WorldWideScience

Sample records for significantly impaired learning

  1. Galantamine counteracts development of learning impairment in guinea pigs exposed to the organophosphorus poison soman: Clinical significance

    Science.gov (United States)

    Mamczarz, Jacek; Kulkarni, Girish S.; Pereira, Edna F. R.; Albuquerque, Edson X.

    2017-01-01

    Galantamine, a drug used to treat Alzheimer’s disease, protects guinea pigs against the acute toxicity and lethality of organophosphorus (OP) compounds, including soman. Here, we tested the hypothesis that a single exposure of guinea pigs to 1xLD50 soman triggers cognitive impairments that can be counteracted by galantamine. Thus, animals were injected intramuscularly with saline (0.5 ml/kg) or galantamine (8 mg/kg) and 30 min later injected subcutaneously with soman (26.3 µg/kg) or saline. Cognitive performance was analyzed in the Morris water maze (MWM) four days or three months after the soman challenge. Fifty percent of the saline-injected animals that were challenged with soman survived with mild-to-moderate signs of acute toxicity that subsided within a few hours. These animals showed no learning impairment and no memory retention deficit, when training in the MWM started four days post-soman challenge. In contrast, animals presented significant learning impairment when testing started three months post-challenge. Though the magnitude of the impairment correlated with the severity of the acute toxicity, animals that presented no or only mild signs of toxicity were also learning impaired. All guinea pigs that were treated with galantamine survived the soman challenge with no signs of acute toxicity and learned the MWM task as control animals, regardless of when testing began. Galantamine also prevented memory extinction in both saline-and soman-challenged animals. In conclusion, learning impairment develops months after a single exposure to 1xLD50 soman, and galantamine prevents both the acute toxicity and the delayed cognitive deficits triggered by this OP poison. PMID:21784098

  2. Working memory and novel word learning in children with hearing impairment and children with specific language impairment.

    Science.gov (United States)

    Hansson, K; Forsberg, J; Löfqvist, A; Mäki-Torkko, E; Sahlén, B

    2004-01-01

    Working memory is considered to influence a range of linguistic skills, i.e. vocabulary acquisition, sentence comprehension and reading. Several studies have pointed to limitations of working memory in children with specific language impairment. Few studies, however, have explored the role of working memory for language deficits in children with hearing impairment. The first aim was to compare children with mild-to-moderate bilateral sensorineural hearing impairment, children with a preschool diagnosis of specific language impairment and children with normal language development, aged 9-12 years, for language and working memory. The special focus was on the role of working memory in learning new words for primary school age children. The assessment of working memory included tests of phonological short-term memory and complex working memory. Novel word learning was assessed according to the methods of. In addition, a range of language tests was used to assess language comprehension, output phonology and reading. Children with hearing impairment performed significantly better than children with a preschool diagnosis of specific language impairment on tasks assessing novel word learning, complex working memory, sentence comprehension and reading accuracy. No significant correlation was found between phonological short-term memory and novel word learning in any group. The best predictor of novel word learning in children with specific language impairment and in children with hearing impairment was complex working memory. Furthermore, there was a close relationship between complex working memory and language in children with a preschool diagnosis of specific language impairment but not in children with hearing impairment. Complex working memory seems to play a significant role in vocabulary acquisition in primary school age children. The interpretation is that the results support theories suggesting a weakened influence of phonological short-term memory on novel word

  3. Proinflammatory Factors Mediate Paclitaxel-Induced Impairment of Learning and Memory

    Directory of Open Access Journals (Sweden)

    Zhao Li

    2018-01-01

    Full Text Available The chemotherapeutic agent paclitaxel is widely used for cancer treatment. Paclitaxel treatment impairs learning and memory function, a side effect that reduces the quality of life of cancer survivors. However, the neural mechanisms underlying paclitaxel-induced impairment of learning and memory remain unclear. Paclitaxel treatment leads to proinflammatory factor release and neuronal apoptosis. Thus, we hypothesized that paclitaxel impairs learning and memory function through proinflammatory factor-induced neuronal apoptosis. Neuronal apoptosis was assessed by TUNEL assay in the hippocampus. Protein expression levels of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β in the hippocampus tissue were analyzed by Western blot assay. Spatial learning and memory function were determined by using the Morris water maze (MWM test. Paclitaxel treatment significantly increased the escape latencies and decreased the number of crossing in the MWM test. Furthermore, paclitaxel significantly increased the number of TUNEL-positive neurons in the hippocampus. Also, paclitaxel treatment increased the expression levels of TNF-α and IL-1β in the hippocampus tissue. In addition, the TNF-α synthesis inhibitor thalidomide significantly attenuated the number of paclitaxel-induced TUNEL-positive neurons in the hippocampus and restored the impaired spatial learning and memory function in paclitaxel-treated rats. These data suggest that TNF-α is critically involved in the paclitaxel-induced impairment of learning and memory function.

  4. Working memory and reward association learning impairments in obesity.

    Science.gov (United States)

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Impairment of probabilistic reward-based learning in schizophrenia.

    Science.gov (United States)

    Weiler, Julia A; Bellebaum, Christian; Brüne, Martin; Juckel, Georg; Daum, Irene

    2009-09-01

    Recent models assume that some symptoms of schizophrenia originate from defective reward processing mechanisms. Understanding the precise nature of reward-based learning impairments might thus make an important contribution to the understanding of schizophrenia and the development of treatment strategies. The present study investigated several features of probabilistic reward-based stimulus association learning, namely the acquisition of initial contingencies, reversal learning, generalization abilities, and the effects of reward magnitude. Compared to healthy controls, individuals with schizophrenia exhibited attenuated overall performance during acquisition, whereas learning rates across blocks were similar to the rates of controls. On the group level, persons with schizophrenia were, however, unable to learn the reversal of the initial reward contingencies. Exploratory analysis of only the subgroup of individuals with schizophrenia who showed significant learning during acquisition yielded deficits in reversal learning with low reward magnitudes only. There was further evidence of a mild generalization impairment of the persons with schizophrenia in an acquired equivalence task. In summary, although there was evidence of intact basic processing of reward magnitudes, individuals with schizophrenia were impaired at using this feedback for the adaptive guidance of behavior.

  6. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    Science.gov (United States)

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  7. Perceptual learning in children with visual impairment improves near visual acuity.

    Science.gov (United States)

    Huurneman, Bianca; Boonstra, F Nienke; Cox, Ralf F A; van Rens, Ger; Cillessen, Antonius H N

    2013-09-17

    This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Participants were 45 children with visual impairment and 29 children with normal vision. Children with visual impairment were divided into three groups: a magnifier group (n = 12), a crowded perceptual learning group (n = 18), and an uncrowded perceptual learning group (n = 15). Children with normal vision also were divided in three groups, but were measured only at baseline. Dependent variables were single near visual acuity (NVA), crowded NVA, LH line 50% crowding NVA, number of trials, accuracy, performance time, amount of small errors, and amount of large errors. Children with visual impairment trained during six weeks, two times per week, for 30 minutes (12 training sessions). After training, children showed significant improvement of NVA in addition to specific improvements on the training task. The crowded perceptual learning group showed the largest acuity improvements (1.7 logMAR lines on the crowded chart, P children in the crowded perceptual learning group showed improvements on all NVA charts. Children with visual impairment benefit from perceptual training. While task-specific improvements were observed in all training groups, transfer to crowded NVA was largest in the crowded perceptual learning group. To our knowledge, this is the first study to provide evidence for the improvement of NVA by perceptual learning in children with visual impairment. (http://www.trialregister.nl number, NTR2537.).

  8. Smart-system of distance learning of visually impaired people based on approaches of artificial intelligence

    Science.gov (United States)

    Samigulina, Galina A.; Shayakhmetova, Assem S.

    2016-11-01

    Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.

  9. Ego Depletion Impairs Implicit Learning

    Science.gov (United States)

    Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  10. Ego depletion impairs implicit learning.

    Directory of Open Access Journals (Sweden)

    Kelsey R Thompson

    Full Text Available Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  11. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  12. Evidence of impaired learning during whole-body vibration

    Science.gov (United States)

    Sherwood, N.; Griffin, M. J.

    1992-01-01

    A study of the effects of whole-body vibration on learning and memory was conducted, in which a context-dependent experimental design was used. Forty subjects completed a simple associative learning task, half during exposure to 16 Hz whole-body sinusoidal vertical vibration at 2.0 m s -2 r.m.s. and half while static. The results show that the rates of learning of the two groups differed, with that of the vibrated subjects significantly impaired. A second session, one week later, indicated that information learnt in one vibration environment could be recalled equally well in a different environment, suggesting no context-dependent effects on memory processes.

  13. The chemotherapeutic agent paclitaxel selectively impairs reversal learning while sparing prior learning, new learning and episodic memory.

    Science.gov (United States)

    Panoz-Brown, Danielle; Carey, Lawrence M; Smith, Alexandra E; Gentry, Meredith; Sluka, Christina M; Corbin, Hannah E; Wu, Jie-En; Hohmann, Andrea G; Crystal, Jonathon D

    2017-10-01

    Chemotherapy is widely used to treat patients with systemic cancer. The efficacy of cancer therapies is frequently undermined by adverse side effects that have a negative impact on the quality of life of cancer survivors. Cancer patients who receive chemotherapy often experience chemotherapy-induced cognitive impairment across a variety of domains including memory, learning, and attention. In the current study, the impact of paclitaxel, a taxane derived chemotherapeutic agent, on episodic memory, prior learning, new learning, and reversal learning were evaluated in rats. Neurogenesis was quantified post-treatment in the dentate gyrus of the same rats using immunostaining for 5-Bromo-2'-deoxyuridine (BrdU) and Ki67. Paclitaxel treatment selectively impaired reversal learning while sparing episodic memory, prior learning, and new learning. Furthermore, paclitaxel-treated rats showed decreases in markers of hippocampal cell proliferation, as measured by markers of cell proliferation assessed using immunostaining for Ki67 and BrdU. This work highlights the importance of using multiple measures of learning and memory to identify the pattern of impaired and spared aspects of chemotherapy-induced cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Communication Skills and Learning in Impaired Individuals

    Science.gov (United States)

    Eliöz, Murat

    2016-01-01

    The purpose of this study is to compare the communication skills of individuals with different disabilities with athletes and sedentary people and to examine their learning abilities which influence the development of communication. A total of 159 male subjects 31 sedentary, 30 visually impaired, 27 hearing impaired, 40 physically impaired and 31…

  15. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  16. Incidental Learning of Sound Categories is Impaired in Developmental Dyslexia

    Science.gov (United States)

    Gabay, Yafit; Holt, Lori L.

    2015-01-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. PMID:26409017

  17. Public Computer Assisted Learning Facilities for Children with Visual Impairment: Universal Design for Inclusive Learning

    Science.gov (United States)

    Siu, Kin Wai Michael; Lam, Mei Seung

    2012-01-01

    Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…

  18. Verbal learning and memory impairments in posttraumatic stress disorder: the role of encoding strategies.

    Science.gov (United States)

    Johnsen, Grethe E; Asbjørnsen, Arve E

    2009-01-30

    The present study examined mechanisms underlying verbal memory impairments in patients with posttraumatic stress disorder (PTSD). Earlier studies have reported that the verbal learning and memory alterations in PTSD are related to impaired encoding, but the use of encoding and organizational strategies in patients with PTSD has not been fully explored. This study examined organizational strategies in 21 refugees/immigrants exposed to war and political violence who fulfilled DSM-IV criteria for chronic PTSD compared with a control sample of 21 refugees/immigrants with similar exposure, but without PTSD. The California Verbal Learning Test was administered to examine differences in organizational strategies and memory. The semantic clustering score was slightly reduced in both groups, but the serial cluster score was significantly impaired in the PTSD group and they also reported more items from the recency region of the list. In addition, intrusive errors were significantly increased in the PTSD group. The data support an assumption of changed memory strategies in patients with PTSD associated with a specific impairment in executive control. However, memory impairment and the use of ineffective learning strategies may not be related to PTSD symptomatology only, but also to self-reported symptoms of depression and general distress.

  19. Incidental learning of sound categories is impaired in developmental dyslexia.

    Science.gov (United States)

    Gabay, Yafit; Holt, Lori L

    2015-12-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. Copyright © 2015 Elsevier Ltd. All rights

  20. Impaired associative learning with food rewards in obese women.

    Science.gov (United States)

    Zhang, Zhihao; Manson, Kirk F; Schiller, Daniela; Levy, Ifat

    2014-08-04

    Obesity is a major epidemic in many parts of the world. One of the main factors contributing to obesity is overconsumption of high-fat and high-calorie food, which is driven by the rewarding properties of these types of food. Previous studies have suggested that dysfunction in reward circuits may be associated with overeating and obesity. The nature of this dysfunction, however, is still unknown. Here, we demonstrate impairment in reward-based associative learning specific to food in obese women. Normal-weight and obese participants performed an appetitive reversal learning task in which they had to learn and modify cue-reward associations. To test whether any learning deficits were specific to food reward or were more general, we used a between-subject design in which half of the participants received food reward and the other half received money reward. Our results reveal a marked difference in associative learning between normal-weight and obese women when food was used as reward. Importantly, no learning deficits were observed with money reward. Multiple regression analyses also established a robust negative association between body mass index and learning performance in the food domain in female participants. Interestingly, such impairment was not observed in obese men. These findings suggest that obesity may be linked to impaired reward-based associative learning and that this impairment may be specific to the food domain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Impairments in Learning Due to Motivational Conflict: Situation Really Matters

    Science.gov (United States)

    Brassler, Nina K.; Grund, Axel; Hilckmann, Kristina; Fries, Stefan

    2016-01-01

    Although many theories mention distractions by conflicting alternatives as a problem for self-regulation, motivational conflicts are rarely considered when explaining impairments in learning. In two studies, we investigate the assumption of motivational interference theory that students show different amounts of impairments in learning depending…

  2. Postnatal TLR2 activation impairs learning and memory in adulthood.

    Science.gov (United States)

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Feedback-based probabilistic category learning is selectively impaired in attention/hyperactivity deficit disorder.

    Science.gov (United States)

    Gabay, Yafit; Goldfarb, Liat

    2017-07-01

    Although Attention-Deficit Hyperactivity Disorder (ADHD) is closely linked to executive function deficits, it has recently been attributed to procedural learning impairments that are quite distinct from the former. These observations challenge the ability of the executive function framework solely to account for the diverse range of symptoms observed in ADHD. A recent neurocomputational model emphasizes the role of striatal dopamine (DA) in explaining ADHD's broad range of deficits, but the link between this model and procedural learning impairments remains unclear. Significantly, feedback-based procedural learning is hypothesized to be disrupted in ADHD because of the involvement of striatal DA in this type of learning. In order to test this assumption, we employed two variants of a probabilistic category learning task known from the neuropsychological literature. Feedback-based (FB) and paired associate-based (PA) probabilistic category learning were employed in a non-medicated sample of ADHD participants and neurotypical participants. In the FB task, participants learned associations between cues and outcomes initially by guessing and subsequently through feedback indicating the correctness of the response. In the PA learning task, participants viewed the cue and its associated outcome simultaneously without receiving an overt response or corrective feedback. In both tasks, participants were trained across 150 trials. Learning was assessed in a subsequent test without a presentation of the outcome or corrective feedback. Results revealed an interesting disassociation in which ADHD participants performed as well as control participants in the PA task, but were impaired compared with the controls in the FB task. The learning curve during FB training differed between the two groups. Taken together, these results suggest that the ability to incrementally learn by feedback is selectively disrupted in ADHD participants. These results are discussed in relation to both

  4. Impaired learning of punishments in Parkinson's disease with and without impulse control disorder.

    Science.gov (United States)

    Leplow, Bernd; Sepke, Maria; Schönfeld, Robby; Pohl, Johannes; Oelsner, Henriette; Latzko, Lea; Ebersbach, Georg

    2017-02-01

    To document specific learning mechanisms in patients with Parkinson's disease (PD) with and without impulse control disorder (ICD). Thirty-two PD patients receiving dopamine replacement therapy (DRT) were investigated. Sixteen were diagnosed with ICD (ICD + ) and 16 PD patients matched for levodopa equivalence dosage, and DRT duration and severity of disease did not show impulsive behavior (non-ICD). Short-term learning of inhibitory control was assessed by an experimental procedure which was intended to mimic everyday life. Correct inhibition especially, had to be learned without reward (passive avoidance), and the failure to inhibit a response was punished (punishment learning). Results were compared to 16 healthy controls (HC) matched for age and sex. In ICD + patients within-session learning of non-rewarded inhibition was at chance levels. Whereas healthy controls rapidly developed behavioral inhibition, non-ICD patients were also significantly impaired compared to HC, but gradually developed some degree of control. Both patient groups showed significantly decreased learning if the failure to withhold a response was punished. PD patients receiving DRT show impaired ability to acquire both punishment learning and passive avoidance learning, irrespective of whether or not ICD was developed. In ICD + PD patients, behavioral inhibition is nearly absent. Results demonstrate that by means of subtle learning paradigms it is possible to identify PD-DRT patients who show subtle alterations of punishment learning. This may be a behavioral measure for the identification of PD patients who are prone to develop ICD if DRT is continued.

  5. Impairments in action-outcome learning in schizophrenia.

    Science.gov (United States)

    Morris, Richard W; Cyrzon, Chad; Green, Melissa J; Le Pelley, Mike E; Balleine, Bernard W

    2018-03-03

    Learning the causal relation between actions and their outcomes (AO learning) is critical for goal-directed behavior when actions are guided by desire for the outcome. This can be contrasted with habits that are acquired by reinforcement and primed by prevailing stimuli, in which causal learning plays no part. Recently, we demonstrated that goal-directed actions are impaired in schizophrenia; however, whether this deficit exists alongside impairments in habit or reinforcement learning is unknown. The present study distinguished deficits in causal learning from reinforcement learning in schizophrenia. We tested people with schizophrenia (SZ, n = 25) and healthy adults (HA, n = 25) in a vending machine task. Participants learned two action-outcome contingencies (e.g., push left to get a chocolate M&M, push right to get a cracker), and they also learned one contingency was degraded by delivery of noncontingent outcomes (e.g., free M&Ms), as well as changes in value by outcome devaluation. Both groups learned the best action to obtain rewards; however, SZ did not distinguish the more causal action when one AO contingency was degraded. Moreover, action selection in SZ was insensitive to changes in outcome value unless feedback was provided, and this was related to the deficit in AO learning. The failure to encode the causal relation between action and outcome in schizophrenia occurred without any apparent deficit in reinforcement learning. This implies that poor goal-directed behavior in schizophrenia cannot be explained by a more primary deficit in reward learning such as insensitivity to reward value or reward prediction errors.

  6. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Impaired implicit learning and feedback processing after stroke.

    Science.gov (United States)

    Lam, J M; Globas, C; Hosp, J A; Karnath, H-O; Wächter, T; Luft, A R

    2016-02-09

    The ability to learn is assumed to support successful recovery and rehabilitation therapy after stroke. Hence, learning impairments may reduce the recovery potential. Here, the hypothesis is tested that stroke survivors have deficits in feedback-driven implicit learning. Stroke survivors (n=30) and healthy age-matched control subjects (n=21) learned a probabilistic classification task with brain activation measured using functional magnetic resonance imaging in a subset of these individuals (17 stroke and 10 controls). Stroke subjects learned slower than controls to classify cues. After being rewarded with a smiley face, they were less likely to give the same response when the cue was repeated. Stroke subjects showed reduced brain activation in putamen, pallidum, thalamus, frontal and prefrontal cortices and cerebellum when compared with controls. Lesion analysis identified those stroke survivors as learning-impaired who had lesions in frontal areas, putamen, thalamus, caudate and insula. Lesion laterality had no effect on learning efficacy or brain activation. These findings suggest that stroke survivors have deficits in reinforcement learning that may be related to dysfunctional processing of feedback-based decision-making, reward signals and working memory. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    Science.gov (United States)

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Learning impairment in honey bees caused by agricultural spray adjuvants.

    Directory of Open Access Journals (Sweden)

    Timothy J Ciarlo

    Full Text Available BACKGROUND: Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s. The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. METHODOLOGY/PRINCIPAL FINDINGS: An improved, automated version of the proboscis extension reflex (PER assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. CONCLUSIONS/SIGNIFICANCE: A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many

  10. Statistical Learning in Specific Language Impairment and Autism Spectrum Disorder: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Rita Obeid

    2016-08-01

    Full Text Available Impairments in statistical learning might be a common deficit among individuals with Specific Language Impairment (SLI and Autism Spectrum Disorder (ASD. Using meta-analysis, we examined statistical learning in SLI (14 studies, 15 comparisons and ASD (13 studies, 20 comparisons to evaluate this hypothesis. Effect sizes were examined as a function of diagnosis across multiple statistical learning tasks (Serial Reaction Time, Contextual Cueing, Artificial Grammar Learning, Speech Stream, Observational Learning, Probabilistic Classification. Individuals with SLI showed deficits in statistical learning relative to age-matched controls g = .47, 95% CI [.28, .66], p < .001. In contrast, statistical learning was intact in individuals with ASD relative to controls, g = –.13, 95% CI [–.34, .08], p = .22. Effect sizes did not vary as a function of task modality or participant age. Our findings inform debates about overlapping social-communicative difficulties in children with SLI and ASD by suggesting distinct underlying mechanisms. In line with the procedural deficit hypothesis (Ullman & Pierpont, 2005, impaired statistical learning may account for phonological and syntactic difficulties associated with SLI. In contrast, impaired statistical learning fails to account for the social-pragmatic difficulties associated with ASD.

  11. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.

    Science.gov (United States)

    Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J

    2013-05-01

    Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.

  12. Age-related impairments in active learning and strategic visual exploration

    Directory of Open Access Journals (Sweden)

    Kelly L Brandstatt

    2014-02-01

    Full Text Available Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  13. Age-related impairments in active learning and strategic visual exploration.

    Science.gov (United States)

    Brandstatt, Kelly L; Voss, Joel L

    2014-01-01

    Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  14. Crocin Improved Learning and Memory Impairments in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2013-01-01

    Full Text Available Objective(s: Crocin influences many biological functions including memory and learning. The present study was aimed to investigate the effects of crocin on learning and memory impairments in streptozotocine-induced diabetic rats. Materials and Methods: Diabetes was induced by intraperitoneal (IP injection of streptozotocin (STZ, 45 mg/kg. Transfer latency (TL paradigm in elevated plus-maze (EPM was used as an index of learning and memory. Plasma levels of total antioxidant capacity (TAC and malondialdehyde (MDA, blood levels of glucose, and serum concentrations of insulin were measured. The number of hippocampal neurons was also counted. Results: STZ increased acquisition transfer latency (TL1 and retention transfer latency (TL2, and MDA, decreased transfer latency shortening (TLs and TCA, produced hyperglycemia and hypoinsulinemia, and reduced the number of neurons in the hippocampus. Learning and memory impairments and blood TCA, MDA, glucose, and insulin changes induced by streptozotocin were improved with long-term IP injection of crocin at doses of 15 and 30 mg/kg. Crocin prevented hippocampal neurons number loss in diabetic rats. Conclusion: The results indicate that oxidative stress, hyperglycemia, hypoinsulinemia, and reduction of hippocampal neurons may be involved in learning and memory impairments in STZ-induced diabetic rats. Antioxidant, antihyperglycemic, antihypoinsulinemic, and neuroprotective activities of crocin might be involved in improving learning and memory impairments.

  15. Grammar predicts procedural learning and consolidation deficits in children with Specific Language Impairment.

    Science.gov (United States)

    Hedenius, Martina; Persson, Jonas; Tremblay, Antoine; Adi-Japha, Esther; Veríssimo, João; Dye, Cristina D; Alm, Per; Jennische, Margareta; Bruce Tomblin, J; Ullman, Michael T

    2011-01-01

    The Procedural Deficit Hypothesis (PDH) posits that Specific Language Impairment (SLI) can be largely explained by abnormalities of brain structures that subserve procedural memory. The PDH predicts impairments of procedural memory itself, and that such impairments underlie the grammatical deficits observed in the disorder. Previous studies have indeed reported procedural learning impairments in SLI, and have found that these are associated with grammatical difficulties. The present study extends this research by examining consolidation and longer-term procedural sequence learning in children with SLI. The Alternating Serial Reaction Time (ASRT) task was given to children with SLI and typically developing (TD) children in an initial learning session and an average of three days later to test for consolidation and longer-term learning. Although both groups showed evidence of initial sequence learning, only the TD children showed clear signs of consolidation, even though the two groups did not differ in longer-term learning. When the children were re-categorized on the basis of grammar deficits rather than broader language deficits, a clearer pattern emerged. Whereas both the grammar impaired and normal grammar groups showed evidence of initial sequence learning, only those with normal grammar showed consolidation and longer-term learning. Indeed, the grammar-impaired group appeared to lose any sequence knowledge gained during the initial testing session. These findings held even when controlling for vocabulary or a broad non-grammatical language measure, neither of which were associated with procedural memory. When grammar was examined as a continuous variable over all children, the same relationships between procedural memory and grammar, but not vocabulary or the broader language measure, were observed. Overall, the findings support and further specify the PDH. They suggest that consolidation and longer-term procedural learning are impaired in SLI, but that these

  16. Grammar Predicts Procedural Learning and Consolidation Deficits in Children with Specific Language Impairment

    Science.gov (United States)

    Hedenius, Martina; Persson, Jonas; Tremblay, Antoine; Adi-Japha, Esther; Veríssimo, João; Dye, Cristina D.; Alm, Per; Jennische, Margareta; Tomblin, J. Bruce; Ullman, Michael T.

    2011-01-01

    The Procedural Deficit Hypothesis (PDH) posits that Specific Language Impairment (SLI) can be largely explained by abnormalities of brain structures that subserve procedural memory. The PDH predicts impairments of procedural memory itself, and that such impairments underlie the grammatical deficits observed in the disorder. Previous studies have indeed reported procedural learning impairments in SLI, and have found that these are associated with grammatical difficulties. The present study extends this research by examining the consolidation and longer-term procedural sequence learning in children with SLI. The Alternating Serial Reaction Time (ASRT) task was given to children with SLI and typically-developing (TD) children in an initial learning session and an average of three days later to test for consolidation and longer-term learning. Although both groups showed evidence of initial sequence learning, only the TD children showed clear signs of consolidation, even though the two groups did not differ in longer-term learning. When the children were re-categorized on the basis of grammar deficits rather than broader language deficits, a clearer pattern emerged. Whereas both the grammar impaired and normal grammar groups showed evidence of initial sequence learning, only those with normal grammar showed consolidation and longer-term learning. Indeed, the grammar-impaired group appeared to lose any sequence knowledge gained during the initial testing session. These findings held even when controlling for vocabulary or a broad non-grammatical language measure, neither of which were associated with procedural memory. When grammar was examined as a continuous variable over all children, the same relationships between procedural memory and grammar, but not vocabulary or the broader language measure, were observed. Overall, the findings support and further specify the PDH. They suggest that consolidation and longer-term procedural learning are impaired in SLI, but that

  17. Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability.

    Science.gov (United States)

    Xiaoli, Feng; Junrong, Wu; Xuan, Lai; Yanli, Zhang; Limin, Wei; Jia, Liu; Longquan, Shao

    2017-04-01

    To examine the neurotoxicity of prenatal exposure to ZnO nanoparticles on rat offspring. Pregnant Sprague-Dawley rats were exposed to ZnO nanoparticles (NPs) by gavage. Toxicity was assessed including zinc biodistribution, cerebral histopathology, antioxidant status and learning and memory capability. A significantly elevated concentration of zinc was detected in offspring brains. Transmission electron microscope observations showed abnormal neuron ultrastructures. Histopathologic changes such as decreased proliferation and higher apoptotic death were observed. An obvious imbalanced antioxidant status occurred in brains. Adult experimental offspring exhibited impaired learning and memory behavior in the Morris water maze test compared with control groups. These adverse effects on offspring brain may cause impaired learning and memory capabilities in adulthood, particularly in female rats.

  18. Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice

    Institute of Scientific and Technical Information of China (English)

    Yan-Jiong Chen; Teng Chen; Yan-Ling Liu; Qing Zhong; Yan-Fang Yu; Hong-Liang Su; Haroldo A.Toque; Yong-Hui Dang; Feng Chen; Ming Xu

    2012-01-01

    [Objective] The purpose of this study was to investigate the effect of methamphetamine (MA) on spatial learning and memory and the role of tetrahydropalmatine (THP) in MA-induced changes in these phenomena in mice.[Methods]Male C57BL/6 mice were randomly divided into eight groups,according to different doses of MA,different doses of THP,treatment with both MA and THP,and saline controls.Spatial learning and memory were assessed using the Morris water maze.Western blot was used to detect the expression of extracellular signal-regulated protein kinase (ERK) in the mouse prefrontal cortex (PFC) and hippocampus.[Results] Repeated MA treatment significantly increased the escape latency in the learning phase and decreased the number of platform site crossings in the memory-test phase.ERK1/2 expression was decreased in the PFC but not in the hippocampus of the MA-treated mice.Repeated THP treatment alone did not affect the escape latency,the number of platform site crossings or the total ERK1/2 expression in the brain.Statistically significantly shorter escape latencies and more platform site crossings occurred in MA+THP-trcatcd mice than in MA-treated mice.[Conclusion]Repeated MA administration impairs spatial learning and memory in mice,and its co-administration with THP prevents this impairment,which is probably attributable to changed ERK1/2 expression in the PFC.This study contributes to uncovering the mechanism underlying MA abuse,and to exploring potential therapies.

  19. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.

    Science.gov (United States)

    Zhao, H; Ji, Z-H; Liu, C; Yu, X-Y

    2015-04-02

    Studies demonstrated that chronic high-dose homocysteine administration induced learning and memory impairment in animals. Atractylenolide III (Aen-III), a neuroprotective constituent of Atractylodis macrocephalae Koidz, was isolated in our previous study. In this study, we investigated potential benefits of Aen-III in preventing learning and memory impairment following chronic high-dose homocysteine administration in rats. Results showed that administration of Aen-III significantly ameliorated learning and memory impairment induced by chronic high-dose homocysteine administration in rats, decreased homocysteine-induced reactive oxygen species (ROS) formation and restored homocysteine-induced decrease of phosphorylated protein kinase C expression level. Moreover, Aen-III protected primary cultured neurons from apoptotic death induced by homocysteine treatment. This study provides the first evidence for the neuroprotective effect of Aen-III in preventing learning and impairment induced by chronic administration of homocysteine. Aen-III may have therapeutic potential in treating homocysteine-mediated cognitive impairment and neuronal injury. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Effect of vitamin E on lead exposure-induced learning and memory impairment in rats.

    Science.gov (United States)

    Khodamoradi, Nasrin; Komaki, Alireza; Salehi, Iraj; Shahidi, Siamak; Sarihi, Abdolrahman

    2015-05-15

    Chronic lead (Pb(2+)) exposure has been associated with learning and memory impairments, whereas vitamin E improves cognitive deficits. In this study, using a passive avoidance learning model in rats, we investigated the effects of vitamin E on Pb(2+) exposure-induced learning and memory impairments in rats. In the present study, 56 Wistar male rats (weighting 230-250g) were divided into eight groups (n=7). The Pb(2+) exposure involved gavages of lead acetate solution using three different doses (0.05%, 0.1%, and 0.2%) and the vitamin E consisted of three different doses (10, 25, 50μg/rat) for 30days. After the 30-day period, the rats were tested using a passive avoidance task (acquisition test). In a retrieval test conducted 48h after the training, step through latency (STL) and time in the dark compartment (TDC) were recorded. The statistical analysis of data was performed using ANOVA followed by Tukey's post hoc analysis. In all cases, differences were considered significant if plearning and the TDC, whereas it decreased the STL in the passive avoidance test. Administration of vitamin E ameliorated the effects of Pb(2+) on animal behavior in the passive avoidance learning and memory task. Our results indicate that impairments of learning and memory in Pb(2+)-exposed rats are dose dependent and can be inhibited by antioxidants such as vitamin E. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Learning to predict is spared in mild cognitive impairment due to Alzheimer's disease.

    Science.gov (United States)

    Baker, Rosalind; Bentham, Peter; Kourtzi, Zoe

    2015-10-01

    Learning the statistics of the environment is critical for predicting upcoming events. However, little is known about how we translate previous knowledge about scene regularities to sensory predictions. Here, we ask whether patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) that are known to have spared implicit but impaired explicit recognition memory are able to learn temporal regularities and predict upcoming events. We tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a test stimulus following exposure to sequences of leftwards or rightwards oriented gratings. Our results demonstrate that exposure to temporal sequences without feedback facilitates the ability to predict an upcoming stimulus in both MCI-AD patients and controls. Further, we show that executive cognitive control may account for individual variability in predictive learning. That is, we observed significant positive correlations of performance in attentional and working memory tasks with post-training performance in the prediction task. Taken together, these results suggest a mediating role of circuits involved in cognitive control (i.e. frontal circuits) that may support the ability for predictive learning in MCI-AD.

  2. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity

    Science.gov (United States)

    Nguyen-Vu, TD Barbara; Zhao, Grace Q; Lahiri, Subhaneil; Kimpo, Rhea R; Lee, Hanmi; Ganguli, Surya; Shatz, Carla J; Raymond, Jennifer L

    2017-01-01

    Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here, we show that the recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb−/−), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that the recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes. DOI: http://dx.doi.org/10.7554/eLife.20147.001 PMID:28234229

  3. Analysing the physics learning environment of visually impaired students in high schools

    Science.gov (United States)

    Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry

    2017-07-01

    Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp physics concepts, time and additional materials to support the learning process are key. Time for teachers to develop teaching methods for such students is scarce. Suggestions for changes to the learning environment and of materials used are given.

  4. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    Science.gov (United States)

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Later learning stages in procedural memory are impaired in children with Specific Language Impairment.

    Science.gov (United States)

    Desmottes, Lise; Meulemans, Thierry; Maillart, Christelle

    2016-01-01

    According to the Procedural Deficit Hypothesis (PDH), difficulties in the procedural memory system may contribute to the language difficulties encountered by children with Specific Language Impairment (SLI). Most studies investigating the PDH have used the sequence learning paradigm; however these studies have principally focused on initial sequence learning in a single practice session. The present study sought to extend these investigations by assessing the consolidation stage and longer-term retention of implicit sequence-specific knowledge in 42 children with or without SLI. Both groups of children completed a serial reaction time task and were tested 24h and one week after practice. Results showed that children with SLI succeeded as well as children with typical development (TD) in the early acquisition stage of the sequence learning task. However, as training blocks progressed, only TD children improved their sequence knowledge while children with SLI did not appear to evolve any more. Moreover, children with SLI showed a lack of the consolidation gains in sequence knowledge displayed by the TD children. Overall, these results were in line with the predictions of the PDH and suggest that later learning stages in procedural memory are impaired in SLI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Statistical word learning in children with autism spectrum disorder and specific language impairment.

    Science.gov (United States)

    Haebig, Eileen; Saffran, Jenny R; Ellis Weismer, Susan

    2017-11-01

    Word learning is an important component of language development that influences child outcomes across multiple domains. Despite the importance of word knowledge, word-learning mechanisms are poorly understood in children with specific language impairment (SLI) and children with autism spectrum disorder (ASD). This study examined underlying mechanisms of word learning, specifically, statistical learning and fast-mapping, in school-aged children with typical and atypical development. Statistical learning was assessed through a word segmentation task and fast-mapping was examined in an object-label association task. We also examined children's ability to map meaning onto newly segmented words in a third task that combined exposure to an artificial language and a fast-mapping task. Children with SLI had poorer performance on the word segmentation and fast-mapping tasks relative to the typically developing and ASD groups, who did not differ from one another. However, when children with SLI were exposed to an artificial language with phonemes used in the subsequent fast-mapping task, they successfully learned more words than in the isolated fast-mapping task. There was some evidence that word segmentation abilities are associated with word learning in school-aged children with typical development and ASD, but not SLI. Follow-up analyses also examined performance in children with ASD who did and did not have a language impairment. Children with ASD with language impairment evidenced intact statistical learning abilities, but subtle weaknesses in fast-mapping abilities. As the Procedural Deficit Hypothesis (PDH) predicts, children with SLI have impairments in statistical learning. However, children with SLI also have impairments in fast-mapping. Nonetheless, they are able to take advantage of additional phonological exposure to boost subsequent word-learning performance. In contrast to the PDH, children with ASD appear to have intact statistical learning, regardless of

  7. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, Bianca; Boonstra, F. Nienke; Cox, Ralf F. A.; van Rens, Ger; Cillessen, Antonius H. N.

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  8. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; van Rens, G.H.M.B.; Cillessen, A.H.N.

    2013-01-01

    Purpose. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Methods. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  9. Perceptual learning in children with visual impairment improves near visual acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.; Rens, G. van; Cillessen, A.H.

    2013-01-01

    PURPOSE: This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. METHODS: Participants were 45 children with visual impairment and 29 children with normal vision. Children

  10. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; Rens, G.H.M.B. van; Cillessen, A.H.N.

    2013-01-01

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  11. Comparison of explicit and incidental learning strategies in memory-impaired patients.

    Science.gov (United States)

    Smith, Christine N; Urgolites, Zhisen J; Hopkins, Ramona O; Squire, Larry R

    2014-01-07

    Declarative memory for rapidly learned, novel associations is thought to depend on structures in the medial temporal lobe (MTL), whereas associations learned more gradually can sometimes be supported by nondeclarative memory and by structures outside the MTL. A recent study suggested that even rapidly learned associations can be supported by structures outside the MTL when an incidental encoding procedure termed "fast mapping" (FM) is used. We tested six memory-impaired patients with bilateral damage to hippocampus and one patient with large bilateral lesions of the MTL. Participants saw photographs and names of animals, plants, and foods that were previously unfamiliar (e.g., mangosteen). Instead of asking participants to study name-object pairings for a later memory test (as with traditional memory instructions), participants answered questions that allowed them to infer which object corresponded to a particular name. In a second condition, participants learned name-object associations of unfamiliar items by using standard, explicit encoding instructions (e.g., remember the mangosteen). In FM and explicit encoding conditions, patients were impaired (and performed no better than a group that was given the same tests but had not previously studied the material). The same results were obtained in a second experiment that used the same procedures with modifications to allow for more robust learning and more reliable measures of performance. Thus, our results with the FM procedure and memory-impaired patients yielded the same deficits in learning and memory that have been obtained by using other more traditional paradigms.

  12. Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress.

    Science.gov (United States)

    Song, Li; Che, Wang; Min-Wei, Wang; Murakami, Yukihisa; Matsumoto, Kinzo

    2006-02-01

    Increasing evidences indicate the concurrence and interrelationship of depression and cognitive impairments. The present study was undertaken to investigate the effects of two depressive animal models, learned helplessness (LH) and chronic mild stress (CMS), on the cognitive functions of mice in the Morris water maze task. Our results demonstrated that both LH and CMS significantly decreased the cognitive performance of stressed mice in the water maze task. The escaping latency to the platform was prolonged and the probe test percentage in the platform quadrant was reduced. These two models also increased the plasma corticosterone concentration and decreased the brain derived neurotrophic factor (BDNF) and cAMP-response element-biding protein (CREB) messenger ribonucleic acid (mRNA) levels in hippocampus, which might cause the spatial cognition deficits. Repeated treatment with antidepressant drugs, imipramine (Imi) and fluoxetine (Flu), significantly reduced the plasma corticosterone concentration and enhanced the BDNF and CREB levels. Furthermore, antidepressant treated animals showed an ameliorated cognitive performance compared with the vehicle treated stressed animals. These data suggest that both LH and CMS impair the spatial cognitive function and repeated treatment with antidepressant drugs decreases the prevalence of cognitive impairments induced by these two animal models. Those might in part be attributed to the reduced plasma corticosterone and enhanced hippocampal BDNF and CREB expressions. This study provided a better understanding of molecular mechanisms underlying interactions of depression and cognitive impairments, although animal models used in this study can mimic only some aspects of depression or cognition of human.

  13. First-order and higher order sequence learning in specific language impairment.

    Science.gov (United States)

    Clark, Gillian M; Lum, Jarrad A G

    2017-02-01

    A core claim of the procedural deficit hypothesis of specific language impairment (SLI) is that the disorder is associated with poor implicit sequence learning. This study investigated whether implicit sequence learning problems in SLI are present for first-order conditional (FOC) and higher order conditional (HOC) sequences. Twenty-five children with SLI and 27 age-matched, nonlanguage-impaired children completed 2 serial reaction time tasks. On 1 version, the sequence to be implicitly learnt comprised a FOC sequence and on the other a HOC sequence. Results showed that the SLI group learned the HOC sequence (η p ² = .285, p = .005) but not the FOC sequence (η p ² = .099, p = .118). The control group learned both sequences (FOC η p ² = .497, HOC η p 2= .465, ps < .001). The SLI group's difficulty learning the FOC sequence is consistent with the procedural deficit hypothesis. However, the study provides new evidence that multiple mechanisms may underpin the learning of FOC and HOC sequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats.

    Science.gov (United States)

    Zhong, Yu; Chen, Jing; Li, Li; Qin, Yi; Wei, Yi; Pan, Shining; Jiang, Yage; Chen, Jialin; Xie, Yubo

    2018-04-20

    Studies have found that propofol can induce widespread neuroapoptosis in developing brains, which leads to cause long-term learning and memory abnormalities. However, the specific cellular and molecular mechanisms underlying propofol-induced neuroapoptosis remain elusive. The aim of the present study was to explore the role of PKA-CREB-BDNF signaling pathway in propofol-induced long-term learning and memory impairment during brain development. Seven-day-old rats were randomly assigned to control, intralipid and three treatment groups (n = 5). Rats in control group received no treatment. Intralipid (10%, 10 mL/kg) for vehicle control and different dosage of propofol for three treatment groups (50, 100 and 200 mg/kg) were administered intraperitoneally. FJB staining, immunohistochemistry analysis for neuronal nuclei antigen and transmission electron microscopy were used to detect neuronal apoptosis and structure changes. MWM test examines the long-term spatial learning and memory impairment. The expression of PKA, pCREB and BDNF was quantified using western blots. Propofol induced significant increase of FJB-positive cells and decrease of PKA, pCREB and BDNF protein levels in the immature brain of P7 rats. Using the MWM test, propofol-treated rats demonstrated long-term spatial learning and memory impairment. Moreover, hippocampal NeuN-positive cell loss, long-lasting ultrastructural abnormalities of the neurons and synapses, and long-term down-regulation of PKA, pCREB and BDNF protein expression in adult hippocampus were also found. Our results indicated that neonatal propofol exposure can significantly result in long-term learning and memory impairment in adulthood. The possible mechanism involved in the propofol-induced neuroapoptosis was related to down-regulation of PKA-CREB-BDNF signaling pathway. Copyright © 2018. Published by Elsevier B.V.

  15. Neuropsychological Test Selection for Cognitive Impairment Classification: A Machine Learning Approach

    Science.gov (United States)

    Williams, Jennifer A.; Schmitter-Edgecombe, Maureen; Cook, Diane J.

    2016-01-01

    Introduction Reducing the amount of testing required to accurately detect cognitive impairment is clinically relevant. The aim of this research was to determine the fewest number of clinical measures required to accurately classify participants as healthy older adult, mild cognitive impairment (MCI) or dementia using a suite of classification techniques. Methods Two variable selection machine learning models (i.e., naive Bayes, decision tree), a logistic regression, and two participant datasets (i.e., clinical diagnosis, clinical dementia rating; CDR) were explored. Participants classified using clinical diagnosis criteria included 52 individuals with dementia, 97 with MCI, and 161 cognitively healthy older adults. Participants classified using CDR included 154 individuals CDR = 0, 93 individuals with CDR = 0.5, and 25 individuals with CDR = 1.0+. Twenty-seven demographic, psychological, and neuropsychological variables were available for variable selection. Results No significant difference was observed between naive Bayes, decision tree, and logistic regression models for classification of both clinical diagnosis and CDR datasets. Participant classification (70.0 – 99.1%), geometric mean (60.9 – 98.1%), sensitivity (44.2 – 100%), and specificity (52.7 – 100%) were generally satisfactory. Unsurprisingly, the MCI/CDR = 0.5 participant group was the most challenging to classify. Through variable selection only 2 – 9 variables were required for classification and varied between datasets in a clinically meaningful way. Conclusions The current study results reveal that machine learning techniques can accurately classifying cognitive impairment and reduce the number of measures required for diagnosis. PMID:26332171

  16. Severity of explicit memory impairment due to Alzheimer's disease improves effectiveness of implicit learning.

    Science.gov (United States)

    Klimkowicz-Mrowiec, Aleksandra; Slowik, Agnieszka; Krzywoszanski, Lukasz; Herzog-Krzywoszanska, Radosława; Szczudlik, Andrzej

    2008-04-01

    Consistent evidence from human and experimental animals studies indicates that memory is organized into two relatively independent systems with different functions and brain mechanisms. The explicit memory system, dependent on the hippocampus and adjacent medial temporal lobe structures, refers to conscious knowledge acquisition and intentional recollection of previous experiences. The implicit memory system, dependent on the striatum, refers to learning of complex information without awareness or intention. The functioning of implicit memory can be observed in progressive, gradual improvement across many trials in performance on implicit learning tasks. The influence of explicit memory on implicit memory has not been precisely identified yet. According to data from some studies, explicit memory seems to exhibit no influence on implicit memory,whereas the other studies indicate that explicit memory may inhibit or facilitate implicit memory. The analysis of performance on implicit learning tasks in patients with different severity of explicit memory impairment due to Alzheimer's disease allows one to identify the potential influence of the explicit memory system on the implicit memory system. 51 patients with explicit memory impairment due to Alzheimer's disease (AD) and 36 healthy controls were tested. Explicit memory was examined by means of a battery of neuropsychological tests. Implicit habit learning was examined on probabilistic classification task (weather prediction task). Patients with moderate explicit memory impairment performed the implicit task significantly better than those with mild AD and controls. Results of our study support the hypothesis of competition between the implicit and explicit memory systems in humans.

  17. Impaired Expected Value Computations Coupled With Overreliance on Stimulus-Response Learning in Schizophrenia.

    Science.gov (United States)

    Hernaus, Dennis; Gold, James M; Waltz, James A; Frank, Michael J

    2018-04-03

    While many have emphasized impaired reward prediction error signaling in schizophrenia, multiple studies suggest that some decision-making deficits may arise from overreliance on stimulus-response systems together with a compromised ability to represent expected value. Guided by computational frameworks, we formulated and tested two scenarios in which maladaptive representations of expected value should be most evident, thereby delineating conditions that may evoke decision-making impairments in schizophrenia. In a modified reinforcement learning paradigm, 42 medicated people with schizophrenia and 36 healthy volunteers learned to select the most frequently rewarded option in a 75-25 pair: once when presented with a more deterministic (90-10) pair and once when presented with a more probabilistic (60-40) pair. Novel and old combinations of choice options were presented in a subsequent transfer phase. Computational modeling was employed to elucidate contributions from stimulus-response systems (actor-critic) and expected value (Q-learning). People with schizophrenia showed robust performance impairments with increasing value difference between two competing options, which strongly correlated with decreased contributions from expected value-based learning (Q-learning). Moreover, a subtle yet consistent contextual choice bias for the probabilistic 75 option was present in people with schizophrenia, which could be accounted for by a context-dependent reward prediction error in the actor-critic. We provide evidence that decision-making impairments in schizophrenia increase monotonically with demands placed on expected value computations. A contextual choice bias is consistent with overreliance on stimulus-response learning, which may signify a deficit secondary to the maladaptive representation of expected value. These results shed new light on conditions under which decision-making impairments may arise. Copyright © 2018 Society of Biological Psychiatry. Published by

  18. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees.

    Science.gov (United States)

    Williamson, Sally M; Wright, Geraldine A

    2013-05-15

    Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes.

  19. The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory.

    Science.gov (United States)

    Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D

    2017-03-01

    Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  1. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.

    Science.gov (United States)

    Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin

    2016-12-01

    The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.

  2. Effects of Early Chemotherapeutic Treatment on Learning in Adolescent Mice: Implications for Cognitive Impairment and Remediation in Childhood Cancer Survivors

    Science.gov (United States)

    Bisen-Hersh, Emily B.; Hineline, Philip N.; Walker, Ellen A.

    2013-01-01

    Purpose Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40-70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Experimental Design Pre-weanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days following treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Results Significant impairment in acquisition and retention over both short (1h) and long (24h) intervals, as measured by autoshaping and novel object recognition tasks, were found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Conclusions Findings are consistent with clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy treatment. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. PMID:23596103

  3. Effects of early chemotherapeutic treatment on learning in adolescent mice: implications for cognitive impairment and remediation in childhood cancer survivors.

    Science.gov (United States)

    Bisen-Hersh, Emily B; Hineline, Philip N; Walker, Ellen A

    2013-06-01

    Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40% to 70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Preweanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days after treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Significant impairment in acquisition and retention over both short (1 hour) and long (24 hours) intervals, as measured by autoshaping and novel object recognition tasks, was found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Findings are consistent with those from clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. ©2013 AACR

  4. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    Science.gov (United States)

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they

  5. Analysing the physics learning environment of visually impaired students in high schools

    NARCIS (Netherlands)

    Toenders, F.G.C.; de Putter - Smits, L.G.A.; Sanders, W.T.M.; den Brok, P.J.

    2017-01-01

    Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp

  6. Imidacloprid impairs shorter-term and longer-term learning in honey bees (Apis mellifera)

    OpenAIRE

    Zhang, Erica

    2014-01-01

    Even at sublethal doses, neonicotinoids, commonly used insecticides can affect neurons involved in learning and memory, cognitive features that play a key role in colony fitness because they facilitate foraging. The commonly used neonicotinoid, imidacloprid, impairs the ability of bees to associate floral odors with a nectar reward. However, no studies, to date, have examined how if imidacloprid impairs negative associative learning. Sit- and-wait predators like spiders can attack foraging be...

  7. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    Science.gov (United States)

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  8. Quality of life is significantly impaired in non-allergic rhinitis patients

    NARCIS (Netherlands)

    Segboer, Christine L.; Terreehorst, Ingrid; Gevorgyan, Artur; Hellings, Peter W.; van Drunen, Cornelis M.; Fokkens, Wytske J.

    2017-01-01

    In contrast to the well-known significant impairment of quality of life (QoL) in allergic rhinitis (AR), the degree of impairment in QoL in non-allergic rhinitis (NAR) remained unknown for a long time, due to a lack of a validated questionnaire to assess QoL in the NAR patient group. In this study a

  9. Creating Significant Learning Experiences across Disciplines

    Science.gov (United States)

    Levine, Laura E.; Fallahi, Carolyn R.; Nicoll-Senft, Joan M.; Tessier, Jack T.; Watson, Cheryl L.; Wood, Rebecca M.

    2008-01-01

    The purpose of this study was to use Fink's (2003) taxonomy of significant learning to redesign courses and assess student learning. Significant improvements were found across the semester for students in the six courses, but there were differences in which taxa showed improvement in each course. The meta-analysis showed significant, positive…

  10. Procedural learning is impaired in dyslexia: Evidence from a meta-analysis of serial reaction time studies☆

    Science.gov (United States)

    Lum, Jarrad A.G.; Ullman, Michael T.; Conti-Ramsden, Gina

    2013-01-01

    A number of studies have investigated procedural learning in dyslexia using serial reaction time (SRT) tasks. Overall, the results have been mixed, with evidence of both impaired and intact learning reported. We undertook a systematic search of studies that examined procedural learning using SRT tasks, and synthesized the data using meta-analysis. A total of 14 studies were identified, representing data from 314 individuals with dyslexia and 317 typically developing control participants. The results indicate that, on average, individuals with dyslexia have worse procedural learning abilities than controls, as indexed by sequence learning on the SRT task. The average weighted standardized mean difference (the effect size) was found to be 0.449 (CI95: .204, .693), and was significant (p dyslexia. PMID:23920029

  11. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory.

    Directory of Open Access Journals (Sweden)

    Bradley H Lee

    Full Text Available Anesthetic exposure early in life affects neural development and long-term cognitive function, but our understanding of the types of memory that are altered is incomplete. Specific cognitive tests in rodents that isolate different memory processes provide a useful approach for gaining insight into this issue.Postnatal day 7 (P7 rats were exposed to either desflurane or isoflurane at 1 Minimum Alveolar Concentration for 4 h. Acute neuronal death was assessed 12 h later in the thalamus, CA1-3 regions of hippocampus, and dentate gyrus. In separate behavioral experiments, beginning at P48, subjects were evaluated in a series of object recognition tests relying on associative learning, as well as social recognition.Exposure to either anesthetic led to a significant increase in neuroapoptosis in each brain region. The extent of neuronal death did not differ between groups. Subjects were unaffected in simple tasks of novel object and object-location recognition. However, anesthetized animals from both groups were impaired in allocentric object-location memory and a more complex task requiring subjects to associate an object with its location and contextual setting. Isoflurane exposure led to additional impairment in object-context association and social memory.Isoflurane and desflurane exposure during development result in deficits in tasks relying on associative learning and recognition memory. Isoflurane may potentially cause worse impairment than desflurane.

  12. Cognitive decision modelling of emotion-based learning impairment in schizophrenia: the role of awareness.

    Science.gov (United States)

    Cella, Matteo; Dymond, Simon; Cooper, Andrew; Turnbull, Oliver H

    2012-03-30

    Individuals with schizophrenia often lack insight or awareness. Resulting impairment has been observed in various cognitive domains and, recently, linked to problems in emotion-based learning. The Iowa Gambling Task (IGT) has been used to assess emotion-based decision-making in patients with schizophrenia, but results have been inconclusive. The current study further investigates emotion-based decision-making in schizophrenia by elucidating the unique contribution of awareness. Twenty-five patients with schizophrenia and 24 healthy controls were assessed with a modified version of the IGT recording awareness at regular intervals. Symptom assessment, medication and medical history were recorded for the clinical group. Patients with schizophrenia underperformed on the IGT compared to controls. Subjective awareness levels were significantly lower in the schizophrenia group and were associated with hallucination severity. Cognitive decision modelling further indicated that patients with schizophrenia had impaired attention to losses, compared to controls. This parameter was positively correlated with awareness. We also found that positive symptoms altered awareness levels and suggest that this disruption may contribute to sub-optimal decision-making. Overall, a lack of awareness may be an important aspect in understanding impaired social cognitive functioning and emotion-based learning observed in schizophrenia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia.

    Directory of Open Access Journals (Sweden)

    Junie P Warrington

    Full Text Available Whole brain radiation therapy (WBRT is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40-50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia or 21% oxygen (normoxia for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.

  14. Rapid word-learning in normal-hearing and hearing-impaired children: effects of age, receptive vocabulary, and high-frequency amplification.

    Science.gov (United States)

    Pittman, A L; Lewis, D E; Hoover, B M; Stelmachowicz, P G

    2005-12-01

    This study examined rapid word-learning in 5- to 14-year-old children with normal and impaired hearing. The effects of age and receptive vocabulary were examined as well as those of high-frequency amplification. Novel words were low-pass filtered at 4 kHz (typical of current amplification devices) and at 9 kHz. It was hypothesized that (1) the children with normal hearing would learn more words than the children with hearing loss, (2) word-learning would increase with age and receptive vocabulary for both groups, and (3) both groups would benefit from a broader frequency bandwidth. Sixty children with normal hearing and 37 children with moderate sensorineural hearing losses participated in this study. Each child viewed a 4-minute animated slideshow containing 8 nonsense words created using the 24 English consonant phonemes (3 consonants per word). Each word was repeated 3 times. Half of the 8 words were low-pass filtered at 4 kHz and half were filtered at 9 kHz. After viewing the story twice, each child was asked to identify the words from among pictures in the slide show. Before testing, a measure of current receptive vocabulary was obtained using the Peabody Picture Vocabulary Test (PPVT-III). The PPVT-III scores of the hearing-impaired children were consistently poorer than those of the normal-hearing children across the age range tested. A similar pattern of results was observed for word-learning in that the performance of the hearing-impaired children was significantly poorer than that of the normal-hearing children. Further analysis of the PPVT and word-learning scores suggested that although word-learning was reduced in the hearing-impaired children, their performance was consistent with their receptive vocabularies. Additionally, no correlation was found between overall performance and the age of identification, age of amplification, or years of amplification in the children with hearing loss. Results also revealed a small increase in performance for both

  15. Learning trajectories for speech motor performance in children with specific language impairment.

    Science.gov (United States)

    Richtsmeier, Peter T; Goffman, Lisa

    2015-01-01

    Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Multiple Learning Strategies Project. Small Engine Repair. Visually Impaired.

