpes virus entry mediator (HVEM) which limits T-cell activation via ligation of the B- and T-lymphocyte attenuator. As lymphoma B cells can act as antigen-presenting cells, we hypothesized that TNFRSF14 aberrations that reduce HVEM expression could alter the capacity of FL B cells to stimulate allogeneic T-cell responses and impact the outcome of AHSCT. In an in vitro model of alloreactivity, human lymphoma B cells with TNFRSF14 aberrations had reduced HVEM expression and greater alloantigen-presenting capacity than wild-type lymphoma B cells. The increased immune-stimulatory capacity of lymphoma B cells with TNFRSF14 aberrations had clinical relevance, associating with higher incidence of acute GVHD in patients undergoing AHSCT. FL patients with TNFRSF14 aberrations may benefit from more aggressive immunosuppression to reduce harmful GVHD after transplantation. Importantly, this study is the first to demonstrate the impact of an acquired genetic lesion on the capacity of tumor cells to stimulate allogeneic T-cell immune responses which may have wider consequences for adoptive immunotherapy strategies. © 2016 by The American Society of Hematology.

  6. Exposure to Tumescent Solution Significantly Increases Phosphorylation of Perilipin in Adipocytes.

    Science.gov (United States)

    Keskin, Ilknur; Sutcu, Mustafa; Eren, Hilal; Keskin, Mustafa

    2017-02-01

    Lidocaine and epinephrine could potentially decrease adipocyte viability, but these effects have not been substantiated. The phosphorylation status of perilipin in adipocytes may be predictive of cell viability. Perilipin coats lipid droplets and restricts access of lipases; phospho-perilipin lacks this protective function. The authors investigated the effects of tumescent solution containing lidocaine and epinephrine on the phosphorylation status of perilipin in adipocytes. In this in vitro study, lipoaspirates were collected before and after tumescence from 15 women who underwent abdominoplasty. Fat samples were fixed, sectioned, and stained for histologic and immunohistochemical analyses. Relative phosphorylation of perilipin was inferred from pixel intensities of immunostained adipocytes observed with confocal microscopy. For adipocytes collected before tumescent infiltration, 10.08% of total perilipin was phosphorylated. In contrast, 30.62% of total perilipin was phosphorylated for adipocytes collected from tumescent tissue (P < .01). The tumescent technique increases the relative phosphorylation of perilipin in adipocytes, making these cells more vulnerable to lipolysis. Tumescent solution applied for analgesia or hemostasis of the donor site should contain the lowest possible concentrations of lidocaine and epinephrine. LEVEL OF EVIDENCE 5. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  7. Significance of Increasing n-3 PUFA Content in Pork on Human Health.

    Science.gov (United States)

    Ma, Xianyong; Jiang, Zongyong; Lai, Chaoqiang

    2016-01-01

    Evidence for the health-promoting effects of food rich in n-3 polyunsaturated fatty acids (n-3 PUFA) is reviewed. Pork is an important meat source for humans. According to a report by the US Department of Agriculture ( http://www.ers.usda.gov/topics ), the pork consumption worldwide in 2011 was about 79.3 million tons, much higher than that of beef (48.2 million tons). Pork also contains high levels of unsaturated fatty acids relative to ruminant meats (Enser, M., Hallett, K., Hewett, B., Fursey, G. A. J. and Wood, J. D. (1996) . Fatty acid content and composition of English beef, lamb, and pork at retail. Meat Sci. 44:443-458). The available literature indicates that the levels of eicosatetraenoic and docosahexaenoic in pork may be increased by fish-derived or linseed products, the extent of which being dependent on the nature of the supplementation. Transgenic pigs and plants show promise with high content of n-3 PUFA and low ratio of n-6/n-3 fatty acids in their tissues. The approaches mentioned for decreasing n-6/n-3 ratios have both advantages and disadvantages. Selected articles are critically reviewed and summarized.

  8. Continues administration of Nano-PSO significantly increased survival of genetic CJD mice.

    Science.gov (United States)

    Binyamin, Orli; Keller, Guy; Frid, Kati; Larush, Liraz; Magdassi, Shlomo; Gabizon, Ruth

    2017-12-01

    We have shown previously that Nano-PSO, a nanodroplet formulation of pomegranate seed oil, delayed progression of neurodegeneration signs when administered for a designated period of time to TgMHu2ME199K mice, modeling for genetic prion disease. In the present work, we treated these mice with a self-emulsion formulation of Nano-PSO or a parallel Soybean oil formulation from their day of birth until a terminal disease stage. We found that long term Nano-PSO administration resulted in increased survival of TgMHu2ME199K lines by several months. Interestingly, initiation of treatment at day 1 had no clinical advantage over initiation at day 70, however cessation of treatment at 9months of age resulted in the rapid loss of the beneficial clinical effect. Pathological studies revealed that treatment with Nano-PSO resulted in the reduction of GAG accumulation and lipid oxidation, indicating a strong neuroprotective effect. Contrarily, the clinical effect of Nano-PSO did not correlate with reduction in the levels of disease related PrP, the main prion marker. We conclude that long term administration of Nano-PSO is safe and may be effective in the prevention/delay of onset of neurodegenerative conditions such as genetic CJD. Copyright © 2017. Published by Elsevier Inc.

  9. Elicitor Mixtures Significantly Increase Bioactive Compounds, Antioxidant Activity, and Quality Parameters in Sweet Bell Pepper

    Directory of Open Access Journals (Sweden)

    Lina Garcia-Mier

    2015-01-01

    Full Text Available Sweet bell peppers are greatly appreciated for their taste, color, pungency, and aroma. Additionally, they are good sources of bioactive compounds with antioxidant activity, which can be improved by the use of elicitors. Elicitors act as metabolite-inducing factors (MIF by mimic stress conditions. Since plants rarely experience a single stress condition one by one but are more likely to be exposed to simultaneous stresses, it is important to evaluate the effect of elicitors on plant secondary metabolism as mixtures. Jasmonic acid (JA, hydrogen peroxide (HP, and chitosan (CH were applied to fruits and plants of bell pepper as mixtures. Bioactive compounds, antioxidant activity, and quality parameters were evaluated. The assessed elicitor cocktail leads to an increase in the variables evaluated (P ≤ 0.05 when applied to mature fruits after harvest, whereas the lowest values were observed in the treatment applied to immature fruits. Therefore, the application of the elicitor cocktail to harvested mature fruits is recommended in order to improve bioactive compounds and the antioxidant activity of sweet bell peppers.

  10. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke

    Science.gov (United States)

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K+, Na+, Mg2+ and particularly Ca2+ were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities.

  11. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Science.gov (United States)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-03-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon balance of terrestrial ecosystems under climate change. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Plant species consistently exhibit cohesive suites of traits, linked to contrasting life history strategies, which exert a variety of impacts on R. As such, we propose that plant community shifts towards dominance by fast growing plants with nutrient rich litter could provide a major, though often neglected, positive feedback to climate change. Within vegetation types, belowground carbon flux will mainly be controlled by photosynthesis, while amongst vegetation types this flux will be more dependent upon the specific characteristics of the plant life form. We also make the case that community composition, rather than diversity, is usually the dominant control on ecosystem processes in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community, or modulates the occurrence of major natural disturbances. We show that climate-vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. This situation could, however, be relatively easily improved with targeted experimental and field studies. Finally, we identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits

  12. Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: a hydropedological approach

    Directory of Open Access Journals (Sweden)

    Ungaro Fabrizio

    2014-03-01

    Full Text Available Soil sealing is the permanent covering of the land surface by buildings, infrastructures or any impermeable artificial material. Beside the loss of fertile soils with a direct impact on food security, soil sealing modifies the hydrological cycle. This can cause an increased flooding risk, due to urban development in potential risk areas and to the increased volumes of runoff. This work estimates the increase of runoff due to sealing following urbanization and land take in the plain of Emilia Romagna (Italy, using the Green and Ampt infiltration model for two rainfall return periods (20 and 200 years in two different years, 1976 and 2008. To this goal a hydropedological approach was adopted in order to characterize soil hydraulic properties via locally calibrated pedotransfer functions (PTF. PTF inputs were estimated via sequential Gaussian simulations coupled with a simple kriging with varying local means, taking into account soil type and dominant land use. Results show that in the study area an average increment of 8.4% in sealed areas due to urbanization and sprawl induces an average increment in surface runoff equal to 3.5 and 2.7% respectively for 20 and 200-years return periods, with a maximum > 20% for highly sealed coast areas.

  13. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  14. Marble waste and pig manure amendments decrease metal availability, increase soil quality and facilitate vegetation development in bare mine soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Martínez-Martínez, Silvia; Acosta, José A.; Gómez, M. Dolores; Ángeles Muñoz, M.

    2013-04-01

    In order to bring out a functional and sustainable land use in a highly contaminated mine tailing, firstly environmental risks have to be reduced or eliminated by suitable reclamation activities. Tailing ponds pose environmental hazards, such as acidity and toxic metals reaching to waters through wind and water erosions and leaching. As a consequence, soils have no vegetation and low soil organic matter and nutrients. Various physicochemical and biochemical properties, together with exchangeable metals were measured before, 6 months and 12 months after the application of marble waste and pigs manure as reclamation strategy in a tailing pond from SE Spain to reduce hazards for environment and human health. Three months after the last addition of amendments, eight different native shrub species where planted for phytostabilization. Results showed the pH increased up to neutrality. Aggregates stability, organic carbon, total nitrogen, cation exchange capacity, bioavailable phosphorus and potassium, microbial biomass and microbial activity increased with the application of the amendments, while exchangeable metals drastically decreased (~90%). After one year of plantation, only 20% planted species died, with a high growth of survivals reaching flowering and fructification. This study confirms the high effectiveness of initial applications of marble wastes together with pig manure and plantation of shrub species to initialize the recovery of the ecosystem in bare mine soils under Mediterranean semiarid conditions. Key Words: pig manure, marble waste, heavy metals, mine soil. Acknowledgements This work has been funded by the European Union LIFE+ project MIPOLARE (LIFE09 ENV/ES/000439). J.A. Acosta acknowledges a "Saavedra Fajardo" contract from Comunidad Autónoma de Murcia (Spain)

  15. How can soil organic carbon stocks in agriculture be maintained or increased?

    Science.gov (United States)

    Don, Axel; Leifeld, Jens

    2015-04-01

    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  16. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Science.gov (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil.

    Science.gov (United States)

    Chen, Qinglin; An, Xinli; Li, Hu; Su, Jianqiang; Ma, Yibing; Zhu, Yong-Guan

    2016-01-01

    Sewage sludge and manure are common soil amendments in crop production; however, their impact on the abundance and diversity of the antibiotic resistome in soil remains elusive. In this study, by using high-throughput sequencing and high-throughput quantitative PCR, the patterns of bacterial community and antibiotic resistance genes (ARGs) in a long-term field experiment were investigated to gain insights into these impacts. A total of 130 unique ARGs and 5 mobile genetic elements (MGEs) were detected and the long-term application of sewage sludge and chicken manure significantly increased the abundance and diversity of ARGs in the soil. Genes conferring resistance to beta-lactams, tetracyclines, and multiple drugs were dominant in the samples. Sewage sludge or chicken manure applications caused significant enrichment of 108 unique ARGs and MGEs with a maximum enrichment of up to 3845 folds for mexF. The enrichment of MGEs suggested that the application of sewage sludge or manure may accelerate the dissemination of ARGs in soil through horizontal gene transfer (HGT). Based on the co-occurrence pattern of ARGs subtypes revealed by network analysis, aacC, oprD and mphA-02, were proposed to be potential indicators for quantitative estimation of the co-occurring ARGs subtypes abundance by power functions. The application of sewage sludge and manure resulted in significant increase of bacterial diversity in soil, Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexi were the dominant phyla (>10% in each sample). Five bacterial phyla (Chloroflexi, Planctomycetes, Firmicutes, Gemmatimonadetes and Bacteroidetes) were found to be significantly correlated with the ARGs in soil. Mantel test and variation partitioning analysis (VPA) suggested that bacterial community shifts, rather than MGEs, is the major driver shaping the antibiotic resistome. Additionally, the co-occurrence pattern between ARGs and microbial taxa revealed by network analysis indicated that four

  18. Buried straw layer and plastic mulching increase microlfora diversity in salinized soil

    Institute of Scientific and Technical Information of China (English)

    LI Yu-yi; PANG Huan-cheng; HAN Xiu-fang; YAN Shou-wei; ZHAO Yong-gan; WANG Jing; ZHAI Zhen; ZHANG Jian-li

    2016-01-01

    Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P<0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P<0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.

  19. Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils.

    Science.gov (United States)

    Artz, Rebekka R E; Reid, Eileen; Anderson, Ian C; Campbell, Colin D; Cairney, John W G

    2009-03-01

    Repeated prescribed burning alters the biologically labile fraction of nutrients and carbon of soil organic matter (SOM). Using a long-term (30 years) repeated burning experiment where burning has been carried out at a 2- or 4-year frequency, we analysed the effect of prescribed burning on gross potential C turnover rates and phenol oxidase activity in relation to shifts in SOM composition as observed using Fourier-transform infrared spectroscopy. In tandem, we assessed the genetic diversity of basidiomycete laccases. While the overall effect of burning was a decline in phenol oxidase activity, Shannon diversity and evenness of laccases was significantly higher in burned sites. Co-correspondence analysis of SOM composition and laccase operational taxonomic unit frequency data also suggested a strong correlation. While this correlation could indicate that the observed increase in laccase genetic diversity due to burning is due to increased resource diversity, a temporal replacement of the most abundant members of the assembly by an otherwise dormant pool of fungi cannot be excluded. As such, our results fit the intermediate disturbance hypothesis. Effects were stronger in plots burned in 2-year rotations, suggesting that the 4-year burn frequency may be a more sustainable practice to ensure the long-term stability of C cycling in such ecosystems.

  20. Effects of increasing use of trifluralin and glyphosate on the microbial activity of a lea soil

    International Nuclear Information System (INIS)

    Barros, Edna Santos de; Monteiro, Regina Teresa Rosim; Peixoto, Maria de Fatima da Silva Pinto; Fay, Elizabeth Francisconi

    1997-01-01

    This work considers the importance of the glyphosate and trifluralin, which are the most used herbicides by the brazilian plantations, applying approximately fifteen and nine millions of liters by crop, respectively, for the evaluation of the increasing use of these herbicides effects on the microbial activity of a lea soil which are used for beans cultivation

  1. Molecular and Microbial Mechanisms Increasing Soil C Storage Under Future Rates of Anthropogenic N Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Donald R. [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-11-17

    A growing body of evidence reveals that anthropogenic N deposition can reduce the microbial decay of plant detritus and increase soil C storage across a wide range of terrestrial ecosystems. This aspect of global change has the potential to constrain the accumulation of anthropogenic CO2 in the Earth’s atmosphere, and hence slow the pace of climate warming. The molecular and microbial mechanisms underlying this biogeochemical response are not understood, and they are not a component of any coupled climate-biogeochemical model estimating ecosystem C storage, and hence, the future climate of an N-enriched Earth. Here, we report the use of genomic-enabled approaches to identify the molecular underpinnings of the microbial mechanisms leading to greater soil C storage in response to anthropogenic N deposition, thereby enabling us to better anticipate changes in soil C storage.

  2. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ashly P.; Bond-Lamberty, Benjamin; Benscoter, Brian W.; Tfaily, Malak M.; Hinkle, Ross; Liu, Chongxuan; Bailey, Vanessa L.

    2017-11-06

    Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soil moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.

  3. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil

    International Nuclear Information System (INIS)

    Mohamed, Badr A.; Ellis, Naoko; Kim, Chang Soo; Bi, Xiaotao; Emam, Ahmed El-raie

    2016-01-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K 3 PO 4 , clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10 wt.% K 3 PO 4 + 10 wt.% clinoptilolite as catalysts to the soil at 2 wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10 wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10 wt% clinoptilolite at 400 °C, and 30 wt% K 3 PO 4 at 300 °C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops. - Highlights: • High quality biochar was made by catalytic pyrolysis in a microwave reactor. • High heating rate and good biochar quality were achieved using K 3 PO 4 and clinoptilolite mixture. • Biochars showed significant increase in soil WHC and CEC. • Microwave catalytic pyrolysis can produce

  4. Revegetation of the riparian zone of the Three Gorges Dam Reservoir leads to increased soil bacterial diversity.

    Science.gov (United States)

    Ren, Qingshui; Li, Changxiao; Yang, Wenhang; Song, Hong; Ma, Peng; Wang, Chaoying; Schneider, Rebecca L; Morreale, Stephen J

    2018-06-06

    As one of the most active components in soil, bacteria can affect soil physicochemical properties, its biological characteristics, and even its quality and health. We characterized dynamics of the soil bacterial diversity in planted (with Taxodium distichum) and unplanted soil in the riparian zone of the Three Gorges Dam Reservoir (TGDR), in southwestern China, in order to accurately quantify the changes in long-term soil bacterial community structure after revegetation. Measurements were taken annually in situ in the TGDR over the course of 5 years, from 2012 to 2016. Soil chemical properties and bacterial diversity were analyzed in both the planted and unplanted soil. After revegetation, the soil chemical properties in planted soil were significantly different than in unplanted soil. The effects of treatment, time, and the interaction of both time and treatment had significant impacts on most diversity indices. Specifically, the bacterial community diversity indices in planted soil were significantly higher and more stable than that in unplanted soil. The correlation analyses indicated that the diversity indices correlated with the pH value, organic matter, and soil available nutrients. After revegetation in the riparian zone of the TGDR, the soil quality and health is closely related to the observed bacterial diversity, and a higher bacterial diversity avails the maintenance of soil functionality. Thus, more reforestation should be carried out in the riparian zone of the TGDR, so as to effectively mitigate the negative ecological impacts of the dam. Vegetating the reservoir banks with Taxodium distichum proved successful, but planting mixed stands of native tree species could promote even higher riparian soil biodiversity and improved levels of ecosystem functioning within the TGDR.

  5. Carbon dioxide concentration in caves and soils in an alpine setting: implications for speleothem fabrics and their palaeoclimate significance

    Science.gov (United States)

    Borsato, Andrea; Frisia, Silvia; Miorandi, Renza

    2015-04-01

    Carbon dioxide concentration in soils controls carbonate dissolution, soil CO2 efflux to the atmosphere, and CO2 transfer to the subsurface that lead, ultimately, to speleothem precipitation. Systematic studies on CO2 concentration variability in soil and caves at regional scale are, however, few. Here, the systematic investigation of CO2 concentration in caves and soils in a temperate, Alpine region along a 2,100 m altitudinal range transect, which corresponds to a mean annual temperature (MAT) range of 12°C is presented. Soil pCO2 is controlled by the elevation and MAT and exhibits strong seasonality, which follows surface air temperature with a delay of about a month. The aquifer pCO2, by contrast, is fairly constant throughout the year, and it is primarily influenced by summer soil pCO2. Cave CO2 concentration is a balance between the CO2 influx and CO2 efflux, where the efflux is controlled by the cave ventilation, which is responsible for low pCO2 values recorded in most of the caves with respect to soil levels. Carbon dioxide in the innermost part of the studied caves exhibits a clear seasonal pattern. Thermal convection is the most common mechanism causing higher ventilation and low cave air pCO2 levels during the winter season: this promotes CO2 degassing and higher supersaturation in the drip water and, eventually, higher speleothem growth rates during winter. The combined influence of three parameters - dripwater pCO2, dripwater Ca content, and cave air pCO2 - all related to the infiltration elevation and MAT directly controls calcite supersaturation in dripwater. Four different altitudinal belts are then defined, which reflect temperature-dependent saturation state of dripwaters. These belts broadly correspond to vegetation zones: the lower montane (100 to 800 m asl), the upper montane (800 to 1600 m asl), the subalpine (1600 to 2200 m asl) and the Alpine (above 2200 m asl). Each altitudinal belt is characterised by different calcite fabrics, which can

  6. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    Science.gov (United States)

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; Mcdougal, Robert

    2015-01-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  7. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    Science.gov (United States)

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  8. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Directory of Open Access Journals (Sweden)

    Ronaldir Knoblauch

    2014-02-01

    before, the concentration of N-NH4+ in the soil was 28 and 54 mg kg-1, equivalent to an accumulation of 42 and 81 kg ha-1 of N-NH4+, respectively. There was formation of acetic acid in which toxic concentrations were reached (7.2 mmol L-1 on the 15th day of flooding only for the treatment with straw incorporated on the day of flooding. The pH of the soil solution of all the treatments increased after flooding and this increase was faster in the treatments with incorporation of straw, followed by the ash treatment and then the control. After 60 days of flooding, however, the pH values were around 6.5 for all treatments, except for the control, which reached a pH of 6.3. Rice straw should be incorporated into the soil at least 30 days before flooding; otherwise, it may immobilize part of the mineral N and produce acetic acid in concentrations toxic to rice seedlings.

  9. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges.

    Science.gov (United States)

    McTee, Michael R; Mummey, Daniel L; Ramsey, Philip W; Hinman, Nancy W

    2016-01-01

    Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, Psoil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry.

    Science.gov (United States)

    Jensen, John; Larsen, Martin Mørk; Bak, Jesper

    2016-07-01

    The increasing consumption of copper and zinc in modern farming is linked to their documented benefit as growth promoting agents and usefulness for controlling diarrhoea. Copper and zinc are inert and non-degradable in the slurry and the environment and thereby introducing new challenges and concern. Therefore, a follow-up to pervious national soil monitoring programs on heavy metals was initiated in 2014 with special focus on the historical trends in soil concentrations of copper and zinc in Danish arable soils. Hereby it is possible to analyse trends for a 28 year period. Data shows that: 1) Amendment of soils with pig slurry has led to a significant increase in soil concentrations of copper and zinc, especially in the latest monitoring period from 1998 to 2014; 2) Predicted no-effect concentrations for soil dwelling species published by the European Union is exceeded for zinc in 45% of all soil samples, with the highest proportion on sandy soils; 3) The current use of zinc and copper in pig production may lead to leaching of metals, especially zinc, from fields fertilized with pig slurry in concentrations that may pose a risk to aquatic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Facilitation by a Spiny Shrub on a Rhizomatous Clonal Herbaceous in Thicketization-Grassland in Northern China: Increased Soil Resources or Shelter from Herbivores

    Directory of Open Access Journals (Sweden)

    Saixiyala

    2017-05-01

    Full Text Available The formation of fertility islands by shrubs increases soil resources heterogeneity in thicketization-grasslands. Clonal plants, especially rhizomatous or stoloniferous clonal plants, can form large clonal networks and use heterogeneously distributed resources effectively. In addition, shrubs, especially spiny shrubs, may also provide herbaceous plants with protection from herbivores, acting as ‘shelters’. The interaction between pre-dominated clonal herbaceous plants and encroaching shrubs remains unclear in thicketization-grassland under grazing pressure. We hypothesized that clonal herbaceous plants can be facilitated by encroached shrubs as a ‘shelter from herbivores’ and/or as an ‘increased soil resources’ under grazing pressure. To test this hypothesis, a total of 60 quadrats were chosen in a thicket-grassland in northern China that was previously dominated by Leymus chinensis and was encroached upon by the spiny leguminous plant Caragana intermedia. The soil and plant traits beneath and outside the shrub canopies were sampled, investigated and contrasted with an enclosure. The soil organic matter, soil total nitrogen and soil water content were significantly higher in the soil beneath the shrub canopies than in the soil outside the canopies. L. chinensis beneath the shrub canopies had significantly higher plant height, single shoot biomass, leaf length and width than outside the shrub canopies. There were no significantly differences between plant growth in enclosure and outside the shrub canopies. These results suggested that under grazing pressure in a grassland undergoing thicketization, the growth of the rhizomatous clonal herbaceous plant L. chinensis was facilitated by the spiny shrub C. intermedia as a ‘shelter from herbivores’ more than through ‘increased soil resources’. We propose that future studies should focus on the community- and ecosystem-level impacts of plant clonality.

  12. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    Science.gov (United States)

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions. © 2013 SETAC.

  13. [Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province].

    Science.gov (United States)

    Sun, Hong-Fei; Li, Yong-Hu; Ji, Yan-Fang; Yang, Lin-Sheng; Wang, Wu-Yi

    2009-04-15

    Ores, waste tailings and slag, together with three typical soil profiles (natural soil profiles far from mine entrance and near mine entrance, soil profile under slag) in Chatian mercury mining deposit (CMD), western Hunan province were sampled and their concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn) were determined by HG-ICP-AES and ICP-MS. Enrichment factor and correlation analysis were taken to investigate the origins, distribution and migration of Hg, as well as other heavy metals in the CMD. The results show that Hg is enriched in the bottom of the soil profile far from mine entrance but accumulated in the surface of soil profiles near mine entrance and under slag. The soil profiles near mine entrance and under slag are both contaminated by Hg, while the latter is contaminated more heavily. In the soil profile under slag, Hg concentration in the surface soil, Hg average concentration in the total profile, and the leaching depth of soil Hg are 640 microg x g(-1), (76.74 +/- 171.71) microg x g(-1), and more than 100 cm, respectively; while 6.5 microg x g(-1), (2.74 +/- 1.90) microg x g(-1), and 40 cm, respectively, are found in the soil profile near mine entrance. Soil in the mercury mine area is also polluted by Cd, As, Pb, Zn besides metallogenic element Hg, among which Cd pollution is relatively heavier than others. The mobility of the studied heavy metals in soil follows the order as Hg > Cd > As > Zn approximately equal to Pb. The leaching depth of the heavy metals is influenced by total concentration in the surface soil and soil physico-chemical parameters. The origins, distribution and migration of heavy metals in soil profile in the mining area are related to primary geological environment, and strongly influenced by human mining activities.

  14. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    Science.gov (United States)

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Rehabilitating acid soils for increasing crop productivity through low-cost liming material

    International Nuclear Information System (INIS)

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-01-01

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.

  16. Rehabilitating acid soils for increasing crop productivity through low-cost liming material

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Javid Ahmad [Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani - 741 235, West Bengal (India); Kundu, Manik Chandra, E-mail: mckundu@rediffmail.com [Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani - 741 235, West Bengal (India); Hazra, Gora Chand [Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani - 741 235, West Bengal (India); Santra, Gour Hari [Department of Soil Science and Agril. Chemistry, Orissa University of Agriculture and Technology, Bhubaneswar - 751003, Orissa (India); Mandal, Biswapati [Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani - 741 235, West Bengal (India)

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.

  17. Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: historical patterns and tests of two hypotheses in a phosphorus-limited wetland

    DEFF Research Database (Denmark)

    Inglett, P.W.; Reddy, K.R.; Newmann, S.

    2007-01-01

    on the δ15N of NH4+ and significantly increased the δ15N of water-extractable organic N. Measurements of surface soils collected during a field mesocosm experiment also revealed no significant effect of P on δ15N even after 5 years of P addition. In contrast, δ15N of leaf and root tissues of hydroponically...

