WorldWideScience

Sample records for significant temperature difference

  1. Presence and significance of temperature gradients among different ovarian tissues

    DEFF Research Database (Denmark)

    Hunter, Ronald Henry Fraser; Einer-Jensen, Niels; Greve, Torben

    2006-01-01

    also be involved. Temperature gradients would be maintained locally by counter-current heat exchange mechanisms and, in this context, the microvasculature and lymphatic flow of individual follicles were found to be appropriate. Observations on the temperature of preovulatory follicles appear relevant......, and cow, and generally fell in the range of 1.3-1.7 degrees C: follicles were always cooler than stroma. Measurements were made principally by means of a thermo-sensing camera at midventral laparotomy, but also using microelectrodes or thermistor probes sited in the follicular antrum of rabbits and pigs...

  2. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  3. Effect of different water temperatures on growth of aquatic plants Salvinia natans and Ceratophyllum demersum

    Directory of Open Access Journals (Sweden)

    Khadija Kadhem Hreeb

    2016-12-01

    Full Text Available Objective: To evaluate the effect of some different water temperatures on growth of aquatic plants (Salvinia natans and Ceratophyllum demersum. Methods: The aquatic plants were brought from Shatt Al-Arab River in 2016. Equal weights of aquatic plants were aquacultured in aquaria, and were exposed to three different temperatures ( 12, 22 and 32 °C. Results: The results showed that the two plants did not show significant differences with respect to their effects on pH and electrical conductivity values. Time and temperature did not affect the values of pH and electrical conductivity. The values of dissolved oxygen was significantly influenced with variation of time and temperature, while the two plants did not have significant differences on dissolved oxygen values, nitrate ion concentration and was not significantly influenced with variation of plant species or temperature or time. Plant species and temperature significantly affected phosphate ion concentration, while the time did not significantly influence the concentration of phosphate ion. Chlorophyll a content and biomass were significantly influenced with the variation of plant species, and temperature . Conclusions: Aquatic plants has a species specific respond to temperatures change in their environment. Water plant, Ceratophyllum demersum is more tolerant to temperatures change than Salvinia natans.

  4. Seasonal differences in human responses to increasing temperatures

    DEFF Research Database (Denmark)

    Kitazawa, Sachie; Andersen, Rune Korsholm; Wargocki, Pawel

    2014-01-01

    to be sleepier. Heart rate slightly increased during exposure, and SpO2 and ETCO2 began to decrease while core temperature started to increase. Performance of Tsai-partington test and addition test improved during exposures due to learning though lesser in winter. Results show negative effects of the temperature......Experiments were conducted in late summer and winter with 80 young and elderly Danish subjects exposed for 3.5 hours in a climate chamber to the temperature increasing from 24°C to 35.2°C at a rate of 3.7K/h. Psychological and physiological measurements were performed during exposure and subjects...... assessed comfort and acute health symptoms. Thermal sensation increased with increasing chamber temperature and did not differ during late summer and winter exposures. Skin temperature increased with increasing temperature and was slightly but significantly higher in the late summer in the first half...

  5. Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature.

    Science.gov (United States)

    Cerasoli, Sofia; Wertin, Timothy; McGuire, Mary Anne; Rodrigues, Ana; Aubrey, Doug P; Pereira, João Santos; Teskey, Robert O

    2014-04-11

    Most investigations of plant responses to changes in temperature have focused on a constant increase in mean day/night temperature without considering how differences in temperature cycles can affect physiological processes and growth. To test the effects of changes in growth temperature on foliar carbon balance and plant growth, we repeatedly exposed poplar saplings (Populus deltoides × nigra) to temperature cycles consisting of 5 days of a moderate (M, +5 °C) or extreme (E, +10 °C) increase in temperature followed by 5 days of a moderate (M, -5 °C) or extreme (E, -10 °C) decrease in temperature, with respect to a control treatment (C, 23.4 °C). The temperature treatments had the same mean temperature over each warm and cool cycle and over the entire study. Our goal was to examine the influence of recurring temperature shifts on growth. Net photosynthesis (A) was relatively insensitive to changes in growth temperature (from 20 to 35 °C), suggesting a broad range of optimum temperature for photosynthesis. Leaf respiration (R) exhibited substantial acclimation to temperature, having nearly the same rate at 13 °C as at 33 °C. There was no evidence that preconditioning through temperature cycles affected the response of A or R to treatment temperature fluctuations. Averaged across the complete warm/cool temperature cycle, the A : R ratio did not differ among the temperature treatments. While foliar carbon balance was not affected, the temperature treatments significantly affected growth. Whole-plant biomass was 1.5 times greater in the M treatment relative to the C treatment. Carbon allocation was also affected with shoot volume and biomass greater in the M and E treatments than in the C treatment. Our findings indicate that temperature fluctuations can have important effects on growth, though there were few effects on leaf gas exchange, and can help explain differences in growth that are not correlated with mean growth temperature. Published by Oxford

  6. Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals.

    Science.gov (United States)

    Rupp, Kimberly A; Herman, Daniel C; Hertel, Jay; Saliba, Susan A

    2012-08-01

    Crossover. To compare the time required to decrease intramuscular temperature 8°C below baseline temperature, and to compare intramuscular temperature 90 minutes posttreatment, between 2 cryotherapy modalities. Cryotherapy is used to treat pain from muscle injuries. Cooler intramuscular temperatures may reduce cellular metabolism and secondary hypoxic injury to attenuate acute injury response, specifically the rate of chemical mediator activity. Modalities that decrease intramuscular temperature quickly may be beneficial in the treatment of muscle injuries. Eighteen healthy subjects received 2 cryotherapy conditions, crushed-ice bag (CIB) and cold-water immersion (CWI), in a randomly allocated order, separated by 72 hours. Each condition was applied until intramuscular temperature decreased 8°C below baseline. Intramuscular temperature was monitored in the gastrocnemius, 1 cm below subcutaneous adipose tissue. The primary outcome was time to decrease intramuscular temperature 8°C below baseline. A secondary outcome was intramuscular temperature at the end of a 90-minute rewarming period. Paired t tests were used to examine outcomes. Time to reach an 8°C reduction in intramuscular temperature was not significantly different between CIB and CWI (mean difference, 2.6 minutes; 95% confidence interval: -3.10, 8.30). Intramuscular temperature remained significantly colder 90 minutes post-CWI compared to CIB (mean difference, 2.8°C; 95% confidence interval: 2.07°C, 3.52°C). There was no difference in time required to reduce intramuscular temperature 8°C 1 cm below adipose tissue using CIB and CWI. However, intramuscular temperature remained significantly colder 90 minutes following CWI. These results provide clinicians with information that may guide treatment-modality decisions.

  7. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  8. Temperature rise produced by different light-curing units through dentin.

    Science.gov (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard

    2007-11-01

    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  9. Different annealing temperature suitable for different Mg doped P-GaN

    Science.gov (United States)

    Liu, S. T.; Yang, J.; Zhao, D. G.; Jiang, D. S.; Liang, F.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Li, X.; Liu, W.; Zhang, L. Q.; Long, H.; Li, M.

    2017-04-01

    In this work, epitaxial GaN with different Mg doping concentration annealed at different temperature is investigated. Through Hall and PL spectra measurement we found that when Mg doping concentration is different, different annealing temperature is needed for obtaining the best p-type conduction of GaN, and this difference comes from the different influence of annealing on compensated donors. For ultra-heavily Mg doped sample, the process of Mg related donors transferring to non-radiative recombination centers is dominated, so the performance of P-GaN deteriorates with temperature increase. But for low Mg doped sample, the process of Mg related donors transfer to non-raditive recombination is weak compare to the Mg acceptor activation, so along the annealing temperature increase the performance GaN gets better.

  10. Sensory profiling of Dalmatian dry-cured ham under different temperature conditions

    Directory of Open Access Journals (Sweden)

    Zlatko Janječić

    2010-01-01

    Full Text Available To investigate the influence of the Dalmatian ham processing conditions on weight loss and sensory characteristics, 20 hams were processed following different temperature conditions during salting and ripening. For that purpose, hams were evaluated using quantitative descriptive analysis. The weight loss was higher and all sensory traits except presence of tyrosine and phenylalanine crystals were higher rated for hams processed at higher temperatures. The most significant (P<0.0001 influence of temperature was established on subcutaneous fat color, muscle color and presence of tyrosine and phenylalanine, whereas no influence was established on appearance, marbling, flavor and melting. This concludes that there is overall significant effect of higher temperature on sensory characteristics most likely due to the more intense proteolysis and lipolysis.

  11. Significance analysis of the regional differences on icing time of water onto fire protective clothing

    Science.gov (United States)

    Zhao, L. Z.; Jing, L. S.; Zhang, X. Z.; Xia, J. J.; Chen, Y.; Chen, T.; Hu, C.; Bao, Z. M.; Fu, X. C.; Wang, R. J.; Wang, Y.; Wang, Y. J.

    2017-09-01

    The object of this work was to determine the icing temperature in icing experiment. Firstly, a questionnaire investigation was carried out on 38 fire detachments in different regions. These Statistical percentage results were divided into northern east group and northern west group. Secondly, a significance analysis between these two results was made using Mann-Whitney U test. Then the icing temperature was determined in different regions. Thirdly, the icing experiment was made in the environment of -20°C in Daxing’an Mountain. The anti-icing effect of new fire protective clothing was verified in this icing.

  12. Evaluation of temperature rise with different curing methods and units in two composite resins

    Directory of Open Access Journals (Sweden)

    Tabatabaei M

    2006-01-01

    Full Text Available Background and Aim: The majority of commercial curing units in dentistry are of halogen lamp type. The new polymerizing units such as blue LED are introduced in recent years. One of the important side effects of light curing is the temperature rise in composite resin polymerization which can affect the vitality of tooth pulp. The purpose of this study was to evaluate the temperature rise in two different composite resins during polymerization with halogen lamps and blue LED. Materials and Methods: This experimental study investigated the temperature rise in two different composites (Hybrid, Tetric Ceram/Nanofilled, Filteke Supreme of A2 shade polymerized with two halogen lamps (Coltolux 50, 350 mW/cm2 and Optilux 501 in standard, 820 mW/cm2 and Ramp, 100-1030 mW/cm2 operating modes and one blue LED with the intensity of 620 mW/cm2. Five samples for each group were prepared and temperature rise was monitored using a k-type thermocouple. Data were analyzed by one-way ANOVA, two-way ANOVA and Tukey HSD tests with P<0.05 as the limit of significance. Results: Light curing units and composite resins had statistically significant influence on the temperature rise (p<0.05. Significantly, lower temperature rise occurred in case of illumination with Coltolux 50.There was no significant difference between Optilux 501 in standard curing mode and LED. Tetric Ceram showed higher temperature rise. Conclusion: According to the results of this study the high power halogen lamp and LED could produce significant heat which may be harmful to the dental pulp.

  13. Seedling characters at different temperatures in pearl millet ...

    African Journals Online (AJOL)

    The effect of six temperatures ranging from 20 to 45°C on the germination and seedling length of six grain pearl millet genotypes (KS, AM, HG, EC, ZZ and D) was determined. There was significant variation in germination and seedling length across temperatures and among genotypes. As a result, significant temperature ...

  14. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment.

    Science.gov (United States)

    de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature (T G ), air temperature (T A ), wind speed (U) and relative humidity (R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.

  15. Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures

    Directory of Open Access Journals (Sweden)

    Carla Castiglia Gonzaga

    2008-09-01

    Full Text Available The objective of this work was to evaluate biaxial-flexural-strength (σf, Vickers hardness (HV, fracture toughness (K Ic, Young's modulus (E, Poisson's ratio (ν and porosity (P of two commercial glass-ceramics, Empress (E1 and Empress 2 (E2, as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.

  16. See laser testing at different temperatures

    Directory of Open Access Journals (Sweden)

    Alexander Anatolievich Novikov

    2016-10-01

    Full Text Available The main problem for laser SEE testing at different temperatures is to determine correlation between laser pulse energy and LET. In the first approximation, LET values with the same laser pulse energy and different temperatures are directly proportional to the absorption coefficient of laser light in a semiconductor. Use of tabulated values could lead to errors and absorption coefficient should be determined for each sensitive volume of device under test (DUT. Temperature dependence of absorption coefficient could be determined using ionization response of DUT in power supply circuit under local laser irradiation. Using this approach a satisfactory correlation of ion and laser SEE test result was observed.

  17. Ceramic Composite Intermediate Temperature Stress-Rupture Properties Improved Significantly

    Science.gov (United States)

    Morscher, Gregory N.; Hurst, Janet B.

    2002-01-01

    Silicon carbide (SiC) composites are considered to be potential materials for future aircraft engine parts such as combustor liners. It is envisioned that on the hot side (inner surface) of the combustor liner, composites will have to withstand temperatures in excess of 1200 C for thousands of hours in oxidizing environments. This is a severe condition; however, an equally severe, if not more detrimental, condition exists on the cold side (outer surface) of the combustor liner. Here, the temperatures are expected to be on the order of 800 to 1000 C under high tensile stress because of thermal gradients and attachment of the combustor liner to the engine frame (the hot side will be under compressive stress, a less severe stress-state for ceramics). Since these composites are not oxides, they oxidize. The worst form of oxidation for strength reduction occurs at these intermediate temperatures, where the boron nitride (BN) interphase oxidizes first, which causes the formation of a glass layer that strongly bonds the fibers to the matrix. When the fibers strongly bond to the matrix or to one another, the composite loses toughness and strength and becomes brittle. To increase the intermediate temperature stress-rupture properties, researchers must modify the BN interphase. With the support of the Ultra-Efficient Engine Technology (UEET) Program, significant improvements were made as state-of-the-art SiC/SiC composites were developed during the Enabling Propulsion Materials (EPM) program. Three approaches were found to improve the intermediate-temperature stress-rupture properties: fiber-spreading, high-temperature silicon- (Si) doped boron nitride (BN), and outside-debonding BN.