    Science.gov (United States)

    Foster, Don; And Others

    This instructional package designed for visually impaired students, focuses on the vocational area of small engine repair. Contained in this document are forty learning modules organized into fourteen units: engine block; starters; fuel tank, lines, filters and pumps; carburetors; electrical; test equipment; motorcycle; machining; tune-ups; short…

  17. Moringa oleifera Seed Extract Alleviates Scopolamine-Induced Learning and Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Juan Zhou

    2018-04-01

    Full Text Available The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM tests. MSE (250 or 500 mg/kg was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.

  18. Multiple Learning Strategies Project. Building Maintenance & Engineering. Visually Impaired.

    Science.gov (United States)

    Smith, Dwight; And Others

    This instructional package is designed for visually impaired students in the vocational area of building maintenance and engineering. The twenty-eight learning modules are organized into six units: floor care, general maintenance tasks; restrooms; carpet care; power and hand tools; and cabinet construction. Each module, printed in large block…

  19. "I know your name, but not your number"--Patients with verbal short-term memory deficits are impaired in learning sequences of digits.

    Science.gov (United States)

    Bormann, Tobias; Seyboth, Margret; Umarova, Roza; Weiller, Cornelius

    2015-06-01

    Studies on verbal learning in patients with impaired verbal short-term memory (vSTM) have revealed dissociations among types of verbal information. Patients with impaired vSTM are able to learn lists of known words but fail to acquire new word forms. This suggests that vSTM is involved in new word learning. The present study assessed both new word learning and the learning of digit sequences in two patients with impaired vSTM. In two experiments, participants were required to learn people's names, ages and professions, or their four digit 'phone numbers'. The STM patients were impaired on learning unknown family names and phone numbers, but managed to acquire other verbal information. In contrast, a patient with a severe verbal episodic memory impairment was impaired across information types. These results indicate verbal STM involvement in the learning of digit sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Learning Disabled, Hearing Impaired Students: Reality, Myth, or Overextension?

    Science.gov (United States)

    Laughton, Joan

    1989-01-01

    This paper focuses on definitions, incidence, and characteristics of the multihandicapping condition known as "learning disabled, hearing impaired," in order to provide a means of identifying these children and determining whether or not they require different teaching strategies. (JDD)

  1. Selective cognitive impairments associated with NMDA receptor blockade in humans.

    Science.gov (United States)

    Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A

    2005-03-01

    Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.

  2. Working Memory Functioning in Children with Learning Disorders and Specific Language Impairment

    Science.gov (United States)

    Schuchardt, Kirsten; Bockmann, Ann-Katrin; Bornemann, Galina; Maehler, Claudia

    2013-01-01

    Purpose: On the basis of Baddeley's working memory model (1986), we examined working memory functioning in children with learning disorders with and without specific language impairment (SLI). We pursued the question whether children with learning disorders exhibit similar working memory deficits as children with additional SLI. Method: In…

  3. Cognitive deficits are a matter of emotional context: inflexible strategy use mediates context-specific learning impairments in OCD.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Westermann, Stefan; Exner, Cornelia

    2015-01-01

    The present study examines the interplay between cognitive deficits and emotional context in obsessive-compulsive disorder (OCD) and social phobia (SP). Specifically, this study examines whether the inflexible use of efficient learning strategies in an emotional context underlies impairments in probabilistic classification learning (PCL) in OCD, and whether PCL impairments are specific to OCD. Twenty-three participants with OCD, 30 participants with SP and 30 healthy controls completed a neutral and an OCD-specific PCL task. OCD participants failed to adopt efficient learning strategies and showed fewer beneficial strategy switches than controls only in an OCD-specific context, but not in a neutral context. Additionally, OCD participants did not show any explicit memory impairments. Number of beneficial strategy switches in the OCD-specific task mediated the difference in PCL performance between OCD and control participants. Individuals with SP were impaired in both PCL tasks. In contrast to neuropsychological models postulating general cognitive impairments in OCD, the present findings suggest that it is the interaction between cognition and emotion that is impaired in OCD. Specifically, activated disorder-specific fears may impair the flexible adoption of efficient learning strategies and compromise otherwise unimpaired PCL. Impairments in PCL are not specific to OCD.

  4. Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia.

    Science.gov (United States)

    De Visscher, Alice; Szmalec, Arnaud; Van Der Linden, Lize; Noël, Marie-Pascale

    2015-11-01

    In the context of heterogeneity, the different profiles of dyscalculia are still hypothetical. This study aims to link features of mathematical difficulties to certain potential etiologies. First, we wanted to test the hypothesis of a serial-order learning deficit in adults with dyscalculia. For this purpose we used a Hebb repetition learning task. Second, we wanted to explore a recent hypothesis according to which hypersensitivity-to-interference hampers the storage of arithmetic facts and leads to a particular profile of dyscalculia. We therefore used interfering and non-interfering repeated sequences in the Hebb paradigm. A final test was used to assess the memory trace of the non-interfering sequence and the capacity to manipulate it. In line with our predictions, we observed that people with dyscalculia who show good conceptual knowledge in mathematics but impaired arithmetic fluency suffer from increased sensitivity-to-interference compared to controls. Secondly, people with dyscalculia who show a deficit in a global mathematical test suffer from a serial-order learning deficit characterized by a slow learning and a quick degradation of the memory trace of the repeated sequence. A serial-order learning impairment could be one of the explanations for a basic numerical deficit, since it is necessary for the number-word sequence acquisition. Among the different profiles of dyscalculia, this study provides new evidence and refinement for two particular profiles. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Using principles of learning to inform language therapy design for children with specific language impairment.

    Science.gov (United States)

    Alt, Mary; Meyers, Christina; Ancharski, Alexandra

    2012-01-01

    Language treatment for children with specific language impairment (SLI) often takes months to achieve moderate results. Interventions often do not incorporate the principles that are known to affect learning in unimpaired learners. To outline some key findings about learning in typical populations and to suggest a model of how they might be applied to language treatment design as a catalyst for further research and discussion. Three main principles of implicit learning are reviewed: variability, complexity and sleep-dependent consolidation. After explaining these principles, evidence is provided as to how they influence learning tasks in unimpaired learners. Information is reviewed on principles of learning as they apply to impaired populations, current treatment designs are also reviewed that conform to the principles, and ways in which principles of learning might be incorporated into language treatment design are demonstrated. This paper provides an outline for how theoretical knowledge might be applied to clinical practice in an effort to promote discussion. Although the authors look forward to more specific details on how the principles of learning relate to impaired populations, there is ample evidence to suggest that these principles should be considered during treatment design. © 2012 Royal College of Speech and Language Therapists.

  6. Using ICT at an Open Distance Learning (ODL) Institution in South Africa: The Learning Experiences of Students with Visual Impairments

    Science.gov (United States)

    Mokiwa, S. A.; Phasha, T. N.

    2012-01-01

    For students with visual impairments, Information and Communication Technology (ICT) has become an important means through which they can learn and access learning materials at various levels of education. However, their learning experiences in using such form of technologies have been rarely documented, thus suggests society's lack of…

  7. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood

    OpenAIRE

    Chaby, Lauren E.; Cavigelli, Sonia A.; Hirrlinger, Amy M.; Lim, James; Warg, Kendall M.; Braithwaite, Victoria A.

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory. Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats. Adolescent-stress exposure made working memory more vulnerable to disturbance. Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they ag...

  8. Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats.

    Science.gov (United States)

    Esmaeilpour, Khadijeh; Sheibani, Vahid; Shabani, Mohammad; Mirnajafi-Zadeh, Javad

    2017-01-01

    Kindled seizures can impair learning and memory. In the present study the effect of low-frequency electrical stimulation (LFS) on kindled seizure-induced impairment in spatial learning and memory was investigated and followed up to one month. Animals were kindled by electrical stimulation of hippocampal CA1 area in a semi-rapid manner (12 stimulations per day). One group of animals received four trials of LFS at 30s, 6h, 24h, and 30h following the last kindling stimulation. Each LFS trial was consisted of 4 packages at 5min intervals. Each package contained 200 monophasic square wave pulses of 0.1ms duration at 1Hz. The Open field, Morris water maze, and novel object recognition tests were done 48h, 1week, 2weeks, and one month after the last kindling stimulation respectively. Kindled animals showed a significant impairment in learning and memory compared to control rats. LFS decreased the kindling-induced learning and memory impairments at 24h and one week following its application, but not at 2week or 1month after kindling. In the group of animals that received the same 4 trials of LFS again one week following the last kindling stimulation, the improving effect of LFS was observed even after one month. Obtained results showed that application of LFS in fully kindled animals has a long-term improving effect on spatial learning and memory. This effect can remain for a long duration (one month in this study) by increasing the number of applied LFS. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Instrumental learning and cognitive flexibility processes are impaired in children exposed to early life stress.

    Science.gov (United States)

    Harms, Madeline B; Shannon Bowen, Katherine E; Hanson, Jamie L; Pollak, Seth D

    2017-10-19

    Children who experience severe early life stress show persistent deficits in many aspects of cognitive and social adaptation. Early stress might be associated with these broad changes in functioning because it impairs general learning mechanisms. To explore this possibility, we examined whether individuals who experienced abusive caregiving in childhood had difficulties with instrumental learning and/or cognitive flexibility as adolescents. Fifty-three 14-17-year-old adolescents (31 exposed to high levels of childhood stress, 22 control) completed an fMRI task that required them to first learn associations in the environment and then update those pairings. Adolescents with histories of early life stress eventually learned to pair stimuli with both positive and negative outcomes, but did so more slowly than their peers. Furthermore, these stress-exposed adolescents showed markedly impaired cognitive flexibility; they were less able than their peers to update those pairings when the contingencies changed. These learning problems were reflected in abnormal activity in learning- and attention-related brain circuitry. Both altered patterns of learning and neural activation were associated with the severity of lifetime stress that the adolescents had experienced. Taken together, the results of this experiment suggest that basic learning processes are impaired in adolescents exposed to early life stress. These general learning mechanisms may help explain the emergence of social problems observed in these individuals. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  10. Magnetic stimulation of visual cortex impairs perceptual learning.

    Science.gov (United States)

    Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio

    2016-12-01

    The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The nature of verbal memory impairment in multiple sclerosis: a list-learning and meta-analytic study.

    Science.gov (United States)

    Lafosse, Jose M; Mitchell, Sandra M; Corboy, John R; Filley, Christopher M

    2013-10-01

    The primary purpose of this study was to test the hypothesis that multiple sclerosis (MS) patients have impaired acquisition rather than a retrieval deficit. Verbal memory impairment in MS was examined in 53 relapsing-remitting MS patients and 31 healthy controls (HC), and in a meta-analysis of studies that examined memory functioning in MS with list-learning tasks. The MS group demonstrated significantly lower acquisition and delayed recall performance than the HC group, and the meta-analysis revealed that the largest effect sizes were obtained for acquisition measures relative to delayed recall and recognition. Our data argue against a retrieval deficit as the sole explanation for verbal memory impairment in MS, and make a consistent case for the position that deficient acquisition contributes to the memory dysfunction of MS patients. Deficient acquisition may result from demyelination in relevant white matter tracts that reduces encoding efficiency as a result of impaired speed of information processing.

  12. Nonadjacent Dependency Learning in Cantonese-Speaking Children With and Without a History of Specific Language Impairment.

    Science.gov (United States)

    Iao, Lai-Sang; Ng, Lai Yan; Wong, Anita Mei Yin; Lee, Oi Ting

    2017-03-01

    This study investigated nonadjacent dependency learning in Cantonese-speaking children with and without a history of specific language impairment (SLI) in an artificial linguistic context. Sixteen Cantonese-speaking children with a history of SLI and 16 Cantonese-speaking children with typical language development (TLD) were tested with a nonadjacent dependency learning task using artificial languages that mimic Cantonese. Children with TLD performed above chance and were able to discriminate between trained and untrained nonadjacent dependencies. However, children with a history of SLI performed at chance and were not able to differentiate trained versus untrained nonadjacent dependencies. These findings, together with previous findings from English-speaking adults and adolescents with language impairments, suggest that individuals with atypical language development, regardless of age, diagnostic status, language, and culture, show difficulties in learning nonadjacent dependencies. This study provides evidence for early impairments to statistical learning in individuals with atypical language development.

  13. APOE epsilon4 is associated with impaired verbal learning in patients with MS.

    Science.gov (United States)

    Koutsis, G; Panas, M; Giogkaraki, E; Potagas, C; Karadima, G; Sfagos, C; Vassilopoulos, D

    2007-02-20

    To investigate the effect of APOE epsilon4 on different cognitive domains in a population of Greek patients with multiple sclerosis (MS). A total of 125 patients with MS and 43 controls were included in this study and underwent neuropsychological assessment with Rao's Brief Repeatable Battery. All patients with MS were genotyped for APOE. The effect of APOE epsilon4 on different cognitive domains was investigated. Fifty-one percent of patients with MS were cognitively impaired. E4 carriers had a sixfold increase in the relative risk of impairment in verbal learning vs noncarriers (OR 6.28, 95% CI 1.74 to 22.69). This effect was domain-specific and was not observed in other cognitive domains assessed by the battery. We found an association of APOE epsilon4 with impaired verbal learning in patients with multiple sclerosis.

  14. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway.

    Science.gov (United States)

    Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei

    2016-10-01

    The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular

  15. Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities

    Directory of Open Access Journals (Sweden)

    Hale Gregory

    2009-11-01

    Full Text Available Abstract Background PEA-15 is a phosphoprotein that binds and regulates ERK MAP kinase and RSK2 and is highly expressed throughout the brain. PEA-15 alters c-Fos and CREB-mediated transcription as a result of these interactions. To determine if PEA-15 contributes to the function of the nervous system we tested mice lacking PEA-15 in a series of experiments designed to measure learning, sensory/motor function, and stress reactivity. Results We report that PEA-15 null mice exhibited impaired learning in three distinct spatial tasks, while they exhibited normal fear conditioning, passive avoidance, egocentric navigation, and odor discrimination. PEA-15 null mice also had deficient forepaw strength and in limited instances, heightened stress reactivity and/or anxiety. However, these non-cognitive variables did not appear to account for the observed spatial learning impairments. The null mice maintained normal weight, pain sensitivity, and coordination when compared to wild type controls. Conclusion We found that PEA-15 null mice have spatial learning disabilities that are similar to those of mice where ERK or RSK2 function is impaired. We suggest PEA-15 may be an essential regulator of ERK-dependent spatial learning.

  16. Impaired Value Learning for Faces in Preschoolers With Autism Spectrum Disorder.

    Science.gov (United States)

    Wang, Quan; DiNicola, Lauren; Heymann, Perrine; Hampson, Michelle; Chawarska, Katarzyna

    2018-01-01

    One of the common findings in autism spectrum disorder (ASD) is limited selective attention toward social objects, such as faces. Evidence from both human and nonhuman primate studies suggests that selection of objects for processing is guided by the appraisal of object values. We hypothesized that impairments in selective attention in ASD may reflect a disruption of a system supporting learning about object values in the social domain. We examined value learning in social (faces) and nonsocial (fractals) domains in preschoolers with ASD (n = 25) and typically developing (TD) controls (n = 28), using a novel value learning task implemented on a gaze-contingent eye-tracking platform consisting of value learning and a selective attention choice test. Children with ASD performed more poorly than TD controls on the social value learning task, but both groups performed similarly on the nonsocial task. Within-group comparisons indicated that value learning in TD children was enhanced on the social compared to the nonsocial task, but no such enhancement was seen in children with ASD. Performance in the social and nonsocial conditions was correlated in the ASD but not in the TD group. The study provides support for a domain-specific impairment in value learning for faces in ASD, and suggests that, in ASD, value learning in social and nonsocial domains may rely on a shared mechanism. These findings have implications both for models of selective social attention deficits in autism and for identification of novel treatment targets. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Protective effects of compound FLZ on β-amyloid peptide-(25-35)-induced mouse hippocampal injury and learning and memory impairment

    Institute of Scientific and Technical Information of China (English)

    Fang FANG; Geng-tao LIU

    2006-01-01

    Aim: To study the protective effects of compound FLZ, a novel synthetic analogue of natural squamosamide, on learning and memory impairment and lesions of the hippocampus caused by icv injection of β-amyloid25-35 (Aβ25-35) in mice. Methods: Mice were icv injected with the Aβ25-35 (15 nmol/mouse), and then treated with oral administration of 75 mg/kg or 150 mg/kg of FLZ once daily for 16 consecutive days. The impairment of learning and memory in mice were tested using step-down test and Morris water maze test. The content of malondialdehyde (MDA) and the expressions of acetylcholinesterase (AChE), Bax, and Bcl-2 in the CA1 region of the mouse hippocampus were measured by biochemical and immu-nohistochemical analysis, respectively. The pathological damages of hippocampus were observed using a microscope. Results: FLZ (75 mg/kg, 150 mg/kg) significantly attenuated Aβ25-35-induced impairment of learning and memory in the step-down test and Morris water maze test. FLZ also reduced pathological damages to the hippocampus induced by Aβ25-35 Furthermore, FLZ prevented the increase of AChE and Bax, and the decrease of Bcl-2 immunoreactive cells in the CA1 region of the hippocampus, and reduced the increase of MDA content in the hippocampus in mice injected with Aβ25-35. Conclusion: FLZ has protective action against the impairment of learning and memory and pathological damage to the hippocampus induced by icv injection of Aβ25-35 in mice.

  18. Spatial short-term memory in children with nonverbal learning disabilities: impairment in encoding spatial configuration.

    Science.gov (United States)

    Narimoto, Tadamasa; Matsuura, Naomi; Takezawa, Tomohiro; Mitsuhashi, Yoshinori; Hiratani, Michio

    2013-01-01

    The authors investigated whether impaired spatial short-term memory exhibited by children with nonverbal learning disabilities is due to a problem in the encoding process. Children with or without nonverbal learning disabilities performed a simple spatial test that required them to remember 3, 5, or 7 spatial items presented simultaneously in random positions (i.e., spatial configuration) and to decide if a target item was changed or all items including the target were in the same position. The results showed that, even when the spatial positions in the encoding and probe phases were similar, the mean proportion correct of children with nonverbal learning disabilities was 0.58 while that of children without nonverbal learning disabilities was 0.84. The authors argue with the results that children with nonverbal learning disabilities have difficulty encoding relational information between spatial items, and that this difficulty is responsible for their impaired spatial short-term memory.

  19. The Effects of Online Interactions on the Relationship between Learning-Related Anxiety and Intention to Persist among E-Learning Students with Visual Impairment

    Science.gov (United States)

    Oh, Yunjin; Lee, Soon Min

    2016-01-01

    This study explored whether learning-related anxiety would negatively affect intention to persist with e-learning among students with visual impairment, and examined the roles of three online interactions in the relationship between learning-related anxiety and intention to persist with e-learning. For this study, a convenience sample of…

  20. Working Memory and Learning in Children with Developmental Coordination Disorder and Specific Language Impairment

    Science.gov (United States)

    Alloway, Tracy Packiam; Archibald, Lisa

    2008-01-01

    The authors compared 6- to 11-year-olds with developmental coordination disorder (DCD) and those with specific language impairment (SLI) on measures of memory (verbal and visuospatial short-term and working memory) and learning (reading and mathematics). Children with DCD with typical language skills were impaired in all four areas of memory…

  1. Learning Building Layouts with Non-geometric Visual Information: The Effects of Visual Impairment and Age

    Science.gov (United States)

    Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.

    2009-01-01

    Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732

  2. Why segmentation matters: Experience-driven segmentation errors impair "morpheme" learning.

    Science.gov (United States)

    Finn, Amy S; Hudson Kam, Carla L

    2015-09-01

    We ask whether an adult learner's knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners' ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner's native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner's native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners. (c) 2015 APA, all rights reserved).

  3. Physical Telerehabilitation in Patients with Multiple Sclerosis with Significant Mobility Impairment

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-16-1-0704 TITLE: Physical Telerehabilitation in Patients with Multiple Sclerosis with Significant Mobility Impairment...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing ...29 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physical Telerehabilitation in Patients with Multiple Sclerosis with Significant Mobility

  4. Development of an Android-based Learning Media Application for Visually Impaired Students

    Directory of Open Access Journals (Sweden)

    Nurul Azmi

    2017-06-01

    Full Text Available This research aims to develop the English for Disability (EFORD application, on Android-based learning english media for Visually Impaired students and determine its based this on assessment of matter expert, media expert, special needs teacher and students. The research method adopted in this research is Research and Development (R&D. The development of this application through five phases: (1 Analysis of problems, through observation and interviews. (2 Collecting information as product planning / analysis of the needs of the media as required of blind children. (3 The design phase of products such as the manufacture of flow and storyboard navigation map.(4 Design validation phase form of an expert assessment of the media is developed. (5 testing products phase, such as assessment of the application by blind students. The results of this research is EFORD application which is feasible to be used as English learning media for visual impairment application based on assessment: 1Media expert it's obtained a percentage scored 95%, include for very worthy category, 2Subject matter, expert its obtained percentage scored 75% include for worthy category and 3 Special needs teacher it's obtained a percentage scored 83% include for very worthy category. Upon demonstration, students indicated the positive response of ≥ 70% in each indicator. Therefore English learning media with Android based application English for Disability (EFORD is very feasible to be used as an English learning media especially grammar and speaking English content for students of visual impairment for a number of reasons. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  5. Propofol can Protect Against the Impairment of Learning-memory Induced by Electroconvulsive Shock via Tau Protein Hyperphosphorylation in Depressed Rats

    Institute of Scientific and Technical Information of China (English)

    Wan-fu Liu; Chao Liu

    2015-01-01

    Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups (with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal (ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups (n=10 per group):ip injection of 5 ml saline;ip injection of 5 ml of 10 mg/kg MK-801;ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock;ip injection of 5 ml of 200 mg/kg propofol;ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock;and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels of phosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by

  6. Implicit and explicit learning: applications from basic research to sports for individuals with impaired movement dynamics

    NARCIS (Netherlands)

    Steenbergen, B.; van der Kamp, J.; Verneau, M.M.N.; Jongbloed-Pereboom, M.; Masters, R.S.

    2010-01-01

    Purpose. Motor skills can be learned in an explicit or an implicit manner. Explicit learning places high demands on working memory capacity, but engagement of working memory is largely circumvented when skills are learned implicitly. We propose that individuals with impaired movement dynamics may

  7. Implicit and explicit learning: applications from basic research to sports for individuals with impaired movement dynamics.

    NARCIS (Netherlands)

    Steenbergen, B.; Kamp, J. van der; Verneau, M.; Jongbloed-Pereboom, M.; Masters, R.S.

    2010-01-01

    PURPOSE: Motor skills can be learned in an explicit or an implicit manner. Explicit learning places high demands on working memory capacity, but engagement of working memory is largely circumvented when skills are learned implicitly. We propose that individuals with impaired movement dynamics may

  8. Implicit and explicit learning: applications from basic research to sports for individuals with impaired movement dynamics

    NARCIS (Netherlands)

    Steenbergen, B.; Kamp, J. van der; Verneau, M.; Jongbloed-Pereboom, M.; Masters, R.S.W.

    2010-01-01

    Purpose - Motor skills can be learned in an explicit or an implicit manner. Explicit learning places high demands on working memory capacity, but engagement of working memory is largely circumvented when skills are learned implicitly. We propose that individuals with impaired movement dynamics may

  9. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242.

    Science.gov (United States)

    Ranganathan, M; DeMartinis, N; Huguenel, B; Gaudreault, F; Bednar, M M; Shaffer, C L; Gupta, S; Cahill, J; Sherif, M A; Mancuso, J; Zumpano, L; D'Souza, D C

    2017-11-01

    There is a need to develop treatments for cognitive impairment associated with schizophrenia (CIAS). The significant role played by N-methyl-d-aspartate receptors (NMDARs) in both the pathophysiology of schizophrenia and in neuronal plasticity suggests that facilitation of NMDAR function might ameliorate CIAS. One strategy to correct NMDAR hypofunction is to stimulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as AMPAR and NMDAR functioning are coupled and interdependent. In rats and nonhuman primates (NHP), AMPAR potentiators reduce spatial working memory deficits caused by the nonselective NMDAR antagonist ketamine. The current study assessed whether the AMPAR potentiator PF-04958242 would attenuate ketamine-induced deficits in verbal learning and memory in humans. Healthy male subjects (n=29) participated in two randomized treatment periods of daily placebo or PF-04958242 for 5 days separated by a washout period. On day 5 of each treatment period, subjects underwent a ketamine infusion for 75 min during which the effects of PF-04958242/placebo were assessed on ketamine-induced: (1) impairments in verbal learning and recall measured by the Hopkins Verbal Learning Test; (2) impairments in working memory on a CogState battery; and (3) psychotomimetic effects measured by the Positive and Negative Syndrome Scale and Clinician-Administered Dissociative Symptoms Scale. PF-04958242 significantly reduced ketamine-induced impairments in immediate recall and the 2-Back and spatial working memory tasks (CogState Battery), without significantly attenuating ketamine-induced psychotomimetic effects. There were no pharmacokinetic interactions between PF-04958242 and ketamine. Furthermore, PF-04958242 was well tolerated. 'High-impact' AMPAR potentiators like PF-04958242 may have a role in the treatment of the cognitive symptoms, but not the positive or negative symptoms, associated with schizophrenia. The excellent concordance between the

  10. Impaired Retention of Motor Learning of Writing Skills in Patients with Parkinson's Disease with Freezing of Gait.

    Directory of Open Access Journals (Sweden)

    Elke Heremans

    Full Text Available Patients with Parkinson's disease (PD and freezing of gait (FOG suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation.To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting.Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes.Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group.Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols.

  11. Impaired Retention of Motor Learning of Writing Skills in Patients with Parkinson's Disease with Freezing of Gait.

    Science.gov (United States)

    Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Broeder, Sanne; Swinnen, Stephan P; Nieuwboer, Alice

    2016-01-01

    Patients with Parkinson's disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation. To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting. Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes. Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group. Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols.

  12. Neuroprotective effect and mechanism of daucosterol palmitate in ameliorating learning and memory impairment in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Ji, Zhi-Hong; Xu, Zhong-Qi; Zhao, Hong; Yu, Xin-Yu

    2017-03-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory decline and cognitive impairment. Amyloid beta (Aβ) has been proposed as the causative role for the pathogenesis of AD. Accumulating evidence demonstrates that Aβ neurotoxicity is mediated by glutamate excitotoxicity. Daucosterol palmitate (DSP), a plant steroid with anti-glutamate excitotoxicity effect, was isolated from the anti-aging traditional Chinese medicinal herb Alpinia oxyphylla Miq. in our previous study. Based on the anti-glutamate excitotoxicity effect of DSP, in this study we investigated potential benefit and mechanism of DSP in ameliorating learning and memory impairment in AD model rats. Results from this study showed that DSP administration effectively ameliorated Aβ-induced learning and memory impairment in rats, markedly inhibited Aβ-induced hippocampal ROS production, effectively prevented Aβ-induced hippocampal neuronal damage and significantly restored hippocampal synaptophysin expression level. This study suggests that DSP may be a potential candidate for development as a therapeutic agent for AD cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A low concentration of ethanol impairs learning but not motor and sensory behavior in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Brooks G Robinson

    Full Text Available Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects.

  14. Innovative intelligent technology of distance learning for visually impaired people

    Science.gov (United States)

    Samigulina, Galina; Shayakhmetova, Assem; Nuysuppov, Adlet

    2017-12-01

    The aim of the study is to develop innovative intelligent technology and information systems of distance education for people with impaired vision (PIV). To solve this problem a comprehensive approach has been proposed, which consists in the aggregate of the application of artificial intelligence methods and statistical analysis. Creating an accessible learning environment, identifying the intellectual, physiological, psychophysiological characteristics of perception and information awareness by this category of people is based on cognitive approach. On the basis of fuzzy logic the individually-oriented learning path of PIV is con- structed with the aim of obtaining high-quality engineering education with modern equipment in the joint use laboratories.

  15. Innovative intelligent technology of distance learning for visually impaired people

    Directory of Open Access Journals (Sweden)

    Samigulina Galina

    2017-12-01

    Full Text Available The aim of the study is to develop innovative intelligent technology and information systems of distance education for people with impaired vision (PIV. To solve this problem a comprehensive approach has been proposed, which consists in the aggregate of the application of artificial intelligence methods and statistical analysis. Creating an accessible learning environment, identifying the intellectual, physiological, psychophysiological characteristics of perception and information awareness by this category of people is based on cognitive approach. On the basis of fuzzy logic the individually-oriented learning path of PIV is con- structed with the aim of obtaining high-quality engineering education with modern equipment in the joint use laboratories.

  16. Communication between hearing impaired and normal hearing students: a facilitative proposal of learning in higher education

    Directory of Open Access Journals (Sweden)

    Krysne Kelly de França Oliveira

    2014-09-01

    Full Text Available Introduction: There has been an increase in the number of hearing impaired people with access to higher education. Most of them are young people from a different culture who present difficulties in communication, inter-relationship, and learning in a culture of normal hearing people, because they use a different language, the Brazilian Sign Language - LIBRAS. Objective: The present study aimed to identify the forms of communication used between hearing impaired and normal hearing students, verifying how they can interfere with the learning process of the first. Methods: A qualitative study that used the space of a private university in the city of Fortaleza, Ceará state, Brazil, from February to April 2009. We carried out semi-structured interviews with three hearing impaired students, three teachers, three interpreters, and three normal hearing students. The content of the speeches was categorized and organized by the method of thematic analysis. Results: We verified that the forms of communication used ranged from mime and gestures to writing and drawing, but the most accepted by the hearing impaired students was LIBRAS. As a method of communication, it supports the learning of hearing impaired students, and with the mediation of interpreters, it gives them conditions to settle in their zones of development, according to the precepts of Vygotsky. Conclusion: Thus, we recognize the importance of LIBRAS as predominant language, essential to the full academic achievement of hearing impaired students; however, their efforts and dedication, as well as the interest of institutions and teachers on the deaf culture, are also important for preparing future professionals.

  17. Why segmentation matters: experience-driven segmentation errors impair “morpheme” learning

    Science.gov (United States)

    Finn, Amy S.; Hudson Kam, Carla L.

    2015-01-01

    We ask whether an adult learner’s knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners’ ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner’s native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner’s native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners. PMID:25730305

  18. Sequence-specific procedural learning deficits in children with specific language impairment.

    Science.gov (United States)

    Hsu, Hsinjen Julie; Bishop, Dorothy V M

    2014-05-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  19. Effect of episodic and working memory impairments on semantic and cognitive procedural learning at alcohol treatment entry.

    Science.gov (United States)

    Pitel, Anne Lise; Witkowski, Thomas; Vabret, François; Guillery-Girard, Bérengère; Desgranges, Béatrice; Eustache, Francis; Beaunieux, Hélène

    2007-02-01

    Chronic alcoholism is known to impair the functioning of episodic and working memory, which may consequently reduce the ability to learn complex novel information. Nevertheless, semantic and cognitive procedural learning have not been properly explored at alcohol treatment entry, despite its potential clinical relevance. The goal of the present study was therefore to determine whether alcoholic patients, immediately after the weaning phase, are cognitively able to acquire complex new knowledge, given their episodic and working memory deficits. Twenty alcoholic inpatients with episodic memory and working memory deficits at alcohol treatment entry and a control group of 20 healthy subjects underwent a protocol of semantic acquisition and cognitive procedural learning. The semantic learning task consisted of the acquisition of 10 novel concepts, while subjects were administered the Tower of Toronto task to measure cognitive procedural learning. Analyses showed that although alcoholic subjects were able to acquire the category and features of the semantic concepts, albeit slowly, they presented impaired label learning. In the control group, executive functions and episodic memory predicted semantic learning in the first and second halves of the protocol, respectively. In addition to the cognitive processes involved in the learning strategies invoked by controls, alcoholic subjects seem to attempt to compensate for their impaired cognitive functions, invoking capacities of short-term passive storage. Regarding cognitive procedural learning, although the patients eventually achieved the same results as the controls, they failed to automate the procedure. Contrary to the control group, the alcoholic groups' learning performance was predicted by controlled cognitive functions throughout the protocol. At alcohol treatment entry, alcoholic patients with neuropsychological deficits have difficulty acquiring novel semantic and cognitive procedural knowledge. Compared with

  20. Impaired learning from errors in cannabis users: Dorsal anterior cingulate cortex and hippocampus hypoactivity.

    Science.gov (United States)

    Carey, Susan E; Nestor, Liam; Jones, Jennifer; Garavan, Hugh; Hester, Robert

    2015-10-01

    The chronic use of cannabis has been associated with error processing dysfunction, in particular, hypoactivity in the dorsal anterior cingulate cortex (dACC) during the processing of cognitive errors. Given the role of such activity in influencing post-error adaptive behaviour, we hypothesised that chronic cannabis users would have significantly poorer learning from errors. Fifteen chronic cannabis users (four females, mean age=22.40 years, SD=4.29) and 15 control participants (two females, mean age=23.27 years, SD=3.67) were administered a paired associate learning task that enabled participants to learn from their errors, during fMRI data collection. Compared with controls, chronic cannabis users showed (i) a lower recall error-correction rate and (ii) hypoactivity in the dACC and left hippocampus during the processing of error-related feedback and re-encoding of the correct response. The difference in error-related dACC activation between cannabis users and healthy controls varied as a function of error type, with the control group showing a significantly greater difference between corrected and repeated errors than the cannabis group. The present results suggest that chronic cannabis users have poorer learning from errors, with the failure to adapt performance associated with hypoactivity in error-related dACC and hippocampal regions. The findings highlight a consequence of performance monitoring dysfunction in drug abuse and the potential consequence this cognitive impairment has for the symptom of failing to learn from negative feedback seen in cannabis and other forms of dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients

    Directory of Open Access Journals (Sweden)

    Máximo Zimerman

    2015-10-01

    Interpretations: Collectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as suggested in previous animal work.

  2. Meeting the Needs of Students with Coexisting Visual Impairments and Learning Disabilities

    Science.gov (United States)

    Jones, Beth A.; Hensley-Maloney, Lauren

    2015-01-01

    The coexistence of visual impairments and learning disabilities presents unique challenges. It is imperative that teachers be apprised of the characteristics of this population as well as instructional strategies targeted at meeting their unique needs. The authors highlight typical patterns of performance and provide suggestions for effective…

  3. High fat diet intake during pre and periadolescence impairs learning of a conditioned place preference in adulthood

    Directory of Open Access Journals (Sweden)

    Sanabria Federico

    2011-06-01

    Full Text Available Abstract Background Brain regions that mediate learning of a conditioned place preference (CPP undergo significant development in pre and periadolescence. Consuming a high fat (HF diet during this developmental period and into adulthood can lead to learning impairments in rodents. The present study tested whether HF diet intake, consumed only in pre and periadolescence, would be sufficient to cause impairments using a CPP procedure. Methods Rats were randomly assigned to consume a HF or a low fat (LF diet during postnatal days (PD 21-40 and were then placed back on a standard lab chow diet. A 20-day CPP procedure, using HF Cheetos® as the unconditioned stimulus (US, began either the next day (PD 41 or 40 days later (PD 81. A separate group of adult rats were given the HF diet for 20 days beginning on PD 61, and then immediately underwent the 20-day CPP procedure beginning on PD 81. Results Pre and periadolescent exposure to a LF diet or adult exposure to a HF diet did not interfere with the development of a HF food-induced CPP, as these groups exhibited robust preferences for the HF Cheetos® food-paired compartment. However, pre and periadolescent exposure to the HF diet impaired the development of a HF food-induced CPP regardless of whether it was assessed immediately or 40 days after the exposure to the HF diet, and despite showing increased consumption of the HF Cheetos® in conditioning. Conclusions Intake of a HF diet, consumed only in pre and periadolescence, has long-lasting effects on learning that persist into adulthood.

  4. Lead (Pb+2) impairs long-term memory and blocks learning-induced increases in hippocampal protein kinase C activity

    International Nuclear Information System (INIS)

    Vazquez, Adrinel; Pena de Ortiz, Sandra

    2004-01-01

    The long-term storage of information in the brain known as long-term memory (LTM) depends on a variety of intracellular signaling cascades utilizing calcium (Ca 2+ ) and cyclic adenosine monophosphate as second messengers. In particular, Ca +2 /phospholipid-dependent protein kinase C (PKC) activity has been proposed to be necessary for the transition from short-term memory to LTM. Because the neurobehavioral toxicity of lead (Pb +2 ) has been associated to its interference with normal Ca +2 signaling in neurons, we studied its effects on spatial learning and memory using a hippocampal-dependent discrimination task. Adult rats received microinfusions of either Na + or Pb +2 acetate in the CA1 hippocampal subregion before each one of four training sessions. A retention test was given 7 days later to examine LTM. Results suggest that intrahippocampal Pb +2 did not affect learning of the task, but significantly impaired retention. The effects of Pb +2 selectively impaired reference memory measured in the retention test, but had no effect on the general performance because it did not affect the latency to complete the task during the test. Finally, we examined the effects of Pb +2 on the induction of hippocampal Ca +2 /phospholipid-dependent PKC activity during acquisition training. The results showed that Pb +2 interfered with the learning-induced activation of Ca +2 /phospholipid-dependent PKC on day 3 of acquisition. Overall, our results indicate that Pb +2 causes cognitive impairments in adult rats and that such effects might be subserved by interference with Ca +2 -related signaling mechanisms required for normal LTM

  5. High intraocular pressure produces learning and memory impairments in rats.

    Science.gov (United States)

    Yuan, Yuxiang; Chen, Zhiqi; Li, Lu; Li, Xing; Xia, Qian; Zhang, Hong; Duan, Qiming; Zhao, Yin

    2017-11-15

    Primary open angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Previous MRI studies have revealed that POAG can be associated with alterations in hippocampal function. Thus, the aim of this study was to investigate a relationship between chronic high intraocular pressure (IOP) and hippocampal changes in a rat model. We used behavioural tests to assess learning and memory ability, and additionally investigated the hippocampal expression of pathological amyloid beta (Aβ), phospho-tau, and related pathway proteins. Chronic high IOP impaired learning and memory in rats and concurrently increased Aβ and phospho-tau expression in the hippocampus by altering the activation of different kinase (GSK-3β, BACE1) and phosphatase (PP2A) proteins in the hippocampus. This study provides novel evidence for the relationship between high IOP and hippocampal alterations, especially in the context of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Multiple Learning Strategies Project. Building Maintenance & Engineering. Educable Mentally Impaired. [Vol. 2.

    Science.gov (United States)

    Constantini, Debra; And Others

    This instructional package is one of three designed for educable mentally impaired students in the vocational area of building maintenance and engineering. The thirty-four learning modules are organized into six units: general maintenance tasks; restrooms; chalkboards; carpet care; office cleaning; and grounds. Each module includes these elements:…

  7. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  8. Presence and significant determinants of cognitive impairment in a large sample of patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Martina Borghi

    Full Text Available OBJECTIVES: To investigate the presence and the nature of cognitive impairment in a large sample of patients with Multiple Sclerosis (MS, and to identify clinical and demographic determinants of cognitive impairment in MS. METHODS: 303 patients with MS and 279 healthy controls were administered the Brief Repeatable Battery of Neuropsychological tests (BRB-N; measures of pre-morbid verbal competence and neuropsychiatric measures were also administered. RESULTS: Patients and healthy controls were matched for age, gender, education and pre-morbid verbal Intelligence Quotient. Patients presenting with cognitive impairment were 108/303 (35.6%. In the overall group of participants, the significant predictors of the most sensitive BRB-N scores were: presence of MS, age, education, and Vocabulary. The significant predictors when considering MS patients only were: course of MS, age, education, vocabulary, and depression. Using logistic regression analyses, significant determinants of the presence of cognitive impairment in relapsing-remitting MS patients were: duration of illness (OR = 1.053, 95% CI = 1.010-1.097, p = 0.015, Expanded Disability Status Scale score (OR = 1.247, 95% CI = 1.024-1.517, p = 0.028, and vocabulary (OR = 0.960, 95% CI = 0.936-0.984, p = 0.001, while in the smaller group of progressive MS patients these predictors did not play a significant role in determining the cognitive outcome. CONCLUSIONS: Our results corroborate the evidence about the presence and the nature of cognitive impairment in a large sample of patients with MS. Furthermore, our findings identify significant clinical and demographic determinants of cognitive impairment in a large sample of MS patients for the first time. Implications for further research and clinical practice were discussed.

  9. The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats.

    Science.gov (United States)

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2016-04-01

    It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Multiple Learning Strategies Project. Building Maintenance & Engineering. Educable Mentally Impaired. [Vol. 1.

    Science.gov (United States)

    Smith, Dwight; And Others

    This instructional package is one of three designed for educable mentally impaired students in the vocational area of building maintenance and engineering. The thirty learning modules are organized into two units: floor care and general maintenance tasks. Each module includes these elements: a performance objective page which tells the student…

  11. Early age-dependent impairments of context-dependent extinction learning, object recognition, and object-place learning occur in rats.

    Science.gov (United States)

    Wiescholleck, Valentina; Emma André, Marion Agnès; Manahan-Vaughan, Denise

    2014-03-01

    The hippocampus is vulnerable to age-dependent memory decline. Multiple forms of memory depend on adequate hippocampal function. Extinction learning comprises active inhibition of no longer relevant learned information concurrent with suppression of a previously learned reaction. It is highly dependent on context, and evidence exists that it requires hippocampal activation. In this study, we addressed whether context-based extinction as well as hippocampus-dependent tasks, such as object recognition and object-place recognition, are equally affected by moderate aging. Young (7-8 week old) and older (7-8 month old) Wistar rats were used. For the extinction study, animals learned that a particular floor context indicated that they should turn into one specific arm (e.g., left) to receive a food reward. On the day after reaching the learning criterion of 80% correct choices, the floor context was changed, no reward was given and animals were expected to extinguish the learned response. Both, young and older rats managed this first extinction trial in the new context with older rats showing a faster extinction performance. One day later, animals were returned to the T-maze with the original floor context and renewal effects were assessed. In this case, only young but not older rats showed the expected renewal effect (lower extinction ratio as compared to the day before). To assess general memory abilities, animals were tested in the standard object recognition and object-place memory tasks. Evaluations were made at 5 min, 1 h and 7 day intervals. Object recognition memory was poor at short-term and intermediate time-points in older but not young rats. Object-place memory performance was unaffected at 5 min, but impaired at 1 h in older but not young rats. Both groups were impaired at 7 days. These findings support that not only aspects of general memory, but also context-dependent extinction learning, are affected by moderate aging. This may reflect less flexibility in

  12. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory

    DEFF Research Database (Denmark)

    Brakebusch, Cord; Seidenbecher, Constanze I; Asztely, Fredrik

    2002-01-01

    to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect....... Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles....

  13. Procedural learning in Parkinson's disease, specific language impairment, dyslexia, schizophrenia, developmental coordination disorder, and autism spectrum disorders: A second-order meta-analysis.

    Science.gov (United States)

    Clark, Gillian M; Lum, Jarrad A G

    2017-10-01

    The serial reaction time task (SRTT) has been used to study procedural learning in clinical populations. In this report, second-order meta-analysis was used to investigate whether disorder type moderates performance on the SRTT. Using this approach to quantitatively summarise past research, it was tested whether autism spectrum disorder, developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment differentially affect procedural learning on the SRTT. The main analysis revealed disorder type moderated SRTT performance (p=0.010). This report demonstrates comparable levels of procedural learning impairment in developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment. However, in autism, procedural learning is spared. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Role of synaptic structural plasticity in impairments of spatial learning and memory induced by developmental lead exposure in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Yongmei Xiao

    Full Text Available Lead (Pb is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups; Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks. The spatial learning and memory of rats was measured by Morris water maze (MWM on PND 85-90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05. However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84, the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91, the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05; the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05, although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD, length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05. Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats.

  15. The Value of Significant Learning Strategies in Undergraduate Education

    Science.gov (United States)

    Coco, Charles M.

    2012-01-01

    Learning taxonomies can assist faculty in developing course structures that promote enhanced student learning in the cognitive and affective domains. Significant Learning is one approach to course design that allows for development in six key areas: Foundational Knowledge, Application, Integration, Human Dimension, Caring, and Learning How to…

  16. Communicating Science Concepts to Individuals with Visual Impairments Using Short Learning Modules

    Science.gov (United States)

    Stender, Anthony S.; Newell, Ryan; Villarreal, Eduardo; Swearer, Dayne F.; Bianco, Elisabeth; Ringe, Emilie

    2016-01-01

    Of the 6.7 million individuals in the United States who are visually impaired, 63% are unemployed, and 59% have not attained an education beyond a high school diploma. Providing a basic science education to children and adults with visual disabilities can be challenging because most scientific learning relies on visual demonstrations. Creating…

  17. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia.

    Science.gov (United States)

    Chiu, Ming-Jang; Liu, Kristina; Hsieh, Ming H; Hwu, Hai-Gwo

    2005-12-12

    Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patients and 27 comparison subjects. Four symptom dimensions derived from a Chinese Positive and Negative Symptom Scale ratings were correlated with patients' artificial grammar implicit learning performances along the two stimulus dimensions. Patients' explicit memory performances were assessed by verbal paired associates and visual reproduction subtests of the Wechsler Memory Scales Revised Version to provide a contrast to their implicit memory function. Schizophrenia severely hindered color pattern artificial grammar learning while the disease affected lexical string artificial grammar learning to a lesser degree after correcting the influences from age, education and the performance of explicit memory function of both verbal and visual modalities. Both learning performances correlated significantly with the severity of patients' schizophrenic clinical symptom dimensions that reflect poor abstract thinking, disorganized thinking, and stereotyped thinking. The results of this study suggested that schizophrenia affects various mechanisms of artificial grammar learning differently. Implicit learning, knowledge acquisition in the absence of conscious awareness, is not entirely intact in patients with schizophrenia. Schizophrenia affects implicit learning through an impairment of the ability of making abstractions from rules and at least in part decreasing the capacity for perceptual learning.

  18. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Hwu Hai-Gwo

    2005-12-01

    Full Text Available Abstract Background Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Methods Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patients and 27 comparison subjects. Four symptom dimensions derived from a Chinese Positive and Negative Symptom Scale ratings were correlated with patients' artificial grammar implicit learning performances along the two stimulus dimensions. Patients' explicit memory performances were assessed by verbal paired associates and visual reproduction subtests of the Wechsler Memory Scales Revised Version to provide a contrast to their implicit memory function. Results Schizophrenia severely hindered color pattern artificial grammar learning while the disease affected lexical string artificial grammar learning to a lesser degree after correcting the influences from age, education and the performance of explicit memory function of both verbal and visual modalities. Both learning performances correlated significantly with the severity of patients' schizophrenic clinical symptom dimensions that reflect poor abstract thinking, disorganized thinking, and stereotyped thinking. Conclusion The results of this study suggested that schizophrenia affects various mechanisms of artificial grammar learning differently. Implicit learning, knowledge acquisition in the absence of conscious awareness, is not entirely intact in patients with schizophrenia. Schizophrenia affects implicit learning through an impairment of the ability of making abstractions from rules and at least in part decreasing the capacity for perceptual learning.

  19. Chronic mitragynine (kratom) enhances punishment resistance in natural reward seeking and impairs place learning in mice.

    Science.gov (United States)

    Ismail, Nurul Iman W; Jayabalan, Nanthini; Mansor, Sharif Mahsufi; Müller, Christian P; Muzaimi, Mustapha

    2017-07-01

    Kratom (Mitragyna speciosa) is a widely abused herbal drug preparation in Southeast Asia. It is often consumed as a substitute for heroin, but imposing itself unknown harms and addictive burdens. Mitragynine is the major psychostimulant constituent of kratom that has recently been reported to induce morphine-like behavioural and cognitive effects in rodents. The effects of chronic consumption on non-drug related behaviours are still unclear. In the present study, we investigated the effects of chronic mitragynine treatment on spontaneous activity, reward-related behaviour and cognition in mice in an IntelliCage® system, and compared them with those of morphine and Δ-9-tetrahydrocannabinol (THC). We found that chronic mitragynine treatment significantly potentiated horizontal exploratory activity. It enhanced spontaneous sucrose preference and also its persistence when the preference had aversive consequences. Furthermore, mitragynine impaired place learning and its reversal. Thereby, mitragynine effects closely resembled that of morphine and THC sensitisation. These findings suggest that chronic mitragynine exposure enhances spontaneous locomotor activity and the preference for natural rewards, but impairs learning and memory. These findings confirm pleiotropic effects of mitragynine (kratom) on human lifestyle, but may also support the recognition of the drug's harm potential. © 2016 Society for the Study of Addiction.

  20. THE DEVELOPMENT OF SCIENCE LEARNING MODULE FOR CHILDRENT WITH HEARING IMPAIRMENT

    Directory of Open Access Journals (Sweden)

    Ahmad Marzuqi

    2017-02-01

    Full Text Available There are the absence of teaching materials in accordance with the characteristics and conditions of a hearing impairment children in terms of learning, especially science subjects. The characteristics of hearing impairment children is poor in their vocabularies, so that, the teaching materials emphasizing the visual aspect is necessary. This study used a Research and Development (R & D adapted by the Sugiyono model in order to produce teaching materials in the form of pictorial modules and to test their effectiveness. The result of the research showed that it was a very valid criteria with a score of 97% of the materials experts, 85% of media experts, and 93% of skilled practitioners. The score of the effectiveness of the modules was 75% with the effective criteria.

  1. Dynamic assessment of word learning skills of pre-school children with primary language impairment.

    Science.gov (United States)

    Camilleri, Bernard; Law, James

    2014-10-01

    Dynamic assessment has been shown to have considerable theoretical and clinical significance in the assessment of socially disadvantaged and culturally and linguistically diverse children. In this study it is used to enhance assessment of pre-school children with primary language impairment. The purpose of the study was to determine whether a dynamic assessment (DA) has the potential to enhance the predictive capacity of a static measure of receptive vocabulary in pre-school children. Forty pre-school children were assessed using the static British Picture Vocabulary Scale (BPVS), a DA of word learning potential and an assessment of non-verbal cognitive ability. Thirty-seven children were followed up 6 months later and re-assessed using the BPVS. Although the predictive capacity of the static measure was found to be substantial, the DA increased this significantly especially for children with static scores below the 25th centile. The DA of children's word learning has the potential to add value to the static assessment of the child with low language skills, to predict subsequent receptive vocabulary skills and to increase the chance of correctly identifying children in need of ongoing support.

  2. Thioredoxin and impaired spatial learning and memory in the rats exposed to intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    YANG Xiu-hong; LIU Hui-guo; LIU Xue; CHEN Jun-nan

    2012-01-01

    Background Obstructive sleep apnea (OSA) can cause cognitive dysfunction and may be a reversible cause of cognitive loss in patients with Alzheimer's disease (AD).Chronic exposure to intermittent hypoxia (IH),such as encountered in OSA,is marked by neurodegenerative changes in rat brain.We investigated the change of thioredoxin (Trx),spatial learning and memory in rats exposed to chronic intermittent hypoxia (CIH).Methods Forty healthy male Sprague-Dawley (SD) rats were randomly divided into four groups of ten each:a CIH+normal saline (CIH+NS group),a N-acetylcystein-treated CIH (CIH+NAC) group,a sham CIH group (sham CIH+NS),and a sham NAC-treated sham CIH (CIH+NAC) group.Spatial learning and memory in each group was assessed with the Morris water maze.Real-time PCR and Western blotting were used to examine mRNA and protein expression of Trx in the hippocampus tissue.The terminal deoxynucleotidyl transferase-mediated dUTP-nick end-labeling (TUNEL) method was used to detect the apoptotic cells of the hippocampus CA1 region.Results ClH-rats showed impaired spatial learning and memory in the Morris water maze,including longer mean latencies for the target platform,reduced numbers of passes over the previous target platform and a smaller percentage of time spent in the target quadrant.Trx mRNA and protein levels were significantly decreased in the CIH-hippocampus,meanwhile,an elevated apoptotic index revealed apoptosis of hippocampal neurons of rats exposed to CIH.The rats,which acted better in the Morris water maze,showed higher levels of the Trx mRNA and protein in the hippocampus;apoptotic index of the neurons in the hippocampus of each group was negatively correlated with the Trx mRNA and protein levels.Conclusion The Trx deficit likely plays an important role in the impaired spatial learning and memory in the rats exposed to CIH and may work through the apoptosis of neurons in the hippocampus.

  3. Perinatal exposure to genistein, a soy phytoestrogen, improves spatial learning and memory but impairs passive avoidance learning and memory in offspring.

    Science.gov (United States)

    Kohara, Yumi; Kuwahara, Rika; Kawaguchi, Shinichiro; Jojima, Takeshi; Yamashita, Kimihiro

    2014-05-10

    This study investigated the effects of perinatal genistein (GEN) exposure on the central nervous system of rat offspring. Pregnant dams orally received GEN (1 or 10 mg/kg/day) or vehicle (1 ml/kg/day) from gestation day 10 to postnatal day 14. In order to assess the effects of GEN on rat offspring, we used a battery of behavioral tests, including the open-field, elevated plus-maze, MAZE and step-through passive avoidance tests. MAZE test is an appetite-motivation test, and we used this mainly for assessing spatial learning and memory. In the MAZE test, GEN groups exhibited shorter latency from start to goal than the vehicle-treated group in both sexes. On the other hand, performances in the step-through passive avoidance test were non-monotonically inhibited by GEN in both sexes, and a significant difference was observed in low dose of the GEN-treated group compared to the vehicle-treated group in female rats. Furthermore, we found that perinatal exposure to GEN did not significantly alter locomotor activity or emotionality as assessed by the open-field and elevated-plus maze tests. These results suggest that perinatal exposure to GEN improved spatial learning and memory of rat offspring, but impaired their passive avoidance learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Using electronic storybooks to support word learning in children with severe language impairments

    NARCIS (Netherlands)

    Smeets, Daisy J. H.; van Dijken, Marianne J.; Bus, Adriana G

    2012-01-01

    Novel word learning is reported to be problematic for children with severe language impairments (SLI). In this study, we tested electronic storybooks as a tool to support vocabulary acquisition in SLI children. In Experiment 1, 29 kindergarten SLI children heard four e-books each four times: (a) two

  5. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats.

    Science.gov (United States)

    Jia, Xiao-Tao; Ye-Tian; Yuan-Li; Zhang, Ge-Juan; Liu, Zhi-Qin; Di, Zheng-Li; Ying, Xiao-Ping; Fang, Yan; Song, Er-Fei; Qi, Jin-Shun; Pan, Yan-Fang

    2016-05-15

    Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share specific molecular mechanisms, and agents with proven efficacy in one may be useful against the other. The glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has similar properties to GLP-1 and is currently in clinical use for T2DM treatment. Thus, this study was designed to characterize the effects of exendin-4 on the impairment of learning and memory induced by amyloid protein (Aβ) and its probable molecular underlying mechanisms. The results showed that (1) intracerebroventricular (i.c.v.) injection of Aβ1-42 resulted in a significant decline of spatial learning and memory of rats in water maze tests; (2) pretreatment with exendin-4 effectively and dose-dependently protected against the Aβ1-42-induced impairment of spatial learning and memory; (3) exendin-4 treatment significantly decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl2 in Aβ1-42-induced Alzheimer's rats. The vision and swimming speed of the rats among all groups in the visible platform tests did not show any difference. These findings indicate that systemic pretreatment with exendin-4 can effectively prevent the behavioral impairment induced by neurotoxic Aβ1-42, and the underlying protective mechanism of exendin-4 may be involved in the Bcl2, Bax and caspase-3 pathways. Thus, the application of exendin-4 or the activation of its signaling pathways may be a promising strategy to ameliorate the degenerative processes observed in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Clozapine blockade of MK-801-induced learning/memory impairment in the mEPM: Role of 5-HT1A receptors and hippocampal BDNF levels.