  18. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    Science.gov (United States)

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Grazing exclusion increases soil CO2 emission during the growing season in alpine meadows on the Tibetan Plateau

    Science.gov (United States)

    Guo, Na; Wang, Aidong; Allan Degen, A.; Deng, Bin; Shang, Zhanhuan; Ding, Luming; Long, Ruijun

    2018-02-01

    Soil CO2 emission is a key part of the terrestrial carbon cycle. Grazing exclusion by fencing is often considered a beneficial grassland management option to restore degraded grassland, but its effect on soil CO2 emission on the northeastern Tibetan Plateau is equivocal and is the subject of this study. Using a closed static chamber, we measured diurnal soil CO2 flux weekly from July, 2008, to April, 2009, in response to grazing and grazing exclusion in the alpine meadow and alpine shrub meadow. Concomitantly, soil temperature was measured at depths of 5 cm, 10 cm, 15 cm and 20 cm with digital temperature sensors. It emerged that: 1) non-grazed grasslands emitted more soil CO2 than grazed grasslands over the growing season; 2) the alpine shrub meadow emitted more soil CO2 than the alpine meadow; the annual cumulative soil CO2 emissions of alpine meadow and alpine shrub meadow were 241.5-326.5 g C/m2 and 429.0-512.5 g C/m2, respectively; 3) seasonal patterns were evident with more soil CO2 flux in the growing than in the non-growing season; and 4) the diurnal soil CO2 flux exhibited a single peak across all sampling sites. In addition, soil CO2 flux was correlated positively with soil temperature at 5 cm, but not at the other depths. We concluded that grazing exclusion enhanced soil CO2 emission over the growing season, and decreased carbon sequestration of alpine meadow and alpine shrub meadow on the northeastern Tibetan Plateau. Since an increase in soil temperature increased soil CO2 flux, global warming could have an effect on soil CO2 emission in the future.

  20. The significance and lag-time of deep through flow: an example from a small, ephemeral catchment with contrasting soil types in the Adelaide Hills, South Australia

    Directory of Open Access Journals (Sweden)

    J. VanLeeuwen

    2009-07-01

    Full Text Available The importance of deep soil-regolith through flow in a small (3.4 km2 ephemeral catchment in the Adelaide Hills of South Australia was investigated by detailed hydrochemical analysis of soil water and stream flow during autumn and early winter rains. In this Mediterranean climate with strong summer moisture deficits, several significant rainfalls are required to generate soil through flow and stream flow [in ephemeral streams]. During autumn 2007, a large (127 mm drought-breaking rain occurred in April followed by significant May rains; most of this April and May precipitation occurred prior to the initiation of stream flow in late May. These early events, especially the 127 mm April event, had low stable water isotope values compared with later rains during June and July and average winter precipitation. Thus, this large early autumn rain event with low isotopic values (δ18O, δD provided an excellent natural tracer. During later June and July rainfall events, daily stream and soil water samples were collected and analysed. Results from major and trace elements, water isotopes (δ18O, δD, and dissolved organic carbon analysis clearly demonstrate that a large component of this early April and May rain was stored and later pushed out of deep soil and regolith zones. This pre-event water was identified in the stream as well as identified in deep soil horizons due to its different isotopic signature which contrasted sharply with the June–July event water. Based on this data, the soil-regolith hydrologic system for this catchment has been re-thought. The catchment area consists of about 60% sandy and 40% clayey soils. Regolith flow in the sandy soil system and not the clayey soil system is now thought to dominate the deep subsurface flow in this catchment. The clayey texture contrast soils had rapid response to rain events and saturation excess overland flow. The sandy soils had delayed soil through flow and

  1. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    Science.gov (United States)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through

  2. SOIL N, P AND K CONCENTRATIONS AND RICE YIELD INCREASED DUE TO THE APPLICATION OF Azolla pinnata

    Directory of Open Access Journals (Sweden)

    A. Arivin Rivaie*

    2014-01-01

    Full Text Available Many studies showed that application of Azolla pinnata as biofertilizer improved soil fertility some agricultural crops, including rice, whereas farmers in Lampung consider that A. pinnata suppresses growth of rice seedlings, so they throw it field by raising irrigation water surface. Information on effects A. pinnata application on changes in nutrient availability and rice yield obtained from paddy fields of regions still rare. A study was carried out to investigate effects of different rates of A. pinnata on changes in N, P, K concentrations in paddy soils, N uptake, and rice yield. A well-irrigated paddy field was incorporated with A. pinnata, and then rice seedlings of Ciherang variety had been grown from June up to December 2009. Results: application of A. pinnata at dose of five t per ha increased concentration of N, P and K as well as rice yield. A. pinnata had a relatively high N content, ie 2.43 percent. Application of A. pinnata of 7.5 t per ha increased significantly available soil P, indicated that A. pinnata requires a fairly high P to grow optimally. Application of A. pinnata of 7.5 t per ha gave highest dry grain yield, suggests that application A. pinnata did not suppress rice yield, even use of A. pinnata as organic matter source will help to conserve fossil fuels and foreign exchange as well as will allow more paddy fields that can be fertilized by N.

  3. Fast changes in seasonal forest communities due to soil moisture increase after damming

    Directory of Open Access Journals (Sweden)

    Vagner Santiago do Vale

    2013-12-01

    Full Text Available Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20m x10m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths 0-10, 20-30 and 40-50cm. A tree minimum DBH of 4.77cm community inventory was made before T0 and at two T2 and four T4 years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years T2-T4, indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  4. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    Science.gov (United States)

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  5. EFFORT INCREASING STARCH’S CONTENT OF ARROWROOT WITH BOKHASI AND SOIL PROCESSING TREATMENT

    Directory of Open Access Journals (Sweden)

    Bambang Rudianto W

    2013-01-01

    Full Text Available Objective this experiment knows: (1 Effect bokashi on growth and yield arrowroot,(2 optimal dosage bokashi to increase arrowroot production,(3 effect planting depth on growth and yield arrowroot , and (4 interactions between planting depth and bokashi's manure dose on arrowroot. Research carried at field experimental Agriculture Faculty of Jenderal Soedirman University, October 2010 until March 2011. Experiment used inceptisol soil and 110 meters above sea level. Experimental design was Completely Randomized Block Design with four replicates, tried factors were planting depth and bokashi's fertilizer addition. Result: bokashi increase starch's content of arrowroot from 17,38 percent to 19,63 percent. Addition of bokashi at three percent of organic matter content soil, indicated by starch content of 19,634 percent. Planting depth at 20 cm affected increasing tubber volume per plant, tubber fresh weight, and production per extends, meanwhile planting depth at 30 cm affected increasing starch's contents tubber arrowroot. Interaction between planting depth and bokashi's fertilizer on starch's content yielded 19,898 percent at addition of bokashi at amount of three percent and planting depth 30 cm.

  6. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

    International Nuclear Information System (INIS)

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-01-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5–6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. -- Highlights: ► Re-incorporation of soil organic extract increased 6-times the PAH availability. ► Complexity of organic contamination is the main driver of PAH availability. ► Biodegradation of PAH with less than 5-cycles increased with increasing PAH availability. ► Pseudomonas and Fusarium species are favoured when PAH availability increased. -- More than ageing, the complexity of organic contamination is the main driver of PAH availability

  7. Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase.

    Science.gov (United States)

    Nakajima, Katsuyuki; Tokita, Yoshiharu; Sakamaki, Koji; Shimomura, Younosuke; Kobayashi, Junji; Kamachi, Keiko; Tanaka, Akira; Stanhope, Kimber L; Havel, Peter J; Wang, Tao; Machida, Tetsuo; Murakami, Masami

    2017-02-01

    Previous large population studies reported that non-fasting plasma triglyceride (TG) reflect a higher risk for cardiovascular disease than TG in the fasting plasma. This is suggestive of the presence of higher concentration of remnant lipoproteins (RLP) in postprandial plasma. TG and RLP-TG together with other lipids, lipoproteins and lipoprotein lipase (LPL) in both fasting and postprandial plasma were determined in generally healthy volunteers and in patients with coronary artery disease (CAD) after consuming a fat load or a more typical moderate meal. RLP-TG/TG ratio (concentration) and RLP-TG/RLP-C ratio (particle size) were significantly increased in the postprandial plasma of both healthy controls and CAD patients compared with those in fasting plasma. LPL/RLP-TG ratio demonstrated the interaction correlation between RLP concentration and LPL activity The increased RLP-TG after fat consumption contributed to approximately 90% of the increased plasma TG, while approximately 60% after a typical meal. Plasma LPL in postprandial plasma was not significantly altered after either type of meal. Concentrations of RLP-TG found in the TG along with its particle size are significantly increased in postprandial plasma compared with fasting plasma. Therefore, non-fasting TG determination better reflects the presence of higher RLP concentrations in plasma. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ying [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Juang, Shin-Hun [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Tsai, Shang-Yuan; Chao, Pei-Dawn Lee [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Hou, Yu-Chi, E-mail: hou5133@gmail.com [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China)

    2012-08-15

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC{sub 0−t} and C{sub max} of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC{sub 0−t} of MTX by 55%. In addition, diclofenac enhanced the C{sub max} of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC{sub 0−t} and C{sub max} of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  9. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    Directory of Open Access Journals (Sweden)

    A. R. Smith

    2011-02-01

    Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

  10. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  11. Significant social events and increasing use of life-sustaining treatment: trend analysis using extracorporeal membrane oxygenation as an example.

    Science.gov (United States)

    Chen, Yen-Yuan; Chen, Likwang; Huang, Tien-Shang; Ko, Wen-Je; Chu, Tzong-Shinn; Ni, Yen-Hsuan; Chang, Shan-Chwen

    2014-03-04

    Most studies have examined the outcomes of patients supported by extracorporeal membrane oxygenation as a life-sustaining treatment. It is unclear whether significant social events are associated with the use of life-sustaining treatment. This study aimed to compare the trend of extracorporeal membrane oxygenation use in Taiwan with that in the world, and to examine the influence of significant social events on the trend of extracorporeal membrane oxygenation use in Taiwan. Taiwan's extracorporeal membrane oxygenation uses from 2000 to 2009 were collected from National Health Insurance Research Dataset. The number of the worldwide extracorporeal membrane oxygenation cases was mainly estimated using Extracorporeal Life Support Registry Report International Summary July 2012. The trend of Taiwan's crude annual incidence rate of extracorporeal membrane oxygenation use was compared with that of the rest of the world. Each trend of extracorporeal membrane oxygenation use was examined using joinpoint regression. The measurement was the crude annual incidence rate of extracorporeal membrane oxygenation use. Each of the Taiwan's crude annual incidence rates was much higher than the worldwide one in the same year. Both the trends of Taiwan's and worldwide crude annual incidence rates have significantly increased since 2000. Joinpoint regression selected the model of the Taiwan's trend with one joinpoint in 2006 as the best-fitted model, implying that the significant social events in 2006 were significantly associated with the trend change of extracorporeal membrane oxygenation use following 2006. In addition, significantly social events highlighted by the media are more likely to be associated with the increase of extracorporeal membrane oxygenation use than being fully covered by National Health Insurance. Significant social events, such as a well-known person's successful extracorporeal membrane oxygenation use highlighted by the mass media, are associated with the use of

  12. Social marketing campaign significantly associated with increases in syphilis testing among gay and bisexual men in San Francisco.

    Science.gov (United States)

    Montoya, Jorge A; Kent, Charlotte K; Rotblatt, Harlan; McCright, Jacque; Kerndt, Peter R; Klausner, Jeffrey D

    2005-07-01

    Between 1999 and 2002, San Francisco experienced a sharp increase in early syphilis among gay and bisexual men. In response, the San Francisco Department of Public Health launched a social marketing campaign to increase testing for syphilis, and awareness and knowledge about syphilis among gay and bisexual men. A convenience sample of 244 gay and bisexual men (18-60 years of age) were surveyed to evaluate the effectiveness of the campaign. Respondents were interviewed to elicit unaided and aided awareness about the campaign, knowledge about syphilis, recent sexual behaviors, and syphilis testing behavior. After controlling for other potential confounders, unaided campaign awareness was a significant correlate of having a syphilis test in the last 6 months (odds ratio, 3.21; 95% confidence interval, 1.30-7.97) compared with no awareness of the campaign. A comparison of respondents aware of the campaign with those not aware also revealed significant increases in awareness and knowledge about syphilis. The Healthy Penis 2002 campaign achieved its primary objective of increasing syphilis testing, and awareness and knowledge about syphilis among gay and bisexual men in San Francisco.

  13. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.

    Science.gov (United States)

    Hadi, Fazal; Ali, Nasir; Fuller, Michael Paul

    2016-10-01

    Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2  = 0.793, 0.807 and 0.739) and leaves (R 2  = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2  = 0.668, 0.694 and 0.673) and leaves (R 2  = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  14. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities

    Science.gov (United States)

    Avera, Bethany; Badgley, Brian; Barrett, John E.; Franklin, Josh; Knowlton, Katharine F.; Ray, Partha P.; Smitherman, Crystal

    2017-01-01

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function. PMID:28356447

  15. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities.

    Science.gov (United States)

    Wepking, Carl; Avera, Bethany; Badgley, Brian; Barrett, John E; Franklin, Josh; Knowlton, Katharine F; Ray, Partha P; Smitherman, Crystal; Strickland, Michael S

    2017-03-29

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function. © 2017 The Author(s).

  16. An attempt and significance of using scandium (Sc) indication for quantitative estimation of soil ingested by pastured cattle

    International Nuclear Information System (INIS)

    Koyama, Takeo; Sudo, Madoka; Miyamoto, Susumu; Kikuchi, Takeaki; Takahashi, Masayoshi; Kuma, Tadashi.

    1985-01-01

    Pastured beef cattle constantly ingest soil together with grass. Dried grass and silage used in winter also contain some soil. Sc occurs in soil in much greater amounts than in grass and is not absorbed by digestive canals, and the Sc content can be determined accuretely by the activation analysis method. In view of this, a technique is devised which uses Sc as an indication in estimating the amount of soil ingested by cattle, and this new method is found to be better than the conventional one with Ti indication. Accordingly, dung is collected from the same cattle at the end of the pastured and housed periods. The dung samples are dried, ground, activated and analysed. On the basis of results of this analysis, the amount of soil ingested at the end of the pastured and housed periods is estimated at 106 +- 120 and 129 +- 171 g/day, respectively, which broadly agree with values previously reported. An evaluation of the amounts of Se and Zn taken by cattle from soil is also carried out. (Nogami, K.)

  17. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    Science.gov (United States)

    Camenzind, Tessa; Papathanasiou, Helena; Foerster, Antje; Dietrich, Karla; Hertel, Dietrich; Homeier, Juergen; Oelmann, Yvonne; Olsson, Pål Axel; Suárez, Juan; Rillig, Matthias

    2015-12-01

    Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF) hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm) (WSA) and the soil mean weight diameter (MWD) was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  18. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    Directory of Open Access Journals (Sweden)

    Tessa eCamenzind

    2016-01-01

    Full Text Available Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm (WSA and the soil mean weight diameter (MWD was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  19. Carbon storage potential increases with increasing ratio of C4 to C3 grass cover and soil productivity in restored tallgrass prairies.

    Science.gov (United States)

    Spiesman, Brian J; Kummel, Herika; Jackson, Randall D

    2018-02-01

    Long-term soil carbon (C) storage is essential for reducing CO 2 in the atmosphere. Converting unproductive and environmentally sensitive agricultural lands to grasslands for bioenergy production may enhance C storage. However, a better understanding of the interacting effects of grass functional composition (i.e., relative abundance of C 4 and C 3 grass cover) and soil productivity on C storage will help guide sustainable grassland management. Our objective was to examine the relationship between grass functional composition and potential C storage and how it varies with potential soil productivity. We estimated C inputs from above- and belowground net primary productivity (ANPP and BNPP), and heterotrophic respiration (R H ) to calculate net ecosystem production (NEP), a measure of potential soil C storage, in grassland plots of relatively high- and low-productivity soils spanning a gradient in the ratio of C 4 to C 3 grass cover (C 4 :C 3 ). NEP increased with increasing C 4 :C 3 , but only in potentially productive soils. The positive relationship likely stemmed from increased ANPP, rather than BNPP, which was possibly related to efficient resource-use and physiological/anatomical advantages of C 4 plants. R H was negatively correlated with C 4 :C 3 , possibly because of changes in microclimate or plant-microbe interactions. It is possible that in potentially productive soils, C storage can be enhanced by favoring C 4 over C 3 grasses through increased ANPP and BNPP and reduced R H . Results also suggest that potential C storage gains from C 4 productivity would not be undermined by a corresponding increase in R H .

  20. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    Science.gov (United States)

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    KAUST Repository

    Keuskamp, Joost A.; Schmitt, Heike; Laanbroek, Hendrikus J.; Verhoeven, Jos T.A.; Hefting, Mariet M.

    2013-01-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present

  2. Chemically assisted phytoextraction: A review of potential soil amendments for increasing plant uptake of heavy metals

    OpenAIRE

    Meers, Erik; Tack, Filip M. G.; Van Slycken, Stijn; Ruttens, Ann; Du Laing, Gijs; Vangronsveld, Jaco; Verloo, Marc G.

    2008-01-01

    The contamination of soils by trace metals has been an unfortunate sideeffect of industrialization. Some of these contaminants can interfere with vulnerable enduses of soil, such as agriculture or nature, already at relatively low levels of contamination. Reversely, conventional civil-technical soil-remediation techniques are too expensive to remediate extended areas of moderately contaminated soil. Phytoextraction has been proposed as a more economic complementary approach to deal with this ...

  3. Water organic pollution and eutrophication influence soil microbial processes, increasing soil respiration of estuarine wetlands: site study in jiuduansha wetland.

    Science.gov (United States)

    Zhang, Yue; Wang, Lei; Hu, Yu; Xi, Xuefei; Tang, Yushu; Chen, Jinhai; Fu, Xiaohua; Sun, Ying

    2015-01-01

    Undisturbed natural wetlands are important carbon sinks due to their low soil respiration. When compared with inland alpine wetlands, estuarine wetlands in densely populated areas are subjected to great pressure associated with environmental pollution. However, the effects of water pollution and eutrophication on soil respiration of estuarine and their mechanism have still not been thoroughly investigated. In this study, two representative zones of a tidal wetland located in the upstream and downstream were investigated to determine the effects of water organic pollution and eutrophication on soil respiration of estuarine wetlands and its mechanism. The results showed that eutrophication, which is a result of there being an excess of nutrients including nitrogen and phosphorus, and organic pollutants in the water near Shang shoal located upstream were higher than in downstream Xia shoal. Due to the absorption and interception function of shoals, there to be more nitrogen, phosphorus and organic matter in Shang shoal soil than in Xia shoal. Abundant nitrogen, phosphorus and organic carbon input to soil of Shang shoal promoted reproduction and growth of some highly heterotrophic metabolic microorganisms such as β-Proteobacteria, γ-Proteobacteria and Acidobacteria which is not conducive to carbon sequestration. These results imply that the performance of pollutant interception and purification function of estuarine wetlands may weaken their carbon sequestration function to some extent.

  4. Vertical distribution and environmental significance of sulfur and oxygen heterocyclic aromatic hydrocarbons in soil samples collected from Beijing, China

    International Nuclear Information System (INIS)

    Zhang Zhihuan; He Fengpeng; Bu Qingwei; Lu Song

    2008-01-01

    Vertical distribution of the concentration and composition of some sulfur and oxygen heterocyclic aromatic hydrocarbons (SOHAHs), such as, fluorene, dibenzofuran, dibenzothiophene and their alkyl homologues in 10 soil profiles in Beijing have been investigated. The results showed that the concentrations and composition of SOHAHs in topsoil (0-30 cm) from different profiles are different. The concentrations of SOHAHs in topsoils are much higher than that in bottom soils where the concentrations are relatively constant. The fingerprints of SOHAHs from same profile are similar in topsoil samples, which are obviously different at the deep part, which suggested that the sources of these compounds are consistent in topsoil and are discriminating between surface and bottom soils. The main sources of SOHAHs in surface soil were fossil fuel combustion, petroleum and wastewater irrigation, while those at deep part were likely derived from the degradation products of soil organic matters. - The vertical distribution of SOHAHs was provided and possible sources were different between topsoils and deep part

  5. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Badr A. [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Agricultural Engineering Department, Cairo University, Giza (Egypt); Ellis, Naoko [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Kim, Chang Soo [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Clean Energy Research Center, Korea Institute of Science and Technology, 14 gil 5 Hwarang-no Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Bi, Xiaotao, E-mail: tony.bi@ubc.ca [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Emam, Ahmed El-raie [Agricultural Engineering Department, Cairo University, Giza (Egypt)

    2016-10-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K{sub 3}PO{sub 4}, clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10 wt.% K{sub 3}PO{sub 4} + 10 wt.% clinoptilolite as catalysts to the soil at 2 wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10 wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10 wt% clinoptilolite at 400 °C, and 30 wt% K{sub 3}PO{sub 4} at 300 °C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops. - Highlights: • High quality biochar was made by catalytic pyrolysis in a microwave reactor. • High heating rate and good biochar quality were achieved using K{sub 3}PO{sub 4} and clinoptilolite mixture. • Biochars showed significant increase in soil WHC and CEC.

  6. Anthropogenic Increase Of Soil Erosion In The Gangetic Plain Revealed By Geochemical Budget Of Erosion

    Science.gov (United States)

    Galy, V.; France-Lanord, C.; Galy, A.; Gaillardet, J.

    2007-12-01

    Himalaya. Based on the average composition of the suspended load and of floodplain soils, we estimate that 250x106 t/yr i.e. 5 t/ha/yr is eroded from soil surfaces of the Ganga floodplain. This enhanced soil erosion is likely triggered by intense deforestation and change in land use due to increasing human activity in the basin.

  7. Significance and prognostic value of increased serum direct bilirubin level for lymph node metastasis in Chinese rectal cancer patients.

    Science.gov (United States)

    Gao, Chun; Fang, Long; Li, Jing-Tao; Zhao, Hong-Chuan

    2016-02-28

    To determine the significance of increased serum direct bilirubin level for lymph node metastasis (LNM) in Chinese rectal cancer patients, after those with known hepatobiliary and pancreatic diseases were excluded. A cohort of 469 patients, who were treated at the China-Japan Friendship Hospital, Ministry of Health (Beijing, China), in the period from January 2003 to June 2011, and with a pathological diagnosis of rectal adenocarcinoma, were recruited. They included 231 patients with LNM (49.3%) and 238 patients without LNM. Follow-up for these patients was taken through to December 31, 2012. The baseline serum direct bilirubin concentration was (median/inter-quartile range) 2.30/1.60-3.42 μmol/L. Univariate analysis showed that compared with patients without LNM, the patients with LNM had an increased level of direct bilirubin (2.50/1.70-3.42 vs 2.10/1.40-3.42, P = 0.025). Multivariate analysis showed that direct bilirubin was independently associated with LNM (OR = 1.602; 95%CI: 1.098-2.338, P = 0.015). Moreover, we found that: (1) serum direct bilirubin differs between male and female patients; a higher concentration was associated with poor tumor classification; (2) as the baseline serum direct bilirubin concentration increased, the percentage of patients with LNM increased; and (3) serum direct bilirubin was associated with the prognosis of rectal cancer patients and higher values indicated poor prognosis. Higher serum direct bilirubin concentration was associated with the increased risk of LNM and poor prognosis in our rectal cancers.

  8. Expression of a bacterial catalase in a strictly anaerobic methanogen significantly increases tolerance to hydrogen peroxide but not oxygen

    Science.gov (United States)

    Jennings, Matthew E.; Schaff, Cody W.; Horne, Alexandra J.; Lessner, Faith H.

    2014-01-01

    Haem-dependent catalase is an antioxidant enzyme that degrades H2O2, producing H2O and O2, and is common in aerobes. Catalase is present in some strictly anaerobic methane-producing archaea (methanogens), but the importance of catalase to the antioxidant system of methanogens is poorly understood. We report here that a survey of the sequenced genomes of methanogens revealed that the majority of species lack genes encoding catalase. Moreover, Methanosarcina acetivorans is a methanogen capable of synthesizing haem and encodes haem-dependent catalase in its genome; yet, Methanosarcina acetivorans cells lack detectable catalase activity. However, inducible expression of the haem-dependent catalase from Escherichia coli (EcKatG) in the chromosome of Methanosarcina acetivorans resulted in a 100-fold increase in the endogenous catalase activity compared with uninduced cells. The increased catalase activity conferred a 10-fold increase in the resistance of EcKatG-induced cells to H2O2 compared with uninduced cells. The EcKatG-induced cells were also able to grow when exposed to levels of H2O2 that inhibited or killed uninduced cells. However, despite the significant increase in catalase activity, growth studies revealed that EcKatG-induced cells did not exhibit increased tolerance to O2 compared with uninduced cells. These results support the lack of catalase in the majority of methanogens, since methanogens are more likely to encounter O2 rather than high concentrations of H2O2 in the natural environment. Catalase appears to be a minor component of the antioxidant system in methanogens, even those that are aerotolerant, including Methanosarcina acetivorans. Importantly, the experimental approach used here demonstrated the feasibility of engineering beneficial traits, such as H2O2 tolerance, in methanogens. PMID:24222618

  9. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.

    2010-01-01

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  10. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); others, and

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  11. Prognostic significance of increased bone marrow microcirculation in newly diagnosed multiple myeloma: results of a prospective DCE-MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Maximilian; Hillengass, Jens [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); University of Heidelberg, Department of Hematology, Oncology and Rheumatology, Heidelberg (Germany); Moehler, Thomas M.; Ritsch, Judith; Delorme, Stefan [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Baeuerle, Tobias [University of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Zechmann, Christian M. [Rinecker Proton Therapy, Muenchen (Germany); Wagner, Barbara; Hose, Dirk [University of Heidelberg, Department of Hematology, Oncology and Rheumatology, Heidelberg (Germany); Jauch, Anna [University of Heidelberg, Institute of Human Genetics, Heidelberg (Germany); Kunz, Christina; Hielscher, Thomas [German Cancer Research Center, Department of Biostatistics, Heidelberg (Germany); Laue, Hendrik [Fraunhofer MEVIS, Bremen (Germany); Goldschmidt, Hartmut [University of Heidelberg, Department of Hematology, Oncology and Rheumatology, Heidelberg (Germany); National Center for Tumor Diseases, Heidelberg (Germany)

    2016-05-15

    Aim of this prospective study was to investigate prognostic significance of increased bone marrow microcirculation as detected by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for survival and local complications in patients with multiple myeloma (MM). We performed DCE-MRI of the lumbar spine in 131 patients with newly diagnosed MM and analysed data according to the Brix model to acquire amplitude A and exchange rate constant k{sub ep}. In 61 patients a second MRI performed after therapy was evaluated to assess changes in vertebral height and identify vertebral fractures. Correlation analysis revealed significant positive association between beta2-microglobulin as well as immunoparesis with DCE-MRI parameters A and k{sub ep}. Additionally, A was negatively correlated with haemoglobin levels and k{sub ep} was positively correlated with LDH levels. Higher baseline k{sub ep} values were associated with decreased vertebral height in a second MRI (P = 0.007) and A values were associated with new vertebral fractures in the lower lumbar spine (P = 0.03 for L4). Pre-existing lytic bone lesions or remission after therapy had no impact on the occurrence of vertebral fractures. Multivariate analysis revealed that amplitude A is an independent adverse risk factor for overall survival. DCE-MRI is a non-invasive tool with significance for systemic prognosis and vertebral complications. (orig.)

  12. Balance disorder and increased risk of falls in osteoporosis and kyphosis: significance of kyphotic posture and muscle strength.