  18. Detection of Temperature Difference in Neuronal Cells.

    Science.gov (United States)

    Tanimoto, Ryuichi; Hiraiwa, Takumi; Nakai, Yuichiro; Shindo, Yutaka; Oka, Kotaro; Hiroi, Noriko; Funahashi, Akira

    2016-03-01

    For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source.

  19. Impact of container material on the development of Aedes aegypti larvae at different temperatures.

    Science.gov (United States)

    Kumar, Gaurav; Singh, R K; Pande, Veena; Dhiman, R C

    2016-01-01

    Aedes aegypti, the primary vector of dengue generally breeds in intradomestic and peridomestic containers made up of different materials, i.e. plastic, iron, rubber, earthen material etc. The material of container is likely to affect the temperature of water in container with variation in environmental temperature. The present study was aimed to determine the effect of different container materials on larval development of Ae. aegypti at different temperatures. Newly hatched I instar larvae (2-4 h old) were used in the study and experiments were conducted using three different containers made up of plastic, iron and earthen material. Three replicates for each type of container at 22, 26, 30, 34, 38, 40, and 42°C were placed in environmental chamber for the development of larvae. At temperatures >22°C, 50% pupation was completed in earthen pot within 4.3±0.6 to 6.3±0.6 days followed by plastic containers (5±0 to 8±0 days) and iron containers (6±0 to 9±0 days). Developmental time for 50% pupation in the three containers differed significantly (p containers (p containers resulted in significant variations in the developmental period of larvae. More than 35°C temperature of water was found inimical for pupal development. The results revealed the variation in temperature of water in different types of containers depending on the material of container, affecting duration of larval development. As the larval development was faster in earthen pot as compared to plastic and iron containers, community should be discouraged for storing the water in earthen pots. However, in view of containers of different materials used by the community in different temperature zones in the country, further studies are required for devising area-specific preventive measures for Aedes breeding.

  20. Differences induced by incubation temperature, versus androgen manipulation, in male leopard geckos (Eublepharis macularius).

    Science.gov (United States)

    Huang, Victoria; Crews, David

    2012-08-20

    A fundamental tenet of sexual selection is that in sexually dimorphic traits, there is variation within a sex. In leopard geckos (Eublepharis macularius), a species with temperature-dependent sex determination, embryonic temperature contributes both to sex determination and polymorphisms within each sex. In this study we report that males from different incubation temperatures, one hitherto untested, exhibit significant differences in behavior even when castrated. Further, treatment with dihydrotestosterone increases scent marking, a territorial behavior. This supports previous results indicating that temperature has a direct organizing action on brain and sociosexual behavior independent of gonadal hormones. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Gergely [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Máthis, Kristian [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Pilch, Ján [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Minárik, Peter [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Lukáš, Petr [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Vinogradov, Alexei, E-mail: alexei.vinogradov@ntnu.no [Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology - NTNU, Trondheim N-7491 (Norway); Institute of Advanced Technologies, Togliatti State University, 445020 (Russian Federation)

    2017-02-08

    The influence of the reinforcement short Saffil fibers on the deformation behavior of Mg-Al-Ca alloy-based composite with two different fiber plane orientations is investigated and clarified using in-situ neutron diffraction at room and elevated temperatures. The measured lattice strain evolution points to a more efficient reinforcing effect of fibers at parallel fiber plane orientation, which decreases at elevated temperature. A significant decrement of compressive lattice strain was incidentally observed in the matrix in the direction of load axis when deformation due to the elevated temperature occurred. Electron microscopy revealed the influence of the temperature and fiber orientation on fiber cracking. The EBSD observations corroborated neutron diffraction results highlighting significant twin growth at elevated testing temperatures.

  2. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    Science.gov (United States)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  3. Significantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 °C

    International Nuclear Information System (INIS)

    Cai, Kai; Huang, Chengcheng; Guo, Dong

    2017-01-01

    We report an Aurivillius-type piezoelectric ceramic (Ca 1−2x (LiCe) x Bi 4 Ti 3.99 Zn 0.01 O 15 ) that has an ultrahigh Curie temperature (T c ) around 800 °C and a significantly enhanced piezoelectric coefficient (d 33 ), comparable to that of textured ceramics fabricated using the complicated templating method. Surprisingly, the highest d 33 of 26 pC/N was achieved at an unexpectedly low sintering temperature (T s ) of only 920 °C (∼200 °C lower than usual) despite the non-ideal density. Study of different synthesized samples indicates that a relatively low T s is crucial for suppressing Bi evaporation and abnormal grain growth, which are indispensable for high resistivity and effective poling due to decreased carrier density and restricted anisotropic conduction. Because the layered structure is sensitive to lattice defects, controlled Bi loss is considered to be crucial for maintaining structural order and spontaneous polarization. This low-T s system is very promising for practical applications due to its high piezoelectricity, low cost and high reproducibility. Contrary to our usual understanding, the results reveal that a delicate balance of density, Bi loss and grain morphology achieved by adjusting the sintering temperature is crucial for the enhancing performance in Aurivillius-type high- T c ceramics. (paper)

  4. Effect of different light curing units on Knoop hardness and temperature of resin composite

    Directory of Open Access Journals (Sweden)

    Guiraldo Ricardo

    2009-01-01

    Full Text Available Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46. A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan. Data were submitted to ANOVA and Tukey′s test (a = 0.05. Results: For both composites, there were no significant differences (P > 0.05 in the top surface hardness; however, PAC promoted statistically lower (P < 0.05 Knoop hardness number values in the bottom. The mean temperature increase showed no significant statistical differences (P > 0.05. Conclusion: The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  5. Biofilm formation capacity of Salmonella serotypes at different temperature conditions

    Directory of Open Access Journals (Sweden)

    Karen A. Borges

    Full Text Available ABSTRACT: Salmonella spp. are one of the most important agents of foodborne disease in several countries, including Brazil. Poultry-derived products are the most common food products, including meat and eggs, involved in outbreaks of human salmonellosis. Salmonella has the capacity to form biofilms on both biotic and abiotic surfaces. The biofilm formation process depends on an interaction among bacterial cells, the attachment surface and environmental conditions. These structures favor bacterial survival in hostile environments, such as slaughterhouses and food processing plants. Biofilms are also a major problem for public health because breakage of these structures can cause the release of pathogenic microorganisms and, consequently, product contamination. The aim of this study was to determine the biofilm production capacity of Salmonella serotypes at four different temperatures of incubation. Salmonella strains belonging to 11 different serotypes, isolated from poultry or from food involved in salmonellosis outbreaks, were selected for this study. Biofilm formation was investigated under different temperature conditions (37°, 28°, 12° and 3°C using a microtiter plate assay. The tested temperatures are important for the Salmonella life cycle and to the poultry-products process. A total of 92.2% of the analyzed strains were able to produce biofilm on at least one of the tested temperatures. In the testing, 71.6% of the strains produced biofilm at 37°C, 63% at 28°C, 52.3% at 12°C and 39.5% at 3°C, regardless of the serotype. The results indicate that there is a strong influence of temperature on biofilm production, especially for some serotypes, such as S. Enteritidis, S. Hadar and S. Heidelberg. The production of these structures is partially associated with serotype. There were also significant differences within strains of the same serotype, indicating that biofilm production capacity may be strain-dependent.

  6. On exergy analysis of industrial plants and significance of ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Berit

    2011-07-01

    The exergy analysis has been a relatively mature theory for more than 30 years. However, it is not that developed in terms of procedures for optimizing systems, which partly explains why it is not that common. Misconceptions and prejudices, even among scientists, are also partly to blame.The main objective of this work was to contribute to the development of an understanding and methodology of the exergy analysis. The thesis was mainly based on three papers, two of which provided very different examples from existing industrial systems in Norway, thus showing the societal perspective in terms of resource utilization and thermodynamics. The last paper and the following investigation were limited to certain aspects of ambient conditions. Two Norwegian operational plants have been studied, one operative for close to 30 years (Kaarstoe steam production and distribution system), while the other has just started its expected 30 years of production (Snoehvit LNG plant). In addition to mapping the current operational status of these plants, the study of the Kaarstoe steam production and distribution system concluded that the potential for increasing the thermodynamic performance by rather cautious actions was significant, whereas the study of the Snoehvit LNG plant showed the considerable profit which the Arctic location provided in terms of reduced fuel consumption. The significance of the ambient temperature led to the study of systems with two ambient bodies (i.e. ambient water and ambient air) of different temperatures, here three different systems were investigated: A regenerative steam injection gas turbine (RSTIG), a simple Linde air liquefaction plant (Air Liq) and an air-source heat pump water heater (HPWH). In particular, the effect of the chosen environment on exergy analysis was negligible for RSTIG, modest for Air Liq and critical for HPWH. It was found that the amount of exergy received from the alternative ambient body, compared to the main exergy flow of

  7. Adverse effects in coronary angiography: a comparative study of different temperature contrast medium

    International Nuclear Information System (INIS)

    Zhou Peng; Wang Qiulin; Cai Guocai; Li Lu; Jiang Licheng; Yang Zhen; Huang Xiuping

    2011-01-01

    Objective: To investigate the correlation between different temperature contrast medium and the occurrence of adverse effects, including the chest discomfort, the changes of heart rate, ST segment and T wave, the operating time and the used dosage of contrast medium, in performing coronary angiography. Methods: According to the contrast medium temperature used in coronary angiography, the patients were randomly divided into two groups: room temperature group (n=521) and warm temperature group (n=522). The contrast medium used in warm temperature group was bathed in 37 ℃ water for 60 minutes when the coronary angiography was carried out. The T Wave amplitude changes ≥ 0.01 mv, ST segment depression ≥ 0.05 mv, changes in heart rate ≥ 10 times/min were brought into the positive accounting. The occurrence of adverse effects, such as palpitation, chest distress and pectoralgia, the operative time and the used dosage of contrast medium were recorded. The results were analyzed and compared between the two groups. Results: Statistically significant differences in the changes of heart rate, ST segment deviation, T wave change and operating time existed between the two groups (P<0.05). And the difference in the occurrence of adverse effects between the two groups was also statistically significant (P<0.05). Conclusion: When performing coronary angiography, warming of the contrast medium with water bath is greatly conducive to the prevention of cardiac adverse effects. (authors)

  8. Pathologic analysis on hyperplasia of mammary gland with different syndromes based on infrared radiation temperature of acupoints.

    Science.gov (United States)

    Wang, Yafang; Shen, Xueyong; Ying, Jian; Zheng, Juanjuan; Hu, Shengfang; Zhao, Ling; Deng, Haiping; Zhang, Haimeng

    2012-09-01

    To explore the pathologic characteristics of hyperplasia of the mammary gland (HMG) by observing differences in infrared radiation temperature of points of HMG in patients with different syndromes compared with healthy controls. A FLIR Systems Therma CAM P30 infrared thermal camera was used to detect the infrared temperature of Shanzhong (CV 17), Qimen (LR 14), Zhongwan (CV 12), Qihai (CV 6), Guanyuan (CV 4), Taixi (KI 3), and Taichong (LR 3) in 113 patients with HMG. Of these patients, 71 were placed in the Liver Qi stagnation group, 34 were placed in the Dysfunction of conception and thoroughfare vessels group, and 8 were placed in the Phlegm and blood stasis in combination group. The infrared radiation temperature of each point in the patients was compared with that of healthy controls, and the differences in the infrared radiation temperatures of the points in the patients were analyzed. Overall, the bilateral corresponding point in both the controls and patients exhibited no significant difference in infrared radiation temperature. In all cases, the infrared radiation temperature of the points from proximal to distal tended to decrease. In a comparison of the patients and controls, the infrared radiation temperature of the trunk points Shanzhong (CV 17), Qimen (LR 14), Zhongwan (CV 12), Qihai (CV 6), and Guanyuan (CV 4) of the patients was higher than that of the controls, while the infrared radiation temperature of the lower extremity points Taixi (KI 3) and Taichong (LR 3) was lower than that of the controls. Of these points, Shanzhong (CV 17) (P=0.0368), Zhongwan (CV 12) (P=0.0028), Qihai (CV 6) (P=0.0085), and Guanyuan (CV 4) (P=0.0018) showed significant differences. In a comparison of the corresponding point on the same side in the Liver Qi stagnation group and controls, the infrared radiation temperature of Shanzhong (CV 17) (P=0.0089), right-side Qi-men (LR 14) (P=0.0382), Zhongwan (CV 12) (P= 0.0000), Qihai (CV 6) (P=0.0011), and Guanyuan (CV 4) (P=0

  9. Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients

    Directory of Open Access Journals (Sweden)

    Sniegowski M

    2015-03-01

    Full Text Available Matthew Sniegowski, Michael Erlanger, Raul Velez-Montoya, Jeffrey L Olson Ophthalmology Department, University of Colorado School of Medicine, Rocky Mountain Lions Eye Institute, Aurora, CO, USA Purpose: To assess the change in ocular surface temperature between healthy phakic and pseudophakic patients.Methods: We included patients with no history of ocular disease other than cataract. Patients were divided into three groups: clear lens, cataract, and pseudophakic. All patients had two ocular surface digital thermal scans. An average of five surface points was used as the mean ocular surface temperature. Results were analyzed with a one-way analysis of variance and a Tukey’s least significance difference test. The patients were further divided into phakic and pseudophakic groups. Correlation coefficients between several variables were done in order to assess dependencies.Results: Fifty-six eyes (28 cataracts, 12 clear lenses, 16 pseudophakic were enrolled. The mean ocular surface temperature in the cataract group was 34.14°C±1.51°C; clear lens: 34.43°C±2.27°C; and pseudophakic: 34.97°C±1.57°C. There were no statistical differences among the study groups (P=0.3. There was a nonsignificant negative correlation trend between age and surface temperature in the phakic group. The trend inverted in the pseudophakic group but without statistical significance.Conclusion: Although cataract extraction and intraocular lens implantation seem to induce a mild increase in ocular surface temperature, the effect is not clear and not significant. Keywords: digital thermal scans, intraocular lens implantation, cataract extraction

  10. Changes in setting time of alginate impression material with different water temperature

    Directory of Open Access Journals (Sweden)

    Decky J. Indrani

    2013-03-01

    Full Text Available Background: Previous studies showed that setting process of alginates can be influenced by temperature. Purpose: To determine the changes in setting time due to differences in water temperature and to determine the correlation between water temperature and the setting time. Methods: Seven groups of dough alginate were prepared by mixing alginate powder and water, each using a temperature between 13° C–28° C with a interval of 2.5° C. A sample mold (Θ = 30 mm, t = 16 mm was placed on a flat plate and filled with doug alginate. Immediately the flat end of a polished acrylic rod was placed in contact with the surface of dough alginate. Setting time of alginat was measured from the starting of the mix to the time when the alginate does not adhere to the end of the rod. Setting time alginate data were analyzed using one way ANOVA, LSD and Pearson. Results: Setting time of alginate with water temperature between 13° C–28° C were 87 to 119.4 seconds and were significantly different (p < 0.01. The setting time between group were also significantly different (p<0.01. There was an inverse correlation between water temperature and the setting time (r = -0.968. Conclusion: Water temperature between 13° C–28°C with a difference of 2.5° C produced significant differences in alginate setting time; the lower the water temperature being used the longer the setting time was produced.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa proses pengerasan alginat dapat dipengaruhi oleh suhu. Tujuan: Mengetahui perubahan waktu pengerasan alginat akibat perbedaan suhu air serta mengetahui hubungan antara suhu air dan waktu pengerasan. Metode: Tujuh kelompok adonan alginat yang dipersiapkan dengan mencampur bubuk alginat dan air, masingmasing menggunakan suhu antara 13°C–28° C dengan interval 2,5° C. Pengukuran waktu pengerasan alginat dilakukan sesuai dengan spesifikasi ADA no.18. Sebuah cetakan sampel terbuat dari pralon berbentuk

  11. Comparison of Different Fuel Temperature Models

    Energy Technology Data Exchange (ETDEWEB)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  12. Comparison of Different Fuel Temperature Models

    International Nuclear Information System (INIS)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  13. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  14. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature

    Science.gov (United States)

    Purnamayati, L.; Dewi, EN; Kurniasih, R. A.