    Science.gov (United States)

    López Hill, Ximena; Richeri, Analía; Scorza, María Cecilia

    2017-10-01

    Cognitive impairment associated with schizophrenia (CIAS) is highly prevalent and affects the overall functioning of patients. Clozapine (Clz), an atypical antipsychotic drug, significantly improves CIAS although the underlying mechanisms remain under study. The role of the 5-HT 1A receptor (5-HT 1A -R) in the ability of Clz to prevent the learning/memory impairment induced by MK-801 was investigated using the modified elevated plus-maze (mEPM) considering the Transfer latency (TL) as an index of spatial memory. We also investigated if changes in hippocampal brain-derived neurotrophic factor (BDNF) levels underlie the behavioral prevention induced by Clz. Clz (0.5 and 1mg/kg)- or vehicle-pretreated Wistar rats were injected with MK-801 (0.05mg/kg) or saline. TL was evaluated 35min later (TL1, acquisition session) while learning/memory performance was measured 24h (TL2, retention session) and 48h later (TL3, long-lasting effect). WAY-100635, a 5-HT 1A -R antagonist, was pre-injected (0.3mg/kg) to examine the presumed 5-HT 1A -R involvement in Clz action. At TL2, another experimental group treated with Clz and MK-801 and its respective control groups were added to measure BDNF protein levels by ELISA. TL1 and TL3 were not significantly modified by the different treatments. MK-801 increased TL2 compared to control group leading a disruption of spatial memory processing which was markedly attenuated by Clz. WAY-100635 suppressed this action supporting a relevant role of 5-HT 1A -R in the Clz mechanism of action to improve spatial memory dysfunction. Although a significant decrease of hippocampal BDNF levels underlies the learning/memory impairment induced by MK-801, this effect was not significantly prevented by Clz. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Nicotine Significantly Improves Chronic Stress-Induced Impairments of Cognition and Synaptic Plasticity in Mice.

    Science.gov (United States)

    Shang, Xueliang; Shang, Yingchun; Fu, Jingxuan; Zhang, Tao

    2017-08-01

    The aim of this study was to examine if nicotine was able to improve cognition deficits in a mouse model of chronic mild stress. Twenty-four male C57BL/6 mice were divided into three groups: control, stress, and stress with nicotine treatment. The animal model was established by combining chronic unpredictable mild stress (CUMS) and isolated feeding. Mice were exposed to CUMS continued for 28 days, while nicotine (0.2 mg/kg) was also administrated for 28 days. Weight and sucrose consumption were measured during model establishing period. The anxiety and behavioral despair were analyzed using the forced swim test (FST) and open-field test (OFT). Spatial cognition was evaluated using Morris water maze (MWM) test. Following behavioral assessment, both long-term potentiation (LTP) and depotentiation (DEP) were recorded in the hippocampal dentate gyrus (DG) region. Both synaptic and Notch1 proteins were measured by Western. Nicotine increased stressed mouse's sucrose consumption. The MWM test showed that spatial learning and reversal learning in stressed animals were remarkably affected relative to controls, whereas nicotine partially rescued cognitive functions. Additionally, nicotine considerably alleviated the level of anxiety and the degree of behavioral despair in stressed mice. It effectively mitigated the depression-induced impairment of hippocampal synaptic plasticity, in which both the LTP and DEP were significantly inhibited in stressed mice. Moreover, nicotine enhanced the expression of synaptic and Notch1 proteins in stressed animals. The results suggest that nicotine ameliorates the depression-like symptoms and improves the hippocampal synaptic plasticity closely associated with activating transmembrane ion channel receptors and Notch signaling components. Graphical Abstract ᅟ.

  8. Impaired cognitive plasticity and goal-directed control in adolescent obsessive-compulsive disorder.

    Science.gov (United States)

    Gottwald, Julia; de Wit, Sanne; Apergis-Schoute, Annemieke M; Morein-Zamir, Sharon; Kaser, Muzaffer; Cormack, Francesca; Sule, Akeem; Limmer, Winifred; Morris, Anna Conway; Robbins, Trevor W; Sahakian, Barbara J

    2018-01-22

    Youths with obsessive-compulsive disorder (OCD) experience severe distress and impaired functioning at school and at home. Critical cognitive domains for daily functioning and academic success are learning, memory, cognitive flexibility and goal-directed behavioural control. Performance in these important domains among teenagers with OCD was therefore investigated in this study. A total of 36 youths with OCD and 36 healthy comparison subjects completed two memory tasks: Pattern Recognition Memory (PRM) and Paired Associates Learning (PAL); as well as the Intra-Extra Dimensional Set Shift (IED) task to quantitatively gauge learning as well as cognitive flexibility. A subset of 30 participants of each group also completed a Differential-Outcome Effect (DOE) task followed by a Slips-of-Action Task, designed to assess the balance of goal-directed and habitual behavioural control. Adolescent OCD patients showed a significant learning and memory impairment. Compared with healthy comparison subjects, they made more errors on PRM and PAL and in the first stages of IED involving discrimination and reversal learning. Patients were also slower to learn about contingencies in the DOE task and were less sensitive to outcome devaluation, suggesting an impairment in goal-directed control. This study advances the characterization of juvenile OCD. Patients demonstrated impairments in all learning and memory tasks. We also provide the first experimental evidence of impaired goal-directed control and lack of cognitive plasticity early in the development of OCD. The extent to which the impairments in these cognitive domains impact academic performance and symptom development warrants further investigation.

  9. DPP6 Loss Impacts Hippocampal Synaptic Development and Induces Behavioral Impairments in Recognition, Learning and Memory

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2018-03-01

    Full Text Available DPP6 is well known as an auxiliary subunit of Kv4-containing, A-type K+ channels which regulate dendritic excitability in hippocampal CA1 pyramidal neurons. We have recently reported, however, a novel role for DPP6 in regulating dendritic filopodia formation and stability, affecting synaptic development and function. These results are notable considering recent clinical findings associating DPP6 with neurodevelopmental and intellectual disorders. Here we assessed the behavioral consequences of DPP6 loss. We found that DPP6 knockout (DPP6-KO mice are impaired in hippocampus-dependent learning and memory. Results from the Morris water maze and T-maze tasks showed that DPP6-KO mice exhibit slower learning and reduced memory performance. DPP6 mouse brain weight is reduced throughout development compared with WT, and in vitro imaging results indicated that DPP6 loss affects synaptic structure and motility. Taken together, these results show impaired synaptic development along with spatial learning and memory deficiencies in DPP6-KO mice.

  10. STUDENTS’ MISCONCEPTIONS ABOUT THE NATURE OF MATTER AND HOW IT IMPAIRS BIOCHEMISTRY LEARNING

    Directory of Open Access Journals (Sweden)

    E. Montagna

    2015-08-01

    Full Text Available Introduction: It is widely known that misconceptions impairs student’s learning. IUBMB proposed a concept inventory which defines biochemistry’s teaching scope. Even though it is known that many of them are subject of misconceptions by students, we collected informal data suggesting a deeper and most pervasive misconception related to the students’ perceptions about what is and is not a molecule through their classroom statements and tests. We hypothesize that students’ impairments on biochemistry learning possibly come from failure to assume that names are related to well defined molecules indicating lack of matter’s representative levels of integration. Objectives The present work aims to detect in freshmen students’ misconceptions about the chemical nature of main small and macromolecules which potentialy impairs biochemistry learning. Materials and methods: A list of assertions about real life situations involving and citing main biomolecules – ATP, DNA, protein, lipid, carbohydrate, enzyme, hormon, vitamin – were mixed with other containing vague common terms – toxin, transgenic, healthy, unwanted elements, chemical compound – not suggesting hazardous situations in order to capture students’ impressions. More than 150 students from five courses in three different higher education institutions answered true or false on 35 assertions. Results and discussion: More than 70% of students had more than 80% error in this task designed to be not tricky, misleading or with unpreviously studied concepts. Results suggests students do not understand compounds as molecules but as entities unrelated to real life situations; on the other hand vague terms triggers a negative perception not necessarily related to harm or hazardous situations. We suggest that it is originated by poor scientific literacy from previous scholarity as well as lack of criteria on media vehicles about the topics here cited. Conclusion: We conclude that many

  11. Memory Impairment in Children with Language Impairment

    Science.gov (United States)

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  12. Pre- and/or postnatal protein restriction in rats impairs learning and motivation in male offspring.

    Science.gov (United States)

    Reyes-Castro, L A; Rodriguez, J S; Rodríguez-González, G L; Wimmer, R D; McDonald, T J; Larrea, F; Nathanielsz, P W; Zambrano, E

    2011-04-01

    Suboptimal developmental environments program offspring to lifelong health complications including affective and cognitive disorders. Little is known about the effects of suboptimal intra-uterine environments on associative learning and motivational behavior. We hypothesized that maternal isocaloric low protein diet during pregnancy and lactation would impair offspring associative learning and motivation as measured by operant conditioning and the progressive ratio task, respectively. Control mothers were fed 20% casein (C) and restricted mothers (R) 10% casein to provide four groups: CC, RR, CR, and RC (first letter pregnancy diet and second letter lactation diet), to evaluate effects of maternal diet on male offspring behavior. Impaired learning was observed during fixed ratio-1 operant conditioning in RC offspring that required more sessions to learn vs. the CC offspring (9.4±0.8 and 3.8±0.3 sessions, respectively, pmotivational effects during the progressive ratio test revealed less responding in the RR (48.1±17), CR (74.7±8.4), and RC (65.9±11.2) for positive reinforcement vs. the CC offspring (131.5±7.5, plearning and motivation behavior with the nutritional challenge in the prenatal period showing more vulnerability in offspring behavior. Copyright © 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Cocaine impairs serial-feature negative learning and blood-brain barrier integrity.

    Science.gov (United States)

    Davidson, Terry L; Hargrave, Sara L; Kearns, David N; Clasen, Matthew M; Jones, Sabrina; Wakeford, Alison G P; Sample, Camille H; Riley, Anthony L

    2018-05-10

    Previous research has shown that diets high in fat and sugar [a.k.a., Western diets (WD)] can impair performance of rats on hippocampal-dependent learning and memory problems, an effect that is accompanied by selective increases in hippocampal blood brain barrier (BBB) permeability. Based on these types of findings, it has been proposed that overeating of a WD (and its resulting obesity) may be, in part, a consequence of impairments in these anatomical substrates and cognitive processes. Given that drug use (and addiction) represents another behavioral excess, the present experiments assessed if similar outcomes might occur with drug exposure by evaluating the effects of cocaine administration on hippocampal-dependent memory and on the integrity of the BBB. Experiment 1 of the present series of studies found that systemic cocaine administration in rats also appears to have disruptive effects on the same hippocampal-dependent learning and memory mechanism that has been proposed to underlie the inhibition of food intake. Experiment 2 demonstrated that the same regimen of cocaine exposure that produced disruptions in learning and memory in Experiment 1 also produced increased BBB permeability in the hippocampus, but not in the striatum. Although the predominant focus of previous research investigating the etiologies of substance use and abuse has been on the brain circuits that underlie the motivational properties of drugs, the current investigation implicates the possible involvement of hippocampal memory systems in such behaviors. It is important to note that these positions are not mutually exclusive and that neuroadaptations in these two circuits might occur in parallel that generate dysregulated drug use in a manner similar to that of excessive eating. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The strengths and weaknesses in verbal short-term memory and visual working memory in children with hearing impairment and additional language learning difficulties.

    Science.gov (United States)

    Willis, Suzi; Goldbart, Juliet; Stansfield, Jois

    2014-07-01

    To compare verbal short-term memory and visual working memory abilities of six children with congenital hearing-impairment identified as having significant language learning difficulties with normative data from typically hearing children using standardized memory assessments. Six children with hearing loss aged 8-15 years were assessed on measures of verbal short-term memory (Non-word and word recall) and visual working memory annually over a two year period. All children had cognitive abilities within normal limits and used spoken language as the primary mode of communication. The language assessment scores at the beginning of the study revealed that all six participants exhibited delays of two years or more on standardized assessments of receptive and expressive vocabulary and spoken language. The children with hearing-impairment scores were significantly higher on the non-word recall task than the "real" word recall task. They also exhibited significantly higher scores on visual working memory than those of the age-matched sample from the standardized memory assessment. Each of the six participants in this study displayed the same pattern of strengths and weaknesses in verbal short-term memory and visual working memory despite their very different chronological ages. The children's poor ability to recall single syllable words in relation to non-words is a clinical indicator of their difficulties in verbal short-term memory. However, the children with hearing-impairment do not display generalized processing difficulties and indeed demonstrate strengths in visual working memory. The poor ability to recall words, in combination with difficulties with early word learning may be indicators of children with hearing-impairment who will struggle to develop spoken language equal to that of their normally hearing peers. This early identification has the potential to allow for target specific intervention that may remediate their difficulties. Copyright © 2014. Published

  15. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    Science.gov (United States)

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  16. Protective effects of prescription n-3 fatty acids against impairment of spatial cognitive learning ability in amyloid β-infused rats.

    Science.gov (United States)

    Hashimoto, Michio; Tozawa, Ryuichi; Katakura, Masanori; Shahdat, Hossain; Haque, Abdul Md; Tanabe, Yoko; Gamoh, Shuji; Shido, Osamu

    2011-07-01

    Deposition of amyloid β peptide (Aβ) into the brain causes cognitive impairment. We investigated whether prescription pre-administration of n-3 fatty acids improves cognitive learning ability in young rats and whether it protects against learning ability impairments in an animal model of Alzheimer's disease that was prepared by infusion of Aβ(1-40) into the cerebral ventricles of rats. Pre-administration of TAK-085 (highly purified and concentrated n-3 fatty acids containing eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester) at 300 mg kg(-1) day(-1) for 12 weeks significantly reduced the number of reference memory errors in an 8-arm radial maze, suggesting that long-term administration of TAK-085 improves cognitive leaning ability in rats. After pre-administration, the control group was divided into the vehicle and Aβ-infused groups, whereas the TAK-085 pre-administration group was divided into the TAK-085 and TAK-085 + Aβ groups (TAK-085-pre-administered Aβ-infused rats). Aβ(1-40) or vehicle was infused into the cerebral ventricle using a mini osmotic pump. Pre-administration of TAK-085 to the Aβ-infused rats significantly suppressed the number of reference and working memory errors and decreased the levels of lipid peroxide and reactive oxygen species in the cerebral cortex and hippocampus of Aβ-infused rats, suggesting that TAK-085 increases antioxidative defenses. The present study suggests that long-term administration of TAK-085 is a possible therapeutic agent for protecting against Alzheimer's disease-induced learning deficiencies. This journal is © The Royal Society of Chemistry 2011

  17. Isorhynchophylline improves learning and memory impairments induced by D-galactose in mice.

    Science.gov (United States)

    Xian, Yan-Fang; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Mao, Qing-Qiu; Cheng, Christopher H K; Ip, Siu-Po; Lin, Zhi-Xiu

    2014-10-01

    Isorhynchophylline (IRN), an alkaloid isolated from Uncaria rhynchophylla, has been reported to improve cognitive impairment induced by beta-amyloid in rats. However, whether IRN could also ameliorate the D-galactose (D-gal)-induced mouse memory deficits is still not clear. In the present study, we aimed to investigate whether IRN had potential protective effect against the D-gal-induced cognitive deficits in mice. Mice were given a subcutaneous injection of D-gal (100mg/kg) and orally administered IRN (20 or 40mg/kg) daily for 8weeks, followed by assessing spatial learning and memory function by the Morris water maze test. The results showed that IRN significantly improved spatial learning and memory function in the D-gal-treated mice. In the mechanistic studies, IRN significantly increased the level of glutathione (GSH) and the activities of superoxide dismutase (SOD) and catalase (CAT), while decreased the level of malondialdehyde (MDA) in the brain tissues of the D-gal-treated mice. Moreover, IRN (20 or 40mg/kg) significantly inhibited the production of prostaglandin E 2 (PGE2) and nitric oxide (NO), and the mRNA expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the activation of nuclear factor kappa B (NF-κB) in the brain tissues of D-gal-treated mice. Our results amply demonstrated that IRN was able to ameliorate cognitive deficits induced by D-gal in mice, and the observed cognition-improving action may be mediated, at least in part, through enhancing the antioxidant status and anti-inflammatory effect of brain tissues via NFκB signaling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain

    OpenAIRE

    Hefner, Kathryn; Whittle, Nigel; Juhasz, Jaynann; Norcross, Maxine; Karlsson, Rose-Marie; Saksida, Lisa M.; Bussey, Timothy J.; Singewald, Nicolas; Holmes, Andrew

    2008-01-01

    Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally-occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C5...

  19. Errorless (re)learning of daily living routines by a woman with impaired memory and initiation: transferrable to a new home?

    Science.gov (United States)

    Ferland, Mark B; Larente, Johanne; Rowland, Julia; Davidson, Patrick S R

    2013-01-01

    To use errorless learning to train a memory- and initiation-impaired woman on two activities of daily living routines and then to transfer these routines to a new home. Single case quasi-experimental. Over 9 months, a young woman with an anterior cerebral haemorrhagic stroke (secondary to a ruptured arteriovenous malformation) was trained on routines of morning self-care and diabetes management, involving extensive practice on a structured series of steps with intervention as needed to prevent errors. Once routines were established, family members were trained in the supervision and rating of the routines at home. Following discharge, caregivers continued to monitor the routines daily for 3 months. Errorless learning of self-care and diabetes routines was successful. The routines were transferred to a new home environment and maintained at a near perfect level over a 3-month follow-up period. The patient remained severely memory-impaired, indicating that her functional gains were not attributable to any recovery of her memory abilities over time. This case offers evidence that even people with severe memory and initiation impairments can be trained on new routines using errorless learning and that, once learned, these routines can be carried out in novel contexts.

  20. Impairment of context memory by β-amyloid peptide in terrestrial snail

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available We examined influence of the β-amyloid peptide (25-35 neurotoxic fragment (βAP on Helix lucorum food-aversion learning. Testing with aversively conditioned carrot showed that 2, 5, and 14 days after training the βAP-injected group responded in a significantly larger number of cases and with a significantly smaller latency than the sham-injected control group. The results demonstrate that the amyloid peptide partially impairs the learning process. In an attempt to specify what component of memory is impaired we compared responses in a context in which the snails were aversively trained, and in a neutral context. It was found that the sham-injected learned snails significantly less frequently took the aversively conditioned food in the context in which the snails were shocked, while the βAP-injected snails remembered the aversive context 2 days after associative training, but were not able to distinguish two contexts 5, and 14 days after training. In a separate series of experiments a specific context was associated with electric shock, and changes in general responsiveness were tested in two contexts several days later. It was found that the βAP-injected snails significantly increased withdrawal responses in all tested contexts, while the sham-injected control animals selectively increased responsiveness only in the context in which they were reinforced with electric shocks. These results demonstrate that the β-amyloid peptide (25-35 interferes with the learning process, and may play a significant role in behavioral plasticity and memory by selectively impairing only one

  1. Synaptophysin and the dopaminergic system in hippocampus are involved in the protective effect of rutin against trimethyltin-induced learning and memory impairment.

    Science.gov (United States)

    Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping

    2014-09-01

    This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.

  2. Ripple-Triggered Stimulation of the Locus Coeruleus during Post-Learning Sleep Disrupts Ripple/Spindle Coupling and Impairs Memory Consolidation

    Science.gov (United States)

    Novitskaya, Yulia; Sara, Susan J.; Logothetis, Nikos K.; Eschenko, Oxana

    2016-01-01

    Experience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation. In addition to…

  3. Environmental stimulation rescues maternal high fructose intake-impaired learning and memory in female offspring: Its correlation with redistribution of histone deacetylase 4.

    Science.gov (United States)

    Wu, Kay L H; Wu, Chih-Wei; Tain, You-Lin; Huang, Li-Tung; Chao, Yung-Mei; Hung, Chun-Ying; Wu, Jin-Cheng; Chen, Siang-Ru; Tsai, Pei-Chia; Chan, Julie Y H

    2016-04-01

    Impairment of learning and memory has been documented in the later life of offspring to maternal consumption with high energy diet. Environmental stimulation enhances the ability of learning and memory. However, potential effects of environmental stimulation on the programming-associated deficit of learning and memory have not been addressed. Here, we examined the effects of enriched-housing on hippocampal learning and memory in adult female offspring rats from mother fed with 60% high fructose diet (HFD) during pregnancy and lactation. Impairment of spatial learning and memory performance in HFD group was observed in offspring at 3-month-old. Hippocampal brain-derived neurotrophic factor (BDNF) was decreased in the offspring. Moreover, the HFD group showed an up-regulation of histone deacetylase 4 (HDAC4) in the nuclear fractions of hippocampal neurons. Stimulation to the offspring for 4weeks after winning with an enriched-housing environment effectively rescued the decrease in cognitive function and hippocampal BDNF level; alongside a reversal of the increased distribution of nuclear HDAC4. Together these results suggest that later life environmental stimulation effectively rescues the impairment of hippocampal learning and memory in female offspring to maternal HFD intake through redistributing nuclear HDAC4 to increase BDNF expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Learning and memory impairments in a neuroendocrine mouse model of anxiety/depression

    Directory of Open Access Journals (Sweden)

    Flavie eDarcet

    2014-05-01

    Full Text Available Cognitive disturbances are often reported as serious incapacitating symptoms by patients suffering from major depressive disorders. Such deficits have been observed in various animal models based on environmental stress.Here, we performed a complete characterization of cognitive functions in a neuroendocrine mouse model of depression based on a chronic (4 weeks corticosterone administration (CORT. Cognitive performances were assessed using behavioral tests measuring episodic (novel object recognition test, NORT, associative (one-trial contextual fear conditioning, CFC and visuo-spatial (Morris water maze, MWM; Barnes maze, BM learning/memory. Altered emotional phenotype after chronic corticosterone treatment was confirmed in mice using tests predictive of anxiety or depression-related behaviors.In the NORT, CORT-treated mice showed a decrease in time exploring the novel object during the test session and a lower discrimination index compared to control mice, characteristic of recognition memory impairment. Associative memory was also impaired, as observed with a decrease in freezing duration in CORT-treated mice in the CFC, thus pointing out the cognitive alterations in this model. In the MWM and in the BM, spatial learning performance but also short-term spatial memory were altered in CORT-treated mice. In the MWM, unlike control animals, CORT-treated animals failed to learn a new location during the reversal phase, suggesting a loss of cognitive flexibility. Finally, in the BM, the lack of preference for the target quadrant during the recall probe trial in animals receiving corticosterone regimen demonstrates that long-term retention was also affected in this paradigm. Taken together, our results highlight that CORT-induced anxio-depressive-like phenotype is associated with a cognitive deficit affecting all aspects of memory tested.

  5. Chronic stress during adolescence impairs and improves learning and memory in adulthood

    Directory of Open Access Journals (Sweden)

    Lauren Evelyn Chaby

    2015-12-01

    Full Text Available Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal and memory (both reference and working starting 110 days after completion of the adolescent-stress treatment. We found that adolescent stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans.

  6. Finding the Intersection of the Learning Organization and Learning Transfer: The Significance of Leadership

    Science.gov (United States)

    Kim, Jun Hee; Callahan, Jamie L.

    2013-01-01

    Purpose: This article aims to develop a conceptual framework delineating the key dimension of the learning organization which significantly influences learning transfer. Design/methodology/approach: The conceptual framework was developed by analyzing previous studies and synthesizing the results associated with the following four relationships:…

  7. Sleep Restriction Impairs Vocabulary Learning when Adolescents Cram for Exams: The Need for Sleep Study

    Science.gov (United States)

    Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C.; Chee, Michael W.L.; Gooley, Joshua J.

    2016-01-01

    Study Objectives: The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. Methods: In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15–19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. Results: For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Conclusions: Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. Citation: Huang S, Deshpande A, Yeo SC, Lo JC, Chee MW, Gooley JJ. Sleep restriction impairs vocabulary learning when adolescents cram for exams: the Need for Sleep Study. SLEEP 2016;39(9):1681–1690. PMID:27253768

  8. Chronic ethanol consumption impairs learning and memory after cessation of ethanol.

    Science.gov (United States)

    Farr, Susan A; Scherrer, Jeffrey F; Banks, William A; Flood, James F; Morley, John E

    2005-06-01

    Acute consumption of ethanol results in reversible changes in learning and memory whereas chronic ethanol consumption of six or more months produces permanent deficits and neural damage in rodents. The goal of the current paper was determine whether shorter durations of chronic ethanol ingestion in mice would produce long-term deficits in learning and memory after the cessation of ethanol. We first examined the effects of four and eight weeks of 20% ethanol followed by a three week withdrawal period on learning and memory in mice. We determined that three weeks after eight, but not four, weeks of 20% ethanol consumption resulted in deficits in learning and long-term memory (seven days) in T-maze footshock avoidance and Greek Cross brightness discrimination, step-down passive avoidance and shuttlebox active avoidance. Short-term memory (1 hr) was not affected. The deficit was not related to changes in thiamine status, caloric intake, or nonmnemonic factors, such as, activity or footshock sensitivity. Lastly, we examined if the mice recovered after longer durations of withdrawal. After eight weeks of ethanol, we compared mice after three and 12 weeks of withdrawal. Mice that had been off ethanol for both three and 12 weeks were impaired in T-maze footshock avoidance compared to the controls. The current results indicate that a duration of ethanol consumption as short as eight weeks produces deficits in learning and memory that are present 12 weeks after withdrawal.

  9. Deleting Both PHLPP1 and CANP1 Rescues Impairments in Long-Term Potentiation and Learning in Both Single Knockout Mice

    Science.gov (United States)

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-01-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation (TBS)-induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression…

  10. Adolescent self-esteem, emotional learning disabilities, and significant others.

    Science.gov (United States)

    Peck, D G

    1981-01-01

    This paper will primarily examine four concepts: emotional learning disabilities, adolescence, self-esteem, and the social-psychological concept of "significant others." Problems of definition will be discussed, with a literature review, and an attempt will be made to integrate all four of the above-mentioned concepts. The emphasis will be in applying a sociological perspective to an educational and growing problem: how do we (sic) educate students with some type of learning disability? What, if any, extra-curricular factors potentially affect in school learning behavior(s) of adolescents?

  11. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage

    Institute of Scientific and Technical Information of China (English)

    Yifan He; Jihong Zhu; Fang Huang; Liu Qin; Wenguo Fan; Hongwen He

    2014-01-01

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory be-haviors and structural changes in related brain regions, in a mouse model of Alzheimer’s disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learn-ing and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltrans-ferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic ifbers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no signiifcant differences in histology or be-havior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present ifndings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer’s disease, and

  12. Rapid learning of minimally different words in five- to six-year-old children : Effects of acoustic salience and hearing impairment

    NARCIS (Netherlands)

    Giezen, M.R.; Escudero, P.; Baker, A.E.

    This study investigates the role of acoustic salience and hearing impairment in learning phonologically minimal pairs. Picture-matching and object-matching tasks were used to investigate the learning of consonant and vowel minimal pairs in five- to six-year-old deaf children with a cochlear implant

  13. [MK-801 or DNQX reduces electroconvulsive shock-induced impairment of learning-memory and hyperphosphorylation of Tau in rats].

    Science.gov (United States)

    Liu, Chao; Min, Su; Wei, Ke; Liu, Dong; Dong, Jun; Luo, Jie; Liu, Xiao-Bin

    2012-08-25

    AMPA receptor antagonist DNQX) induced the impairment of learning and memory in depressed rats with extended evasive latency time and shortened space exploration time. And the two factors presented a subtractive effect. ECT significantly up-regulated the content of glutamate in the hippocampus of depressed rats which were not affected by the glutamate ionic receptor blockers. ECT and the glutamate ionic receptor blockers did not affect the total Tau protein in the hippocampus of rats. ECT up-regulated the hyperphosphorylation of Tau protein in the hippocampus of depressed rats, while the glutamate ionic receptor blockers down-regulated it, and combination of the two factors presented a subtractive effect. Our results indicate that ECT up-regulates the content of glutamate in the hippocampus of depressed rats, which up-regulates the hyperphosphorylation of Tau protein resulting in the impairment of learning and memory in depressed rats.

  14. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.

    Science.gov (United States)

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    2015-09-01

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Chronic impairments in spatial learning and memory in rats previously exposed to chlorpyrfos or diisopropylfluorophosphate.

    Science.gov (United States)

    Terry, A V; Beck, W D; Warner, S; Vandenhuerk, L; Callahan, P M

    2012-01-01

    The acute toxicity of organophosphates (OPs) has been studied extensively; however, much less attention has been given to the subject of repeated exposures that are not associated with overt signs of toxicity (i.e., subthreshold exposures). The objective of this study was to determine if the protracted spatial learning impairments we have observed previously after repeated subthreshold exposures to the insecticide chlorpyrifos (CPF) or the alkylphosphate OP, diisopropylfluorophosphate (DFP) persisted for longer periods after exposure. Male Wistar rats (beginning at two months of age) were initially injected subcutaneously with CPF (10.0 or 18.0mg/kg) or DFP (0.25 or 0.75 mg/kg) every other day for 30 days. After an extended OP-free washout period (behavioral testing begun 50 days after the last OP exposure), rats previously exposed to CPF, but not DFP, were impaired in a radial arm maze (RAM) win-shift task as well as a delayed non-match to position procedure. Later experiments (i.e., beginning 140 days after the last OP exposure) revealed impairments in the acquisition of a water maze hidden platform task associated with both OPs. However, only rats previously exposed to DFP were impaired in a second phase of testing when the platform location was changed (indicative of deficits of cognitive flexibility). These results indicate, therefore, that repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and alkylphosphate-based OPs may have differential effects depending on the cognitive domain evaluated. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Conceptualizing science learning as a collective social practice: changing the social pedagogical compass for a child with visual impairment

    Science.gov (United States)

    Fleer, Marilyn; March, Sue

    2015-09-01

    The international literature on science learning in inclusive settings has a long history, but it is generally very limited in scope. Few studies have been undertaken that draw upon a cultural-historical reading of inclusive pedagogy, and even less in the area of science education. In addition, we know next to nothing about the science learning of preschool children with visual impairment using cultural-historical theory. This paper seeks to fill this gap by presenting a study of one child with Albinism who participated in a unit of early childhood science where fairy tales were used for learning about the concepts of sound and growth. This paper reports upon the social and material conditions that were created to support learning in the preschool, whilst also examining how the learning of growth and sound were supported at home. The study found three new pedagogical features for inclusion: Imagination in science; Ongoing scientific narrative; and Scientific mirroring. It was found that when a dialectical reading of home and centre practices feature, greater insights into inclusive pedagogy for science learning are afforded, and a view of science as a collective enterprise emerges. It is argued that a cultural-historical conception of inclusion demands that the social conditions, rather than the biology of the child, is foregrounded, and through this greater insights into how science learning for children with visual impairment is gained.

  17. Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity.

    Science.gov (United States)

    Martín, Maria B C; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M; Merabet, Lotfi B

    2016-01-01

    Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment.

  18. Enhanced Assessment Technology and Neurocognitive Aspects of Specific Learning Disorder with Impairment in Mathematics.

    Directory of Open Access Journals (Sweden)

    Marios A. Pappas

    2018-02-01

    Full Text Available Specific Learning Disorder with impairment in Mathematics (Developmental Dyscalculia is a complex learning disorder which affects arithmetic skills, symbolic magnitude processing, alertness, flexibility in problem solving and maintained attention. Neuro-cognitive studies revealed that such difficulties in children with DD could be related to poor Working Memory and attention deficits. Furthermore, neuroimaging studies indicate that brain structure differences in children with DD compared to typically developing children could affect mathematical performance. In this study we present the cognitive profile of Dyscalculia, as well as the neuropsychological aspects of the deficit, with special reference to the utilization of enhanced assessment technology such as computerized neuropsychological tools and neuroimaging techniques.

  19. Learning and using technology in intertwined processes: a study of people with mild cognitive impairment or Alzheimer's disease.

    Science.gov (United States)

    Rosenberg, Lena; Nygård, Louise

    2014-09-01

    People with mild cognitive impairment and Alzheimer's disease are likely to be challenged by the multitude of everyday technology in today's society. The aim of this study was to explore how they try to prohibit, avoid or solve problems in everyday technology use, maintain skills, and learn to use new technology. To explore how the participants applied and reasoned about using everyday technology in real-life situations interviews were conducted while the participants used their own technology in their homes. Interviews were conducted with 20 participants with mild cognitive impairment (n = 10) or Alzheimer's disease (n = 10). The analyses were inspired from grounded theory and resulted in one core category and three sub-categories that represent sub-processes in the core. The core finding presents a continuous, intertwined process of learning and using everyday technology, highlighting how the context was interwoven in the processes. The participants used a rich variety of management strategies when approaching technology, including communication with the everyday technologies on different levels. The findings underscore that it is important to support continued use of everyday technology as long as it is valued and relevant to the person with mild cognitive impairment or Alzheimer's disease. The intertwined process of learning and using everyday technology suggests how support could target different sub-processes. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Cognitive impairment in COPD: a systematic review.

    Science.gov (United States)

    Torres-Sánchez, Irene; Rodríguez-Alzueta, Elisabeth; Cabrera-Martos, Irene; López-Torres, Isabel; Moreno-Ramírez, Maria Paz; Valenza, Marie Carmen

    2015-01-01

    The objectives of this study were to characterize and clarify the relationships between the various cognitive domains affected in COPD patients and the disease itself, as well as to determine the prevalence of impairment in the various cognitive domains in such patients. To that end, we performed a systematic review using the following databases: PubMed, Scopus, and ScienceDirect. We included articles that provided information on cognitive impairment in COPD patients. The review of the findings of the articles showed a significant relationship between COPD and cognitive impairment. The most widely studied cognitive domains are memory and attention. Verbal memory and learning constitute the second most commonly impaired cognitive domain in patients with COPD. The prevalence of impairment in visuospatial memory and intermediate visual memory is 26.9% and 19.2%, respectively. We found that cognitive impairment is associated with the profile of COPD severity and its comorbidities. The articles reviewed demonstrated that there is considerable impairment of the cognitive domains memory and attention in patients with COPD. Future studies should address impairments in different cognitive domains according to the disease stage in patients with COPD.

  1. Cognitive impairment in COPD: a systematic review

    Directory of Open Access Journals (Sweden)

    Irene Torres-Sánchez

    2015-04-01

    Full Text Available The objectives of this study were to characterize and clarify the relationships between the various cognitive domains affected in COPD patients and the disease itself, as well as to determine the prevalence of impairment in the various cognitive domains in such patients. To that end, we performed a systematic review using the following databases: PubMed, Scopus, and ScienceDirect. We included articles that provided information on cognitive impairment in COPD patients. The review of the findings of the articles showed a significant relationship between COPD and cognitive impairment. The most widely studied cognitive domains are memory and attention. Verbal memory and learning constitute the second most commonly impaired cognitive domain in patients with COPD. The prevalence of impairment in visuospatial memory and intermediate visual memory is 26.9% and 19.2%, respectively. We found that cognitive impairment is associated with the profile of COPD severity and its comorbidities. The articles reviewed demonstrated that there is considerable impairment of the cognitive domains memory and attention in patients with COPD. Future studies should address impairments in different cognitive domains according to the disease stage in patients with COPD.

  2. Prevention of vision loss protects against age-related impairment in learning and memory performance in DBA/2J mice

    Directory of Open Access Journals (Sweden)

    Aimee eWong

    2013-09-01

    Full Text Available The DBA/2J mouse is a model of pigmentary glaucoma in humans as it shows age‐related increases in intraocular pressure, retinal ganglion cell death and visual impairment. Previously, we showed that visual ability declines from 9 ‐12 months of age and visual impairment is correlated with poor learning and memory performance in visuo‐spatial tasks but not in tasks that do not depend on visual cues. To test the sensory impairment hypothesis of aging, which postulates that sensory impaired individuals are disadvantaged in their performance on psychometric tests as a direct result of difficulties in sensory perception, we treated DBA/2J mice with a conventional glaucoma medication used in humans (Timoptic‐XE, 0.00, 0.25 or 0.50% daily from 9 weeks to 12 months of age to determine whether prevention of vision loss prevented the decline in visuo-spatial learning and memory performance. At all ages tested (3, 6, 9 and 12 months of age, mice treated with Timoptic-XE (0.25 and 0.50% maintained a high level of performance, while 12 month old control mice (0.00% exhibited impaired performance in visually‐dependent, but not non‐visual tasks. These results demonstrate that when sensory function is preserved, cognitive performance is normalized. Thus, as in many aging humans, DBA/2J mice show age-related decrements in performance on visually presented cognitive tests, not because of cognitive impairment but as a direct consequence of poor visual ability. Our results demonstrate that age-related impairment in performance in visuo-spatial tasks in DBA/2J mice can be prevented by the preservation of visual ability.

  3. Prevention of vision loss protects against age-related impairment in learning and memory performance in DBA/2J mice.

    Science.gov (United States)

    Wong, Aimée A; Brown, Richard E

    2013-01-01

    The DBA/2J mouse is a model of pigmentary glaucoma in humans as it shows age-related increases in intraocular pressure (IOP), retinal ganglion cell death and visual impairment. Previously, we showed that visual ability declines from 9 to 12 months of age and visual impairment is correlated with poor learning and memory performance in visuo-spatial tasks but not in tasks that do not depend on visual cues. To test the "sensory impairment" hypothesis of aging, which postulates that sensory impaired individuals are disadvantaged in their performance on psychometric tests as a direct result of difficulties in sensory perception, we treated DBA/2J mice with a conventional glaucoma medication used in humans (Timoptic-XE, 0.00, 0.25, or 0.50%) daily from 9 weeks to 12 months of age to determine whether prevention of vision loss prevented the decline in visuo-spatial learning and memory performance. At all ages tested (3, 6, 9, and 12 months of age), mice treated with Timoptic-XE (0.25 and 0.50%) maintained a high level of performance, while 12 month old control mice (0.00%) exhibited impaired performance in visually-dependent, but not non-visual tasks. These results demonstrate that when sensory function is preserved, cognitive performance is normalized. Thus, as in many aging humans, DBA/2J mice show age-related decrements in performance on visually presented cognitive tests, not because of cognitive impairment but as a direct consequence of poor visual ability. Our results demonstrate that age-related impairment in performance in visuo-spatial tasks in DBA/2J mice can be prevented by the preservation of visual ability.

  4. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation.

    Science.gov (United States)

    Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales

    2016-05-15

    The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats.

    Science.gov (United States)

    Liu, Gang; Liu, Chao; Zhang, Xue-Ning

    2015-09-01

    The present study aimed to examine the neurophysiological mechanisms of the 2,6-diisopropylphenol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning and memory impairment, induced by electroconvulsive therapy (ECT). A total of 48 adult depressed rats without olfactory bulbs were randomly divided into six experimental groups: i) saline; ii) 10 mg/kg MK‑801; iii) 10 mg/kg MK‑801 and a course of ECT; iv) 200 mg/kg 2,6‑diisopropylphenol; v) 200 mg/kg 2,6‑diisopropylphenol and a course of ECT; and vi) saline and a course of ECT. The learning and memory abilities of the rats were assessed using a Morris water maze 1 day after a course of ECT. The hippocampus was removed 1 day after assessment using the Morris water maze assessment. The content of glutamate in the hippocampus was detected using high‑performance liquid chromatography. The expression levels of p‑AT8Ser202 and GSK‑3β1H8 in the hippocampus were determined using immunohistochemical staining and western blot analysis. The results demonstrated that the 2,6‑diisopropylphenol NMDA receptor antagonist, MK‑801 and ECT induced learning and memory impairment in the depressed rats. The glutamate content was significantly upregulated by ECT, reduced by 2,6‑diisopropylphenol, and was unaffected by the NMDA receptor antagonist in the hippocampus of the depressed rats. Tau protein hyperphosphorylation in the hippocampus was upregulated by ECT, but was reduced by 2,6‑diisopropylphenol and the MK‑801 NMDA receptor antagonist. It was also demonstrated that 2,6‑diisopropylphenol prevented learning and memory impairment and reduced the hyperphosphorylation of the Tau protein, which was induced by eECT. GSK‑3β was found to be the key protein involved in this signaling pathway. The ECT reduced the learning and memory impairment, caused by hyperphosphorylation of the Tau protein, in the depressed rats by upregulating the glutamate content.

  6. Effect of an NCAM mimetic peptide FGL on impairment in spatial learning and memory after neonatal phencyclidine treatment in rats

    DEFF Research Database (Denmark)

    Secher, Thomas; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    treatment regimen where FGL was administered throughout development. Rats were tested as adults for spatial reference memory, reversal learning, and working memory in the Morris water maze. The PCP-treated rats demonstrated a robust impairment in working memory and reversal learning. However, the long-term......The FGL peptide is a neural cell adhesion molecule-derived fibroblast growth factor receptor agonist. FGL has both neurotrophic and memory enhancing properties. Neonatal phencyclidine (PCP) treatment on postnatal days 7, 9, and 11 has been shown to result in long-lasting behavioral abnormalities......, including cognitive impairment relevant to schizophrenia. The present study investigated the effect of FGL on spatial learning and memory deficits induced by neonatal PCP treatment. Rat pups were treated with 30mg/kg PCP on postnatal days 7, 9, and 11. Additionally, the rats were subjected to a chronic FGL...

  7. Using Discrete Trial Training to Identify Specific Learning Impairments in Boys with Fragile X Syndrome

    Science.gov (United States)

    Hall, Scott S.; Hustyi, Kristin M.; Hammond, Jennifer L.; Hirt, Melissa; Reiss, Allan L.

    2014-01-01

    We examined whether "discrete trial training" (DTT) could be used to identify learning impairments in mathematical reasoning in boys with fragile X syndrome (FXS). Boys with FXS, aged 10-23 years, and age and IQ-matched controls, were trained to match fractions to pie-charts and pie-charts to decimals either on a computer or with a…

  8. Design of a Braille Learning Application for Visually Impaired Students in Bangladesh.

    Science.gov (United States)

    Nahar, Lutfun; Jaafar, Azizah; Ahamed, Eistiak; Kaish, A B M A

    2015-01-01

    Visually impaired students (VIS) are unable to get visual information, which has made their learning process complicated. This paper discusses the overall situation of VIS in Bangladesh and identifies major challenges that they are facing in getting education. The Braille system is followed to educate blind students in Bangladesh. However, lack of Braille based educational resources and technological solutions have made the learning process lengthy and complicated for VIS. As a developing country, Bangladesh cannot afford for the costly Braille related technological tools for VIS. Therefore, a mobile phone based Braille application, "mBRAILLE", for Android platform is designed to provide an easy Braille learning technology for VIS in Bangladesh. The proposed design is evaluated by experts in assistive technology for students with disabilities, and advanced learners of Braille. The application aims to provide a Bangla and English Braille learning platform for VIS. In this paper, we depict iterative (participatory) design of the application along with a preliminary evaluation with 5 blind subjects, and 1 sighted and 2 blind experts. The results show that the design scored an overall satisfaction level of 4.53 out of 5 by all respondents, indicating that our design is ready for the next step of development.

  9. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    Science.gov (United States)

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  10. Brain Substrates of Learning and Retention in Mild Cognitive Impairment Diagnosis and Progression to Alzheimer's Disease

    Science.gov (United States)

    Chang, Yu-Ling; Bondi, Mark W.; Fennema-Notestine, Christine; McEvoy, Linda K.; Hagler, Donald J., Jr.; Jacobson, Mark W.; Dale, Anders M.

    2010-01-01

    Understanding the underlying qualitative features of memory deficits in mild cognitive impairment (MCI) can provide critical information for early detection of Alzheimer's disease (AD). This study sought to investigate the utility of both learning and retention measures in (a) the diagnosis of MCI, (b) predicting progression to AD, and (c)…

  11. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  12. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus.

    Science.gov (United States)

    Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui

    2017-05-01

    Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

  13. Impaired neurocognitive functions affect social learning processes in oppositional defiant disorder and conduct disorder: implications for interventions.

    Science.gov (United States)

    Matthys, Walter; Vanderschuren, Louk J M J; Schutter, Dennis J L G; Lochman, John E

    2012-09-01

    In this review, a conceptualization of oppositional defiant (ODD) and conduct disorder (CD) is presented according to which social learning processes in these disorders are affected by neurocognitive dysfunctions. Neurobiological studies in ODD and CD suggest that the ability to make associations between behaviors and negative and positive consequences is compromised in children and adolescents with these disorders due to reduced sensitivity to punishment and to reward. As a result, both learning of appropriate behavior and learning to refrain from inappropriate behavior may be affected. Likewise, problem solving is impaired due to deficiencies in inhibition, attention, cognitive flexibility, and decision making. Consequently, children and adolescents with ODD and CD may have difficulty learning to optimize their behavior in changeable environments. This conceptualization of ODD and CD is relevant for the improvement of the effect of psychological treatments. Behavioral and cognitive-behavioral interventions that have been shown to be modestly effective in ODD and CD are based on social learning. Limited effectiveness of these interventions may be caused by difficulties in social learning in children and adolescents with ODD and CD. However, although these impairments have been observed at a group level, the deficits in reward processing, punishment processing, and cognitive control mentioned above may not be present to the same extent in each individual with ODD and CD. Therefore, the neurocognitive characteristics in children and adolescents with ODD and CD should be assessed individually. Thus, instead of delivering interventions in a standardized way, these programs may benefit from an individualized approach that depends on the weaknesses and strengths of the neurocognitive characteristics of the child and the adolescent.

  14. Natalizumab Significantly Improves Cognitive Impairment over Three Years in MS: Pattern of Disability Progression and Preliminary MRI Findings.

    Directory of Open Access Journals (Sweden)

    Flavia Mattioli

    Full Text Available Previous studies reported that Multiple Sclerosis (MS patients treated with natalizumab for one or two years exhibit a significant reduction in relapse rate and in cognitive impairment, but the long term effects on cognitive performance are unknown. This study aimed to evaluate the effects of natalizumab on cognitive impairment in a cohort of 24 consecutive patients with relapsing remitting MS treated for 3 years. The neuropsychological tests, as well as relapse number and EDSS, were assessed at baseline and yearly for three years. The impact on cortical atrophy was also considered in a subgroup of them, and are thus to be considered as preliminary. Results showed a significant reduction in the number of impaired neuropsychological tests after three years, a significant decrease in annualized relapse rate at each time points compared to baseline and a stable EDSS. In the neuropsychological assessment, a significant improvement in memory, attention and executive function test scores was detected. Preliminary MRI data show that, while GM volume did not change at 3 years, a significantly greater parahippocampal and prefrontal gray matter density was noticed, the former correlating with neuropsychological improvement in a memory test. This study showed that therapy with Natalizumab is helpful in improving cognitive performance, and is likely to have a protective role on grey matter, over a three years follow-up.

  15. Benefits of augmentative signs in word learning: Evidence from children who are deaf/hard of hearing and children with specific language impairment.

    Science.gov (United States)

    van Berkel-van Hoof, Lian; Hermans, Daan; Knoors, Harry; Verhoeven, Ludo

    2016-12-01

    Augmentative signs may facilitate word learning in children with vocabulary difficulties, for example, children who are Deaf/Hard of Hearing (DHH) and children with Specific Language Impairment (SLI). Despite the fact that augmentative signs may aid second language learning in populations with a typical language development, empirical evidence in favor of this claim is lacking. We aim to investigate whether augmentative signs facilitate word learning for DHH children, children with SLI, and typically developing (TD) children. Whereas previous studies taught children new labels for familiar objects, the present study taught new labels for new objects. In our word learning experiment children were presented with pictures of imaginary creatures and pseudo words. Half of the words were accompanied by an augmentative pseudo sign. The children were tested for their receptive word knowledge. The DHH children benefitted significantly from augmentative signs, but the children with SLI and TD age-matched peers did not score significantly different on words from either the sign or no-sign condition. These results suggest that using Sign-Supported speech in classrooms of bimodal bilingual DHH children may support their spoken language development. The difference between earlier research findings and the present results may be caused by a difference in methodology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.

    Science.gov (United States)

    Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas

    2011-05-01

    Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.

  17. Specificity of verbal learning impairment and recovery in a marijuana-dependent male: the effects of sustained marijuana abstinence

    OpenAIRE

    Vadhan, Nehal P.; van Gorp, Wilfred G.; Levin, Frances R.

    2011-01-01

    We present the case of a young adult in treatment for marijuana dependence, with recurrent depression and a history of possible TBI, complaining of concentration, memory and initiation problems. Testing at treatment baseline revealed performance that was generally in the High Average range on measures of reaction time and attention, with a selective impairment in verbal learning (Borderline to Extremely Low range). Following 8 weeks of abstinence from marijuana, his verbal learning recovered ...

  18. Hearing Impaired Education of the Department of Education in Region X, Philippines: Its Approaches and Implication

    Directory of Open Access Journals (Sweden)

    James Mirabeau B. Undalok

    2015-11-01

    Full Text Available One way to attain improvement of the educational programs of the hearing impaired is by conducting survey and assessment of the status of the hearing impaired education of the Department of Education in Region X, Philippines. The Special Education (SpEd teachers play a vital role for the pupils of the hearing impaired children as they are viewed as linchpins in the learning process of the children. This cannot be attained without the different approaches on hearing impaired education. Survey -questionnaires were used to gather information needed. Data were analyzed using the descriptive statistics such as weighted mean and standard deviation. The ANOVA test was used to determine the significance of the hearing impaired education of the Department of Education in Region X. Anchored on the findings, the following conclusions are made about different educational approaches should be given priority by the SPED teachers is further enhance the lifelong learning skills of the pupils. It helps them for their learning process and acquiring language skills. There should be an advocacy on the hearing impaired education program to the public and stakeholders.

  19. Impaired quality and efficiency of sleep impairs cognitive functioning in Addison's disease.

    Science.gov (United States)

    Henry, Michelle; Ross, Ian Louis; Wolf, Pedro Sofio Abril; Thomas, Kevin Garth Flusk

    2017-04-01

    Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. Periods of sub- and supra- physiological cortisol levels experienced by patients with AD likely induce disrupted sleep. Given that healthy sleep plays an important role in memory consolidation, the novelty of the current study was to characterise, using objective measures, the relationship between sleep and memory in patients with AD, and to examine the hypothesis that poor sleep is a biological mechanism underlying memory impairment in those patients. We used a within-subjects design. Ten patients with AD and 10 matched healthy controls completed standardised neuropsychological tests assessing declarative memory (Rey Auditory Verbal Learning Test) and procedural memory (Finger Tapping Task) before and after a period of actigraphy-measured sleep, and before and after a period of waking. Relative to healthy controls, patients with AD experienced disrupted sleep characterised by poorer sleep efficiency and more time spent awake. Patients also showed impaired verbal learning and memory relative to healthy controls (p=0.007). Furthermore, whereas healthy controls' declarative memory performance benefited from a period of sleep compared to waking (p=0.032), patients with AD derived no such benefit from sleep (p=0.448). Regarding the procedural memory task, analyses detected no significant between-group differences (all p's<0.065), and neither group showed significant sleep-enhanced performance. We demonstrated, using actigraphy and standardized measures of memory performance, an association between sleep disturbances and cognitive deficits in patients with AD. These results suggest that, in patients with AD, the source of memory deficits is, at least to some extent, disrupted sleep patterns that interfere with optimal consolidation of previously-learned declarative information. Hence, treating the sleep disturbances that are frequently experienced by patients with AD may

  20. SSP-002392, a new 5-HT4 receptor agonist, dose-dependently reverses scopolamine-induced learning and memory impairments in C57Bl/6 mice.

    Science.gov (United States)

    Lo, Adrian C; De Maeyer, Joris H; Vermaercke, Ben; Callaerts-Vegh, Zsuzsanna; Schuurkes, Jan A J; D'Hooge, Rudi

    2014-10-01

    5-HT4 receptors (5-HT4R) are suggested to affect learning and memory processes. Earlier studies have shown that animals treated with 5-HT4R agonists, often with limited selectivity, show improved learning and memory with retention memory often being assessed immediately after or within 24 h after the last training session. In this study, we characterized the effect of pre-training treatment with the selective 5-HT4R agonist SSP-002392 on memory acquisition and the associated long-term memory retrieval in animal models of impaired cognition. Pre-training treatment with SSP-002392 (0.3 mg/kg, 1.5 mg/kg and 7.5 mg/kg p.o.) dose-dependently inhibited the cognitive deficits induced by scopolamine (0.5 mg/kg s.c.) in two different behavioral tasks: passive avoidance and Morris water maze. In the Morris water maze, spatial learning was significantly improved after treatment with SSP-002392 translating in an accelerated and more efficient localization of the hidden platform compared to scopolamine-treated controls. Moreover, retention memory was assessed 24 h (passive avoidance) and 72 h (Morris water maze) after the last training session of cognitive-impaired animals and this was significantly improved in animals treated with SSP-002392 prior to the training sessions. Furthermore, the effects of SSP-002392 were comparable to galanthamine hydrobromide. We conclude that SSP-002392 has potential as a memory-enhancing compound. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Understanding of the Alphabetic Principle through Invented Spelling among Hearing-Impaired Children Learning to Read and Write: Experimentation with a Pedagogical Approach

    Science.gov (United States)

    Sirois, Pauline; Boisclair, Andree; Giasson, Jocelyne

    2008-01-01

    Given the problems experienced by hearing-impaired individuals in learning the written language, a pedagogical approach was tested. The study examined the links between the development of representations of alphabetic system and the results in reading and writing of first graders. In the study, there were 31 hearing-impaired children and 25…

  2. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Kate S Collison

    Full Text Available Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05. Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training, the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05. Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime

  3. The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss.

    Directory of Open Access Journals (Sweden)

    Matthew S Thimgan

    2010-08-01

    Full Text Available Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm and Lipid storage droplet 2 (Lsd2, have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.

  4. Using electronic storybooks to support word learning in children with severe language impairments.

    Science.gov (United States)

    Smeets, Daisy J H; van Dijken, Marianne J; Bus, Adriana G

    2014-01-01

    Novel word learning is reported to be problematic for children with severe language impairments (SLI). In this study, we tested electronic storybooks as a tool to support vocabulary acquisition in SLI children. In Experiment 1, 29 kindergarten SLI children heard four e-books each four times: (a) two stories were presented as video books with motion pictures, music, and sounds, and (b) two stories included only static illustrations without music or sounds. Two other stories served as the control condition. Both static and video books were effective in increasing knowledge of unknown words, but static books were most effective. Experiment 2 was designed to examine which elements in video books interfere with word learning: video images or music or sounds. A total of 23 kindergarten SLI children heard 8 storybooks each four times: (a) two static stories without music or sounds, (b) two static stories with music or sounds, (c) two video stories without music or sounds, and (d) two video books with music or sounds. Video images and static illustrations were equally effective, but the presence of music or sounds moderated word learning. In children with severe SLI, background music interfered with learning. Problems with speech perception in noisy conditions may be an underlying factor of SLI and should be considered in selecting teaching aids and learning environments. © Hammill Institute on Disabilities 2012.

  5. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Lan Zhu

    Full Text Available Learning to fear dangerous situations requires the participation of basolateral amygdala (BLA. In the present study, we provide evidence that BLA is necessary for the synaptic strengthening occurring during memory formation in the cerebellum in rats. In the cerebellar vermis the parallel fibers (PF to Purkinje cell (PC synapse is potentiated one day following fear learning. Pretraining BLA inactivation impaired such a learning-induced long-term potentiation (LTP. Similarly, cerebellar LTP is affected when BLA is blocked shortly, but not 6 h, after training. The latter result shows that the effects of BLA inactivation on cerebellar plasticity, when present, are specifically related to memory processes and not due to an interference with sensory or motor functions. These data indicate that fear memory induces cerebellar LTP provided that a heterosynaptic input coming from BLA sets the proper local conditions. Therefore, in the cerebellum, learning-induced plasticity is a heterosynaptic phenomenon that requires inputs from other regions. Studies employing the electrically-induced LTP in order to clarify the cellular mechanisms of memory should therefore take into account the inputs arriving from other brain sites, considering them as integrative units. Based on previous and the present findings, we proposed that BLA enables learning-related plasticity to be formed in the cerebellum in order to respond appropriately to new stimuli or situations.