    Science.gov (United States)

    Sinaki, Mehrsheed; Brey, Robert H; Hughes, Christine A; Larson, Dirk R; Kaufman, Kenton R

    2005-08-01

    This controlled trial was designed to investigate the influence of osteoporosis-related kyphosis (O-K) on falls. Twelve community-dwelling women with O-K (Cobb angle, 50-65 degrees measured from spine radiographs) and 13 healthy women serving as controls were enrolled. Mean age of the O-K group was 76 years (+/-5.1), height 158 cm (+/-5), and weight 61 kg (+/-7.9), and mean age of the control group was 71 years (+/-4.6), height 161 cm (+/-3.8), and weight 66 kg (+/-11.7). Quantitative isometric strength data were collected. Gait was monitored during unobstructed level walking and during stepping over an obstacle of four different heights randomly assigned (2.5%, 5%, 10%, and 15% of the subject's height). Balance was objectively assessed with computerized dynamic posturography consisting of the sensory organization test. Back extensor strength, grip strength, and all lower extremity muscle groups were significantly weaker in the O-K group than the control group (P controls for all conditions of unobstructed and obstructed level walking. Obstacle height had a significant effect on all center-of-mass variables. The O-K subjects had significantly greater balance abnormalities on computerized dynamic posturography than the control group (P =0.002). Data show that thoracic hyperkyphosis on a background of reduced muscle strength plays an important role in increasing body sway, gait unsteadiness, and risk of falls in osteoporosis.

  13. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    Science.gov (United States)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  14. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    KAUST Repository

    Keuskamp, Joost A.

    2013-02-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present paper quantifies the effects of nutrient loading on microbial growth rates and the mineralisation of soil organic carbon (SOC) in two mangrove soils contrasting in carbon content. An increase in SOC mineralisation rates would lead to the loss of historically sequestered carbon and an enhanced CO2 release from these mangrove soils.In an incubation experiment we enriched soils from Avicennia and Rhizophora mangrove forests bordering the Red Sea with different combinations of nitrogen, phosphorus and glucose to mimic the effects of wastewater influx. We measured microbial growth rates as well as carbon mineralisation rates in the natural situation and after enrichment. The results show that microbial growth is energy limited in both soils, with nitrogen as a secondary limitation. Nitrogen amendment increased the rate at which labile organic carbon was decomposed, while it decreased SOC mineralisation rates. Such an inhibitory effect on SOC mineralisation was not found for phosphorus enrichment.Our data confirm the negative effect of nitrogen enrichment on the mineralisation of recalcitrant carbon compounds found in other systems. Based on our results it is not to be expected that nutrient enrichment by itself will cause degradation of historically sequestered soil organic carbon in nitrogen limited mangrove forests. © 2012 Elsevier Ltd.

  15. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    Science.gov (United States)

    Wolf, Kristin L.; Noe, Gregory; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  16. The use of pruned chipped branches to increase the soil infiltration capacity and reduce the soil losses on citrus orchards in Eastern Spain

    Science.gov (United States)

    González-Pelayo, Óscar; Llovet, Joan; Giménez-Morera, Antonio; Jordán, Antonio; Pereira, Paulo; Novara, Agata; García-Orenes, Fuensanta; Cerdà, Artemi

    2015-04-01

    Soil water erosion is causing problems on the agriculture land of the world. The high erosion rates registered in the agriculture land are due to the lack of a vegetation cover that protects the soil. High erosion rates in agriculture lands are found in Africa, Europe, Asia, and any other continent. Soil erosion on citrus orchards has been researched recently and shown huge erosion rates in the Mediterranean and in China. All this research findings allow us to confirm that the soil erosion rates on citrus orchards are not sustainable and strategies to control the soil erosion should be applied. The increasing erosion rates are due to the bare soils, but also are due to the soil structure degradation and soil organic matter exhaustion. Some authors applied cover on crops to avoid the raindrop impact and the surfaces wash but there is a need to develop new strategies to reduce soil losses and keep sustainable the citrus productions. The agriculture production also results in a large amount of residues than can be a resource to improve the soil cover. This has been done in road embankments, in forest land affected by wildfires and on afforestation. As a consequence of the mechanization of the agriculture, and the reduction of the draft animals (mainly horses, mules, donkeys and oxen), the straw and the pruned branches are being a residue instead of a resource in many developed countries. Straw was used as a forage and the pruned branches as a source of heat and energy but both can be used as a mulch to control the soil erosion. The pruned branches can contribute with a valuable source of nutrients and a good soil protection. The leaves of the trees, and some parts of the plants, once harvest can contribute to reduce the soil losses. Our goal is to test if a residue such as the chipped pruned branches can be transformed as a resource that will help to control the soil erosion rates. Straw has been seen as a very efficient to reduce the water losses in agriculture land

  17. The increase of the fertility of soils using the liquid organic fertilizers and fertilizers based on sugar-beet wastes.

    Science.gov (United States)

    Vyborova, Oxana

    2010-05-01

    The fertility of soil is a capacity for ensuring plants by water, nutrients, air and capacity for making optimal conditions for growth and development of plants. The result of it is a yield. The main characteristic of fertility of soil is maintenance of humus. The humus is important part of organic matter. The supporting of soil fertility is impossible by traditional methods. The amount of receiving mineral fertilizers in agriculture will not increase in future, because mineral fertilizers are very expensive. The mineral fertilizers don't influence on maintenance of total amount of humus in soil and improve the circulation of nutrients. Every hectare of fields have to receive no less than 8-10 tons of organic fertilizers, therefore we will have self-supporting balance of humus and the fertility of soils will be increasing. Consequently we are looking for new types of organic materials and we include them in modern agro technologies. One of them is an organomineral fertilizer (lignitic materials). The humic chemicals in the form of lignitic materials of natrium, potassium and ammonium are permitted for using them in agriculture at the beginning of 1984. The Department of agriculture in Russian Federation considered the problem of using humic chemicals and made a decision to use them on the fields of our country, because the lignitic materials can restore the fertility of our fields. The lignitic materials increase the amount of spore-forming bacteria, mold fungi and actinomycete. Therefore the organic decomposition occurs more strongly, the processes of humification increase the speed and the amount of humus rises in the soil. The new forming humus has a high biological activity and it improves chemical and physical soil properties. The addition of lignitic materials in soil activates different groups of microorganisms, which influence on mobilization of nutrients and transformation from potential to effective fertility. The inclusion of humic fertilizers improves

  18. Wood ash application increases pH but does not harm the soil mesofauna

    DEFF Research Database (Denmark)

    Qin, Jiayi; Hovmand, Mads Frederik; Ekelund, Flemming

    2017-01-01

    Application of bioash from biofuel combustion to soil supports nutrient recycling, but may have unwanted and detrimental ecotoxicological side-effects, as the ash is a complex mixture of compounds that could affect soil invertebrates directly or through changes in their food or habitat conditions...... is the likely cause of effects while high pH and heavy metals is of minor importance.......Application of bioash from biofuel combustion to soil supports nutrient recycling, but may have unwanted and detrimental ecotoxicological side-effects, as the ash is a complex mixture of compounds that could affect soil invertebrates directly or through changes in their food or habitat conditions....... To examine this, we performed laboratory toxicity studies of the effects of wood-ash added to an agricultural soil and the organic horizon of a coniferous plantation soil with the detrivore soil collembolans Folsomia candida and Onychiurus yodai, the gamasid predaceous mite Hypoaspis aculeifer...

  19. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    Science.gov (United States)

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be

  20. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures.

    Science.gov (United States)

    Zhang, Hua; Yin, Run-sheng; Feng, Xin-bin; Sommar, Jonas; Anderson, Christopher W N; Sapkota, Atindra; Fu, Xue-wu; Larssen, Thorjørn

    2013-11-25

    The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ(199)Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude.

  1. Plucking the Golden Goose: Higher Royalty Rates on the Oil Sands Generate Significant Increases in Government Revenue

    Directory of Open Access Journals (Sweden)

    Kenneth J. McKenzie

    2011-09-01

    Full Text Available The Alberta government’s 2009 New Royalty Framework elicited resistance on the part of the energy industry, leading to subsequent reductions in the royalties imposed on natural gas and conventional oil. However, the oil sands sector, subject to different terms, quickly accepted the new arrangement with little complaint, recognizing it as win-win situation for industry and the government. Under the framework, Alberta recoups much more money in royalties — about $1 billion over the two year period of 2009 and 2010 — without impinging significantly on investment in the oil sands. This brief paper demonstrates that by spreading the financial risks and benefits to everyone involved, the new framework proves it’s possible to generate increased revenue without frightening off future investment. The same model could conceivably be applied to the conventional oil and natural gas sectors.

  2. A Prolonged Time Interval Between Trauma and Prophylactic Radiation Therapy Significantly Increases the Risk of Heterotopic Ossification

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Waleed F., E-mail: Waleed246@gmail.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS (United States); Department of Radiation Oncology, Beth Israel Medical Center, New York, NY (Israel); Packianathan, Satyaseelan [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS (United States); Shourbaji, Rania A. [Department of Epidemiology and Biostatistics, Jackson State University, Jackson, MS (United States); Zhang Zhen; Graves, Mathew [Department of Orthopedic Surgery, University of Mississippi Medical Center, Jackson, MS (United States); Khan, Majid A. [Department of Radiology, University of Mississippi Medical Center, Jackson, MS (United States); Baird, Michael C. [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS (United States); Russell, George [Department of Orthopedic Surgery, University of Mississippi Medical Center, Jackson, MS (United States); Vijayakumar, Srinivasan [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS (United States)

    2012-03-01

    Purpose: To ascertain whether the time from injury to prophylactic radiation therapy (RT) influences the rate of heterotopic ossification (HO) after operative treatment of displaced acetabular fractures. Methods and Materials: This is a single-institution, retrospective analysis of patients referred for RT for the prevention of HO. Between January 2000 and January 2009, 585 patients with displaced acetabular fractures were treated surgically followed by RT for HO prevention. We analyzed the effect of time from injury on prevention of HO by RT. In all patients, 700 cGy was prescribed in a single fraction and delivered within 72 hours postsurgery. The patients were stratified into five groups according to time interval (in days) from the date of their accident to the date of RT: Groups A {<=}3, B {<=}7, C {<=}14, D {<=}21, and E >21days. Results: Of the 585 patients with displaced acetabular fractures treated with RT, (18%) 106 patients developed HO within the irradiated field. The risk of HO after RT increased from 10% for RT delivered {<=}3 days to 92% for treatment delivered >21 days after the initial injury. Wilcoxon test showed a significant correlation between the risk of HO and the length of time from injury to RT (p < 0.0001). Chi-square test and multiple logistic regression analysis showed no significant association between all other factors and the risk of HO (race, gender, cause and type of fracture, surgical approach, or the use of indomethacin). Conclusions: Our data suggest that there is higher incidence and risk of HO if prophylactic RT is significantly delayed after a displaced acetabular fracture. Thus, RT should be administered as early as clinically possible after the trauma. Patients undergoing RT >3 weeks from their displaced acetabular fracture should be informed of the higher risk (>90%) of developing HO despite prophylaxis.

  3. Significance of increased lung thallium-201 activity on serial cardiac images after dipyridamole treatment in coronary heart disease

    International Nuclear Information System (INIS)

    Okada, R.D.; Dai, Y.H.; Boucher, C.A.; Pohost, G.M.

    1984-01-01

    Increased lung thallium-201 (Tl-201) activity occurs in patients with severe coronary artery disease (CAD) on initial postexercise images. To determine the significance of assessing lung Tl-201 on serial imaging after dipyridamole therapy, initial and delayed (2 to 3 hours) Tl-201 imaging was performed in 40 patients with CAD and 26 normal control subjects. Lung Tl-201 activity was quantitated as a percentage of maximal myocardial activity for each imaging time (lung Tl-201 index). The mean initial lung Tl-201 activity was 42 +/- 2% (+/- standard error of the mean) in 26 control subjects, 56 +/- 2% in 25 patients with 2- or 3-vessel CAD (p less than 0.001) and 53 +/- 2% in 15 patients with 1-vessel CAD (p less than 0.005 compared with control subjects) (difference not significant between 1-vessel and multivessel CAD). Dipyridamole lung Tl-201 activity decreased relative to the myocardium from initial to delayed images (p less than 0.001) in patients with CAD but not in control subjects. When a dipyridamole lung Tl-201 index of 58% (mean +/- 2 standard deviations for control subjects) was chosen as the upper limit of normal, 14 of 40 of the CAD patients (35%) had abnormal values and all control patients had values within normal limits. These 14 patients with CAD and abnormal initial lung Tl-201 indexes had rest ejection fractions that were not significantly different from those in patients with CAD, and normal initial dipyridamole lung Tl-201 index (58 +/- 4% and 63 +/- 2%, respectively)

  4. Pressure sores significantly increase the risk of developing a Fournier's gangrene in patients with spinal cord injury.

    Science.gov (United States)

    Backhaus, M; Citak, M; Tilkorn, D-J; Meindl, R; Schildhauer, T A; Fehmer, T

    2011-11-01

    Retrospective chart review. The aim of our study was to evaluate the mortality rate and further specific risk factors for Fournier's gangrene in patients with spinal cord injury (SCI). Division of Spinal Cord Injury, BG-University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Germany. All patients with a SCI and a Fournier's gangrene treated in our hospital were enrolled in this study. Following parameters were taken form patients medical records: age, type of SCI, cause of Fournier's gangrene, number of surgical debridements, length of hospital and intensive care unit stay, co morbidity factors and mortality rate. In addition, laboratory parameter including the laboratory risk indicator for necrotizing fasciitis (LRINEC) score and microbiological findings were analyzed. Clinical diagnosis was made via histological examination. A total of 16 male patients (15 paraplegic and one tetraplegic) were included in the study. In 81% of all cases, the origin of Fournier's gangrene was a pressure sore. The median LRINEC score on admission was 6.5. In the vast majority of cases, a polybacterial infection was found. No patient died during the hospital stay. The mean number of surgical debridements before soft tissue closure was 1.9 and after a mean time interval of 39.1 days wound closure was performed in all patients. Pressure sores significantly increase the risk of developing Fournier's gangrene in patients with SCI. We reported the results of our patients to increase awareness among physicians and training staff working with patients with a SCI in order to expedite the diagnosis.

  5. Effects of warming on uptake and translocation of cadmium (Cd) and copper (Cu) in a contaminated soil-rice system under Free Air Temperature Increase (FATI).

    Science.gov (United States)

    Ge, Li-Qiang; Cang, Long; Liu, Hui; Zhou, Dong-Mei

    2016-07-01

    Global warming has received growing attentions about its potential threats to human in recent, however little is known about its effects on transfer of heavy metals in agro-ecosystem, especially for Cd in rice. Pot experiments were conducted to evaluate Cd/Cu translocation in a contaminated soil-rice system under Free Air Temperature Increase (FATI). The results showed that warming gradually decreased soil porewater pH and increased water-soluble Cd/Cu concentration, reduced formation of iron plaque on root surface, and thus significantly increased total uptake of Cd/Cu by rice. Subsequently, warming significantly promoted Cd translocation from root to shoot, and increased Cd distribution percentage in shoot, while Cu was not significantly affected. Enhanced Cd uptake and translocation synergistically resulted in higher rice grain contamination with increasing concentration from 0.27 to 0.65 and 0.14-0.40 mg kg(-1) for Indica and Japonica rice, respectively. However increase of Cu in brown grain was only attributed to its uptake enhancement under warming. Our study provides a new understanding about the food production insecurity of heavy metal contaminated soil under the future global warming. Copyright © 2016. Published by Elsevier Ltd.

  6. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  7. Soybean supplementation increases the resilience of microbial and nematode communities in soil to extreme rainfall in an agroforestry system.

    Science.gov (United States)

    Sun, Feng; Pan, Kaiwen; Li, Zilong; Wang, Sizhong; Tariq, Akash; Olatunji, Olusanya Abiodun; Sun, Xiaoming; Zhang, Lin; Shi, Weiyu; Wu, Xiaogang

    2018-06-01

    A current challenge for ecological research in agriculture is to identify ways in which to improve the resilience of the soil food web to extreme climate events, such as severe rainfall. Plant species composition influence soil biota communities differently, which might affect the recovery of soil food web after extreme rainfall. We compared the effects of rainfall stress up on the soil microbial food web in three planting systems: a monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Medicago sativa or Z. bungeanum and Glycine max. We tested the effect of the presence of a legume on the recovery of trophic interactions between microorganisms and nematodes after extreme rainfall. Our results indicated that all chemical properties of the soil recovered to control levels (normal rainfall) in the three planting systems 45 days after exposure to extreme rain. However, on day 45, the bulk microbial community differed from controls in the monoculture treatment, but not in the two mixed planting treatments. The nematode community did not fully recover in the monoculture or Z. bungeanum and M. sativa treatments, while nematode populations in the combined Z. bungeanum and G. max treatment were indistinguishable from controls. G. max performed better than M. sativa in terms of increasing the resilience of microbial and nematode communities to extreme rainfall. Soil microbial biomass and nematode density were positively correlated with the available carbon and nitrogen content in soil, demonstrating a link between soil health and biological properties. This study demonstrated that certain leguminous plants can stabilize the soil food web via interactions with soil biota communities after extreme rainfall. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Increasing microbial diversity and nitrogen cycling potential of burnt forest soil in Spain through post-fire management

    Science.gov (United States)

    Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta

    2016-04-01

    Microbial diversity and function in soils are increasingly assessed by the application of molecular methods such as sequencing and PCR technology. We applied these techniques to study microbial recovery in post-fire forest soils. The recovery of forest ecosystems following severe fire is influenced by post-fire management. The removal of burnt tree stumps (salvage logging) is a common practice in Spain following fire. In some cases, the use of heavy machinery in addition to the vulnerability of soils to erosion and degradation make this management potentially damaging to soil, and therefore to the ecosystem. We hypothesized that tree removal slows down the recovery of soil biological communities including microbial and plant communities and contributes to soil degradation in the burnt affected area. The study area is located in "Sierra de Mariola Natural Park" in Alcoi, Alicante (E Spain). A big forest fire (>500 has) occurred in July 2012. The forest is composed mainly of Pinus halepensis trees with an understory of typical Mediterranean shrubs species such as Quercus coccifera, Rosmarinus officinalis, Thymus vulgaris, Brachypodium retusum, etc. Soil is classified as a Typic Xerorthent (Soil Survey Staff, 2014) developed over marls. In February 2013, salvage logging (SL) treatment, with a complete extraction of the burned wood using heavy machinery, was applied to a part of the affected forest. Plots for monitoring the effects of SL were installed in this area and in a similar nearby control (C) area, where no SL treatment was done. The recovery of soil bacterial and fungal communities post-fire with and without tree removal was analysed by using Next-Generation sequencing and the abundance of functional genes, related to nitrogen cycling, in the soil was estimated using quantitative PCR (qPCR). We will present the methods used and the results of our study in this PICO presentation.

  9. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe

    OpenAIRE

    Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R.

    2013-01-01

    Soil carbon (C) and nitrogen (N) cycling are sensitive to changes in environmental factors and play critical roles in the responses of terrestrial ecosystems to natural and anthropogenic perturbations. This study was conducted to quantify the effects of belowground particulate litter (BPL) addition, increased precipitation and their interactions on soil C and N mineralization in two adjacent sites where belowground photosynthate allocation was manipulated through vegetation ...

  10. Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition.

    Science.gov (United States)

    Maron, John L; Laney Smith, Alyssa; Ortega, Yvette K; Pearson, Dean E; Callaway, Ragan M

    2016-08-01

    Plant-soil feedbacks and interspecific competition are ubiquitous interactions that strongly influence the performance of plants. Yet few studies have examined whether the strength of these interactions corresponds with the abundance of plant species in the field, or whether feedbacks and competition interact in ways that either ameliorate or exacerbate their effects in isolation. We sampled soil from two intermountain grassland communities where we also measured the relative abundance of plant species. In greenhouse experiments, we quantified the direction and magnitude of plant-soil feedbacks for 10 target species that spanned a range of abundances in the field. In soil from both sites, plant-soil feedbacks were mostly negative, with more abundant species suffering greater negative feedbacks than rare species. In contrast, the average response to competition for each species was unrelated with its abundance in the field. We also determined how competitive response varied among our target species when plants competed in live vs. sterile soil. Interspecific competition reduced plant size, but the strength of this negative effect was unchanged by plant-soil feedbacks. Finally, when plants competed interspecifically, we asked how conspecific-trained, heterospecific-trained, and sterile soil influenced the competitive responses of our target species and how this varied depending on whether target species were abundant or rare in the field. Here, we found that both abundant and rare species were not as harmed by competition when they grew in heterospecific-trained soil compared to when they grew in conspecific-cultured soil. Abundant species were also not as harmed by competition when growing in sterile vs. conspecific-trained soil, but this was not the case for rare species. Our results suggest that abundant plants accrue species-specific soil pathogens to a greater extent than rare species. Thus, negative feedbacks may be critical for preventing abundant species from

  11. Conversion of traditional cropland into teak plantations strongly increased soil erosion in montane catchments of Southeastern Asia (Northern Laos; 2002-2014)

    Science.gov (United States)

    Evrard, O.; Ribolzi, O.; Huon, S.; de Rouw, A.; Silvera, N.; Latsachack, K. O.; Soulileuth, B.; Lefèvre, I.; Pierret, A.; Lacombe, G.; Sengtaheuanghoung, O.; Valentin, C.

    2017-12-01

    Soil erosion delivers an excessive quantity of sediment to rivers of Southeastern Asia. Land use is rapidly changing in this region of the world, and these modifications may further accelerate soil erosion in this area. Although the conversion of forests into cropland has often been investigated, much fewer studies have addressed the replacement of traditional slash-and-burn cultivation systems with commercial perennial monocultures such as teak plantations. The current research investigated the impact of this land use change on the hydrological response and the sediment yields from a representative catchment of Northern Laos (Houay Pano, 0.6 km²) where long-term monitoring (2002-2014) was conducted (http://msec.obs-mip.fr/). The results showed a significant growth in the overland flow contribution to stream flow (from 16 to 31%). Furthermore, sediment yields strongly increased from 98 to 609 Mg km-2. These changes illustrate the severity of soil erosion processes occurring under teak plantations characterized by the virtual absence of understorey vegetation to dissipate raindrop energy, which facilitates the formation of an impermeable surface crust. This counter-intuitive increase of soil erosion generated by afforestation reflects the difficulty to find sustainable production solutions for the local populations of Southeastern Asia. To reduce soil loss under teak plantations, the development of extensive agro-forestry practices could be promoted.

  12. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  13. Utilization of organic fertilizer to increase paddy growth and productivity using System of Rice Intensification (SRI method in saline soil

    Directory of Open Access Journals (Sweden)

    V . O . Subardja

    2016-01-01

    Full Text Available Soil salinity has negative effect on soil biodiversity as well as microbial activities. Hence, rice growth also effected by salinity. Application of organic fertilizer and adoption of System of Rice Intensification (SRI cultivation might improve the (biological soil properties and increase rice yield. The aim of this study was to evaluate the effect of two different rice cultivation methods namely conventional rice cultivation method and System of Rice Intensification (SRI rice cultivation method and two kinds organic fertilizer on improvement of soil biological properties and rice yield. In this study, a split plot experimental design was applied where rice cultivation method (conventional and SRI was the main plot and two kinds of organic fertilizer (market waste and rice straw was the sub plot. The treatments had four replicates. The results showed that SRI cultivation with market waste organic fertilizer could increase soil biological properties (population of microbe, fungi and soil respiration. The same treatment also increased rice growth and production. Combination of SRI and market waste organic fertilizer yielded the highest rice production (7.21 t/ha.

  14. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  15. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.

    Science.gov (United States)

    Wolf, Kristin L; Noe, Gregory B; Ahn, Changwoo

    2013-07-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots ( = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Soil surface changes increase runoff and erosion risk after a low–moderate severity fire

    NARCIS (Netherlands)

    Stoof, C.R.; Ferreira, A.J.D.; Mol, W.; Berg, van den J.; Kort, De A.; Drooger, S.; Slingerland, E.C.; Mansholt, A.U.; Ritsema, C.J.

    2015-01-01

    Post-fire land degradation is to a large degree determined by what happens to soil properties and ground cover during and after the fire. To study fire impact in relation to fire intensity and post-fire soil exposure, a 9-ha Portuguese shrubland catchmentwas burned by experimental fire in the 2008/9

  17. Increases of soil phosphatase and urease activities in potato fields by cropping rotation practices

    Science.gov (United States)

    Potato yield in Maine has remained relatively constant for over 50 years. To identify and quantify constraints to potato productivity, we established Status Quo (SQ), Soil Conserving (SC), Soil Improving (SI), Disease Suppressive (DS), and Continuous Potato (PP) cropping systems under both rainfed ...

  18. Change of microelemental composition of flood-plain soils under the increase of the anthropogenic impact

    International Nuclear Information System (INIS)

    Dmitrakov, L.M.; Dmitrakova, L.K.

    2008-01-01

    Change of technogenic pressure and pedotechnogenic concentration were research for some heavy metals (Mn, Pb, Zn, Cu, Ni, Cr, Cd). They describe the general character of element into the soil and the risk of disturbance of geochemical equilibrium in flood-plain soils and depend on regional technogenic loads and combinations of sources of microelements emission.

  19. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?

    Science.gov (United States)

    Xiaofei Liu; Zhijie Yang; Chengfang Lin; Christian P. Giardina; Decheng Xiong; Weisheng Lin; Shidong Chen; Chao Xu; Guangshui Chen; Jinsheng Xie; Yiqing Li; Yusheng Yang

    2017-01-01

    Global change such as climate warming and nitrogen (N) deposition is likely to alter terrestrial carbon (C) cycling, including soil respiration (Rs), the largest CO2 source from soils to the atmosphere. To examine the effects of warming, N addition and their interactions on Rs, we...

  20. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    International Nuclear Information System (INIS)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-01-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  1. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-07-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  2. Wood ash application increases pH but does not harm the soil mesofauna

    NARCIS (Netherlands)

    Qin, Jiayi; Hovmand, M.; Ekelund, Flemming; Rønn, Regin; Christensen, S.; Groot, de G.A.; Mortensen, L.H.; Skov, Simon; Henning Krogh, P.

    2017-01-01

    Application of bioash from biofuel combustion to soil supports nutrient recycling, but may have unwanted and detrimental ecotoxicological side-effects, as the ash is a complex mixture of compounds that could affect soil invertebrates directly or through changes in their food or habitat conditions.

  3. Marrying Step Feed with Secondary Clarifier Improvements to Significantly Increase Peak Wet Weather Treatment Capacity: An Integrated Methodology.

    Science.gov (United States)

    Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A

    2017-08-01

      The need to increase the peak wet weather secondary treatment capacity of the City of Akron, Ohio, Water Reclamation Facility (WRF) provided the opportunity to test an integrated methodology for maximizing the peak wet weather secondary treatment capacity of activated sludge systems. An initial investigation, consisting of process modeling of the secondary treatment system and computational fluid dynamics (CFD) analysis of the existing relatively shallow secondary clarifiers (3.3 and 3.7 m sidewater depth in 30.5 m diameter units), indicated that a significant increase in capacity from 416 000 to 684 000 m3/d or more was possible by adding step feed capabilities to the existing bioreactors and upgrading the existing secondary clarifiers. One of the six treatment units at the WRF was modified, and an extensive 2-year testing program was conducted to determine the total peak wet weather secondary treatment capacity achievable. The results demonstrated that a peak wet weather secondary treatment capacity approaching 974 000 m3/d is possible as long as secondary clarifier solids and hydraulic loadings could be separately controlled using the step feed capability provided. Excellent sludge settling characteristics are routinely experienced at the City of Akron WRF, raising concerns that the identified peak wet weather secondary treatment capacity could not be maintained should sludge settling characteristics deteriorate for some reason. Computational fluid dynamics analysis indicated that the impact of the deterioration of sludge settling characteristics could be mitigated and the identified peak wet weather secondary treatment capacity maintained by further use of the step feed capability provided to further reduce secondary clarifier solids loading rates at the identified high surface overflow rates. The results also demonstrated that effluent limits not only for total suspended solids (TSS) and five-day carbonaceous biochemical oxygen demand (cBOD5) could be

  4. Nitrogen Addition and Understory Removal but Not Soil Warming Increased Radial Growth of Pinus cembra at Treeline in the Central Austrian Alps

    Directory of Open Access Journals (Sweden)

    Andreas Gruber

    2018-05-01

    Full Text Available Beside low temperatures, limited tree growth at the alpine treeline may also be attributed to a lack of available soil nutrients and competition with understory vegetation. Although intra-annual stem growth of Pinus cembra has been studied intensively at the alpine treeline, the responses of radial growth to soil warming, soil fertilization, and below ground competition awaits clarification. In this study we quantified the effects of nitrogen (N fertilization, soil warming, and understory removal on stem radial growth of P. cembra at treeline. Soil warming was achieved by roofing the forest floor with a transparent polyvinyl skin, while understory competition was prevented by shading the forest floor with a non-transparent foil around six trees each. Six trees received N- fertilization and six other trees served as controls. Stem growth was monitored with band dendrometers during the growing seasons 2012–2014. Our 3 years experiment showed that soil warming had no considerable effect on radial growth. Though understory removal through shading was accompanied by root-zone cooling, understory removal as well as N fertilization led to a significant increase in radial growth. Hardly affected was tree root biomass, while N-fertilization and understory removal significantly increased in 100-needle surface area and 100-needle dry mass, implying a higher amount of N stored in needles. Overall, our results demonstrate that beside low temperatures, tree growth at cold-climate boundaries may also be limited by root competition for nutrients between trees and understory vegetation. We conclude that tree understory interactions may also control treeline dynamics in a future changing environment.