    2018-02-01

    Phycocyanin is natural blue colorant which easily damages by heat. The inlet temperature of spray dryer is an important parameter representing the feature of the microcapsules.The aim of this study was to investigate the phycocyanin stability of microcapsules made from Spirulina sp with maltodextrin and κ-Carrageenan as the coating material, processed by spray drying method in different inlet temperature. Microcapsules were processed in three various inlet temperaturei.e. 90°C, 110°C, and 130°C, respectively. The results indicated that phycocyanin microcapsule with 90°C of inlet temperature produced the highest moisture content, phycocyanin concentration and encapsulation efficiency of 3,5%, 1,729% and 29,623%, respectively. On the other hand, the highest encapsulation yield was produced by 130°C of theinlet temperature of 29,48% and not significantly different with 110°C. The results of Scanning Electron Microscopy (SEM) showed that phycocyanin microcapsules with 110°C of inlet temperature produced the most rounded shape. To sum up, 110°C was the best inlet temperature to phycocyanin microencapsulation by the spray dryer.

  15. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  16. Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Sorrell, Brian Keith; Brix, Hans

    2014-01-01

    1. The importance of temperature responses of photosynthesis and respiration in determining species distributions was compared in two closely related freshwater macrophytes, Ceratophyllum demersum and C. submersum. The two species differed significantly in response to temperature in the short...... and distributional patterns corresponded well with the long-term (weeks) results obtained, but with some important deviations. The long-term responses of the two species to low temperature (12 °C) were more similar than expected. In contrast, high temperature (35 °C), which stimulated photosynthesis in C. submersum...... in the short term, inhibited photosynthesis in the long term and resulted in lower growth rates of C. submersum, both compared to C. demersum and to growth rates at intermediate temperatures (18 and 25 °C). 3. The long-term acclimation strategy differed between the two species. Ceratophyllum demersum achieved...

  17. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  18. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  19. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six factor fractional design. The odour of the sausages was evaluated by a quantitative descriptive...... tested using multiple linear regression and analysis of variance. The study showed that salami odour was more pronounced in sausages fermented at low temperature than in sausages fermented at high temperature and added nitrite, glucose and P. pentosaceus. High temperature sausages had a more sour...

  20. Comparison of Conductor-Temperature Calculations Based on Different Radial-Position-Temperature Detections for High-Voltage Power Cable

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2018-01-01

    Full Text Available In this paper, the calculation of the conductor temperature is related to the temperature sensor position in high-voltage power cables and four thermal circuits—based on the temperatures of insulation shield, the center of waterproof compound, the aluminum sheath, and the jacket surface are established to calculate the conductor temperature. To examine the effectiveness of conductor temperature calculations, simulation models based on flow characteristics of the air gap between the waterproof compound and the aluminum are built up, and thermocouples are placed at the four radial positions in a 110 kV cross-linked polyethylene (XLPE insulated power cable to measure the temperatures of four positions. In measurements, six cases of current heating test under three laying environments, such as duct, water, and backfilled soil were carried out. Both errors of the conductor temperature calculation and the simulation based on the temperature of insulation shield were significantly smaller than others under all laying environments. It is the uncertainty of the thermal resistivity, together with the difference of the initial temperature of each radial position by the solar radiation, which led to the above results. The thermal capacitance of the air has little impact on errors. The thermal resistance of the air gap is the largest error source. Compromising the temperature-estimation accuracy and the insulation-damage risk, the waterproof compound is the recommended sensor position to improve the accuracy of conductor-temperature calculation. When the thermal resistances were calculated correctly, the aluminum sheath is also the recommended sensor position besides the waterproof compound.

  1. The sublethal effects of zinc at different water temperatures on ...

    African Journals Online (AJOL)

    The sublethal effects of zinc at different water temperatures on selected ... of 96h at different water temperatures representing the seasonal temperatures in the ... are mobilised to meet increased energy demands during periods of stress.

  2. Prediction of Human Performance Using Electroencephalography under Different Indoor Room Temperatures

    Science.gov (United States)

    Zhang, Tinghe; Mao, Zijing; Xu, Xiaojing; Zhang, Lin; Pack, Daniel J.; Dong, Bing; Huang, Yufei

    2018-01-01

    Varying indoor environmental conditions is known to affect office worker’s performance; wherein past research studies have reported the effects of unfavorable indoor temperature and air quality causing sick building syndrome (SBS) among office workers. Thus, investigating factors that can predict performance in changing indoor environments have become a highly important research topic bearing significant impact in our society. While past research studies have attempted to determine predictors for performance, they do not provide satisfactory prediction ability. Therefore, in this preliminary study, we attempt to predict performance during office-work tasks triggered by different indoor room temperatures (22.2 °C and 30 °C) from human brain signals recorded using electroencephalography (EEG). Seven participants were recruited, from whom EEG, skin temperature, heart rate and thermal survey questionnaires were collected. Regression analyses were carried out to investigate the effectiveness of using EEG power spectral densities (PSD) as predictors of performance. Our results indicate EEG PSDs as predictors provide the highest R2 (> 0.70), that is 17 times higher than using other physiological signals as predictors and is more robust. Finally, the paper provides insight on the selected predictors based on brain activity patterns for low- and high-performance levels under different indoor-temperatures. PMID:29690601

  3. Effect of different ultrasound contrast materials and temperatures on patient comfort during intrauterine and tubal assessment for infertility

    International Nuclear Information System (INIS)

    Fenzl, Vanja

    2012-01-01

    Hysterosalpingo-contrast sonography (HyCoSy) is safe and easy to perform outpatient method in the evaluation of female infertility. During this procedure a certain level of discomfort and pain are experienced by patients. On the basis of reducing avoidable pain inductors the aim of this study was to compare pain sensation due to different warmth of applied contrasts (sterile saline and Echovist ® ). Prospective and randomized study was performed on patients requiring tubal and uterine assessment during standard infertility work up. One group of patients was examined using both contrasts at room temperature and the other group using preheated contrasts at body temperature. Pain experience of the procedure was rated by patients for each contrast by numerical scale (0–10) immediately after the procedure. There was significant statistical difference between pain scores during application of two contrasts in each group; Echovist induces significantly less pain in comparison to sterile saline at the same temperature (P = 0.002, 0.001). Between two groups there is also statistically significant difference in pain during introduction of the same contrast at different temperature (P < 0.001). The most tolerable for the patient is body temperature of the applied contrasts although their structure and concentrations can be another factor associated with tolerability of the procedure.

  4. Effect of different ultrasound contrast materials and temperatures on patient comfort during intrauterine and tubal assessment for infertility

    Energy Technology Data Exchange (ETDEWEB)

    Fenzl, Vanja, E-mail: vanja.radic@inet.hr [Department of Gynecology and Obstetrics, University Hospital “Merkur”, Zajčeva 19 (Croatia); University of Applied Health Studies, Mlinarska Cesta 38, 10000 Zagreb (Croatia)

    2012-12-15

    Hysterosalpingo-contrast sonography (HyCoSy) is safe and easy to perform outpatient method in the evaluation of female infertility. During this procedure a certain level of discomfort and pain are experienced by patients. On the basis of reducing avoidable pain inductors the aim of this study was to compare pain sensation due to different warmth of applied contrasts (sterile saline and Echovist{sup ®}). Prospective and randomized study was performed on patients requiring tubal and uterine assessment during standard infertility work up. One group of patients was examined using both contrasts at room temperature and the other group using preheated contrasts at body temperature. Pain experience of the procedure was rated by patients for each contrast by numerical scale (0–10) immediately after the procedure. There was significant statistical difference between pain scores during application of two contrasts in each group; Echovist induces significantly less pain in comparison to sterile saline at the same temperature (P = 0.002, 0.001). Between two groups there is also statistically significant difference in pain during introduction of the same contrast at different temperature (P < 0.001). The most tolerable for the patient is body temperature of the applied contrasts although their structure and concentrations can be another factor associated with tolerability of the procedure.

  5. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  6. Physical performance and peak aerobic power at different body temperatures.

    Science.gov (United States)

    Bergh, U; Ekblom, B

    1979-05-01

    In eight male subjects we studied the effect of different core (esophageal, (Tes 34.9--38.4 degrees C) and muscle (Tm 35.1--39.3 degrees C) temperature on 1) physical performance (time to exhaustion at a standard maximal rate of work, WT), 2) aerobic power (VO2), 3) heart rate (HR), and 4) blood lactate (LA) concentration during exhaustive combined arm and leg exercise. In three subjects the effects at different mean skin temperatures (Tsk 27 and 31 degrees C, respectively) were also studied. Peak VO2 was positively correlated to both Tes (r = 0.88) and Tm (r = 0.91). None of the subjects attained control VO2max at Tes and Tm lower than 37.5 and 38.0 degrees C, respectively. HR was correlated to both Tes (r = 0.97) and Tm (r = 0.95). Different Tsk did not affect peak VO2 and HR at subnormal body temperatures. Pulmonary ventilation was independent of Tes and Tm in all experimental situations. LA was significantly higher at Tes 37.5 degrees C compared to both Tes 34.9 and 38.5 degrees C, respectively. At Tes less than 37.5 degrees C and Tm less than 38.0 degrees C, there was a linear reduction in WT (20%.degrees C-1), peak VO2 (5--6%.degrees C-1), and HR (8 beats.min-1.degrees C-1) with lowered Tes and Tm.

  7. Fibre qualities of bolls developed under different day and night temperatures in various Pakistani cotton varieties and mutant strains

    International Nuclear Information System (INIS)

    Bandesha, A.A.; Aslam, M.; Ishaque, W.; Haq, M.A.

    2004-01-01

    Four commercial cotton varieties NIAB-78, B-557, SLH-41, MNH-93 and four advanced mutants strains N-82, L-21, L-25 and M-626 were used to study the effect of temperature on fibre quality during boll developing stage. The results showed that varieties differed significantly in all fibre quality parameters. There was significant increase in fibre length under medium temperature range while significant increase in fibre strength and highly significant increase in Micronaire values and maturity index under high temperature conditions. The medium temperature range (24.5 to 30.6 C) seemed to be ideal for cotton fibre development. (author)

  8. Interhemispheric temperature difference as a predictor of boreal winter ENSO

    Science.gov (United States)

    Piskozub, Jacek; Gutowska, Dorota

    2013-04-01

    We use statistical analysis to show statistically significant relationship between the boreal winter MEI index of ENSO and HadCRUT3 temperature difference between Northern and Southern hemispheres (NH - SH) during the preceding summer. Correlation values increase (in absolute terms) if the correlated time periods are increased from month to seasonal length. For example December and January (DJ) MEI values anticorrelate stronger with the preceding MJJA period than with any of the four months taken separately. We believe this is further evidence that the correlation is caused by a real physical process as increase of the averaging period tends to reduce statistical noise. The motivation for looking for such a relationship comes from review of literature on paleoclimatic ENSO behavior. We have noticed that in many cases relatively cold NH coincided with "strong ENSO" (frequent El Niños), for example the Ice Age periods and Little Ice Age. On the other hand periods of relatively warm NH (the Holocene climate optimum or Medieval Climate Anomaly) are coincident with frequent or even "permanent" La Niñas. This relationship suggest the influence of the position of Intertropical Convergence Zone (ITCZ) on the frequency of El Niños. The simplest physical mechanism of the relationship is that the positive (negative) NH-SH temperature difference causes a north (south) shift of ITCZ with a parallel shift of trade wind zones. The North-South orographic difference between the Panama Isthmus and the South America may cause stronger (weaker) trade winds in Eastern Tropical Pacific increasing (decreasing) the thermochemical tilt which, in turn, causes a more negative (positive) ENSO values. Of course this may be only a first approximation of the real mechanism of this "teleconnection". The correlations we have found are not strong even if statistically significant. For example, the MJJA NH-SH temperature vs. DJ MEI correlation has r = -0.28 implying it explains only 8% of boreal

  9. Studies on the temperature distribution of steel plates with different paints under solar radiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Chen, Zhihua; Chen, Binbin; Xiao, Xiao; Wang, Xiaodun

    2014-01-01

    Thermal effects on steel structures exposed to solar radiation are significant and complicated. Furthermore, the solar radiation absorption coefficient of steel surface with different paintings is the main factor affecting the non-uniform temperature of spatial structures under solar radiation. In this paper, nearly two hundreds steel specimens with different paintings were designed and measured to obtain their solar radiation absorption coefficients using spectrophotometer. Based on the test results, the effect of surface color, painting type, painting thickness on the solar radiation absorption coefficient was analyzed. The actual temperatures under solar radiation for all specimens were also measured in summer not only to verify the absorption coefficient but also provide insight for the temperature distribution of steel structures with different paintings. A numerical simulation and simplified formula were also conducted and verified by test, in order to study the temperature distribution of steel plates with different paints under solar radiation. The results have given an important reference in the future research of thermal effect of steel structures exposed to solar radiation. - Highlights: • Solar radiation absorptions for steel with different paintings were measured. • The temperatures of all specimens under solar radiation were measured. • The effect of color, thickness and painting type on solar absorption was analyzed. • A numerical analysis was conducted and verified by test data. • A simplified formula was deduced and verified by test data

  10. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  11. Prognostic significance of clinical seizures after cardiac arrest and target temperature management

    DEFF Research Database (Denmark)

    Lybeck, Anna; Friberg, Hans; Aneman, Anders

    2017-01-01

    AIM: Clinical seizures are common after cardiac arrest and predictive of a poor neurological outcome. Seizures may be myoclonic, tonic-clonic or a combination of seizure types. This study reports the incidence and prognostic significance of clinical seizures in the target temperature management (...