  6. Efficacy of Information and Communication Technology in Enhancing Learning Outcomes of Students with Hearing Impairment in Ibadan

    Science.gov (United States)

    Egaga, Patrick I.; Aderibigbe, S. Akinwumi

    2015-01-01

    The study aimed at examining the efficacy of Information and Communication Technology (ICT) in enhancing learning outcomes of students with hearing impairment in Ibadan. The study adopted a pretest, post-test, control group quasi-experimental research design. Purposive sampling techniques was used for the selection of thirty participants…

  7. Impaired reward learning and intact motivation after serotonin depletion in rats.

    Science.gov (United States)

    Izquierdo, Alicia; Carlos, Kathleen; Ostrander, Serena; Rodriguez, Danilo; McCall-Craddolph, Aaron; Yagnik, Gargey; Zhou, Feimeng

    2012-08-01

    Aside from the well-known influence of serotonin (5-hydroxytryptamine, 5-HT) on emotional regulation, more recent investigations have revealed the importance of this monoamine in modulating cognition. Parachlorophenylalanine (PCPA) depletes 5-HT by inhibiting tryptophan hydroxylase, the enzyme required for 5-HT synthesis and, if administered at sufficiently high doses, can result in a depletion of at least 90% of the brain's 5-HT levels. The present study assessed the long-lasting effects of widespread 5-HT depletions on two tasks of cognitive flexibility in Long Evans rats: effort discounting and reversal learning. We assessed performance on these tasks after administration of either 250 or 500 mg/kg PCPA or saline (SAL) on two consecutive days. Consistent with a previous report investigating the role of 5-HT on effort discounting, pretreatment with either dose of PCPA resulted in normal effortful choice: All rats continued to climb tall barriers to obtain large rewards and were not work-averse. Additionally, rats receiving the lower dose of PCPA displayed normal reversal learning. However, despite intact motivation to work for food rewards, rats receiving the largest dose of PCPA were unexpectedly impaired relative to SAL rats on the pretraining stages leading up to reversal learning, ultimately failing to approach and respond to the stimuli associated with reward. High performance liquid chromatography (HPLC) with electrochemical detection confirmed 5-HT, and not dopamine, levels in the ventromedial frontal cortex were correlated with this measure of associative reward learning. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Non-adjacent dependency learning in Cantonese-speaking\\ud children with and without a history of specific language\\ud impairment

    OpenAIRE

    Iao, L-S; Ng, LY; Wong, AMY; Lee, OT

    2017-01-01

    Purpose: This study investigated non-adjacent dependency learning in Cantonese-speaking children with and without a history of Specific Language Impairment (SLI) in an artificial linguistic context.\\ud \\ud Method: Sixteen Cantonese-speaking children with SLI history and 16 Cantonese-speaking children with typical language development (TLD) were tested with a non-adjacent dependency learning task using artificial languages that mimic Cantonese.\\ud \\ud Results: Children with TLD performed above...

  9. Significant Learning and Civic Education: Shifting Frameworks for Teaching in Light of Learning about the Financial Crisis

    Directory of Open Access Journals (Sweden)

    KimMarie McGoldrick

    2011-10-01

    Full Text Available The recent financial crisis has motivated economic educators to rethink what economics should be taught, acknowledging disconnects between classroom content and real world events. We introduce a learning theory approach that is broader, one that goes beyond such context specific discussions of foundational knowledge and application (i.e., teaching about this specific crisis and provide a framework to address the broader issue of how teaching practices can, by their very nature, minimize such disconnects and provide more effective processes for teaching about current economic conditions. The theory of significant learning (Fink 2003 is presented as a model of how experiences can be used to develop a deep approach to learning, learning that lasts. Experiential learning pedagogies are timeless in that they can be readily modified to promote deeper understanding over a wide range of economic environments. Focusing on one category of significant learning, the human dimension, and one component of the financial crisis, unemployment, examples which modify existing experiential learning practices are described to demonstrate how such pedagogic practices can be readily adapted to teaching and learning about current economic conditions. In short, we demonstrate that incorporating student experiences into pedagogic practice provides a natural alignment of teaching content and real world events, regardless of how those change over time.

  10. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    Science.gov (United States)

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID

  11. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    Science.gov (United States)

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.

  12. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    Science.gov (United States)

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  13. Neurocognitive Impairments Are More Severe in the Binge-Eating/Purging Anorexia Nervosa Subtype Than in the Restricting Subtype.

    Science.gov (United States)

    Tamiya, Hiroko; Ouchi, Atushi; Chen, Runshu; Miyazawa, Shiho; Akimoto, Yoritaka; Kaneda, Yasuhiro; Sora, Ichiro

    2018-01-01

    Objective: To evaluate cognitive function impairment in patients with anorexia nervosa (AN) of either the restricting (ANR) or binge-eating/purging (ANBP) subtype. Method: We administered the Japanese version of the MATRICS Consensus Cognitive Battery to 22 patients with ANR, 18 patients with ANBP, and 69 healthy control subjects. Our participants were selected from among the patients at the Kobe University Hospital and community residents. Results: Compared to the healthy controls, the ANR group had significantly lower visual learning and social cognition scores, and the ANBP group had significantly lower processing speed, attention/vigilance, visual learning, reasoning/problem-solving, and social cognition scores. Compared to the ANR group, the ANBP group had significantly lower attention/vigilance scores. Discussion: The AN subtypes differed in cognitive function impairments. Participants with ANBP, which is associated with higher mortality rates than ANR, exhibited greater impairment severities, especially in the attention/vigilance domain, confirming the presence of impairments in continuous concentration. This may relate to the impulsivity, an ANBP characteristic reported in the personality research. Future studies can further clarify the cognitive impairments of each subtype by addressing the subtype cognitive functions and personality characteristics.

  14. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Science.gov (United States)

    Kukar, Thomas; Prescott, Sonya; Eriksen, Jason L; Holloway, Vallie; Murphy, M Paul; Koo, Edward H; Golde, Todd E; Nicolle, Michelle M

    2007-01-01

    Background Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimer's disease (AD). We and others have shown that certain NSAIDs reduce secretion of Aβ42 in cell culture and animal models, and that the effect of NSAIDs on Aβ42 is independent of the inhibition of cyclooxygenase by these compounds. Since Aβ42 is hypothesized to be the initiating pathologic molecule in AD, the ability of these compounds to lower Aβ42 selectively may be associated with their protective effect. We have previously identified R-flurbiprofen (tarenflurbil) as a selective Aβ42 lowering agent with greatly reduced cyclooxygenase activity that shows promise for testing this hypothesis. In this study we report the effect of chronic R-flurbiprofen treatment on cognition and Aβ loads in Tg2576 APP mice. Results A four-month preventative treatment regimen with R-flurbiprofen (10 mg/kg/day) was administered to young Tg2576 mice prior to robust plaque or Aβ pathology. This treatment regimen improved spatial learning as assessed by the Morris water maze, indicated by an increased spatial bias during the third probe trial and an increased utilization of a place strategy to solve the water maze. These results are consistent with an improvement in hippocampal- and medial temporal lobe-dependent memory function. A modest, though not statistically significant, reduction in formic acid-soluble levels of Aβ was also observed. To determine if R-flurbiprofen could reverse cognitive deficits in Tg2576 mice where plaque pathology was already robust, a two-week therapeutic treatment was given to older Tg2576 mice with the same dose of R-flurbiprofen. This approach resulted in a significant decrease in Aβ plaque burden but no significant improvement in spatial learning. Conclusion We have found that chronic administration of R-flurbiprofen is able to attenuate spatial learning deficits if given prior to plaque deposition in Tg2576 mice. Given its

  15. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Directory of Open Access Journals (Sweden)

    Koo Edward H

    2007-07-01

    Full Text Available Abstract Background Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs is associated with a reduced incidence of Alzheimer's disease (AD. We and others have shown that certain NSAIDs reduce secretion of Aβ42 in cell culture and animal models, and that the effect of NSAIDs on Aβ42 is independent of the inhibition of cyclooxygenase by these compounds. Since Aβ42 is hypothesized to be the initiating pathologic molecule in AD, the ability of these compounds to lower Aβ42 selectively may be associated with their protective effect. We have previously identified R-flurbiprofen (tarenflurbil as a selective Aβ42 lowering agent with greatly reduced cyclooxygenase activity that shows promise for testing this hypothesis. In this study we report the effect of chronic R-flurbiprofen treatment on cognition and Aβ loads in Tg2576 APP mice. Results A four-month preventative treatment regimen with R-flurbiprofen (10 mg/kg/day was administered to young Tg2576 mice prior to robust plaque or Aβ pathology. This treatment regimen improved spatial learning as assessed by the Morris water maze, indicated by an increased spatial bias during the third probe trial and an increased utilization of a place strategy to solve the water maze. These results are consistent with an improvement in hippocampal- and medial temporal lobe-dependent memory function. A modest, though not statistically significant, reduction in formic acid-soluble levels of Aβ was also observed. To determine if R-flurbiprofen could reverse cognitive deficits in Tg2576 mice where plaque pathology was already robust, a two-week therapeutic treatment was given to older Tg2576 mice with the same dose of R-flurbiprofen. This approach resulted in a significant decrease in Aβ plaque burden but no significant improvement in spatial learning. Conclusion We have found that chronic administration of R-flurbiprofen is able to attenuate spatial learning deficits if given prior to plaque deposition

  16. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dissociation between learning and memory impairment and other sickness behaviours during simulated Mycoplasma infection in rats.

    Science.gov (United States)

    Swanepoel, Tanya; Harvey, Brian H; Harden, Lois M; Laburn, Helen P; Mitchell, Duncan

    2011-11-01

    To investigate potential consequences for learning and memory, we have simulated the effects of Mycoplasma infection, in rats, by administering fibroblast-stimulating lipopepide-1 (FSL-1), a pyrogenic moiety of Mycoplasma salivarium. We measured the effects on body temperature, cage activity, food intake, and on spatial learning and memory in a Morris Water Maze. Male Sprague-Dawley rats had radio transponders implanted to measure abdominal temperature and cage activity. After recovery, rats were assigned randomly to receive intraperitoneal (I.P.) injections of FSL-1 (500 or 1000 μg kg(-1) in 1 ml kg(-1) phosphate-buffered saline; PBS) or vehicle (PBS, 1 ml kg(-1)). Body mass and food intake were measured daily. Training in the Maze commenced 18 h after injections and continued daily for four days. Spatial memory was assessed on the fifth day. In other rats, we measured concentrations of brain pro-inflammatory cytokines, interleukin (IL)-1β and IL-6, at 3 and 18 h after injections. FSL-1 administration induced a dose-dependent fever (∼1°C) for two days, lethargy (∼78%) for four days, anorexia (∼65%) for three days and body mass stunting (∼6%) for at least four days. Eighteen hours after FSL-1 administration, when concentrations of IL-1β, but not that of IL-6, were elevated in both the hypothalamus and the hippocampus, and when rats were febrile, lethargic and anorexic, learning in the Maze was unaffected. There also was no memory impairment. Our results support emerging evidence that impaired learning and memory is not inevitable during simulated infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice

    International Nuclear Information System (INIS)

    Viberg, Henrik; Fredriksson, Anders; Eriksson, Per

    2003-01-01

    Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Flame retardants are used to suppress or inhibit combustion processes in an effort to reduce the risk of fire. One class of flame retardants, polybrominated diphenyl ethers (PBDEs), are present and increasing in the environment and in human milk. The present study shows that neonatal exposure to 2,2',4,4',5,5'-hexaBDE (PBDE 153), a PBDE persistent both in environment and in human milk, can induce developmental neurotoxic effects, such as changes in spontaneous behaviour (hyperactivity), impairments in learning and memory, and reduced amounts of nicotinic receptors, effects that get worse with age. Neonatal NMRI male mice were orally exposed on day 10 to 0.45, 0.9, or 9.0 mg of PBDE 153/kg of body weight. Spontaneous behaviour (locomotion, rearing, and total activity) was observed in 2-, 4-, and 6-month-old mice, Morris water maze at an age of 6 months. The behaviour tests showed that the effects were dose-response and time-response related. Animals showing defects in learning and memory also showed significantly reduced amounts of nicotinic receptors in hippocampus, using α-bungarotoxin binding assay. The observed developmental neurotoxic effects seen for PBDE 153 are similar to those seen for PBDE 99 and for certain PCBs. Furthermore, PBDEs appear to as potent as the PCBs

  19. A Technology-Assisted Learning Setup as Assessment Supplement for Three Persons with a Diagnosis of Post-Coma Vegetative State and Pervasive Motor Impairment

    Science.gov (United States)

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Buonocunto, Francesca; Sacco, Valentina; Colonna, Fabio; Navarro, Jorge; Lanzilotti, Crocifissa; Bosco, Andrea; Megna, Gianfranco; De Tommaso, Marina

    2009-01-01

    Post-coma persons in an apparent condition of vegetative state and pervasive motor impairment pose serious problems in terms of assessment and intervention options. A technology-based learning assessment procedure might serve for them as a diagnostic supplement with possible implications for rehabilitation intervention. The learning assessment…

  20. Overall Memory Impairment Identification with Mathematical Modeling of the CVLT-II Learning Curve in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Igor I. Stepanov

    2012-01-01

    Full Text Available The CVLT-II provides standardized scores for each of the List A five learning trials, so that the clinician can compare the patient's raw trials 1–5 scores with standardized ones. However, frequently, a patient's raw scores fluctuate making a proper interpretation difficult. The CVLT-II does not offer any other methods for classifying a patient's learning and memory status on the background of the learning curve. The main objective of this research is to illustrate that discriminant analysis provides an accurate assessment of the learning curve, if suitable predictor variables are selected. Normal controls were ninety-eight healthy volunteers (78 females and 20 males. A group of MS patients included 365 patients (266 females and 99 males with clinically defined multiple sclerosis. We show that the best predictor variables are coefficients 3 and 4 of our mathematical model 3∗exp(−2∗(−1+4∗(1−exp(−2∗(−1 because discriminant functions, calculated separately for 3 and 4, allow nearly 100% correct classification. These predictors allow identification of separate impairment of readiness to learn or ability to learn, or both.

  1. Involvement of microglia activation in the lead induced long-term potentiation impairment.

    Directory of Open Access Journals (Sweden)

    Ming-Chao Liu

    Full Text Available Exposure of Lead (Pb, a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.

  2. Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.

    Science.gov (United States)

    Schoenbaum, Geoffrey; Setlow, Barry; Saddoris, Michael P; Gallagher, Michela

    2006-03-01

    Previous work in rats and primates has shown that normal aging can be associated with a decline in cognitive flexibility mediated by prefrontal circuits. For example, aged rats are impaired in rapid reversal learning, which in young rats depends critically on the orbitofrontal cortex. To assess whether aging-related reversal impairments reflect orbitofrontal dysfunction, we identified aged rats with reversal learning deficits and then recorded single units as these rats, along with unimpaired aged cohorts and young control rats, learned and reversed a series of odor discrimination problems. We found that the flexibility of neural correlates in orbitofrontal cortex was markedly diminished in aged rats characterized as reversal-impaired in initial training. In particular, although many cue-selective neurons in young and aged-unimpaired rats reversed odor preference when the odor-outcome associations were reversed, cue-selective neurons in reversal-impaired aged rats did not. In addition, outcome-expectant neurons in aged-impaired rats failed to become active during cue sampling after learning. These altered features of neural encoding could provide a basis for cognitive inflexibility associated with normal aging.

  3. Tooth loss early in life suppresses neurogenesis and synaptophysin expression in the hippocampus and impairs learning in mice.

    Science.gov (United States)

    Kubo, Kin-Ya; Murabayashi, Chika; Kotachi, Mika; Suzuki, Ayumi; Mori, Daisuke; Sato, Yuichi; Onozuka, Minoru; Azuma, Kagaku; Iinuma, Mitsuo

    2017-02-01

    Tooth loss induced neurological alterations through activation of a stress hormone, corticosterone. Age-related hippocampal morphological and functional changes were accelerated by early tooth loss in senescence-accelerated mouse prone 8 (SAMP8). In order to explore the mechanism underlying the impaired hippocampal function resulting from early masticatory dysfunction due to tooth loss, we investigated the effects of early tooth loss on plasma corticosterone levels, learning ability, neurogenesis, and synaptophysin expression in the hippocampus later in life of SAMP8 mice. We examined the effects of tooth loss soon after tooth eruption (1 month of age) on plasma corticosterone levels, learning ability in the Morris water maze, newborn cell proliferation, survival and differentiation in the hippocampal dentate gyrus, and synaptophysin expression in the hippocampus of aged (8 months of age) SAMP8 mice. Aged mice with early tooth loss exhibited increased plasma corticosterone levels, hippocampus-dependent learning deficits in the Morris water maze, decreased cell proliferation, and cell survival in the dentate gyrus, and suppressed synaptophysin expression in the hippocampus. Newborn cell differentiation in the hippocampal dentate gyrus, however, was not affected by early tooth loss. These findings suggest that learning deficits in aged SAMP8 mice with tooth loss soon after tooth eruption are associated with suppressed neurogenesis and decreased synaptophysin expression resulting from increased plasma corticosterone levels, and that long-term tooth loss leads to impaired cognitive function in older age. Copyright © 2016. Published by Elsevier Ltd.

  4. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Social learning pathways in the relation between parental chronic pain and daily pain severity and functional impairment in adolescents with functional abdominal pain.

    Science.gov (United States)

    Stone, Amanda L; Bruehl, Stephen; Smith, Craig A; Garber, Judy; Walker, Lynn S

    2017-10-06

    Having a parent with chronic pain (CP) may confer greater risk for persistence of CP from childhood into young adulthood. Social learning, such as parental modeling and reinforcement, represents one plausible mechanism for the transmission of risk for CP from parents to offspring. Based on a 7-day pain diary in 154 pediatric patients with functional abdominal CP, we tested a model in which parental CP predicted adolescents' daily average CP severity and functional impairment (distal outcomes) via parental modeling of pain behaviors and parental reinforcement of adolescent's pain behaviors (mediators) and adolescents' cognitive appraisals of pain threat (proximal outcome representing adolescents' encoding of parents' behaviors). Results indicated significant indirect pathways from parental CP status to adolescent average daily pain severity (b = 0.18, SE = 0.08, 95% CI: 0.04, 0.31, p = 0.03) and functional impairment (b = 0.08, SE = 0.04, 95% CI: 0.02, 0.15, p = 0.03) over the 7-day diary period via adolescents' observations of parent pain behaviors and adolescent pain threat appraisal. The indirect pathway through parental reinforcing responses to adolescents' pain did not reach significance for either adolescent pain severity or functional impairment. Identifying mechanisms of increased risk for pain and functional impairment in children of parents with CP ultimately could lead to targeted interventions aimed at improving functioning and quality of life in families with chronic pain. Parental modeling of pain behaviors represents a potentially promising target for family based interventions to ameliorate pediatric chronic pain.

  6. Developing Teachers' Work for Improving Teaching and Learning of Children with Visual Impairment Accommodated in Ordinary Primary Schools

    Science.gov (United States)

    Mnyanyi, Cosmas B. F.

    2009-01-01

    The study investigated how to facilitate teachers in developing their work in improving the teaching and learning of children with visual impairment (CVI) accommodated in ordinary classrooms. The study takes the form of collaborative action research where the researcher works in collaboration with the teachers. The project is being conducted in…

  7. Cordyceps militaris extract attenuates D-galactose-induced memory impairment in mice.

    Science.gov (United States)

    Li, Zaixin; Zhang, Zhi; Zhang, Jinshan; Jia, Jing; Ding, Jie; Luo, Rongzhen; Liu, Zhangqin

    2012-12-01

    Memory impairment is one of main clinical symptoms of brain senescence. To address the effects of Cordyceps militaris Link extract (CE) on memory impairment, a D-galactose (D-Gal)-induced aging mouse model was employed. Mice injected with D-Gal showed a significant learning and memory impairment that was rescued by CE treatment. The mechanism was further investigated by analyzing the protein level and activity of oxidant and antioxidant molecules, including malondialdehyde (MDA), monoamine oxidase (MAO), total super-oxide dismutase (T-SOD), total antioxidant capacity (T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-px), which played critical roles in the development of brain senescence. The results showed that CE treatment resulted in a significant decrease in the oxidative activity of MAO and the level of MDA, and significantly increased the antioxidant activities of T-SOD and T-AOC in the cerebral cortices. Moreover, the level of GSH and the activity of antioxidant enzymes GSH-px in serum were significantly upregulated after CE treatment. Taken together, our results suggest that Cordyceps militaris extract could ameliorate experimental memory impairment in mice with D-Gal-induced aging through its potent antioxidant activities.

  8. The Significance of Specialist Teachers of Learners with Visual Impairments as Agents of Change: Examining Personnel Preparation in the United Kingdom through a Bioecological Systems Theory

    Science.gov (United States)

    McLinden, Mike; Ravenscroft, John; Douglas, Graeme; Hewett, Rachel; Cobb, Rory

    2017-01-01

    Introduction: The unique challenges to learning and participation in education associated with visual impairment are well documented in the literature, as is the importance of addressing these challenges through ensuring practitioners who support them are equipped with appropriate knowledge, understanding, and skills. We use a bioecological…

  9. [Multilingualism and specific language impairment].

    Science.gov (United States)

    Arkkila, Eva; Smolander, Sini; Laasonen, Marja

    2013-01-01

    Specific language impairment is one of the most common developmental disturbances in childhood. With the increase of the foreign language population group an increasing number of children assimilating several languages and causing concern in language development attend clinical examinations. Knowledge of factors underlying the specific language impairment and the specific impairment in general, special features of language development of those learning several languages, as well as the assessment and support of the linguistic skills of a multilingual child is essential. The risk of long-term problems and marginalization is high for children having specific language impairment.

  10. The needs of parents of children with visual impairment studying in mainstream schools in Hong Kong.

    Science.gov (United States)

    Lee, Florence M Y; Tsang, Janice F K; Chui, Mandy M Y

    2014-10-01

    This study attempted to use a validated and standardised psychometric tool to identify the specific needs of parents of children with visual impairment studying in mainstream schools in Hong Kong. The second aim was to compare their needs with those of parents of mainstream school children without special education needs and parents having children with learning and behavioural problems. Cross-sectional survey. Mainstream schools in Hong Kong. Parents of 30 children with visual impairment who were studying in mainstream schools and attended assessment by optometrists at Child Assessment Service between May 2009 and June 2010 were recruited in the study (visual impairment group). Parents of 45 children with learning and behavioural problems recruited from two parent support groups (learning and behavioural problems group), and parents of 233 children without special education needs studying in mainstream schools recruited in a previous validation study on Service Needs Questionnaire (normal group) were used for comparison. Participants were invited to complete a self-administered Service Needs Questionnaire and a questionnaire on demographics of the children and their responding parents. The visual impairment group was asked additional questions about the ability of the child in coping and functioning in academic and recreational activities. Needs expressed by parents of the visual impairment group were significantly higher than those of parents of the normal group, and similar to those in the learning and behavioural problems group. Parents of children with visual impairment expressed more needs for future education and school support than resources for dealing with personal and family stress. Service needs of children with visual impairment and their families are high, particularly for future education and school support. More study on the various modes of accommodation for children with visual impairment and more collaborative work among different partners

  11. Mobility scooter driving ability in visually impaired individuals.

    Science.gov (United States)

    Cordes, Christina; Heutink, Joost; Brookhuis, Karel A; Brouwer, Wiebo H; Melis-Dankers, Bart J M

    2018-06-01

    To investigate how well visually impaired individuals can learn to use mobility scooters and which parts of the driving task deserve special attention. A mobility scooter driving skill test was developed to compare driving skills (e.g. reverse driving, turning) between 48 visually impaired (very low visual acuity = 14, low visual acuity = 10, peripheral field defects = 11, multiple visual impairments = 13) and 37 normal-sighted controls without any prior experience with mobility scooters. Performance on this test was rated on a three-point scale. Furthermore, the number of extra repetitions on the different elements were noted. Results showed that visually impaired participants were able to gain sufficient driving skills to be able to use mobility scooters. Participants with visual field defects combined with low visual acuity showed most problems learning different skills and needed more training. Reverse driving and stopping seemed to be most difficult. The present findings suggest that visually impaired individuals are able to learn to drive mobility scooters. Mobility scooter allocators should be aware that these individuals might need more training on certain elements of the driving task. Implications for rehabilitation Visual impairments do not necessarily lead to an inability to acquire mobility scooter driving skills. Individuals with peripheral field defects (especially in combination with reduced visual acuity) need more driving ability training compared to normal-sighted people - especially to accomplish reversing. Individual assessment of visually impaired people is recommended, since participants in this study showed a wide variation in ability to learn driving a mobility scooter.

  12. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    Directory of Open Access Journals (Sweden)

    Meadmore Katie L

    2012-06-01

    Full Text Available Abstract Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL, a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this.

  13. Ophthalmologic abnormalities among students with cognitive impairment in eastern Taiwan: The special group with undetected visual impairment.

    Science.gov (United States)

    Tsao, Wei-Shan; Hsieh, Hsi-Pao; Chuang, Yi-Ting; Sheu, Min-Muh

    2017-05-01

    Students with cognitive impairment are at increased risk of suffering from visual impairment due to refractive errors and ocular disease, which can adversely influence learning and daily activities. The purpose of this study was to evaluate the ocular and visual status among students at the special education school in Hualien. All students at the National Hualien Special Education School were evaluated. Full eye examinations were conducted by a skilled ophthalmologist. The students' medical records and disability types were reviewed. A total of 241 students, aged 7-18 years, were examined. Visual acuity could be assessed in 138 students. A total of 169/477 (35.4%) eyes were found to suffer from refractive errors, including 20 eyes with high myopia (≤-6.0 D) and 16 eyes with moderate hypermetropia (+3.0 D to +5.0 D). A total of 84/241 (34.8%) students needed spectacles to correct their vision, thus improving their daily activities and learning process, but only 15/241 (6.2%) students were wearing suitable corrective spectacles. A total of 55/241 students (22.8%) had ocular disorders, which influenced their visual function. The multiple disability group had a statistically significant higher prevalence of ocular disorders (32.9%) than the simple intellectual disability group (19.6%). Students with cognitive impairment in eastern Taiwan have a high risk of visual impairment due to refractive errors and ocular disorders. Importantly, many students have unrecognized correctable refractive errors. Regular ophthalmic examination should be administered to address this issue and prevent further disability in this already handicapped group. Copyright © 2016. Published by Elsevier B.V.

  14. Creating Significant Learning Experiences in a Large Undergraduate Psychology Class: A Pilot Study

    Science.gov (United States)

    Fallahi, Carolyn R.; LaMonaca, Frank H., Jr.

    2009-01-01

    The authors redesigned a Lifespan Development course using Fink's (2003) taxonomy of significant learning and measured changes across his six domains: Knowledge, Application, Integration, Human Dimension, Caring, and Learning How to Learn. Using case studies and group work, 151 undergraduates completed identical pre- and post-tests that measured…

  15. Overall Memory Impairment Identification with Mathematical Modeling of the CVLT-II Learning Curve in Multiple Sclerosis

    Science.gov (United States)

    Stepanov, Igor I.; Abramson, Charles I.; Hoogs, Marietta; Benedict, Ralph H. B.

    2012-01-01

    The CVLT-II provides standardized scores for each of the List A five learning trials, so that the clinician can compare the patient's raw trials 1–5 scores with standardized ones. However, frequently, a patient's raw scores fluctuate making a proper interpretation difficult. The CVLT-II does not offer any other methods for classifying a patient's learning and memory status on the background of the learning curve. The main objective of this research is to illustrate that discriminant analysis provides an accurate assessment of the learning curve, if suitable predictor variables are selected. Normal controls were ninety-eight healthy volunteers (78 females and 20 males). A group of MS patients included 365 patients (266 females and 99 males) with clinically defined multiple sclerosis. We show that the best predictor variables are coefficients B3 and B4 of our mathematical model B3 ∗ exp(−B2  ∗  (X − 1)) + B4  ∗  (1 − exp(−B2  ∗  (X − 1))) because discriminant functions, calculated separately for B3 and B4, allow nearly 100% correct classification. These predictors allow identification of separate impairment of readiness to learn or ability to learn, or both. PMID:22745911

  16. Brake response time is significantly impaired after total knee arthroplasty: investigation of performing an emergency stop while driving a car.

    Science.gov (United States)

    Jordan, Maurice; Hofmann, Ulf-Krister; Rondak, Ina; Götze, Marco; Kluba, Torsten; Ipach, Ingmar

    2015-09-01

    The objective of this study was to investigate whether total knee arthroplasty (TKA) impairs the ability to perform an emergency stop. An automatic transmission brake simulator was developed to evaluate total brake response time. A prospective repeated-measures design was used. Forty patients (20 left/20 right) were measured 8 days and 6, 12, and 52 wks after surgery. Eight days postoperative total brake response time increased significantly by 30% in right TKA and insignificantly by 2% in left TKA. Brake force significantly decreased by 35% in right TKA and by 25% in left TKA during this period. Baseline values were reached at week 12 in right TKA; the impairment of outcome measures, however, was no longer significant at week 6 compared with preoperative values. Total brake response time and brake force in left TKA fell below baseline values at weeks 6 and 12. Brake force in left TKA was the only outcome measure significantly impaired 8 days postoperatively. This study highlights that categorical statements cannot be provided. This study's findings on automatic transmission driving suggest that right TKA patients may resume driving 6 wks postoperatively. Fitness to drive in left TKA is not fully recovered 8 days postoperatively. If testing is not available, patients should refrain from driving until they return from rehabilitation.

  17. The Relationship between Phonological Short-Term Memory, Receptive Vocabulary, and Fast Mapping in Children with Specific Language Impairment

    Science.gov (United States)

    Jackson, Emily; Leitao, Suze; Claessen, Mary

    2016-01-01

    Background: Children with specific language impairment (SLI) often experience word-learning difficulties, which are suggested to originate in the early stage of word learning: fast mapping. Some previous research indicates significantly poorer fast mapping capabilities in children with SLI compared with typically developing (TD) counterparts, with…

  18. Impaired Verbal Learning Is Associated with Larger Caudate Volumes in Early Onset Schizophrenia Spectrum Disorders.

    Directory of Open Access Journals (Sweden)

    Monica Juuhl-Langseth

    Full Text Available Both brain structural abnormalities and neurocognitive impairments are core features of schizophrenia. We have previously reported enlargements in subcortical brain structure volumes and impairment of neurocognitive functioning as measured by the MATRICS Cognitive Consensus Battery (MCCB in early onset schizophrenia spectrum disorders (EOS. To our knowledge, no previous study has investigated whether neurocognitive performance and volumetric abnormalities in subcortical brain structures are related in EOS.Twenty-four patients with EOS and 33 healthy controls (HC were included in the study. Relationships between the caudate nucleus, the lateral and fourth ventricles volumes and neurocognitive performance were investigated with multivariate linear regression analyses. Intracranial volume, age, antipsychotic medication and IQ were included as independent predictor-variables.The caudate volume was negatively correlated with verbal learning performance uniquely in the EOS group (r=-.454, p=.034. There were comparable positive correlations between the lateral ventricular volume and the processing speed, attention and reasoning and problem solving domains for both the EOS patients and the healthy controls. Antipsychotic medication was related to ventricular enlargements, but did not affect the brain structure-function relationship.Enlargement of the caudate volume was related to poorer verbal learning performance in patients with EOS. Despite a 32% enlargement of the lateral ventricles in the EOS group, associations to processing speed, attention and reasoning and problem solving were similar for both the EOS and the HC groups.

  19. SYSTEMIC INFLAMMATION IMPAIRS ATTENTION AND COGNITIVE FLEXIBILITY BUT NOT ASSOCIATIVE LEARNING IN AGED RATS: Possible Implications for Delirium

    Directory of Open Access Journals (Sweden)

    Deborah J Culley

    2014-06-01

    Full Text Available Delirium is a common and morbid condition in elderly hospitalized patients. Its pathophysiology is poorly understood but inflammation has been implicated based on a clinical association with systemic infection and surgery and preclinical data showing that systemic inflammation adversely affects hippocampus-dependent memory. However, clinical manifestations and imaging studies point to abnormalities not in the hippocampus but in cortical circuits. We therefore tested the hypothesis that systemic inflammation impairs prefrontal cortex function by assessing attention and executive function in aged animals. Aged (24-month-old Fischer-344 rats received a single intraperitoneal injection of lipopolysaccharide (LPS; 50 ug/kg or saline and were tested on the attentional shifting task (AST, an index of integrity of the prefrontal cortex, on days 1-3 post-injection. Plasma and frontal cortex concentrations of the cytokine TNFα and the chemokine CCL2 were measured by ELISA in separate groups of identically treated, age-matched rats. LPS selectively impaired reversal learning and attentional shifts without affecting discrimination learning in the AST, indicating a deficit in attention and cognitive flexibility but not learning globally. LPS increased plasma TNFα and CCL2 acutely but this resolved within 24-48 h. TNFα in the frontal cortex did not change whereas CCL2 increased nearly 3-fold 2 h after LPS but normalized by the time behavioral testing started 24 h later. Together, our data indicate that systemic inflammation selectively impairs attention and executive function in aged rodents and that the cognitive deficit is independent of concurrent changes in frontal cortical TNFα and CCL2. Because inattention is a prominent feature of clinical delirium, our data support a role for inflammation in the pathogenesis of this clinical syndrome and suggest this animal model could be useful for studying that relationship further.

  20. A possible contributory mechanism for impaired idiom perception in schizophrenia.

    Science.gov (United States)

    Sela, Tal; Lavidor, Michal; Mitchell, Rachel L C

    2015-09-30

    In this review, we focus on the ability of people with schizophrenia to correctly perceive the meaning of idioms; figurative language expressions in which intended meaning is not derived from the meaning of constituent words. We collate evidence on how idiom perception is impaired, ascertain the clinical relevance of this impairment, and consider possible psychological and neural mechanisms behind the impairment. In reviewing extant literature, we searched the PubMed database, from 1975-2014, focussing on articles that directly concerned schizophrenia and idioms, with follow up searches to explore the viability of possible underlying mechanisms. We learn that there is clear evidence of impairment, with a tendency to err towards literal interpretations unless the figurative meaning is salient, and despite contextual cues to figurative interpretations. Given the importance of idioms in everyday language, the potential impact is significant. Clinically, impaired idiom perception primarily relates to positive symptoms of schizophrenia, but also to negative symptoms. The origins of the impairment remain speculation, with impaired executive function, impaired semantic functions, and impaired context processing all proposed to explain the phenomenon. We conclude that a possible contributory mechanism at the neural level is an impaired dorsolateral prefrontal cortex system for cognitive control over semantic processing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Effects of Tai Chi Chuan on cognition of elderly women with mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Juliana Yumi Tizon Kasai

    2010-03-01

    Full Text Available Objective: To detect the effects of Tai Chi Chuan practice on the cognition of elderly subjects with Mild Cognitive Impairment. Methods: This is a pilot study with 26 elderly patients (mean age of 74 years with Mild Cognitive Impairment. The evaluation instruments were Subjective Memory Complaint Scale (SMC, Rivermead Behavioral Memory Test (RBMT and Digit Span Forward and Backward (DSF and DSB from the Wechsler Adult Intelligence Scale (WAIS. One group of 13 patients received two weekly 60-minute classes of Tai Chi Chuan (Yang style for 6 consecutive months, and the rest formed the Control Group. The Tai Chi Chuan Group was also evaluated as to learning of the Tai Chi Chuan practical exercises by means of a Specific Learning Test applied after three months of intervention. Results: After six months of intervention, the TCC Group showed significant improvement on the RBMT and the SMC (p = 0.007 and p = 0.023, respectively. The Control Group showed no significant differences in the cognitive tests during the study. There was a significant correlation between the Tai Chi Chuan Learning Test and RBMT (p = 0.008, showing that patients with a better performance in exercising TCC also showed a better performance in memory. Conclusions: In this study, a six-month program of Tai Chi Chuan afforded a significant improvement of the performance of memory complaints in the elderly with Mild Cognitive Impairment. Additional randomized studies with larger samples and more prolonged follow-up are needed to confirm these benefits.

  2. Provision of Learning and Teaching Materials for Pupils with Visual Impairment: Results from a National Survey in Zambia

    Science.gov (United States)

    Akakandelwa, Akakandelwa; Munsanje, Joseph

    2012-01-01

    The aim of this study was to determine the provision of learning and teaching materials for pupils with visual impairment in basic and high schools of Zambia. A survey approach utilizing a questionnaire, interviews and a review of the literature was adopted for the study. The findings demonstrated that most schools in Zambia did not provide…

  3. Impairment of decision-making in multiple sclerosis: A neuroeconomic approach.

    Science.gov (United States)

    Sepúlveda, Maria; Fernández-Diez, Begoña; Martínez-Lapiscina, Elena H; Llufriu, Sara; Sola-Valls, Nuria; Zubizarreta, Irati; Blanco, Yolanda; Saiz, Albert; Levy, Dino; Glimcher, Paul; Villoslada, Pablo

    2017-11-01

    To assess the decision-making impairment in patients with multiple sclerosis (MS) and how they relate to other cognitive domains. We performed a cross-sectional analysis in 84 patients with MS, and 21 matched healthy controls using four tasks taken from behavioral economics: (1) risk preferences, (2) choice consistency, (3) delay of gratification, and (4) rate of learning. All tasks were conducted using real-world reward outcomes (food or money) in different real-life conditions. Participants underwent cognitive examination using the Brief Repeatable Battery-Neuropsychology. Patients showed higher risk aversion (general propensity to choose the lottery was 0.51 vs 0.64, p = 0.009), a trend to choose more immediate rewards over larger but delayed rewards ( p = 0.108), and had longer reactions times ( p = 0.033). Choice consistency and learning rates were not different between groups. Progressive patients chose slower than relapsing patients. In relation to general cognitive impairments, we found correlations between impaired decision-making and impaired verbal memory ( r = 0.29, p = 0.009), visual memory ( r = -0.37, p = 0.001), and reduced processing speed ( r = -0.32, p = 0.001). Normalized gray matter volume correlated with deliberation time ( r = -0.32, p = 0.005). Patients with MS suffer significant decision-making impairments, even at the early stages of the disease, and may affect patients' quality and social life.

  4. A window of vulnerability: impaired fear extinction in adolescence.

    Science.gov (United States)

    Baker, Kathryn D; Den, Miriam L; Graham, Bronwyn M; Richardson, Rick

    2014-09-01

    There have been significant advances made towards understanding the processes mediating extinction of learned fear. However, despite being of clear theoretical and clinical significance, very few studies have examined fear extinction in adolescence, which is often described as a developmental window of vulnerability to psychological disorders. This paper reviews the relatively small body of research examining fear extinction in adolescence. A prominent finding of this work is that adolescents, both humans and rodents, exhibit a marked impairment in extinction relative to both younger (e.g., juvenile) and older (e.g., adult) groups. We then review some potential mechanisms that could produce the striking extinction deficit observed in adolescence. For example, one neurobiological candidate mechanism for impaired extinction in adolescence involves changes in the functional connectivity within the fear extinction circuit, particularly between prefrontal cortical regions and the amygdala. In addition, we review research on emotion regulation and attention processes that suggests that developmental changes in attention bias to threatening cues may be a cognitive mechanism that mediates age-related differences in extinction learning. We also examine how a differential reaction to chronic stress in adolescence impacts upon extinction retention during adolescence as well as in later life. Finally, we consider the findings of several studies illustrating promising approaches that overcome the typically-observed extinction impairments in adolescent rodents and that could be translated to human adolescents. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Impairment mitigation in noncoherent optical transmission enabled with machine learning for intra-datacenter networks

    Science.gov (United States)

    Ito, Keisuke; Niwa, Masaki; Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2017-01-01

    Ever-increasing intra-datacenter traffic will spur the introduction of high-baud rates and high-order modulation formats. Increasing symbol rates and modulation levels decreases tolerance against transmission impairment that includes chromatic dispersion. Transmission distance in warehouse-scale datacenters can be several kilometers, and then management of chromatic dispersion is necessary. Dispersion-compensating fibers are widely deployed in backbone networks, however, applying them in datacenters is not cost-effective since wavelength channels are coarsely multiplexed. In digital coherent systems, signal distortion due to chromatic dispersion can be resolved in digital domain; however, it will take long time before coherent systems can be introduced in datacenter networks because of their high cost. In this paper, we propose a novel impairment mitigation method employing machine learning. The proposed method is effective even after non-coherent detection and hence it can be applied to cost-sensitive intra-datacenter networks. The machine learns optimum symbol-decision criteria from a sequence of dispersed training signals, and it discriminates payload signals in accordance with the established decision criteria. With the scheme, the received signals can be demodulated in the presence of large chromatic dispersion. The transmission distance thus can be extended without relying on costly optical dispersion compensation. Since information of transmission links is not a priori required, the proposed scheme can easily be applied to any datacenter network. We conduct transmission experiments using 400-Gbps channels each of which comprises 8-subcarrier 28-Gbaud 4-ary pulse-amplitude-modulation (PAM-4) signals, and confirm the effectiveness of the proposed scheme.

  6. Undetected cognitive impairment and decision-making capacity in patients receiving hospice care.

    Science.gov (United States)

    Burton, Cynthia Z; Twamley, Elizabeth W; Lee, Lana C; Palmer, Barton W; Jeste, Dilip V; Dunn, Laura B; Irwin, Scott A

    2012-04-01

    : Cognitive dysfunction is common in patients with advanced, life-threatening illness and can be attributed to a variety of factors (e.g., advanced age, opiate medication). Such dysfunction likely affects decisional capacity, which is a crucial consideration as the end-of-life approaches and patients face multiple choices regarding treatment, family, and estate planning. This study examined the prevalence of cognitive impairment and its impact on decision-making abilities among hospice patients with neither a chart diagnosis of a cognitive disorder nor clinically apparent cognitive impairment (e.g., delirium, unresponsiveness). : A total of 110 participants receiving hospice services completed a 1-hour neuropsychological battery, a measure of decisional capacity, and accompanying interviews. : In general, participants were mildly impaired on measures of verbal learning, verbal memory, and verbal fluency; 54% of the sample was classified as having significant, previously undetected cognitive impairment. These individuals performed significantly worse than the other participants on all neuropsychological and decisional capacity measures, with effect sizes ranging from medium to very large (0.43-2.70). A number of verbal abilities as well as global cognitive functioning significantly predicted decision-making capacity. : Despite an absence of documented or clinically obvious impairment, more than half of the sample had significant cognitive impairments. Assessment of cognition in hospice patients is warranted, including assessment of verbal abilities that may interfere with understanding or reasoning related to treatment decisions. Identification of patients at risk for impaired cognition and decision making may lead to effective interventions to improve decision making and honor the wishes of patients and families.

  7. Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning.

    Science.gov (United States)

    Bakic, Jasmina; Pourtois, Gilles; Jepma, Marieke; Duprat, Romain; De Raedt, Rudi; Baeken, Chris

    2017-01-01

    Major depressive disorder (MDD) creates debilitating effects on a wide range of cognitive functions, including reinforcement learning (RL). In this study, we sought to assess whether reward processing as such, or alternatively the complex interplay between motivation and reward might potentially account for the abnormal reward-based learning in MDD. A total of 35 treatment resistant MDD patients and 44 age matched healthy controls (HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, computational modeling and event-related brain potentials (ERPs) data. MDD patients showed comparable learning rate compared to HCs. However, they showed decreased lose-shift responses as well as blunted subjective evaluations of the reinforcers used during the task, relative to HCs. Moreover, MDD patients showed normal internal (at the level of error-related negativity, ERN) but abnormal external (at the level of feedback-related negativity, FRN) reward prediction error (RPE) signals during RL, selectively when additional efforts had to be made to establish learning. Collectively, these results lend support to the assumption that MDD does not impair reward processing per se during RL. Instead, it seems to alter the processing of the emotional value of (external) reinforcers during RL, when additional intrinsic motivational processes have to be engaged. © 2016 Wiley Periodicals, Inc.

  8. Compensation of significant parametric uncertainties using sliding mode online learning

    Science.gov (United States)

    Schnetter, Philipp; Kruger, Thomas

    An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.

  9. Students with learning disabilities and hearing impairment: issues for the secondary and postsecondary teacher.

    Science.gov (United States)

    Roth, V

    1991-01-01

    Although the number of students with both learning disability and hearing impairment (LDHI) currently enrolled in secondary and postsecondary programs has not been precisely determined, it is clear that these students are currently receiving inadequate assessment and support in many institutions. The best route for serving these students would seem to be collaborative efforts between deaf educators and learning disabilities specialists, yet serious gaps exist between these two professions in regard to interpretation of laws governing special services, training of professionals, and locations of educational programs. The difficulties of developing collaborative work have been compounded by controversies within each field and the heterogeneity of the populations served by both disciplines. Those interested in creating good LDHI assessments should begin by considering the qualifications needed by those conducting evaluation procedures. The inadequacies of current formal assessment devices for this population need to be recognized; informal procedures, such as teacher observation and curriculum-based assessments, are still some of the best tools available for identification and educational planning.

  10. Transforming Leadership Development for Significant Learning.

    Science.gov (United States)

    Owen, Julie E

    2015-01-01

    Leadership education is undergoing a transformation where powerful pedagogies and emerging knowledge about the scholarship of teaching and learning supplant long held and often-outmoded practices of leadership education. This transformation requires new commitments to evidence-based practice, critical consciousness, and more complex understanding of the levers of leadership learning. © 2015 Wiley Periodicals, Inc., A Wiley Company.

  11. Protective Effect of Vitamin E Against Lead-induced Memory and Learning Impairment in Male Rats

    Directory of Open Access Journals (Sweden)

    Salehi

    2015-02-01

    Full Text Available Background Lead (Pb2+ is a neurotoxin substance that has been known for its adverse effects on central nervous system and memory. Previous studies reported the potential effect of vitamin E as a memory enhancer. Objectives The purpose of the present study was to assess the protective effects of vitamin E against Pb-induced amnesia. Materials and Methods Forty-eight male Wistar rats (200-250 g were divided equally into the saline, Pb, Pb + vitamin E, and vitamin E alone groups. To induce Pb toxicity, rats received water that contained 0.2% Pb instead of regular water for 1 month. Rats pretreated, treated or post treated with vitamin E (150 mg/kg for 2 months. Passive avoidance learning was assessed using Shuttle-Box after two months. Retention was tested 24 and 48 hours after training. Results The results showed that Pb caused impairment in acquisition and retrieval processes in passive avoidance learning. Vitamin E reversed learning and memory deficits in pre, post or co- exposure with Pb (P < 0.001. Conclusions According to the results of this study, administration of vitamin E to rats counteracts the negative effects of Pb on learning and memory. To more precisely extrapolate these findings to humans, future clinical studies are warranted.

  12. The relationship between NMDA receptors and microwave-induced learning and memory impairment: a long-term observation on Wistar rats.

    Science.gov (United States)

    Wang, Hui; Peng, Ruiyun; Zhao, Li; Wang, Shuiming; Gao, Yabing; Wang, Lifeng; Zuo, Hongyan; Dong, Ji; Xu, Xinping; Zhou, Hongmei; Su, Zhentao

    2015-03-01

    Abstract Purpose: To investigate whether high power microwave could cause continuous disorders to learning and memory in Wistar rats and to explore the underlying mechanisms. Eighty Wistar rats were exposed to a 2.856 GHz pulsed microwave source at a power density of 0 mW/cm(2) and 50 mW/cm(2) microwave for 6 min. The spatial memory ability, the structure of the hippocampus, contents of amino acids neurotransmitters in hippocampus and the expression of N-methyl-D-aspartic acid receptors (NMDAR) subunit 1, 2A and 2B (NR1, NR2A and NR2B) were detected at 1, 3, 6, 9, 12 and 18 months after microwave exposure. Our results showed that the microwave-exposed rats showed consistent deficiencies in spatial learning and memory. The level of amino acid neurotransmitters also decreased after microwave radiation. The ratio of glutamate (Glu) and gammaaminobutyric acid (GABA) significantly decreased at 6 months. Besides, the hippocampus showed varying degrees of degeneration of neurons, increased postsynaptic density and blurred synaptic clefts in the exposure group. The NR1 and NR2B expression showed a significant decrease, especially the NR2B expression. This study indicated that the content of amino acids neurotransmitters, the expression of NMDAR subunits and the variation of hippocampal structure might contribute to the long-term cognitive impairment after microwave exposure.

  13. Intracerebroventricular administration of taurine impairs learning and memory in rats.

    Science.gov (United States)

    Ito, Koichi; Arko, Matevž; Kawaguchi, Tomohiro; Kikusui, Takefumi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-03-01

    Taurine is a semi-essential amino acid widely distributed in the body and we take in it from a wide range of nutritive-tonic drinks to improve health. To date, we have elucidated that oral supplementation of taurine does not affect learning and memory in the rat. However, there are few studies concerning the direct effects of taurine in the brain at the behavior level. In this study, we intracerebroventricularly administered taurine to rats and aimed to elucidate the acute effects on learning and memory using the Morris water maze method. Escape latency, swim distance, and distance to zone, which is the integral of the distance between the rats and the platform for every 0.16 seconds, were adopted as parameters of the ability of learning and memory. We also tried to evaluate the effect of intraperitoneal taurine administration. Escape latency, swim distance, and distance to zone were significantly longer in the intracerebroventricularly taurine-administered rats than in the saline-administered rats. Mean swimming velocity was comparable between these two groups, although the physical performance was improved by taurine administration. Probe trials showed that the manner of the rats in finding the platform was comparable. In contrast, no significant differences were found between the intraperitoneally taurine-administered rats and the saline-administered rats. These results indicate that taurine administered directly into the brain ventricle suppresses and delays the ability of learning and memory in rats. In contrast, it is implied that taurine administered peripherally was not involved in learning and memory.

  14. Repeated mild closed head injury impairs short-term visuospatial memory and complex learning.

    Science.gov (United States)

    Hylin, Michael J; Orsi, Sara A; Rozas, Natalia S; Hill, Julia L; Zhao, Jing; Redell, John B; Moore, Anthony N; Dash, Pramod K

    2013-05-01

    Concussive force can cause neurocognitive and neurobehavioral dysfunction by inducing functional, electrophysiological, and/or ultrastructural changes within the brain. Although concussion-triggered symptoms typically subside within days to weeks in most people, in 15%-20% of the cases, symptomology can continue beyond this time point. Problems with memory, attention, processing speed, and cognitive flexibility (e.g., problem solving, conflict resolution) are some of the prominent post-concussive cognitive symptoms. Repeated concussions (with loss or altered consciousness), which are common to many contact sports, can exacerbate these symptoms. The pathophysiology of repeated concussions is not well understood, nor is an effective treatment available. In order to facilitate drug discovery to treat post-concussive symptoms (PCSs), there is a need to determine if animal models of repeated mild closed head injury (mCHI) can mimic the neurocognitive and histopathological consequences of repeated concussions. To this end, we employed a controlled cortical impact (CCI) device to deliver a mCHI directly to the skull of mice daily for 4 days, and examined the ensuing neurological and neurocognitive functions using beam balance, foot-fault, an abbreviated Morris water maze test, context discrimination, and active place avoidance tasks. Repeated mCHI exacerbated vestibulomotor, motor, short-term memory and conflict learning impairments as compared to a single mCHI. Learning and memory impairments were still observed in repeated mCHI mice when tested 3 months post-injury. Repeated mCHI also reduced cerebral perfusion, prolonged the inflammatory response, and in some animals, caused hippocampal neuronal loss. Our results show that repeated mCHI can reproduce some of the deficits seen after repeated concussions in humans and may be suitable for drug discovery studies and translational research.

  15. Verbal and Visual Memory Impairments in Bipolar I and II Disorder.

    Science.gov (United States)

    Ha, Tae Hyon; Kim, Ji Sun; Chang, Jae Seung; Oh, Sung Hee; Her, Ju Young; Cho, Hyun Sang; Park, Tae Sung; Shin, Soon Young; Ha, Kyooseob

    2012-12-01

    To compare verbal and visual memory performances between patients with bipolar I disorder (BD I) and patients with bipolar II disorder (BD II) and to determine whether memory deficits were mediated by impaired organizational strategies. Performances on the Korean-California Verbal Learning Test (K-CVLT) and the Rey-Osterrieth Complex Figure Test (ROCF) in 37 patients with BD I, 46 patients with BD II and 42 healthy subjects were compared. Mediating effects of impaired organization strategies on poor delayed recall was tested by comparing direct and mediated models using multiple regression analysis. Both patients groups recalled fewer words and figure components and showed lower Semantic Clustering compared to controls. Verbal memory impairment was partly mediated by difficulties in Semantic Clustering in both subtypes, whereas the mediating effect of Organization deficit on the visual memory impairment was present only in BD I. In all mediated models, group differences in delayed recall remained significant. Our findings suggest that memory impairment may be one of the fundamental cognitive deficits in bipolar disorders and that executive dysfunctions can exert an additional influence on memory impairments.

  16. Aqueous extracts from asparagus stems prevent memory impairments in scopolamine-treated mice.

    Science.gov (United States)

    Sui, Zifang; Qi, Ce; Huang, Yunxiang; Ma, Shufeng; Wang, Xinguo; Le, Guowei; Sun, Jin

    2017-04-19

    Aqueous extracts from Asparagus officinalis L. stems (AEAS) are rich in polysaccharides, gamma-amino butyric acid (GABA), and steroidal saponin. This study was designed to investigate the effects of AEAS on learning, memory, and acetylcholinesterase-related activity in a scopolamine-induced model of amnesia. Sixty ICR mice were randomly divided into 6 groups (n = 10) including the control group (CT), scopolamine group (SC), donepezil group (DON), low, medium, and high dose groups of AEAS (LS, MS, HS; 1.6 mL kg -1 , 8 mL kg -1 , 16 mL kg -1 ). The results showed that 8 mL kg -1 of AEAS used in this study significantly reversed scopolamine-induced cognitive impairments in mice in the novel object recognition test (P < 0.05) and the Y-maze test (P < 0.05), and also improved the latency to escape in the Morris water maze test (P < 0.05). Moreover, it significantly increased acetylcholine and inhibited acetylcholinesterase activity in the hippocampus, which was directly related to the reduction in learning and memory impairments. It also reversed scopolamine-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) and the cAMP response element-binding protein (CREB) mRNA expression. AEAS protected against scopolamine-induced memory deficits. In conclusion, AEAS protected learning and memory function in mice by enhancing the activity of the cholinergic nervous system, and increasing BDNF and CREB expression. This suggests that AEAS has the potential to prevent cognitive impairments in age-related diseases, such as Alzheimer's disease.

  17. Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior.