  5. Increased frequency of drought reduces species richness of enchytraeid communities in both wet and dry heathland soils

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Sørensen, Jesper G.; Maraldo, Kristine

    2012-01-01

    providing an opportunity to study biological responses on a local (within sites) and regional scale. Warming treatments increasing night-time temperature (0.5–1 °C higher than ambient at 5 cm soil depth) had no detectable effects on the enchytraeid communities. Increased intensity and frequency of drought...

  6. Nitrogen regulation of the xyl genes of Pseudomonas putida mt-2 propagates into a significant effect of nitrate on m-xylene mineralization in soil

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa; Nicolaisen, Mette Haubjerg; Hansen, Hans Chr. Bruun

    2016-01-01

    nitrogen sensing status in both experimental systems. Hence, for nitrogen sources, regulatory patterns that emerge in soil reflect those observed in liquid cultures. The current study shows how distinct regulatory traits can lead to discrete environmental consequences; and it underpins that attempts......The nitrogen species available in the growth medium are key factors determining expression of xyl genes for biodegradation of aromatic compounds by Pseudomonas putida. Nitrogen compounds are frequently amended to promote degradation at polluted sites, but it remains unknown how regulation observed...... that NO3(-) compared with NH4(+) had a stimulating effect on xyl gene expression in pure culture as well as in soil, and that this stimulation was translated into increased m-xylene mineralization in soil. Furthermore, expression analysis of the nitrogen-regulated genes amtB and gdhA allowed us to monitor...

  7. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    Full Text Available Biochar (BC application to soil suppresses emission of nitrous- (N2O and nitric oxide (NO, but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2 were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  8. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  9. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna

    Science.gov (United States)

    Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J.

    2011-01-01

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  10. Effort to Increase Oil Palm Production through Application Technique of Soil and Water Conservation

    Directory of Open Access Journals (Sweden)

    Kukuh Murtilaksono

    2009-05-01

    Full Text Available The study was carried out at block 375, 415, and 414 (block 1, 2, and 3 Afdeling III, Mangement Unit of Rejosari, PT Perkebunan Nusantara VII, Lampung from June 2005 until December 2007. Objective of the study is to examine the effect of soil and water conservation measurement, namely bund terrace and silt pit that are combined with retarded-water hole on production of oil palm. Sampled trees of each block were randomly selected as much as 36 trees. Parameters of vegetative growth (additional new frond, total of frond, number of new bunch, production (number of bunch, fresh fruit bunch (TBS, and average of bunch weigh (RBT were observed and recorded every two weeks. Production of palm oil of each block was also recorded every harvesting schedule of Afdeling. Tabular data were analyzed descriptively by logical comparison among the blocks as result of application of bund terrace and silt pit. Although the data of sampled trees were erratic, bund terrace and silt pit generally increasing number of frond, number of bunch, average of bunch weight, and fresh fruit bunch. Bund terrace gived the highest production of TBS (25.2 t ha-1 compared to silt pit application (23.6 t ha-1, and it has better effect on TBS than block control (20.8 t ha-1. Aside from that, RBT is the highest (21 kg at bund terrace block compared to silt pit block (20 kg and control block (19 kg.

  11. Rhizobial Inoculation Increases Soil Microbial Functioning and Gum Arabic Production of 13-Year-Old Senegalia senegal (L.) Britton, Trees in the North Part of Senegal.

    Science.gov (United States)

    Fall, Dioumacor; Bakhoum, Niokhor; Nourou Sall, Saïdou; Zoubeirou, Alzouma Mayaki; Sylla, Samba N; Diouf, Diegane

    2016-01-01

    Rhizobial inoculation has been widely used in controlled conditions as a substitute for chemical fertilizers to increase plants growth and productivity. However, very little is known about such effects on mature trees in natural habitats. In this study, we investigated the effect of rhizobial inoculation on soil total microbial biomass, mineral nitrogen content, potential CO2 respiration, fluorescein diacetate (FDA), acid phosphatase activities, and gum arabic production by 13-year-old Senegalia senegal (synonym: Acacia senegal) under natural conditions in the north part of Senegal during two consecutive years. Rhizobial inoculation was performed at the beginning of the rainy season (July) for both years with a cocktail of four strains (CIRADF 300, CIRADF 301, CIRADF 302, and CIRADF 303). Rhizospheric soils were collected in both dry and rainy seasons to a depth of 0-25 cm under uninoculated and inoculated trees. Trees were tapped in November (beginning of dry season) using traditional tools. Gum arabic was harvested every 15 days from December to March. The results obtained from both years demonstrated that rhizobial inoculation increased significantly the percentage of trees producing gum arabic, gum arabic production per tree, soil microbial biomass, FDA, and acid phosphatase activities. However, there was no significant effect on C mineralization and mineral nitrogen (N) content. Gum arabic production was positively correlated to rainfall, soil microbial biomass, and mineral nitrogen content. Our results showed a positive effect of rhizobial inoculation on soil microbial functioning and gum arabic production by mature S. senegal trees. These important findings deserve to be conducted in several contrasting sites in order to improve gum arabic production and contribute to increase rural population incomes.

  12. Rhizobial inoculation increases soil microbial functioning and gum arabic production of 13-years old Senegalia senegal (L. Britton, trees in the North part of Senegal

    Directory of Open Access Journals (Sweden)

    Dioumacor FALL

    2016-09-01

    Full Text Available Abstract Rhizobial inoculation has been widely used in controlled conditions as a substitute for chemical fertilizers to increase plants growth and productivity. However, very little is known about such effects on mature trees in natural habitats. In this study, we investigated the effect of rhizobial inoculation on soil total microbial biomass, mineral nitrogen content, potential CO2 respiration, fluorescein diacetate (FDA, acid phosphatase activities and gum arabic production by 13-years old Senegalia senegal (Syn. Acacia senegal under natural conditions in the north part of Senegal during two consecutive years. Rhizobial inoculation was performed at the beginning of the rainy season (July for both years with a cocktail of four strains (CIRADF 300, CIRADF 301, CIRADF 302 and CIRADF 303. Rhizospheric soils were collected in both dry and rainy seasons to a depth of 0-25 cm under uninoculated (UIN and inoculated (IN trees. Trees were tapped in November (beginning of dry season using traditional tools. Gum arabic was harvested every 15 days from December to March. The results obtained from both years demonstrated that rhizobial inoculation increased significantly the percentage of trees producing gum arabic, gum arabic production per tree, soil microbial biomass, FDA and acid phosphatase activities. However, there was no significant effect on C mineralization and mineral nitrogen (N content. Gum arabic production was positively correlated to rainfall, soil microbial biomass and mineral nitrogen content. Our results showed a positive effect of rhizobial inoculation on soil microbial functioning and gum arabic production by mature S. senegal trees. These important findings deserve to be conducted in several contrasting sites in order to improve gum arabic production and contribute to increase rural population incomes.

  13. Retention of dead standing plant biomass (marcescence) increases subsequent litter decomposition in the soil organic layer

    Czech Academy of Sciences Publication Activity Database

    Angst, Šárka; Cajthaml, T.; Angst, Gerrit; Šimáčková, H.; Brus, Jiří; Frouz, Jan

    2017-01-01

    Roč. 418, 1-2 (2017), s. 571-579 ISSN 0032-079X Institutional support: RVO:60077344 ; RVO:61389013 Keywords : photodegradation * C-13 CP/MAS NMR spectroscopy * litter decomposition * pyrolysis GC-MS * Calamagrostis epigeios * photo-facilitation Subject RIV: DF - Soil Science; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Soil science; Polymer science (UMCH-V) Impact factor: 3.052, year: 2016

  14. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  15. Altered Soil Properties Inhibit Fruit Set but Increase Progeny Performance for a Foundation Tree in a Highly Fragmented Landscape

    Directory of Open Access Journals (Sweden)

    Tanya M. Llorens

    2018-04-01

    Full Text Available Failing to test multiple or non-standard variables in studies that investigate the effects of habitat fragmentation on plant populations may limit the detection of unexpected causative relationships. Here, we investigated the impacts of habitat fragmentation on the pollination, reproduction, mating system and progeny performance of Eucalyptus wandoo, a foundation tree that is bird and insect pollinated with a mixed-mating system. We explored a range of possible causative mechanisms, including soil properties that are likely to be altered in the agricultural matrix of a landscape that has naturally nutrient-poor soils and secondary soil salinization caused by the removal of native vegetation. We found very strong negative relationships between soil salinity and fruit production, thus providing some of the first evidence for the effects of salinity on reproduction in remnant plant populations. Additionally, we found unexpectedly higher rates of seedling survival in linear populations, most likely driven by increased soil P content from adjacent cereal cropping. Higher rates of seed germination in small populations were related to both higher pollen immigration and greater nutrient availability. Trees in small populations had unexpectedly much higher levels of pollination than in large populations, but they produced fewer seeds per fruit and outcrossing rates did not vary consistently with fragmentation. These results are consistent with small populations having much higher insect abundances but also increased rates of self-pollination, combined with seed abortion mechanisms that are common in the Myrtaceae. This study highlights the need to better understand and mitigate sub-lethal effects of secondary soil salinity in plants growing in agricultural remnants, and indicates that soil properties may play an important role in influencing seed quality.

  16. Clinical significance of increased gelatinolytic activity in the rectal mucosa during external beam radiation therapy of prostate cancer

    International Nuclear Information System (INIS)

    Hovdenak, Nils; Wang Junru; Sung, C.-C.; Kelly, Thomas; Fajardo, Luis F.; Hauer-Jensen, Martin

    2002-01-01

    Purpose: Rectal toxicity (proctitis) is a dose-limiting factor in pelvic radiation therapy. Mucosal atrophy, i.e., net extracellular matrix degradation, is a prominent feature of radiation proctitis, but the underlying mechanisms are not known. We prospectively examined changes in matrix metalloproteinase (MMP)-2 and MMP-9 (gelatinase A and B) in the rectal mucosa during radiation therapy of prostate cancer, as well as the relationships of these changes with symptomatic, structural, and cellular evidence of radiation proctitis. Methods and Materials: Seventeen patients scheduled for external beam radiation therapy for prostate cancer were prospectively enrolled. Symptoms of gastrointestinal toxicity were recorded, and endoscopy with biopsy of the rectal mucosa was performed before radiation therapy, as well as 2 and 6 weeks into the treatment course. Radiation proctitis was assessed by endoscopic scoring, quantitative histology, and quantitative immunohistochemistry. MMP-2 and MMP-9 were localized immunohistochemically, and activities were determined by gelatin zymography. Results: Symptoms, endoscopic scores, histologic injury, and mucosal macrophages and neutrophils increased from baseline to 2 weeks. Symptoms increased further from 2 weeks to 6 weeks, whereas endoscopic and cellular evidence of proctitis did not. Compared to pretreatment values, there was increased total gelatinolytic activity of MMP-2 and MMP-9 at 2 weeks (p=0.02 and p=0.004, respectively) and 6 weeks (p=0.006 and p=0.001, respectively). Active MMP-2 was increased at both time points (p=0.0001 and p=0.002). Increased MMP-9 and MMP-2 at 6 weeks was associated with radiation-induced diarrhea (p=0.007 and p=0.02, respectively) and with mucosal neutrophil infiltration (rho=0.62). Conclusions: Pelvic radiation therapy causes increased MMP-2 and MMP-9 activity in the rectal mucosa. These changes correlate with radiation-induced diarrhea and granulocyte infiltration and may contribute to abnormal

  17. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.

    1999-01-01

    signal changes were measured simultaneously using the flow-sensitive alternating inversion recovery (FAIR) technique. During hypercapnia established by an end-tidal CO2 increase of 1.46 kPa, CBF in the visual cortex increased by 47.3 +/- 17.3% (mean +/- SD; n = 9), and deltaR2* was -0.478 +/- 0.147 sec......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...

  18. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity.

    Directory of Open Access Journals (Sweden)

    Aprilianto E Wiria

    Full Text Available Given that helminth infections have been shown to improve insulin sensitivity in animal studies, which may be explained by beneficial effects on energy balance or by a shift in the immune system to an anti-inflammatory profile, we investigated whether soil-transmitted helminth (STH-infected subjects are more insulin sensitive than STH-uninfected subjects.We performed a cross-sectional study on Flores island, Indonesia, an area with high prevalence of STH infections.From 646 adults, stool samples were screened for Trichuris trichiura by microscopy and for Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, and Strongyloides stercoralis by qPCR. No other helminth was found. We collected data on body mass index (BMI, kg/m2, waist-to-hip ratio (WHR, fasting blood glucose (FBG, mmol/L, insulin (pmol/L, high sensitive C-reactive protein (ng/ml and Immunoglobulin E (IU/ml. The homeostatic model assessment for insulin resistance (HOMAIR was calculated and regression models were used to assess the association between STH infection status and insulin resistance.424 (66% participants had at least one STH infection. STH infected participants had lower BMI (23.2 vs 22.5 kg/m2, p value = 0.03 and lower HOMAIR (0.97 vs 0.81, p value = 0.05. In an age-, sex- and BMI-adjusted model a significant association was seen between the number of infections and HOMAIR: for every additional infection with STH species, the HOMAIR decreased by 0.10 (p for linear trend 0.01. This effect was mainly accounted for by a decrease in insulin of 4.9 pmol/L for every infection (p for trend = 0.07.STH infections are associated with a modest improvement of insulin sensitivity, which is not accounted for by STH effects on BMI alone.

  19. Exploring plant factors for increasing phosphorus utilization from rock phosphates and native soil phosphates in acidic soils

    International Nuclear Information System (INIS)

    Feng Guanglin; Xiong Liming

    2002-01-01

    Six plant species with contrasting capacity in utilizing rock phosphates were compared with regard to their responses to phosphorus starvation in hydroponic cultures. Radish, buckwheat and oil rapeseed are known to have strong ability to use rock phosphates while ryegrass, wheat and sesbania are less efficient. Whereas other plants acidified their culture solution under P starvation (-P), radish plants make alkaline the solution. When neutralizing the pH of the solutions cultured with plants under either -P or + P conditions, solutions with P starved buckwheat, rapeseed, and radish had a higher ability to solubilize Al and Fe phosphates than did those cultured with sesbania, ryegrass and wheat. Characterization of organic ligands in the solutions identified that citrate and malate were the major organic anions exuded by rapeseed and radish. Besides citrate and malate, buckwheat exuded a large amount of tartrate under P starvation. In contrast, ryegrass, wheat and sesbania secreted only a limited amount of oxalic acid, regardless of P status. Changes in activities of phosphoenolpyruvate carboxylase, acid phosphatase, and nitrate reductase in these plants were also compared under P- sufficient or -deficient conditions. The results indicated that plant ability to use rock phosphates or soil phosphates is closely related to their responses toward P starvation. The diversity of P starvation responses was discussed in the context of co-evolution between plants and their environment. Approaches to use plant factors to enhance the effectiveness of rock phosphates were also discussed. (author)

  20. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum.

    Science.gov (United States)

    Soni, Sumit K; Singh, Rakshapal; Singh, Mangal; Awasthi, Ashutosh; Wasnik, Kundan; Kalra, Alok

    2014-05-01

    Pot culture experiments were performed under controlled greenhouse conditions to investigate whether four Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) were able to decrease Cr toxicity to Pisum sativum plants in artificially Cr(VI)-contaminated soil. The effect of pretreatment of soil with chromate-reducing bacteria on plant growth, chromate uptake, bioaccumulation, nodulation, and population of Rhizobium was found to be directly influenced by the time interval between bacterial treatment and seed sowing. Pretreatment of soil with SUCR140 (Microbacterium sp.) 15 days before sowing (T+15) showed a maximum increase in growth and biomass in terms of root length (93 %), plant height (94 %), dry root biomass (99 %), and dry shoot biomass (99 %). Coinoculation of Rhizobium with SUCR140 further improved the aforementioned parameter. Compared with the control, coinoculation of SUCR140+R showed a 117, 116, 136, and 128 % increase, respectively, in root length, plant height, dry root biomass, and dry shoot biomass. The bioavailability of Cr(VI) decreased significantly in soil (61 %) and in uptake (36 %) in SUCR140-treated plants; the effects of Rhizobium, however, either alone or in the presence of SUCR140, were not significant. The populations of Rhizobium (126 %) in soil and nodulation (146 %) in P. sativum improved in the presence of SUCR140 resulting in greater nitrogen (54 %) concentration in the plants. This study shows the usefulness of efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through decreased Cr toxicity and improved symbiotic relationship of the plants with Rhizobium. Further decrease in the translocation of Cr(VI) through improved nodulation by Rhizobium in the presence of efficient Cr-reducing bacterial strains could also decrease the accumulation of Cr in shoots.

  1. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe.

    Science.gov (United States)

    Tian, Qiuying; Liu, Nana; Bai, Wenming; Li, Linghao; Chen, Jiquan; Reich, Peter B; Yu, Qiang; Guo, Dali; Smith, Melinda D; Knapp, Alan K; Cheng, Weixin; Lu, Peng; Gao, Yan; Yang, An; Wang, Tianzuo; Li, Xin; Wang, Zhengwen; Ma, Yibing; Han, Xingguo; Zhang, Wen-Hao

    2016-01-01

    Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.

  2. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    Science.gov (United States)

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  3. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought

    Science.gov (United States)

    Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie

    2013-01-01

    Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...

  4. Increased Risk of Clinically Significant Gallstones following an Appendectomy: A Five-Year Follow-Up Study.

    Directory of Open Access Journals (Sweden)

    Shiu-Dong Chung

    Full Text Available Although the vermiform appendix is commonly considered a vestigial organ, adverse health consequences after an appendectomy have garnered increasing attention. In this study, we investigated the risks of gallstone occurrence during a 5-year follow-up period after an appendectomy, using a population-based dataset. We used data from the Taiwan Longitudinal Health Insurance Database 2005. The exposed cohort included 4916 patients who underwent an appendectomy. The unexposed cohort was retrieved by randomly selecting 4916 patients matched with the exposed cohort in terms of sex, age, and year. We individually tracked each patient for a 5-year period to identify those who received a diagnosis of gallstones during the follow-up period. Cox proportional hazard regressions were performed for the analysis. During the 5-year follow-up period, the incidence rate per 1000 person-years was 4.71 for patients who had undergone an appendectomy, compared to a rate of 2.59 for patients in the unexposed cohort (p<0.001. Patients who had undergone an appendectomy were independently associated with a 1.79 (95% CI = 1.29~2.48-fold increased risk of being diagnosed with gallstones during the 5-year follow-up period. We found that among female patients, the adjusted hazard ratio of gallstones was 2.25 (95% CI = 1.41~3.59 for patients who underwent an appendectomy compared to unexposed patients. However, for male patients, we failed to observe an increased hazard for gallstones among patients who underwent an appendectomy compared to unexposed patients. We found an increased risk of a subsequent gallstone diagnosis within 5 years after an appendectomy.

  5. Use of sewage sludge as a fertilizer for increasing soil fertility and crop production

    International Nuclear Information System (INIS)

    Suess, A.

    1997-01-01

    The high nutrient and organic-matter contents of sewage sludge make it a useful soil amendment for farmers. In this study at four locations in Bavaria, the application of sewage sludge produced com yields that were similar to or better than those produced by an equal application (in terms of N) of chemical fertilizer. High rates of sludge (800 m 3 /ha) further improved crop yields, although such are impractical for farmers' fields. Residual beneficial effects of sewage-sludge application were seen also in terms of subsequent yields of barley. Application of sludge also improved biological and physical properties of the soils. More long-term studies are needed to better understand how sewage sludge contributes to the improvement of soil fertility and crop yields. (author)

  6. Modifications resulting in significant increases in the beam usage time of a 60 keV electron beam welder

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Harrison, J.L.

    1976-01-01

    Short beam usage times were encountered using a 60 keV electron beam welder. These short times were the direct result of a buildup of a reaction product (WO 2 . 90 ) that occurred on graphite washers which housed the tungsten emitter plate. While it was not possible to prevent the reaction product, its growth rate was sufficiently altered by changing graphite materials and minor design changes of the washers. With these modifications beam usage times increased from an original 40 min to approximately 675 min

  7. Was there significant tax evasion after the 1999 50 cent per pack cigarette tax increase in California?

    Science.gov (United States)

    Emery, S; White, M; Gilpin, E; Pierce, J

    2002-01-01

    Objectives: Several states, including California, have implemented large cigarette excise tax increases, which may encourage smokers to purchase their cigarettes in other lower taxed states, or from other lower or non-taxed sources. Such tax evasion thwarts tobacco control objectives and may cost the state substantial tax revenues. Thus, this study investigates the extent of tax evasion in the 6–12 months after the implementation of California's $0.50/pack excise tax increase. Design and setting: Retrospective data analysis from the 1999 California Tobacco Surveys (CTS), a random digit dialled telephone survey of California households. Main outcome measures: Sources of cigarettes, average daily cigarette consumption, and reported price paid. Results: Very few (5.1 (0.7)% (±95% confidence limits)) of California smokers avoided the excise tax by usually purchasing cigarettes from non- or lower taxed sources, such as out-of-state outlets, military commissaries, or the internet. The vast majority of smokers purchased their cigarettes from the most convenient and expensive sources: convenience stores/gas (petrol) stations (45.0 (1.9)%), liquor/drug stores (16.4 (1.6)%), and supermarkets (8.8 (1.2)%). Conclusions: Despite the potential savings, tax evasion by individual smokers does not appear to pose a serious threat to California's excise tax revenues or its tobacco control objectives. PMID:12035006

  8. Love is the triumph of the imagination: Daydreams about significant others are associated with increased happiness, love and connection.

    Science.gov (United States)

    Poerio, Giulia L; Totterdell, Peter; Emerson, Lisa-Marie; Miles, Eleanor

    2015-05-01

    Social relationships and interactions contribute to daily emotional well-being. The emotional benefits that come from engaging with others are known to arise from real events, but do they also come from the imagination during daydreaming activity? Using experience sampling methodology with 101 participants, we obtained 371 reports of naturally occurring daydreams with social and non-social content and self-reported feelings before and after daydreaming. Social, but not non-social, daydreams were associated with increased happiness, love and connection and this effect was not solely attributable to the emotional content of the daydreams. These effects were only present when participants were lacking in these feelings before daydreaming and when the daydream involved imagining others with whom the daydreamer had a high quality relationship. Findings are consistent with the idea that social daydreams may function to regulate emotion: imagining close others may serve the current emotional needs of daydreamers by increasing positive feelings towards themselves and others. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Electronic prompts significantly increase response rates to postal questionnaires: a randomized trial within a randomized trial and meta-analysis.

    Science.gov (United States)

    Clark, Laura; Ronaldson, Sarah; Dyson, Lisa; Hewitt, Catherine; Torgerson, David; Adamson, Joy

    2015-12-01

    To assess the effectiveness of sending electronic prompts to randomized controlled trial participants to return study questionnaires. A "trial within a trial" embedded within a study determining the effectiveness of chronic obstructive pulmonary disease (DOC) screening on smoking cessation. Those participants taking part in DOC who provided a mobile phone number and/or an electronic mail address were randomized to either receive an electronic prompt or no electronic prompt to return a study questionnaire. The results were combined with two previous studies in a meta-analysis. A total of 437 participants were randomized: 226 to the electronic prompt group and 211 to the control group. A total of 285 (65.2%) participants returned the follow-up questionnaire: 157 (69.5%) in the electronic prompt group and 128 (60.7%) in the control group [difference 8.8%; 95% confidence interval (CI): -0.11%, 17.7%; P = 0.05]. The mean time to response was 23 days in the electronic prompt group and 33 days in the control group (hazard ratio = 1.27; 95% CI: 1.105, 1.47). The meta-analysis of all three studies showed an increase in response rate of 7.1% (95% CI: 0.8%, 13.3%). The use of electronic prompts increased response rates and reduces the time to response. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Isolation of nontuberculous mycobacteria from soil using Middlebrook 7H10 agar with increased malachite green concentration.

    Science.gov (United States)

    Hu, Yuli; Yu, Xinglong; Zhao, Dun; Li, Runcheng; Liu, Yang; Ge, Meng; Hu, Huican

    2017-12-01

    Environmental exposure is considered to be responsible for nontuberculous mycobacterial infections in humans. To facilitate the isolation of mycobacteria from soil, Middlebrook 7H10 agar was optimized as an enhanced selective medium by increasing the concentration of malachite green. A series of modified Middlebrook 7H10 agar media with malachite green concentrations ranging from 2.5 to 2500 mg/L was evaluated using 20 soil samples decontaminated with 3% sodium dodecyl sulfate plus 2% NaOH for 30 min. Among these modified Middlebrook 7H10 media, the medium with malachite green at a concentration of 250 mg/L, i.e., at the same concentration as in Löwenstein-Jensen medium, was the most effective in terms of the number of plates with mycobacterial growth. This medium was further evaluated with 116 soil samples. The results showed that 87.1% (101/116) of the samples produced mycobacterial growth, and 15 samples (12.9%) produced no mycobacterial growth. Of the plates inoculated with the soil samples, each in duplicate, 5.2% (12/232) showed late contamination. In total, 19 mycobacterial species were isolated, including seven (36.8%) rapidly growing mycobacteria and 12 (63.2%) slowly growing mycobacteria. Our results demonstrate that the modified Middlebrook 7H10 agar with 250 mg/L malachite green is useful for the primary isolation of nontuberculous mycobacteria from soil.

  11. 'Knowledge for better health' revisited - the increasing significance of health research systems: a review by departing Editors-in-Chief.