  12. Toxic effects of juvenile sablefish, Anoplopoma fimbria by ammonia exposure at different water temperature.

    Science.gov (United States)

    Kim, Jun-Hwan; Park, Hee-Ju; Hwang, In-Ki; Han, Jae-Min; Kim, Do-Hyung; Oh, Chul Woong; Lee, Jung-Sick; Kang, Ju-Chan

    2017-09-01

    Juvenile sablefish, Anoplopoma fimbria (mean length 17.1±2.4cm, and mean weight 75.6±5.7g) were used to evaluate toxic effects on antioxidant systems, immune responses, and stress indicators by ammonia exposure (0, 0.25, 0.75, and 1.25mg/L) at different water temperature (12 and 17°C) in 1 and 2 months. In antioxidant responses, superoxide dismutase (SOD) and catalase (CAT) were significantly increased by ammonia exposure, whereas glutathione (GSH) was decreased. In immune responses, lysozyme and phagocytosis activity were significantly increased by ammonia exposure. In stress indicators, plasma glucose, heat shock protein 70 (HSP 70), and cortisol were significantly increased. At high water temperature (17°C), alterations by ammonia exposure were more distinctly. The results of this study indicated that ammonia exposure can induce toxic effects in the sablefish, and high water temperature can affect the ammonia exposure toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  14. EMBRYO DEVELOPMENT OF YELLOWFIN TUNA (Thunnus albacares AT DIFFERENT INCUBATION TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Jhon Harianto Hutapea

    2007-12-01

    Full Text Available The experiment was conducted in order to figure out the effect of incubation temperature on embryonic development of yellowfin tuna, Thunnus albacares eggs. Five different incubation temperatures were applied as treatments, i.e.: 24°C, 26°C, 28°C, 30°C, and 32°C with 3 replicate each. Ten micro plates with lid (IWAKI, Japan were used; each has 6 well and 10 mL volumes. Five micro plates were used for experiment and five for balance on shaker. Three well of each micro plate were filled with 8 mL ultra violet sterilized sea water and 50 fertilized eggs. Temperature was set using Multi Thermo Incubator which has 5 level racks. Temperatures were set from the lowest to the highest on bottom to upper rack order. To maintain eggs dispersed in the medium, shaker on each rack was operated at 150 RPM. The embryo was monitored every 30-60 minutes depends on embryonic stage development using Microscope which was connected to Digital Camera DXM 1200F. Image analyses by Image Analyzer Program. The results showed, incubation temperature was significantly affect (P<0.05 embryonic development and hatching time of yellowfin tuna (Thunnus albacares eggs. Optimum incubation temperature for embryo development and hatching was 28°C. Decreased on incubation temperature slows down embryo development at all stages, and vice versa, increased on incubation temperature accelerates embryo development.

  15. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  16. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  17. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  18. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    Science.gov (United States)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C - 74% relative humidity (room no AC) and 23,80C - 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  19. The significance level and repeatability for isotope-temperature coefficient of precipitation in China

    International Nuclear Information System (INIS)

    Wang Dongsheng; Wang Jinglan

    2003-01-01

    The good linear relationship with significance level α = 0.01 exists between isotope in precipitation and surface air temperature with multi-year average in 32 stations of China, and the yearly δD-temperature coefficient = 3.1‰/1℃ and the yearly δ 18 O-temperature coefficient = 0.36‰/1℃, and its determination coefficient R 2 = 0.67 and 0.64 respectively. So the isotope-temperature coefficient with yearly average can serve as the temperature yearly measure. But the monthly average isotope-temperature coefficient in each station is variable according to both of space and time, and its repeatability is determined by the meteorological regimes. According to the monthly isotope-temperature coefficient (B) and the coefficient of determination (R 2 ) and its α, all of China can be zoned the following three belts: (1) In the North Belt, B>O, R 2 ≈ 0.3-0.65, α = 0.01, the relation between monthly isotope in precipitation and surface air temperature (RMIT) belongs to a direct correlation and is closer in 99% probability; (2) In the South Belt, Btemperature coefficient with both of yearly average and monthly average and its statistical attribution is site-specific, it may be used to reconstruct past surface air temperatures or to diagnose regional climate models. (authors)

  20. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six factor fractional design. The numbers of surviving Staphylococcus xylosus, lactic acid bacteria......, pH, free fatty acids and residual amounts of nitrite and nitrate were measured. The effects of temperature and different ingredients on the chemical and bacterial data were tested using multiple linear regression and analysis of variance. The study showed that numbers of surviving Staphylococcus...... of glucose and Pediococcus pentosaceus. On the other hand pH was increased by addition of nitrate. The pH-lowering effect of glucose was small when temperature was low. The residual levels of nitrite and nitrate were increased by addition of nitrate, but then increased and decreased, respectively...

  1. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    Science.gov (United States)

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters.

  2. Two-phase exchangers with small temperature differences

    International Nuclear Information System (INIS)

    Moracchioli, R.; Marie, G.; Lallee, J. de.

    1976-01-01

    The possibility in using heat available at low temperature level is shown (industrial wastes, solar energy, geothermal energy, heat power from seas). Special emphasis is put on the importance of heat exchangers that commonly should be evaporators and condensors working with small temperature differences (20 to 100 deg C). The expansion of the so-called ''new'' energies or recovery processes will depend on the physical performance of exchangers (Rankine two-phase cycles) and cost of the elementary exchange interfaces and assembling technics [fr

  3. Effects of different vegetation on temperature in an urban building environment. Micro-scale numerical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Guenter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-08-15

    A three-dimensional micro-scale model is used to study the effects of various greenery on temperature in a built-up environment. Green design elements like roofs and facades, lawns in courtyards and single trees are studied individually as well as in various combinations. Measures for comparison are temperatures at 2 m height and mean temperatures for the urban atmosphere up to the building height. Different types of greenery can reduce local temperatures up to 15 K during specific daytime hours. However, this extraordinary effect is restricted to a short time and especially to the direct surroundings, while an impact over larger distances is small. Roof and facade greenery have hardly any influence on temperature at the 2 m level but reduce daytime heating of the urban atmosphere to a minor degree, while the relevance of trees is more or less limited to the shadow effect. A significant decrease in urban temperatures can be achieved only with a large number of very different individual green elements. The largest effect on the urban atmosphere was simulated for a change in albedo resulting in a temperature decrease of some degrees around noon. (orig.)

  4. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  5. Effect of different light curing units on Knoop hardness and temperature of resin composite.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Xediek Consani, Rafael Leonardo; Mendes, Wilson Batista; Lympius, Thais; Coelho Sinhoreti, Mario Alexandre

    2009-01-01

    To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan). Data were submitted to ANOVA and Tukey's test (alpha = 0.05). For both composites, there were no significant differences (P > 0.05) in the top surface hardness; however, PAC promoted statistically lower (P 0.05). The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  6. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis.

    Science.gov (United States)

    Loram, J E; Trapido-Rosenthal, H G; Douglas, A E

    2007-11-01

    The giant sea anemone Condylactis gigantea associates with members of two clades of the dinoflagellate alga Symbiodinium, either singly or in mixed infection, as revealed by clade-specific quantitative polymerase chain reaction of large subunit ribosomal DNA. To explore the functional significance of this molecular variation, the fate of photosynthetically fixed carbon was investigated by (14)C radiotracer experiments. Symbioses with algae of clades A and B released ca. 30-40% of fixed carbon to the animal tissues. Incorporation into the lipid fraction and the low molecular weight fraction dominated by amino acids was significantly higher in symbioses with algae of clade A than of clade B, suggesting that the genetically different algae in C. gigantea are not functionally equivalent. Symbioses with mixed infections yielded intermediate values, such that this functional trait of the symbiosis can be predicted from the traits of the contributing algae. Coral and sea anemone symbioses with Symbiodinium break down at elevated temperature, a process known as 'coral bleaching'. The functional response of the C. gigantea symbiosis to heat stress varied between the algae of clades A and B, with particularly depressed incorporation of photosynthetic carbon into lipid of the clade B algae, which are more susceptible to high temperature than the algae of clade A. This study provides a first exploration of how the core symbiotic function of photosynthate transfer to the host varies with the genotype of Symbiodinium, an algal symbiont which underpins corals and, hence, coral reef ecosystems.

  7. Temperature dependence of luminescence for different surface flaws in high purity silica glass

    International Nuclear Information System (INIS)

    Fournier, J.; Grua, P.; Neauport, J.; Fargin, E.; Jubera, V.; Talaga, D.; Del Guerzo, A.; Raffy, G.; Jouannigot, S.

    2013-01-01

    In situ temperature dependence of the Photoluminescence under 325 nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime. (authors)

  8. Kinetics of color development in glucose/Amino Acid model systems at different temperatures

    Directory of Open Access Journals (Sweden)

    Ana Paola Echavarría

    2016-01-01

    Full Text Available This study investigated the influence of temperature on the color development of melanoidins formed from a single combination of glucose with amino acid. The selected amino acid, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine (Asn, aspartic acid (Asp and glutamic acid (Glu. For this, the color development was evaluated by measuring browning at 420 nm and color measurements by spectrophotometry and colorimetry methods. The effect of temperature on the color intensity, the absorption of melanoidins were also measured at different wavelengths (280, 325, 405. The value of melanoidins formed from all model systems was located on a dominant wavelength of 325 nm, the ultra violet zone of the diagram. A first-order kinetic model was applied to L* and the evolution of color difference ΔE*. In addition, a*, b* values, significantly differences were found in the glucose/aspartic acid model system in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature, and it is thought that the a* and b* values can be used to explain the differences among the amino acid in the color development of melanoidins.

  9. Comparison of quality attributes of buffalo meat curry at different storage temperature.

    Science.gov (United States)

    Kandeepan, Gurunathan; Anjaneyulu, Anne Seet Ram; Kondaiah, Napa; Mendiratta, Sanjod Kumar

    2011-01-01

    The product quality of curry is determined by the food animal source, raw materials and the method of processing. Moreover the scientific information on processing and quality of traditional buffalo meat curry from different groups of buffaloes is not available. This study was undertaken to develop processed curry from different buffalo groups and to compare its quality during storage at ambient and refrigeration temperature. The meat samples were collected from the longissimus dorsi muscle of the carcasses from each group of buffaloes slaughtered according to the traditional halal method. Buffalo meat curry was prepared in a pressure cooker with the standardized formulation. This final product was subjected to evaluation of quality and shelf life. To evaluate the effect of different groups of meat samples on the quality of curry, product yield, pH, proximate composition, water activity (aw), thiobarbituric acid reactive substances (TBARS), calorific value, sensory attributes and microbiological assay were determined The energy of meat curry from young buffaloes was significantly lower than the meat curry from spent animal groups. The overall acceptability of curry decreased significantly during 3 days ambient storage compared to refrigeration storage. Scientific processing by adopting good manufacturing practices and suitable packaging helped greatly to improve the shelf life of the ambient temperature stored buffalo meat curry. Buffalo meat curry from young male group showed better product characteristics and overall acceptability scores than spent buffalo group.

  10. Eclosion rate, development and survivorship of Aedes albopictus (Skuse)(Diptera: Culicidae) under different water temperatures

    International Nuclear Information System (INIS)

    Monteiro, Laura C.C.; Souza, Jose R.B. de; Albuquerque, Cleide M.R. de

    2007-01-01

    In tropical areas, where vector insects populations are particularly numerous, temperature usually range between 25 de C and 35 deg C. Considering the importance of such temperature variation in determining mosquitoes population dynamics, in this work the developmental, eclosion and survival rates of the immature stages of Aedes albopictus (Skuse) were compared under constant 25, 30 and 35 deg C (using acclimatized chambers) and environmental (25 deg C to 29 deg C) temperatures. The hatching rate was considered as total number of larvae recovered after 24h. The development period as well as larval and pupal survival rate were evaluated daily. Eclosion rate was significantly higher under environmental temperature than under the studied constant temperatures, suggesting that temperature variation may be an eclosion-stimulating factor. The mean eclosion time increased with the temperature, ranging from 2.8 h (25 deg C) to 5.2 h (35 deg C). The larval period was greatly variable inside each group, although it did not differ significantly amongst groups (11.0 +- 4.19 days), with individuals showing longer larval stages in water at 35 deg C (12.0 +- 4.95 days) and environmental temperature (13.6 +- 5.98 days). Oppositely, survival was strongly affected by the higher temperature, where only one individual lived through to adult phase. The results suggest that population of Ae. albopictus from Recife may be adapting to increasing of environmental temperatures and that the limiting temperature to larval development is around 35 deg C. (author)

  11. Physiological performance of sesame seeds under the water stress at different temperatures

    Directory of Open Access Journals (Sweden)

    Dayana Silva de Medeiros

    2015-10-01

    Full Text Available Sesame (Sesamum indicum L. shows great economic potential because it can be explored by the national as well as the international market. It can be grown in the second season when it is subject to less favorable weather conditions such as drought during the sowing and emergence. Given this the objective was to evaluate the effect of water stress induced by polyethylene glycol solutions (PEG 6000 at different temperatures in order to asses the physiological quality of sesame seeds. In this work, were used PEG 6000 with different osmotic potentials (0.0 control and (-0.2, –0.4, –0.6, –0.8, –1.0 –1,2 and –1.4 MPa at temperatures of 25, 30 and 35 °C. For determine the effect of the treatments it was evaluated seed germination and vigor (first count and length of the primary root and shoot, in a completely randomized, with four replications. The sesame seeds are affected by water stress, with significant reductions in germination and vigor. A temperature of 30 °C favored the germination performance in less restrictive water potentials.