    Science.gov (United States)

    Parnaudeau, Sébastien; Taylor, Kathleen; Bolkan, Scott S; Ward, Ryan D; Balsam, Peter D; Kellendonk, Christoph

    2015-03-01

    Cognitive inflexibility is a core symptom of several mental disorders including schizophrenia. Brain imaging studies in schizophrenia patients performing cognitive tasks have reported decreased activation of the mediodorsal thalamus (MD). Using a pharmacogenetic approach to model MD hypofunction, we recently showed that decreasing MD activity impairs reversal learning in mice. While this demonstrates causality between MD hypofunction and cognitive inflexibility, questions remain about the elementary cognitive processes that account for the deficit. Using the Designer Receptors Exclusively Activated by Designer Drugs system, we reversibly decreased MD activity during behavioral tasks assessing elementary cognitive processes inherent to flexible goal-directed behaviors, including extinction, contingency degradation, outcome devaluation, and Pavlovian-to-instrumental transfer (n = 134 mice). While MD hypofunction impaired reversal learning, it did not affect the ability to learn about nonrewarded cues or the ability to modulate action selection based on the outcome value. In contrast, decreasing MD activity delayed the ability to adapt to changes in the contingency between actions and their outcomes. In addition, while Pavlovian learning was not affected by MD hypofunction, decreasing MD activity during Pavlovian learning impaired the ability of conditioned stimuli to modulate instrumental behavior. Mediodorsal thalamus hypofunction causes cognitive inflexibility reflected by an impaired ability to adapt actions when their consequences change. Furthermore, it alters the encoding of environmental stimuli so that they cannot be properly utilized to guide behavior. Modulating MD activity could be a potential therapeutic strategy for promoting adaptive behavior in human subjects with cognitive inflexibility. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Administration of memantine during withdrawal mitigates overactivity and spatial learning impairments associated with neonatal alcohol exposure in rats.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2014-02-01

    Prenatal alcohol exposure can disrupt central nervous system development, manifesting as behavioral deficits that include motor, emotional, and cognitive dysfunction. Both clinical and animal studies have reported binge drinking during development to be highly correlated with an increased risk of fetal alcohol spectrum disorders (FASD). We hypothesized that binge drinking may be especially damaging because it is associated with episodes of alcohol withdrawal. Specifically, we have been investigating the possibility that NMDA receptor-mediated excitotoxicity occurs during alcohol withdrawal and contributes to developmental alcohol-related neuropathology. Consistent with this hypothesis, administration of the NMDA receptor antagonists MK-801 or eliprodil during withdrawal attenuates behavioral alterations associated with early alcohol exposure. In this study, we investigated the effects of memantine, a clinically used NMDA receptor antagonist, on minimizing ethanol-induced overactivity and spatial learning deficits. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol via intubation on postnatal day (PD) 6, a period of brain development that models late gestation in humans. Controls were intubated with a calorically matched maltose solution. During withdrawal, 24 and 36 hours after ethanol exposure, subjects were injected with a total of either 0, 20, or 30 mg/kg memantine. The subjects' locomotor levels were recorded in open field activity monitors on PDs 18 to 21 and on a serial spatial discrimination reversal learning task on PDs 40 to 43. Alcohol exposure induced overactivity and impaired performance in spatial learning. Memantine administration significantly attenuated the ethanol-associated behavioral alterations in a dose-dependent manner. Thus, memantine may be neuroprotective when administered during ethanol withdrawal. These data have important implications for the treatment of EtOH's neurotoxic effects and provide further support that ethanol withdrawal

  19. Sleep deprivation impairs object recognition in mice

    NARCIS (Netherlands)

    Palchykova, S; Winsky-Sommerer, R; Meerlo, P; Durr, R; Tobler, Irene

    2006-01-01

    Many studies in animals and humans suggest that sleep facilitates learning, memory consolidation, and retrieval. Moreover, sleep deprivation (SD) incurred after learning, impaired memory in humans, mice, rats, and hamsters. We investigated the importance of sleep and its timing in in object

  20. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China); Teng, Weiping, E-mail: twpendocrine@yahoo.com.cn [Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China)

    2013-09-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  1. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    International Nuclear Information System (INIS)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui; Teng, Weiping; Chen, Jie

    2013-01-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  2. Intra-Amygdala ZIP Injections Impair the Memory of Learned Active Avoidance Responses and Attenuate Conditioned Taste-Aversion Acquisition in Rats

    Science.gov (United States)

    Gamiz, Fernando; Gallo, Milagros

    2011-01-01

    We have investigated the effect of protein kinase Mzeta (PKM[zeta]) inhibition in the basolateral amygdala (BLA) upon the retention of a nonspatial learned active avoidance response and conditioned taste-aversion (CTA) acquisition in rats. ZIP (10 nmol/[mu]L) injected into the BLA 24 h after training impaired retention of a learned…

  3. Organizational Learning Strategies and Verbal Memory Deficits in Bipolar Disorder.

    Science.gov (United States)

    Nitzburg, George C; Cuesta-Diaz, Armando; Ospina, Luz H; Russo, Manuela; Shanahan, Megan; Perez-Rodriguez, Mercedes; Larsen, Emmett; Mulaimovic, Sandra; Burdick, Katherine E

    2017-04-01

    Verbal memory (VM) impairment is prominent in bipolar disorder (BD) and is linked to functional outcomes. However, the intricacies of VM impairment have not yet been studied in a large sample of BD patients. Moreover, some have proposed VM deficits that may be mediated by organizational strategies, such as semantic or serial clustering. Thus, the exact nature of VM break-down in BD patients is not well understood, limiting remediation efforts. We investigated the intricacies of VM deficits in BD patients versus healthy controls (HCs) and examined whether verbal learning differences were mediated by use of clustering strategies. The California Verbal Learning Test (CVLT) was administered to 113 affectively stable BD patients and 106 HCs. We compared diagnostic groups on all CVLT indices and investigated whether group differences in verbal learning were mediated by clustering strategies. Although BD patients showed significantly poorer attention, learning, and memory, these indices were only mildly impaired. However, BD patients evidenced poorer use of effective learning strategies and lower recall consistency, with these indices falling in the moderately impaired range. Moreover, relative reliance on semantic clustering fully mediated the relationship between diagnostic category and verbal learning, while reliance on serial clustering partially mediated this relationship. VM deficits in affectively stable bipolar patients were widespread but were generally mildly impaired. However, patients displayed inadequate use of organizational strategies with clear separation from HCs on semantic and serial clustering. Remediation efforts may benefit from education about mnemonic devices or "chunking" techniques to attenuate VM deficits in BD. (JINS, 2017, 23, 358-366).

  4. Attentional and executive impairments in children with spastic cerebral palsy

    DEFF Research Database (Denmark)

    Bottcher, Louise; Flachs, Esben Meulengracht; Uldall, Peter

    2010-01-01

    Children with cerebral palsy (CP) are reported to have learning and social problems. The aim of the present study was to examine whether children with CP have impairments in attention or executive function.......Children with cerebral palsy (CP) are reported to have learning and social problems. The aim of the present study was to examine whether children with CP have impairments in attention or executive function....

  5. Depletion of serotonin selectively impairs short-term memory without affecting long-term memory in odor learning in the terrestrial slug Limax valentianus.

    Science.gov (United States)

    Shirahata, Takaaki; Tsunoda, Makoto; Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi

    2006-01-01

    The terrestrial slug Limax is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC (high-performance liquid chromatography) analysis revealed that 5,7-DHT significantly reduced serotonin content in the central nervous system. The present study suggests that acquisition, retention, and/or retrieval of short-term memory involves serotonin, and neither acquisition nor retrieval of long-term memory requires serotonin at a level as high as that required for short-term memory.

  6. Impairment in explicit visuomotor sequence learning is related to loss of microstructural integrity of the corpus callosum in multiple sclerosis patients with minimal disability.

    Science.gov (United States)

    Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M

    2011-07-15

    Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter

  7. Classifying cognitive profiles using machine learning with privileged information in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Hanin Hamdan Alahmadi

    2016-11-01

    Full Text Available Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalised Matrix Learning Vector Quantization (GMLVQ classifiers to discriminate patients with Mild Cognitive Impairment (MCI from healthy controls based on their cognitive skills. Further, we adopted a ``Learning with privileged information'' approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants.MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls based on the learning performance and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on the learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1 when overall fMRI signal for structured stimuli is

  8. A pilot study on utility of Malayalam version of Addenbrooke's Cognitive Examination in detection of amnestic mild cognitive impairment: A critical insight into utility of learning and recall measures.

    Science.gov (United States)

    Menon, Ramshekhar; Lekha, Vs; Justus, Sunitha; Sarma, P Sankara; Mathuranath, Ps

    2014-10-01

    This pilot study sought to determine whether the Malayalam adaptation of Addenbrooke's Cognitive Examination (M-ACE) can effectively identify patients with amnestic mild cognitive impairment (a-MCI) and the impact of measures of learning and free recall. A cohort of 23 patients with a-MCI aged between 55-80 years diagnosed as per current criteria and 23 group matched cognitively normal healthy controls (CNHC) were studied. The measures of acquisition and delayed recall were the Rey Auditory Verbal Learning Test (RAVLT) and Wechsler Memory Scale (WMS)-III (verbal and visual subsets) and Delayed Matching-to-sample Test (DMS)-48. Test scores of M-ACE registration and recall scores were included. To examine the differences in test performances between the groups, we compared the number of subjects with test scores less than 1.5 standard deviation (SD) of the control scores. Comparisons between a-MCI and controls were drawn using Fisher's exact test and Mann-Whitney U tests. M-ACE registration component ascertained on a 24-point scale failed to demonstrate any differences between a-MCI and controls (P = 0.665) as opposed to recall judged on a cumulative 10-point scale (P = 0.001). Significant differences were noted in RAVLT list learning (P < 0.001) and list recall (P = 0.003), WMS-III paragraph learning (P <0.001) and recall (P = 0.007), visual learning (P = 0.004) and recall (P = 0.001). M-ACE recall scores are an effective screening tool to identify patients with suspected a-MCI. Both word list and paragraph learning and recall components have been found to be sensitive to concretely identify a-MCI and impairment on at least 2 tests should be considered in the diagnostic criteria of MCI rather than rely on a single screening battery.

  9. Memory, learning and language in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Jill Boucher

    2018-02-01

    Full Text Available Background and aims The ‘dual-systems’ model of language acquisition has been used by Ullman et al. to explain patterns of strength and weakness in the language of higher-functioning people with autism spectrum disorder. Specifically, intact declarative/explicit learning is argued to compensate for a deficit in non-declarative/implicit procedural learning, constituting an example of the so-called see-saw effect. Ullman and Pullman extended their argument concerning a see-saw effect on language in autism spectrum disorder to cover other perceived anomalies of behaviour, including impaired acquisition of social skills. The aim of this paper is to present a critique of Ullman et al.’s claims and to propose an alternative model of links between memory systems and language in autism spectrum disorder. Main contribution We argue that a four-system model of learning, in which intact semantic and procedural memory are used to compensate for weaknesses in episodic memory and perceptual learning, can better explain patterns of language ability across the autistic spectrum. We also argue that attempts to generalise the ‘impaired implicit learning/spared declarative learning’ theory to other behaviours in autism spectrum disorder are unsustainable. Conclusions Clinically significant language impairments in autism spectrum disorder are under-researched, despite their impact on everyday functioning and quality of life. The relative paucity of research findings in this area lays it open to speculative interpretation which may be misleading. Implications More research is needed into links between memory/learning systems and language impairments across the spectrum. Improved understanding should inform therapeutic intervention and contribute to investigation of the causes of language impairment in autism spectrum disorder with potential implications for prevention.

  10. The Effect of an NCAM Mimetic on Learning and Memory Impairment in an Animal Model of Schizophrenia

    DEFF Research Database (Denmark)

    Secher, Thomas

    2009-01-01

    by immunohistochemical investigation of neurodegeneration and NMDA receptor activation in relevant brain regions. The results show that neonatal PCP treatment induces long-term impairment in spatial learning and memory. The higher PCP dose produced more robust deficits in all three tasks of the water maze, whereas...... for schizophrenia. Neonatal treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) on postnatal days 7, 9, and 11 has been shown to induce acute neurodegeneration and long-term cognitive deficits and other behavioral abnormalities relevant to schizophrenia. To evaluate the effect...... results indicated that FGL treatment was able to reduce apoptotic cell death in the frontal cortex in pups and to increase NMDA receptor activation in the hippocampus in adults In the present project, further evidence was obtained that neonatal PCP treatment induces long-term impairment in spatial...

  11. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory.

    Science.gov (United States)

    Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew; Maguire, Jamie

    2016-10-01

    in dentate gyrus granule cells contributes, at least in part, to deficits in learning and memory associated with chronic stress. These findings have significant implications regarding the pathophysiological mechanisms underlying impairments in learning and memory associated with stress and suggest a role for GABAA R δ subunit containing receptors in dentate gyrus granule cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    dentate gyrus granule cells contributes, at least in part, to deficits in learning and memory associated with chronic stress. These findings have significant implications regarding the pathophysiological mechanisms underlying impairments in learning and memory associated with stress and suggest a role for GABAAR δ subunit containing receptors in dentate gyrus granule cells. PMID:27163381

  13. Tetrahydrocannabinol (THC) impairs encoding but not retrieval of verbal information.

    Science.gov (United States)

    Ranganathan, Mohini; Radhakrishnan, Rajiv; Addy, Peter H; Schnakenberg-Martin, Ashley M; Williams, Ashley H; Carbuto, Michelle; Elander, Jacqueline; Pittman, Brian; Andrew Sewell, R; Skosnik, Patrick D; D'Souza, Deepak Cyril

    2017-10-03

    Cannabis and agonists of the brain cannabinoid receptor (CB 1 R) produce acute memory impairments in humans. However, the extent to which cannabinoids impair the component processes of encoding and retrieval has not been established in humans. The objective of this analysis was to determine whether the administration of Δ 9 -Tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, impairs encoding and/or retrieval of verbal information. Healthy subjects were recruited from the community. Subjects were administered the Rey-Auditory Verbal Learning Test (RAVLT) either before administration of THC (experiment #1) (n=38) or while under the influence of THC (experiment #2) (n=57). Immediate and delayed recall on the RAVLT was compared. Subjects received intravenous THC, in a placebo-controlled, double-blind, randomized manner at doses known to produce behavioral and subjective effects consistent with cannabis intoxication. Total immediate recall, short delayed recall, and long delayed recall were reduced in a statistically significant manner only when the RAVLT was administered to subjects while they were under the influence of THC (experiment #2) and not when the RAVLT was administered prior. THC acutely interferes with encoding of verbal memory without interfering with retrieval. These data suggest that learning information prior to the use of cannabis or cannabinoids is not likely to disrupt recall of that information. Future studies will be necessary to determine whether THC impairs encoding of non-verbal information, to what extent THC impairs memory consolidation, and the role of other cannabinoids in the memory-impairing effects of cannabis. Cannabinoids, Neural Synchrony, and Information Processing (THC-Gamma) http://clinicaltrials.gov/ct2/show/study/NCT00708994 NCT00708994 Pharmacogenetics of Cannabinoid Response http://clinicaltrials.gov/ct2/show/NCT00678730 NCT00678730. Copyright © 2017. Published by Elsevier Inc.

  14. Views of Children with Visual Impairment on the Challenges of ...

    African Journals Online (AJOL)

    The study sought to examine the views of children with visual impairment on the challenges of inclusion. A questionnaire was administered on 20 children with visual impairment. These had been randomly selected from three schools that were including children with visual impairment in their teaching and learning ...

  15. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  16. Sentence Writing and Perception of Written Sentences in Hearing-Impaired and Normal-Hearing Primary School Students in Hamadan, Western Iran

    Directory of Open Access Journals (Sweden)

    Afsaneh Yaghobi

    2011-06-01

    Full Text Available Background and Aim: Learning language is acquired in early childhood and gradually developed by new words and new structures. Hearing sense is the most important acquisition for learning this skill. Hearing disorders are barriers for natural language learning. The purpose of this study was to investigate the relationship between writing sentences and perception of written sentences in hearing-impaired and normal-hearing students.Methods: A cross-sectional study was conducted among thirty hearing-impaired students with hearing loss of 70-90 dB and thirty normal hearing students. They were selected from 3rd grade primary school students in Hamadan, a large city in Western Iran. The language skills and non language information was assessed by questionnaire, Action Picture Test, and Sentence Perception Test.Results: Results showed that there was a significant relation between writing sentences and perception of written sentences in hearing impaired students (p<0.001, (r=0.8. This significant relation was seen in normal-hearing students as well (p<0.001, (r=0.7.Conclusion: Disability of hearing-impaired students in verbal communication is not only related to articulation and voice disorders but also is related to their disability to explore and use of language rules. They suffer lack of perception of written sentences, and they are not skilled to convey their feelings and thoughts in order to presenting themselves by using language structures.

  17. Extensive Gustatory Cortex Lesions Significantly Impair Taste Sensitivity to KCl and Quinine but Not to Sucrose in Rats.

    Directory of Open Access Journals (Sweden)

    Michelle B Bales

    Full Text Available Recently, we reported that large bilateral gustatory cortex (GC lesions significantly impair taste sensitivity to salts in rats. Here we extended the tastants examined to include sucrose and quinine in rats with ibotenic acid-induced lesions in GC (GCX and in sham-operated controls (SHAM. Presurgically, immediately after drinking NaCl, rats received a LiCl or saline injection (i.p., but postsurgical tests indicated a weak conditioned taste aversion (CTA even in controls. The rats were then trained and tested in gustometers to discriminate a tastant from water in a two-response operant taste detection task. Psychometric functions were derived for sucrose, KCl, and quinine. Our mapping system was used to determine placement, size, and symmetry of the lesions (~91% GC damage on average. For KCl, there was a significant rightward shift (ΔEC50 = 0.57 log10 units; p<0.001 in the GCX psychometric function relative to SHAM, replicating our prior work. There was also a significant lesion-induced impairment (ΔEC50 = 0.41 log10 units; p = 0.006 in quinine sensitivity. Surprisingly, taste sensitivity to sucrose was unaffected by the extensive lesions and was comparable between GCX and SHAM rats. The fact that such large bilateral GC lesions did not shift sucrose psychometric functions relative to SHAM, but did significantly compromise quinine and KCl sensitivity suggests that the neural circuits responsible for the detection of specific taste stimuli are partially dissociable. Lesion-induced impairments were observed in expression of a postsurgical CTA to a maltodextrin solution as assessed in a taste-oriented brief-access test, but were not reflected in a longer term 46-h two-bottle test. Thus, deficits observed in rats after extensive damage to the GC are also dependent on the test used to assess taste function. In conclusion, the degree to which the GC is necessary for the maintenance of normal taste detectability apparently depends on the chemical and

  18. Secukinumab Significantly Reduces Psoriasis-Related Work Impairment and Indirect Costs Compared With Ustekinumab and Etanercept in the United Kingdom.

    Science.gov (United States)

    Warren, R B; Halliday, A; Graham, C N; Gilloteau, I; Miles, L; McBride, D

    2018-05-30

    Psoriasis causes work productivity impairment that increases with disease severity. Whether differential treatment efficacy translates into differential indirect cost savings is unknown. To assess work hours lost and indirect costs associated with secukinumab versus ustekinumab and etanercept in the United Kingdom (UK). This was a post hoc analysis of work impairment data collected in the CLEAR study (secukinumab vs. ustekinumab) and applied to the FIXTURE study (secukinumab vs. etanercept). Weighted weekly and annual average indirect costs per patient per treatment were calculated from (1) overall work impairment derived from Work Productivity and Activity Impairment data collected in CLEAR at 16 and 52 weeks by Psoriasis Area and Severity Index (PASI) response level; (2) weekly/annual work productivity loss by PASI response level; (3) weekly and annual indirect costs by PASI response level, based on hours of work productivity loss; and (4) weighted average indirect costs for each treatment. In the primary analysis, work impairment data for employed patients in CLEAR at Week 16 were used to compare secukinumab and ustekinumab. Secondary analyses were conducted at different timepoints and with patient cohorts, including FIXTURE. In CLEAR, 452 patients (67%) were employed at baseline. At Week 16, percentages of weekly work impairment/mean hours lost decreased with higher PASI: PASI hours; PASI 50-74: 13.3%/4.45 hours; PASI 75-89: 6.4%/2.14 hours; PASI ≥90: 4.9%/1.65 hours. Weighted mean weekly/annual work hours lost were significantly lower for secukinumab than ustekinumab (1.96/102.51 vs. 2.40/125.12; P=0.0006). Results were consistent for secukinumab versus etanercept (2.29/119.67 vs. 3.59/187.17; Ρreduced work impairment and associated indirect costs of psoriasis compared with ustekinumab and etanercept at Week 16 through 52 in the UK. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Sleep Restriction Impairs Vocabulary Learning when Adolescents Cram for Exams: The Need for Sleep Study.

    Science.gov (United States)

    Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C; Chee, Michael W L; Gooley, Joshua J

    2016-09-01

    The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15-19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. © 2016 Associated Professional Sleep Societies, LLC.

  20. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment.

    Science.gov (United States)

    Taghizadeh, Ghorban; Pourahmad, Jalal; Mehdizadeh, Hajar; Foroumadi, Alireza; Torkaman-Boutorabi, Anahita; Hassani, Shokoufeh; Naserzadeh, Parvaneh; Shariatmadari, Reyhaneh; Gholami, Mahdi; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2016-10-01

    Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sticking with the nice guy: trait warmth information impairs learning and modulates person perception brain network activity.

    Science.gov (United States)

    Lee, Victoria K; Harris, Lasana T

    2014-12-01

    Social learning requires inferring social information about another person, as well as evaluating outcomes. Previous research shows that prior social information biases decision making and reduces reliance on striatal activity during learning (Delgado, Frank, & Phelps, Nature Neuroscience 8 (11): 1611-1618, 2005). A rich literature in social psychology on person perception demonstrates that people spontaneously infer social information when viewing another person (Fiske & Taylor, 2013) and engage a network of brain regions, including the medial prefrontal cortex, temporal parietal junction, superior temporal sulcus, and precuneus (Amodio & Frith, Nature Reviews Neuroscience, 7(4), 268-277, 2006; Haxby, Gobbini, & Montgomery, 2004; van Overwalle Human Brain Mapping, 30, 829-858, 2009). We investigate the role of these brain regions during social learning about well-established dimensions of person perception-trait warmth and trait competence. We test the hypothesis that activity in person perception brain regions interacts with learning structures during social learning. Participants play an investment game where they must choose an agent to invest on their behalf. This choice is guided by cues signaling trait warmth or trait competence based on framing of monetary returns. Trait warmth information impairs learning about human but not computer agents, while trait competence information produces similar learning rates for human and computer agents. We see increased activation to warmth information about human agents in person perception brain regions. Interestingly, activity in person perception brain regions during the decision phase negatively predicts activity in the striatum during feedback for trait competence inferences about humans. These results suggest that social learning may engage additional processing within person perception brain regions that hampers learning in economic contexts.

  2. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson's disease: Implications for fall risk.

    Science.gov (United States)

    Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C

    2018-02-01

    Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Association of Dynapenia, Sarcopenia, and Cognitive Impairment Among Community-Dwelling Older Taiwanese.

    Science.gov (United States)

    Huang, Chung-Yu; Hwang, An-Chun; Liu, Li-Kuo; Lee, Wei-Ju; Chen, Liang-Yu; Peng, Li-Ning; Lin, Ming-Hsien; Chen, Liang-Kung

    2016-02-01

    A decline in physical and/or cognitive function is a common feature of aging, and frailty has been shown to be associated with cognitive impairment and dementia. This study aimed to evaluate the association between dynapenia, sarcopenia, and cognitive impairment among community-dwelling older people in Taiwan. Data from the I-Lan Longitudinal Aging Study (ILAS) were retrieved for study. Global cognitive function was assessed by Mini-Mental State Examination (MMSE), whereas the Chinese Version Verbal Learning Test, Boston Naming Test, Verbal Fluency Test, Taylor Complex Figure Test, Digits Backward Test, and Clock Drawing Test were used to assess different domains of cognitive function. Association between sarcopenia and global cognitive function as well as all different dimensions of cognitive function were evaluated. Data from 731 elderly participants (mean age 73.4 ± 5.4 years, 53.8% males) were used for study analysis. The overall prevalence of sarcopenia was 6.8%, which was significantly higher in men (9.3% versus 4.1%, p < 0.05). The mean MMSE score was 23.4 ± 4.4 for all participants, and 10.3% of the study participants were cognitively impaired. Sarcopenia was not significantly associated with global cognitive function (odds ratio [OR] = 1.55, p = 0.317), but global cognitive impairment was significantly associated with low physical performance (OR = 2.31, p = 0.003) and low muscle strength (OR = 2.59, p = 0.011). Nonetheless, sarcopenia was significantly associated with impairment in the verbal fluency test (OR = 3.96, p = 0.006) after adjustment for potential confounders. Dynapenia was significantly associated with cognitive impairment in multiple dimensions and global cognitive function, but sarcopenia was only associated with an impaired verbal fluency test. Reduced muscle strength and/or physical performance related to non-muscle etiology were strongly associated with cognitive impairment. More longitudinal

  4. A pilot study on utility of Malayalam version of Addenbrooke′s Cognitive Examination in detection of amnestic mild cognitive impairment: A critical insight into utility of learning and recall measures

    Directory of Open Access Journals (Sweden)

    Ramshekhar Menon

    2014-01-01

    Full Text Available Aims: This pilot study sought to determine whether the Malayalam adaptation of Addenbrooke′s Cognitive Examination (M-ACE can effectively identify patients with amnestic mild cognitive impairment (a-MCI and the impact of measures of learning and free recall. Materials and Methods: A cohort of 23 patients with a-MCI aged between 55-80 years diagnosed as per current criteria and 23 group matched cognitively normal healthy controls (CNHC were studied. The measures of acquisition and delayed recall were the Rey Auditory Verbal Learning Test (RAVLT and Wechsler Memory Scale (WMS-III (verbal and visual subsets and Delayed Matching-to-sample Test (DMS-48. Test scores of M-ACE registration and recall scores were included. To examine the differences in test performances between the groups, we compared the number of subjects with test scores less than 1.5 standard deviation (SD of the control scores. Comparisons between a-MCI and controls were drawn using Fisher′s exact test and Mann-Whitney U tests. Results: M-ACE registration component ascertained on a 24-point scale failed to demonstrate any differences between a-MCI and controls (P = 0.665 as opposed to recall judged on a cumulative 10-point scale (P = 0.001. Significant differences were noted in RAVLT list learning (P < 0.001 and list recall (P = 0.003, WMS-III paragraph learning (P <0.001 and recall (P = 0.007, visual learning (P = 0.004 and recall (P = 0.001. Conclusions: M-ACE recall scores are an effective screening tool to identify patients with suspected a-MCI. Both word list and paragraph learning and recall components have been found to be sensitive to concretely identify a-MCI and impairment on at least 2 tests should be considered in the diagnostic criteria of MCI rather than rely on a single screening battery.

  5. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  6. Implicit sequence learning in people with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Katherine R Gamble

    2014-08-01

    Full Text Available Implicit sequence learning involves learning about dependencies in sequences of events without intent to learn or awareness of what has been learned. Sequence learning is related to striatal dopamine levels, striatal activation, and integrity of white matter connections. People with Parkinson’s disease (PD have degeneration of dopamine-producing neurons, leading to dopamine deficiency and therefore striatal deficits, and they have difficulties with sequencing, including complex language comprehension and postural stability. Most research on implicit sequence learning in PD has used motor-based tasks. However, because PD presents with motor deficits, it is difficult to assess whether learning itself is impaired in these tasks. The present study used an implicit sequence learning task with a reduced motor component, the Triplets Learning Task (TLT. People with PD and age- and education-matched healthy older adults completed three sessions (each consisting of 10 blocks of 50 trials of the TLT. Results revealed that the PD group was able to learn the sequence, however, when learning was examined using a Half Blocks analysis (Nemeth et al., 2013, which compared learning in the 1st 25/50 trials of all blocks to that in the 2nd 25/50 trials, the PD group showed significantly less learning than Controls in the 2nd Half Blocks, but not in the 1st. Nemeth et al. hypothesized that the 1st Half Blocks involve recall and reactivation of the sequence learned, thus reflecting hippocampal-dependent learning, while the 2nd Half Blocks involve proceduralized behavior of learned sequences, reflecting striatal-based learning. The present results suggest that the PD group had intact hippocampal-dependent implicit sequence learning, but impaired striatal-dependent learning. Thus, sequencing deficits in PD are likely due to striatal impairments, but other brain systems, such as the hippocampus, may be able to partially compensate for striatal decline to improve

  7. Blogs, webinars and significant learning: A case report on a teacher training program for college teachers

    Directory of Open Access Journals (Sweden)

    Rodrigo Polanco-Bueno

    2013-02-01

    Full Text Available This case study reports on a teacher training experience for college professors in which participants were trained, taking advantage of technological tools, in two main teaching competences. First, professors were trained to use technology to enrich students’ learning outcomes. Second, they applied strategies of significant learning in the design of students’ learning experiences. The learning experience consisted in an International Certificate on Significant Learning integrated by six modules, 20 hours each. Every module of the program consisted of two consecutive webinars with online activities in between. The results showed the positive impact of the program on participants’ perceptions about the quality of the contents, evidence of learning and products (E-portfolios that served as content mastery evidences, as well as learning products produced by their students. DOI: 10.18870/hlrc.v3i1.72

  8. Inspiration and Intellect: Significant Learning in Musical Forms and Analysis

    Science.gov (United States)

    Kelley, Bruce C.

    2009-01-01

    In his book "Creating Significant Learning Experiences" (2003), Dee Fink challenges professors to create a deep vision for the courses they teach. Educators often have a vision for what their courses could be, but often lack a model for instituting change. Fink's book provides that model. In this article, the author describes how this model helped…

  9. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students

    Directory of Open Access Journals (Sweden)

    Stéphanie Giraud

    2017-06-01

    Full Text Available Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students’ autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  10. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students.

    Science.gov (United States)

    Giraud, Stéphanie; Brock, Anke M; Macé, Marc J-M; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students' autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  11. Sex-specific impairment and recovery of spatial learning following the end of chronic unpredictable restraint stress: potential relevance of limbic GAD.

    Science.gov (United States)

    Ortiz, J Bryce; Taylor, Sara B; Hoffman, Ann N; Campbell, Alyssa N; Lucas, Louis R; Conrad, Cheryl D

    2015-04-01

    Chronic restraint stress alters hippocampal-dependent spatial learning and memory in a sex-dependent manner, impairing spatial performance in male rats and leaving intact or facilitating performance in female rats. Moreover, these stress-induced spatial memory deficits improve following post-stress recovery in males. The current study examined whether restraint administered in an unpredictable manner would eliminate these sex differences and impact a post-stress period on spatial ability and limbic glutamic acid decarboxylase (GAD65) expression. Male (n=30) and female (n=30) adult Sprague-Dawley rats were assigned to non-stressed control (Con), chronic stress (Str-Imm), or chronic stress given a post-stress recovery period (Str-Rec). Stressed rats were unpredictably restrained for 21 days using daily non-repeated combinations of physical context, duration, and time of day. Then, all rats were tested on the radial arm water maze (RAWM) for 2 days and given one retention trial on the third day, with brains removed 30min later to assess GAD65 mRNA. In Str-Imm males, deficits occurred on day 1 of RAWM acquisition, an impairment that was not evident in the Str-Rec group. In contrast, females did not show significant outcomes following chronic stress or post-stress recovery. In males, amygdalar GAD65 expression negatively correlated with RAWM performance on day 1. In females, hippocampal CA1 GAD65 positively correlated with RAWM performance on day 1. These results demonstrate that GABAergic function may contribute to the sex differences observed following chronic stress. Furthermore, unpredictable restraint and a recovery period failed to eliminate the sex differences on spatial learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Rule induction performance in amnestic mild cognitive impairment and Alzheimer's dementia: examining the role of simple and biconditional rule learning processes.

    Science.gov (United States)

    Oosterman, Joukje M; Heringa, Sophie M; Kessels, Roy P C; Biessels, Geert Jan; Koek, Huiberdina L; Maes, Joseph H R; van den Berg, Esther

    2017-04-01

    Rule induction tests such as the Wisconsin Card Sorting Test require executive control processes, but also the learning and memorization of simple stimulus-response rules. In this study, we examined the contribution of diminished learning and memorization of simple rules to complex rule induction test performance in patients with amnestic mild cognitive impairment (aMCI) or Alzheimer's dementia (AD). Twenty-six aMCI patients, 39 AD patients, and 32 control participants were included. A task was used in which the memory load and the complexity of the rules were independently manipulated. This task consisted of three conditions: a simple two-rule learning condition (Condition 1), a simple four-rule learning condition (inducing an increase in memory load, Condition 2), and a complex biconditional four-rule learning condition-inducing an increase in complexity and, hence, executive control load (Condition 3). Performance of AD patients declined disproportionately when the number of simple rules that had to be memorized increased (from Condition 1 to 2). An additional increment in complexity (from Condition 2 to 3) did not, however, disproportionately affect performance of the patients. Performance of the aMCI patients did not differ from that of the control participants. In the patient group, correlation analysis showed that memory performance correlated with Condition 1 performance, whereas executive task performance correlated with Condition 2 performance. These results indicate that the reduced learning and memorization of underlying task rules explains a significant part of the diminished complex rule induction performance commonly reported in AD, although results from the correlation analysis suggest involvement of executive control functions as well. Taken together, these findings suggest that care is needed when interpreting rule induction task performance in terms of executive function deficits in these patients.

  13. Portulaca oleracea L. prevents lipopolysaccharide-induced passive avoidance learning and memory and TNF-α impairments in hippocampus of rat.

    Science.gov (United States)

    Noorbakhshnia, Maryam; Karimi-Zandi, Leila

    2017-02-01

    There is a growing body of evidence that neuroinflammation can impair memory. It has been indicated that Portulaca oleracea Linn. (POL), possess anti-inflammatory activity and might improve memory disruption caused by inflammation. In this study the effect of pre-treatment with the hydro-alcoholic extract of POL on memory retrieval investigated in lipopolysaccharide (LPS) treated rats. Male Wistar rats (200-220g) received either a control diet or a diet containing of POL (400mg/kg, p.o.) for 14days. Then, they received injections of either saline or LPS (1mg/kg, i.p.). In all the experimental groups, 4h following the last injection, passive avoidance learning (PAL) and memory test was performed. The retention test was done 24h after the training and then the animals were sacrificed. Hippocampal TNF-α levels measured using ELISA as one criteria of LPS-induced neuroinflammation. The results indicated that LPS significantly impaired PAL and memory and increased TNF-α levels in hippocampus tissue. Pre-treatment with POL improved memory in control rats and prevented memory and TNF-α deterioration in LPS treated rats. Taken together, the results of this study suggest that the hydro-alcoholic extract of POL may improve memory deficits in LPS treated rats, possibly via inhibition of TNF-α and anti-inflammatory activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Loss of FMRP Impaired Hippocampal Long-Term Plasticity and Spatial Learning in Rats

    Directory of Open Access Journals (Sweden)

    Yonglu Tian

    2017-08-01

    Full Text Available Fragile X syndrome (FXS is a neurodevelopmental disorder caused by mutations in the FMR1 gene that inactivate expression of the gene product, the fragile X mental retardation 1 protein (FMRP. In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9 technology to generate Fmr1 knockout (KO rats by disruption of the fourth exon of the Fmr1 gene. Western blotting analysis confirmed that the FMRP was absent from the brains of the Fmr1 KO rats (Fmr1exon4-KO. Electrophysiological analysis revealed that the theta-burst stimulation (TBS–induced long-term potentiation (LTP and the low-frequency stimulus (LFS–induced long-term depression (LTD were decreased in the hippocampal Schaffer collateral pathway of the Fmr1exon4-KO rats. Short-term plasticity, measured as the paired-pulse ratio, remained normal in the KO rats. The synaptic strength mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR was also impaired. Consistent with previous reports, the Fmr1exon4-KO rats demonstrated an enhanced 3,5-dihydroxyphenylglycine (DHPG–induced LTD in the present study, and this enhancement is insensitive to protein translation. In addition, the Fmr1exon4-KO rats showed deficits in the probe trial in the Morris water maze test. These results demonstrate that deletion of the Fmr1 gene in rats specifically impairs long-term synaptic plasticity and hippocampus-dependent learning in a manner resembling the key symptoms of FXS. Furthermore, the Fmr1exon4-KO rats displayed impaired social interaction and macroorchidism, the results consistent with those observed in patients with FXS. Thus, Fmr1exon4-KO rats constitute a novel rat model of FXS that complements existing mouse models.

  15. A methodology for the characterization and diagnosis of cognitive impairments-Application to specific language impairment.

    Science.gov (United States)

    Oliva, Jesús; Serrano, J Ignacio; del Castillo, M Dolores; Iglesias, Angel

    2014-06-01

    The diagnosis of mental disorders is in most cases very difficult because of the high heterogeneity and overlap between associated cognitive impairments. Furthermore, early and individualized diagnosis is crucial. In this paper, we propose a methodology to support the individualized characterization and diagnosis of cognitive impairments. The methodology can also be used as a test platform for existing theories on the causes of the impairments. We use computational cognitive modeling to gather information on the cognitive mechanisms underlying normal and impaired behavior. We then use this information to feed machine-learning algorithms to individually characterize the impairment and to differentiate between normal and impaired behavior. We apply the methodology to the particular case of specific language impairment (SLI) in Spanish-speaking children. The proposed methodology begins by defining a task in which normal and individuals with impairment present behavioral differences. Next we build a computational cognitive model of that task and individualize it: we build a cognitive model for each participant and optimize its parameter values to fit the behavior of each participant. Finally, we use the optimized parameter values to feed different machine learning algorithms. The methodology was applied to an existing database of 48 Spanish-speaking children (24 normal and 24 SLI children) using clustering techniques for the characterization, and different classifier techniques for the diagnosis. The characterization results show three well-differentiated groups that can be associated with the three main theories on SLI. Using a leave-one-subject-out testing methodology, all the classifiers except the DT produced sensitivity, specificity and area under curve values above 90%, reaching 100% in some cases. The results show that our methodology is able to find relevant information on the underlying cognitive mechanisms and to use it appropriately to provide better

  16. Neuropsychological Testing and Machine Learning Distinguish Alzheimer’s Disease from Other Causes for Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Helmut Hildebrandt

    2017-04-01

    Full Text Available With promising results in recent treatment trials for Alzheimer’s disease (AD, it becomes increasingly important to distinguish AD at early stages from other causes for cognitive impairment. However, existing diagnostic methods are either invasive (lumbar punctures, PET or inaccurate Magnetic Resonance Imaging (MRI. This study investigates the potential of neuropsychological testing (NPT to specifically identify those patients with possible AD among a sample of 158 patients with Mild Cognitive Impairment (MCI or dementia for various causes. Patients were divided into an early stage and a late stage group according to their Mini Mental State Examination (MMSE score and labeled as AD or non-AD patients based on a post-mortem validated threshold of the ratio between total tau and beta amyloid in the cerebrospinal fluid (CSF; Total tau/Aβ(1–42 ratio, TB ratio. All patients completed the established Consortium to Establish a Registry for Alzheimer’s Disease—Neuropsychological Assessment Battery (CERAD-NAB test battery and two additional newly-developed neuropsychological tests (recollection and verbal comprehension that aimed at carving out specific Alzheimer-typical deficits. Based on these test results, an underlying AD (pathologically increased TB ratio was predicted with a machine learning algorithm. To this end, the algorithm was trained in each case on all patients except the one to predict (leave-one-out validation. In the total group, 82% of the patients could be correctly identified as AD or non-AD. In the early group with small general cognitive impairment, classification accuracy was increased to 89%. NPT thus seems to be capable of discriminating between AD patients and patients with cognitive impairment due to other neurodegenerative or vascular causes with a high accuracy, and may be used for screening in clinical routine and drug studies, especially in the early course of this disease.

  17. Implicit learning in transient global amnesia and the role of stress

    Directory of Open Access Journals (Sweden)

    Frauke Nees

    2016-11-01

    Full Text Available Transient global amnesia (TGA is a disorder with reversible anterograde disturbance of explicit memory, frequently preceded by an emotionally or physically stressful event. By using magnetic resonance imaging (MRI following an episode of TGA, small hippocampal lesions have been observed. Hence it has been postulated that the disorder is caused by the stress-related transient inhibition of memory formation in the hippocampus. In experimental studies, stress has been shown to affect both explicit and implicit learning – the latter defined as learning and memory processes that lack conscious awareness of the information acquired. To test the hypothesis that impairment of implicit learning in TGA is present and related to stress, we determined the effect of experimental exposure to stress on hippocampal activation patterns during an implicit learning paradigm in patients who suffered a recent TGA and healthy matched control subjects. We used a hippocampus-dependent aversive learning procedure (context conditioning with the phases habituation, acquisition, and extinction during functional MRI following experimental stress exposure (socially evaluated cold pressor test. After a control procedure, controls showed successful learning during the acquisition phase, indicated by increased valence, arousal and contingency ratings to the paired (CON+ versus the non-paired (CON- conditioned stimulus, and successful extinction of the conditioned responses. Following stress, acquisition was still successful, however extinction was impaired with persistently increased contingency ratings. In contrast, TGA patients showed impairment of conditioned responses and insufficient extinction after the control procedure, indicated by a lack of significant differences between CON+ and CON- for valence and arousal ratings after the acquisition phase and by significantly increased contingency ratings after the extinction. After stress, aversive learning was not successful

  18. Local inhibition of hippocampal nitric oxide synthase does not impair place learning in the Morris water escape task in rats.

    Science.gov (United States)

    Blokland, A; de Vente, J; Prickaerts, J; Honig, W; Markerink-van Ittersum, M; Steinbusch, H

    1999-01-01

    Recent studies have provided evidence that nitric oxide (NO) has a role in certain forms of memory formation. Spatial learning is one of the cognitive abilities that has been found to be impaired after systemic administration of an NO-synthase inhibitor. As the hippocampus has a pivotal role in spatial orientation, the present study examined the role of hippocampal NO in spatial learning and reversal learning in a Morris task in adult rats. It was found that N omega-nitro-L-arginine infusions into the dorsal hippocampus affected the manner in which the rats were searching the submerged platform during training, but did not affect the efficiency to find the spatial location of the escape platform. Hippocampal NO-synthase inhibition did not affect the learning of a new platform position in the same water tank (i.e. reversal learning). Moreover, no treatment effects were observed in the probe trials (i.e. after acquisition and after reversal learning), indicating that the rats treated with N omega-nitro-L-arginine had learned the spatial location of the platform. These findings were obtained under conditions where the NO synthesis in the dorsal hippocampus was completely inhibited. On the basis of the present data it was concluded that hippocampal NO is not critically involved in place learning in rats.

  19. Exposure to activity-based anorexia impairs contextual learning in weight-restored rats without affecting spatial learning, taste, anxiety, or dietary-fat preference.

    Science.gov (United States)

    Boersma, Gretha J; Treesukosol, Yada; Cordner, Zachary A; Kastelein, Anneke; Choi, Pique; Moran, Timothy H; Tamashiro, Kellie L

    2016-02-01

    Relapse rates are high amongst cases of anorexia nervosa (AN) suggesting that some alterations induced by AN may remain after weight restoration. To study the consequences of AN without confounds of environmental variability, a rodent model of activity-based anorexia (ABA) can be employed. We hypothesized that exposure to ABA during adolescence may have long-term consequences in taste function, cognition, and anxiety-like behavior after weight restoration. To test this hypothesis, we exposed adolescent female rats to ABA (1.5 h food access, combined with voluntary running wheel access) and compared their behavior to that of control rats after weight restoration was achieved. The rats were tested for learning/memory, anxiety, food preference, and taste in a set of behavioral tests performed during the light period. Our data show that ABA exposure leads to reduced performance during the novel object recognition task, a test for contextual learning, without altering performance in the novel place recognition task or the Barnes maze, both tasks that test spatial learning. Furthermore, we do not observe alterations in unconditioned lick responses to sucrose nor quinine (described by humans as "sweet" and "bitter," respectively). Nor Do we find alterations in anxiety-like behavior during an elevated plus maze or an open field test. Finally, preference for a diet high in fat is not altered. Overall, our data suggest that ABA exposure during adolescence impairs contextual learning in adulthood without altering spatial leaning, taste, anxiety, or fat preference. © 2015 Wiley Periodicals, Inc.

  20. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  1. Functional aging impairs the role of feedback in motor learning.

    Science.gov (United States)

    Liu, Yu; Cao, Chunmei; Yan, Jin H

    2013-10-01

    Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.

  2. Mobile phone use for 5 minutes can cause significant memory impairment in humans.

    Science.gov (United States)

    Kalafatakis, F; Bekiaridis-Moschou, D; Gkioka, Eirini; Tsolaki, Magda

    2017-01-01

    control group the second measurement was better than the first and the third even better than both previous ones. All differences were statistically significant. The reduction of the performance in the task after using the MP was even higher for the age group of 60-80 years old in comparison with younger age groups, as well as for the individuals with MCI in comparison to healthy participants. Age was significantly negative correlated with performance in the task, while gender showed no significant correlation. MP use has a significant negative impact on working memory performance of human participants. The effect is apparent even for a 5 minute use of the MP. Working memory deficits are greater not only for the 60 years old and above participants but also for individuals with Mild Cognitive Impairment. These results are in agreement with previous studies on animals as well as humans on the effects of MP use on the brain. It is argued that low sensitivity of some of the cognitive tasks used until now and the lack of a validated tool in the form of a cognitive task may account for some of the variability in the literature so far. It is suggested that the experimental paradigm that was used in this study for an increased sensitivity measurement of cognitive function and working memory processes in particular may be used for the display of the effects of MP use on cognitive function and for the development of other tasks sensitive to it. Overall, it is concluded that the development of certain restrictions on MP use is necessary for the protection of the brain health of the users.

  3. Impaired memory for material related to a problem solved prior to encoding: suppression at learning or interference at recall?

    Science.gov (United States)

    Kowalczyk, Marek

    2017-07-01

    Earlier research by the author revealed that material encoded incidentally in a speeded affective classification task and related to the demands of a divergent problem tends to be recalled worse in participants who solved the problem prior to encoding than in participants in the control, no-problem condition. The aim of the present experiment was to replicate this effect with a new, size-comparison orienting task, and to test for possible mechanisms of impaired recall. Participants either solved a problem before the orienting task or not, and classified each item in this task either once or three times. There was a reliable effect of impaired recall of problem-related items in the repetition condition, but not in the no-repetition condition. Solving the problem did not influence repetition priming for these items. These results support an account that attributes the impaired recall to inhibitory processes at learning and speak against a proactive interference explanation. However, they can be also accommodated by an account that refers to inefficient context cues and competitor interference at retrieval.

  4. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    Science.gov (United States)

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  5. Engaging Youth with and without Significant Disabilities in Inclusive Service Learning

    Science.gov (United States)

    Carter, Erik W.; Swedeen, Beth; Moss, Colleen K.

    2012-01-01

    Service learning is an effective curricular approach to increase instructional relevance and engagement for all students. For students with significant disabilities in transition, meaningful service can be an especially useful avenue for exploring career interests, gaining and practicing important life skills, and connecting to the community in…

  6. Pre-learning stress that is temporally removed from acquisition exerts sex-specific effects on long-term memory.

    Science.gov (United States)

    Zoladz, Phillip R; Warnecke, Ashlee J; Woelke, Sarah A; Burke, Hanna M; Frigo, Rachael M; Pisansky, Julia M; Lyle, Sarah M; Talbot, Jeffery N

    2013-02-01

    We have examined the influence of sex and the perceived emotional nature of learned information on pre-learning stress-induced alterations of long-term memory. Participants submerged their dominant hand in ice cold (stress) or warm (no stress) water for 3 min. Thirty minutes later, they studied 30 words, rated the words for their levels of emotional valence and arousal and were then given an immediate free recall test. Twenty-four hours later, participants' memory for the word list was assessed via delayed free recall and recognition assessments. The resulting memory data were analyzed after categorizing the studied words (i.e., distributing them to "positive-arousing", "positive-non-arousing", "negative-arousing", etc. categories) according to participants' valence and arousal ratings of the words. The results revealed that participants exhibiting a robust cortisol response to stress exhibited significantly impaired recognition memory for neutral words. More interestingly, however, males displaying a robust cortisol response to stress demonstrated significantly impaired recall, overall, and a marginally significant impairment of overall recognition memory, while females exhibiting a blunted cortisol response to stress demonstrated a marginally significant impairment of overall recognition memory. These findings support the notion that a brief stressor that is temporally separated from learning can exert deleterious effects on long-term memory. However, they also suggest that such effects depend on the sex of the organism, the emotional salience of the learned information and the degree to which stress increases corticosteroid levels. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Optimizing Neuropsychological Assessments for Cognitive, Behavioral, and Functional Impairment Classification: A Machine Learning Study

    Directory of Open Access Journals (Sweden)

    Petronilla Battista

    2017-01-01

    Full Text Available Subjects with Alzheimer’s disease (AD show loss of cognitive functions and change in behavioral and functional state affecting the quality of their daily life and that of their families and caregivers. A neuropsychological assessment plays a crucial role in detecting such changes from normal conditions. However, despite the existence of clinical measures that are used to classify and diagnose AD, a large amount of subjectivity continues to exist. Our aim was to assess the potential of machine learning in quantifying this process and optimizing or even reducing the amount of neuropsychological tests used to classify AD patients, also at an early stage of impairment. We investigated the role of twelve state-of-the-art neuropsychological tests in the automatic classification of subjects with none, mild, or severe impairment as measured by the clinical dementia rating (CDR. Data were obtained from the ADNI database. In the groups of measures used as features, we included measures of both cognitive domains and subdomains. Our findings show that some tests are more frequently best predictors for the automatic classification, namely, LM, ADAS-Cog, AVLT, and FAQ, with a major role of the ADAS-Cog measures of delayed and immediate memory and the FAQ measure of financial competency.

  8. Impact of low vision rehabilitation on functional vision performance of children with visual impairment

    Directory of Open Access Journals (Sweden)

    Suma Ganesh

    2013-01-01

    Conclusions: In our study group, there was a significant improvement in functional vision post visual rehabilitation, especially with those activities which are related to their academic output. It is important for these children to have an early visual rehabilitation to decrease the impairment associated with these decreased visual output and to enhance their learning abilities.

  9. Lactobacillus helveticus-fermented milk improves learning and memory in mice.

    Science.gov (United States)

    Ohsawa, Kazuhito; Uchida, Naoto; Ohki, Kohji; Nakamura, Yasunori; Yokogoshi, Hidehiko

    2015-07-01

    To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P memory (2000 mg/kg; P learning and memory in healthy human subjects; however, human clinical studies are necessary.

  10. Learning-talks in science museums: how a visually impaired person interprets the educational material at the museum of microbiology”

    Directory of Open Access Journals (Sweden)

    Alessandra Fernandes Bizerra

    2012-03-01

    Full Text Available The processes of science communication and science education became especially important in the last quarter of the last century. Science museums, as non-formal spaces have an important role in amplifying and refining these processes. Being spaces open to the general public will be expected to develop programs that include all of its citizens. The Museum of Microbiology of the Butantan Institute has developed a series of activities and educational materials focusing on microorganisms that were designed to facilitate a closer integration of the visually impaired public with the scientific culture. In the present study, we sought to understand how visually deficient visitors interpreted the materials presented, determine the level of understanding that the use of these materials provided and study the significance attributed to them. Visually impaired visitors were interviewed during their interactions with the materials with the aid of an audio guide, and the talks generated were analyzed within interpretative categories. The most frequent category was “Strategic talk (Use” (11.8%, in which the visually deficient visitors gave their opinions concerning the uses of the Micro-Touch Program. Two other categories, “Affective talk (Pleasure” (10.2% and “Perceptual talk (Identification” (8.6% were also established. A combination of tactile and auditory tools was fundamental to solve problems and to the creation of visual representations that are important to constructing and understanding scientific concepts and to facilitate the organization of theoretical thought. We suggest here the necessity of elaborating activities contents that favors the establishment of conceptual talks and considering the previously acquired knowledge of visually impaired visitors during the design of displays, providing higher frequency of other learning talks

  11. From changeling to citizen: learning disability and its representation in museums

    Directory of Open Access Journals (Sweden)

    Kathy Allday

    2009-03-01

    Full Text Available This paper examines why museums, both currently and historically, have excluded material relating to people with intellectual impairments. The national picture is examined briefly before the focus shifts to three UK museums in York, Leeds and Colchester where curatorial attitudes to including and presenting material on learning disability are compared and contrasted. Curatorial anxieties about the subject, a lack of national guidance on how to address learning disability in museum collections and displays and the elusive nature of available sources of material appears to discourage museums addressing the issue. Nevertheless, a few examples show that with organizational and professional commitment and the adoption of facilitative and consultative approaches, museums can present the history of learning disability in exciting and thought provoking ways that challenge pre-conceptions about intellectually impaired people. Given museums’ responsibilities under the Disability Discrimination Act (2005, the significance of the social inclusion agenda and calls for new museological practices, there has never been a better time for museums to reevaluate their approaches to learning impairment.

  12. Contextual cueing impairment in patients with age-related macular degeneration.

    Science.gov (United States)

    Geringswald, Franziska; Herbik, Anne; Hoffmann, Michael B; Pollmann, Stefan

    2013-09-12

    Visual attention can be guided by past experience of regularities in our visual environment. In the contextual cueing paradigm, incidental learning of repeated distractor configurations speeds up search times compared to random search arrays. Concomitantly, fewer fixations and more direct scan paths indicate more efficient visual exploration in repeated search arrays. In previous work, we found that simulating a central scotoma in healthy observers eliminated this search facilitation. Here, we investigated contextual cueing in patients with age-related macular degeneration (AMD) who suffer from impaired foveal vision. AMD patients performed visual search using only their more severely impaired eye (n = 13) as well as under binocular viewing (n = 16). Normal-sighted controls developed a significant contextual cueing effect. In comparison, patients showed only a small nonsignificant advantage for repeated displays when searching with their worse eye. When searching binocularly, they profited from contextual cues, but still less than controls. Number of fixations and scan pattern ratios showed a comparable pattern as search times. Moreover, contextual cueing was significantly correlated with acuity in monocular search. Thus, foveal vision loss may lead to impaired guidance of attention by contextual memory cues.

  13. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2.

    Science.gov (United States)

    Luo, Foquan; Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin

    2016-01-01

    Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition.

  14. The Mediator Role of Perceived Stress in the Relationship between Academic Stress and Depressive Symptoms among E-Learning Students with Visual Impairments

    Science.gov (United States)

    Lee, Soon Min; Oh, Yunjin

    2017-01-01

    Introduction: This study examined a mediator role of perceived stress on the prediction of the effects of academic stress on depressive symptoms among e-learning students with visual impairments. Methods: A convenience sample for this study was collected for three weeks from November to December in 2012 among students with visual impairments…

  15. Effect of harmane, an endogenous β-carboline, on learning and memory in rats.

    Science.gov (United States)

    Celikyurt, Ipek Komsuoglu; Utkan, Tijen; Gocmez, Semil Selcen; Hudson, Alan; Aricioglu, Feyza

    2013-01-01

    Our aim was to investigate the effects of acute harmane administration upon learning and memory performance of rats using the three-panel runway paradigm and passive avoidance test. Male rats received harmane (2.5, 5, and 7.5mg/kg, i.p.) or saline 30 min. before each session of experiments. In the three panel runway paradigm, harmane did not affect the number of errors and latency in reference memory. The effect of harmane on the errors of working memory was significantly higher following the doses of 5mg/kg and 7.5mg/kg. The latency was changed significantly at only 7.5mg/kg in comparison to control group. Animals were given pre-training injection of harmane in the passive avoidance test in order to determine the learning function. Harmane treatment decreased the retention latency significantly and dose dependently, which indicates an impairment in learning. In this study, harmane impaired working memory in three panel runway test and learning in passive avoidance test. As an endogenous bioactive molecule, harmane might have a critical role in the modulation of learning and memory functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Qianhua Zhao

    Full Text Available Delayed recall of words in a verbal learning test is a sensitive measure for the diagnosis of amnestic mild cognitive impairment (aMCI and early Alzheimer's disease (AD. The relative validity of different retention intervals of delayed recall has not been well characterized. Using the Auditory Verbal Learning Test-Huashan version, we compared the differentiating value of short-term delayed recall (AVL-SR, that is, a 3- to 5-minute delay time and long-term delayed recall (AVL-LR, that is, a 20-minute delay time in distinguishing patients with aMCI (n = 897 and mild AD (n = 530 from the healthy elderly (n = 1215. In patients with aMCI, the correlation between AVL-SR and AVL-LR was very high (r = 0.94, and the difference between the two indicators was less than 0.5 points. There was no difference between AVL-SR and AVL-LR in the frequency of zero scores. In the receiver operating characteristic curves analysis, although the area under the curve (AUC of AVL-SR and AVL-LR for diagnosing aMCI was significantly different, the cut-off scores of the two indicators were identical. In the subgroup of ages 80 to 89, the AUC of the two indicators showed no significant difference. Therefore, we concluded that AVL-SR could substitute for AVL-LR in identifying aMCI, especially for the oldest patients.

  17. Depletion of Serotonin Selectively Impairs Short-Term Memory without Affecting Long-Term Memory in Odor Learning in the Terrestrial Slug "Limax Valentianus"

    Science.gov (United States)

    Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi; Shirahata, Takaaki; Tsunoda, Makoto

    2006-01-01

    The terrestrial slug "Limax" is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC…

  18. Significant association of serum creatinine with HbA1C in impaired glucose tolerant Pakistani subjects.

    Science.gov (United States)

    Farasat, Tasnim; Sharif, Saima; Naz, Shagufta; Fazal, Sabiha

    2015-01-01

    The present study was conducted to assess the serum concentration of creatinine and determine its relationship with potential risk factors of diabetes in Impaired Glucose tolerance subjects. This cross sectional study was conducted on 100 IGT patients who attended Amin Hayat diabetic center in Lahore from January 2011- June 2011. Patients with age group 34-67 years, (both sexes) were included in the study. Different demographic parameters as age, BMI, WHR, B.P, personal history and socioeconomic status were recorded. Oral Glucose Tolerance Test was performed. The biochemical parameters including HbA1c, lipid profile, urea, uric acid, creatinine and bilirubin level were measured by chemistry analyzer. A strong correlation between creatinine and HbA1c was observed. The level of creatinine was also significantly associated with age in IGT subjects. Creatinine is non-significantly correlated with Cholesterol, LDL-Chol and TG while negatively significantly associated with BMI, fasting blood glucose and HDL-Chol. The present study concluded significant association of serum creatinine with HbA1c, BMI and HDL cholesterol.