    Science.gov (United States)

    Hanney, Stephen R; González-Block, Miguel A

    2017-10-02

    How can nations organise research investments to obtain the best bundle of knowledge and the maximum level of improved health, spread as equitably as possible? This question was the central focus of a major initiative from WHO led by Prof Tikki Pang, which resulted in a range of developments, including the publication of a conceptual framework for national health research systems - Knowledge for better health - in 2003, and in the founding of the journal Health Research Policy and Systems (HARPS). As Editors-in-Chief of the journal since 2006, we mark our retirement by tracking both the progress of the journal and the development of national health research systems. HARPS has maintained its focus on a range of central themes that are key components of a national health research system in any country. These include building capacity to conduct and use health research, identifying appropriate priorities, securing funds and allocating them accountably, producing scientifically valid research outputs, promoting the use of research in polices and practice in order to improve health, and monitoring and evaluating the health research system. Some of the themes covered in HARPS are now receiving increased attention and, for example, with the assessment of research impact and development of knowledge translation platforms, the journal has covered their progress throughout that expansion of interest. In addition, there is increasing recognition of new imperatives, including the importance of promoting gender equality in health research if benefits are to be maximised. In this Editorial, we outline some of the diverse and developing perspectives considered within each theme, as well as considering how they are held together by the growing desire to build effective health research systems in all countries.From 2003 until mid-June 2017, HARPS published 590 articles on the above and related themes, with authors being located in 76 countries. We present quantitative data tracing

  12. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    Science.gov (United States)

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  13. Irrigation Is Significantly Associated with an Increased Prevalence of Listeria monocytogenes in Produce Production Environments in New York State.

    Science.gov (United States)

    Weller, Daniel; Wiedmann, Martin; Strawn, Laura K

    2015-06-01

    Environmental (i.e., meteorological and landscape) factors and management practices can affect the prevalence of foodborne pathogens in produce production environments. This study was conducted to determine the prevalence of Listeria monocytogenes, Listeria species (including L. monocytogenes), Salmonella, and Shiga toxin-producing Escherichia coli (STEC) in produce production environments and to identify environmental factors and management practices associated with their isolation. Ten produce farms in New York State were sampled during a 6-week period in 2010, and 124 georeferenced samples (80 terrestrial, 33 water, and 11 fecal) were collected. L. monocytogenes, Listeria spp., Salmonella, and STEC were detected in 16, 44, 4, and 5% of terrestrial samples, 30, 58, 12, and 3% of water samples, and 45, 45, 27, and 9% of fecal samples, respectively. Environmental factors and management practices were evaluated for their association with terrestrial samples positive for L. monocytogenes or other Listeria species by univariate logistic regression; analysis was not conducted for Salmonella or STEC because the number of samples positive for these pathogens was low. Although univariate analysis identified associations between isolation of L. monocytogenes or Listeria spp. from terrestrial samples and various water-related factors (e.g., proximity to wetlands and precipitation), multivariate analysis revealed that only irrigation within 3 days of sample collection was significantly associated with isolation of L. monocytogenes (odds ratio = 39) and Listeria spp. (odds ratio = 5) from terrestrial samples. These findings suggest that intervention at the irrigation level may reduce the risk of produce contamination.

  14. Scientific arguments for net carbon increase in soil organic matter in Dutch forests

    NARCIS (Netherlands)

    Mol, J.P.; Wyngaert, van den I.J.J.; Vries, de W.

    2012-01-01

    If reporting of emissions associated with Forest Management becomes obligatory in the next commitment period, the Netherlands will try to apply the 'not-a-source' principle to carbon emissions from litter and soil in land under Forest Management. To give a scientific basis for the principle of

  15. Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition

    Science.gov (United States)

    John L. Maron; Alyssa Laney Smith; Yvette K. Ortega; Dean E. Pearson; Ragan M. Callaway

    2016-01-01

    Plant-soil feedbacks and interspecific competition are ubiquitous interactions that strongly influence the performance of plants. Yet few studies have examined whether the strength of these interactions corresponds with the abundance of plant species in the field, or whether feedbacks and competition interact in ways that either ameliorate or exacerbate their...

  16. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity

    NARCIS (Netherlands)

    Wiria, A.E.; Hamid, F.; Wammes, L.J.; Prasetyani, M.A.; Dekkers, O.M.; May, L.; Kaisar, M.M.; Verweij, J.J.; Guigas, B.; Partono, F.; Sartono, E.; Supali, T.; Yazdanbakhsh, M.; Smit, J.W.A.

    2015-01-01

    OBJECTIVE: Given that helminth infections have been shown to improve insulin sensitivity in animal studies, which may be explained by beneficial effects on energy balance or by a shift in the immune system to an anti-inflammatory profile, we investigated whether soil-transmitted helminth

  17. Dynamics of elements in soil treated with increasing doses sewage sludge for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Oliveira, Helder de; Mortatti, Jefferson; Vendramini, Diego; Lopes, Renato A.; Nolasco, Murilo M.; Sarries, Gabriel A.; Furlan, Adriana

    2007-01-01

    In this work the dynamics of the elements was analyzed The, Br, Ce, Co, Cr, Cs, Fe, Hf, La, In the, Sb, Sc, Sm, Ta, Th, U, Yb and Zn in a profile of a red-yellow latossolo, in the depths of 0-5, 5-10, 10-30 and 30-50 cm, and dose of the biosolid of 0, 25, 124 and 375 t ha -1 , of the station of treatment of sewer of Barueri, Sao Paulo. The experiment was carried out in areas of 3,05 m 2 in the times of 2,2; 4,0; 6,6; 14,3 and 21 months. For analysis of the elementary composition, it was used of the analysis technique by instrumental neutron activation analysis (INAA). The experiment was submitted under normal tropical conditions in a forest station in Itatinga, Sao Paulo, of the University of Sao Paulo. For better details, the factors depth, doses and times statistical analyses of the results of the elementary composition of the soil samples were made. For all the biossolid doses conditioned with polymeric and applied in the soil, the composition of 17 of the 18 elements in the soil were not altered, with exception for Cr in the studied times. The elements As, Br, Ce, Co, Fe, Hf, La, Sm, Ta, Th, U and Yb presented higher levels in the deepest layers of soil; already the elements Cr, In the, Sb and Zn presented higher concentrations in the superficial layers. (author)

  18. Plant Explants Grown on Medium Supplemented with Fe3O4 Nanoparticles Have a Significant Increase in Embryogenesis

    Directory of Open Access Journals (Sweden)

    Inese Kokina

    2017-01-01

    Full Text Available Development of nanotechnology leads to the increasing release of nanoparticles in the environment that results in accumulation of different NPs in living organisms including plants. This can lead to serious changes in plant cultures which leads to genotoxicity. The aims of the present study were to detect if iron oxide NPs pass through the flax cell wall, to compare callus morphology, and to estimate the genotoxicity in Linum usitatissimum L. callus cultures induced by different concentrations of Fe3O4 nanoparticles. Two parallel experiments were performed: experiment A, where flax explants were grown on medium supplemented with 0.5 mg/l, 1 mg/l, and 1.5 mg/l Fe3O4 NPs for callus culture obtaining, and experiment B, where calluses obtained from basal MS medium were transported into medium supplemented with concentrations of NPs identical to experiment A. Obtained results demonstrate similarly in both experiments that 25 nm Fe3O4 NPs pass into callus cells and induce low toxicity level in the callus cultures. Nevertheless, calluses from experiment A showed 100% embryogenesis in comparison with experiment B where 100% rhizogenesis was noticed. It could be associated with different stress levels and adaptation time for explants and calluses that were transported into medium with Fe3O4 NPs supplementation.

  19. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.

    Science.gov (United States)

    Azcón, Rosario; Medina, Almudena; Roldán, Antonio; Biró, Borbála; Vivas, Astrid

    2009-04-01

    In this study, we analyzed the impact of treatments such as Aspergillus niger-treated sugar beet waste (SB), PO4(3-) fertilization and autochthonous inoculants [arbuscular mycorrhizal (AM) fungi and Bacillus cereus], on the bacterial community structure in a soils contaminated with heavy metals as well as, the effectiveness on plant growth (Trifolium repens). The inoculation with AM fungi in SB amended soil, increased plant growth similarly to PO4(3-) addition, and both treatments matched in P acquisition but bacterial biodiversity estimated by denaturing gradient gel electrophoresis of amplified 16S rDNA sequences, was more stimulated by the presence of the AM fungus than by PO4(3-) fertilization. The SB amendment plus AM inoculation increased the microbial diversity by 233% and also changed (by 215%) the structure of the bacterial community. The microbial inoculants and amendment used favoured plant growth and the phytoextraction process and concomitantly modified bacterial community in the rhizosphere; thus they can be used for remediation. Therefore, the understanding of such microbial ecological aspects is important for phytoremediation and the recovery of contaminated soils.

  20. Clinical significance of stress-related increase in blood pressure: current evidence in office and out-of-office settings.

    Science.gov (United States)

    Munakata, Masanori

    2018-05-29

    High blood pressure is the most significant risk factor of cardiovascular and cerebrovascular diseases worldwide. Blood pressure and its variability are recognized as risk factors. Thus, hypertension control should focus not only on maintaining optimal levels but also on achieving less variability in blood pressure. Psychosocial stress is known to contribute to the development and worsening of hypertension. Stress is perceived by the brain and induces neuroendocrine responses in either a rapid or long-term manner. Moreover, endothelial dysfunction and inflammation might be further involved in the modulation of blood pressure elevation associated with stress. White-coat hypertension, defined as high clinic blood pressure but normal out-of-office blood pressure, is the most popular stress-related blood pressure response. Careful follow-up is necessary for this type of hypertensive patients because some show organ damage or a worse prognosis. On the other hand, masked hypertension, defined as high out-of-office blood pressure but normal office blood pressure, has received considerable interest as a poor prognostic condition. The cause of masked hypertension is complex, but evidence suggests that chronic stress at the workplace or home could be involved. Chronic psychological stress could be associated with distorted lifestyle and mental distress as well as long-lasting allostatic load, contributing to the maintenance of blood pressure elevation. Stress issues are common in patients in modern society. Considering psychosocial stress as the pathogenesis of blood pressure elevation is useful for achieving an individual-focused approach and 24-h blood pressure control.

  1. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  2. High Dose Atorvastatin Associated with Increased Risk of Significant Hepatotoxicity in Comparison to Simvastatin in UK GPRD Cohort.

    Directory of Open Access Journals (Sweden)

    Alan T Clarke

    Full Text Available Occasional risk of serious liver dysfunction and autoimmune hepatitis during atorvastatin therapy has been reported. We compared the risk of hepatotoxicity in atorvastatin relative to simvastatin treatment.The UK GPRD identified patients with a first prescription for simvastatin [164,407] or atorvastatin [76,411] between 1997 and 2006, but with no prior record of liver disease, alcohol-related diagnosis, or liver dysfunction. Incident liver dysfunction in the following six months was identified by biochemical value and compared between statin groups by Cox regression model adjusting for age, sex, year treatment started, dose, alcohol consumption, smoking, body mass index and comorbid conditions.Moderate to severe hepatotoxicity [bilirubin >60μmol/L, AST or ALT >200U/L or alkaline phosphatase >1200U/L] developed in 71 patients on atorvastatin versus 101 on simvastatin. Adjusted hazard ratio [AHR] for all atorvastatin relative to simvastatin was 1.9 [95% confidence interval 1.4-2.6]. High dose was classified as 40-80mg daily and low dose 10-20mg daily. Hepatotoxicity occurred in 0.44% of 4075 patients on high dose atorvastatin [HDA], 0.07% of 72,336 on low dose atorvastatin [LDA], 0.09% of 44,675 on high dose simvastatin [HDS] and 0.05% of 119,732 on low dose simvastatin [LDS]. AHRs compared to LDS were 7.3 [4.2-12.7] for HDA, 1.4 [0.9-2.0] for LDA and 1.5 [1.0-2.2] for HDS.The risk of hepatotoxicity was increased in the first six months of atorvastatin compared to simvastatin treatment, with the greatest difference between high dose atorvastatin and low dose simvastatin. The numbers of events in the analyses were small.

  3. High Dose Atorvastatin Associated with Increased Risk of Significant Hepatotoxicity in Comparison to Simvastatin in UK GPRD Cohort

    Science.gov (United States)

    Clarke, Alan T.; Johnson, Paul C. D.; Hall, Gillian C.; Ford, Ian; Mills, Peter R.

    2016-01-01

    Background & Aims Occasional risk of serious liver dysfunction and autoimmune hepatitis during atorvastatin therapy has been reported. We compared the risk of hepatotoxicity in atorvastatin relative to simvastatin treatment. Methods The UK GPRD identified patients with a first prescription for simvastatin [164,407] or atorvastatin [76,411] between 1997 and 2006, but with no prior record of liver disease, alcohol-related diagnosis, or liver dysfunction. Incident liver dysfunction in the following six months was identified by biochemical value and compared between statin groups by Cox regression model adjusting for age, sex, year treatment started, dose, alcohol consumption, smoking, body mass index and comorbid conditions. Results Moderate to severe hepatotoxicity [bilirubin >60μmol/L, AST or ALT >200U/L or alkaline phosphatase >1200U/L] developed in 71 patients on atorvastatin versus 101 on simvastatin. Adjusted hazard ratio [AHR] for all atorvastatin relative to simvastatin was 1.9 [95% confidence interval 1.4–2.6]. High dose was classified as 40–80mg daily and low dose 10–20mg daily. Hepatotoxicity occurred in 0.44% of 4075 patients on high dose atorvastatin [HDA], 0.07% of 72,336 on low dose atorvastatin [LDA], 0.09% of 44,675 on high dose simvastatin [HDS] and 0.05% of 119,732 on low dose simvastatin [LDS]. AHRs compared to LDS were 7.3 [4.2–12.7] for HDA, 1.4 [0.9–2.0] for LDA and 1.5 [1.0–2.2] for HDS. Conclusions The risk of hepatotoxicity was increased in the first six months of atorvastatin compared to simvastatin treatment, with the greatest difference between high dose atorvastatin and low dose simvastatin. The numbers of events in the analyses were small. PMID:26983033

  4. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions.

    Science.gov (United States)

    Badagliacca, Giuseppe; Benítez, Emilio; Amato, Gaetano; Badalucco, Luigi; Giambalvo, Dario; Laudicina, Vito Armando; Ruisi, Paolo

    2018-05-20

    The introduction of legumes into crop sequences and the reduction of tillage intensity are both proposed as agronomic practices to mitigate the soil degradation and negative impact of agriculture on the environment. However, the joint effects of these practices on nitrous oxide (N 2 O) and ammonia (NH 3 ) emissions from soil remain unclear, particularly concerning semiarid Mediterranean areas. In the frame of a long-term field experiment (23 years), a 2-year study was performed on the faba bean (Vicia faba L.) to evaluate the effects of the long-term use of no tillage (NT) compared to conventional tillage (CT) on yield and N 2 O and NH 3 emissions from a Vertisol in a semiarid Mediterranean environment. Changes induced by the tillage system in soil bulk density, water filled pore space (WFPS), organic carbon (TOC) and total nitrogen (TN), denitrifying enzyme activity (DEA), and bacterial gene (16S, amoA, and nosZ) abundance were measured as parameters potentially affecting N gas emissions. No tillage, compared with CT, significantly increased the faba bean grain yield by 23%. The tillage system had no significant effect on soil NH 3 emissions. Total N 2 O emissions, averaged over two cropping seasons, were higher in NT than those in CT plots (2.58 vs 1.71 kg N 2 O-N ha -1 , respectively; P emissions in NT plots were ascribed to the increase of soil bulk density and WFPS, bacteria (16S abundance was 96% higher in NT than that in CT) and N cycle genes (amoA and nosZ abundances were respectively 154% and 84% higher in NT than that in CT). The total N 2 O emissions in faba bean were similar to those measured in other N-fertilized crops. In conclusion, a full evaluation of NT technique, besides the benefits on soil characteristics (e.g. TOC increase) and crop yield, must take into account some criticisms related to the increase of N 2 O emissions compared to CT. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A significant increase in the pepsinogen I/II ratio is a reliable biomarker for successful Helicobacter pylori eradication.

    Directory of Open Access Journals (Sweden)

    Hiroki Osumi

    Full Text Available Helicobacter pylori (H. pylori eradication is usually assessed using the 13C-urea breath test (UBT, anti-H. pylori antibody and the H. pylori stool antigen test. However, a few reports have used pepsinogen (PG, in particular, the percentage change in the PG I/II ratio. Here, we evaluated the usefulness of the percentage changes in serum PG I/II ratios for determining the success of eradication therapy for H. pylori.In total, 650 patients received eradication therapy from October 2008 to March 2013 in our Cancer Institute Hospital. We evaluated the relationship between H. pylori eradication and percentage changes in serum PG I/II ratios before and 3 months after treatment with CLEIA® (FUJIREBIO Inc, Tokyo, Japan. The gold standard of H. pylori eradication was defined as negative by the UBT performed 3 months after completion of eradication treatment. Cut-off values for percentage changes in serum PG I/II ratios were set as +40, +25 and +10% when the serum PG I/II ratio before treatment was below 3.0, above 3.0 but below 5.0 and 5.0 or above, respectively.Serum PG I and PG II levels were measured in 562 patients with H. pylori infection before and after eradication therapy. Eradication of H. pylori was achieved in 433 patients studied (77.0%. The ratios of first, second, third-line and penicillin allergy eradication treatment were 73.8% (317/429, 88.3% (99/112, 75% (12/16 and 100% (5/5, respectively. An increasing percentage in the serum levels of the PG I/II ratios after treatment compared with the values before treatment clearly distinguished success from failure of eradication (108.2±57.2 vs. 6.8±30.7, p<0.05. Using the above cut-off values, the sensitivity, specificity and validity for determination of H. pylori were 93.1, 93.8 and 93.2%, respectively.In conclusion, the percentage changes in serum PG I/II ratios are useful as evaluation criteria for assessing the success of eradication therapy for H. pylori.

  6. Persistent aryl hydrocarbon receptor inducers increase with altitude, and estrogen-like disrupters are low in soils of the Alps.

    Science.gov (United States)

    Levy, Walkiria; Henkelmann, Bernhard; Bernhöft, Silke; Bovee, Toine; Buegger, Franz; Jakobi, Gert; Kirchner, Manfred; Bassan, Rodolfo; Kräuchi, Norbert; Moche, Wolfgang; Offenthaler, Ivo; Simončič, Primoz; Weiss, Peter; Schramm, Karl-Werner

    2011-01-01

    Soil samples from remote Alpine areas were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and polychlorinated biphenyls by high-resolution gas chromatography/high-resolution gas spectrometry. Additionally, the EROD micro-assay and a genetically modified yeast estrogen bioassay were carried out to determine persistent aryl hydrocarbon receptors (AhR) and estrogen receptors (ER) agonists, respectively. Regarding the AhR agonists, the toxicity equivalents of analytical and EROD determined values were compared, targeting both altitude of samples and their soil organic content. The ratio between bioassay derived equivalents and analytical determinations suggested no significant contribution of unknown AhR inducers in these sampling sites and some antagonism in soils with relatively high PCB loading. More CYP1A1 expression was induced at the highest sites or about 1400-1500 m a.s.l. along the altitude profiles. Surprisingly, no clear tendencies with the soil organic content were found for dioxin-like compounds. Mean values obtained in the present study were for ER agonists, 2: 0.37±0.12ng 17ß-estradiol EQ g-1 dry soil [corrected] and 6.1 ± 4.2 pg TCDD-EQ g⁻¹ dry soil for AhR agonists. Low bioassay responses with a higher relative amount of ER disrupters than AhR inducers were detected,indicating the higher abundance of estrogen-like than persistent dioxin-like compounds in these forested areas [corrected].

  7. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    Science.gov (United States)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  8. Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing

    International Nuclear Information System (INIS)

    Li, Changsheng Li; Frolking, S.; Butterbach-Bahl, K.

    2005-01-01

    Strategies for mitigating the increasing concentration of carbon dioxide (CO2) in the atmosphere include sequestering carbon (C) in soils and vegetation of terrestrial ecosystems. Carbon and nitrogen (N) move through terrestrial ecosystems in coupled biogeochemical cycles, and increasing C stocks in soils and vegetation will have an impact on the N cycle. We conducted simulations with a biogeochemical model to evaluate the impact of different cropland management strategies on the coupled cycles of C and N, with special emphasis on C-sequestration and emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O). Reduced tillage, enhanced crop residue incorporation, and farmyard manure application each increased soil C-sequestration, increased N2O emissions, and had little effect on CH4 uptake. Over 20 years, increases in N2O emissions, which were converted into CO2-equivalent emissions with 100-year global warming potential multipliers, offset 75-310% of the carbon sequestered, depending on the scenario. Quantification of these types of biogeochemical interactions must be incorporated into assessment frameworks and trading mechanisms to accurately evaluate the value of agricultural systems in strategies for climate protection

  9. Effects on water, soil and vegetation of an increasing atmospheric supply of sulfur: a survey on ecological bases

    Energy Technology Data Exchange (ETDEWEB)

    Malmer, N; Nilsson, F M.I.

    1974-01-01

    In this paper a critical survey is given of the research work carried out on the ecological effects of the increasing rate of sulfur deposition, especially with reference to Swedish conditions. It also contains information about soil types and soil conditions of importance for the understanding of the problems. In several lakes and rivers this increased supply of sulfur (mainly as SO/sub 4//sup 2 -/) has brought about a considerable decrease in pH. In most lakes and rivers of the oligotrophic type the concentration of bicarbonate ion (the main buffer of pH changes) was already low, and it has now been reduced to the extent that a further increase in the deposition of sulfate will immediately result in marked and much more widespread acidification. The increase in the supply of sulfur which has already occurred will influence the conditions of the soil in several ways. A distinct decrease in forest productivity is to be expected. Due to the short time that has passed since the supply of sulfur started to increase it is, however, doubtful whether such a decrease is yet measurable with the measurement methods commonly used in forest taxation. 88 references.

  10. Free atmospheric CO2 enrichment increased above ground biomass but did not affec symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    NARCIS (Netherlands)

    Hoosbeek, M.R.; Lukac, M.; Velthorst, E.J.; Smith, A.R.; Godbold, D.

    2011-01-01

    Through increases in net primary production (NPP), elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests

  11. Increasing soil temperature in a northern hardwood forest: effects on elemental dynamics and primary productivity

    Science.gov (United States)

    Patrick J. McHale; Myron J. Mitchell; Dudley J. Raynal; Francis P. Bowles

    1996-01-01

    To investigate the effects of elevated soil temperatures on a forest ecosystem, heating cables were buried at a depth of 5 cm within the forest floor of a northern hardwood forest at the Huntington Wildlife Forest (Adirondack Mountains, New York). Temperature was elevated 2.5, 5.0 and 7.5?C above ambient, during May - September in both 1993 and 1994. Various aspects of...

  12. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil.

    Science.gov (United States)

    Cartmill, Andrew D; Cartmill, Donita L; Alarcón, Alejandro

    2014-01-01

    A greenhouse experiment was conducted to determine the effect of the application of controlled release fertilizer [(CRF) 0, 4,6, or 8 kg m(-3)] on Lolium multiflorum Lam. survival and potential biodegradation of petroleum hydrocarbons (0, 3000, 6000, or 15000 mg kg(-1)) in sandy soil. Plant adaptation, growth, photosynthesis, total chlorophyll, and proline content as well as rhizosphere microbial population (culturable heterotrophic fungal and bacterial populations) and total petroleum hydrocarbon (TPH)-degradation were determined. Petroleum induced-toxicity resulted in reduced plant growth, photosynthesis, and nutrient status. Plant adaptation, growth, photosynthesis, and chlorophyll content were enhanced by the application of CRF in contaminated soil. Proline content showed limited use as a physiological indicator of petroleum induced-stress in plants. Bacterial and filamentous fungi populations were stimulated by the petroleum concentrations. Bacterial populations were stimulated by CRF application. At low petroleum contamination, CRF did not enhance TPH-degradation. However, petroleum degradation in the rhizosphere was enhanced by the application of medium rates of CRF, especially when plants were exposed to intermediate and high petroleum contamination. Application of CRF allowed plants to overcome the growth impairment induced by the presence of petroleum hydrocarbons in soils.

  13. High doses of ethylenediurea (EDU) as soil drenches did not increase leaf N content or cause phytotoxicity in willow grown in fertile soil.

    Science.gov (United States)

    Agathokleous, Evgenios; Paoletti, Elena; Manning, William J; Kitao, Mitsutoshi; Saitanis, Costas J; Koike, Takayoshi

    2018-01-01

    Ground-level ozone (O 3 ) levels are nowadays elevated in wide regions of the Earth, causing significant effects on plants that finally lead to suppressed productivity and yield losses. Ethylenediurea (EDU) is a chemical compound which is widely used in research projects as phytoprotectant against O 3 injury. The EDU mode of action remains still unclear, while there are indications that EDU may contribute to plants with nitrogen (N) when the soil is poor in N and the plants have relatively small leaf area. To reveal whether the N content of EDU acts as a fertilizer to plants when the soil is not poor in N and the plants have relatively large total plant leaf area, willow plants (Salix sachalinensis Fr. Schm) were exposed to low ambient O 3 levels and treated ten times (9-day interval) with 200mL soil drench containing 0, 800 or 1600mg EDU L -1 . Fertilizer was added to a nutrient-poor soil, and the plants had an average plant leaf area of 9.1m 2 at the beginning of EDU treatments. Indications for EDU-induced hormesis in maximum electron transport rate (J max ) and ratio of intercellular to ambient CO 2 concentration (C i :C a ) were observed at the end of the experiment. No other EDU-induced effects on leaf greenness and N content, maximum quantum yield of photosystem II (F v /F m ), gas exchange, growth and matter production suggest that EDU did not act as N fertilizer and did not cause toxicity under these experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A review of the (Revised) Universal Soil Loss Equation (R/USLE): with a view to increasing its global applicability and improving soil loss estimates

    OpenAIRE

    Benavidez, Rubianca; Jackson, Bethanna; Maxwell, Deborah; Norton, Kevin

    2018-01-01

    Soil erosion is a major problem around the world because of its effects on soil productivity, nutrient loss, siltation in water bodies, and degradation of water quality. By understanding the driving forces behind soil erosion, we can more easily identify erosion-prone areas within a landscape and use land management and other strategies to effectively manage the problem. Soil erosion models have been used to assist in this task. One of the most commonly used soil erosion models is the Univers...

  15. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil.

    Science.gov (United States)

    Andrade, S A L; Silveira, A P D; Mazzafera, P

    2010-10-15

    Studies on mycorrhizal symbiosis effects on metal accumulation and plant tolerance are not common in perennial crops under metal stress. The objective of this study was to evaluate the influence of mycorrhization on coffee seedlings under Cu and Zn stress. Copper (Cu) and zinc (Zn) uptake and some biochemical and physiological traits were studied in thirty-week old Coffea arabica seedlings, in response to the inoculation with arbuscular mycorrhizal fungi (AMF) and to increasing concentrations of Cu or Zn in soil. The experiments were conducted under greenhouse conditions in a 2×4 factorial design (inoculation or not with AMF and 0, 50, 150 and 450mgkg(-1) Cu or 0, 100, 300 and 900mgkg(-1) Zn). Non-mycorrhizal plants maintained a hampered and slow growth even in a soil with appropriate phosphorus (P) levels for this crop. As metal levels increased in soil, a greater proportion of the total absorbed metals were retained by roots. Foliar Cu concentrations increased only in non-mycorrhizal plants, reaching a maximum concentration of 30mgkg(-1) at the highest Cu in soil. Mycorrhization prevented the accumulation of Cu in leaves, and mycorrhizal plants showed higher Cu contents in stems, which indicated a differential Cu distribution in AMF-associated or non-associated plants. Zn distribution and concentrations in different plant organs followed a similar pattern independently of mycorrhization. In mycorrhizal plants, only the highest metal concentrations caused a reduction in biomass, leading to significant changes in some biochemical indicators, such as malondialdehyde, proline and amino acid contents in leaves and also in foliar free amino acid composition. Marked differences in these physiological traits were also found due to mycorrhization. In conclusion, AMF protected coffee seedlings against metal toxicity. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming

    Science.gov (United States)

    Schelker, J.; Grabs, T.; Bishop, K.; Laudon, H.