  12. Specificity of germination of heteromorphic seeds in four annuals (Salsola L.) at different temperatures in the Junggar basin

    International Nuclear Information System (INIS)

    Ning, L.; Feng, L.H.; Chi, L.Z.; Xia, C.Z.

    2015-01-01

    Salsola L. is a large genus of arid desert plants that are primarily distributed in the Junggar Basin, China. We analysed their ability to adapt to arid habitats by comparing differences in germination characteristics of the species and populations of Salsola affinis C. A. Mey, Salsola korshinskyi Drob., Salsola brachiata Pall. and Salsola nitraria Pall. We classified the 4 species into four types (A, B, C and D) according to seed wing and seed size, and the heteromorphic seeds were incubatedunder different temperature regimes (0/10 degree C, 5/15 degree C, 10/25 degree C and 20/35 degree C). The 4 species had the highest germination rates and germination potential at 0/1 C. Germination rates and potential decreased with increasing temperature. However, the change range of the germination rate among the four species was different. Type A and B seeds of S. affinis, S. nitraria and S. korshinskyi were dominant at all temperatures and decreased with increasing temperature. The germination rate of type C seeds was between that of type A, B and D seeds. D-type seeds had the lowest germination rate and the lowest germination potential under the four temperature regimes among the four species but the differences were not significant. The germination rates of the four types of S. brachiata seeds did not significantly change with temperature. These results suggest that Salsola spp. can germinate continuously from spring to autumn to adapt to moisture fluctuations in the desert. (author)

  13. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    Science.gov (United States)

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  14. Response of water temperatures and stratification to changing climate in three lakes with different morphometry

    Science.gov (United States)

    Magee, Madeline R.; Wu, Chin H.

    2017-12-01

    Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal

  15. Effect of Different Storage Periods and Temperatures on the Hatchability of Broiler Breeder Eggs

    Directory of Open Access Journals (Sweden)

    A. Mahmud*, M. Z. U. Khan1, Saima1 and M. A. Javed

    2011-01-01

    Full Text Available Temperature and humidity have been the two most common variables used to manipulate the storage environment of hatching eggs. To ascertain the effects of different egg storage periods and temperatures on hatchability; 400 eggs were obtained from a broiler breeder flock of 32 weeks of age on a single day collection basis. These eggs were randomly divided into 5 equal groups of 80 eggs each. After collection these were cleaned, fumigated and stored on four temperatures viz 4oC, 16oC, room temperature (25oC and ambient temperature (29oC. Each group was further subdivided into 4 replicates having 20 eggs each. Eggs of Group A (control were set in incubator with temperature of 37.5oC and relative humidity 60% after the storage of one day. Eggs of rest of the four groups were set in the incubator after the storage of 3, 6, 9 and 12 days. Subsequently, these were shifted to hatchers on 18th day where the temperature and humidity were maintained at 36.5oC and 75%, respectively. The data on hatchability and dead-in-shell embryos for various groups were recorded. The results revealed that as the storage period increased at different temperatures, the hatchability decreased significantly (P<0.01. Similarly, as the storage time increased, the percentage of dead-in-shell embryos increased (P<0.01.

  16. The relationship between heart rate and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at two different temperatures.

    Science.gov (United States)

    Butler, Patrick J; Frappell, Peter B; Wang, Tobias; Wikelski, Martin

    2002-07-01

    To enable the use of heart rate (fH) for estimating field metabolic rate (FMR) in free-ranging Galapagos marine iguanas Amblyrhynchus cristatus, we determined the relationships between fH and mass-specific rate of oxygen consumption (sVO2) in seven iguanas before and during exercise on a treadmill and during the post-exercise period. The experiments were conducted at 27 and 35 degrees C, which are the temperatures that represent the lowest and highest average body temperatures of these animals in the field during summer. There were linear and significant relationships between fH and sVO2 at both temperatures (r(2)=0.86 and 0.91 at 27 degrees C and 36 degrees C, respectively). The slopes of the two regression lines did not differ, but there were significant differences in their intercepts. Thus, while heart rate can be used to predict FMR, the effects of temperature on the intercept of the regression must be taken into account when converting fH to sVO2. On the basis of our data, this can be achieved by applying the following formula: sVO2=0.0113fH-0.2983Q(10)((T(b)-27)/10). The increase in sVO2 with elevated body temperature results from an increase in fH, with no significant change in mass-specific oxygen pulse (sO(2) pulse; cardiac stroke volume times the difference in oxygen content between arterial and mixed venous blood). However, during exercise at both temperatures, increases in fH are insufficient to provide all of the additional O(2) required and there are also significant increases in the sO(2) pulses. This creates the situation whereby the same fH at the two temperatures can represent different values of sVO2.

  17. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  18. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  19. Uniformity factor of temperature difference in heat exchanger networks

    International Nuclear Information System (INIS)

    Chen, Shang; Cui, Guo-min

    2016-01-01

    Highlights: • A uniformity factor of temperature (UFTD) is proposed to heat exchanger network (HEN). • A novel stage-wise superstructure with inner utilities is presented based on UFTD. • New model and DE method is combined as an optimization method. • Optimal HEN structures with inner utilities can be obtained with new method. - Abstract: A uniformity factor of temperature difference (UFTD) is proposed and set up to guide the optimization of Heat exchanger network (HEN). At first, the factor is presented to evaluate the whole enhancement of HEN by handling the logical mean temperature difference as two-dimensional discrete temperature field in system. Then, the factor is applied to different HENs, of which the comparison indicates that a more uniform discrete temperature field leads to a lower UFTD which correlated with a better whole enhancement to improve the optimization level of HEN. A novel stage-wise superstructure model where inner utility can be generated is presented for further analysis of correlation between UFTD and the efficiency of HEN, and more optimal HEN structures can be obtained as inner utility added. Inner utility appears to violate the thermodynamic law, but it makes the discrete temperature field more uniform and improves the heat transfer efficiency of the whole HEN, which brings much more profit than the side effect of inner utility. In sum, the UFTD can not only evaluate the optimization level of the HEN, but also be an optimization object to design new HEN with higher efficiency of energy utilization and lower total annual cost.

  20. Honey bee forager thoracic temperature inside the nest is tuned to broad-scale differences in recruitment motivation.

    Science.gov (United States)

    Sadler, Nik; Nieh, James C

    2011-02-01

    Insects that regulate flight muscle temperatures serve as crucial pollinators in a broad range of ecosystems, in part because they forage over a wide span of temperatures. Honey bees are a classic example and maintain their thoracic muscles at temperatures (T(th)) tuned to the caloric benefits of floral resources. Using infrared thermography, we tested the hypothesis that forager motivation to recruit nestmates for a food source is positively correlated with T(th). We trained bees to a sucrose feeder located 5-100 m from the nest. Recruiting foragers had a significantly higher average T(th) (2.7°C higher) when returning from 2.5 mol l(-1) sucrose (65% w/w) than when returning from 1.0 mol l(-1) sucrose (31% w/w). Foragers exhibited significantly larger thermal fluctuations the longer they spent inside the nest between foraging trips. The difference between maximum and minimum temperatures during a nest visit (T(range)) increased with total duration of the nest visit (0.7°C increase per additional min spent inside the nest). Bees that recruited nestmates (waggle or round danced) were significantly warmer, with a 1.4-1.5 times higher ΔT(th) (difference between T(th) and nest ambient air temperature) than bees who tremble danced or simply walked on the nest floor without recruiting between foraging bouts. However, recruiter T(th) was not correlated with finer-scale measures of motivation: the number of waggle dance circuits or waggle dance return phase duration. These results support the hypothesis that forager T(th) within the nest is correlated to broad-scale differences in foraging motivation.

  1. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    Science.gov (United States)

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting.

  2. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  3. Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2018-05-01

    Full Text Available To improve the reactor efficiency, this study investigated the influence of temperature on the biological hydrogen methanation (BHM in trickle-bed reactors (TBR. Rising temperatures increase the metabolic activity of methanogenic microorganisms, thus leading to higher reactor specific methane formation rates (MFR. In order to quantify the potential for improved performance, experiments with four different operating temperatures ranging from 40 to 55 °C were carried out. Methane content increased from 88.29 ± 2.12 vol % at 40 °C to 94.99 ± 0.81 vol % at 55 °C with a stable biological process. Furthermore, a reactor specific methane formation rate (MFR of up to 8.85 ± 0.45 m3 m−3 d−1 was achieved. It could be shown that the microorganisms were able to adapt to higher temperatures within hours. The tests showed that TBR performance with regard to BHM can be significantly increased by increasing the operating temperature.

  4. Differences between true mean temperatures and means calculated with four different approaches: a case study from three Croatian stations

    Science.gov (United States)

    Bonacci, Ognjen; Željković, Ivana

    2018-01-01

    Different countries use varied methods for daily mean temperature calculation. None of them assesses precisely the true daily mean temperature, which is defined as the integral of continuous temperature measurements in a day. Of special scientific as well as practical importance is to find out how temperatures calculated by different methods and approaches deviate from the true daily mean temperature. Five mean daily temperatures were calculated (T0, T1, T2, T3, T4) using five different equations. The mean of 24-h temperature observations during the calendar day is accepted to represent the true, daily mean T0. The differences Δ i between T0 and four other mean daily temperatures T1, T2, T3, and T4 were calculated and analysed. In the paper, analyses were done with hourly data measured in a period from 1 January 1999 to 31 December 2014 (149,016 h, 192 months and 16 years) at three Croatian meteorological stations. The stations are situated in distinct climatological areas: Zagreb Grič in a mild climate, Zavižan in the cold mountain region and Dubrovnik in the hot Mediterranean. Influence of fog on the temperature is analysed. Special attention is given to analyses of extreme (maximum and minimum) daily differences occurred at three analysed stations. Selection of the fixed local hours, which is in use for calculation of mean daily temperature, plays a crucial role in diminishing of bias from the true daily temperature.

  5. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  6. Detection of Variations in Air Temperature at Different Time Scales During the Period 1889-1998 at Firenze, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.V. [Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad, Hyderabad, 500059, Andhra Pradesh (India); Bindi, M. [DISAT-UNIFI, P.le delle Cascine 18, 50144, Firenze (Italy); Crisci, A. [LaMMA-Laboratorio per la Meteorologia, Climatologia e la Modellistica Ambientale, Campi Bisenzio (Italy); Maracchi, G. [IATA-CNR, P.le delle Cascine 18, 50144 Firenze (Italy)

    2005-09-01

    In an attempt to contribute to studies on global climatic change, 110 years of temperature data for Firenze, Italy, were analysed. Means and trends of annual and monthly temperatures (minimum, maximum and average) were analysed at three different time scales: short (20 years), medium (36-38 years) and long (55 years). Comparative changes in extreme events viz. frosts in the first and second parts of the 20th century were also analysed. At short time scales, climatic change was found in minimum and average temperatures but not in maximum temperatures. At all three time scales, the annual means of minimum, maximum and average temperatures were significantly warmer in the last part than in the early part of the 20th century. The monthly mean temperatures showed significant warming of winter months. Over the last four decades, minimum, maximum and average temperatures had warmed by 0.4, 0.43 and 0.4C per decade, respectively, and if this trend continues, they will be warmer by 4C by the end of the 21st century. The significant decline in days with subzero temperatures and frosts in the last half of the 20th century, further substantiated the occurrence of climate change at this site.

  7. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines.

    Science.gov (United States)

    Şener, Hasan; Yildirim, Hatice Kalkan

    2013-12-01

    Maceration and fermentation time and temperatures are important factors affecting wine quality. In this study different maceration times (3 and 6 days) and temperatures (15  and 25 ) during production of red wine (Vitis vinifera L. Cabernet Sauvignon) were investigated. In all wines standard wine chemical parameters and some specific parameters as total phenols, tartaric esters, total flavonols and colour parameters (CD, CI, T, dA%, %Y, %R, %B, CIELAB values) were determined. Sensory evaluation was performed by descriptive sensory analysis. The results demonstrated not only the importance of skin contact time and temperature during maceration but also the effects of transition temperatures (different maceration and fermentation temperatures) on wine quality as a whole. The results of sensory descriptive analyses revealed that the temperature significantly affected the aroma and flavour attributes of wines. The highest scores for 'cassis', 'clove', 'fresh fruity' and 'rose' characters were obtained in wines produced at low temperature (15 ) of maceration (6 days) and fermentation.

  8. Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes

    Directory of Open Access Journals (Sweden)

    Xiaoying Chen

    2014-01-01

    Full Text Available The effect of four different arbuscular mycorrhizal fungi (AMF on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress.