  19. Hydro-alcoholic Extract of Commiphora mukul Gum Resin May Improve Cognitive Impairments in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Salehi

    2015-02-01

    Full Text Available Background Diabetes causes cognitive impairment. Medicinal plants due to different mechanisms, such as antioxidant activities may improve diabetes and relieve its symptoms. Commiphora mukul (Burseraceae has a significant antioxidant activity. Objectives This study aimed to examine the effect of hydro- alcoholic extract of C. mukul on passive-avoidance learning and memory in streptozotocin (STZ induced diabetic male rats. Materials and Methods Thirty-two adult male Wistar rats were randomly allocated to four groups: normal, diabetic, normal + extract of C. mukul and diabetic + extract of C. mukul groups with free access to regular rat diet. Diabetes was induced in male rats by single interaperitoneal injection of 60 mg/kg STZ. After the confirmation of diabetes, 300 mg/kg C. mukul extract was orally administered to the extract-treated groups. Control groups received normal saline at the same time. Passive-avoidance memory was tested eight weeks after the STZ treatment, and blood glucose and body weight were measured in all groups at the beginning and end of the experiment. Results In the present study, diabetes decreased learning and memory. Although the administration of C. mukul extract did not affect the step-through latency (STLa and the number of trials of the diabetic groups during the first acquisition trial, a significant decrease was observed in STLr and also a significant increase in time spent in the dark compartment (TDC and number of crossing (NOC in the retention test (after 24 and 48 hours. Although no significant difference was observed in body weight of diabetic + extract of C. mukul (DE and diabetic control (DC groups, the plasma glucose of DE group was significantly lower in comparison to DC group. Conclusions Commiphora mukul extract can improve passive-avoidance learning and memory impairments in the STZ-induced diabetic rats. This improvement may be due to the antioxidant, acetylcholinesterase inhibitory activity, anti

  20. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet.

    Science.gov (United States)

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2013-01-15

    Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The Effects of Different Compatibilities of Qing'e Formula on Scopolamine?induced Learning and Memory Impairment in the Mouse

    Institute of Scientific and Technical Information of China (English)

    Xiao‑Ping Zheng; Fang‑Di Hu; Li Yang; Yu‑Ling Ma; Bo‑Lu Sun; Chang‑Hong Wang; Zheng‑Tao Wang

    2017-01-01

    Background: The Qing'e formula (QEF) is a well?known traditional Chinese prescription that has been clinically employed for treatment of bone disease for hundreds of years. Objective: The present study aims to observe the effects of different compatibilities of QEF on the scopolamine?induced learning and memory impairment in the mouse, and further to explore its action mechanisms and compatibility rationality. Materials and Methods: The learning and memory alterations in the mouse were evaluated using the step?down test and Morris water maze (MWM) test; the acetylcholinesterase (AChE) activity and brain?derived neurotrophic factor (BDNF) expression in the hippocampus were measured using colorimetric method or immunohistochemistry. Results: The results showed that different compatibilities of QEF significantly prolonged latency in the step?down test, shortened escape latency in the navigation test, increased the percentage of residence time, and the percentage of swimming distance in the target quadrant in the probe trial session. In addition, our results also found that different compatibilities of QEF remarkably inhibited AChE activity and increased BDNF expression in the hippocampus of mice. What's more, the group after being treated with whole recipe (QF) showed the highest level of improvement. Conclusions: These findings not only suggest that QEF may effectively ameliorate cognitive deficits through inhibiting AChE activity and increasing BDNF expression in the hippocampus but also elucidate the rationality of QEF.

  2. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice

    Directory of Open Access Journals (Sweden)

    Nicholas J. Anderson

    2014-06-01

    Full Text Available One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity and central nervous system function (learning ability, memory were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.

  3. Gift from statistical learning: Visual statistical learning enhances memory for sequence elements and impairs memory for items that disrupt regularities.

    Science.gov (United States)

    Otsuka, Sachio; Saiki, Jun

    2016-02-01

    Prior studies have shown that visual statistical learning (VSL) enhances familiarity (a type of memory) of sequences. How do statistical regularities influence the processing of each triplet element and inserted distractors that disrupt the regularity? Given that increased attention to triplets induced by VSL and inhibition of unattended triplets, we predicted that VSL would promote memory for each triplet constituent, and degrade memory for inserted stimuli. Across the first two experiments, we found that objects from structured sequences were more likely to be remembered than objects from random sequences, and that letters (Experiment 1) or objects (Experiment 2) inserted into structured sequences were less likely to be remembered than those inserted into random sequences. In the subsequent two experiments, we examined an alternative account for our results, whereby the difference in memory for inserted items between structured and random conditions is due to individuation of items within random sequences. Our findings replicated even when control letters (Experiment 3A) or objects (Experiment 3B) were presented before or after, rather than inserted into, random sequences. Our findings suggest that statistical learning enhances memory for each item in a regular set and impairs memory for items that disrupt the regularity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Statistical Learning, Syllable Processing, and Speech Production in Healthy Hearing and Hearing-Impaired Preschool Children: A Mismatch Negativity Study.

    Science.gov (United States)

    Studer-Eichenberger, Esther; Studer-Eichenberger, Felix; Koenig, Thomas

    2016-01-01

    The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.

  5. Abnormal decision-making in generalized anxiety disorder: Aversion of risk or stimulus-reinforcement impairment?

    Science.gov (United States)

    Teng, Cindy; Otero, Marcela; Geraci, Marilla; Blair, R J R; Pine, Daniel S; Grillon, Christian; Blair, Karina S

    2016-03-30

    There is preliminary data indicating that patients with generalized anxiety disorder (GAD) show impairment on decision-making tasks requiring the appropriate representation of reinforcement value. The current study aimed to extend this literature using the passive avoidance (PA) learning task, where the participant has to learn to respond to stimuli that engender reward and avoid responding to stimuli that engender punishment. Six stimuli engendering reward and six engendering punishment are presented once per block for 10 blocks of trials. Thirty-nine medication-free patients with GAD and 29 age-, IQ and gender matched healthy comparison individuals performed the task. In addition, indexes of social functioning as assessed by the Global Assessment of Functioning (GAF) scale were obtained to allow for correlational analyzes of potential relations between cognitive and social impairments. The results revealed a Group-by-Error Type-by-Block interaction; patients with GAD committed significantly more commission (passive avoidance) errors than comparison individuals in the later blocks (blocks 7,8, and 9). In addition, the extent of impairment on these blocks was associated with their functional impairment as measured by the GAF scale. These results link GAD with anomalous decision-making and indicate that a potential problem in reinforcement representation may contribute to the severity of expression of their disorder. Copyright © 2016. Published by Elsevier Ireland Ltd.

  6. Category verbal fluency performance may be impaired in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Márcio Luiz Figueredo Balthazar

    Full Text Available Abstract To study category verbal fluency (VF for animals in patients with amnestic mild cognitive impairment (aMCI, mild Alzheimer disease (AD and normal controls. Method: Fifteen mild AD, 15 aMCI, and 15 normal control subjects were included. Diagnosis of AD was based on DSM-IV and NINCDS-ADRDA criteria, while aMCI was based on the criteria of the International Working Group on Mild Cognitive Impairment, using CDR 0.5 for aMCI and CDR 1 for mild AD. All subjects underwent testing of category VF for animals, lexical semantic function (Boston Naming-BNT, CAMCOG Similarities item, WAIS-R forward and backward digit span, Rey Auditory Verbal Learning (RAVLT, Mini-Mental Status Examination (MMSE, and other task relevant functions such as visual perception, attention, and mood state (with Cornell Scale for Depression in Dementia. Data analysis used ANOVA and a post-hoc Tukey test for intergroup comparisons, and Pearson's coefficient for correlations of memory and FV tests with other task relevant functions (statistical significance level was p<0.05. Results: aMCI patients had lower performance than controls on category VF for animals and on the backward digit span subtest of WAIS-R but higher scores compared with mild AD patients. Mild AD patients scored significantly worse than aMCI and controls across all tests. Conclusion: aMCI patients may have poor performance in some non-memory tests, specifically category VF for animals in our study, where this could be attributable to the influence of working memory.

  7. Autonomous unobtrusive detection of mild cognitive impairment in older adults.

    Science.gov (United States)

    Akl, Ahmad; Taati, Babak; Mihailidis, Alex

    2015-05-01

    The current diagnosis process of dementia is resulting in a high percentage of cases with delayed detection. To address this problem, in this paper, we explore the feasibility of autonomously detecting mild cognitive impairment (MCI) in the older adult population. We implement a signal processing approach equipped with a machine learning paradigm to process and analyze real-world data acquired using home-based unobtrusive sensing technologies. Using the sensor and clinical data pertaining to 97 subjects, acquired over an average period of three years, a number of measures associated with the subjects' walking speed and general activity in the home were calculated. Different time spans of these measures were used to generate feature vectors to train and test two machine learning algorithms namely support vector machines and random forests. We were able to autonomously detect MCI in older adults with an area under the ROC curve of 0.97 and an area under the precision-recall curve of 0.93 using a time window of 24 weeks. This study is of great significance since it can potentially assist in the early detection of cognitive impairment in older adults.

  8. WHC significant lessons learned 1993--1995

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, J.C.

    1997-12-12

    A lesson learned as defined in DOE-STD-7501-95, Development of DOE Lessons Learned Programs, is: A ``good work practice`` or innovative approach that is captured and shared to promote repeat applications or an adverse work practice or experience that is captured and shared to avoid a recurrence. The key word in both parts of this definition is ``shared``. This document was published to share a wide variety of recent Hanford experiences with other DOE sites. It also provides a valuable tool to be used in new employee and continuing training programs at Hanford facilities and at other DOE locations. This manual is divided into sections to facilitate extracting appropriate subject material when developing training modules. Many of the bulletins could be categorized into more than one section, however, so examination of other related sections is encouraged.

  9. Modulation of sphingosine 1-phosphate (S1P) attenuates spatial learning and memory impairments in the valproic acid rat model of autism.

    Science.gov (United States)

    Wu, Hongmei; Zhang, Quanzhi; Gao, Jingquan; Sun, Caihong; Wang, Jia; Xia, Wei; Cao, Yonggang; Hao, Yanqiu; Wu, Lijie

    2018-03-01

    Autism spectrum disorders (ASD) are a set of pervasive neurodevelopmental disorders that manifest in early childhood, and it is growing up to be a major cause of disability in children. However, the etiology and treatment of ASD are not well understood. In our previous study, we found that serum levels of sphingosine 1-phosphate (S1P) were increased significantly in children with autism, indicating that S1P levels may be involved in ASD. The objective of this study was to identify a link between increased levels of S1P and neurobehavioral changes in autism. We utilized a valproic acid (VPA) -induced rat model of autism to evaluate the levels of S1P and the expression of sphingosine kinase (SphK), a key enzyme for S1P production, in serum and hippocampal tissue. Furthermore, we assessed cognitive functional changes and histopathological and neurochemical alterations in VPA-exposed rats after SphK blockade to explore the possible link between increased levels of S1P and neurobehavioral changes in autism. We found that SphK2 and S1P are upregulated in hippocampal tissue from VPA-exposed rats, while pharmacological inhibition of SphK reduced S1P levels, attenuated spatial learning and memory impairments, increased the expression of phosphorylated CaMKII and CREB and autophagy-related proteins, inhibited cytochrome c release, decreased the expression of apoptosis related proteins, and protected against neuronal loss in the hippocampus. We have demonstrated that an increased level of SphK2/S1P is involved in the spatial learning and memory impairments of autism, and this signaling pathway represents a novel therapeutic target and direction for future studies.

  10. COMPARISON OF ABILITY OF OPPOSITION WORDS PROCESSING BETWEEN HEARING AND HEARING IMPAIRED STUDENT IN FIFTH GRADE IN TEHRAN

    Directory of Open Access Journals (Sweden)

    B SHAFIEI

    2003-12-01

    Full Text Available Introduction: Hearing impaired Persons have disorders in Communication. Theu are not able to learning many aspects of language Structures in Paroper time; quantity and quality. They can not Process these factors as same as Partners. In this research we going to assess and comparison opposite word in hearing and hearing impaired Student in fifth grade. This is a semantic research.
    Methods: Subjects of this research were hearing impaired students in fifth grade in tehramwohad + 70dbheaing loss in Best Binaural Average and in order to comparison with them, we selected hearing students in fifth grade. In this research four non linguistic factors were investigated (age, sex, words of Farsi language. The subjects must read these words and write an opposite Word in front of it. In this examination the quantity of types: right, false and without answers.
    Findings: The sequence of right answers had significant different in two group. The Sequence of learned words had significant different two groups. The time of processing in hearing students was shorter than hearing impaired students. The female subjects gave right answers more than male subjects. Discussion: The differences between bearing and hearing impaired students were in the quantity of answers specially in right answers and time of doing the test. probably these differences were due to lack of proper lexicon words and/or poor of it. The hearing students had more right answers and were shorter in time of processing.

  11. A review study on medicinal plants used in the treatment of learning and memory impairments

    Institute of Scientific and Technical Information of China (English)

    Nahid Jivad; Zahra Rabiei

    2014-01-01

    Alzheimer's disease (AD) is a progressive brain disorder that gradually impairs the person's memory and ability to learn, reasoning, judgment, communication and daily activities. AD is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles, and the degeneration of the cholinergic basal forebrain. During the progression of AD patients may produce changes in personality and behavior, such as anxiety, paranoia, confusion, hallucinations and also to experience delusions and fantasies. The first neurotransmitter defect discovered in AD involved acetylcholine as cholinergic function is required for short-term memory. Oxidative stress may underlie the progressive neurodegeneration characteristic of AD. Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen. The neurodegenerative process in AD may involveβ amyloid toxicity. Neurotoxicity of β amyloid appears to involve oxidative stress. Currently, there is no cure for this disease but in new treatments, reveals a new horizon on the biology of this disease. This paper reviews the effects of a number of commonly used types of herbal medicines for the treatment of AD. The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  12. A review study on medicinal plants used in the treatment of learning and memory impairments

    Institute of Scientific and Technical Information of China (English)

    Nahid; Jivad; Zahra; Rabiei

    2014-01-01

    Alzheimer′s disease(AD) is a progressive brain disorder thai gradual!) impairs the person’s memory and ability to learn,reasoning.judgment,communication and daily activities.All is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles,and the degeneration of the cholinergic basal forebrain.During the progression of AD patients may produce changes in personality and behavior,such as anxiety,paranoia,confusion,hallucinations and also to experience delusions and lanlasies.The first neurotransmitter defect discovered in Al) involved acetylcholine as cholinergic function is required for short—term memory.Oxidative stress may underlie the progressive neurodegeneration characteristic of AD.Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen.The neurodegenerative process in AD may involveβ amyloid toxicity.Neurotoxicity of β amyloid appears to involve oxidative stress.Currently,there is no cure for this disease but in new treatments,reveals a new horizon on the biology of this disease.This paper reviews the effects of a number of commonly used types of herbal medicines for the Irealment of AD.The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  13. Resource Guide for Persons with Learning Impairments.

    Science.gov (United States)

    IBM, Atlanta, GA. National Support Center for Persons with Disabilities.

    The resource guide identifies products which assist learning disabled and mentally retarded individuals in accessing IBM (International Business Machine) Personal Computers or the IBM Personal System/2 family of products. An introduction provides a general overview of ways computers can help learning disabled or retarded persons. The document then…

  14. Differential impairments underlying decision making in anorexia nervosa and bulimia nervosa: a cognitive modeling analysis.

    Science.gov (United States)

    Chan, Trista Wai Sze; Ahn, Woo-Young; Bates, John E; Busemeyer, Jerome R; Guillaume, Sebastien; Redgrave, Graham W; Danner, Unna N; Courtet, Philippe

    2014-03-01

    This study examined the underlying processes of decision-making impairments in individuals with anorexia nervosa (AN) and bulimia nervosa (BN). We deconstructed their performance on the widely used decision task, the Iowa Gambling Task (IGT) into cognitive, motivational, and response processes using cognitive modeling analysis. We hypothesized that IGT performance would be characterized by impaired memory functions and heightened punishment sensitivity in AN, and by elevated sensitivity to reward as opposed to punishment in BN. We analyzed trial-by-trial data of IGT obtained from 224 individuals: 94 individuals with AN, 63 with BN, and 67 healthy comparison individuals (HC). The prospect valence learning model was used to assess cognitive, motivational, and response processes underlying IGT performance. Individuals with AN showed marginally impaired IGT performance compared to HC. Their performance was characterized by impairments in memory functions. Individuals with BN showed significantly impaired IGT performance compared to HC. They showed greater relative sensitivity to gains as opposed to losses than HC. Memory functions in AN were positively correlated with body mass index. This study identified differential impairments underlying IGT performance in AN and BN. Findings suggest that impaired decision making in AN might involve impaired memory functions. Impaired decision making in BN might involve altered reward and punishment sensitivity. Copyright © 2013 Wiley Periodicals, Inc.

  15. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice.

    Science.gov (United States)

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-03-23

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.

  16. Multilevel linear modelling of the response-contingent learning of young children with significant developmental delays.

    Science.gov (United States)

    Raab, Melinda; Dunst, Carl J; Hamby, Deborah W

    2018-02-27

    The purpose of the study was to isolate the sources of variations in the rates of response-contingent learning among young children with multiple disabilities and significant developmental delays randomly assigned to contrasting types of early childhood intervention. Multilevel, hierarchical linear growth curve modelling was used to analyze four different measures of child response-contingent learning where repeated child learning measures were nested within individual children (Level-1), children were nested within practitioners (Level-2), and practitioners were nested within the contrasting types of intervention (Level-3). Findings showed that sources of variations in rates of child response-contingent learning were associated almost entirely with type of intervention after the variance associated with differences in practitioners nested within groups were accounted for. Rates of child learning were greater among children whose existing behaviour were used as the building blocks for promoting child competence (asset-based practices) compared to children for whom the focus of intervention was promoting child acquisition of missing skills (needs-based practices). The methods of analysis illustrate a practical approach to clustered data analysis and the presentation of results in ways that highlight sources of variations in the rates of response-contingent learning among young children with multiple developmental disabilities and significant developmental delays. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. [Predictors of cognitive impairment in population over 64 years institutionalized and non-institutionalized].

    Science.gov (United States)

    Leiva-Saldaña, Antonio; Sánchez-Ramos, José Luis; León-Jariego, José Carlos; Palacios-Gómez, Leopoldo

    2016-01-01

    Describe the factors which can be associated with cognitive impairment in institutionalized and non-institutionalized elderly. Cross-sectional study of 200 people aged over 64 in Huelva (Spain) in 2014. Of these, 100 people were institutionalized in a residential facility and 100 were not. Cognitive impairment was assessed using the Mini-Mental State Examination (MMSE-35), basic activities of daily living by Barthel index, general health through the Goldberg GHQ-28 and social, clinical and behavioural variables were contemplated in the study. The association of cognitive impairment with all the variables was analysed using Chi-square test. Finally, a multivariate analysis was performed using logistic regression to identify possible joint influence of variables to study on the cognitive impairment. The prevalence of cognitive impairment in those institutionalized was 47%, higher than that of non-institutionalized group which was only 8% (p<.001). The dependence for basic activities for daily living and learning activities were the only variables in both groups which were associated with the cognitive impairment. Institutionalization (OR=5.368), age (OR=1.066) and dependence for basic activities (OR=5.036) were negatively associated with CI, while learning activities (OR=.227) were associated in a positive way. Conducting learning activities and the promotion of personal autonomy can delay cognitive impairment in older people. It is important to include cognitive stimulation programs aimed at the old population, especially in residential institutions. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  18. Experiences of Visually Impaired Students in Community College Math Courses

    Science.gov (United States)

    Swan, S. Tomeka

    Blind and visually impaired students who attend community colleges face challenges in learning mathematics (Forrest, 2010). Scoy, McLaughlin, Walls, and Zuppuhaur (2006) claim these students are at a disadvantage in studying mathematics due to the visual and interactive nature of the subject, and by the way mathematics is taught. In this qualitative study six blind and visually impaired students attended three community colleges in one Mid-Atlantic state. They shared their experiences inside the mathematics classroom. Five of the students were enrolled in developmental level math, and one student was enrolled in college level math. The conceptual framework used to explore how blind and visually impaired students persist and succeed in math courses was Piaget's theory on constructivism. The data from this qualitative study was obtained through personal interviews. Based on the findings of this study, blind and visually impaired students need the following accommodations in order to succeed in community college math courses: Accommodating instructors who help to keep blind and visually impaired students motivated and facilitate their academic progress towards math completion, tutorial support, assistive technology, and a positive and inclusive learning environment.

  19. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  20. Visual and verbal learning deficits in Veterans with alcohol and substance use disorders.

    Science.gov (United States)

    Bell, Morris D; Vissicchio, Nicholas A; Weinstein, Andrea J

    2016-02-01

    This study examined visual and verbal learning in the early phase of recovery for 48 Veterans with alcohol use (AUD) and substance use disorders (SUD, primarily cocaine and opiate abusers). Previous studies have demonstrated visual and verbal learning deficits in AUD, however little is known about the differences between AUD and SUD on these domains. Since the DSM-5 specifically identifies problems with learning in AUD and not in SUD, and problems with visual and verbal learning have been more prevalent in the literature for AUD than SUD, we predicted that people with AUD would be more impaired on measures of visual and verbal learning than people with SUD. Participants were enrolled in a comprehensive rehabilitation program and were assessed within the first 5 weeks of abstinence. Verbal learning was measured using the Hopkins Verbal Learning Test (HVLT) and visual learning was assessed using the Brief Visuospatial Memory Test (BVMT). Results indicated significantly greater decline in verbal learning on the HVLT across the three learning trials for AUD participants but not for SUD participants (F=4.653, df=48, p=0.036). Visual learning was less impaired than verbal learning across learning trials for both diagnostic groups (F=0.197, df=48, p=0.674); there was no significant difference between groups on visual learning (F=0.401, df=14, p=0.538). Older Veterans in the early phase of recovery from AUD may have difficulty learning new verbal information. Deficits in verbal learning may reduce the effectiveness of verbally-based interventions such as psycho-education. Published by Elsevier Ireland Ltd.

  1. Consolidation and reconsolidation are impaired by oral propranolol administered before but not after memory (re)activation in humans.

    Science.gov (United States)

    Thomas, Émilie; Saumier, Daniel; Pitman, Roger K; Tremblay, Jacques; Brunet, Alain

    2017-07-01

    Propranolol administered immediately after learning or after recall has been found to impair memory consolidation or reconsolidation (respectively) in animals, but less reliably so in humans. Since reconsolidation impairment has been proposed as a treatment for mental disorders that have at their core an emotional memory, it is desirable to understand how to reliably reduce the strength of pathogenic memories in humans. We postulated that since humans (unlike experimental animals) typically receive propranolol orally, this introduces a delay before this drug can exert its memory impairment effects, which may render it less effective. As a means to test this, in two double-blind placebo-controlled experiments, we examined the capacity of propranolol to impair consolidation and reconsolidation as a function of timing of ingestion in healthy subjects. In Experiment 1, (n=36), propranolol administered immediately after learning or recall failed to impair the consolidation or reconsolidation of the memory of a standardized slideshow with an accompanying emotional story. In Experiment 2 (n=50), propranolol given 60-75min before learning or recall successfully impaired memory consolidation and reconsolidation. These results suggest that it is possible to achieve reliable memory impairment in humans if propranolol is given before learning or before recall, but not after. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dopamine selectively remediates 'model-based' reward learning: a computational approach.

    Science.gov (United States)

    Sharp, Madeleine E; Foerde, Karin; Daw, Nathaniel D; Shohamy, Daphna

    2016-02-01

    Patients with loss of dopamine due to Parkinson's disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from 'model-free' learning. The other, 'model-based' learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson's disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson's disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson's disease may be related to an inability to pursue reward based on complete representations of the environment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.

    Science.gov (United States)

    Collison, Kate S; Makhoul, Nadine J; Zaidi, Marya Z; Saleh, Soad M; Andres, Bernard; Inglis, Angela; Al-Rabiah, Rana; Al-Mohanna, Futwan A

    2012-01-01

    Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (Pdifferent from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame, commencing in utero, may affect spatial cognition and glucose homeostasis in C57BL/6J mice, particularly in males.

  4. Inhibition of GABA A receptor improved special memory impairment in the local model of demyelination in rat hippocampus.

    Science.gov (United States)

    Mousavi Majd, Alireza; Ebrahim Tabar, Forough; Afghani, Arghavan; Ashrafpour, Sahand; Dehghan, Samaneh; Gol, Mohammad; Ashrafpour, Manouchehr; Pourabdolhossein, Fereshteh

    2018-01-15

    Cognitive impairment and memory deficit are common features in multiple Sclerosis patients. The mechanism of memory impairment in MS is unknown, but neuroimaging studies suggest that hippocampal demyelination is involved. Here, we investigate the role of GABA A receptor on spatial memory in the local model of hippocampal demyelination. Demyelination was induced in male Wistar rats by bilaterally injection of lysophosphatidylcholine (LPC) 1% into the CA1 region of the hippocampus. The treatment groups were received daily intraventricular injection of bicuculline (0.025, 0.05μg/2μl/animal) or muscimol (0.1, 0.2μg/2μl/animal) 5days after LPC injection. Morris Water Maze was used to evaluate learning and memory in rats. We used Luxol fast blue staining and qPCR to assess demyelination extention and MBP expression level respectively. Immunohistochemistry (IHC) for CD45 and H&E staining were performed to assess inflammatory cells infiltration. Behavioral study revealed that LPC injection in the hippocampus impaired learning and memory function. Animals treated with both doses of bicuculline improved spatial learning and memory function; however, muscimol treatment had no effect. Histological and MBP expression studies confirmed that demylination in LPC group was maximal. Bicuculline treatment significantly reduced demyelination extension and increased the level of MBP expression. H&E and IHC results showed that bicuculline reduced inflammatory cell infiltration in the lesion site. Bicuculline improved learning and memory and decreased demyelination extention in the LPC-induced hippocampal demyelination model. We conclude that disruption of GABAergic homeostasis in hippocampal demyelination context may be involved in memory impairment with the implications for both pathophysiology and therapy. Copyright © 2017. Published by Elsevier B.V.

  5. Machine learning techniques applied to system characterization and equalization

    DEFF Research Database (Denmark)

    Zibar, Darko; Thrane, Jakob; Wass, Jesper

    2016-01-01

    Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals.......Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals....

  6. The procedural learning deficit hypothesis of language learning disorders: we see some problems.

    Science.gov (United States)

    West, Gillian; Vadillo, Miguel A; Shanks, David R; Hulme, Charles

    2018-03-01

    Impaired procedural learning has been suggested as a possible cause of developmental dyslexia (DD) and specific language impairment (SLI). This study examined the relationship between measures of verbal and non-verbal implicit and explicit learning and measures of language, literacy and arithmetic attainment in a large sample of 7 to 8-year-old children. Measures of verbal explicit learning were correlated with measures of attainment. In contrast, no relationships between measures of implicit learning and attainment were found. Critically, the reliability of the implicit learning tasks was poor. Our results show that measures of procedural learning, as currently used, are typically unreliable and insensitive to individual differences. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=YnvV-BvNWSo. 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  7. Spatial learning impairment in prepubertal guinea pigs prenatally exposed to the organophosphorus pesticide chlorpyrifos: Toxicological implications

    Science.gov (United States)

    Mamczarz, Jacek; Pescrille, Joseph D.; Gavrushenko, Lisa; Burke, Richard D.; Fawcett, William P.; DeTolla, Louis J.; Chen, Hegang; Pereira, Edna F.R.; Albuquerque, Edson X.

    2017-01-01

    Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25 mg/kg, s.c.) or vehicle (peanut oil) for 10 days starting on presumed gestation day (GD) 53–55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain. PMID:27296654

  8. Cannabis-induced impairment of learning and memory: effect of different nootropic drugs

    Science.gov (United States)

    Abdel-Salam, Omar M.E.; Salem, Neveen A.; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A.

    2013-01-01

    Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ9-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose

  9. TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition.

    Science.gov (United States)

    Blank, Martina; Petry, Fernanda S; Lichtenfels, Martina; Valiati, Fernanda E; Dornelles, Arethuza S; Roesler, Rafael

    2016-03-01

    Relatively little is known about the requirement of signaling initiated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), in the early phases of memory consolidation, as well as about its possible functional interactions with epigenetic mechanisms. Here we show that blocking TrkB in the dorsal hippocampus after learning or retrieval impairs retention of memory for inhibitory avoidance (IA). More importantly, the impairing effect of TrkB antagonism on consolidation was completely prevented by the histone deacetylase (HDAC) inhibitor sodium butyrate (NaB). Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or NaB before training, followed by an infusion of either vehicle (VEH) or the selective TrkB antagonist ANA-12 immediately after training. In a second experiment, the infusions were administered before and after retrieval. ANA-12 after either training or retrieval produced a significant impairment in a subsequent memory retention test. Pretraining administration of NaB prevented the effect of ANA-12, although NaB given before retrieval did not alter the impairment resulting from TrkB blockade. The results indicate that inhibition of BDNF/TrkB in the hippocampus can hinder consolidation and reconsolidation of IA memory. However, TrkB activity is not required for consolidation in the presence of NaB, suggesting that a dysfunction in BDNF/TrkB signaling can be fully compensated by HDAC inhibition to allow hippocampal memory formation.

  10. The significance of clinical experience on learning outcome from resuscitation training-a randomised controlled study

    DEFF Research Database (Denmark)

    Jensen, Morten Lind; Lippert, Freddy; Hesselfeldt, Rasmus

    2008-01-01

    CONTEXT: The impact of clinical experience on learning outcome from a resuscitation course has not been systematically investigated. AIM: To determine whether half a year of clinical experience before participation in an Advanced Life Support (ALS) course increases the immediate learning outcome...... and retention of learning. MATERIALS AND METHODS: This was a prospective single blinded randomised controlled study of the learning outcome from a standard ALS course on a volunteer sample of the entire cohort of newly graduated doctors from Copenhagen University. The outcome measurement was ALS...... immediately following graduation. RESULTS: Invitation to participate was accepted by 154/240 (64%) graduates and 117/154 (76%) completed the study. There was no difference between the intervention and control groups with regard to the immediate learning outcome. The intervention group had significantly higher...

  11. Unilateral hippocampal inactivation or lesion selectively impairs remote contextual fear memory.

    Science.gov (United States)

    Zhou, Heng; Zhou, Qixin; Xu, Lin

    2016-10-01

    Contextual fear memory depends on the hippocampus, but the role of unilateral hippocampus in this type of memory remains unclear. Herein, pharmacological inactivation or excitotoxic lesions were used to study the role of unilateral hippocampus in the stages of contextual fear memory. The pharmacological experiments revealed that compared with the control groups, unilateral hippocampal blockade did not impair 1-day recent memory following learning, whereas bilateral hippocampal blockade significantly impaired this memory. The lesion experiments showed that compared with the control groups, the formed contextual fear memory was retained for 7 days and that 30-day remote memory was markedly reduced in unilateral hippocampal lesion groups. These results indicate that an intact bilateral hippocampus is required for the formation of remote memory and that unilateral hippocampus is sufficient for recent contextual fear memory.

  12. Somebody's Jumping on the Floor: Incorporating Music into Orientation and Mobility for Preschoolers with Visual Impairments

    Science.gov (United States)

    Sapp, Wendy

    2011-01-01

    Young children with visual impairments face many challenges as they learn to orient to and move through their environment, the beginnings of orientation and mobility (O&M). Children who are visually impaired must learn many concepts (such as body parts and positional words) and skills (like body movement and interpreting sensory information) to…

  13. Neuropsychology of reward learning and negative symptoms in schizophrenia.

    Science.gov (United States)

    Nestor, Paul G; Choate, Victoria; Niznikiewicz, Margaret; Levitt, James J; Shenton, Martha E; McCarley, Robert W

    2014-11-01

    We used the Iowa Gambling Test (IGT) to examine the relationship of reward learning to both neuropsychological functioning and symptom formation in 65 individuals with schizophrenia. Results indicated that compared to controls, participants with schizophrenia showed significantly reduced reward learning, which in turn correlated with reduced intelligence, memory and executive function, and negative symptoms. The current findings suggested that a disease-related disturbance in reward learning may underlie both cognitive and motivation deficits, as expressed by neuropsychological impairment and negative symptoms in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mice Deficient in lysophosphatidic acid acyltransferase delta (Lpaatδ)/acylglycerophosphate acyltransferase 4 (Agpat4) Have Impaired Learning and Memory.

    Science.gov (United States)

    Bradley, Ryan M; Mardian, Emily B; Bloemberg, Darin; Aristizabal Henao, Juan J; Mitchell, Andrew S; Marvyn, Phillip M; Moes, Katherine A; Stark, Ken D; Quadrilatero, Joe; Duncan, Robin E

    2017-11-15

    We previously characterized LPAATδ/AGPAT4 as a mitochondrial lysophosphatidic acid acyltransferase that regulates brain levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Here, we report that Lpaat δ -/- mice display impaired spatial learning and memory compared to wild-type littermates in the Morris water maze and our investigation of potential mechanisms associated with brain phospholipid changes. Marker protein immunoblotting suggested that the relative brain content of neurons, glia, and oligodendrocytes was unchanged. Relative abundance of the important brain fatty acid docosahexaenoic acid was also unchanged in phosphatidylserine, phosphatidylglycerol, and cardiolipin, in agreement with prior data on PC, PE and PI. In phosphatidic acid, it was increased. Specific decreases in ethanolamine-containing phospholipids were detected in mitochondrial lipids, but the function of brain mitochondria in Lpaat δ -/- mice was unchanged. Importantly, we found that Lpaat δ -/- mice have a significantly and drastically lower brain content of the N -methyl-d-asparate (NMDA) receptor subunits NR1, NR2A, and NR2B, as well as the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1, compared to wild-type mice. However, general dysregulation of PI-mediated signaling is not likely responsible, since phospho-AKT and phospho-mTOR pathway regulation was unaffected. Our findings indicate that Lpaat δ deficiency causes deficits in learning and memory associated with reduced NMDA and AMPA receptors. Copyright © 2017 American Society for Microbiology.

  15. Comparison of reading comprehension and working memory in hearing-impaired and normal-hearing children

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaei

    2013-03-01

    Full Text Available Background and Aim: Reading is the most important human need for learning. In normal-hearing people working memory is a predictor of reading comprehension. In this study the relationship between working memory and reading comprehension skills was studied in hearing-impaired children, and then compared with the normal-hearing group.Methods: This was a descriptive-analytic study. The working memory and reading comprehension skills of 18 (8 male, 10 female sever hearing-impaired children in year five of exceptional schools were compared by means of a reading test with 18 hearing children as control group. The subjects in the control group were of the same gender and educational level of the sample group.Results: The children with hearing loss performed similarly to the normal-hearing children in tasks related to auditory-verbal memory of sounds (reverse, visual-verbal memory of letters, and visual-verbal memory of pictures. However, they showed lower levels of performance in reading comprehension (p<0.001. Moreover, no significant relationship was observed between working memory and reading comprehension skills.Conclusion: Findings indicated that children with hearing loss have a significant impairment in the reading comprehension skill. Impairment in language knowledge and vocabulary may be the main cause of poor reading comprehension in these children. In hearing-impaired children working memory is not a strong predictor of reading comprehension.

  16. Cognitive Function of Children and Adolescents with Attention Deficit Hyperactivity Disorder and Learning Difficulties: A Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Fang Huang

    2016-01-01

    Conclusions: Children and adolescents with ADHD and learning difficulties have more severe cognitive impairment than pure ADHD patients even after controlling for the effect of ADHD symptoms. However, the differences in impairment in inhibition and shift function are no longer significant when these individuals were 12–14 years old.

  17. Effects of cholestasis on learning and locomotor activity in bile duct ligated rats.

    Science.gov (United States)

    Hosseini, Nasrin; Alaei, Hojjatallah; Nasehi, Mohammad; Radahmadi, Maryam; Mohammad Reza, Zarrindast

    2014-01-01

    Cognitive functions are impaired in patients with liver disease. Bile duct ligation causes cholestasis that impairs liver function. This study investigated the impact of cholestasis progression on the acquisition and retention times in the passive avoidance test and on the locomotor activity of rats. Cholestasis was induced in male Wistar rats by ligating the main bile duct. Locomotor activity, learning and memory were assessed by the passive avoidance learning test at day 7, day 14, and day 21 post-bile duct ligation. The serum levels of bilirubin, alanine aminotransferase, and alkaline phosphatase were measured. The results showed that acquisition time and locomotor activity were not affected at day 7 and day 14, but they were significantly (P locomotor activity were impaired at 21 days after bile duct ligation following the progression of cholestasis.

  18. Cognitive Impairment in Infratentorial Strokes

    Directory of Open Access Journals (Sweden)

    Melek Kandemir

    2009-12-01

    Full Text Available OBJECTIVE: Beginning in the mid-1980s, with anatomical, behavioral, and neuropsychological evidence, it was suggested that the role of the cerebellum extends beyond a purely motor domain. A series of articles were published reviewing the potential role of the cerebellum in cognition. Both of these functions are supported by connections of dentate nucleus and frontal cortex through the thalamus. The cognitive profile of isolated subtentorial and cerebellar infarcts is related to the involved frontal circuit (especially executive functions. In this study, we aimed to demonstrate the cognitive profile of cerebellar and subtentorial infarcts. METHODS: Nineteen patients with infratentorial infarcts and 19 neurologically healthy individuals as a control group were included in this study. Neuropsychometric test battery was employed in both of the groups. RESULTS: Age, sex, education, clinical syndrome, and localization had no effect on the cognitive test performances. Performance on the California Verbal Learning Test, a verbal memory test, was worse in the patient group. Patients had difficulties in recognizing the items of the Rey-Osterrieth Complex Figure Test, and spent significantly more time to complete the trail making test part B. The patient group also demonstrated lower performance level in the verbal fluency test when compared to the control group. CONCLUSION: The cognitive impairment pattern of the verbal and visual memory tests and impairment determined on the verbal fluency test and the trail making tests may imply frontal impairment. Our results support the knowledge that cerebellar or brainstem strokes cause mild frontal type cognitive syndrome by damaging cerebello-ponto-thalamo-cortical pathways

  19. Team-Based Learning, Faculty Research, and Grant Writing Bring Significant Learning Experiences to an Undergraduate Biochemistry Laboratory Course

    Science.gov (United States)

    Evans, Hedeel Guy; Heyl, Deborah L.; Liggit, Peggy

    2016-01-01

    This biochemistry laboratory course was designed to provide significant learning experiences to expose students to different ways of succeeding as scientists in academia and foster development and improvement of their potential and competency as the next generation of investigators. To meet these goals, the laboratory course employs three…

  20. The use of concept maps as an indicator of significant learning in Calculus

    Directory of Open Access Journals (Sweden)

    Naíma Soltau Ferrão

    2014-03-01

    Full Text Available This paper contains reflections and results of a research that aimed to apply and analyze the use of concept maps in Higher Education as an indicator of significant learning concerning derivative as mathematical object with students that finished Differential and Integral Calculus. This is a qualitative approach, situated in the area of mathematics education, based on Ausubel's Theory of Meaningful Learning and on technique of Novak's Concept Mapping. As data acquisition instruments, use of classroom observations, questionnaire, brainstorming and digital conceptual mapping, made by an undergraduate physics course. To analyze we defined four aspects to be observed in the maps constructed by students: (i validity of propositions formed with concepts, (ii hierarchization, (iii cross-links between the propositions, and (vi the presence of applications. The identification of these elements, taken as reference to analyze the maps, allowed the collection of information about how each student has structured and correlated the set of concepts learned on the derivative of a function along their course. Based on the results, we have identified in the digital conceptual maps effective tools to evaluate the students in terms of meaningful learning about specific contents of Differential and Integral Calculus by the hierarchy of concepts, progressive differentiation and integrative reconciliation as defined in the Theory of Meaningful Learning.

  1. Using early standardized language measures to predict later language and early reading outcomes in children at high risk for language-learning impairments.

    Science.gov (United States)

    Flax, Judy F; Realpe-Bonilla, Teresa; Roesler, Cynthia; Choudhury, Naseem; Benasich, April

    2009-01-01

    The aim of the study was to examine the profiles of children with a family history (FH+) of language-learning impairments (LLI) and a control group of children with no reported family history of LLI (FH-) and identify which language constructs (receptive or expressive) and which ages (2 or 3 years) are related to expressive and receptive language abilities, phonological awareness, and reading abilities at ages 5 and 7 years. Participants included 99 children (40 FH+ and 59 FH-) who received a standardized neuropsychological battery at 2, 3, 5, and 7 years of age. As a group, the FH+ children had significantly lower scores on all language measures at 2 and 3 years, on selected language and phonological awareness measures at 5 years, and on phonological awareness and nonword reading at 7 years. Language comprehension at 3 years was the best predictor of later language and early reading for both groups. These results support past work suggesting that children with a positive family history of LLI are at greater risk for future language and reading problems through their preschool and early school-age years. Furthermore, language comprehension in the early years is a strong predictor of future language-learning status.

  2. Kinesthetic Astronomy: Significant Upgrades to the Sky Time Lesson that Support Student Learning

    Science.gov (United States)

    Morrow, C. A.; Zawaski, M.

    2004-12-01

    This paper will report on a significant upgrade to the first in a series of innovative, experiential lessons we call Kinesthetic Astronomy. The Sky Time lesson reconnects students with the astronomical meaning of the day, year, and seasons. Like all Kinesthetic Astronomy lessons, it teaches basic astronomical concepts through choreographed bodily movements and positions that provide educational sensory experiences. They are intended for sixth graders up through adult learners in both formal and informal educational settings. They emphasize astronomical concepts and phenomenon that people can readily encounter in their "everyday" lives such as time, seasons, and sky motions of the Sun, Moon, stars, and planets. Kinesthetic Astronomy lesson plans are fully aligned with national science education standards, both in content and instructional practice. Our lessons offer a complete learning cycle with written assessment opportunities now embedded throughout the lesson. We have substantially strengthened the written assessment options for the Sky Time lesson to help students translate their kinesthetic and visual learning into the verbal-linguistic and mathematical-logical realms of expression. Field testing with non-science undergraduates, middle school science teachers and students, Junior Girl Scouts, museum education staff, and outdoor educators has been providing evidence that Kinesthetic Astronomy techniques allow learners to achieve a good grasp of concepts that are much more difficult to learn in more conventional ways such as via textbooks or even computer animation. Field testing of the Sky Time lesson has also led us to significant changes from the previous version to support student learning. We will report on the nature of these changes.

  3. Severe Affective and Behavioural Dysregulation Is Associated with Significant Psychosocial Adversity and Impairment

    Science.gov (United States)

    Jucksch, Viola; Salbach-Andrae, Harriet; Lenz, Klaus; Goth, Kirstin; Dopfner, Manfred; Poustka, Fritz; Freitag, Christine M.; Lehmkuhl, Gerd; Lehmkuhl, Ulrike; Holtmann, Martin

    2011-01-01

    Background: Recently, a highly heritable behavioral phenotype of simultaneous deviance on the Anxious/Depressed, Attention Problems, and Aggressive Behavior syndrome scales has been identified on the Child Behavior Checklist (CBCL-Dysregulation Profile, CBCL-DP). This study aims to investigate psychosocial adversity and impairment of the CBCL-DP.…

  4. OWL model of multi-agent Smart-system of distance learning for people with vision disabilities

    Directory of Open Access Journals (Sweden)

    Galina A. Samigulina

    2017-01-01

    Full Text Available The aim of the study is to develop an ontological model of multiagent smart-system of distance learning for visually impaired people based on Java Agent Development Framework for obtaining high-quality engineering education in laboratories of join use on modern equipment.Materials and methods of research. In developing multi-agent smart-system of distance learning, using various agents based on cognitive, ontological, statistical and intellectual methods is important. It is more convenient to implement this task in the form of software using multi-agent approach and Java Agent Development Framework. The main advantages of the platform are stability of operation, clear interface, simplicity of creating agents and extensive user database. In multi-agent systems, the solution is obtained automatically as result of interaction of many independent, purposeful agents. Each agent can perform certain tasks and pursue specified goals. Intellectual multi-agent systems and practical applications in distance learning based on them are considered.Results. The structural diagram of functioning of smart system distance learning for visually impaired people using various agents based on the system approach and the multi-agent platform Java Agent Development Framework is developed. The complex approach of distance learning of visually impaired people for obtaining highquality engineering education in laboratories of joint use on modern equipment is offered.The ontological model of multi-agent smart-system with a detailed description of the functions of following agents is created: personal, manager, ontological, cognitive, statistical, intellectual, shared laboratory agent, health agent, assistant to the agent and state agent. These agents execute their individual functions and provide a quality environment for learning.Conclusion. Thus, the proposed smart-system of distance learning for visually impaired people can significantly improve effectiveness and

  5. The study of topics of Astronomy in Physics teaching that addresses the significant learning

    Science.gov (United States)

    Santos Neta, M. L.; Voelzke, M. R.

    2017-12-01

    In this work are discussed the results of the case study on the oceanic tides for which it was used didactic sequences, based on the Cycle of Experience of George Kelly (Kelly 1963), applied in four groups of the first year of the integral medium teaching. The data obtained in two same tests - Pre and Post-Test - before and after the application of the didactic sequences, as well as the verification of the significant learning analysed as for the conditions of the previous knowledge considering authors Boczko (1984), Horvath (2008) and Kepler & Saraiva (2013). Also the values were analysed obtained the Post-Test II applied to the long period. The results reveal that the worked groups presented previous knowledge in conditions adapted for the understanding of the event, as well as, for they be used in the situation-problem resolution that demands the understanding. Verify also that the idea of the didactic sequence can be used as tool in the relationship teaching-learning addressed to the significant learning.

  6. A review study on medicinal plants used in the treatment of learning and memory impairments

    Directory of Open Access Journals (Sweden)

    Nahid Jivad

    2014-10-01

    Full Text Available Alzheimer's disease (AD is a progressive brain disorder that gradually impairs the person's memory and ability to learn, reasoning, judgment, communication and daily activities. AD is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles, and the degeneration of the cholinergic basal forebrain. During the progression of AD patients may produce changes in personality and behavior, such as anxiety, paranoia, confusion, hallucinations and also to experience delusions and fantasies. The first neurotransmitter defect discovered in AD involved acetylcholine as cholinergic function is required for short-term memory. Oxidative stress may underlie the progressive neurodegeneration characteristic of AD. Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen. The neurodegenerative process in AD may involve β amyloid toxicity. Neurotoxicity of β amyloid appears to involve oxidative stress. Currently, there is no cure for this disease but in new treatments, reveals a new horizon on the biology of this disease. This paper reviews the effects of a number of commonly used types of herbal medicines for the treatment of AD. The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  7. Similar verbal memory impairments in schizophrenia and healthy aging. Implications for understanding of neural mechanisms.

    Science.gov (United States)

    Silver, Henry; Bilker, Warren B

    2015-03-30

    Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    Science.gov (United States)

    Posluszny, Anna; Liguz-Lecznar, Monika; Turzynska, Danuta; Zakrzewska, Renata; Bielecki, Maksymilian; Kossut, Malgorzata

    2015-01-01

    Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  9. Active Learning with Rationales for Identifying Operationally Significant Anomalies in Aviation

    Science.gov (United States)

    Sharma, Manali; Das, Kamalika; Bilgic, Mustafa; Matthews, Bryan; Nielsen, David Lynn; Oza, Nikunj C.

    2016-01-01

    A major focus of the commercial aviation community is discovery of unknown safety events in flight operations data. Data-driven unsupervised anomaly detection methods are better at capturing unknown safety events compared to rule-based methods which only look for known violations. However, not all statistical anomalies that are discovered by these unsupervised anomaly detection methods are operationally significant (e.g., represent a safety concern). Subject Matter Experts (SMEs) have to spend significant time reviewing these statistical anomalies individually to identify a few operationally significant ones. In this paper we propose an active learning algorithm that incorporates SME feedback in the form of rationales to build a classifier that can distinguish between uninteresting and operationally significant anomalies. Experimental evaluation on real aviation data shows that our approach improves detection of operationally significant events by as much as 75% compared to the state-of-the-art. The learnt classifier also generalizes well to additional validation data sets.

  10. Congenital hearing impairment

    Energy Technology Data Exchange (ETDEWEB)

    Robson, Caroline D. [Children' s Hospital and Harvard Medical School, Division of Neuroradiology, Department of Radiology, Boston, MA (United States)

    2006-04-15

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  11. Congenital hearing impairment

    International Nuclear Information System (INIS)

    Robson, Caroline D.

    2006-01-01

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  12. Assessment of Early Cognitive Impairment in Patients with Clinically Isolated Syndromes and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Leyla Baysal Kıraç

    2014-01-01

    Full Text Available Objective. The aim of our study was to investigate the frequency and pattern of cognitive impairment in patients with clinically isolated syndromes and definite diagnosis of multiple sclerosis within the last 2 years. Methods. We assessed the cognitive status of 46 patients aged 18–49 years with clinically isolated syndromes or definite diagnosis of multiple sclerosis who have onset of their symptoms within the last 2 years. Patients were matched with 40 healthy participants for age, sex, and educational level. Neuropsychological assessment was performed by stroop test, paced auditory serial addition test (PASAT, controlled oral word association test (COWAT, clock drawing test, trail making test (TMT, faces symbol test (FST. Hamilton Depression Scale and Modified Fatigue Impact Scale were used to quantify the severity of any depression and fatigue the subjects might suffer. Results. 19.6% of early MS/CIS group failed at 4 and more tests and had significant cognitive impairment focused on attention, executive functions, memory, and learning. No significant relationship was found between cognitive impairment and disability and fatigue scores. Discussion. Cognitive impairment can be present from the earliest stage of multiple sclerosis. It should be considered among the main manifestations of MS even in the earliest stages of the disease.

  13. Impairment of fear memory consolidation in maternally stressed male mouse offspring: evidence for nongenomic glucocorticoid action on the amygdala.

    Science.gov (United States)

    Lee, Eun Jeong; Son, Gi Hoon; Chung, Sooyoung; Lee, Sukwon; Kim, Jeongyeon; Choi, Sukwoo; Kim, Kyungjin

    2011-05-11

    The environment in early life elicits profound effects on fetal brain development that can extend into adulthood. However, the long-lasting impact of maternal stress on emotional learning remains largely unknown. Here, we focus on amygdala-related learning processes in maternally stressed mice. In these mice, fear memory consolidation and certain related signaling cascades were significantly impaired, though innate fear, fear memory acquisition, and synaptic NMDA receptor expression in the amygdala were unaltered. In accordance with these findings, maintenance of long-term potentiation (LTP) at amygdala synapses, but not its induction, was significantly impaired in the maternally stressed animals. Interestingly, amygdala glucocorticoid receptor expression was reduced in the maternally stressed mice, and administration of glucocorticoids (GCs) immediately after fear conditioning and LTP induction restored memory consolidation and LTP maintenance, respectively, suggesting that a weakening of GC signaling was responsible for the observed impairment. Furthermore, microinfusion of a membrane-impermeable form of GC (BSA-conjugated GC) into the amygdala mimicked the restorative effects of GC, indicating that a nongenomic activity of GC mediates the restorative effect. Together, these findings suggest that prenatal stress induces long-term dysregulation of nongenomic GC action in the amygdala of adult offspring, resulting in the impairment of fear memory consolidation. Since modulation of amygdala activity is known to alter the consolidation of emotionally influenced memories allocated in other brain regions, the nongenomic action of GC on the amygdala shown herein may also participate in the amygdala-dependent modulation of memory consolidation.

  14. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.

    Science.gov (United States)

    Bito, Tomohiro; Misaki, Taihei; Yabuta, Yukinori; Ishikawa, Takahiro; Kawano, Tsuyoshi; Watanabe, Fumio

    2017-04-01

    Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B 12 deficiency, although the underlying disease mechanisms associated with vitamin B 12 deficiency are poorly understood. Vitamin B 12 deficiency was found to significantly increase cellular H 2 O 2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B 12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B 12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B 12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B 12 deficiency is partially attributable to oxidative stress. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice.

    Science.gov (United States)

    Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G

    2014-06-01

    One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.

  16. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    Science.gov (United States)

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  17. Blogs, Webinars and Significant Learning: A Case Report on a Teacher Training Program for College Teachers

    Science.gov (United States)

    Polanco-Bueno, Rodrigo

    2013-01-01

    This case study reports on a teacher training experience for college professors in which participants were trained, taking advantage of technological tools, in two main teaching competences. First, professors were trained to use technology to enrich students' learning outcomes. Second, they applied strategies of significant learning in the design…

  18. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  19. Modern 'junk food' and minimally-processed 'natural food' cafeteria diets alter the response to sweet taste but do not impair flavor-nutrient learning in rats.

    Science.gov (United States)

    Palframan, Kristen M; Myers, Kevin P

    2016-04-01

    Animals learn to prefer and increase consumption of flavors paired with postingestive nutrient sensing. Analogous effects have been difficult to observe in human studies. One possibility is experience with the modern, processed diet impairs learning. Food processing manipulates flavor, texture, sweetness, and nutrition, obscuring ordinary correspondences between sensory cues and postingestive consequences. Over time, a diet of these processed 'junk' foods may impair flavor-nutrient learning. This 'flavor-confusion' hypothesis was tested by providing rats long-term exposure to cafeteria diets of unusual breadth (2 or 3 foods per day, 96 different foods over 3 months, plus ad libitum chow). One group was fed processed foods (PF) with added sugars/fats and manipulated flavors, to mimic the sensory-nutrient properties of the modern processed diet. Another group was fed only 'natural' foods (NF) meaning minimally-processed foods without manipulated flavors or added sugars/fats (e.g., fresh fruits, vegetables, whole grains) ostensibly preserving the ordinary correspondence between flavors and nutrition. A CON group was fed chow only. In subsequent tests of flavor-nutrient learning, PF and NF rats consistently acquired strong preferences for novel nutrient-paired flavors and PF rats exhibited enhanced learned acceptance, contradicting the 'flavor-confusion' hypothesis. An unexpected finding was PF and NF diets both caused lasting reduction in ad lib sweet solution intake. Groups did not differ in reinforcing value of sugar in a progressive ratio task. In lick microstructure analysis the NF group paradoxically showed increased sucrose palatability relative to PF and CON, suggesting the diets have different effects on sweet taste evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A home education program for older adults with hearing impairment and their significant others: a randomized trial evaluating short- and long-term effects

    NARCIS (Netherlands)

    Kramer, S.E.; Allessie, G.H.; Dondorp, A.W.; Zekveld, A.A.; Kapteyn, T.S.

    2005-01-01

    This paper addresses the development and effectiveness of a home education program. The program, designed for hearing-impaired elders and their significant others (SO), deals with communication strategies and speech reading. Participants were randomly assigned to a training group (hearing aid

  1. A behavioral rehabilitation intervention for amnestic Mild Cognitive Impairment

    Science.gov (United States)

    Greenaway, Melanie C.; Hanna, Sherrie M.; Lepore, Susan W.; Smith, Glenn E.

    2010-01-01

    Individuals with amnestic Mild Cognitive Impairment (MCI) currently have few treatment options for combating their memory loss. The Memory Support System (MSS) is a calendar and organization system with accompanying 6-week curriculum designed for individuals with progressive memory impairment. Ability to learn the MSS and its utility were assessed in 20 participants. Participants were significantly more likely to successfully use the calendar system after training. Ninety-five percent were compliant with the MSS at training completion, and 89% continued to be compliant at follow-up. Outcome measures revealed a medium effect size for improvement in functional ability. Subjects further reported improved independence, self-confidence, and mood. This initial examination of the MSS suggests that with appropriate training, individuals with amnestic MCI can and will use a memory notebook system to help compensate for memory loss. These results are encouraging that the MSS may help with the symptoms of memory decline in MCI. PMID:18955724

  2. Decision Making Impairment: A Shared Vulnerability in Obesity, Gambling Disorder and Substance Use Disorders?

    Science.gov (United States)

    Mallorquí-Bagué, Nuria; Fagundo, Ana B.; Jimenez-Murcia, Susana; de la Torre, Rafael; Baños, Rosa M.; Botella, Cristina; Casanueva, Felipe F.; Crujeiras, Ana B.; Fernández-García, Jose C.; Fernández-Real, Jose M.; Frühbeck, Gema; Granero, Roser; Rodríguez, Amaia; Tolosa-Sola, Iris; Ortega, Francisco J.; Tinahones, Francisco J.; Alvarez-Moya, Eva; Ochoa, Cristian; Menchón, Jose M.