    2013-12-01

    disturbance such as clear-cutting has been identified as an important factor for increasing dissolved organic carbon (DOC) concentrations in boreal streams. We used a long-term data set of soil temperature, soil moisture, shallow groundwater (GW) levels, and stream DOC concentrations from three boreal first-order streams to investigate mechanisms causing these increases. Clear-cutting was found to alter soil conditions with warmer and wetter soils during summer. The application of a riparian flow concentration integration model (RIM) explained a major part of variation in stream [DOC] arising from changing flow pathways in riparian soils during the pretreatment period (r2 = 0.4-0.7), but less well after the harvest. Model residuals were sensitive to changes in soil temperature. The linear regression models for the temperature dependence of [DOC] in soils were not different in the disturbed and undisturbed catchments, whereas a nonlinear response to soil moisture was found. Overall these results suggest that the increased DOC mobilization after forest disturbance is caused by (i) increased GW levels leading to increased water fluxes in shallow flow path in riparian soils and (ii) increased soil temperature increasing the DOC availability in soils during summer. These relationships indicate that the mechanisms of DOC mobilization after forest disturbance are not different to those of undisturbed catchments, but that catchment soils respond to the higher hydro-climatic variation observed after clear-cutting. This highlights the sensitivity of boreal streams to changes in the energy and water balance, which may be altered as a result of both land management and climate change.

  17. Thallium contamination in arable soils and vegetables around a steel plant-A newly-found significant source of Tl pollution in South China.

    Science.gov (United States)

    Liu, Juan; Luo, Xuwen; Wang, Jin; Xiao, Tangfu; Chen, Diyun; Sheng, Guodong; Yin, Meiling; Lippold, Holger; Wang, Chunlin; Chen, Yongheng

    2017-05-01

    Thallium (Tl) is a highly toxic rare element. Severe Tl poisoning can cause neurological brain damage or even death. The present study was designed to investigate contents of Tl and other associated heavy metals in arable soils and twelve common vegetables cultivated around a steel plant in South China, a newly-found initiator of Tl pollution. Potential health risks of these metals to exposed population via consumption of vegetables were examined by calculating hazard quotients (HQ). The soils showed a significant contamination with Tl at a mean concentration of 1.34 mg/kg. The Tl levels in most vegetables (such as leaf lettuce, chard and pak choy) surpassed the maximum permissible level (0.5 mg/kg) according to the environmental quality standards for food in Germany. Vegetables like leaf lettuce, chard, pak choy, romaine lettuce and Indian beans all exhibited bioconcentration factors (BCF) and transfer factors (TF) for Tl higher than 1, indicating a hyperaccumulation of Tl in these plants. Although the elevated Tl levels in the vegetables at present will not immediately pose significant non-carcinogenic health risks to residents, it highlights the necessity of a permanent monitoring of Tl contamination in the steel-making areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing.

    Science.gov (United States)

    Bell, Luke; Yahya, Hanis Nadia; Oloyede, Omobolanle Oluwadamilola; Methven, Lisa; Wagstaff, Carol

    2017-04-15

    Five cultivars of Eruca sativa and a commercial variety of Diplotaxis tenuifolia were grown in the UK (summer) and subjected to commercial growth, harvesting and processing, with subsequent shelf life storage. Glucosinolates (GSL), isothiocyanates (ITC), amino acids (AA), free sugars, and bacterial loads were analysed throughout the supply chain to determine the effects on phytochemical compositions. Bacterial load of leaves increased significantly over time and peaked during shelf life storage. Significant correlations were observed with GSL and AA concentrations, suggesting a previously unknown relationship between plants and endemic leaf bacteria. GSLs, ITCs and AAs increased significantly after processing and during shelf life. The supply chain did not significantly affect glucoraphanin concentrations, and its ITC sulforaphane significantly increased during shelf life in E. sativa cultivars. We hypothesise that commercial processing may increase the nutritional value of the crop, and have added health benefits for the consumer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.

    Science.gov (United States)

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen

    2018-02-15

    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Directory of Open Access Journals (Sweden)

    X. Han

    2018-04-01

    Full Text Available Loss of soil organic carbon (SOC from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR, SI significantly sequestered SOC (0–20 cm depth at the rate of 0.35 (95 % CI, 0.31–0.40 Mg C ha−1 yr−1, increased crop grain yield by 13.4 % (9.3–18.4 % and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha−1 yr−1 with mineral fertilizer of 200–400 kg N ha−1 yr−1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9–56.4 % and SOC sequestrated by the rate of 0.85 (0.54–1.15 Mg C ha−1 yr−1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28–62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11–15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with

  1. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    Science.gov (United States)

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-04-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0-20 cm depth) at the rate of 0.35 (95 % CI, 0.31-0.40) Mg C ha-1 yr-1, increased crop grain yield by 13.4 % (9.3-18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha-1 yr-1 with mineral fertilizer of 200-400 kg N ha-1 yr-1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9-56.4 %) and SOC sequestrated by the rate of 0.85 (0.54-1.15) Mg C ha-1 yr-1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28-62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11-15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture

  2. Response of biological soil crust diazotrophs to season, altered summer precipitation and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    Directory of Open Access Journals (Sweden)

    Chris M Yeager

    2012-10-01

    Full Text Available Biological soil crusts (biocrusts, which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33 Tg y-1, are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring, as well as field manipulations that increased the frequency of small-volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3x106 – 1x108 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised > 98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low and spring (high. A year-round increase of soil temperature (2 − 3 °C had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5 years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6 fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small-volume precipitation events.

  3. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    Science.gov (United States)

    Yeager, Chris M.; Kuske, Cheryl R.; Carney, Travis D.; Johnson, Shannon L.; Ticknor, Lawrence O.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33Tg y-1), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3×106 to 1×8 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2–3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.

  4. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    OpenAIRE

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-01-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural liveliho...

  5. [Research methods of carbon sequestration by soil aggregates: a review].

    Science.gov (United States)

    Chen, Xiao-Xia; Liang, Ai-Zhen; Zhang, Xiao-Ping

    2012-07-01

    To increase soil organic carbon content is critical for maintaining soil fertility and agricultural sustainable development and for mitigating increased greenhouse gases and the effects of global climate change. Soil aggregates are the main components of soil, and have significant effects on soil physical and chemical properties. The physical protection of soil organic carbon by soil aggregates is the important mechanism of soil carbon sequestration. This paper reviewed the organic carbon sequestration by soil aggregates, and introduced the classic and current methods in studying the mechanisms of carbon sequestration by soil aggregates. The main problems and further research trends in this study field were also discussed.

  6. Mechanical mastication of Utah juniper encroaching sagebrush steppe increases inorganic soil N

    Science.gov (United States)

    Juniper (Juniperus spp.) has encroached millions of hectares of sagebrush (Artemisia spp.) steppe. Juniper mechanical mastication increases cover of understory species, but could increase resource availability and subsequently invasive plant species. We quantified the effects of juniper mastication ...

  7. Contrasting nutritional acclimation of sugar maple (Acer saccharum Marsh. and red maple (Acer rubrum L. to increasing conifers and soil acidity as demonstrated by foliar nutrient balances

    Directory of Open Access Journals (Sweden)

    Alexandre Collin

    2016-07-01

    Full Text Available Sugar maple (Acer saccharum Marshall, SM is believed to be more sensitive to acidic and nutrient-poor soils associated with conifer-dominated stands than red maple (Acer rubrum L., RM. Greater foliar nutrient use efficiency (FNUE of RM is likely the cause for this difference. In the context of climate change, this greater FNUE could be key in favouring northward migration of RM over SM. We used the concept of foliar nutrient balances to study the nutrition of SM and RM seedlings along an increasing gradient in forest floor acidity conditioned by increasing proportions of conifers (pH values ranging from 4.39 under hardwoods, to 4.29 under mixed hardwood-conifer stands and 4.05 under conifer-dominated stands. Nutrients were subjected to isometric log-ratio (ilr transformation, which views the leaf as one closed system and considers interactions between nutrients. The ilr method eliminates numerical biases and weak statistical inferences based on raw or operationally’’ log-transformed data. We analyzed foliar nutrients of SM and RM seedlings and found that the [Ca,Mg,K|P,N] and [Ca,Mg|K] balances of SM seedlings were significantly different among soil acidity levels, whereas they did not vary for RM seedlings. For SM seedlings, these differences among soil acidity levels were due to a significant decrease in foliar Ca and Mg concentrations with increasing forest floor acidity. Similar differences in foliar balances were also found between healthy and declining SM stands estimated from literature values. Conversely, foliar balances of RM seedlings did not differ among soil acidity levels, even though untransformed foliar nutrient concentrations were significantly different. This result highlights the importance of using ilr transformation, since it provides more sensitive results than standard testing of untransformed nutrient concentrations. The lower nutrient requirements of RM and its greater capacity to maintain nutrient equilibrium are

  8. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    Directory of Open Access Journals (Sweden)

    Ning An

    Full Text Available Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG emissions (N2O, CH4 and CO2-equivalent with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield. Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double

  9. Circumpolar assessment of rhizosphere priming shows limited increase in carbon loss estimates for permafrost soils but large regional variability

    Science.gov (United States)

    Wild, B.; Keuper, F.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; Jalava, M.; Koven, C.; Krab, E. J.; Kuhry, P.; Monteux, S.; Richter, A.; Shazhad, T.; Dorrepaal, E.

    2017-12-01

    Predictions of soil organic carbon (SOC) losses in the northern circumpolar permafrost area converge around 15% (± 3% standard error) of the initial C pool by 2100 under the RCP 8.5 warming scenario. Yet, none of these estimates consider plant-soil interactions such as the rhizosphere priming effect (RPE). While laboratory experiments have shown that the input of plant-derived compounds can stimulate SOC losses by up to 1200%, the magnitude of RPE in natural ecosystems is unknown and no methods for upscaling exist so far. We here present the first spatial and depth explicit RPE model that allows estimates of RPE on a large scale (PrimeSCale). We combine available spatial data (SOC, C/N, GPP, ALT and ecosystem type) and new ecological insights to assess the importance of the RPE at the circumpolar scale. We use a positive saturating relationship between the RPE and belowground C allocation and two ALT-dependent rooting-depth distribution functions (for tundra and boreal forest) to proportionally assign belowground C allocation and RPE to individual soil depth increments. The model permits to take into account reasonable limiting factors on additional SOC losses by RPE including interactions between spatial and/or depth variation in GPP, plant root density, SOC stocks and ALT. We estimate potential RPE-induced SOC losses at 9.7 Pg C (5 - 95% CI: 1.5 - 23.2 Pg C) by 2100 (RCP 8.5). This corresponds to an increase of the current permafrost SOC-loss estimate from 15% of the initial C pool to about 16%. If we apply an additional molar C/N threshold of 20 to account for microbial C limitation as a requirement for the RPE, SOC losses by RPE are further reduced to 6.5 Pg C (5 - 95% CI: 1.0 - 16.8 Pg C) by 2100 (RCP 8.5). Although our results show that current estimates of permafrost soil C losses are robust without taking into account the RPE, our model also highlights high-RPE risk in Siberian lowland areas and Alaska north of the Brooks Range. The small overall impact of

  10. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    Science.gov (United States)

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. © 2015 John Wiley & Sons Ltd.

  11. Warming, soil moisture, and loss of snow increase Bromus tectorum’s population growth rate

    Directory of Open Access Journals (Sweden)

    Aldo Compagnoni

    2014-01-01

    Full Text Available Abstract Climate change threatens to exacerbate the impacts of invasive species. In temperate ecosystems, direct effects of warming may be compounded by dramatic reductions in winter snow cover. Cheatgrass (Bromus tectorum is arguably the most destructive biological invader in basins of the North American Intermountain West, and warming could increase its performance through direct effects on demographic rates or through indirect effects mediated by loss of snow. We conducted a two-year experimental manipulation of temperature and snow pack to test whether 1 warming increases cheatgrass population growth rate and 2 reduced snow cover contributes to cheatgrass’ positive response to warming. We used infrared heaters operating continuously to create the warming treatment, but turned heaters on only during snowfalls for the snowmelt treatment. We monitored cheatgrass population growth rate and the vital rates that determine it: emergence, survival and fecundity. Growth rate increased in both warming and snowmelt treatments. The largest increases occurred in warming plots during the wettest year, indicating that the magnitude of response to warming depends on moisture availability. Warming increased both fecundity and survival, especially in the wet year, while snowmelt contributed to the positive effects of warming by increasing survival. Our results indicate that increasing temperature will exacerbate cheatgrass impacts, especially where warming causes large reductions in the depth and duration of snow cover.

  12. Low Soil Phosphorus Availability Increases Acid Phosphatases Activities and Affects P Partitioning in Nodules, Seeds and Rhizosphere of Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Drevon

    2012-06-01

    Full Text Available The effect of phosphorus (P deficiency on phosphatases activities in N2-fixing legumes has been widely studied in hydroponic culture. However, the response of acid phosphatase (APase and phytase in rhizosphere, nodules and seeds of Phaseolus vulgaris to low soil’s P-availability is not yet fully understood. In this study, six genotypes of N2-fixing P. vulgaris were grown under contrasting soil P-availabilities; i.e., low  (4.3 mg P kg−1 and sufficient (16.7 mg P kg−1 in the Haouz region of Morocco. At flowering and maturity stages, plants were harvested and analyzed for their phosphatases activities, growth and P content. Results show that, low P decreased nodulation, growth, P uptake and N accumulation in all the genotypes, but to a greater extent in the sensitive recombinant inbreed line 147. In addition, while seed P content was slightly reduced under low P soil; a higher P was noticed in the Flamingo and Contender large seeded-beans (6.15 to 7.11 mg g−1. In these latter genotypes, high APase and phytase activities in seeds and nodules were associated with a significant decline in rhizosphere’s available P. APase activity was mainly stimulated in nodules, whereas phytase activity was highly induced in seeds (77%. In conclusion, the variations of APase and phytase activities in nodules and seeds depend on genotype and can greatly influence the internal utilization of P, which might result in low P soil tolerance in N2-fixing legumes.

  13. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility

    Science.gov (United States)

    K.A. Novick; G.G. Katul; H.R. McCarthy; R. Oren

    2012-01-01

    Warmer climates induced by elevated atmospheric CO2 (eCO2) are expected to increase damaging bark beetle activity in pine forests, yet the effect of eCO2 on resin production—the tree’s primary defense against beetle attack—remains largely unknown. Following growth-differentiation balance theory, if extra carbohydrates produced under eCO2 are not consumed by respiration...

  14. Exclusion of soil macrofauna did not affect soil quality but increases crop yields in a sub-humid tropical maize-based system

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Hoogmoed, M.; Hurisso, T.T.; Ndabamenye, T.; Terano, Y.; Ayuke, F.O.; Pulleman, M.M.

    2015-01-01

    Soil macrofauna such as earthworms and termites are involved in key ecosystem functions and thus considered important for sustainable intensification of crop production. However, their contribution to tropical soil and crop performance, as well as relations with agricultural management (e.g.

  15. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    Science.gov (United States)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  16. The impact of increased natural background of soil on the animal production of ruminants in the region of Livno

    International Nuclear Information System (INIS)

    Gradaščević, N.; Saračević, L.; Samek, D.; Mihalj, A.

    2009-01-01

    In this paper, the impact of increased levels of uranium and radium in soil on the levels of activity and radiation-hygienic validity of animal products of ruminants was investigated. Region around Livno town is placed on coal layer with the increased levels of uranium and radium compared with other coals used in Bosnia and Herzegovina. As a result of mixing between coal matrix and soil, increased value of average absorbed dose rate at 1 m above the ground (144 nGy/h) was measured. The highest average value of 238U and 226Ra in the samples of animal products of ruminants was measured in the samples of sheep cheese (0.070 Bq/kg for 238U and 0.207 Bq/kg for 226Ra). The levels of these two radionuclides in the rest of animal product of ruminants were approximately similar and ranged 0.016–0.046 Bq/kg for 238U and 0.028–0.080 Bq/kg for 226Ra. Levels of 40K were in the range of average values for animal products (31.2–86.4 Bq/kg). Calculated annual effective dose by ingestion of the animal products of ruminants were approximately 0.064 mSv with the highest dose contribution of 40K (96.4%). On the base of obtained results, animal products of ruminants produced in observed region, can be considered as valid for human consumption from radiation- hygienic aspect

  17. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  18. Reduced memory skills and increased hair cortisol levels in recent Ecstasy/MDMA users: significant but independent neurocognitive and neurohormonal deficits.

    Science.gov (United States)

    Downey, Luke A; Sands, Helen; Jones, Lewis; Clow, Angela; Evans, Phil; Stalder, Tobias; Parrott, Andrew C

    2015-05-01

    The goals of this study were to measure the neurocognitive performance of recent users of recreational Ecstasy and investigate whether it was associated with the stress hormone cortisol. The 101 participants included 27 recent light users of Ecstasy (one to four times in the last 3 months), 23 recent heavier Ecstasy users (five or more times) and 51 non-users. Rivermead paragraph recall provided an objective measure for immediate and delayed recall. The prospective and retrospective memory questionnaire provided a subjective index of memory deficits. Cortisol levels were taken from near-scalp 3-month hair samples. Cortisol was significantly raised in recent heavy Ecstasy users compared with controls, whereas hair cortisol in light Ecstasy users was not raised. Both Ecstasy groups were significantly impaired on the Rivermead delayed word recall, and both groups reported significantly more retrospective and prospective memory problems. Stepwise regression confirmed that lifetime Ecstasy predicted the extent of these memory deficits. Recreational Ecstasy is associated with increased levels of the bio-energetic stress hormone cortisol and significant memory impairments. No significant relationship between cortisol and the cognitive deficits was observed. Ecstasy users did display evidence of a metacognitive deficit, with the strength of the correlations between objective and subjective memory performances being significantly lower in the Ecstasy users. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives

    International Nuclear Information System (INIS)

    Zupanc, Vesna; Kastelec, Damijana; Lestan, Domen; Grcman, Helena

    2014-01-01

    Soil washing has been established as suitable remediation technology, with most research focused on metal removing efficiency and toxic effect on plants, less on the influence on soil physical characteristics, which was the focus of this study. In soil column experiment highly contaminated soil and soil washed with EDTA, mixed with additives (gypsum, hydrogel, manure, peat) were tested. White clover was used as a soil cover. Yield, metal concentration in soil and plant, aggregate fractionation and stability, saturated hydraulic conductivity and soil water retention of the soil were measured. Soil washing decreased metal concentration in soil and plants, but yield of white clover on remediated soil was significantly lower compared to the original soil. Significant differences in water retention characteristics, aggregate fractionation and stability between original and remediated soil have been determined. Gypsum, hydrogel and peat increased plant available water, manure and peat increased yield on remediated soil. -- Highlights: • Clover yield on washed soil was significantly lower than on original soil. • Organic additives increased yield on remediated soils. • Soil washing changed soil water retention and soil structure. • Hydrogen, gypsum and peat increased plant available water of remediated soil. -- The study critically examines yield, plant metal uptake and possible changes in soil physical characteristics as a consequence of soil washing procedure for metal pollution remediation

  1. Functional significance of tree species diversity and species identity on soil organic carbon, C/N ratio and pH in major European forest types

    DEFF Research Database (Denmark)

    Dawud, Seid Muhie

    Forests provide different ecosystem functions and services including soil carbon sequestration and nutrient supply to maintain growth and productivity. This PhD thesis explored tree species diversity and tree species identity (conifer proportion of basal area) effects on soil C stock and nutrient...... 8 and 12 years old common garden stands established in two contrasting bioclimatic regions. In all the studied contexts, tree species identity (confers versus broadleaves) was stronger than diversity in consistently driving variability of the examined soil properties and root characteristics......, particularly in topsoil layers. Diversity did not affect fine root characteristics of the young forests and effects on soil properties were different under the investigated contexts. Across the different European sites, diversity had no effect on C/N ratio and pH but under comparable environmental conditions...

  2. Final report of a randomized trial on altered-fractionated radiotherapy in nasopharyngeal carcinoma prematurely terminated by significant increase in neurologic complications

    International Nuclear Information System (INIS)

    Teo, Peter Man Lung; Leung, Sing Fai; Chan, Anthony Tak Cheung; Leung, Thomas Wai Tong; Choi, Peter Ho Keung; Kwan, Wing Hong; Lee, Wai Yee; Chau, Ricky Ming Chun; Yu, Peter Kau Wing; Johnson, Philip James

    2000-01-01

    Purpose: The aim of the present study was to compare the survival, local control and complications of conventional/accelerated-hyperfractionated radiotherapy and conventional radiotherapy in nonmetastatic nasopharyngeal carcinoma (NPC). Methods and Materials: From February 1993 to October 1995, 159 patients with newly diagnosed nonmetastatic (M0) NPC with N0 or 4 cm or less N1 disease (Ho's N-stage classification, 1978) were randomized to receive either conventional radiotherapy (Arm I, n = 82) or conventional/accelerated-hyperfractionated radiotherapy (Arm II, n = 77). Stratification was according to the T stage. The biologic effective dose (10 Grays) to the primary and the upper cervical lymphatics were 75.0 and 73.1 for Arm I and 84.4 and 77.2 for Arm II, respectively. Results: With comparable distribution among the T stages between the two arms, the free from local failure rate at 5 years after radiotherapy was not significantly different between the two arms (85.3%; 95% confidence interval, 77.2-93.4% for Arm I; and 88.9%; 95% confidence interval, 81.7-96.2% for Arm II). The two arms were also comparable in overall survival, relapse-free survival, and rates of distant metastasis and regional relapse. Conventional/accelerated-hyperfractionated radiotherapy was associated with significantly increased radiation-induced damage to the central nervous system (including temporal lobe, cranial nerves, optic nerve/chiasma, and brainstem/spinal cord) in Arm II. Although insignificant, radiation-induced cranial nerve(s) palsy (typically involving VIII-XII), trismus, neck soft tissue fibrosis, and hypopituiturism and hypothyroidism occurred more often in Arm II. In addition, the complications occurred at significantly shorter intervals after radiotherapy in Arm II. Conclusion: Accelerated hyperfractionation when used in conjunction with a two-dimensional radiotherapy planning technique, in this case the Ho's technique, resulted in increased radiation damage to the central

  3. Editorial Commentary: Big Data Suggest That Because of a Significant Increased Risk of Postoperative Infection, Steroid Injection Is Not Recommended After Ankle Arthroscopy.

    Science.gov (United States)

    Brand, Jefferson C

    2016-02-01

    A recent study addressing infection rate after intra-articular steroid injection during ankle arthroscopy gives pause to this practice, with an odds ratio of 2.2 in the entire population that was injected with a steroid simultaneously with ankle arthroscopy compared with patients who did not receive an ankle injection. Big data, used in the study upon which the Editor comments here, suggest that because of a significant increased risk of postoperative infection, steroid injection is not recommended after ankle arthroscopy. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Prenatal prochloraz treatment significantly increases pregnancy length and reduces offspring weight but does not affect social-olfactory memory in rats

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Klementiev, Boris; Berezin, Vladimir

    2013-01-01

    Metabolites of the commonly used imidazole fungicide prochloraz are androgen receptor antagonists. They have been shown to block androgen-driven development and compromise reproductive function. We tested the effect of prochloraz on cognitive behavior following exposure to this fungicide during...... the perinatal period. Pregnant Wistar rats were administered a 200mg/kg dose of prochloraz on gestational day (GD) 7, GD11, and GD15. The social recognition test (SRT) was performed on 7-week-old male rat offspring. We found an increase in pregnancy length and a significantly reduced pup weight on PND15 and PND...

  5. Prognostic significance of repeat biopsy in lupus nephritis: Histopathologic worsening and a short time between biopsies is associated with significantly increased risk for end stage renal disease and death.

    Science.gov (United States)

    Arriens, Cristina; Chen, Sixia; Karp, David R; Saxena, Ramesh; Sambandam, Kamalanathan; Chakravarty, Eliza; James, Judith A; Merrill, Joan T

    2017-12-01

    histopathology had died compared to 2 (3.2%) of non-worsening patients. Biopsy worsening was associated with a significantly greater 15-year risk of ESRD (Hazard Ratio 4.2, p=0.0001) and death (Hazard Ratio 4.3, p=0.022), adjusting for age, gender, race, biopsy class, and treatment. Time between first and second biopsies was 5years in 28. Over a 15-year period, those with <1year between first and second biopsies (presumably enriched for patients with early clinical signs of progression) had a significantly greater risk of ESRD (Hazard Ratio 13.7, p<0.0001) and death (Hazard Ratio 16.9, p=0.0022) after adjusting for age, gender, race, biopsy class, and treatment. A repeat renal biopsy demonstrating worsening pathology increases the risk of ESRD and death more than four-fold compared to non-worsening patients. Given known potential mismatch between biopsy and clinical data, repeat biopsies may add important information and justify changes in treatment not considered on clinical grounds. Earlier detection of poor prognostic signs in those without early clinical deterioration might improve outcomes in enough patients to reconsider cost effectiveness of routine repeat biopsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    Science.gov (United States)

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  7. Potential of Soil Amendments (Biochar and Gypsum in increasing Water Use Efficiency of Abelmoschus esculentus L. Moench

    Directory of Open Access Journals (Sweden)

    Aniqa eBatool

    2015-09-01

    Full Text Available Water being an essential component for plant growth and development, its scarcity poses serious threat to crops around the world. Climate changes and global warming are increasing the temperature of earth hence becoming an ultimate cause of water scarcity. It is need of the day to use potential soil amendments that could increase the plants’ resistance under such situations. Biochar and gypsum were used in the present study to improve the water use efficiency and growth of Abelmoschus esculentus L. Moench (Lady’s Finger. A six weeks experiment was conducted under greenhouse conditions. Stress treatments were applied after thirty days of sowing. Plant height, leaf area, photosynthesis, transpiration rate, stomatal conductance and water use efficiency were determined weekly under stressed (60% field capacity and non-stressed (100% field capacity conditions. Stomatal conductance and transpiration rate decreased and reached near to zero in stressed plants. Stressed plants also showed resistance to water stress upto five weeks and gradually perished at sixth week. On the other hand, water use efficiency improved in stressed plants containing biochar and gypsum as compared to untreated plants. Biochar alone is a better strategy to promote plant growth and WUE specifically of Abelmoschus esculentus, compared to its application in combination with gypsum.

  8. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field

    NARCIS (Netherlands)

    Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.; van Elsas, Jan Dirk

    A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the

  9. Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests

    Science.gov (United States)

    Paul C. Selmants; Karen L. Adair; Creighton M. Litton; Christian P. Giardina; Egbert Schwartz

    2016-01-01

    Soil bacteria play a key role in regulating terrestrial biogeochemical cycling and greenhouse gas fluxes across the soil-atmosphere continuum. Despite their importance to ecosystem functioning, we lack a general understanding of how bacterial communities respond to climate change, especially in relatively understudied ecosystems like tropical montane wet...

  10. Among Metabolic Factors, Significance of Fasting and Postprandial Increases in Acyl and Desacyl Ghrelin and the Acyl/Desacyl Ratio in Obstructive Sleep Apnea before and after Treatment.