  9. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions

    Directory of Open Access Journals (Sweden)

    Mirim Shin

    2015-01-01

    Full Text Available There were no validation studies on portable sleep devices under different ambient temperature, thus this study evaluated the validity of wrist Actiwatch2 (AW2 or SenseWear armband (SWA against polysomnography (PSG in different ambient temperatures. Nine healthy young participants (6 males, aged 23.3±4.1 y underwent nine nights of study at ambient temperature of 17 °C, 22 °C and 29 °C in random order, after an adaptation night. They wore the AW2 and SWA while being monitored for PSG simultaneously. A linear mixed model indicated that AW2 is valid for sleep onset latency (SOL, total sleep time (TST and sleep efficiency (SE but significantly overestimated wake after sleep onset (WASO at 17 °C and 22 °C. SWA is valid for WASO, TST and SE at these temperatures, but severely underestimates SOL. However, at 29 °C, SWA significantly overestimated WASO and underestimated TST and SE. Bland–Altman plots showed small biases with acceptable limits of agreement (LoA for AW2 whereas, small biases and relatively wider LoA for most sleep variables were observed in SWA. The kappa statistic showed a moderate sleep–wake epoch agreement, with a high sensitivity but poor specificity; wake detection remains suboptimal. AW2 showed small biases for most of sleep variables at all temperature conditions, except for WASO. SWA is reliable for measures of TST, WASO and SE at 17–22 °C but not at 29 °C, and SOL approximates that of PSG only at 29 °C, thus caution is needed when monitoring sleep at different temperatures, especially in home sleep studies, in which temperature conditions are more variable.

  10. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse...... gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution...... to global warming from human activities, nor to rule out a sizable contribution from that source....

  11. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  12. Myoglobin solvent structure at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, B.V.; Korszun, Z.R. [Brookhaven National Laboratory, Upton, NY (United States); Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B{sub sn}, versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35{Angstrom} and 3.85{Angstrom}. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased.

  13. Myoglobin solvent structure at different temperatures

    International Nuclear Information System (INIS)

    Daniels, B.V.; Korszun, Z.R.; Schoenborn, B.P.

    1994-01-01

    The structure of the solvent surrounding myoglobin crystals has been analyzed using neutron diffraction data, and the results indicate that the water around the protein is not disordered, but rather lies in well-defined hydration shells. We have analyzed the structure of the solvent surrounding the protein by collecting neutron diffraction data at four different temperatures, namely, 80, 130, 180, and 240K. Relative Wilson Statistics applied to low resolution data showed evidence of a phase transition in the region of 180K. A plot of the liquidity factor, B sn , versus distance from the protein surface begins with a high plateau near the surface of the protein and drops to two minima at distances from the protein surface of about 2.35 Angstrom and 3.85 Angstrom. Two distinct hydration shells are observed. Both hydration shells are observed to expand as the temperature is increased

  14. Pulp chamber temperature rise during curing of resin-based composites with different light-curing units.

    Science.gov (United States)

    Durey, Kathryn; Santini, Ario; Miletic, Vesna

    2008-01-01

    The purpose of the present study was to measure the intrapulpal temperature rise occurring during polymerisation of different shades of resin-based composites (RBCs), and two light-emitting diode (LED) units. Seventy non-carious permanent molars, that had been extracted for orthodontic purposes and stored in 2% thymol for not more than four months, were selected. Patient age range was 11-18 years. Standard cavity preparation with standardised remaining dentine thickness and placement of thermocouples (TCs) was prepared using a novel split-tooth technique. Cavities were filled with one of two shades of RBC (A2 and C4, Filtek Z250, 3M ESPE, Seefeld, Germany), and cured with two LED high-intensity units (Elipar Freelight2, 3M ESPE, Seefeld, Germany; Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) and a conventional halogen light-curing unit (LCU) (Prismetics Lite 2, Dentsply, Weybridge, Surrey, UK) as a control. Pulp temperature rises during bonding [A2 results: H;2.67/0.48:E;5.24/1.32;B;5.99/1.61] were always greater than during RBC curing [A2 results: 2.44/0.63;E3.34/0.70;B3.38/0.60], and these were significant for both LED lights but not for the halogen control, irrespective of shade (Mann-Whitney test: 95% confidence limits). Temperature rises were at times in excess of the values normally quoted as causing irreversible pulp damage. Pulp temperature rises during bonding were higher with the LED lights than with the halogen control. There was no significant difference in temperature rise between the two LED lights when bonding but there was a significant difference between the two LED lights and the halogen control LCUs (Kruskal-Wallis Test: 95% confidence limits). The results support the view that there is a potential risk for heat-induced pulpal injury when light-curing RBCs. The risk is greater during bonding and with high energy, as compared to low-energy output systems. As the extent of tolerable thermal trauma by the pulp tissues is unknown, care and

  15. Regional differences in temperature sensation and thermal comfort in humans.

    Science.gov (United States)

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  16. Urban-Rural Temperature Differences in Lagos

    Directory of Open Access Journals (Sweden)

    Vincent N. Ojeh

    2016-05-01

    Full Text Available In this study, the hourly air temperature differences between City hall (urban and Okoafo (rural in Lagos, Nigeria, were calculated using one year of meteorological observations, from June 2014 to May 2015. The two sites considered for this work were carefully selected to represent their climate zones. The city core, City hall, is within the Local Climate Zone (LCZ 2 (Compact midrise while the rural location, Okoafo, falls within LCZ B (Scattered Trees in the south-western part on the outskirt of the city. This study is one of very few to investigate urban temperature conditions in Lagos, the largest city in Africa and one of the most rapidly urbanizing megacities in the world; findings show that maximum nocturnal UHI magnitudes in Lagos can exceed 7 °C during the dry season, and during the rainy season, wet soils in the rural environment supersede regional wind speed as the dominant control over UHI magnitude.

  17. Relative frequencies and significance of faecal coliforms as indicators related to water temperature.

    Science.gov (United States)

    Auban, E G; Ripolles, A A; Domarco, M J

    1983-01-01

    The faecal coliforms at different sites of a hypereutrophic lake near Valencia (Albufera) were identified and their relative amounts established along an annual cycle. Using lauryl tryptose broth at 35 degrees C, followed by incubation at 44.4 degrees C in 2% brilliant green bile, Escherichia coli and Klebsiella pneumoniae are practically the only coliforms present. A positive correlation was found between the water temperature and the relative amount of these two coliforms: K. pneumoniae predominates at high water temperatures, whereas E. coli shows preponderance during the cold period. The role of K. pneumoniae as the only faecal indicator under the circumstances described in the work is emphasized and discussed.

  18. NMR measurement of bitumen at different temperatures.

    Science.gov (United States)

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (index (HI), fluid content and viscosity were evaluated by using corrected T2.

  19. Accelerated technique for plotting of cyclic strain diagrams at different temperatures

    International Nuclear Information System (INIS)

    Varyanitsa, V.Yu.; Egorov, V.I.; Sobolev, N.D.

    1982-01-01

    A method for plotting curves of strain by testing one specimen at different temperatures levels is proposed. It is shown that under considered conditions of the test of prehistory of the temperature interaction does not effect the process of cyclic deformation. It confirms a possibility of steel tests at one specimen at different regimes [ru

  20. Accelerated technique for plotting of cyclic strain diagrams at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Varyanitsa, V Yu; Egorov, V I; Sobolev, N D [Moskovskij Inzhenerno-Fizicheskij Inst. (USSR)

    1982-01-01

    A method for plotting curves of strain by testing one specimen at different temperatures levels is proposed. It is shown that under considered conditions of the test of prehistory of the temperature interaction does not effect the process of cyclic deformation. It confirms a possibility of steel tests at one specimen at different regimes.

  1. Effect of moderate hypoxia at three acclimation temperatures on stress responses in Atlantic cod with different haemoglobin types

    DEFF Research Database (Denmark)

    Methling, Caroline; Aluru, Neelakanteswar; Vijayan, Mathilakath M

    2010-01-01

    in a difference in stress response to hypoxia exposure. Two hsp70-isoforms (labelled a and b) were detected and they differed in expression in the gills but not in the liver of Atlantic cod. Acclimation temperature significantly affected the expression of hsp70 in the liver, and in an isoform-specific manner...... in the gills. Hypoxia exposure increased the expression of hsp70 in the liver, but not the gills, of cod and this response was not influenced by the acclimation temperature. The expression of hsp70 in both tissues did not differ between fish with different haemoglobin types. Acclimation temperature...... hypoxic exposure influence the organismal and cellular stress responses in Atlantic cod. We hypothesise that HbI-2 fish are more tolerant to short-term hypoxic episodes than HbI-1 fish, and this adaptation may be independent of tissue hsp70 expression....

  2. Analysis of the dynamics of Rhizomucor miehei lipase at different temperatures

    DEFF Research Database (Denmark)

    Peters, Günther H.j.; Toxvaerd, S.; Andersen, K.V.

    1999-01-01

    The dynamics of Rhizomucor miehei lipase has been studied by molecular dynamics simulations at temperatures ranging from 200-500K. Simulations carried out in periodic boundary conditions and using explicit water molecules were performed for 400 ps at each temperature. Our results indicate...... that conformational changes and internal motions in the protein are significantly influenced by the temperature increase. With increasing temperature, the number of internal hydrogen bonds decreases, while surface accessibility, radius of gyration and the number of residues in random coil conformation increase...

  3. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties.

    Science.gov (United States)

    Berendsen, Erwin M; Zwietering, Marcel H; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2015-02-01

    The survival of bacterial spores after heat treatment and the subsequent germination and outgrowth in a food product can lead to spoilage of the food product and economical losses. Prediction of time-temperature conditions that lead to sufficient inactivation requires access to detailed spore thermal inactivation kinetics of relevant model strains. In this study, the thermal inactivation kinetics of spores of fourteen strains belonging to the Bacillus subtilis group were determined in detail, using both batch heating in capillary tubes and continuous flow heating in a micro heater. The inactivation data were fitted using a log linear model. Based on the spore heat resistance data, two distinct groups (p subtilis group could be identified. One group of strains had spores with an average D120 °C of 0.33 s, while the spores of the other group displayed significantly higher heat resistances, with an average D120 °C of 45.7 s. When comparing spore inactivation data obtained using batch- and continuous flow heating, the z-values were significantly different, hence extrapolation from one system to the other was not justified. This study clearly shows that heat resistances of spores from different strains in the B. subtilis group can vary greatly. Strains can be separated into two groups, to which different spore heat inactivation kinetics apply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A new method to detect significant basal body temperature changes during a woman's menstrual cycle.

    Science.gov (United States)

    Freundl, Günter; Frank-Herrmann, Petra; Brown, Simon; Blackwell, Leonard

    2014-10-01

    To compare the results of a computer programme based on the Trigg's tracking system (TTS) identification of the basal body temperature (BBT) shift day from daily records of BBT values (TTS transition day), with the BBT shift day identified from the same records using the Sensiplan(®) symptothermal method of natural family planning. A computer programme was written to display the daily BBT readings for 364 menstrual cycles from 51 women aged 24 to 35 years, obtained from the German Natural Family Planning (NFP) database. The TTS transition day so identified from each record was then compared with the BBT shift day estimated from the same record by the Sensiplan(®) method. Total agreement between the methods was obtained for 81% (294/364) of the cycles and 18% (67) cycles differed by ± 1 day. For the 364 pairs of values distributed among 51 women the medians of the differences between the TTS transition day and Sensiplan(®) initial day of the BBT rise (shift day) were not significantly different (χ(2) = 65.28, df = 50, p = 0.07205). The advantages of the tracking signal algorithm are that in many cases it was possible to identify the BBT shift day on that very day - rather than only some days later - and to estimate the probability that a transition had occurred from the different values of the tracking signal.

  5. Spectroscopic determination of ionization constants of quinoline and 3-aminoquinoline at different temperature

    International Nuclear Information System (INIS)

    Indhar, H.A.B.

    2000-01-01

    Quinoline and its derivative are chemically and biologically important heterocylic compounds. Its ionization constant (pK/sub a/ values have been previously determined only at 18 or 20 deg. C. We have enhanced this work at different temperatures from 20-50 deg. C at the interval of 5 deg. C. The dissociation constants (pk/sub a/s), and Gibb's free energies of quinoline and 3-aminoquinoline have been determined by UV-Spectrophotometer (lambda 2) equipped with a temperature control of - + 0.1 deg. C at temperatures ranging from 20-50 deg. C in water. The experimental data have been used for the determination of thermodynamic ionization constants (pk /sub a //sup t/) sub t/, concentration ionization constants (pK/sub a//sup M/) and Gibbs's free energy values of pK/sub a/sup M/. The ionization constant values decrease with increase of temperature. The significance of relative magnitudes of the values is discussed and some useful generalization are obtained. The curves are parabolic. A computer program in GW-BASIC calculates the values of dissociation constants. From the pK/sub a/ values, Gibb's free energies are compared and discussed. (author)

  6. Effect and control on temperature measurement accuracy of the fiber- optic colorimeter by emissivity of different temperatures

    Science.gov (United States)

    Liu, Yu-fang; Han, Xin; Shi, De-heng

    2008-03-01

    Based on the Kirchhoff's Law, a practical dual-wavelength fiber-optic colorimeter, with the optimal work wavelength centered at 2.1 μm and 2.3 μm is presented. The effect of the emissivity on the precision of the measured temperature has been explored under various circumstances (i.e. temperature, wavelength) and for different materials. In addition, by fitting several typical material emissivity-temperature dependencies curves, the influence of the irradiation (radiant flux originating from the surroundings) and the surface reflected radiation on the temperature accuracy is studied. The results show that the calibration of the measured temperature for reflected radiant energy is necessary especially in low target temperature or low target emissivity, and the temperature accuracy is suitable for requirements in the range of 400-1200K.

  7. Natural Ventilation Driven by Wind and Temperature Difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen

    Natural ventilation is a commonly used principle when buildings are being ventilated. It can be controlled by openings in the building envelope, which open or close depending on the need of air inside the building. It can also be the simple action of just opening a door or a window to let the fresh...... driving forces are still wind pressure and temperature differences as with cross-ventilation, but here the turbulence in the wind and the pulsating flow near the opening also affect the flow through the opening. From earlier work, some design expressions already exist, but none of these include...... the incidence angle of the wind, which is an important parameter in this type of ventilation. Several wind tunnel experiments are made and from the results of these, a new design expression is made which includes the wind pressure, temperature difference, incidence angle of the wind and the fluctuations...

  8. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  9. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  10. Inactivation kinetics of Vibrio vulnificus in phosphate-buffered saline at different freezing and storage temperatures and times.