    2016-01-01

    Introduction Addictions are associated with decision making impairments. The present study explores decision making in Substance use disorder (SUD), Gambling disorder (GD) and Obesity (OB) when assessed by Iowa Gambling Task (IGT) and compares them with healthy controls (HC). Methods For the aims of this study, 591 participants (194 HC, 178 GD, 113 OB, 106 SUD) were assessed according to DSM criteria, completed a sociodemographic interview and conducted the IGT. Results SUD, GD and OB present impaired decision making when compared to the HC in the overall task and task learning, however no differences are found for the overall performance in the IGT among the clinical groups. Results also reveal some specific learning across the task patterns within the clinical groups: OB maintains negative scores until the third set where learning starts but with a less extend to HC, SUD presents an early learning followed by a progressive although slow improvement and GD presents more random choices with no learning. Conclusions Decision making impairments are present in the studied clinical samples and they display individual differences in the task learning. Results can help understanding the underlying mechanisms of OB and addiction behaviors as well as improve current clinical treatments. PMID:27690367

  3. Clinical evaluation of semiautonomous smart wheelchair architecture (Drive-Safe System) with visually impaired individuals.

    Science.gov (United States)

    Sharma, Vinod; Simpson, Richard C; LoPresti, Edmund F; Schmeler, Mark

    2012-01-01

    Nonambulatory, visually impaired individuals mostly rely on caregivers for their day-to-day mobility needs. The Drive-Safe System (DSS) is a modular, semiautonomous smart wheelchair system aimed at providing independent mobility to people with visual and mobility impairments. In this project, clinical evaluation of the DSS was performed in a controlled laboratory setting with individuals who have visual impairment but no mobility impairment. Their performance using DSS was compared with their performance using a standard cane for navigation assistance. Participants rated their subjective appraisal of the DSS by using the National Aeronautics and Space Administration-Task Load Index inventory. DSS significantly reduced the number and severity of collisions compared with using a cane alone and without increasing the time required to complete the task. Users rated DSS favorably; they experienced less physical demand when using the DSS, but did not feel any difference in perceived effort, mental demand, and level of frustration when using the DSS alone or along with a cane in comparison with using a cane alone. These findings suggest that the DSS can be a safe, reliable, and easy-to-learn and operate independent mobility solution for visually impaired wheelchair users.

  4. Interactive cervical motion kinematics: sensitivity, specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain.

    Science.gov (United States)

    Sarig Bahat, Hilla; Chen, Xiaoqi; Reznik, David; Kodesh, Einat; Treleaven, Julia

    2015-04-01

    Chronic neck pain has been consistently shown to be associated with impaired kinematic control including reduced range, velocity and smoothness of cervical motion, that seem relevant to daily function as in quick neck motion in response to surrounding stimuli. The objectives of this study were: to compare interactive cervical kinematics in patients with neck pain and controls; to explore the new measures of cervical motion accuracy; and to find the sensitivity, specificity, and optimal cutoff values for defining impaired kinematics in those with neck pain. In this cross-section study, 33 patients with chronic neck pain and 22 asymptomatic controls were assessed for their cervical kinematic control using interactive virtual reality hardware and customized software utilizing a head mounted display with built-in head tracking. Outcome measures included peak and mean velocity, smoothness (represented by number of velocity peaks (NVP)), symmetry (represented by time to peak velocity percentage (TTPP)), and accuracy of cervical motion. Results demonstrated significant and strong effect-size differences in peak and mean velocities, NVP and TTPP in all directions excluding TTPP in left rotation, and good effect-size group differences in 5/8 accuracy measures. Regression results emphasized the high clinical value of neck motion velocity, with very high sensitivity and specificity (85%-100%), followed by motion smoothness, symmetry and accuracy. These finding suggest cervical kinematics should be evaluated clinically, and screened by the provided cut off values for identification of relevant impairments in those with neck pain. Such identification of presence or absence of kinematic impairments may direct treatment strategies and additional evaluation when needed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Role of the medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Hauser, Tobias U; Iannaccone, Reto; Ball, Juliane; Mathys, Christoph; Brandeis, Daniel; Walitza, Susanne; Brem, Silvia

    2014-10-01

    Attention-deficit/hyperactivity disorder (ADHD) has been associated with deficient decision making and learning. Models of ADHD have suggested that these deficits could be caused by impaired reward prediction errors (RPEs). Reward prediction errors are signals that indicate violations of expectations and are known to be encoded by the dopaminergic system. However, the precise learning and decision-making deficits and their neurobiological correlates in ADHD are not well known. To determine the impaired decision-making and learning mechanisms in juvenile ADHD using advanced computational models, as well as the related neural RPE processes using multimodal neuroimaging. Twenty adolescents with ADHD and 20 healthy adolescents serving as controls (aged 12-16 years) were examined using a probabilistic reversal learning task while simultaneous functional magnetic resonance imaging and electroencephalogram were recorded. Learning and decision making were investigated by contrasting a hierarchical Bayesian model with an advanced reinforcement learning model and by comparing the model parameters. The neural correlates of RPEs were studied in functional magnetic resonance imaging and electroencephalogram. Adolescents with ADHD showed more simplistic learning as reflected by the reinforcement learning model (exceedance probability, Px = .92) and had increased exploratory behavior compared with healthy controls (mean [SD] decision steepness parameter β: ADHD, 4.83 [2.97]; controls, 6.04 [2.53]; P = .02). The functional magnetic resonance imaging analysis revealed impaired RPE processing in the medial prefrontal cortex during cue as well as during outcome presentation (P decision making and learning mechanisms in adolescents with ADHD are driven by impaired RPE processing in the medial prefrontal cortex. This novel, combined approach furthers the understanding of the pathomechanisms in ADHD and may advance treatment strategies.

  6. Culture, Leadership, and Activism: Translating Fink's Taxonomy of Significant Learning into Pedagogical Practice

    Science.gov (United States)

    Jenkins, Toby S.

    2016-01-01

    Through the article, I share the theoretical foundations, structure, knowledge acquisition, and outcomes of a cultural leadership course. The process for course development integrates several theories and research methods into practice: L. Dee Fink's Taxonomy of Significant Learning, Feminist Theory, Critical Race Theory, and…

  7. The impact of cognitive impairment on upper body dressing difficulties after stroke: a video analysis of patterns of recovery.

    Science.gov (United States)

    Walker, C M; Sunderland, A; Sharma, J; Walker, M F

    2004-01-01

    to study the underlying cognitive deficits influencing a stroke patient's ability to relearn to dress. The aim was to investigate how recovery had occurred and whether the nature of cognitive impairment was the reason for persistent dressing problems. the dressing performance of 30 stroke patients was compared at the sub-acute stage and three months later. Standardised cognitive and physical tests were carried out, together with a video analysis of patients putting on a polo shirt. thirteen patients with preserved power in the upper limb used both arms to put on the shirt. Despite visuospatial impairment or apraxia in some cases, all were successful given sufficient time. Out of 17 patients with arm paresis, 12 were dependent putting on the shirt. Amongst the five who were independent, significantly fewer cases of cognitive impairment were seen on tests for apraxia (papraxia. Three patients who failed shirt dressing showed neglect or apraxia at follow up and had persistent arm paresis. Test failures also occurred amongst those who were independent. cognitive impairment affected patients attempting to relearn to dress with one hand, but did not affect patients who used both hands. The three patients who remained impaired on cognitive tests at follow up were unable to adapt or learn any compensatory strategies. The influence of cognition on a person's ability to learn compensatory strategies has implications for the design of rehabilitation therapies.

  8. Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology During Juvenile Period.

    Science.gov (United States)

    Wang, Tao; Guan, Rui-Li; Liu, Ming-Chao; Shen, Xue-Feng; Chen, Jing Yuan; Zhao, Ming-Gao; Luo, Wen-Jing

    2016-08-01

    Lead (Pb) is an environmental neurotoxic metal. Pb exposure may cause neurobehavioral changes, such as learning and memory impairment, and adolescence violence among children. Previous animal models have largely focused on the effects of Pb exposure during early development (from gestation to lactation period) on neurobehavior. In this study, we exposed Sprague-Dawley rats during the juvenile stage (from juvenile period to adult period). We investigated the synaptic function and structural changes and the relationship of these changes to neurobehavioral deficits in adult rats. Our results showed that juvenile Pb exposure caused fear-conditioned memory impairment and anxiety-like behavior, but locomotion and pain behavior were indistinguishable from the controls. Electrophysiological studies showed that long-term potentiation induction was affected in Pb-exposed rats, and this was probably due to excitatory synaptic transmission impairment in Pb-exposed rats. We found that NMDA and AMPA receptor-mediated current was inhibited, whereas the GABA synaptic transmission was normal in Pb-exposed rats. NR2A and phosphorylated GluR1 expression decreased. Moreover, morphological studies showed that density of dendritic spines declined by about 20 % in the Pb-treated group. The spine showed an immature form in Pb-exposed rats, as indicated by spine size measurements. However, the length and arborization of dendrites were unchanged. Our results suggested that juvenile Pb exposure in rats is associated with alterations in the glutamate receptor, which caused synaptic functional and morphological changes in hippocampal CA1 pyramidal neurons, thereby leading to behavioral changes.

  9. The significance of 'facilitator as a change agent'--organisational learning culture in aged care home settings.

    Science.gov (United States)

    Grealish, Laurie; Henderson, Amanda; Quero, Fritz; Phillips, Roslyn; Surawski, May

    2015-04-01

    To explore the impact of an educational programme focused on social behaviours and relationships on organisational learning culture in the residential aged care context. The number of aged care homes will continue to rise as the frail older elderly live longer, requiring more formal care and support. As with other small- to medium-sized health services, aged care homes are faced with the challenge of continuous development of the workforce and depend upon registered nurses to lead staff development. A mixed-method evaluation research design was used to determine the impact of an educational programme focused on social aspects of learning on organisational learning culture. One hundred and fifty-nine (pre) and 143 (post) participants from three aged care homes completed the Clinical Learning Organisational Culture survey, and three participant-researcher registered nurse clinical educators provided regular journal entries for review. While each site received the same educational programme over a six-month period, the change in organisational learning culture at each site was notably different. Two aged care homes had significant improvements in affiliation, one in accomplishment and one in recognition. The educators' journals differed in the types of learning observed and interventions undertaken, with Eucalyptus focused on organisational change, Grevillea focused on group (student) change and the Wattle focused on individual or situational change. Clinical educator activities appear to have a significant effect on organisational learning culture, with a focus on the organisational level having the greatest positive effect on learning culture and on individual or situational level having a limited effect. Clinical educator facilitation that is focused on organisational rather than individual interests may offer a key to improving organisational learning culture. © 2014 John Wiley & Sons Ltd.

  10. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory.

    Science.gov (United States)

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-10-29

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.

  11. Children with Motor Impairments Play a Kinect Learning Game: First Findings from a Pilot Case in an Authentic Classroom Environment

    Directory of Open Access Journals (Sweden)

    Symeon Retalis

    2014-02-01

    Full Text Available This paper presents the first very positive findings from an empirical study about the effectiveness of the use of a Kinect learning game for children with gross motor skills problems and motor impairments. This game follows the principles of a newly presented approach, called Kinems, which advocates that special educators and therapists should use learning games that via embodied touchless interaction – thanks to the Microsoft Kinect camera- children with dyspraxia and other related disorders such as autism, Asperger's Syndrome, and Attention Deficit Disorder, can improve related skills. Several Kinems games have been proposed (http://www.kinems.com. These games are innovative and are played with hand and body gestures. Kinems suggests that games should be highly configurable so that a teacher can modify the settings (e.g. difficult level, time settings, etc. for the individual needs of each child. Also, a teacher should have access to kinetic and learning analytics of the child’s interaction progress and achievements should be safely stored and vividly presented.

  12. Persistent non-verbal memory impairment in remitted major depression - caused by encoding deficits?

    Science.gov (United States)

    Behnken, Andreas; Schöning, Sonja; Gerss, Joachim; Konrad, Carsten; de Jong-Meyer, Renate; Zwanzger, Peter; Arolt, Volker

    2010-04-01

    While neuropsychological impairments are well described in acute phases of major depressive disorders (MDD), little is known about the neuropsychological profile in remission. There is evidence for episodic memory impairments in both acute depressed and remitted patients with MDD. Learning and memory depend on individuals' ability to organize information during learning. This study investigates non-verbal memory functions in remitted MDD and whether nonverbal memory performance is mediated by organizational strategies whilst learning. 30 well-characterized fully remitted individuals with unipolar MDD and 30 healthy controls matching in age, sex and education were investigated. Non-verbal learning and memory were measured by the Rey-Osterrieth-Complex-Figure-Test (RCFT). The RCFT provides measures of planning, organizational skills, perceptual and non-verbal memory functions. For assessing the mediating effects of organizational strategies, we used the Savage Organizational Score. Compared to healthy controls, participants with remitted MDD showed more deficits in their non-verbal memory function. Moreover, participants with remitted MDD demonstrated difficulties in organizing non-verbal information appropriately during learning. In contrast, no impairments regarding visual-spatial functions in remitted MDD were observed. Except for one patient, all the others were taking psychopharmacological medication. The neuropsychological function was solely investigated in the remitted phase of MDD. Individuals with MDD in remission showed persistent non-verbal memory impairments, modulated by a deficient use of organizational strategies during encoding. Therefore, our results strongly argue for additional therapeutic interventions in order to improve these remaining deficits in cognitive function. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents

    DEFF Research Database (Denmark)

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte

    2014-01-01

    PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801....... VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant...

  14. Difficulty understanding speech in noise by the hearing impaired: underlying causes and technological solutions.

    Science.gov (United States)

    Healy, Eric W; Yoho, Sarah E

    2016-08-01

    A primary complaint of hearing-impaired individuals involves poor speech understanding when background noise is present. Hearing aids and cochlear implants often allow good speech understanding in quiet backgrounds. But hearing-impaired individuals are highly noise intolerant, and existing devices are not very effective at combating background noise. As a result, speech understanding in noise is often quite poor. In accord with the significance of the problem, considerable effort has been expended toward understanding and remedying this issue. Fortunately, our understanding of the underlying issues is reasonably good. In sharp contrast, effective solutions have remained elusive. One solution that seems promising involves a single-microphone machine-learning algorithm to extract speech from background noise. Data from our group indicate that the algorithm is capable of producing vast increases in speech understanding by hearing-impaired individuals. This paper will first provide an overview of the speech-in-noise problem and outline why hearing-impaired individuals are so noise intolerant. An overview of our approach to solving this problem will follow.

  15. Impact of low vision rehabilitation on functional vision performance of children with visual impairment.

    Science.gov (United States)

    Ganesh, Suma; Sethi, Sumita; Srivastav, Sonia; Chaudhary, Amrita; Arora, Priyanka

    2013-09-01

    To evaluate the impact of low vision rehabilitation on functional vision of children with visual impairment. The LV Prasad-Functional Vision Questionnaire, designed specifically to measure functional performance of visually impaired children of developing countries, was used to assess the level of difficulty in performing various tasks pre and post visual rehabilitation in children with documented visual impairment. Chi-square test was used to assess the impact of rehabilitation intervention on functional vision performance; a P visual acuity prior to the introduction of low vision devices (LVDs) was 0.90 ± 0.05 for distance and for near it was 0.61 ± 0.05. After the intervention, the acuities improved significantly for distance (0.2 ± 0.27; P visual rehabilitation was especially found in those activities related to their studying lifestyle like copying from the blackboard (P visual rehabilitation, especially with those activities which are related to their academic output. It is important for these children to have an early visual rehabilitation to decrease the impairment associated with these decreased visual output and to enhance their learning abilities.

  16. Comparison of Different Levels of Reading Comprehension between Hearing-Impaired Loss and Normal-Hearing Students

    Directory of Open Access Journals (Sweden)

    Azam Sharifi

    2011-12-01

    Full Text Available Background and Aim: Reading skill is one of the most important necessities of students' learning in everyday life. This skill is referred to the ability of comprehension, comment and conclusion from texts and receiving the meaning of the massage which is composed. Educational development in any student has a direct relation with the ability of the comprehension. This study is designed to investigate the effects of hearing loss on reading comprehension in hearing-impaired students compared to normal-hearing ones.Methods: Seventeen hearing-impaired students in 4th year of primary exceptional schools in Karaj, Robatkarim and Shahriyar, Iran, were enrolled in this cross-sectional study. Seventeen normal-hearing students were randomly selected from ordinary schools next to exceptional ones as control group. They were compared for different levels of reading comprehension using the international standard booklet (PIRLS 2001. Results: There was a significant difference in performance between hearing-impaired and normal- hearing students in different levels of reading comprehension (p<0.05.Conclusion: Hearing loss has negative effects on different levels of reading comprehension, so in exceptional centers, reconsideration in educational planning in order to direct education from memorizing to comprehension and deeper layers of learning seems necessary.

  17. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    Science.gov (United States)

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  18. Episodic and semantic memory impairments in (very early Alzheimer’s disease: The diagnostic accuracy of paired-associate learning formats

    Directory of Open Access Journals (Sweden)

    Pauline E.J. Spaan

    2016-12-01

    Full Text Available Paired-associate learning (PAL paradigms measure memory processes sensitive to the medial temporal lobe, which shows atrophy in early Alzheimer’s disease (AD. PAL tests have not yet been standard clinical procedure, neither are semantic memory tests. In early AD, impairments are more subtle. A literature review indicates that standard neuropsychological tests may not measure these impairments accurately. Therefore, I constructed new episodic and semantic memory tests. I investigated the diagnostic accuracy of these tests in 37 amnestic mild cognitive impairment (aMCI; of whom 21 had converted to AD at 1.3-year-follow-up, 43 early AD patients, and 80 non-demented controls. Main questions: (1 which tests best differentiate aMCI and AD from normal aging: most sensitively, most specifically?; (2 do PAL paradigms and/or semantic memory tests (fluency; naming contribute to this differentiation? A free recall (non-PAL test of unrelated words was most sensitive to aMCI and AD (91%, whereas a PAL-recognition-test (of semantically related word pairs of moderate association strength, including strongly related foils was most specific (96%. Stepwise logistic regression analysis showed that differentiation was improved by a subordinate semantic fluency test. I conclude that a combination of episodic and semantic memory components best predicts AD. Future research should focus on comparing semantic and visuospatial PAL tests.

  19. Impaired Acuity of the Approximate Number System Underlies Mathematical Learning Disability (Dyscalculia)

    Science.gov (United States)

    Mazzocco, Michele M. M.; Feigenson, Lisa; Halberda, Justin

    2011-01-01

    Many children have significant mathematical learning disabilities (MLD, or dyscalculia) despite adequate schooling. The current study hypothesizes that MLD partly results from a deficiency in the Approximate Number System (ANS) that supports nonverbal numerical representations across species and throughout development. In this study of 71 ninth…

  20. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    Science.gov (United States)

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Punishment Insensitivity and Impaired Reinforcement Learning in Preschoolers

    Science.gov (United States)

    Briggs-Gowan, Margaret J.; Nichols, Sara R.; Voss, Joel; Zobel, Elvira; Carter, Alice S.; McCarthy, Kimberly J.; Pine, Daniel S.; Blair, James; Wakschlag, Lauren S.

    2014-01-01

    Background: Youth and adults with psychopathic traits display disrupted reinforcement learning. Advances in measurement now enable examination of this association in preschoolers. The current study examines relations between reinforcement learning in preschoolers and parent ratings of reduced responsiveness to socialization, conceptualized as a…

  2. Problem solving of student with visual impairment related to mathematical literacy problem

    Science.gov (United States)

    Pratama, A. R.; Saputro, D. R. S.; Riyadi

    2018-04-01

    The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.

  3. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila.

    Science.gov (United States)

    Li, Xinjian; Yu, Feng; Guo, Aike

    2009-11-01

    Sleep is crucial to memory consolidation in humans and other animals; however, the effect of insufficient sleep on subsequent learning and memory remains largely elusive. Learning and memory after 1-day sleep deprivation (slpD) was evaluated using Pavlovian olfactory conditioning in Drosophila, and locomotor activity was measured using the Drosophila Activity Monitoring System in a 12:12 light-dark cycle. We found that slpD specifically impaired 1-h memory in wild type Canton-S flies, and this effect could persist for at least 2 h. However, alternative stresses (heat stress, oxidative stress, starvation, and rotation stress) did not result in a similar effect and left the flies' memory intact. Mechanistic studies demonstrated that flies with either silenced transmission of the mushroom body (MB) during slpD or down-regulated cAMP levels in the MB demonstrated no slpD-induced 1-h memory impairment. We found that slpD specifically impaired 1-h memory in Drosophila, and either silencing of MB transmission during slpD or down-regulation of the cAMP level in the MB protected the flies from slpD-induced impairment.

  4. Tutoring math platform accessible for visually impaired people.

    Science.gov (United States)

    Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland

    2018-04-01

    There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cool and hot executive function impairments in violent offenders with antisocial personality disorder with and without psychopathy.

    Science.gov (United States)

    De Brito, Stephane A; Viding, Essi; Kumari, Veena; Blackwood, Nigel; Hodgins, Sheilagh

    2013-01-01

    Impairments in executive function characterize offenders with antisocial personality disorder (ASPD) and offenders with psychopathy. However, the extent to which those impairments are associated with ASPD, psychopathy, or both is unknown. The present study examined 17 violent offenders with ASPD and psychopathy (ASPD+P), 28 violent offenders with ASPD without psychopathy (ASPD-P), and 21 healthy non-offenders on tasks assessing cool (verbal working memory and alteration of motor responses to spatial locations) and hot (reversal learning, decision-making under risk, and stimulus-reinforcement-based decision-making) executive function. In comparison to healthy non-offenders, violent offenders with ASPD+P and those with ASPD-P showed similar impairments in verbal working memory and adaptive decision-making. They failed to learn from punishment cues, to change their behaviour in the face of changing contingencies, and made poorer quality decisions despite longer periods of deliberation. Intriguingly, the two groups of offenders did not differ significantly from the non-offenders in terms of their alteration of motor responses to spatial locations and their levels of risk-taking, indicated by betting, and impulsivity, measured as delay aversion. The performance of the two groups of offenders on the measures of cool and hot executive function did not differ, indicating shared deficits. These documented impairments may help to explain the persistence of antisocial behaviours despite the known risks of the negative consequences of such behaviours.

  6. Sleep stages, memory and learning.

    Science.gov (United States)

    Dotto, L

    1996-04-15

    Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance.

  7. Less symptomatic, but equally impaired: Clinical impairment in restricting versus binge-eating/purging subtype of anorexia nervosa.

    Science.gov (United States)

    Reas, Deborah Lynn; Rø, Øyvind

    2018-01-01

    This study investigated subtype differences in eating disorder-specific impairment in a treatment-seeking sample of individuals with anorexia nervosa (AN). The Clinical Impairment Assessment (CIA) and the Eating Disorder Examination-Questionnaire (EDE-Q) were administered to 142 patients. Of these, 54.9% were classified as restricting type (AN-R) and 45.1% were classified as binge-eating/purging type (AN-B/P) based on an average weekly occurrence of binge eating and/or purging episodes (≥4 episodes/28days). Individuals with AN-B/P exhibited higher levels of core ED psychopathology (dietary restraint, eating concern, shape/weight concerns) in addition to the expected higher frequency of binge/purge episodes. No significant differences existed between AN subtypes in the severity of ED-related impairment. Weight/shape concerns and binge eating frequency significantly predicted level of impairment. Differential associations were observed between the type of ED pathology that significantly contributed to impairment according to AN subtype. Although those with AN-B/P displayed higher levels of core attitudinal and behavioral ED pathology than AN-R, no significant differences in ED-specific impairment were found between AN subtypes. Eating disorder-related impairment in AN was not related to the severity of underweight or purging behaviors, but was uniquely and positively associated with weight/shape concerns and binge eating frequency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Neuropsychological assessment of individuals with brain tumor: Comparison of approaches used in the classification of impairment

    Directory of Open Access Journals (Sweden)

    Toni Maree Dwan

    2015-03-01

    Full Text Available Approaches to classifying neuropsychological impairment after brain tumor vary according to testing level (individual tests, domains or global index and source of reference (i.e., norms, controls and premorbid functioning. This study aimed to compare rates of impairment according to different classification approaches. Participants were 44 individuals (57% female with a primary brain tumor diagnosis (mean age = 45.6 years and 44 matched control participants (59% female, mean age = 44.5 years. All participants completed a test battery that assesses premorbid IQ (Wechsler Adult Reading Test, attention/processing speed (Digit Span, Trail Making Test A, memory (Hopkins Verbal Learning Test – Revised, Rey-Osterrieth Complex Figure-recall and executive function (Trail Making Test B, Rey-Osterrieth Complex Figure copy, Controlled Oral Word Association Test. Results indicated that across the different sources of reference, 86-93% of participants were classified as impaired at a test-specific level, 61-73% were classified as impaired at a domain-specific level, and 32-50% were classified as impaired at a global level. Rates of impairment did not significantly differ according to source of reference (p>.05; however, at the individual participant level, classification based on estimated premorbid IQ was often inconsistent with classification based on the norms or controls. Participants with brain tumor performed significantly poorer than matched controls on tests of neuropsychological functioning, including executive function (p=.001 and memory (p.05. These results highlight the need to examine individuals’ performance across a multi-faceted neuropsychological test battery to avoid over- or under-estimation of impairment.

  9. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels

    Science.gov (United States)

    Li, Shao-Jun; Ou, Chao-Yan; He, Sheng-Nan; Huang, Xiao-Wei; Luo, Hai-Lan; Meng, Hao-Yang; Lu, Guo-Dong; Jiang, Yue-Ming; Vieira Peres, Tanara; Luo, Yi-Ni; Deng, Xiang-Fa

    2017-01-01

    Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism. PMID:28394286

  10. Perceptual-motor skill learning in Gilles de la Tourette syndrome. Evidence for multiple procedural learning and memory systems.

    Science.gov (United States)

    Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S

    2005-01-01

    Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.

  11. Repeated morphine treatment influences operant and spatial learning differentially

    Institute of Scientific and Technical Information of China (English)

    Mei-Na WANG; Zhi-Fang DONG; Jun CAO; Lin XU

    2006-01-01

    Objective To investigate whether repeated morphine exposure or prolonged withdrawal could influence operant and spatial learning differentially. Methods Animals were chronically treated with morphine or subjected to morphine withdrawal. Then, they were subjected to two kinds of learning: operant conditioning and spatial learning.Results The acquisition of both simple appetitive and cued operant learning was impaired after repeated morphine treatment. Withdrawal for 5 weeks alleviated the impairments. Single morphine exposure disrupted the retrieval of operant memory but had no effect on rats after 5-week withdrawal. Contrarily, neither chronic morphine exposure nor 5-week withdrawal influenced spatial learning task of the Morris water maze. Nevertheless, the retrieval of spatial memory was impaired by repeated morphine exposure but not by 5-week withdrawal. Conclusion These observations suggest that repeated morphine exposure can influence different types of learning at different aspects, implicating that the formation of opiate addiction may usurp memory mechanisms differentially.

  12. Generalized Linear Models of Home Activity for Automatic Detection of Mild Cognitive Impairment in Older Adults*

    Science.gov (United States)

    Akl, Ahmad; Snoek, Jasper; Mihailidis, Alex

    2015-01-01

    With a globally aging population, the burden of care of cognitively impaired older adults is becoming increasingly concerning. Instances of Alzheimer’s disease and other forms of dementia are becoming ever more frequent. Earlier detection of cognitive impairment offers significant benefits, but remains difficult to do in practice. In this paper, we develop statistical models of the behavior of older adults within their homes using sensor data in order to detect the early onset of cognitive decline. Specifically, we use inhomogenous Poisson processes to model the presence of subjects within different rooms throughout the day in the home using unobtrusive sensing technologies. We compare the distributions learned from cognitively intact and impaired subjects using information theoretic tools and observe statistical differences between the two populations which we believe can be used to help detect the onset of cognitive decline. PMID:25570050

  13. Generalized Linear Models of home activity for automatic detection of mild cognitive impairment in older adults.

    Science.gov (United States)

    Akl, Ahmad; Snoek, Jasper; Mihailidis, Alex

    2014-01-01

    With a globally aging population, the burden of care of cognitively impaired older adults is becoming increasingly concerning. Instances of Alzheimer's disease and other forms of dementia are becoming ever more frequent. Earlier detection of cognitive impairment offers significant benefits, but remains difficult to do in practice. In this paper, we develop statistical models of the behavior of older adults within their homes using sensor data in order to detect the early onset of cognitive decline. Specifically, we use inhomogenous Poisson processes to model the presence of subjects within different rooms throughout the day in the home using unobtrusive sensing technologies. We compare the distributions learned from cognitively intact and impaired subjects using information theoretic tools and observe statistical differences between the two populations which we believe can be used to help detect the onset of cognitive decline.

  14. The influence of Pilates exercises on body balance in the standing position of hearing impaired people.

    Science.gov (United States)

    Walowska, Jagoda; Bolach, Bartosz; Bolach, Eugeniusz

    2017-11-13

    Hearing impairment may affect the body posture maintenance. The aim of the study was to evaluate the effect of modified Pilates exercise program on the body posture maintenance in hearing impaired people. Eighty students (aged 13-24) were enrolled and randomly allocated into two groups: test group (n = 41) which attended an original program based on modified Pilates exercises and control group (n = 39) which attended standard physical education classes. Stabilographic tests were conducted at baseline and after 6-week training program. Both groups showed improved control of body balance in a standing position manifested in reductions of the length of path, surface area, and speed of deflection. Modified Pilates program was significantly more effective in improving body balance control in relaxed posture and with feet together than standard physical education classes. The greater efficiency of the modified Pilates program was expressed in a significant improvement in balance control parameters, i.e., path length, surface area, and speed of deflection. The modified Pilates program was more effective in improving body balance control in the hearing impaired people than standard physical education classes. Modification of physical activity recommendations for hearing impaired students may be considered; however, further research is required. Implications for Rehabilitation Hearing impairment impacts the mental, social and, physical spheres of life as well as deteriorates equivalent reactions and the way body posture is maintained. In hearing impaired people, control of body balance and muscle coordination is often disturbed, thus more attention should be paid to exercises associated with balance which may improve the ability to learn and develop motor skills. Modified Pilates program was significantly more effective in improving body balance control than standard physical education classes in hearing impaired people.

  15. Medication Impairs Probabilistic Classification Learning in Parkinson's Disease

    Science.gov (United States)

    Jahanshahi, Marjan; Wilkinson, Leonora; Gahir, Harpreet; Dharminda, Angeline; Lagnado, David A.

    2010-01-01

    In Parkinson's disease (PD), it is possible that tonic increase of dopamine associated with levodopa medication overshadows phasic release of dopamine, which is essential for learning. Thus while the motor symptoms of PD are improved with levodopa medication, learning would be disrupted. To test this hypothesis, we investigated the effect of…

  16. Associations between psychological distress, learning, and memory in spouse caregivers of older adults.

    Science.gov (United States)

    Mackenzie, Corey S; Wiprzycka, Ursula J; Hasher, Lynn; Goldstein, David

    2009-11-01

    Family caregivers of older adults experience high levels of chronic stress and psychological distress, which are known to impair cognition. Very little research, however, has assessed the impact of caregiving on key cognitive outcomes such as learning and memory. This study compared 16 spouse caregivers with 16 matched controls using standardized neuropsychological measures of learning, episodic memory, and working memory. Analyses compared groups on these cognitive outcomes and examined whether psychological distress mediated group differences in cognition. Results indicated that caregivers were significantly more distressed than non-caregivers and exhibited deficits in learning, recall of episodic information after short and long delays, and working memory. Furthermore, the majority of group differences in cognitive outcomes were mediated by psychological distress. This study adds to a small body of literature demonstrating impaired cognitive functioning among family caregivers. It also suggests that distress is one of a number of possible underlying mechanisms leading to disruptions in learning and memory in this population.

  17. Attitude of Regular and Itinerant Teachers Towards the Inclusion of Hearing Impairment Children

    Directory of Open Access Journals (Sweden)

    Kamal Parhoon

    2014-12-01

    Full Text Available Objectives: Inclusive education is a process of enabling all children to learn and participate effectively within mainstream school systems. It does not segregate children who have different abilities or needs. This article explores the attitudes of regular and itinerant teachers about inclusion of hearing impairment children in their schools in general education. Methods: In a descriptive Survey research design, the sample included 100 teachers (50 regular and 50 itinerant who were selected randomly, according to a multistage sampling method. Data was collected by using questionnaire with 32 questions regarding their attitudes. One-way Analysis of Variance and t-test were performed to obtain between- group comparisons. Results: The results indicated that the teacher's positive attitudes towards inclusive educational system of students with hearing impairment. Significant difference in attitudes was observed, based on the teaching experience, gender, level of teaching. The results also indicate that most teachers are agreeable to the inclusion of students with hearing impairment in their classrooms. Discussion: successful inclusion for hearing impairment children in regular classrooms entails the positive attitudes of Regular and itinerant teachers through a systematic programming within the classroom.

  18. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback

    Science.gov (United States)

    Whitney, Paul; Hinson, John M.; Jackson, Melinda L.; Van Dongen, Hans P.A.

    2015-01-01

    Study Objectives: To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Design: Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Setting: Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Subjects: Twenty-six subjects (22–40 y of age; 10 women). Interventions: Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Results: Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Conclusions: Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback

  19. Assessment of serotonergic system in formation of memory and learning

    Directory of Open Access Journals (Sweden)

    J. C. da Silva

    2017-11-01

    Full Text Available Abstract We evaluated the involvement of the serotonergic system on memory formation and learning processes in healthy adults Wistar rats. Fifty-seven rats of 5 groups had one serotonergic nuclei damaged by an electric current. Electrolytic lesion was carried out using a continuous current of 2mA during two seconds by stereotactic surgery. Animals were submitted to learning and memory tests. Rats presented different responses in the memory tests depending on the serotonergic nucleus involved. Both explicit and implicit memory may be affected after lesion although some groups showed significant difference and others did not. A damage in the serotonergic nucleus was able to cause impairment in the memory of Wistar. The formation of implicit and explicit memory is impaired after injury in some serotonergic nuclei.

  20. HIV/AIDS among Adolescents with Hearing Impairment in Nigeria ...

    African Journals Online (AJOL)

    Toshiba

    low literacy level, cycle of poverty among people with hearing impairment ... some strategies, such as participatory approaches, deaf-friendly .... incapable of learning. ... that the greatest life challenge to any persons with disability is social.

  1. Brief postnatal exposure to phenobarbital impairs passive avoidance learning and sensorimotor gating in rats.

    Science.gov (United States)

    Gutherz, Samuel B; Kulick, Catherine V; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A

    2014-08-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80 mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference for cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition compared with vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention compared with matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Brief postnatal exposure to phenobarbital impairs passive-avoidance learning and sensorimotor gating in rats

    Science.gov (United States)

    Gutherz, Samuel B.; Kulick, Catherine V.; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A.

    2014-01-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference to cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition as compared to vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention as compared to matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. PMID:25112558

  3. Baseline performance and learning rate of conceptual and perceptual skill-learning tasks: the effect of moderate to severe traumatic brain injury.

    Science.gov (United States)

    Vakil, Eli; Lev-Ran Galon, Carmit

    2014-01-01

    Existing literature presents a complex and inconsistent picture of the specific deficiencies involved in skill learning following traumatic brain injury (TBI). In an attempt to address this difficulty, individuals with moderate to severe TBI (n = 29) and a control group (n = 29) were tested with two different skill-learning tasks: conceptual (i.e., Tower of Hanoi Puzzle, TOHP) and perceptual (i.e., mirror reading, MR). Based on previous studies of the effect of divided attention on these tasks and findings regarding the effect of TBI on conceptual and perceptual priming tasks, it was predicted that the group with TBI would show impaired baseline performance compared to controls in the TOHP task though their learning rate would be maintained, while both baseline performance and learning rate on the MR task would be maintained. Consistent with our predictions, overall baseline performance of the group with TBI was impaired in the TOHP test, while the learning rate was not. The learning rate on the MR task was preserved but, contrary to our prediction, response time of the group with TBI was slower than that of controls. The pattern of results observed in the present study was interpreted to possibly reflect an impairment of both the frontal lobes as well as that of diffuse axonal injury, which is well documented as being affected by TBI. The former impairment affects baseline performance of the conceptual learning skill, while the latter affects the overall slower performance of the perceptual learning skill.

  4. Adaptations and accommodations: The use of the WAIS III with people with a Learning Disability

    OpenAIRE

    McKenzie, Karen; Murray, George; Wright, Jenny

    2004-01-01

    Evidence of significant impairment in cognitive functioning has always been one of the main criteria of a learning disability (Pulsifer, 1996) and intellectual assessment is, therefore, one of the tasks of clinical psychologists working within learning disability services. Such assessments are commonly used to help establish of an individual’s cognitive strengths and weaknesses, support needs and more specifically, to help determine if an individual falls within the remit of learning disabili...

  5. Lanthanum chloride impairs spatial memory through ERK/MSK1 signaling pathway of hippocampus in rats.

    Science.gov (United States)

    Liu, Huiying; Yang, Jinghua; Liu, Qiufang; Jin, Cuihong; Wu, Shengwen; Lu, Xiaobo; Zheng, Linlin; Xi, Qi; Cai, Yuan

    2014-12-01

    Rare earth elements (REEs) are used in many fields for their diverse physical and chemical properties. Surveys have shown that REEs can impair learning and memory in children and cause neurobehavioral defects in animals. However, the mechanism underlying these impairments has not yet been completely elucidated. Lanthanum (La) is often selected to study the effects of REEs. The aim of this study was to investigate the spatial memory impairments induced by lanthanum chloride (LaCl3) and the probable underlying mechanism. Wistar rats were exposed to LaCl3 in drinking water at 0 % (control, 0 mM), 0.25 % (18 mM), 0.50 % (36 mM), and 1.00 % (72 mM) from birth to 2 months after weaning. LaCl3 considerably impaired the spatial learning and memory of rats in the Morris water maze test, damaged the synaptic ultrastructure and downregulated the expression of p-MEK1/2, p-ERK1/2, p-MSK1, p-CREB, c-FOS and BDNF in the hippocampus. These results indicate that LaCl3 exposure impairs the spatial learning and memory of rats, which may be attributed to disruption of the synaptic ultrastructure and inhibition of the ERK/MSK1 signaling pathway in the hippocampus.

  6. Cranial irradiation of young rats impairs later learning and growth

    International Nuclear Information System (INIS)

    Overmier, J.B.; Carroll, M.E.; Patten, R.; Krivit, W.; Kim, T.H.

    1979-01-01

    Young rats (26 days) were exposed to ionizing radiation of the head of 0, 1200, 2400 or 3000 rads total in 200 rads/day doses. The subsequent growth of irradiated rats was permanently impaired: such impairment was positively related to amount of irradiation. Beginning in adolescence, rats were trained on a horizontal/vertical visual discrimination in a runway task and although all four groups mastered the discrimination, they differed in their patterns of acquisition. These results indicated long term effects and are associated with a cranial irradiation regimen similar to that given to children suffering acute lymphocytic leukemia (ALL). (author)

  7. No Significant Difference in Service Learning Online

    Science.gov (United States)

    McGorry, Sue Y.

    2012-01-01

    Institutions of higher education are realizing the importance of service learning initiatives in developing awareness of students' civic responsibilities, leadership and management skills, and social responsibility. These skills and responsibilities are the foundation of program outcomes in accredited higher education business programs at…

  8. Sleep deprivation impairs spatial retrieval but not spatial learning in the non-human primate grey mouse lemur.

    Directory of Open Access Journals (Sweden)

    Anisur Rahman

    Full Text Available A bulk of studies in rodents and humans suggest that sleep facilitates different phases of learning and memory process, while sleep deprivation (SD impairs these processes. Here we tested the hypothesis that SD could alter spatial learning and memory processing in a non-human primate, the grey mouse lemur (Microcebus murinus, which is an interesting model of aging and Alzheimer's disease (AD. Two sets of experiments were performed. In a first set of experiments, we investigated the effects of SD on spatial learning and memory retrieval after one day of training in a circular platform task. Eleven male mouse lemurs aged between 2 to 3 years were tested in three different conditions: without SD as a baseline reference, 8 h of SD before the training and 8 h of SD before the testing. The SD was confirmed by electroencephalographic recordings. Results showed no effect of SD on learning when SD was applied before the training. When the SD was applied before the testing, it induced an increase of the amount of errors and of the latency prior to reach the target. In a second set of experiments, we tested the effect of 8 h of SD on spatial memory retrieval after 3 days of training. Twenty male mouse lemurs aged between 2 to 3 years were tested in this set of experiments. In this condition, the SD did not affect memory retrieval. This is the first study that documents the disruptive effects of the SD on spatial memory retrieval in this primate which may serve as a new validated challenge to investigate the effects of new compounds along physiological and pathological aging.

  9. Significant Learning Experiences for English Foreign Language Students (Experiencias significativas para estudiantes de inglés como lengua extranjera)

    Science.gov (United States)

    Becerra, Luz María; McNulty, Maria

    2010-01-01

    This action research examines experiences that students in a grade 10 EFL class had with redesigning a grammar-unit into a topic-based unit. Strategies were formulating significant learning goals and objectives, and implementing and reflecting on activities with three dimensions of Dee Fink's (2003) taxonomy of significant learning: the human…

  10. [Clinical characteristics in Parkinson's disease patients with cognitive impairment and effects of cognitive impairment on sleep].

    Science.gov (United States)

    Gong, Yan; Xiong, Kang-ping; Mao, Cheng-jie; Huang, Juan-ying; Hu, Wei-dong; Han, Fei; Chen, Rui; Liu, Chun-feng

    2013-09-03

    To analyze the clinical characteristics, correlation factors and clinical heterogeneities in Parkinson's disease (PD) patients with cognitive impairment and identify whether cognitive impairment could influence the aspect of sleep. A total of 130 PD outpatients and inpatients of sleep center at our hospital were eligible for participation. According to Montreal cognitive assessment (MOCA), they were divided into cognitive normal group (MOCA ≥ 26) (n = 51) and cognitive impairment group (MOCA cognitive impairment (MOCA cognitive impairment, the PD patients with cognitive impairment had significantly higher score of HAMD (10 ± 7 vs 7 ± 4), increased incidence of hallucinations (40.50% vs 19.60%) and REM behavior disorders (RBD) (63.29% vs 39.21%), significantly higher H-Y stage [2.5(2.0-3.0) vs 2.0 (2.0-2.5)] , United Kingdom Parkinson Disease Society (UPDRS) part III (22 ± 10 vs 19 ± 10) and levodopa-equivalent daily dose (LED) (511 ± 302vs 380 ± 272) (all P 0.05). Non-conditional Logistic regression analysis showed that PD duration, score of HAMD and H-Y stage were the major influencing factors of cognition. On PSG, significantly decreased sleep efficiency (57% ± 21% vs 66% ± 17%), higher percentage of non-REM sleep stage 1 (NREMS1) (37% ± 21% vs 27% ± 13%), lower percentage of NREMS2 (40% ± 17% vs 46% ± 13%) and REM sleep (39% ± 28% vs 54% ± 36%) were found for PD patients with cognitive impairment (all P cognitive impairment have more severe disease and partial nonmotor symptoms. And the severity of disease and depression is closely associated with cognitive impairment. Cognitive impairment may also affect sleep to cause decreased sleep efficiency and severe sleep structure disorder.

  11. Adult-onset hyperthyroidism impairs spatial learning: possible involvement of mitogen-activated protein kinase signaling pathways.

    Science.gov (United States)

    Bitiktaş, Soner; Kandemir, Başak; Tan, Burak; Kavraal, Şehrazat; Liman, Narin; Dursun, Nurcan; Dönmez-Altuntaş, Hamiyet; Aksan-Kurnaz, Işil; Suer, Cem

    2016-08-03

    Given evidence that mitogen-activated protein kinase (MAPK) activation is part of the nongenomic actions of thyroid hormones, we investigated the possible consequences of hyperthyroidism for the cognitive functioning of adult rats. Young adult rats were treated with L-thyroxine or saline. Twenty rats in each group were exposed to Morris water maze testing, measuring their performance in a hidden-platform spatial task. In a separate set of rats not exposed to Morris water maze testing (untrained rats), the expression and phosphorylated levels of p38-MAPK and of its two downstream effectors, Elk-1 and cAMP response element-binding protein, were evaluated using quantitative reverse transcriptase-PCR and western blotting. Rats with hyperthyroidism showed delayed acquisition of learning compared with their wild-type counterparts, as shown by increased escape latencies and distance moved on the last two trials of daily training in the water maze. The hyperthyroid rats, however, showed no difference during probe trials. Western blot analyses of the hippocampus showed that hyperthyroidism increased phosphorylated p38-MAPK levels in untrained rats. Although our study is correlative in nature and does not exclude the contribution of other molecular targets, our findings suggest that the observed impairments in acquisition during actual learning in rats with hyperthyroidism may result from the increased phosphorylation of p38-MAPK.

  12. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1A (Dyrk1A.

    Directory of Open Access Journals (Sweden)

    Glòria Arqué

    Full Text Available BACKGROUND: Pathogenic aneuploidies involve the concept of dosage-sensitive genes leading to over- and underexpression phenotypes. Monosomy 21 in human leads to mental retardation and skeletal, immune and respiratory function disturbances. Most of the human condition corresponds to partial monosomies suggesting that critical haploinsufficient genes may be responsible for the phenotypes. The DYRK1A gene is localized on the human chromosome 21q22.2 region, and has been proposed to participate in monosomy 21 phenotypes. It encodes a dual-specificity kinase involved in neuronal development and in adult brain physiology, but its possible role as critical haploinsufficient gene in cognitive function has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We used mice heterozygous for a Dyrk1A targeted mutation (Dyrk1A+/- to investigate the implication of this gene in the cognitive phenotypes of monosomy 21. Performance of Dyrk1A+/- mice was assayed 1/ in a navigational task using the standard hippocampally related version of the Morris water maze, 2/ in a swimming test designed to reveal potential kinesthetic and stress-related behavioral differences between control and heterozygous mice under two levels of aversiveness (25 degrees C and 17 degrees C and 3/ in a long-term novel object recognition task, sensitive to hippocampal damage. Dyrk1A+/- mice showed impairment in the development of spatial learning strategies in a hippocampally-dependent memory task, they were impaired in their novel object recognition ability and were more sensitive to aversive conditions in the swimming test than euploid control animals. CONCLUSIONS/SIGNIFICANCE: The present results are clear examples where removal of a single gene has a profound effect on phenotype and indicate that haploinsufficiency of DYRK1A might contribute to an impairment of cognitive functions and stress coping behavior in human monosomy 21.

  13. Cognitive profiles in Mild Cognitive Impairment (MCI patients associated with Parkinson′s disease and cognitive disorders

    Directory of Open Access Journals (Sweden)

    Michele Pistacchi

    2015-01-01

    Full Text Available Background: Mild cognitive impairment (MCI is rapidly becoming one of the most common clinical manifestations affecting the elderly and represents an heterogeneous clinical syndrome that can be ascribed to different etiologies; the construct of MCI in Parkinson′s disease (PD (MCI-PD is more recent but the range of deficits is still variable. Early recognition and accurate classification of MCI-PD could offer opportunities for novel therapeutic interventions to improve the natural pathologic course. Objective: To investigate the clinical phenotype of amnestic mild cognitive impairment (aMCI and in patients with PD and MCI (MCI-PD. Materials and Methods: Seventy-three patients with aMCI and in 38 patients with MCI-PD were enrolled. They all underwent Mini-mental State Examination (MMSE, the Rey auditory-verbal learning test and the immediate visual memory (IVM item of the Mental Deterioration Battery, the Rey auditory-verbal learning test included the Rey-immediate (Rey-I, and the delayed recall of the word list (Rey test deferred, Rey-D. The Geriatric Depression Scale (GDS was used for mood assessment. Results: The results of the Rey-I and Rey-D and of the IVM item showed statistically significant differences between the aMCI and the MCI-PD group. The mean Rey-I and Rey-D score was significantly lower as well as the IVM score was higher in patients with aMCI than in those with MCI-PD, aMCI patients showed greater impairment in long-term memory, whereas more aMCI than MCI-PD patients had preserved attention, computation, praxis, and conceptualization. Conclusions: Our findings demonstrate that the cognitive deficit profile is specific for each of the two disorders: Memory impairment was a typical feature in aMCI patients while MCI-PD patients suffered from executive functions and visuospatial attention deficits.

  14. The imposition of, but not the propensity for, social subordination impairs exploratory behaviors and general cognitive abilities.

    Science.gov (United States)

    Colas-Zelin, Danielle; Light, Kenneth R; Kolata, Stefan; Wass, Christopher; Denman-Brice, Alexander; Rios, Christopher; Szalk, Kris; Matzel, Louis D

    2012-06-15

    Imposed social subordination, such as that which accompanies physical defeat or alienation, has been associated with impaired cognitive function in both human and non-human animals. Here we examined whether domain-specific and/or domain-general learning abilities (c.f. general intelligence) are differentially influenced by the imposition of social subordination. Furthermore, we assessed whether the impact of subordination on cognitive abilities was the result of imposed subordination per se, or if it reflected deficits intrinsically expressed in subjects that are predisposed to subordination. Subordinate and dominant behaviors were assessed in two groups of CD-1 male mice. In one group (Imposed Stratification), social stratification was imposed (through persistent physical defeat in a colonized setting) prior to the determination of cognitive abilities, while in the second group (Innate Stratification), an assessment of social stratification was made after cognitive abilities had been quantified. Domain-specific learning abilities were measured as performance on individual learning tasks (odor discrimination, fear conditioning, spatial maze learning, passive avoidance, and egocentric navigation) while domain-general learning abilities were determined by subjects' aggregate performance across the battery of learning tasks. We observed that the imposition of subordination prior to cognitive testing decreased exploratory tendencies, moderately impaired performance on individual learning tasks, and severely impaired general cognitive performance. However, similar impairments were not observed in subjects with a predisposition toward a subordinate phenotype (but which had not experienced physical defeat at the time of cognitive testing). Mere colonization, regardless of outcome (i.e., stratification), was associated with an increase in stress-induced serum corticosterone (CORT) levels, and thus CORT elevations were not themselves adequate to explain the effects of

  15. Learning Disabilities in Children: Epidemiology, Risk Factors and Importance of Early Intervention

    Directory of Open Access Journals (Sweden)

    Beena Johnson

    2017-01-01

    Full Text Available Children with learning disabilities have significant impairment in reading, writing and mathematics, in spite of normal intelligence and sensory abilities. In reading disability, children will have difficulties in phonemic sensitivity, phonetic decoding, word recognition, word decoding skills and reading comprehension. The lifetime prevalence of learning disability is about 10%. Learning disabilities are more frequently seen in boys compared to girls. There are several risk factors for learning disabilities. Low birth weight, preterm birth, neonatal complications, language delay and epilepsy are important risk factors for learning disabilities in children. Students with learning disabilities have poor scholastic performance, anxiety and significant stress. They have more social, emotional and behavioural problems than those without learning problems. If not remedied at the earliest, learning disabilities will lead to failure in exams and these children may develop stress related disorders. Hence all children with learning problems should be evaluated scientifically at the earliest, for identification of learning disability. By providing scientific guidance and intensive one to one remedial training, learning problems of children can be managed successfully.

  16. Effects of Explicit Vocabulary Videos Delivered through iPods on Students with Language Impairments

    Science.gov (United States)

    Lowman, J. Joneen; Dressler, Emily V.

    2016-01-01

    Poor word learning is a hallmark characteristic of students with specific language impairment (SLI). Explicit vocabulary instruction has shown to positively improve word learning in this population. Mobile technology has many advantages making it conducive for addressing the word learning needs of students with SLI. The current study utilized a…

  17. The Effect of Time on Word Learning: An Examination of Decay of the Memory Trace and Vocal Rehearsal in Children with and without Specific Language Impairment

    Science.gov (United States)

    Alt, Mary; Spaulding, Tammie

    2011-01-01

    Purpose: The purpose of this study was to measure the effect of time to response in a fast-mapping word learning task for children with specific language impairment (SLI) and children with typically developing language skills (TD). Manipulating time to response allows us to examine decay of the memory trace, the use of vocal rehearsal, and their…

  18. The combination of ethanol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Ciudad-Roberts, Andrés; Duart-Castells, Leticia; Camarasa, Jorge; Pubill, David, E-mail: d.pubill@ub.edu; Escubedo, Elena

    2016-02-15

    A new family of psychostimulants, under the name of cathinones, has broken into the market in the last decade. In light of the fact that around 95% of cathinone consumers have been reported to combine them with alcoholic drinks, we sought to study the consequences of the concomitant administration of ethanol on mephedrone -induced neurotoxicity. Adolescent male Swiss-CD1 mice were administered four times in one day, every 2 h, with saline, mephedrone (25 mg/kg), ethanol (2; 1.5; 1.5; 1 g/kg) and their combination at a room temperature of 26 ± 2 °C. The combination with ethanol impaired mephedrone-induced decreases in dopamine transporter and tyrosine hydroxylase in the frontal cortex; and in serotonin transporter and tryptophan hydroxylase in the hippocampus by approximately 2-fold, 7 days post-treatment. Furthermore, these decreases correlated with a 2-fold increase in lipid peroxidation, measured as concentration of malondialdehyde (MDA), 24 h post-treatment, and were accompanied by changes in oxidative stress-related enzymes. Ethanol also notably potentiated mephedrone-induced negative effects on learning and memory, as well as hippocampal neurogenesis, measured through the Morris water maze (MWM) and 5-bromo-2′-deoxyuridine staining, respectively. These results are of special significance, since alcohol is widely co-abused with amphetamine derivatives such as mephedrone, especially during adolescence, a crucial stage in brain maturation. Given that the hippocampus is greatly involved in learning and memory processes, normal brain development in young adults could be affected with permanent behavioral consequences after this type of drug co-abuse. - Highlights: • Mice were administered a binge regimen of mephedrone plus/minus ethanol. • Ethanol exacerbated mephedrone-induced changes in 5-HT and DA function markers. • Neurochemical alterations were accompanied by an increase in oxidative stress. • Ethanol potentiated mephedrone-induced learning

  19. The combination of ethanol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice

    International Nuclear Information System (INIS)

    Ciudad-Roberts, Andrés; Duart-Castells, Leticia; Camarasa, Jorge; Pubill, David; Escubedo, Elena

    2016-01-01

    A new family of psychostimulants, under the name of cathinones, has broken into the market in the last decade. In light of the fact that around 95% of cathinone consumers have been reported to combine them with alcoholic drinks, we sought to study the consequences of the concomitant administration of ethanol on mephedrone -induced neurotoxicity. Adolescent male Swiss-CD1 mice were administered four times in one day, every 2 h, with saline, mephedrone (25 mg/kg), ethanol (2; 1.5; 1.5; 1 g/kg) and their combination at a room temperature of 26 ± 2 °C. The combination with ethanol impaired mephedrone-induced decreases in dopamine transporter and tyrosine hydroxylase in the frontal cortex; and in serotonin transporter and tryptophan hydroxylase in the hippocampus by approximately 2-fold, 7 days post-treatment. Furthermore, these decreases correlated with a 2-fold increase in lipid peroxidation, measured as concentration of malondialdehyde (MDA), 24 h post-treatment, and were accompanied by changes in oxidative stress-related enzymes. Ethanol also notably potentiated mephedrone-induced negative effects on learning and memory, as well as hippocampal neurogenesis, measured through the Morris water maze (MWM) and 5-bromo-2′-deoxyuridine staining, respectively. These results are of special significance, since alcohol is widely co-abused with amphetamine derivatives such as mephedrone, especially during adolescence, a crucial stage in brain maturation. Given that the hippocampus is greatly involved in learning and memory processes, normal brain development in young adults could be affected with permanent behavioral consequences after this type of drug co-abuse. - Highlights: • Mice were administered a binge regimen of mephedrone plus/minus ethanol. • Ethanol exacerbated mephedrone-induced changes in 5-HT and DA function markers. • Neurochemical alterations were accompanied by an increase in oxidative stress. • Ethanol potentiated mephedrone-induced learning

  20. Evaluation of maths training programme for children with learning difficulties

    Directory of Open Access Journals (Sweden)

    Antje Ehlert

    2013-06-01

    The study at hand focuses on the question of whether educationally impaired children with large deficits in mathematics can be supported successfully by means of a highly adaptive support measure (MARKO-T, and whether the effects of this support can be maintained over a certain period. For this, 32 educationally impaired third-graders with math deficits were supported individually with MARKO-T twice a week, over a period of ten weeks. As control group, 32 similarly impaired third-graders were paralleled according to the mathematical and cognitive achievements of the training group. Two further control groups, each with 32 unimpaired first-graders, were paralleled according to their mathematical and cognitive achievements, respectively. The results showed that the very poor mathematical performance of the educationally impaired children could be significantly improved with this support programme. Four months after the end of the training, significant support effects could still be established when compared to the educationally impaired control group. The comparison with the two control groups demonstrated that the developmental curve of the children with learning difficulties increased in a way that was comparable to that of the unimpaired first-graders.