    Science.gov (United States)

    Chihara, Yuichi; Akamizu, Takashi; Azuma, Masanori; Murase, Kimihiko; Harada, Yuka; Tanizawa, Kiminobu; Handa, Tomohiro; Oga, Toru; Mishima, Michiaki; Chin, Kazuo

    2015-08-15

    There are reports suggesting that obstructive sleep apnea (OSA) may itself cause weight gain. However, recent reports showed increases in body mass index (BMI) following continuous positive airway pressure (CPAP) treatments. When considering weight changes, changes in humoral factors that have significant effects on appetite such as acyl (AG) and desacyl ghrelin (DAG), leptin, insulin, and glucose and their interactions, examples of which are AG/DAG and AG/insulin, are important. The aim of this study was to test the hypothesis that some appetite-related factors had a specific profile before and after CPAP treatment. Metabolic parameters were measured cross-sectionally while fasting and 30, 60, 90, and 120 min following breakfast in no or mild OSA (apnea-hypopnea index fasting and postprandial glucose, insulin, and leptin levels did not differ between no or mild OSA and moderate-to-severe OSA participants, AG and DAG, including AG/DAG and AG/insulin, under fasting and postprandial conditions were significantly increased in the moderate-to-severe OSA patients (p continuous changes in ghrelin secretion in OSA patients existed at least within 3 months of CPAP treatment. Methods to prevent OSA as well as treatment in its early stage may be recommended. © 2015 American Academy of Sleep Medicine.

  11. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  12. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  13. MaquiBright™ standardized maqui berry extract significantly increases tear fluid production and ameliorates dry eye-related symptoms in a clinical pilot trial.

    Science.gov (United States)

    Hitoe, S; Tanaka, J; Shimoda, H

    2014-09-01

    Dry eye symptoms, resulting from insufficient tear fluid generation, represent a considerable burden for a largely underestimated number of people. We concluded from earlier pre-clinical investigations that the etiology of dry eyes encompasses oxidative stress burden to lachrymal glands and that antioxidant MaquiBright™ Aristotelia chilensis berry extract helps restore glandular activity. In this pilot trial we investigated 13 healthy volunteers with moderately dry eyes using Schirmer test, as well as a questionnaire which allows for estimating the impact of dry eyes on daily routines. Study participants were assigned to one of two groups, receiving MaquiBright™ at daily dosage of either 30 mg (N.=7) or 60 mg (N.=6) over a period of 60 days. Both groups presented with significantly (Peye dryness on daily routines was evaluated employing the "Dry Eye-related Quality of life Score" (DEQS), with values spanning from zero (impact) to a maximum score of 60. Participants had comparable baseline values of 41.0±7.7 (30 mg) and 40.2±6.3 (60 mg). With 30 mg treatment the score significantly decreased to 21.8±3.9 and 18.9±3.9, after 30 and 60 days, respectively. With 60 mg treatment the DEQS significantly decreased to 26.9±5.3 and 11.1±2.7, after 30 and 60 days, respectively. Blood was drawn for safety analyses (complete blood rheology and -chemistry) at all three investigative time points without negative findings. In conclusion, while daily supplementation with 30 mg MaquiBright™ is effective, the dosage of 60 significantly increased tear fluid volume at all investigative time points and decreased dry eye symptoms to almost a quarter from initial values after two months treatment.

  14. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    Science.gov (United States)

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  15. Addition of sodium caseinate to skim milk increases nonsedimentable casein and causes significant changes in rennet-induced gelation, heat stability, and ethanol stability.

    Science.gov (United States)

    Lin, Yingchen; Kelly, Alan L; O'Mahony, James A; Guinee, Timothy P

    2017-02-01

    The protein content of skim milk was increased from 3.3 to 4.1% (wt/wt) by the addition of a blend of skim milk powder and sodium caseinate (NaCas), in which the weight ratio of skim milk powder to NaCas was varied from 0.8:0.0 to 0.0:0.8. Addition of NaCas increased the levels of nonsedimentable casein (from ∼6 to 18% of total casein) and calcium (from ∼36 to 43% of total calcium) and reduced the turbidity of the fortified milk, to a degree depending on level of NaCas added. Rennet gelation was adversely affected by the addition of NaCas at 0.2% (wt/wt) and completely inhibited at NaCas ≥0.4% (wt/wt). Rennet-induced hydrolysis was not affected by added NaCas. The proportion of total casein that was nonsedimentable on centrifugation (3,000 × g, 1 h, 25°C) of the rennet-treated milk after incubation for 1 h at 31°C increased significantly on addition of NaCas at ≥0.4% (wt/wt). Heat stability in the pH range 6.7 to 7.2 and ethanol stability at pH 6.4 were enhanced by the addition of NaCas. It is suggested that the negative effect of NaCas on rennet gelation is due to the increase in nonsedimentable casein, which upon hydrolysis by chymosin forms into small nonsedimentable particles that physically come between, and impede the aggregation of, rennet-altered para-casein micelles, and thereby inhibit the development of a gel network. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava.

    Directory of Open Access Journals (Sweden)

    Isabel Ceballos

    Full Text Available The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF and plant roots. The fungi provide the plant with inorganic phosphate (P. The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.

  17. Prognostic Significance of Creatinine Increases During an Acute Heart Failure Admission in Patients With and Without Residual Congestion: A Post Hoc Analysis of the PROTECT Data.

    Science.gov (United States)

    Metra, Marco; Cotter, Gad; Senger, Stefanie; Edwards, Christopher; Cleland, John G; Ponikowski, Piotr; Cursack, Guillermo C; Milo, Olga; Teerlink, John R; Givertz, Michael M; O'Connor, Christopher M; Dittrich, Howard C; Bloomfield, Daniel M; Voors, Adriaan A; Davison, Beth A

    2018-05-01

    The importance of a serum creatinine increase, traditionally considered worsening renal function (WRF), during admission for acute heart failure has been recently debated, with data suggesting an interaction between congestion and creatinine changes. In post hoc analyses, we analyzed the association of WRF with length of hospital stay, 30-day death or cardiovascular/renal readmission and 90-day mortality in the PROTECT study (Placebo-Controlled Randomized Study of the Selective A1 Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized With Acute Decompensated Heart Failure and Volume Overload to Assess Treatment Effect on Congestion and Renal Function). Daily creatinine changes from baseline were categorized as WRF (an increase of 0.3 mg/dL or more) or not. Daily congestion scores were computed by summing scores for orthopnea, edema, and jugular venous pressure. Of the 2033 total patients randomized, 1537 patients had both available at study day 14. Length of hospital stay was longer and 30-day cardiovascular/renal readmission or death more common in patients with WRF. However, these were driven by significant associations in patients with concomitant congestion at the time of assessment of renal function. The mean difference in length of hospital stay because of WRF was 3.51 (95% confidence interval, 1.29-5.73) more days ( P =0.0019), and the hazard ratio for WRF on 30-day death or heart failure hospitalization was 1.49 (95% confidence interval, 1.06-2.09) times higher ( P =0.0205), in significantly congested than nonsignificantly congested patients. A similar trend was observed with 90-day mortality although not statistically significant. In patients admitted for acute heart failure, WRF defined as a creatinine increase of ≥0.3 mg/dL was associated with longer length of hospital stay, and worse 30- and 90-day outcomes. However, effects were largely driven by patients who had residual congestion at the time of renal function assessment. URL: https

  18. Uptake and utilization of soil and fertilizer phosphorus by wheat in medium black soils

    International Nuclear Information System (INIS)

    Mahajan, J.P.

    1980-01-01

    A field experiment was conducted using labelled superphosphate to study the uptake and utilization of soil and fertilizer phosphorus by wheat under different soil fertility gradients and phosphorus levels. Grain, straw and total dry matter yield and total P uptake in wheat increased significantly with increasing soil fertility status and P levels (P 0 to P 90 kg P 2 O 5 /ha). Percent P derived from fertilizer increased significantly with increase in P levels but decreased with increasing fertility status of soil. Similar trend was observed in fertilizer P uptake in grain, straw and total dry matter, however, percent utilization of applied P decreased significantly with increasing P levels and fertility status of soil. Soil P uptake increased with increasing fertility status of soil. (author)

  19. In vivo topical application of acetyl aspartic acid increases fibrillin-1 and collagen IV deposition leading to a significant improvement of skin firmness.

    Science.gov (United States)

    Gillbro, J M; Merinville, E; Cattley, K; Al-Bader, T; Hagforsen, E; Nilsson, M; Mavon, A

    2015-10-01

    Acetyl aspartic acid (A-A-A) was discovered through gene array analysis with corresponding Cmap analysis. We found that A-A-A increased keratinocyte regeneration, inhibited dermal matrix metalloprotease (MMP) expression and relieved fibroblast stiffness through reduction of the fibroblast stiffness marker F-actin. Dermal absorption studies showed successful delivery to both the epidermal and dermal regions, and in-use trial demonstrated that 1% A-A-A was well tolerated. In this study, the aim was to investigate whether A-A-A could stimulate the synthesis of extracellular matrix supporting proteins in vivo and thereby improving the viscoelastic properties of human skin by conducting a dual histological and biophysical clinical study. Two separate double-blind vehicle-controlled in vivo studies were conducted using a 1% A-A-A containing oil-in-water (o/w) emulsion. In the histological study, 16 female volunteers (>55 years of age) exhibiting photodamaged skin on their forearm were included, investigating the effect of a 12-day treatment of A-A-A on collagen IV (COLIV) and fibrillin-1. In a subsequent pilot study, 0.1% retinol was used for comparison to A-A-A (1%). The biomechanical properties of the skin were assessed in a panel of 16 women (>45 years of age) using the standard Cutometer MPA580 after topical application of the test products for 28 days. The use of multiple suction enabled the assessment of F4, an area parameter specifically representing skin firmness. Twelve-day topical application of 1% A-A-A significantly increased COLIV and fibrillin with 13% and 6%, respectively, compared to vehicle. 1% A-A-A and 0.1% retinol were found to significantly reduce F4 after 28 days of treatment by 15.8% and 14.7%, respectively, in the pilot Cutometer study. No significant difference was found between retinol and A-A-A. However, only A-A-A exhibited a significant effect vs. vehicle on skin firmness which indicated the incremental benefit of A-A-A as a skin

  20. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    Science.gov (United States)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2015-03-01

    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (-23.8 to -24.2‰), and old radiocarbon ages (4000-4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500-1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53-57%) is substantially pre-aged (1510-1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of

  1. Prenatal prochloraz treatment significantly increases pregnancy length and reduces offspring weight but does not affect social-olfactory memory in rats.

    Science.gov (United States)

    Dmytriyeva, Oksana; Klementiev, Boris; Berezin, Vladimir; Bock, Elisabeth

    2013-07-01

    Metabolites of the commonly used imidazole fungicide prochloraz are androgen receptor antagonists. They have been shown to block androgen-driven development and compromise reproductive function. We tested the effect of prochloraz on cognitive behavior following exposure to this fungicide during the perinatal period. Pregnant Wistar rats were administered a 200 mg/kg dose of prochloraz on gestational day (GD) 7, GD11, and GD15. The social recognition test (SRT) was performed on 7-week-old male rat offspring. We found an increase in pregnancy length and a significantly reduced pup weight on PND15 and PND40 but no effect of prenatal prochloraz exposure on social investigation or acquisition of social-olfactory memory. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  3. Long-term use of amiodarone before heart transplantation significantly reduces early post-transplant atrial fibrillation and is not associated with increased mortality after heart transplantation

    Directory of Open Access Journals (Sweden)

    Rivinius R

    2016-02-01

    group (P=0.0123. There was no statistically significant difference between patients with and without long-term use of amiodarone prior to HTX in 1-year (P=0.8596, 2-year (P=0.8620, 5-year (P=0.2737, or overall follow-up mortality after HTX (P=0.1049. Moreover, Kaplan–Meier survival analysis showed no statistically significant difference in overall survival (P=0.1786.Conclusion: Long-term use of amiodarone in patients before HTX significantly reduces early post-transplant AF and is not associated with increased mortality after HTX. Keywords: amiodarone, atrial fibrillation, heart failure, heart transplantation, mortality

  4. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L.

    Science.gov (United States)

    Ghnaya, Tahar; Mnassri, Majda; Ghabriche, Rim; Wali, Mariem; Poschenrieder, Charlotte; Lutts, Stanley; Abdelly, Chedly

    2015-01-01

    Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 and/or 100 mg Cd kg(-1) soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S. meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition comparatively to non-inoculated plants. Nodulation enhanced Cd absorption by the roots and Cd translocation to the shoots. The increase of plant biomass concomitantly with the increase of Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. In the presence of 50 mg Cd kg(-1) in the soil, the amounts of Cd extracted in the shoots were 58 and 178 μg plant(-1) in non-inoculated and inoculated plants, respectively. This study demonstrates that this association M. sativa-S. meliloti may be an efficient biological system to extract Cd from contaminated soils.

  5. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels

    International Nuclear Information System (INIS)

    Vivas, A.; Voeroes, I.; Biro, B.; Campos, E.; Barea, J.M.; Azcon, R.

    2003-01-01

    Selected ubiquitous microorganisms are important components of Cd tolerance in plants. - The effect of inoculation with indigenous naturally occurring microorganisms [an arbuscular mycorrhizal (AM) fungus and rhizosphere bacteria] isolated from a Cd polluted soil was assayed on Trifolium repens growing in soil contaminated with a range of Cd. One of the bacterial isolate showed a marked PGPR effect and was identified as a Brevibacillus sp. Mycorrhizal colonization also enhanced Trifolium growth and N, P, Zn and Ni content and the dually inoculated (AM fungus plus Brevibacillus sp.) plants achieved further growth and nutrition and less Cd concentration, particularly at the highest Cd level. Increasing Cd level in the soil decreased Zn and Pb shoot accumulation. Coinoculation of Brevibacillus sp. and AM fungus increased shoot biomass over single mycorrhizal plants by 18% (at 13.6 mg Cd kg -1 ), 26% (at 33.0 mg Cd kg -1 ) and 35% (at 85.1 mg Cd kg -1 ). In contract, Cd transfer from soil to plants was substantially reduced and at the highest Cd level Brevibacillus sp. lowered this value by 37.5% in AM plants. Increasing Cd level highly reduced plant mycorrhization and nodulation. Strong positive effect of the bacterium on nodule formation was observed in all treatments. Results show that selected ubiquitous microorganisms, applied as enriched inocula, are important in plant Cd tolerance and development in Cd polluted soils

  6. Increased precipitation accelerates soil organic matter turnover associated with microbial community composition in topsoil of alpine grassland on the eastern Tibetan Plateau.

    Science.gov (United States)

    Han, Conghai; Wang, Zongli; Si, Guicai; Lei, Tianzhu; Yuan, Yanli; Zhang, Gengxin

    2017-10-01

    Large quantities of carbon are stored in alpine grassland of the Tibetan Plateau, which is extremely sensitive to climate change. However, it remains unclear whether soil organic matter (SOM) in different layers responds to climate change analogously, and whether microbial communities play vital roles in SOM turnover of topsoil. In this study we measured and collected SOM turnover by the 14 C method in alpine grassland to test climatic effects on SOM turnover in soil profiles. Edaphic properties and microbial communities in the northwestern Qinghai Lake were investigated to explore microbial influence on SOM turnover. SOM turnover in surface soil (0-10 cm) was more sensitive to precipitation than that in subsurface layers (10-40 cm). Precipitation also imposed stronger effects on the composition of microbial communities in the surface layer than that in deeper soil. At the 5-10 cm depth, the SOM turnover rate was positively associated with the bacteria/fungi biomass ratio and the relative abundance of Acidobacteria, both of which are related to precipitation. Partial correlation analysis suggested that increased precipitation could accelerate the SOM turnover rate in topsoil by structuring soil microbial communities. Conversely, carbon stored in deep soil would be barely affected by climate change. Our results provide valuable insights into the dynamics and storage of SOM in alpine grasslands under future climate scenarios.

  7. Loading of the knee during 3.0 T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Stehling, Christoph, E-mail: christoph.stehling@radiology.ucsf.edu [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States); Department of Clinical Radiology, University of Muenster, Muenster (Germany); Souza, Richard B. [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States); Graverand, Marie-Pierre Hellio Le; Wyman, Bradley T. [Pfizer Inc. New London, CT (United States); Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M. [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States)

    2012-08-15

    Purpose: Standard knee MRI is performed under unloading (ULC) conditions and not much is known about changes of the meniscus, ligaments or cartilage under loading conditions (LC). The aim is to study the influence of loading of different knee structures at 3 Tesla (T) in subjects with osteoarthritis (OA) and normal controls. Materials and methods: 30 subjects, 10 healthy and 20 with radiographic evidence of OA (10 mild and 10 moderate) underwent 3 T MRI under ULC and LC at 50% body weight. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous abnormalities. The changes between ULC and LC were assessed. For meniscus, cartilage and ligaments the changes of lesions, signal and shape were evaluated. In addition, for the meniscus changes in extrusion were examined. A multivariate regression model was used for correlations to correct the data for the impact of age, gender, BMI. A paired T-Test was performed to calculate the differences in meniscus extrusion. Results: Subjects with degenerative knee abnormalities demonstrated significantly increased meniscus extrusion under LC when compared to normal subjects (p = 0.0008-0.0027). Subjects with knee abnormalities and higher KL scores showed significantly more changes in lesion, signal and shape of the meniscus (80% (16/20) vs. 20% (2/10); p = 0.0025), ligaments and cartilage during LC. Conclusion: The study demonstrates that axial loading has an effect on articular cartilage, ligament, and meniscus morphology, which is more significant in subjects with degenerative disease and may serve as an additional diagnostic tool for disease diagnosis and assessing progression in subjects with knee OA.

  8. Loading of the knee during 3.0 T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis

    International Nuclear Information System (INIS)

    Stehling, Christoph; Souza, Richard B.; Graverand, Marie-Pierre Hellio Le; Wyman, Bradley T.; Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M.

    2012-01-01

    Purpose: Standard knee MRI is performed under unloading (ULC) conditions and not much is known about changes of the meniscus, ligaments or cartilage under loading conditions (LC). The aim is to study the influence of loading of different knee structures at 3 Tesla (T) in subjects with osteoarthritis (OA) and normal controls. Materials and methods: 30 subjects, 10 healthy and 20 with radiographic evidence of OA (10 mild and 10 moderate) underwent 3 T MRI under ULC and LC at 50% body weight. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous abnormalities. The changes between ULC and LC were assessed. For meniscus, cartilage and ligaments the changes of lesions, signal and shape were evaluated. In addition, for the meniscus changes in extrusion were examined. A multivariate regression model was used for correlations to correct the data for the impact of age, gender, BMI. A paired T-Test was performed to calculate the differences in meniscus extrusion. Results: Subjects with degenerative knee abnormalities demonstrated significantly increased meniscus extrusion under LC when compared to normal subjects (p = 0.0008–0.0027). Subjects with knee abnormalities and higher KL scores showed significantly more changes in lesion, signal and shape of the meniscus (80% (16/20) vs. 20% (2/10); p = 0.0025), ligaments and cartilage during LC. Conclusion: The study demonstrates that axial loading has an effect on articular cartilage, ligament, and meniscus morphology, which is more significant in subjects with degenerative disease and may serve as an additional diagnostic tool for disease diagnosis and assessing progression in subjects with knee OA.

  9. Soil Respiration and Belowground Carbon Stores Among Salt Marshes Subjected to Increasing Watershed Nitrogen Loadings in Southern New England

    Science.gov (United States)

    Coastal salt marshes are ecosystems located between the uplands and sea, and because of their location are subject to increasing watershed nutrient loadings and rising sea levels. Residential development along the coast is intense, and there is a significant relationship between...

  10. Symmetric dimeric bisbenzimidazoles DBP(n reduce methylation of RARB and PTEN while significantly increase methylation of rRNA genes in MCF-7 cancer cells.

    Directory of Open Access Journals (Sweden)

    Svetlana V Kostyuk

    Full Text Available Hypermethylation is observed in the promoter regions of suppressor genes in the tumor cancer cells. Reactivation of these genes by demethylation of their promoters is a prospective strategy of the anticancer therapy. Previous experiments have shown that symmetric dimeric bisbenzimidazoles DBP(n are able to block DNA methyltransferase activities. It was also found that DBP(n produces a moderate effect on the activation of total gene expression in HeLa-TI population containing epigenetically repressed avian sarcoma genome.It is shown that DBP(n are able to penetrate the cellular membranes and accumulate in breast carcinoma cell MCF-7, mainly in the mitochondria and in the nucleus, excluding the nucleolus. The DBP(n are non-toxic to the cells and have a weak overall demethylation effect on genomic DNA. DBP(n demethylate the promoter regions of the tumor suppressor genes PTEN and RARB. DBP(n promotes expression of the genes RARB, PTEN, CDKN2A, RUNX3, Apaf-1 and APC "silent" in the MCF-7 because of the hypermethylation of their promoter regions. Simultaneously with the demethylation of the DNA in the nucleus a significant increase in the methylation level of rRNA genes in the nucleolus was detected. Increased rDNA methylation correlated with a reduction of the rRNA amount in the cells by 20-30%. It is assumed that during DNA methyltransferase activity inhibition by the DBP(n in the nucleus, the enzyme is sequestered in the nucleolus and provides additional methylation of the rDNA that are not shielded by DBP(n.It is concluded that DBP (n are able to accumulate in the nucleus (excluding the nucleolus area and in the mitochondria of cancer cells, reducing mitochondrial potential. The DBP (n induce the demethylation of a cancer cell's genome, including the demethylation of the promoters of tumor suppressor genes. DBP (n significantly increase the methylation of ribosomal RNA genes in the nucleoli. Therefore the further study of these compounds is needed

  11. The potential of endogeic earthworms (Oligochaeta: Lumbricidae) to increase the accumulation of CO.sub.2./sub. in soil

    Czech Academy of Sciences Publication Activity Database

    Šimek, Miloslav; Pižl, Václav

    2010-01-01

    Roč. 74, - (2010), s. 123-128 ISSN 1211-376X. [Central European Workshop on Soil Zoology /10./. České Budějovice, 21.04.2009-24.04.2009] R&D Projects: GA MŠk LC06066; GA AV ČR IAA600660605 Institutional research plan: CEZ:AV0Z60660521 Keywords : soil zoology * ecology * ecophysiology Subject RIV: EH - Ecology, Behaviour

  12. The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps

    Czech Academy of Sciences Publication Activity Database

    Vránová, V.; Zahradníčková, Helena; Janouš, Dalibor; Skene, K. R.; Matharu, A. S.; Rejšek, J.; Formánek, P.

    2012-01-01

    Roč. 354, 1-2 (2012), s. 21-39 ISSN 0032-079X Grant - others:IGA project(CZ) IGA project 47/2010-2012 Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z60870520 Keywords : soil D-amino acids * input * microorganisms Subject RIV: CE - Biochemistry Impact factor: 2.638, year: 2012 http://link.springer.com/article/10.1007/s11104-011-1059-5?null

  13. Evaluation of metal and radionuclide data from neutron activation and acid-digestion-based spectrometry analyses of background soils: Significance in environmental restoration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Watkins, D.R.; Jackson, B.L.; Schmoyer, R.L. [Oak Ridge National Lab., TN (United States); Lietzke, D.A.; Burgoa, B.B.; Branson, J.T.; Ammons, J.T. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-12-31

    A faster, more cost-effective, and higher-quality data acquisition procedure for natural background-level metals and radionuclides in soils is needed for remedial investigations of contaminated sites. In this project, a total of 120 soil samples were collected from uncontaminated areas on and near the Oak Ridge Reservation. The samples were taken at three different depths and from three different geologic groups to establish background concentrations of metals and radionuclides. The objective of this presentation is to discuss the advantages and disadvantages of neutron activation analysis (NAA) compared with those of acid-digestion-based spectrometry (ADS) methods; the advantages and disadvantages were evaluated from Al, Sb, As, Cr, Co, Fe, Mg, Mn, Hg, K, Ag, {sup 232}Th, {sup 235}U, {sup 238}U, V, and Zn data. The ADS methods used for this project were inductively coupled plasma (ICP), ICP-mass spectrometry (ICP-MS), and alpha spectrometry. The scatter plots showed that the NAA results for As, Co, Fe, Mn, {sup 232}Th, and {sup 238}U are reasonably correlated with the results from the other analytical methods. Compared to NAA, however, the ADS methods underestimated Al, Cr, Mg, K, V, and Zn. The skew distributions were caused by incomplete dissolution of the analytes during acid digestion of the soil samples. Because of the high detection limits of the spectrometric methods, the NAA results and the ADS results for some elements, including Sb, Hg, and Ag, did not show a definite relationship. The NAA results were highly correlated with the alpha spectrometry results for {sup 232}Th and {sup 238}U but poorly correlated for {sup 235}U, probably because of a larger counting error associated with the lower activity of the isotope. The NAA methods, including the delayed neutron counting method, were far superior techniques for quantifying background levels of radionuclides ({sup 232}Th, {sup 235}U, and {sup 238}U) and metals (Al, Cr, Mg, K, V, and Zn) in soils.

  14. Evaluation of metal and radionuclide data from neutron activation and acid-digestion-based spectrometry analyses of background soils: Significance in environmental restoration

    International Nuclear Information System (INIS)

    Lee, S.Y.; Watkins, D.R.; Jackson, B.L.; Schmoyer, R.L.; Lietzke, D.A.; Burgoa, B.B.; Branson, J.T.; Ammons, J.T.

    1995-01-01

    A faster, more cost-effective, and higher-quality data acquisition procedure for natural background-level metals and radionuclides in soils is needed for remedial investigations of contaminated sites. In this project, a total of 120 soil samples were collected from uncontaminated areas on and near the Oak Ridge Reservation. The samples were taken at three different depths and from three different geologic groups to establish background concentrations of metals and radionuclides. The objective of this presentation is to discuss the advantages and disadvantages of neutron activation analysis (NAA) compared with those of acid-digestion-based spectrometry (ADS) methods; the advantages and disadvantages were evaluated from Al, Sb, As, Cr, Co, Fe, Mg, Mn, Hg, K, Ag, 232 Th, 235 U, 238 U, V, and Zn data. The ADS methods used for this project were inductively coupled plasma (ICP), ICP-mass spectrometry (ICP-MS), and alpha spectrometry. The scatter plots showed that the NAA results for As, Co, Fe, Mn, 232 Th, and 238 U are reasonably correlated with the results from the other analytical methods. Compared to NAA, however, the ADS methods underestimated Al, Cr, Mg, K, V, and Zn. The skew distributions were caused by incomplete dissolution of the analytes during acid digestion of the soil samples. Because of the high detection limits of the spectrometric methods, the NAA results and the ADS results for some elements, including Sb, Hg, and Ag, did not show a definite relationship. The NAA results were highly correlated with the alpha spectrometry results for 232 Th and 238 U but poorly correlated for 235 U, probably because of a larger counting error associated with the lower activity of the isotope. The NAA methods, including the delayed neutron counting method, were far superior techniques for quantifying background levels of radionuclides ( 232 Th, 235 U, and 238 U) and metals (Al, Cr, Mg, K, V, and Zn) in soils

  15. Interaction Among Machine Traffic, Soil Physical Properties and Loblolly Pine Root Prolifereation in a Piedmont Soil

    Science.gov (United States)

    Emily A. Carter; Timothy P. McDonald

    1997-01-01

    The impact of forwarder traffic on soil physical properties was evaluated on a Gwinnett sandy loam, a commonly found soil of the Piedmont. Soil strength and saturated hydraulic conductivity were significantly altered by forwarder traffic, but reductions in air-filled porosity also occurred. Bulk density did not increase significantly in trafficked treatments. The...