    Science.gov (United States)

    Seminario, Diana M; Balaban, Murat O; Rodrick, Gary

    2011-03-01

    Vibrio vulnificus (Vv) is a pathogen that can be found in raw oysters. Freezing can reduce Vv and increase the shelf life of oysters. The objective of this study was to develop predictive inactivation kinetic models for pure cultures of Vv at different frozen storage temperatures and times. Vv was diluted in phosphate-buffered saline (PBS) to obtain about 10(7) CFU/mL. Samples were frozen at -10, -35, and -80 °C (different freezing rates), and stored at different temperatures. Survival of Vv was followed after freezing and storage at -10 °C (0, 3, 6, and 9 d) and at -35 and -80 °C (every week for 6 wk). For every treatment, time-temperature data was obtained using thermocouples in blank vials. Predictive models were developed using first-order, Weibull and Peleg inactivation kinetics. Different freezing temperatures did not significantly (α = 0.05) affect survival of Vv immediately after freezing. The combined effect of freezing and 1 wk frozen storage resulted in 1.5, 2.6, and 4.9 log10 reductions for samples stored at -80, -35, and -10 °C, respectively. Storage temperature was the critical parameter in survival of Vv. A modified Weibull model successfully predicted Vv survival during frozen storage: log10 Nt = log 10No - 1.22 - ([t/10{-1.163-0.0466T}][0.00025T(2) + 0.049325]). N(o) and N(t) are initial and time t (d) survival counts, T is frozen storage temperature, Celsius degree. Vibrio vulnificus can be inactivated by freezing. Models to predict survival of V. vulnificus at different freezing temperatures and times were developed. This is the first step towards the prediction of V. vulnificus related safety of frozen oysters.

  11. On solubility of rare earth chlorides in water at different temperatures

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Sorokina, A.A.; Sokolova, N.P.; Kotlyar-Shapirov, G.S.; Bagryantseva, L.I.

    1978-01-01

    Solubility of rare earth chlorides at -5, -10 and -15 deg C is studied. Rare earth chloride solubility dependences on the temperature in the interval from -15 to 50 deg C are presented. Decrease of solubility temperature coefficient to a zero is observed at temperature drop almost for all rare earth chlorides. Solubility temperature coefficient at the same temperature but for different rare earth chlorides reduces appreciably with the growth of rare earth chloride serial number. This testifies to the corresponding decrease of integral solution heat of rare earth chloride crystallohydrates

  12. Evaluating the Properties of High-Temperature and Low-Temperature Wear of TiN Coatings Deposited at Different Temperatures

    Directory of Open Access Journals (Sweden)

    B. Khorrami Mokhori

    2017-02-01

    Full Text Available In this research titanium nitride (TiN films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C. Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C and low (25 °C temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers. Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.

  13. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures.

    Science.gov (United States)

    Paget, Caroline Mary; Schwartz, Jean-Marc; Delneri, Daniela

    2014-11-01

    Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro-spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold-tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo-tolerant) and S. cerevisiae 96.2 (thermo-tolerant). Using two different systems approaches, i. thermodynamic-based analysis of a genome-scale metabolic model of S. cerevisiae and ii. large-scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold-favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature-induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  14. The effect and mechanism of the bipolar junction transistor in different temperature

    International Nuclear Information System (INIS)

    Wang Dong; Lu Wu; Ren Diyuan; Li Aiwu; Kuang Zhibing

    2007-01-01

    The annealing-effect of bipolar junction transistor in different temperature is investigated. It is found that the anneal of the bipolar transistor is related to the annealing-temperature, and the annealing-effect of the different type transistor is dissimilar. The possible mechanism is discussed. (authors)

  15. Test for the statistical significance of differences between ROC curves

    International Nuclear Information System (INIS)

    Metz, C.E.; Kronman, H.B.

    1979-01-01

    A test for the statistical significance of observed differences between two measured Receiver Operating Characteristic (ROC) curves has been designed and evaluated. The set of observer response data for each ROC curve is assumed to be independent and to arise from a ROC curve having a form which, in the absence of statistical fluctuations in the response data, graphs as a straight line on double normal-deviate axes. To test the significance of an apparent difference between two measured ROC curves, maximum likelihood estimates of the two parameters of each curve and the associated parameter variances and covariance are calculated from the corresponding set of observer response data. An approximate Chi-square statistic with two degrees of freedom is then constructed from the differences between the parameters estimated for each ROC curve and from the variances and covariances of these estimates. This statistic is known to be truly Chi-square distributed only in the limit of large numbers of trials in the observer performance experiments. Performance of the statistic for data arising from a limited number of experimental trials was evaluated. Independent sets of rating scale data arising from the same underlying ROC curve were paired, and the fraction of differences found (falsely) significant was compared to the significance level, α, used with the test. Although test performance was found to be somewhat dependent on both the number of trials in the data and the position of the underlying ROC curve in the ROC space, the results for various significance levels showed the test to be reliable under practical experimental conditions

  16. Susceptibilities of Candidatus Liberibacter asiaticus-infected and noninfected Diaphorina citri to entomopathogenic fungi and their detoxification enzyme activities under different temperatures.

    Science.gov (United States)

    Hussain, Mubasher; Akutse, Komivi Senyo; Lin, Yongwen; Chen, Shiman; Huang, Wei; Zhang, Jinguan; Idrees, Atif; Qiu, Dongliang; Wang, Liande

    2018-03-25

    Some entomopathogenic fungi species, Isaria fumosorosea, and Hirsutella citriformis were found to be efficient against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). However, the susceptibility to these fungi increases when the psyllid infected with Candidatus Liberibacter asiaticus (Las), which is transmitted by D. citri and causes citrus greening disease. In this study, we examined the Las-infected and Las-uninfected D. citri susceptibility to entomopathogenic fungi at different temperature regimes (5-40°C). When D. citri adults exposed to cold temperature (5°C), they showed less susceptibility to entomopathogenic fungi as compared with control (27°C). Irrespective of infection with Las, a significantly positive correlation was observed between temperature and percentage mortality caused by different isolates of I. fumosorosea, 3A Ifr, 5F Ifr, PS Ifr, and H. citriformis isolates, HC3D and 2H. In contrast, a significantly negative correlation was found between temperature and percentage mortality for 3A Ifr for both Las-infected and Las-uninfected psyllids. Detoxification enzymes, Glutathione S-transferase levels in D. citri showed a negative correlation, whereas cytochrome P450 and general esterase levels were not correlated with changes in temperature. These findings revealed that detoxification enzymes and general esterase levels are not correlated with altered susceptibility to entomopathogenic fungi at the different temperature regimes. Conclusively, temperature fluctuations tested appear to be a significant factor impacting the management strategies of D. citri using entomopathogenic fungi. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.

    Science.gov (United States)

    Yu, W Q; Zhang, Y L; Jiang, X Q; Zhang, F Q

    2010-10-01

    Titanium oxide nanotube layers by anodization have excellent potential for dental implants because of good bone cell promotion. It is necessary to evaluate osteoblast behavior on different annealing temperature titania nanotubes for actual implant designs.  Scanning Electron Microscopy, X-Ray polycrystalline Diffractometer (XRD), X-ray photoelectron Spectroscope, and Atomic Force Microscopy (AFM) were used to characterize the different annealing temperature titania nanotubes. Confocal laser scanning microscopy, MTT, and Alizarin Red-S staining were used to evaluate the MC3T3-E1 preosteoblast behavior on different annealing temperature nanotubes.  The tubular morphology was constant when annealed at 450°C and 550°C, but collapsed when annealed at 650°C. XRD exhibited the crystal form of nanotubes after formation (amorphous), after annealing at 450°C (anatase), and after annealing at 550°C (anatase/rutile). Annealing led to the complete loss of fluorine on nanotubes at 550°C. Average surface roughness of different annealing temperature nanotubes showed no difference by AFM analysis. The proliferation and mineralization of preostoblasts cultured on anatase or anatase/rutile nanotube layers were shown to be significantly higher than smooth, amorphous nanotube layers.  Annealing can change the crystal form and composition of nanotubes. The nanotubes after annealing can promote osteoblast proliferation and mineralization in vitro. © 2010 John Wiley & Sons A/S.

  18. Significance and influence of the ambient temperature as a rate ...

    Indian Academy of Sciences (India)

    Unknown

    , undoubtedly is dependent even on the level of the ambient temperature. Therefore, the ambient temperature seems to be an important factor of the corrosion rate and the durability of the reinforced concrete structures in aggressive ...

  19. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  20. Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2018-01-01

    refrigerants. This approach enables a match of the temperature glide of sink and source with the temperature of the working fluid during phase change and thus, a reduction of the exergy destruction due to heat transfer. The model was evaluated for four different boundary conditions. The exergy destruction due...

  1. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Science.gov (United States)

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  2. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be

  3. Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia

    DEFF Research Database (Denmark)

    Petersen, M.F.; Steffensen, J.F.

    2003-01-01

    .2+/-1.5 degrees C while HbI-1 cod preferred 15.4+/-1.1 degrees C, and this preference was significant. The effect of hypoxia (35% oxygen saturation) on the preferred temperature was also measured. Previous studies showed that the preferred temperature of fish decreases during hypoxia, and this was the case for Hb......I-1 cod, which preferred 9.8+/-1.8 degrees C during hypoxia, whereas HbI-2 cod did not show this effect. The results indicate that environmental temperature changes will lead to a distributional change in the different haemoglobin types of Atlantic cod, global warming providing an advantage for HbI-1...... cod. However, since HbI-1 cod prefer a low temperature under hypoxic conditions, a combination of increased water temperature and hypoxia could be unfavourable for Atlantic cod stocks....

  4. Energy harvesting through gas dynamics in the free molecular flow regime between structured surfaces at different temperatures

    Science.gov (United States)

    Baier, Tobias; Dölger, Julia; Hardt, Steffen

    2014-05-01

    For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.

  5. Effects of Different Environment Temperatures on Some Motor Characteristics and Muscle Strength

    Science.gov (United States)

    Çakir, Ergün; Yüksek, Selami; Asma, Bülent; Arslanoglu, Erkal

    2016-01-01

    The aim of this study was determine the effects of different environment temperatures on motor characteristics and muscle strength. 15 athletes participated to study. Flexibility, vertical jump, hand grip-leg strength, 30m sprint, 20-meter shuttle run and coordination-agility tests were measured in five different environment temperatures. (22°C,…

  6. Conservation of Campomanesia adamantium (CAMB. O. berg seeds in different packaging and at varied temperatures

    Directory of Open Access Journals (Sweden)

    Silvana de Paula Quintão Scalon

    2013-03-01

    Full Text Available This article aims at evaluating the effects of different packaging and varied storage temperatures on the germination potential of seeds of Campomanesia adamantium Camb. O. Berg. The seeds were packaged in glass, aluminum foil and plastic containers, or maintained inside intact fruits at 5, 10 and 15 ºC during 0, 7, 14 and 21 days. After these periods the seeds were sown in Germitest® germination paper and maintained in incubation chambers at 25 ºC under constant white light for 42 days. Seed moisture contents were evaluated both before and after storage, as well as germination percentages, germination speed index, root and aerial portion of seedlings lengths, and total dry weights. All possible combinations of packing materials, temperatures and storage times were tested, with four repetitions of 25 seeds for each treatment. C. adamantium seeds showed initial water contents of 31.5%. Glass and aluminum packaging were efficient at maintaining the water content of the seeds, and provided greater germination speed index than the other packaging materials. Germination percentages, seedlings lengths and dry weights did not vary among the different temperatures tested. C. adamantium seeds can be stored for up to 21 days at temperatures between 5 and 15 ºC without altering their physiological quality. In terms of cost-benefit efficiencies, these seeds can be stored without significant damage for 21 days while still inside the fruits at temperatures of 5, 10 or 15 ºC.

  7. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  8. Combined effects of the herbicide terbuthylazine and temperature on different flagellates from the Northern Adriatic Sea.

    Science.gov (United States)

    Fiori, Emanuela; Mazzotti, Matilde; Guerrini, Franca; Pistocchi, Rossella

    2013-03-15

    The triazinic herbicide terbuthylazine (TBA) is becoming an emergent contaminant in Italian rivers and in coastal and groundwater. A preliminary analysis of the sensitivity of marine flagellates to TBA was performed by monitoring the photosynthetic efficiency of nine species (belonging to the Dinophyceae or Raphidophyceae class) isolated from the Adriatic Sea. Different sensitivity levels for each flagellate were observed and the most sensitive microalgae, based on PSII inhibition, were: Gonyaulax spinifera>Fibrocapsa japonica>Lingulodinium polyedrum while the most resistant were two species belonging to the Prorocentrum genus. Then the response of two microalgae to drivers, such as temperature and terbuthylazine, applied in combination was also investigated. Two potentially toxic flagellates, Prorocentrum minimum and G. spinifera, were exposed, under different temperature conditions (15, 20 and 25°C), to TBA concentrations that did not completely affect PSII. For both flagellates, effects of TBA on algal growth, measured through cell density and carbon analysis, as well as on the photosynthetic activity are reported. All parameters analyzed showed a negative effect of TBA from the exponential phase. TBA effect on algal growth was significantly enhanced at the optimal temperature conditions (20 and 25°C), while no difference between control and herbicide treatments were detected for G. spinifera grown at 15°C, which represented a stress condition for this species. The maximum inhibition of photosynthetic efficiency was found at 20°C for both organisms. Both flagellates increased cell carbon and nitrogen content in herbicide treatments compared to the control, except G. spinifera grown at 15°C. Chlorophyll-a production was increased only in G. spinifera exposed to 5 μg L(-1) of TBA and the effect was enhanced with the increase of temperature. Herbicide-induced variations in cellular components determined changes in cellular carbon:nitrogen (C:N) and

  9. Extended shelf life of random donor platelets stored for 7 days in platelet additive solution at different temperatures

    Directory of Open Access Journals (Sweden)

    Tulika Chandra

    2014-08-01

    Full Text Available Background: Platelets are routinely stored in plasma for 5 days at an average temperature of 22°C. In the present study, the shelf life of random donor platelets was extended by storing for 7 days with and without additive solution at temperatures of 22°C, 18°C, and 16°C. Methods: Random donor platelets were stored in 100% plasma and 20%/80% platelet additive solution. The data were compared using paired "t"- test. The confidence limit was kept at 95%, hence a "p" < 0.05 was considered to be statistically significant. Results: Out of total 150 samples, 148 samples were analyzed and 2 were discarded due to the bacterial contamination on day 7 at 22°C without platelet additive solution. A significant difference in platelet count, platelet factor 3 (PF 3, glucose, lactate dehydrogenase (LDH, and platelet aggregation was observed on day 7 (p < 0.001 at 16°C in without platelet additive solution. In platelet additive solution, the mean values of platelet count, platelet distribution width (PDW, LDH, and pH showed no significant difference on day 7 at 22°C, 18°C, and 16°C. Only significant differences were observed in the levels of mean platelet volume (MPV, PF 3, glucose, and platelet aggregation on day 7 (p < 0.001 at 16°C of the storage period. Conclusion: Random donor platelets functions are better maintained in platelet additive solution as compared to plasma at a lower temperature of 18°C but not at 16°C, on the 7 th day.