  1. Cognitive impairment in schizophrenia across age groups: a case-control study.

    Science.gov (United States)

    Mosiołek, Anna; Gierus, Jacek; Koweszko, Tytus; Szulc, Agata

    2016-02-24

    The potential dynamics of cognitive impairment in schizophrenia is discussed in the literature of the field. Recent publications suggest modest changes in level of cognitive impairment after first psychotic episode. Present article attempts to explore cognitive differences between patients and controls across age groups and differences between age groups in clinical group. One hundred and twenty-eight hospitalized patients with schizophrenia (64 women and 64 men) and 68 individuals from the control group (32 women and 32 men) aged 18-55 years were examined. The patients were divided into age groups (18-25, 26-35, 36-45, 46-55). Both groups were examined using Wisconsin Card Sorting Test, Rey Auditory Verbal Learning Test, Rey Osterrieth Complex Figure Test, Trail Making Test (A and B), Stroop Test, verbal fluency test and Wechsler digit span. Patients with schizophrenia obtained significantly lower scores versus the control group in regard to all the measured cognitive functions (Mann-Whitney U; p age groups, however, statistically important impairment in executive functions (WCST) were present only in "older" groups. Patients with schizophrenia obtained less favourable results than the control group in all age groups. Deficits regarding executive functions do not seem to be at a significant level among the youngest group, whereas they are more noticeable in the group of 46-55-year-olds. Executive functions are significantly lowered in the group aged 36-45 in comparison to the "younger" groups. The level of cognitive functions shows a mild exacerbation in connection with age, whereas cognitive rigidity proved to be related to the number of years spent without hospital treatment.

  2. The Learning Organization: A Model for Educational Change.

    Science.gov (United States)

    Brown, Rexford

    1997-01-01

    Analyzes public school bureaucracy and ways to reform institutions into learning communities that value shared knowledge and learning experiences. Describes how a bureaucratic organizational structure impairs learning. Proposes the "learning organization" in which adults learn alongside students, planning is decentralized, families are…

  3. Elements of successful communication skills of people with visually impaired

    OpenAIRE

    Zlodej, Marsela

    2013-01-01

    The main topic of the thesis are the answers to the questions, what are the factors of successful communication of persons with visual impairment, and what are the beliefs about communicating that affect on successful communication. The systematic review of the literature identifies communication as a concept and the specification of communication of people with visual impairment. Irrational beliefs are defined; what they are and why they arise. Some ways of learning communication of persons ...

  4. Working memory and new learning following pediatric traumatic brain injury.

    Science.gov (United States)

    Mandalis, Anna; Kinsella, Glynda; Ong, Ben; Anderson, Vicki

    2007-01-01

    Working memory (WM), the ability to monitor, process and maintain task relevant information on-line to respond to immediate environmental demands, is controlled by frontal systems (D'Esposito et al., 2006), which are particularly vulnerable to damage from a traumatic brain injury (TBI). This study employed the adult-based Working Memory model of Baddeley and Hitch (1974) to examine the relationship between working memory function and new verbal learning in children with TBI. A cross-sectional sample of 36 school-aged children with a moderate to severe TBI was compared to age-matched healthy Controls on a series of tasks assessing working memory subsystems: the Phonological Loop (PL) and Central Executive (CE). The TBI group performed significantly more poorly than Controls on the PL measure and the majority of CE tasks. On new learning tasks, the TBI group consistently produced fewer words than Controls across the learning and delayed recall phases. Results revealed impaired PL function related to poor encoding and acquisition on a new verbal learning task in the TBI group. CE retrieval deficits in the TBI group contributed to general memory dysfunction in acquisition, retrieval and recognition memory. These results suggest that the nature of learning and memory deficits in children with TBI is related to working memory impairment.

  5. Cool and hot executive function impairments in violent offenders with antisocial personality disorder with and without psychopathy.

    Directory of Open Access Journals (Sweden)

    Stephane A De Brito

    Full Text Available Impairments in executive function characterize offenders with antisocial personality disorder (ASPD and offenders with psychopathy. However, the extent to which those impairments are associated with ASPD, psychopathy, or both is unknown.The present study examined 17 violent offenders with ASPD and psychopathy (ASPD+P, 28 violent offenders with ASPD without psychopathy (ASPD-P, and 21 healthy non-offenders on tasks assessing cool (verbal working memory and alteration of motor responses to spatial locations and hot (reversal learning, decision-making under risk, and stimulus-reinforcement-based decision-making executive function.In comparison to healthy non-offenders, violent offenders with ASPD+P and those with ASPD-P showed similar impairments in verbal working memory and adaptive decision-making. They failed to learn from punishment cues, to change their behaviour in the face of changing contingencies, and made poorer quality decisions despite longer periods of deliberation. Intriguingly, the two groups of offenders did not differ significantly from the non-offenders in terms of their alteration of motor responses to spatial locations and their levels of risk-taking, indicated by betting, and impulsivity, measured as delay aversion. The performance of the two groups of offenders on the measures of cool and hot executive function did not differ, indicating shared deficits.These documented impairments may help to explain the persistence of antisocial behaviours despite the known risks of the negative consequences of such behaviours.

  6. Low dose EGCG treatment beginning in adolescence does not improve cognitive impairment in a Down syndrome mouse model.

    Science.gov (United States)

    Stringer, Megan; Abeysekera, Irushi; Dria, Karl J; Roper, Randall J; Goodlett, Charles R

    2015-11-01

    Down syndrome (DS) or Trisomy 21 causes intellectual disabilities in humans and the Ts65Dn DS mouse model is deficient in learning and memory tasks. DYRK1A is triplicated in DS and Ts65Dn mice. Ts65Dn mice were given up to ~20mg/kg/day epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, or water beginning on postnatal day 24 and continuing for three or seven weeks, and were tested on a series of behavioral and learning tasks, including a novel balance beam test. Ts65Dn as compared to control mice exhibited higher locomotor activity, impaired novel object recognition, impaired balance beam and decreased spatial learning and memory. Neither EGCG treatment improved performance of the Ts65Dn mice on these tasks. Ts65Dn mice had a non-significant increase in Dyrk1a activity in the hippocampus and cerebellum. Given the translational value of the Ts65Dn mouse model, further studies will be needed to identify the EGCG doses (and mechanisms) that may improve cognitive function. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Characterisation of Physical Frailty and Associated Physical and Functional Impairments in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Ma Shwe Zin Nyunt

    2017-12-01

    Full Text Available ObjectiveTo characterize the physical frailty phenotype and its associated physical and functional impairments in mild cognitive impairment (MCI.MethodParticipants with MCI (N = 119, normal low cognition (NLC, N = 138, and normal high cognition (NHC, N = 1,681 in the Singapore Longitudinal Ageing Studies (SLAS-2 were compared on the prevalence of physical frailty, low lean body mass, weakness, slow gait, exhaustion and low physical activity, and POMA balance and gait impairment and fall risk.ResultsThere were significantly higher prevalence of frailty in MCI (18.5%, than in NLC (8.0% and NHC (3.9%, and pre-frailty in MCI (54.6%, NLC (52.9% than in NHC (48.0%. Age, sex, and ethnicity-adjusted OR (95% CI of association with MCI (versus NHC for frailty were 4.65 (2.40–9.04 and for pre-frailty, 1.67 (1.07–2.61. Similar significantly elevated prevalence and adjusted ORs of association with MCI were observed for frailty-associated physical and functional impairments. Further adjustment for education, marital status, living status, comorbidities, and GDS significantly reduced the OR estimates. However, the OR estimates remained elevated for frailty: 3.86 (1.83–8.17, low body mass: 1.70 (1.08–2.67, slow gait: 1.84 (1.17–2.89, impaired gait: 4.17 (1.98–8.81, and elevated fall risk 3.42 (1.22–9.53.ConclusionTwo-thirds of MCI were physically frail or pre-frail, most uniquely due to low lean muscle mass, slow gait speed, or balance and gait impairment. The close associations of frailty and physical and functional impairment with MCI have important implications for improving diagnostic acuity of MCI and targetting interventions among cognitively frail individuals to prevent dementia and disability.

  8. Learning fast accurate movements requires intact frontostriatal circuits

    Directory of Open Access Journals (Sweden)

    Britne eShabbott

    2013-11-01

    Full Text Available The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound, and difficulties in distinguishing learning deficits from execution impairments (performance confound. We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements, and we addressed the definition and performance confounds by: 1 focusing on an operationally defined core element of motor skill learning (speed-accuracy learning, and 2 using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington’s disease (HD, a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning.

  9. Interaction between age and perceptual similarity in olfactory discrimination learning in F344 rats: relationships with spatial learning

    Science.gov (United States)

    Yoder, Wendy M.; Gaynor, Leslie S.; Burke, Sara N.; Setlow, Barry; Smith, David W.; Bizon, Jennifer L.

    2017-01-01

    Emerging evidence suggests that aging is associated with a reduced ability to distinguish perceptually similar stimuli in one’s environment. As the ability to accurately perceive and encode sensory information is foundational for explicit memory, understanding the neurobiological underpinnings of discrimination impairments that emerge with advancing age could help elucidate the mechanisms of mnemonic decline. To this end, there is a need for preclinical approaches that robustly and reliably model age-associated perceptual discrimination deficits. Taking advantage of rodents’ exceptional olfactory abilities, the present study applied rigorous psychophysical techniques to the evaluation of discrimination learning in young and aged F344 rats. Aging did not influence odor detection thresholds or the ability to discriminate between perceptually distinct odorants. In contrast, aged rats were disproportionately impaired relative to young on problems that required discriminations between perceptually similar olfactory stimuli. Importantly, these disproportionate impairments in discrimination learning did not simply reflect a global learning impairment in aged rats, as they performed other types of difficult discriminations on par with young rats. Among aged rats, discrimination deficits were strongly associated with spatial learning deficits. These findings reveal a new, sensitive behavioral approach for elucidating the neural mechanisms of cognitive decline associated with normal aging. PMID:28259065

  10. Cortical Thickness and Episodic Memory Impairment in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Bizzo, Bernardo Canedo; Sanchez, Tiago Arruda; Tukamoto, Gustavo; Zimmermann, Nicolle; Netto, Tania Maria; Gasparetto, Emerson Leandro

    2017-01-01

    The purpose of this study was to investigate differences in brain cortical thickness of systemic lupus erythematosus (SLE) patients with and without episodic memory impairment and healthy controls. We studied 51 patients divided in 2 groups (SLE with episodic memory deficit, n = 17; SLE without episodic memory deficit, n = 34) by the Rey Auditory Verbal Learning Test and 34 healthy controls. Groups were paired based on sex, age, education, Mini-Mental State Examination score, and accumulation of disease burden. Cortical thickness from magnetic resonance imaging scans was determined using the FreeSurfer software package. SLE patients with episodic memory deficits presented reduced cortical thickness in the left supramarginal cortex and superior temporal gyrus when compared to the control group and in the right superior frontal, caudal, and rostral middle frontal and precentral gyri when compared to the SLE group without episodic memory impairment considering time since diagnosis of SLE as covaried. There were no significant differences in the cortical thickness between the SLE without episodic memory and control groups. Different memory-related cortical regions thinning were found in the episodic memory deficit group when individually compared to the groups of patients without memory impairment and healthy controls. Copyright © 2016 by the American Society of Neuroimaging.

  11. Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment.

    Science.gov (United States)

    Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael

    2007-08-01

    Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.

  12. Event-related potentials reflect impaired temporal interval learning following haloperidol administration.

    Science.gov (United States)

    Forster, Sarah E; Zirnheld, Patrick; Shekhar, Anantha; Steinhauer, Stuart R; O'Donnell, Brian F; Hetrick, William P

    2017-09-01

    Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated. ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy. As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent. Our results support a functional and neurobiological dissociation between the ERN and FRN.

  13. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback.

    Science.gov (United States)

    Whitney, Paul; Hinson, John M; Jackson, Melinda L; Van Dongen, Hans P A

    2015-05-01

    To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Twenty-six subjects (22-40 y of age; 10 women). Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback or because the feedback is not cognitively bound with the choice. This has important

  14. Perceptual reasoning predicts handwriting impairments in adolescents with autism

    Science.gov (United States)

    Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.

    2010-01-01

    Background: We have previously shown that children with autism spectrum disorder (ASD) have specific handwriting deficits consisting of poor form, and that these deficits are predicted by their motor abilities. It is not known whether the same handwriting impairments persist into adolescence and whether they remain linked to motor deficits. Methods: A case-control study of handwriting samples from adolescents with and without ASD was performed using the Minnesota Handwriting Assessment. Samples were scored on an individual letter basis in 5 categories: legibility, form, alignment, size, and spacing. Subjects were also administered an intelligence test and the Physical and Neurological Examination for Subtle (Motor) Signs (PANESS). Results: We found that adolescents with ASD, like children, show overall worse performance on a handwriting task than do age- and intelligence-matched controls. Also comparable to children, adolescents with ASD showed motor impairments relative to controls. However, adolescents with ASD differ from children in that Perceptual Reasoning Indices were significantly predictive of handwriting performance whereas measures of motor skills were not. Conclusions: Like children with ASD, adolescents with ASD have poor handwriting quality relative to controls. Despite still demonstrating motor impairments, in adolescents perceptual reasoning is the main predictor of handwriting performance, perhaps reflecting subjects' varied abilities to learn strategies to compensate for their motor impairments. GLOSSARY ASD = autism spectrum disorder; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; PANESS = Physical and Neurological Examination for Subtle (Motor) Signs; PRI = Perceptual Reasoning Index; WASI = Wechsler Abbreviated Scale of Intelligence; WISC = Wechsler Intelligence Scale for Children IV. PMID:21079184

  15. Isoflurane Exposure Rescues Short-term Learning and Memory in Sleep-Disturbed Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Zena Chatila

    2017-10-01

    Full Text Available Sleep is known to play an important role in cognition, learning and memory. As Drosophila melanogaster have stable circadian rhythms and behavioral states similar to those of human sleep, they have been a useful model to investigate the effects of sleep on learning and memory. General anesthesia has been shown to cause cognitive impairments in humans. However, anesthesia also induces a behavioral state similar to sleep and may activate sleep pathways. This study examined learning and memory after an acute exposure of isoflurane in a Drosophila mutant model of restless leg syndrome. There were two possible outcomes: isoflurane (an anesthetic could have impaired cognitive functioning or enhanced learning and memory by activating sleep pathways. Given the acute cognitive impairments often observed postoperatively, we believed the former outcome to be the most likely. Flies with fragmented sleep had impaired performance on an aversive phototaxic suppression learning and memory task compared to wildtype flies. This deficit was rescued with isoflurane exposure, as no differences in learning were observed between mutant and wildtype flies treated with anesthesia. This result suggests that anesthesia exposure can ameliorate impaired learning and memory due to sleep fragmentation. Further investigations are required to determine the type of memory impacted by anesthesia and the mechanisms by which anesthesia induces this effect.

  16. Impaired face recognition is associated with social inhibition.

    Science.gov (United States)

    Avery, Suzanne N; VanDerKlok, Ross M; Heckers, Stephan; Blackford, Jennifer U

    2016-02-28

    Face recognition is fundamental to successful social interaction. Individuals with deficits in face recognition are likely to have social functioning impairments that may lead to heightened risk for social anxiety. A critical component of social interaction is how quickly a face is learned during initial exposure to a new individual. Here, we used a novel Repeated Faces task to assess how quickly memory for faces is established. Face recognition was measured over multiple exposures in 52 young adults ranging from low to high in social inhibition, a core dimension of social anxiety. High social inhibition was associated with a smaller slope of change in recognition memory over repeated face exposure, indicating participants with higher social inhibition showed smaller improvements in recognition memory after seeing faces multiple times. We propose that impaired face learning is an important mechanism underlying social inhibition and may contribute to, or maintain, social anxiety. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  18. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems.

    Science.gov (United States)

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning.

  19. Effects of thioperamide on seizure development and memory impairment induced by pentylenetetrazole-kindling epilepsy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-san; CHEN Jie-fang; CHEN Guan-feng; HU Xing-yue; DING Mei-ping

    2013-01-01

    Background Histamine H3 receptor antagonists have been considered as potential drugs to treat central nervous system diseases.However,whether these drugs can inhibit epileptogenesis remains unclear.This study aimed to investigate the effects of thioperamide,a selective and potent histamine H3 receptor antagonist,on the seizure development and memory impairment induced by pentylenetetrazole (PTZ)-kindling epilepsy in rats.Methods Chemical kindling was elicited by repeated intraperitoneal (ip) injections of a subconvulsant dose of PTZ (35 mg/kg) once every 48 hours for 12 times,and seizure activity of kindling was recorded for 30 minutes.Control rats were ip injected with saline instead of PTZ.Morris water maze was used to evaluate the spatial memory.Phosphorylated cyclic adenosine monophosphate response element binding protein (p-CREB) was tested by Western blotting in hippocampus.Results Intracerebroventricular (icv) injections with thioperamide (10 μg,20 μg) 30 minutes before every PTZ injections,significantly prolonged the onset of PTZ-kindling and inhibited the seizure stages.PTZ-kindling seizures led to the impairment of spatial memory in rats,and thioperamide ameliorated the impairment of spatial learning and memory.Compared to non-kindling rats,there was a significant decrease in p-CREB level in hippocampus of the PTZ-kindling rats,which was reversed by thioperamide.Conclusions Thioperamide plays a protective role in seizure development and cognitive impairment of PTZ-induced kindling in rats.The protection of thioperamide in cognitive impairment is possibly associated with the enhancement of CREB-dependent transcription.

  20. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Nikitidou, Litsa; Ledri, Marco

    2009-01-01

    (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY...... is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected...... injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP...

  1. Quality of Life for Individuals with Hearing Impairment Who Have Not Consulted for Services and Their Significant Others: Same- and Different-Sex Couples

    Science.gov (United States)

    Kelly, Rebecca J.; Atcherson, Samuel R.

    2011-01-01

    The purpose of this exploratory study was to assess perceptions of quality of life for individuals with hearing impairment who have not consulted for services and their significant others who are in same-sex relationships vs. those who are in different-sex relationships. Data were collected on a total of 20 older couples: 10 in same-sex…

  2. Noradrenergic Stimulation Impairs Memory Generalization in Women.

    Science.gov (United States)

    Kluen, Lisa Marieke; Agorastos, Agorastos; Wiedemann, Klaus; Schwabe, Lars

    2017-07-01

    Memory generalization is essential for adaptive decision-making and action. Our ability to generalize across past experiences relies on medial-temporal lobe structures, known to be highly sensitive to stress. Recent evidence suggests that stressful events may indeed interfere with memory generalization. Yet, the mechanisms involved in this generalization impairment are unknown. We tested here whether a pharmacological elevation of major stress mediators-noradrenaline and glucocorticoids-is sufficient to disrupt memory generalization. In a double-blind, placebo-controlled design, healthy men and women received orally a placebo, hydrocortisone, the α2-adrenoceptor antagonist yohimbine that leads to increased noradrenergic stimulation, or both drugs, before they completed an associative learning task probing memory generalization. Drugs left learning performance intact. Yohimbine, however, led to a striking generalization impairment in women, but not in men. Hydrocortisone, in turn, had no effect on memory generalization, neither in men nor in women. The present findings indicate that increased noradrenergic activity, but not cortisol, is sufficient to disrupt memory generalization in a sex-specific manner, with relevant implications for stress-related mental disorders characterized by generalization deficits.

  3. Probabilistic Category Learning in Developmental Dyslexia: Evidence from Feedback and Paired-Associate Weather Prediction Tasks

    Science.gov (United States)

    Gabay, Yafit; Vakil, Eli; Schiff, Rachel; Holt, Lori L.

    2015-01-01

    Objective Developmental dyslexia is presumed to arise from specific phonological impairments. However, an emerging theoretical framework suggests that phonological impairments may be symptoms stemming from an underlying dysfunction of procedural learning. Method We tested procedural learning in adults with dyslexia (n=15) and matched-controls (n=15) using two versions of the Weather Prediction Task: Feedback (FB) and Paired-associate (PA). In the FB-based task, participants learned associations between cues and outcomes initially by guessing and subsequently through feedback indicating the correctness of response. In the PA-based learning task, participants viewed the cue and its associated outcome simultaneously without overt response or feedback. In both versions, participants trained across 150 trials. Learning was assessed in a subsequent test without presentation of the outcome, or corrective feedback. Results The Dyslexia group exhibited impaired learning compared with the Control group on both the FB and PA versions of the weather prediction task. Conclusions The results indicate that the ability to learn by feedback is not selectively impaired in dyslexia. Rather it seems that the probabilistic nature of the task, shared by the FB and PA versions of the weather prediction task, hampers learning in those with dyslexia. Results are discussed in light of procedural learning impairments among participants with dyslexia. PMID:25730732

  4. Social Inequality and Visual Impairment in Older People.

    Science.gov (United States)

    Whillans, Jennifer; Nazroo, James

    2018-03-02

    Visual impairment is the leading cause of age-related disability, but the social patterning of loss of vision in older people has received little attention. This study's objective was to assess the association between social position and onset of visual impairment, to empirically evidence health inequalities in later life. Visual impairment was measured in 2 ways: self-reporting fair vision or worse (moderate) and self-reporting poor vision or blindness (severe). Correspondingly, 2 samples were drawn from the English Longitudinal Study on Ageing (ELSA). First, 7,483 respondents who had good vision or better at Wave 1; second, 8,487 respondents who had fair vision or better at Wave 1. Survival techniques were used. Cox proportional hazards models showed wealth and subjective social status (SSS) were significant risk factors associated with the onset of visual impairment. The risk of onset of moderate visual impairment was significantly higher for the lowest and second lowest wealth quintiles, whereas the risk of onset of severe visual impairment was significantly higher for the lowest, second, and even middle wealth quintiles, compared with the highest wealth quintile. Independently, lower SSS was associated with increased risk of onset of visual impairment (both measures), particularly so for those placing themselves on the lowest rungs of the social ladder. The high costs of visual impairment are disproportionately felt by the worst off elderly. Both low wealth and low SSS significantly increase the risk of onset of visual impairment.

  5. Assistive technology as reading interventions for children with reading impairments with a one-year follow-up.

    Science.gov (United States)

    Lindeblad, Emma; Nilsson, Staffan; Gustafson, Stefan; Svensson, Idor

    2017-10-01

    This pilot study investigated the possible transfer effect on reading ability in children with reading difficulties after a systematic intervention to train and compensate for reading deficiencies by using applications in smartphones and tablets. The effects of using assistive technology (AT) one year after the interventions were completely studied. School related motivation, independent learning and family relations were also considered. 35 pupils aged 10-12 years participated. They were assessed five times with reading tests. The participants, their parents and teachers were surveyed with questionnaires regarding their experience of using AT. The data from the assessments were analyzed with paired t-tests and Wilcoxon signed-rank tests. The data from the questionnaires were analyzed using content analysis. The paper shows that using AT can create transfer effects on reading ability one year after the interventions were finished. This means that reading impaired children may develop at the same rate as non-impaired readers. Also, increased school motivation and an increase in independent learning and family effects have been shown. This paper provides implications in how to facilitate reading impaired pupils' learning process and realizes the need to challenge the concept of reading to change to fit modern means of gaining information. Implications for rehabilitation Children with reading impairment could benefit from assistive technology in regards of their reading development process and increase their chances of not falling behind peers. Assistive technology as applications in smartphones and tablets may aid children with reading impairment to have an equal platform for learning in school as their peers without reading difficulties. Assistive technology could facilitate the information gaining process and subsequently increase motivation to learn and increase interest in reading activities. Assistive technology had wider effects on its users: stigmatizing

  6. A β Damages Learning and Memory in Alzheimer's Disease Rats with Kidney-Yang Deficiency

    OpenAIRE

    Qi, Dongmei; Qiao, Yongfa; Zhang, Xin; Yu, Huijuan; Cheng, Bin; Qiao, Haifa

    2012-01-01

    Previous studies demonstrated that Alzheimer's disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal A β 40 and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synapti...

  7. Impaired Cognition in Rats with Cortical Dysplasia: Additional Impact of Early-Life Seizures

    Science.gov (United States)

    Lucas, Marcella M.; Lenck-Santini, Pierre-Pascal; Holmes, Gregory L.; Scott, Rod C.

    2011-01-01

    One of the most common and serious co-morbidities in patients with epilepsy is cognitive impairment. While early-life seizures are considered a major cause for cognitive impairment, it is not known whether it is the seizures, the underlying neurological substrate or a combination that has the largest impact on eventual learning and memory. Teasing…

  8. Emotion-based learning systems and the development of morality.

    Science.gov (United States)

    Blair, R J R

    2017-10-01

    In this paper it is proposed that important components of moral development and moral judgment rely on two forms of emotional learning: stimulus-reinforcement and response-outcome learning. Data in support of this position will be primarily drawn from work with individuals with the developmental condition of psychopathy as well as fMRI studies with healthy individuals. Individuals with psychopathy show impairment on moral judgment tasks and a pronounced increased risk for instrumental antisocial behavior. It will be argued that these impairments are developmental consequences of impaired stimulus-aversive conditioning on the basis of distress cue reinforcers and response-outcome learning in individuals with this disorder. Copyright © 2017. Published by Elsevier B.V.

  9. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    Science.gov (United States)

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  10. Instilling positive beliefs about disabilities: pilot testing a novel experiential learning activity for rehabilitation students.

    Science.gov (United States)

    Silverman, Arielle M; Pitonyak, Jennifer S; Nelson, Ian K; Matsuda, Patricia N; Kartin, Deborah; Molton, Ivan R

    2018-05-01

    To develop and test a novel impairment simulation activity to teach beginning rehabilitation students how people adapt to physical impairments. Masters of Occupational Therapy students (n = 14) and Doctor of Physical Therapy students (n = 18) completed the study during the first month of their program. Students were randomized to the experimental or control learning activity. Experimental students learned to perform simple tasks while simulating paraplegia and hemiplegia. Control students viewed videos of others completing tasks with these impairments. Before and after the learning activities, all students estimated average self-perceived health, life satisfaction, and depression ratings among people with paraplegia and hemiplegia. Experimental students increased their estimates of self-perceived health, and decreased their estimates of depression rates, among people with paraplegia and hemiplegia after the learning activity. The control activity had no effect on these estimates. Impairment simulation can be an effective way to teach rehabilitation students about the adaptations that people make to physical impairments. Positive impairment simulations should allow students to experience success in completing activities of daily living with impairments. Impairment simulation is complementary to other pedagogical methods, such as simulated clinical encounters using standardized patients. Implication of Rehabilitation It is important for rehabilitation students to learn how people live well with disabilities. Impairment simulations can improve students' assessments of quality of life with disabilities. To be beneficial, impairment simulations must include guided exposure to effective methods for completing daily tasks with disabilities.

  11. Revisiting nicotine's role in the ageing brain and cognitive impairment

    DEFF Research Database (Denmark)

    Majdi, Alireza; Kamari, Farzin; Vafaee, Manouchehr Seyedi

    2017-01-01

    Brain ageing is a complex process which in its pathologic form is associated with learning and memory dysfunction or cognitive impairment. During ageing, changes in cholinergic innervations and reduced acetylcholinergic tonus may trigger a series of molecular pathways participating in oxidative...... in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment....

  12. Quantifying the Clinical Significance of Cannabis Withdrawal

    Science.gov (United States)

    Allsop, David J.; Copeland, Jan; Norberg, Melissa M.; Fu, Shanlin; Molnar, Anna; Lewis, John; Budney, Alan J.

    2012-01-01

    Background and Aims Questions over the clinical significance of cannabis withdrawal have hindered its inclusion as a discrete cannabis induced psychiatric condition in the Diagnostic and Statistical Manual of Mental Disorders (DSM IV). This study aims to quantify functional impairment to normal daily activities from cannabis withdrawal, and looks at the factors predicting functional impairment. In addition the study tests the influence of functional impairment from cannabis withdrawal on cannabis use during and after an abstinence attempt. Methods and Results A volunteer sample of 49 non-treatment seeking cannabis users who met DSM-IV criteria for dependence provided daily withdrawal-related functional impairment scores during a one-week baseline phase and two weeks of monitored abstinence from cannabis with a one month follow up. Functional impairment from withdrawal symptoms was strongly associated with symptom severity (p = 0.0001). Participants with more severe cannabis dependence before the abstinence attempt reported greater functional impairment from cannabis withdrawal (p = 0.03). Relapse to cannabis use during the abstinence period was associated with greater functional impairment from a subset of withdrawal symptoms in high dependence users. Higher levels of functional impairment during the abstinence attempt predicted higher levels of cannabis use at one month follow up (p = 0.001). Conclusions Cannabis withdrawal is clinically significant because it is associated with functional impairment to normal daily activities, as well as relapse to cannabis use. Sample size in the relapse group was small and the use of a non-treatment seeking population requires findings to be replicated in clinical samples. Tailoring treatments to target withdrawal symptoms contributing to functional impairment during a quit attempt may improve treatment outcomes. PMID:23049760

  13. Quantifying the clinical significance of cannabis withdrawal.

    Directory of Open Access Journals (Sweden)

    David J Allsop

    Full Text Available Questions over the clinical significance of cannabis withdrawal have hindered its inclusion as a discrete cannabis induced psychiatric condition in the Diagnostic and Statistical Manual of Mental Disorders (DSM IV. This study aims to quantify functional impairment to normal daily activities from cannabis withdrawal, and looks at the factors predicting functional impairment. In addition the study tests the influence of functional impairment from cannabis withdrawal on cannabis use during and after an abstinence attempt.A volunteer sample of 49 non-treatment seeking cannabis users who met DSM-IV criteria for dependence provided daily withdrawal-related functional impairment scores during a one-week baseline phase and two weeks of monitored abstinence from cannabis with a one month follow up. Functional impairment from withdrawal symptoms was strongly associated with symptom severity (p=0.0001. Participants with more severe cannabis dependence before the abstinence attempt reported greater functional impairment from cannabis withdrawal (p=0.03. Relapse to cannabis use during the abstinence period was associated with greater functional impairment from a subset of withdrawal symptoms in high dependence users. Higher levels of functional impairment during the abstinence attempt predicted higher levels of cannabis use at one month follow up (p=0.001.Cannabis withdrawal is clinically significant because it is associated with functional impairment to normal daily activities, as well as relapse to cannabis use. Sample size in the relapse group was small and the use of a non-treatment seeking population requires findings to be replicated in clinical samples. Tailoring treatments to target withdrawal symptoms contributing to functional impairment during a quit attempt may improve treatment outcomes.

  14. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    Science.gov (United States)

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  15. Perinatal exposure to bisphenol-A impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain.

    Directory of Open Access Journals (Sweden)

    Dhiraj Kumar

    Full Text Available Bisphenol-A (BPA, a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effect of perinatal exposure to BPA on the expression of synaptic proteins neurexin1 (Nrxn1 and neuroligin3 (Nlgn3, dendritic spine density and spatial memory in postnatal male mice. The pregnant mice were orally administered BPA (50 µg/kgbw/d from gestation day (GD 7 to postnatal day (PND 21 and sesame oil was used as a vehicle control. In Morris water maze (MWM test, BPA extended the escape latency time to locate the hidden platform in 8 weeks male mice. RT-PCR and Immunoblotting results showed significant upregulation of Nrxn1 and Nlgn3 expression in both cerebral cortex and hippocampus of 3 and 8 weeks male mice. This was further substantiated by in-situ hybridization and immunofluorescence techniques. BPA also significantly increased the density of dendritic spines in both regions, as analyzed by rapid Golgi staining. Thus our data suggest that perinatal exposure to BPA impairs spatial memory through upregulation of expression of synaptic proteins Nrxn1 and Nlgn3 and increased dendritic spine density in cerebral cortex and hippocampus of postnatal male mice.

  16. Clinical peculiarities of antibiotic associated bowels impairment and its significance in irritable bowel syndrome appearance

    Directory of Open Access Journals (Sweden)

    І. O. Pasichna

    2016-06-01

    Full Text Available Aim: the main objective of this study was to investigate bowels impairment due to treatment with antibiotics, its incidence and clinical peculiarities; to evaluate its role in appearance of in irritable bowel syndrome. Material and Methods. We studied 110 patients (33 males and 77 females, age range 16-83 years, who received treatment with antibiotic. We evaluated the function of the intestine before treatment with antibiotic, then in 1 week, 3 months after treatment finish (1, 2, 3, 4 visits respectively. Control group included 20 healthy persons, who haven't had antibiotics administered during recent two years. Results. We revealed that the signs of bowel function impairment took place at the first visit in 18.2% of patients, at the second visit – in 60.0% of patients, at the third visit – in 45.5% of patients and at the fourth visit – in 41.1% of patients. At the second, third and fourth visits the signs of bowels function impairment were observed reliably more often then at the first visit (before antibiotic administration, p<0.001. At the second visit the signs bowels function disorders were the most prominent: abdominal pain – in 44.5%, distention – in 46.4%, diarrhea – in 29.1%, constipation – in 18.2%, presence of both (diarrhea and periodically constipation manifestations – in 2.7%; and extraintestinal manifestations (depression. depressed mood, sorrow, apathy, decreased stamina, sleep disturbances – in 29.1% of patients. Clinical manifestations of irritable bowel syndrome occured in 6 months of observation in 32.2% of patients. Conclusions. The signs of bowel function impairment were observed in 60.0% of patients after finishing treatment with antibiotic. This incidence is much higher than in control group (р<0.001. Bowel disorders mostly manifested as the changes in quantity and consistency of feaces, pain, abdominal distention and extraintestinal manifestations. In 32.2% of patients clinical manifestations of

  17. Can you spell dyslexia without SLI? Comparing the cognitive profiles of dyslexia and specific language impairment and their roles in learning.

    Science.gov (United States)

    Alloway, Tracy Packiam; Tewolde, Furtuna; Skipper, Dakota; Hijar, David

    2017-06-01

    The aim of the present study is to explore whether those with Specific Language Impairment (SLI) and dyslexia display distinct or overlapping cognitive profiles with respect to learning outcomes. In particular, we were interested in two key cognitive skills associated with academic performance - working memory and IQ. We recruited three groups of children - those with SLI, those with dyslexia, and a control group. All children were given standardized tests of working memory, IQ (vocabulary and matrix), spelling, and math. The pattern of results suggests that both children with dyslexia and SLI are characterized with poorer verbal working memory and IQ compared to controls, but preserved nonverbal cognitive skills. It appears that that these two disorder groups cannot be distinguished by the severity of their cognitive deficits. However, there was a differential pattern with respect to learning outcomes, where the children with dyslexia rely more on visual skills in spelling, while those with SLI use their relative strengths in vocabulary. These findings can have important implications for how intervention is tailored in the classroom, as disorder-specific support could yield important gains in learning. Copyright © 2017. Published by Elsevier Ltd.

  18. Correlation of MRI Visual Scales with Neuropsychological Profile in Mild Cognitive Impairment of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Vasconcellos

    2017-01-01

    Full Text Available Few studies have evaluated magnetic resonance imaging (MRI visual scales in Parkinson’s disease-Mild Cognitive Impairment (PD-MCI. We selected 79 PD patients and 92 controls (CO to perform neurologic and neuropsychological evaluation. Brain MRI was performed to evaluate the following scales: Global Cortical Atrophy (GCA, Fazekas, and medial temporal atrophy (MTA. The analysis revealed that both PD groups (amnestic and nonamnestic showed worse performance on several tests when compared to CO. Memory, executive function, and attention impairment were more severe in amnestic PD-MCI group. Overall analysis of frequency of MRI visual scales by MCI subtype did not reveal any statistically significant result. Statistically significant inverse correlation was observed between GCA scale and Mini-Mental Status Examination (MMSE, Montreal Cognitive Assessment (MoCA, semantic verbal fluency, Stroop test, figure memory test, trail making test (TMT B, and Rey Auditory Verbal Learning Test (RAVLT. The MTA scale correlated with Stroop test and Fazekas scale with figure memory test, digit span, and Stroop test according to the subgroup evaluated. Visual scales by MRI in MCI should be evaluated by cognitive domain and might be more useful in more severely impaired MCI or dementia patients.

  19. Symptoms predicting psychosocial impairment in bulimia nervosa.

    Science.gov (United States)

    Jenkins, Paul E; Staniford, Jessica; Luck, Amy

    2017-05-12

    The current study aimed to determine which particular eating disorder (ED) symptoms and related features, such as BMI and psychological distress, uniquely predict impairment in bulimia nervosa (BN). Two hundred and twenty-two adults with BN completed questionnaires assessing ED symptoms, general psychological distress, and psychosocial impairment. Regression analyses were used to determine predictors which account for variance in impairment. Four variables emerged as significant predictors of psychosocial impairment: concerns with eating; concerns with weight and shape; dietary restraint; and general psychological distress. Findings support previous work highlighting the importance of weight and shape concerns in determining ED-related impairment. Other ED symptoms, notably dietary restraint and concerns with eating, were also significant predictors as was psychological distress. Results suggest that cognitive aspects of EDs, in addition to psychological distress, may be more important determinants of impairment than behavioural symptoms, such as binge eating or purging.

  20. Advocating for a Population-Specific Health Literacy for People With Visual Impairments.

    Science.gov (United States)

    Harrison, Tracie; Lazard, Allison

    2015-01-01

    Health literacy, the ability to access, process, and understand health information, is enhanced by the visual senses among people who are typically sighted. Emotions, meaning, speed of knowledge transfer, level of attention, and degree of relevance are all manipulated by the visual design of health information when people can see. When consumers of health information are blind or visually impaired, they access, process, and understand their health information in a multitude of methods using a variety of accommodations depending upon their severity and type of impairment. They are taught, or they learn how, to accommodate their differences by using alternative sensory experiences and interpretations. In this article, we argue that due to the unique and powerful aspects of visual learning and due to the differences in knowledge creation when people are not visually oriented, health literacy must be considered a unique construct for people with visual impairment, which requires a distinctive theoretical basis for determining the impact of their mind-constructed representations of health.

  1. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  2. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    Science.gov (United States)

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (Psleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Low dose prenatal alcohol exposure does not impair spatial learning and memory in two tests in adult and aged rats.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol ethanol (EtOH or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult or 15 months (Aged of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance.

  4. Subclinical hypothyroidism in pregnant rats impaired learning and memory of their offspring by promoting the p75NTR signal pathway

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2018-05-01

    Full Text Available Objective: Maternal hypothyroidism during pregnancy can affect the neurodevelopment of their offspring. This study aimed to investigate the effects of maternal subclinical hypothyroidism (SCH on spatial learning and memory, and its relationship with the apoptotic factors in cerebral cortex of the offspring. Methods: Female adult Wistar rats were randomly divided into three groups (n = 15 per group: control (CON group, SCH group and overt hypothyroidism (OH group. Spatial learning and memory in the offspring were evaluated by long-term potentiation (LTP and Morris water-maze (MWM test. The protein expression of the p75 neurotrophin receptor (p75NTR, phospho-c-Jun N-terminal kinase (p-JNK, the pro-apoptotic protein p53 and Bax were detected by Western blotting. Results: The Pups in the SCH and OH groups showed longer escape latencies in the MWM and decreased field-excitatory post synaptic potentials in LTP tests compared with those in the CON group. p75NTR, p-JNK, p53 and Bax expression levels in the cerebral cortex increased in pups in the SCH and OH groups compared with those in the CON group. Conclusions: Maternal SCH during pregnancy may impair spatial learning and memory in the offspring and may be associated with the increased apoptosis in the cerebral cortex.

  5. Effects of aging on strategic-based visuomotor learning.

    Science.gov (United States)

    Alfonso Uresti-Cabrera, Luis; Vaca-Palomares, Israel; Diaz, Rosalinda; Beltran-Parrazal, Luis; Fernandez-Ruiz, Juan

    2015-08-27

    There are different kinds of visuomotor learnings. One of the most studied is error-based learning where the information about the sign and magnitude of the error is used to update the motor commands. However, there are other instances where subjects show visuomotor learning even if the use of error sign and magnitude information is precluded. In those instances subjects could be using strategic instead of procedural adaptation mechanisms. Here, we present the results of the effect of aging on visuomotor strategic learning under a reversed error feedback condition, and its contrast with procedural visuomotor learning within the same participants. A number of measures were obtained from a task consisting of throwing clay balls to a target before, during and after wearing lateral displacing or reversing prisms. The displacing prism results show an age dependent decrease on the learning rate that corroborates previous findings. The reversing prism results also show significant adaptation impairment in the aged population. However, decreased reversing learning in the older group was the result of an increase in the number of subjects that could not adapt to the reversing prism, and not on a reduction of the learning capacity of all the individuals of the group. These results suggest a significant deleterious effect of aging on visuomotor strategic learning implementation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Cognitive Training Using a Novel Memory Game on an iPad in Patients with Amnestic Mild Cognitive Impairment (aMCI).

    Science.gov (United States)

    Savulich, George; Piercy, Thomas; Fox, Chris; Suckling, John; Rowe, James B; O'Brien, John T; Sahakian, Barbara J

    2017-08-01

    Cognitive training is effective in patients with mild cognitive impairment but does not typically address the motivational deficits associated with older populations with memory difficulties. We conducted a randomized controlled trial of cognitive training using a novel memory game on an iPad in 42 patients with a diagnosis of amnestic mild cognitive impairment assigned to either the cognitive training (n=21; 8 hours of gameplay over 4 weeks) or control (n=21; clinic visits as usual) groups. Significant time-by-pattern-by-group interactions were found for cognitive performance in terms of the number of errors made and trials needed on the Cambridge Neuropsychological Test Automated Battery Paired Associates Learning task (P=.044; P=.027). Significant time-by-group interactions were also found for the Cambridge Neuropsychological Test Automated Battery Paired Associates Learning first trial memory score (P=.002), Mini-Mental State Examination (P=.036), the Brief Visuospatial Memory Test (P=.032), and the Apathy Evaluation Scale (P=.026). Within-group comparisons revealed highly specific effects of cognitive training on episodic memory. The cognitive training group maintained high levels of enjoyment and motivation to continue after each hour of gameplay, with self-confidence and self-rated memory ability improving over time. Episodic memory robustly improved in the cognitive training group. "Gamified" cognitive training may also enhance visuospatial abilities in patients with amnestic mild cognitive impairment. Gamification maximizes engagement with cognitive training by increasing motivation and could complement pharmacological treatments for amnestic mild cognitive impairment and mild Alzheimer's disease. Larger, more controlled trials are needed to replicate and extend these findings. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  7. Rule-based learning of regular past tense in children with specific language impairment.

    Science.gov (United States)

    Smith-Lock, Karen M

    2015-01-01

    The treatment of children with specific language impairment was used as a means to investigate whether a single- or dual-mechanism theory best conceptualizes the acquisition of English past tense. The dual-mechanism theory proposes that regular English past-tense forms are produced via a rule-based process whereas past-tense forms of irregular verbs are stored in the lexicon. Single-mechanism theories propose that both regular and irregular past-tense verbs are stored in the lexicon. Five 5-year-olds with specific language impairment received treatment for regular past tense. The children were tested on regular past-tense production and third-person singular "s" twice before treatment and once after treatment, at eight-week intervals. Treatment consisted of one-hour play-based sessions, once weekly, for eight weeks. Crucially, treatment focused on different lexical items from those in the test. Each child demonstrated significant improvement on the untreated past-tense test items after treatment, but no improvement on the untreated third-person singular "s". Generalization to untreated past-tense verbs could not be attributed to a frequency effect or to phonological similarity of trained and tested items. It is argued that the results are consistent with a dual-mechanism theory of past-tense inflection.

  8. Oral exposure to low-dose of nonylphenol impairs memory performance in Sprague-Dawley rats.

    Science.gov (United States)

    Kawaguchi, Shinichiro; Kuwahara, Rika; Kohara, Yumi; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-02-01

    Nonylphenol ethoxylate (NPE) is a non-ionic surfactant, that is degraded to short-chain NPE and 4-nonylphenol (NP) by bacteria in the environment. NP, one of the most common environmental endocrine disruptors, exhibits weak estrogen-like activity. In this study, we investigated whether oral administration of NP (at 0.5 and 5 mg/kg doses) affects spatial learning and memory, general activity, emotionality, and fear-motivated learning and memory in male and female Sprague-Dawley (SD) rats. SD rats of both sexes were evaluated using a battery of behavioral tests, including an appetite-motivated maze test (MAZE test) that was used to assess spatial learning and memory. In the MAZE test, the time required to reach the reward in male rats treated with 0.5 mg/kg NP group and female rats administered 5 mg/kg NP was significantly longer than that for control animals of the corresponding sex. In other behavioral tests, no significant differences were observed between the control group and either of the NP-treated groups of male rats. In female rats, inner and ambulation values for animals administered 0.5 mg/kg NP were significantly higher than those measured in control animals in open-field test, while the latency in the group treated with 5 mg/kg NP was significantly shorter compared to the control group in step-through passive avoidance test. This study indicates that oral administration of a low-dose of NP slightly impairs spatial learning and memory performance in male and female rats, and alters emotionality and fear-motivated learning and memory in female rats only.

  9. Explicit and implicit reinforcement learning across the psychosis spectrum.

    Science.gov (United States)

    Barch, Deanna M; Carter, Cameron S; Gold, James M; Johnson, Sheri L; Kring, Ann M; MacDonald, Angus W; Pizzagalli, Diego A; Ragland, J Daniel; Silverstein, Steven M; Strauss, Milton E

    2017-07-01

    Motivational and hedonic impairments are core features of a variety of types of psychopathology. An important aspect of motivational function is reinforcement learning (RL), including implicit (i.e., outside of conscious awareness) and explicit (i.e., including explicit representations about potential reward associations) learning, as well as both positive reinforcement (learning about actions that lead to reward) and punishment (learning to avoid actions that lead to loss). Here we present data from paradigms designed to assess both positive and negative components of both implicit and explicit RL, examine performance on each of these tasks among individuals with schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis, and examine their relative relationships to specific symptom domains transdiagnostically. None of the diagnostic groups differed significantly from controls on the implicit RL tasks in either bias toward a rewarded response or bias away from a punished response. However, on the explicit RL task, both the individuals with schizophrenia and schizoaffective disorder performed significantly worse than controls, but the individuals with bipolar did not. Worse performance on the explicit RL task, but not the implicit RL task, was related to worse motivation and pleasure symptoms across all diagnostic categories. Performance on explicit RL, but not implicit RL, was related to working memory, which accounted for some of the diagnostic group differences. However, working memory did not account for the relationship of explicit RL to motivation and pleasure symptoms. These findings suggest transdiagnostic relationships across the spectrum of psychotic disorders between motivation and pleasure impairments and explicit RL. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Cognitive impairment is associated with Hoehn and Yahr stages in early, de novo Parkinson disease patients.

    Science.gov (United States)

    Siciliano, Mattia; De Micco, Rosa; Trojano, Luigi; De Stefano, Manuela; Baiano, Chiara; Passaniti, Carla; De Mase, Antonio; Russo, Antonio; Tedeschi, Gioacchino; Tessitore, Alessandro

    2017-08-01

    The relationship between motor impairment and cognitive deterioration has long been described in Parkinson's disease (PD). The aim of the study was to compare cognitive performance of de novo PD patients in relation to the motor impairment severity according to Hoehn and Yahr (HY) stages. Forty de novo PD patients at HY stage I and 40 patients at HY stage II completed a standardized neuropsychological battery. A multivariate analysis of covariance was used to compare cognitive performance between HY groups. Odds ratios (ORs) were employed to explore the risk of cognitive impairment between HY stages. Finally, the prevalence of mild cognitive impairment (MCI) was estimated for patients in HY stage I and II. Patients at HY stage I obtained better scores on neuropsychological tests than patients at HY stage II (p = 0.001). Univariate analysis of covariance revealed significant differences between HY stages on Rey's auditory verbal learning test -immediate recall (p cognitive impairment were greater for HY stage II than stage I group. MCI occurred in 7.5% of patients in HY stage I, and in 42.5% of patients in HY stage II. In de novo PD patients, the severity of motor impairment at the diagnosis is associated to cognitive deficits and higher risk of MCI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The relationship between separation anxiety and impairment

    Science.gov (United States)

    Foley, Debra L; Rowe, Richard; Maes, Hermine; Silberg, Judy; Eaves, Lindon; Pickles, Andrew

    2009-01-01

    The goal of this study was to characterize the contemporaneous and prognostic relationship between symptoms of separation anxiety disorder (SAD) and associated functional impairment. The sample comprised n=2067 8–16 year-old twins from a community-based registry. Juvenile subjects and their parents completed a personal interview on two occasions, separated by an average follow-up period of 18 months, about the subject’s current history of SAD and associated functional impairment. Results showed that SAD symptoms typically caused very little impairment but demonstrated significant continuity over time. Older youth had significantly more persistent symptoms than younger children. Prior symptom level independently predicted future symptom level and diagnostic symptom threshold, with and without impairment. Neither diagnostic threshold nor severity of impairment independently predicted outcomes after taking account of prior symptom levels. The results indicate that impairment may index current treatment need but symptom levels provide the best information about severity and prognosis. PMID:17658718

  12. Hippocampal infusions of apolipoprotein E peptides induce long-lasting cognitive impairment.

    Science.gov (United States)

    Eddins, Donnie; Klein, Rebecca C; Yakel, Jerrel L; Levin, Edward D

    2009-04-29

    The inheritance of the varepsilon4 allele of apolipoprotein E (ApoE4) and cholinergic system dysfunction have long been associated with the pathology of Alzheimer's disease (AD). Recently, in vitro studies have established a direct link between ApoE and cholinergic function in that synthetic peptides containing segments of the ApoE protein (ApoE(133-149) and ApoE(141-148)) interact with alpha7 nicotinic acetylcholine receptors (nAChRs) in the hippocampus. This raises the possibility that ApoE peptides may contribute to cognitive impairment in AD in that the hippocampus plays a key role in cognitive functioning. To test this, we acutely infused ApoE peptides into the ventral hippocampus of female Sprague-Dawley rats and assessed the resultant effects on radial-arm maze choice accuracy over a period of weeks after the infusion. Local ventral hippocampal infusion of ApoE peptides caused significant cognitive impairment in radial-arm maze learning that persisted several weeks after the acute infusion. This persisting deficit may be an important model for understanding the relationship between ApoE protein-induced neurotoxicity and cognitive impairment as well as serve as a platform for the development of new therapies to avoid neurotoxicity and cognitive decline.

  13. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED.

    Science.gov (United States)

    Mhaouty-Kodja, Sakina; Belzunces, Luc P; Canivenc, Marie-Chantal; Schroeder, Henri; Chevrier, Cécile; Pasquier, Elodie

    2018-03-29

    Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomised animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities. Copyright © 2018. Published by Elsevier B.V.

  14. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    Science.gov (United States)

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  15. Memory and learning sequelae in long-term survivors of acute lymphoblastic leukemia: Association with attention deficits

    International Nuclear Information System (INIS)

    Brouwers, P.; Poplack, D.

    1990-01-01

    A systematic study of verbal and nonverbal memory and learning was undertaken in long-term survivors of acute lymphoblastic leukemia to assess the incidence and pattern of impairments and to determine the relationship between these deficits and computed tomography (CT) brain scan abnormalities. Twenty-three children who had received cranial irradiation (2,400 cGy) and intrathecal chemotherapy as central nervous system (CNS) preventive therapy and who were off all therapy for at least 4 years were evaluated. On the basis of their CT brain scan findings, patients were divided into three groups: those with intracerebral calcifications (n = 5), those with cortical atrophy (n = 8), and those with normal CT findings (n = 10). Significant deficits in verbal memory (p less than 0.025) and verbal learning (p less than 0.05) were observed that were associated with the presence and type of CT brain scan abnormalities; the greatest impairments were observed in patients with calcifications. No significant differences between CT scan groups were found for nonverbal memory and learning. Previous evaluation of attentional processing in these patients using reaction time tests had revealed the presence of deficits primarily in the ability to sustain attention. Combining those data with findings from the present study showed that memory impairments, particularly those in short-term memory, were primarily attributable to an underlying attentional defect that affect the encoding stage of memory processing

  16. Social modulation of stress reactivity and learning in young worker honey bees.

    Directory of Open Access Journals (Sweden)

    Elodie Urlacher

    Full Text Available Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition, it did not affect one-hour memory retrieval.

  17. Social Modulation of Stress Reactivity and Learning in Young Worker Honey Bees

    Science.gov (United States)

    Mercer, Alison R.

    2014-01-01

    Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval. PMID:25470128

  18. [Specific learning disabilities - from DSM-IV to DSM-5].

    Science.gov (United States)

    Schulte-Körne, Gerd

    2014-09-01

    The publication of the DSM-5 means changes in the classification and recommendations for diagnosis of specific learning disabilities. Dyslexia and dyscalculia have been reintroduced into the DSM. Three specific learning disorders - impairment in reading, impairment in the written expression, and impairment in mathematics, described by subskills - are now part of the DSM-5. Three subcomponents of the reading disorder are expressly differentiated: word reading accuracy, reading rate, and fluency and reading comprehension. Impaired subskills of the specific learning disorder with impairment in written expression are spelling accuracy, grammar and punctuation accuracy, and clarity and organization of written expression. Four subskills are found in the mathematics disorder: number sense, memorization of arithmetic facts, accurate or fluent calculation, and accurate math reasoning. Each impaired academic domain and subskill should be recorded. A description of the severity degree was also included. The diagnosis is based on a variety of methods, including medical history, clinical interview, school report, teacher evaluation, rating scales, and psychometric tests. The IQ discrepancy criterion was abandoned, though that of age or class discrepancy criterion was retained. The application of a discrepancy is recommended by 1 to 2.5 SD. All three specific developmental disorders are common (prevalence 5 %-15 %), occur early during the first years of formal schooling, and persist into adulthood.

  19. The Effect of Acute Ethanol and Gabapentin Administration on Spatial Learning and Memory

    Directory of Open Access Journals (Sweden)

    Fahimeh Yeganeh

    2011-09-01

    Full Text Available  Introduction: Patients with epilepsy can have impaired cognitive abilities. Many factors contribute to this impairment, including the adverse effects of antiepileptic drugs like Gabapentin (GBP. Apart from anti-epilectic action, Gabapentin is used to relieve ethanol withdrawal syndrome. Because both GBP and ethanol act on GABA ergic system, the purpose of this study was to evaluate their effect and interaction on spatial learning and memory. Material and Methods: Male Sprague-Dawley rats were trained in the Morris water maze for 5 consecutive days. On the sixth day, a probe test was performed to assess the retention phase or spatial rats’ memory ability. Ethanol (1.5 g/kg i.p. and GBP (30 mg/kg i.p. was administered each day 30 and 40 minutes before testing respectively. Results: Acute ethanol administration selectively impaired spatial memory (p<0.05, yet it failed to impair the acquisition phase (learning. Contradictorily GBP selectively impaired learning on second and forth days. Conclusion: These findings demonstrate that GBP and acute ethanol impair different phases of learning probably by modifying different neuronal pathways in cognitive areas of the brain.

  20. Performance monitoring and empathy during active and observational learning in patients with major depression.

    Science.gov (United States)

    Thoma, Patrizia; Norra, Christine; Juckel, Georg; Suchan, Boris; Bellebaum, Christian

    2015-07-01

    Previous literature established a link between major depressive disorder (MDD) and altered reward processing as well as between empathy and (observational) reward learning. The aim of the present study was to assess the effects of MDD on the electrophysiological correlates - the feedback-related negativity (FRN) and the P300 - of active and observational reward processing and to relate them to trait cognitive and affective empathy. Eighteen patients with MDD and 16 healthy controls performed an active and an observational probabilistic reward-learning task while event- related potentials were recorded. Also, participants were assessed with regard to self-reported cognitive and affective trait empathy. Relative to healthy controls, patients with MDD showed overall impaired learning and attenuated FRN amplitudes, irrespective of feedback valence and learning type (active vs. observational), but comparable P300 amplitudes. In the patient group, but not in controls, higher trait perspective taking scores were significantly correlated with reduced FRN amplitudes. The pattern of results suggests impaired prediction error processing and a negative effect of higher trait empathy on feedback-based learning in patients with MDD. Copyright © 2015 Elsevier B.V. All rights reserved.