  16. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells

    International Nuclear Information System (INIS)

    Ghorai, Atanu; Sarma, Asitikantha; Chowdhury, Priyanka; Ghosh, Utpal

    2016-01-01

    Hadron therapy is an innovative technique where cancer cells are precisely killed leaving surrounding healthy cells least affected by high linear energy transfer (LET) radiation like carbon ion beam. Anti-metastatic effect of carbon ion exposure attracts investigators into the field of hadron biology, although details remain poor. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are well-known radiosensitizer and several PARP-1 inhibitors are in clinical trial. Our previous studies showed that PARP-1 depletion makes the cells more radiosensitive towards carbon ion than gamma. The purpose of the present study was to investigate combining effects of PARP-1 inhibition with carbon ion exposure to control metastatic properties in HeLa cells. Activities of matrix metalloproteinases-2, 9 (MMP-2, MMP-9) were measured using the gelatin zymography after 85 MeV carbon ion exposure or gamma irradiation (0- 4 Gy) to compare metastatic potential between PARP-1 knock down (HsiI) and control cells (H-vector - HeLa transfected with vector without shRNA construct). Expression of MMP-2, MMP-9, tissue inhibitor of MMPs such as TIMP-1, TIMP-2 and TIMP-3 were checked by immunofluorescence and western blot. Cell death by trypan blue, apoptosis and autophagy induction were studied after carbon ion exposure in each cell-type. The data was analyzed using one way ANOVA and 2-tailed paired-samples T-test. PARP-1 silencing significantly reduced MMP-2 and MMP-9 activities and carbon ion exposure further diminished their activities to less than 3 % of control H-vector. On the contrary, gamma radiation enhanced both MMP-2 and MMP-9 activities in H-vector but not in HsiI cells. The expression of MMP-2 and MMP-9 in H-vector and HsiI showed different pattern after carbon ion exposure. All three TIMPs were increased in HsiI, whereas only TIMP-1 was up-regulated in H-vector after irradiation. Notably, the expressions of all TIMPs were significantly higher in HsiI than H-vector at 4 Gy. Apoptosis was

  17. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report.

    Science.gov (United States)

    Gómez-Reino, Juan J; Carmona, Loreto; Valverde, Vicente Rodríguez; Mola, Emilio Martín; Montero, Maria Dolores

    2003-08-01

    The long-term safety of therapeutic agents that neutralize tumor necrosis factor (TNF) is uncertain. Recent evidence based on spontaneous reporting shows an association with active tuberculosis (TB). We undertook this study to determine and describe the long-term safety of 2 of these agents, infliximab and etanercept, in rheumatic diseases based on a national active-surveillance system following the commercialization of the drugs. We analyzed the safety data actively collected in the BIOBADASER (Base de Datos de Productos Biológicos de la Sociedad Española de Reumatología) database, which was launched in February 2000 by the Spanish Society of Rheumatology. For the estimation of TB risk, the annual incidence rate in patients treated with these agents was compared with the background rate and with the rate in a cohort of patients with rheumatoid arthritis (RA) assembled before the era of anti-TNF treatment. Seventy-one participating centers sent data on 1,578 treatments with infliximab (86%) or etanercept (14%) in 1,540 patients. Drug survival rates (reported as the cumulative percentage of patients still receiving medication) for infliximab and etanercept pooled together were 85% and 81% at 1 year and 2 years, respectively. Instances of discontinuation were essentially due to adverse events. Seventeen cases of TB were found in patients treated with infliximab. The estimated incidence of TB associated with infliximab in RA patients was 1,893 per 100,000 in the year 2000 and 1,113 per 100,000 in the year 2001. These findings represent a significant increased risk compared with background rates. In the first 5 months of 2002, after official guidelines were established for TB prevention in patients treated with biologics, only 1 new TB case was registered (in January). Therapy with infliximab is associated with an increased risk of active TB. Proper measures are needed to prevent and manage this adverse event.

  18. Dephytinisation with Intrinsic Wheat Phytase and Iron Fortification Significantly Increase Iron Absorption from Fonio (Digitaria exilis) Meals in West African Women

    Science.gov (United States)

    Moretti, Diego; Schuth, Stephan; Egli, Ines; Zimmermann, Michael B.; Brouwer, Inge D.

    2013-01-01

    Low iron and high phytic acid content make fonio based meals a poor source of bioavailable iron. Phytic acid degradation in fonio porridge using whole grain cereals as phytase source and effect on iron bioavailability when added to iron fortified fonio meals were investigated. Grains, nuts and seeds collected in Mali markets were screened for phytic acid and phytase activity. We performed an iron absorption study in Beninese women (n = 16), using non-dephytinised fonio porridge (FFP) and dephytinised fonio porridge (FWFP; 75% fonio-25% wheat), each fortified with 57Fe or 58Fe labeled FeSO4. Iron absorption was quantified by measuring the erythrocyte incorporation of stable iron isotopes. Phytic acid varied from 0.39 (bambara nut) to 4.26 g/100 g DM (pumpkin seed), with oilseeds values higher than grains and nuts. Phytase activity ranged from 0.17±1.61 (fonio) to 2.9±1.3 phytase unit (PU) per g (whole wheat). Phytic acid was almost completely degraded in FWFP after 60 min of incubation (pH≈5.0, 50°C). Phytate∶iron molar ratios decreased from 23.7∶1 in FFP to 2.7∶1 in FWFP. Iron fortification further reduced phytate∶iron molar ratio to 1.9∶1 in FFP and 0.3∶1 in FWFP, respectively. Geometric mean (95% CI) iron absorption significantly increased from 2.6% (0.8–7.8) in FFP to 8.3% (3.8–17.9) in FWFP (Pphytase increased fractional iron absorption 3.2 times, suggesting it could be a possible strategy to decrease PA in cereal-based porridges. PMID:24124445

  19. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus.

    Science.gov (United States)

    Chen, Zhi Chang; Yokosho, Kengo; Kashino, Miho; Zhao, Fang-Jie; Yamaji, Naoki; Ma, Jian Feng

    2013-10-01

    Yorkshire fog (Holcus lanatus), which belongs to the Poaceae family and is a close relative of the agronomic crop oat (Avena sativa), is a widely adaptable grass species that is able to grow on highly acidic soils with high levels of Al, but the mechanism underlying the high Al tolerance is unknown. Here, we characterized two accessions of H. lanatus collected from an acid plot (soil pH 3.6, HL-A) and a neutral plot (pH 7.1, HL-N) in terms of Al tolerance, organic acid anion secretion and related gene expression. In response to Al (pH 4.5), the HL-A roots secreted approximately twice as much malate as the HL-N roots, but there was no difference in citrate secretion. Cloning of the gene HlALMT1 responsible for malate secretion showed that the encoded amino acid sequence did not differ between two accessions, but the expression level in the outer cell layers of the HL-A roots was twice as high as in the HL-N roots. This difference was not due to the genomic copy number, but was due to the number of cis-acting elements for an Al-responsive transcription factor (HlART1) in the promoter region of HlALMT1, as demonstrated by both a yeast one-hybrid assay and a transient assay in tobacco protoplasts. Furthermore, introduction of HlALMT1 driven by the HL-A promoter into rice resulted in significantly more Al-induced malate secretion than introduction of HlALMT1 driven by the HL-N promoter. These findings indicate that the adaptation of H. lanatus to acidic soils may be achieved by increasing number of cis-acting elements for ART1 in the promoter region of the HlALMT1 gene, enhancing the expression of HlALMT1 and the secretion of malate. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  20. Effects of different P-sources in soil on increasing growth and mineral uptake of mycorrhizal Vitis vinifera L. (cv Victoria vines

    Directory of Open Access Journals (Sweden)

    Nikolaos Nikolaou

    2002-12-01

    Full Text Available The effect of different P-sources on growth, leaf chemical composition, and fruit soluble solids and acid content was evaluated in mycorrhizal Victoria grapevine variety gralted onto the rootstocks 3309C or 11 OR. Mycorrhizal and non mycorrhizal plants were grown in 20 L pots containing 20 kg soil supplemented with different P-forms: (Calcium bis-dihydrogen-phosphate, tri-calcium phosphate, aluminium phosphate, iron (III phosphate with different solubility, equivalent to 90 kg P.ha-1. The percent of mycorrhizal root colonization was higher in insoluble P-form treatments compared to control or to soluble P-form treatment (CaDP, ranging from 66 to 84 % in treatments receiving insoluble P, from 36.67 to 38.33 % in control and from 25.33 to 27.33 % in soluble P-form treatments. The roots of 110R rootstock showed higher colonization rate compared to the 3309C. Mycorrhizal colonization increased both the pruning weight and number of nodes of the vines, up to 9 and 1.9 times respectively, according to the rootstock- P form combination. Mycorrhizal vines showed increased leaf concentrations in N, P, K, Ca. Fruit total soluble solids of mycorrhizal vines were about 30 % lower compared with those of the non mycorrhizal vines. Both factors, mycorrhizal colonization and P-forms had no significant effect in fruit titratable acidity.

  1. Identification of stress biomarkers for drought and increased soil temperature in seedlings of European beech ( Fagus sylvatica )

    Energy Technology Data Exchange (ETDEWEB)

    Popović, Milica [Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.; Laboratory for Environmental and Life Sciences, University of Nova Gorica, Glavni Trg 9 – SI-5261, Vipava, Slovenia.; Gregori, Marco [Laboratory for Environmental and Life Sciences, University of Nova Gorica, Glavni Trg 9 – SI-5261, Vipava, Slovenia.; Dipartimento di Scienze Mediche Chirurgiche e della Salute Trieste, Universita degli Studi di Trieste, Friuli-Venezia Giulia, Italy.; Vodnik, Dominik [Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.; Ferlan, Mitja [Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia.; Mrak, Tanja [Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia.; Štraus, Ines [Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia.; McDowell, Nathan G. [Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia.; Pacific Northwest National Laboratory, Richland, WA 99354, USA.; Kraigher, Hojka [Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia.; de Marco, Ario [Laboratory for Environmental and Life Sciences, University of Nova Gorica, Glavni Trg 9 – SI-5261, Vipava, Slovenia.

    2017-11-01

    Drought is an environmental stress that impacts plant productivity. Projections show both an increase in intense rain events and a reduction in the number of rain days, conditions that leads to increased risk of drought. Consequently, the identification of molecular biomarkers suitable for evaluating the impact of water deprivation conditions on forest plant seedlings is of significant value for monitoring purposes and forest management. In this study, we evaluated a biochemical methodology for the assessment of drought stress coupled with variable soil temperature in European beech (Fagus sylvatica L.) seedlings by analyzing a set of metabolites and enzymes involved in free radical scavenging and cell wall synthesis. The results indicate that the specific activities and isoform profile of superoxide dismutases and glutathione peroxidases together with the variation of phenolic compounds enable discrimination between seedlings with different degrees of photosynthetic activity. This approach represents a promising platform for the assessment of drought stress in forest trees and could serve for enhancing selection and breeding practices, allowing for plants that are more tolerant of abiotic stress.

  2. Effects of the Soil Incorporation of Increasing Amounts of Non-Fermented Wet Pomace on the Oil Yield and Acid Profile of Sunflower Seeds

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2007-12-01

    Full Text Available The agricultural use of olive processing waste is a strategic resource in the integrated management of the agricultural system as it satisfies the two objectives of evacuating the olive-processing residue and using it beneficially for agricultural purposes. For such aims, a research was conducted in Bari (South of Italy to study the effects of the incorporation into the soil of increasing amounts of non-fermented wet pomace (WP (0, 17.5, 35, 70, 105, 140, 175, 210 Mg ha-1 on the oil yield and acid profile of sunflower seeds. The results obtained point out that the seed yield was negatively affected by the application of WP starting from 70 Mg ha-1; an opposite trend was observed for the seed oil yield. The incorporation of WP has also affected the oil fatty acids’ composition. Oleic and linoleic acids, the principal fatty acids (beyond 90% of total fatty acids, showed significant variations: from the control treatment to the one receiving the maximum application of waste, oleic acid decreased (-5.4%, linoleic acid increased (+ 6.6%, and the saturated fatty acids fraction decreased (-7.6%.

  3. Significantly increased detection rate of drugs of abuse in urine following the introduction of new German driving licence re-granting guidelines.

    Science.gov (United States)

    Agius, Ronald; Nadulski, Thomas; Kahl, Hans-Gerhard; Dufaux, Bertin

    2012-02-10

    In this paper we present the first assessment of the new German driving licence re-granting medical and psychological assessment (MPA) guidelines by comparing over 3500 urine samples tested under the old MPA cut-offs to over 5000 samples tested under the new MPA cut-offs. Since the enzyme multiplied immunoassay technique (EMIT) technology used previously was not sensitive enough to screen for drugs at such low concentrations, as suggested by the new MPA guidelines, enzyme-linked immunosorbent assay (ELISA) screening kits were used to screen for the drugs of abuse at the new MPA cut-offs. The above comparison revealed significantly increased detection rates of drug use or exposure during the rehabilitation period as follows: 1.61, 2.33, 3.33, and 7 times higher for 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH), morphine, benzoylecgonine and amphetamine respectively. The present MPA guidelines seem to be more effective to detect non-abstinence from drugs of abuse and hence to detecting drivers who do not yet fulfil the MPA requirements to regain their revoked driving licence. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. The Oral Bioavailability of Trans-Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization.

    Science.gov (United States)

    Calvo-Castro, Laura A; Schiborr, Christina; David, Franziska; Ehrt, Heidi; Voggel, Jenny; Sus, Nadine; Behnam, Dariush; Bosy-Westphal, Anja; Frank, Jan

    2018-05-01

    Grapevine-shoot extract Vineatrol30 contains abundant resveratrol monomers and oligomers with health-promoting potential. However, the oral bioavailability of these compounds in humans is low (˂1-2%). The aim of this study was to improve the oral bioavailability of resveratrol from vineatrol by micellar solubilization. Twelve healthy volunteers (six women, six men) randomly ingested a single dose of 500 mg vineatrol (30 mg trans-resveratrol, 75 mg trans-ε-viniferin) as native powder or liquid micelles. Plasma and urine were collected at baseline and over 24 h after intake. Resveratrol and viniferin were analyzed by HPLC. The area under the plasma concentration-time curve (AUC) and mean maximum plasma trans-resveratrol concentrations were 5.0-fold and 10.6-fold higher, respectively, after micellar supplementation relative to the native powder. However, no detectable amounts of trans-ε-viniferin were found in either plasma or urine. The transepithelial permeability of trans-resveratrol and trans-ε-viniferin across differentiated Caco-2 monolayers was consistent to the absorbed fractions in vivo. The oral bioavailability of trans-resveratrol from the grapevine-shoot extract Vineatrol30 was significantly increased using a liquid micellar formulation, without any treatment-related adverse effects, making it a suitable system for improved supplementation of trans-resveratrol. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Beneficial use of off-specification fly ashes to increase the shear strength and stiffness of expansive soil-rubber (ESR) mixtures.

    Science.gov (United States)

    2011-07-01

    The use of off-specification fly ashes to increase the shear strength and stiffness of an expansive soil-rubber (ESR) mixture is investigated systematically in this study. The off-specification fly ashes used include a high-sulfur content and a high-...

  6. Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs

    International Nuclear Information System (INIS)

    Song, Ningning; Zhang, Ximei; Wang, Fangli; Zhang, Changbo; Tang, Shirong

    2012-01-01

    General concern about increasing global atmospheric CO 2 levels owing to the ongoing fossil fuel combustion and elevated levels of radionuclides in the environment, has led to growing interest in the responses of plants to interactive effects of elevated CO 2 and radionuclides in terms of phytoremediation and food safety. To assess the combined effects of elevated CO 2 and cesium contamination on plant biomass, microbial activities in the rhizosphere soil and Cs uptake, Phytolacca americana Linn (pokeweed, C3 specie) and Amaranthus cruentus L. (purple amaranth, C4 specie) were grown in pots of soils containing five levels of cesium (0, 100, 300, 500 and 1000 mg Cs kg −1 ) under two levels of CO 2 (360 and 860 μL L −1 , respectively). Shoot and root biomass of P. americana and Amaranthus crentus was generally higher under elevated CO 2 than under ambient CO 2 for all treatments. Both plant species exhibited higher Cs concentration in the shoots and roots under elevated CO 2 than ambient CO 2 . For P. americana grown at 0, 100, 300, 500 and 1000 mg Cs kg −1 , the increase magnitude of Cs concentration due to elevated CO 2 was 140, 18, 11, 34 and 15% in the shoots, and 150, 20, 14, 15 and 19% in the roots, respectively. For A. cruentus, the corresponding value was 118, 28, 21, 14 and 17% in the shoots, and 126, 6, 11, 17 and 22% in the roots, respectively. Higher bioaccumulation factors were noted for both species grown under elevated CO 2 than ambient CO 2 . The populations of bacteria, actinomycetes and fungi, and the microbial C and N in the rhizosphere soils of both species were higher at elevated CO 2 than at ambient CO 2 with the same concentration of Cs. The results suggested that elevated CO 2 significantly affected plant biomass, Cs uptake, soil C and N concentrations, and community composition of soil microbes associated with P. americana and A. cruentus roots. The knowledge gained from this investigation constitutes an important advancement in

  7. The use of alternative fertilizers to increase soil fertility and yield of sunflower in North-Eastern Kazakhstan

    Directory of Open Access Journals (Sweden)

    Kulzhanova S.M.

    2018-01-01

    Full Text Available the article contains data from studies conducted in 2015–2016 in the North-Еastern part of Kazakhstan. In the experiments the effect of various doses of non-traditional fertilizer together with mineral fertilizer on the yield of sunflower was investigated. Various doses and ratios of mineral fertilizers have been applied, which can affect the yield of sunflower. As a source material, varieties of sunflower of Russian breeding Zarya and a hybrid of Fortimi USA breeding and non-traditional fertilizers – zeolite are taken. In order to determine the effect on the fertility of soils, the agrochemical characteristics of soils in land areas and the content of mobile forms of nutrients were studied. The main agrochemical characteristics and content of mobile forms of nutrients for soil of land plots are investigated in the article.

  8. Ability of One-Dimensional Hairsine-Rose Erosion Model to Predict Sediment Transport over a Soil with Significant Surface Stones

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Sander, G. C.; Parlange, J.-Y.; Heng, B. C. P.; Tromp-van Meerveld, H. J.

    2010-05-01

    Surface stones affect erosion rates by reducing raindrop-driven detachment and protecting the original soil against overland flow induced-hydraulic stress. Numerous studies have shown that the effect of surface stones on erosion depends on both the stone characteristics (e.g., size, distribution) and the soil properties. The aim of this study was (i) to quantify how the stone characteristics can affect the total sediment concentration and the concentrations of the individual size classes, (ii) to test if stones affect preferentially a particular size class within the eroded sediment and (iii) to determine whether the 1D Hairsine-Rose (H-R) erosion model can represent the experimental data. A series of laboratory experiments were conducted using the 2 m × 6 m EPFL erosion flume for a high rainfall intensity (60 mm/h) event on a gentle slope (2.2%). The flume was divided into two identical 1-m wide flumes. This separation was done to allow simultaneous replicate experiments. Experiments were conducted with different configurations and scenarios (stone coverage, size and emplacement). Three coverage proportions (20%, 40%, and 70%), two stone diameters (3-4 and 6-7 cm) and two emplacement types (topsoil and partially embedded) were tested. For each experiment, the total sediment concentration, the concentration for the individual size classes, and the flume discharge were measured. Infiltration rates were measured at different depths and locations. A high resolution laser scanner provided details of the surface change due to erosion during the experiments. This technique allowed us to quantify the spatial distribution of eroded soil and to understand better if sediment transport is 1D or rather 2D over the flumes. The one-dimensional Hairsine-Rose (H-R) erosion model was used to fit the integrated data and to provide estimates of the parameters. The ability of the 1D H-R model to predict the measured sediment concentrations in the presence of stones in the soil matrix

  9. Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry.

    Science.gov (United States)

    Pilkington, M G; Caporn, S J M; Carroll, J A; Cresswell, N; Lee, J A; Ashenden, T W; Brittain, S A; Reynolds, B; Emmett, B A

    2005-05-01

    This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.

  10. Land-use intensification can exaggerate the reduction of functionality with increasing soil biodiversity loss in an alpine meadow on eastern Tibetan Plateau

    Science.gov (United States)

    Liu, Manqiang; Chen, Xiaoyun; Chen, Chenying; Hu, Zhengkun; Guo, Hui; Li, Junyong; Du, Guozhen; Li, Huixin; Hu, Feng

    2017-04-01

    Soil biota plays a pivotal role in ecosystem functionality which is of central importance to sustainable services such as food and fiber production. Intensive land use is associated with species loss and subsequent the related functionality loss. Currently, the claim that negligible effects of soil biodiversity loss due to high functional redundancy has been questioned in the face of intense human activities. Recent studies corroborated that soil biodiversity guaranteed functionality following perturbation. Few studies have, however, attempted to explore the intensive land use on the relationship between soil biodiversity and function particularly for the region susceptible to human perturbation and climate change. With increasing demands for livestock on the Qinghai-Tibetan Plateau, extensive fertilization is a common way to fill the gap of grass productivity in the alpine meadow. However, excess chemical fertilizer can lead to the species loss and functionality degradation. Do the fertilizer-induced changes in soil biota lead to a higher risk of functionality? We predicted that fertilization would exacerbate effects of biodiversity-loss on the reduction of functionality. Herein, a dilution-to-extinction approach was used to set up soil biodiversity loss by inoculating serially diluted soil suspension (ranging from 100 to 10-8 levels) from two long-term fertilization treatments to the sterilized soil that has never been fertilized. The two fertilization treatments represented two distinct intensification land use including the unfertilized control (NP0) and a fertilized treatment (NP120) amended with (NH4)2HPO4 annually (120 kg ha-1 yr-1) since 2002 in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Soil microcosms of 2 fertilization levels crossing 8 biodiversity levels were incubated for 8 months. Then, soil community and multi-functionality parameters including carbon (C)and nutrient mineralization, plant growth and functional stability were determined

  11. Incorporated Woodchips as a Novel Intervention to Support Plant Growth through Increased Water Holding Capacity and Nutrient Retention in Sandy Degraded Soils

    Science.gov (United States)

    Menzies, E.; Schneider, R.; Walter, T.

    2017-12-01

    According to the World Wildlife Federation's most recent Plow Print report 53 million acres of temperate, water limited, grasslands across the Great Plains have been converted to agriculture since 2009. This conversion very often begins the process of soil degradation which can lead to desertification and the necessity to convert more land to agriculture. The most common solution to this problem is improved crop efficiency to reduce conversion of grasslands to agriculture while still producing enough food for us all. We suggest that while that may be the beginning of the solution, degraded soils need to be rehabilitated and brought back into production to adequately provide food crops for the increasing population of the globe. Incorporated woodchips can be used to improve the soils' water holding capacity and nutrient (N and P) retention. In a previous study we observed an increase in the gravimetric water content and a decrease in soluble N and P losses when fertilizers were applied in liquid form in soil columns with incorporated woodchips (see attached figure). In this study we examine the availability of the retained water and nutrients to grasses to determine the extent to which this intervention might be used to reestablish plant growth in degraded sandy soils. We also begin examining the quantity of woodchips necessary to retain sufficient water and nutrients to sustain the growth of grasses over the course of a growing season. A laboratory soil column study is currently underway to examine these questions; the results of this study will be presented at the Fall Meeting.

  12. Evaluation of metal and radionuclide data from neutron activation and acid-digestion-based spectrometry analyses of background soils. Significance in environmental restoration

    International Nuclear Information System (INIS)

    Lee, S.Y.; Watkins, D.R.; Jackson, B.L.; Schmoyer, R.L.; Lietzke, D.A.; Burgoa, B.B.; Branson, J.T.; Ammons, J.T.

    1997-01-01

    A faster, more cost-effective, and higher-quality data acquisition for natural background-level metals and radionuclides in soils is needed for remedial investigations of contaminated sites. The advantages and disadvantages of neutron activation analysis (NAA) compared with those of acid-digestion-based spectrometry (ADS) methods were evaluated using Al, Sb, As, Cr, Co, Fe, Mg, Mn, Hg, K, Ag, 232 Th, 235 U, 238 U, V, and Zn data. The ADS methods used for this project were inductively coupled plasma (ICP), ICP-mass spectrometry (ICP-MS), and alpha spectrometry. Scatter plots showed that the NAA results for As, Co, Fe, Mn, 232 Th, and 238 U are reasonably correlated with the results from the other analytical methods. Compared to NAA, however, the ADS methods underestimated Al, Cr, Mg, K, V, and Zn. Because of the high detection limits of ADS methods, the scatter plots of Sb, Hg, and Ag did not show a definite relationship. The NAA results were highly correlated with the alpha spectrometry results for 232T h and 238 U but poorly correlated for 235 U. The NAA, including the delayed neutron counting, was a far superior technique for quantifying background levels of radionuclides ( 232 Th, 235 U, and 238 U) and metals (Al, Cr, Mg, K, V, and Zn) in soils. (author)

  13. Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition

    NARCIS (Netherlands)

    Ginkel, van J.H.; Gorissen, A.; Polci, D.

    2000-01-01

    Effects of ambient and elevated atmospheric CO2 concentrations (350 and 700 μl l-1) on net carbon input into soil, the production of root-derived material and the subsequent microbial transformation were investigated. Perennial ryegrass plants (L. perenne L.) were labelled in a continuously labelled

  14. Grazing moderates increases in C3 grass abundance over seven decades across a soil texture gradient in shortgrass steppe

    Science.gov (United States)

    Questions: How does long-term grazing exclusion influence plant community composition in a semiarid grassland? Can spatial variation in the effects of grazing exclusion be explained by variation in soil texture? Location: The shortgrass steppe of northeastern Colorado, USA, located in the North Amer...

  15. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands

    Czech Academy of Sciences Publication Activity Database

    Palpurina, S.; Wagner, V.; von Wehrden, H.; Hájek, M.; Horsák, M.; Brinkert, A.; Hölzel, N.; Wesche, K.; Kamp, J.; Hájková, Petra; Danihelka, Jiří; Lustyk, P.; Merunková, K.; Preislerová, Z.; Kočí, M.; Kubešová, S.; Cherosov, M. M.; Ermakov, N.; German, D.; Gogoleva, P. A.; Lashchinsky, N.; Martynenko, V. B.; Chytrý, M.

    2017-01-01

    Roč. 26, č. 4 (2017), s. 425-434 ISSN 1466-822X Institutional support: RVO:67985939 Keywords : diversity-environment relationship * dry grassland * precipitation * soil pH Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 6.045, year: 2016

  16. Cold-knife conisation and large loop excision of transformation zone significantly increase the risk for spontaneous preterm birth: a population-based cohort study.

    Science.gov (United States)

    Jančar, Nina; Mihevc Ponikvar, Barbara; Tomšič, Sonja

    2016-08-01

    Our aim was to explore the association between cold-knife conisation and large loop excision of transformation zone (LLETZ) with spontaneous preterm birth in a large 10-year national sample. We wanted to explore further the association of these procedures with preterm birth according to gestation. We conducted a population based retrospective cohort study, using data from national Medical Birth Registry. The study population consisted of all women giving birth to singletons in the period 2003-2012 in Slovenia, excluding all induced labors and elective cesarean sections before 37 weeks of gestation (N=192730). We compared the prevalence of spontaneous preterm births (before 28 weeks, before 32 weeks, before 34 weeks and before 37 weeks of gestation) in women with cold-knife conisation or LLETZ compared to women without history of conisation, calculating odds ratios (OR), adjusted for potential confounders. Chi-square test was used for descriptive analysis. Logistic regression analyses were performed to estimate crude odds ratio (OR) and adjusted odds ratio (aOR) and their 95% confidence intervals (95% CI) with two-sided probability (p) values. A total of 8420 (4.4%) women had a preterm birth before 37 weeks of gestation, 2250 (1.2%) before 34 weeks of gestation, 1333 (0.7%) before 32 weeks of gestation and 603 (0.3%) before 28 weeks of gestation. A total of 4580 (2.4%) women had some type of c