  10. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  11. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  12. Tensile behaviour of radiata pine with different moisture contents at elevated temperatures

    DEFF Research Database (Denmark)

    Pearson, Hamish; Gabbitas, Brian; Ormarsson, Sigurdur

    2012-01-01

    that moisture and temperature can play a significant role in reducing stress during drying, regardless of the drying time. Properties of wood, such as tensile elastic information at elevated temperatures, are important for mechanical design, distortion modelling and understanding the fundamental behaviour...

  13. Dielectric and thermophysical properties of different beef meat blends over a temperature range of -18 to +10°C.

    Science.gov (United States)

    Farag, K W; Lyng, J G; Morgan, D J; Cronin, D A

    2008-08-01

    Dielectric and thermophysical properties of three different beef meat blends (lean, fat and 50:50 mixture) were evaluated over a range of temperatures from -18 to +10°C. In the region of thawing (-3 to -1°C), dielectric constant (ε') and dielectric loss factor (ε') values for radio frequency (RF) and microwave (MW) were significantly higher (Pproperties of the beef meat blends, with a general tendency towards higher values at the RF frequency. Finally, composition significantly influenced (Pthermophysical properties at all temperatures used. These data are of potential value to food technologists in the context of rapid defrosting of meat products.

  14. The effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents.

    Science.gov (United States)

    Källman, Ulrika; Engström, Maria; Bergstrand, Sara; Ek, Anna-Christina; Fredrikson, Mats; Lindberg, Lars-Göran; Lindgren, Margareta

    2015-03-01

    Although repositioning is considered an important intervention to prevent pressure ulcers, tissue response during loading in different lying positions has not been adequately explored. To compare the effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents. From May 2011 to August 2012, interface pressure, skin temperature, and blood flow at three tissue depths were measured for 1 hr over the sacrum in 30° supine tilt and 0° supine positions and over the trochanter major in 30° lateral and 90° lateral positions in 25 residents aged 65 years or older. Measurement of interface pressure was accomplished using a pneumatic pressure transmitter connected to a digital manometer, skin temperature using a temperature sensor, and blood flow using photoplethysmography and laser Doppler flowmetry. Interface pressure was significantly higher in the 0° supine and 90° lateral positions than in 30° supine tilt and 30° lateral positions. The mean skin temperature increased from baseline in all positions. Blood flow was significantly higher in the 30° supine tilt position compared to the other positions. A hyperemic response in the post pressure period was seen at almost all tissue depths and positions. The 30° supine tilt position generated less interface pressure and allowed greater tissue perfusion, suggesting that this position is the most beneficial. © The Author(s) 2014.

  15. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Qumer Iqbal

    2015-03-01

    Full Text Available The maintenance of the quality and storage life of perishable fruits and vegetables is a major challenge for the food industry. In this study, the effects of different temperatures, packaging materials and storage time on the stability of capsaicinoids and antioxidants, such as total carotenoids, ascorbic acid and total phenolic compounds, were studied in three commercially cultivated hot pepper hybrids, namely Sky Red, Maha and Wonder King. For this purpose, dry whole pods were packed in jute bags and low-density polyethylene bags (LDPE, stored for five months under controlled conditions at 20, 25 or 30 ○C and analyzed on Day 0 and at 50-day intervals until Day 150. The three hot pepper hybrids differed significantly with respect to their capsaicinoids and antioxidant concentrations, but the results indicated that with the increase in storage temperature and time, a gradual and steady decrease in these levels was equally observed for all hybrids. Overall, mean concentrations after five months were significantly reduced by 22.6% for ascorbic acid, 19.0% for phenolic compounds, 17% for carotenoids and 12.7% for capsaicinoids. The trends of capsaicinoids and antioxidants evolution were decreasing gradually during storage until Day 150, this effect being more pronounced at higher temperature. Furthermore, the disappearance rates of capsaicinoids and antioxidants were higher in peppers packed in jute bags than in those wrapped with LDPE. In conclusion, despite the sensitivity of capsaicinoids and antioxidants to oxygen, light and moisture, the packaging in natural jute or synthetic LDPE plastic bags, as well as the storage at ambient temperature preserved between 77.4% and 87.3% of the initial amounts of these health- and nutrition-promoting compounds during five months’ storage.

  16. Co-doped sodium chloride crystals exposed to different irradiation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Morales, A. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F., Mexico and Unidad de Irradiacion y Segurid (Mexico); Cruz-Zaragoza, E.; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP. 20-364, 01000 Mexico D.F (Mexico)

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  17. Intricacies of using temperature of different niches for assessing impact on malaria transmission

    Directory of Open Access Journals (Sweden)

    Poonam Singh

    2016-01-01

    Full Text Available Background & objectives: The influence of temperature on the life cycle of mosquitoes as well as on development of malaria parasite in mosquitoes is well studied. Most of the studies use outdoor temperature for understanding the transmission dynamics and providing projections of malaria. As the mosquitoes breed in water and rest usually indoors, it is logical to relate the transmission dynamics with temperature of micro-niche. The present study was, therefore, undertaken to understand the influence of different formats of temperature of different micro-niches on transmission of malaria for providing more realistic projections. Methods: The study was conducted in one village each of Assam and Uttarakhand s0 tates of India. Temperatures recorded from outdoor (air as well as indoor habitats (resting place of mosquito were averaged into daily, fortnightly and monthly and were used for determination of transmission windows (TWs for Plasmodium vivax (Pv and P. falciparum (Pf based on minimum temperature threshold required for transmission. Results: The daily temperature was found more useful for calculation of sporogony than fortnightly and monthly temperatures. Monthly TWs were further refined using fortnightly temperature, keeping in view the completion of more than one life cycle of malaria vectors and sporogony of malaria parasite in a month. A linear regression equation was generated to find out the relationship between outdoor and indoor temperatures and R [2] to predict the percentage of variation in indoor temperature as a function of outdoor temperature at both localities. Interpretation & conclusions: The study revealed that the indoor temperature was more than outdoors in stable malarious area (Assam but fluctuating in low endemic area like Uttarakhand. Transmission windows of malaria should be determined by transforming outdoor data to indoor and preferably at fortnightly interval. With daily recorded temperature, sporogonic and

  18. Comparison of cyanobacterial and green algal growth rates at different temperatures

    NARCIS (Netherlands)

    Lurling, M.; Faassen, E.J.; Kosten, S.; Eshetu, Z.; Huszar, V.M.

    2013-01-01

    1.The hypothesis that cyanobacteria have higher optimum growth temperatures and higher growth rates at the optimum as compared to chlorophytes was tested by running a controlled experiment with eight cyanobacteria species and eight chlorophyte species at six different temperatures (20-35°C) and by

  19. Low temperature rheological properties of asphalt mixtures containing different recycled asphalt materials

    Directory of Open Access Journals (Sweden)

    Ki Hoon Moon

    2017-01-01

    Full Text Available Reclaimed Asphalt Pavement (RAP and Recycled Asphalt Shingles (RAS are valuable materials commonly reused in asphalt mixtures due to their economic and environmental benefits. However, the aged binder contained in these materials may negatively affect the low temperature performance of asphalt mixtures. In this paper, the effect of RAP and RAS on low temperature properties of asphalt mixtures is investigated through Bending Beam Rheometer (BBR tests and rheological modeling. First, a set of fourteen asphalt mixtures containing RAP and RAS is prepared and creep stiffness and m-value are experimentally measured. Then, thermal stress is calculated and graphically and statistically compared. The Huet model and the Shift-Homothety-Shift in time-Shift (SHStS transformation, developed at the École Nationale des Travaux Publics de l'État (ENTPE, are used to back calculate the asphalt binder creep stiffness from mixture experimental data. Finally, the model predictions are compared to the creep stiffness of the asphalt binders extracted from each mixture, and the results are analyzed and discussed. It is found that an addition of RAP and RAS beyond 15% and 3%, respectively, significantly change the low temperature properties of asphalt mixture. Differences between back-calculated results and experimental data suggest that blending between new and old binder occurs only partially. Based on the recent finding on diffusion studies, this effect may be associated to mixing and blending processes, to the effective contact between virgin and recycled materials and to the variation of the total virgin-recycled thickness of the binder film which may significantly influence the diffusion process. Keywords: Reclaimed Asphalt Pavement (RAP, Recycled Asphalt Shingles (RAS, Thermal stress, Statistical comparison, Back-calculation, Binder blending

  20. Testing the Difference of Correlated Agreement Coefficients for Statistical Significance

    Science.gov (United States)

    Gwet, Kilem L.

    2016-01-01

    This article addresses the problem of testing the difference between two correlated agreement coefficients for statistical significance. A number of authors have proposed methods for testing the difference between two correlated kappa coefficients, which require either the use of resampling methods or the use of advanced statistical modeling…

  1. Determination of Cardinal Temperatures and Germination Respond to Different Temperature for Five Lawns Cultivars

    Directory of Open Access Journals (Sweden)

    hadi khavari

    2017-08-01

    Full Text Available Introduction: Germination of every plant species respond to temperature variation in particular way. Germination is critical stage in plant life cycle. Seed germination is a complex biological process that is influenced by various environmental and genetic factors. The effects of temperature on plant development are the basis for models used to predict the timing of germination. Estimation of the cardinal temperatures, including base, optimum, and maximum, is essential because rate of development increases between base and optimum, decreases between optimum and maximum, and ceases above the maximum and below the base temperatures. Usually, a linear increase in germination rate is associated with an increase in temperature from base temperature (Tb to an optimum. An increase of temperature from the optimum will reduce the germination rate to zero. To determine the best planting date for plants, it is necessary to find the base (Tb, optimum (To and maximum temperatures (Tc for seed germination. These are known as cardinal temperatures. Modelling of seed germination is considered an effective approach to determining cardinal temperatures for most plant species, although these methods have some limitations due to unpredictable biological changes. The results of fitting mechanical models are useful for evaluating seed quality, germination rate, germination percentage, germination uniformity and seed performance under different environmental stresses such as salinity, drought, and freezing. Regression models incorporating more parameters can produce more precise estimates. Cardinal temperature was determined using segmented and logistic models in millet varieties and seedling emergence of wheat. In the dent-like model at lower-than-optimum temperature, a linear relationship holds between temperature and germination rate. This relationship remains linear at higher-than-optimum temperatures, but with a reducing trend. With increasing temperature

  2. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    Science.gov (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  3. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1995-01-01

    headspace sampling and quantified and identified by gas chromatography and gas chromatography-mass spectrometry. The effects of temperature and different ingredients on the levels of individual volatiles were tested using multiple linear regression and analysis of variance. The study showed that sausages...

  4. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    Science.gov (United States)

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Differences in the H-mode pedestal width of temperature and density

    International Nuclear Information System (INIS)

    Schneider, P A; Wolfrum, E; Günter, S; Kurzan, B; Lackner, K; Zohm, H; Groebner, R J; Osborne, T H; Ferron, J R; Snyder, P B; Beurskens, M N A; Dunne, M G

    2012-01-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates Ψ N and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of Δ T e and Δ n e . In dimensionless form the density pedestal width in Ψ N scales with ρ 0.6 i* , the temperature pedestal width with β p,ped 0.5 . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal. (paper)

  6. Assessing the processing quality of different potato cultivars during storage at various temperatures

    International Nuclear Information System (INIS)

    Amjad, A.; Randhawa, M.A.; Butt, M.S.; Asghar, M.

    2016-01-01

    Processing industry needs continuous supply of tubers for fries/chips preparation throughout the year. Storage is obligatory to meet the increasing demand of population. Objective of this study was to evaluate the processing and quality characteristics of different potato cultivars (Lady Rosetta, Sante, Hermes, Crozo, Kuroda and Asterix) during storage with 75-80 percent relative humidity for the period of 160 days at various temperatures (3 degree C, 7 degree C, 11 degree C). Quality parameters such as specific gravity, sprouting, weight loss, dry matter, starch content, ascorbic acid, sugar content and invertase enzyme activity were determined to estimate the processing potential of each cultivar. High Performance Liquid Chromatography (HPLC) equipped with amino (NH2) column and Refractive Index Detector (RID) was used for the identification and quantification of sugars. The findings of the present work showed that temperature significantly (p Hermes > Crozo > Sante > Asterix > Kuroda. (author)

  7. Hysteresis of soil temperature under different soil moisture and ...

    African Journals Online (AJOL)

    ... in a solar greenhouse. The objective of this study was to find a simple method to estimate the hysteresis of soil temperature under three soil moisture and two fertilizer levels in solar greenhouse conditions with tomato crop (Lycopersicon esculentum Mill). The results show that the soil moisture had no significant effects on ...

  8. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  9. Temperature field downstream of an heated bundle mock-up results for different power distribution

    International Nuclear Information System (INIS)

    Girard, J.P.; Buravand, Y.

    1982-10-01

    The aim of these peculiar experiments performed on the ML4 loop in ISPRA is to evaluate the characteristics of the temperature field over a length of 20 to 30 dias downstream of a rod bundle for different temperatures profiles at the bundle outlet. The final purpose of this work will be to establish either directly or through models whether it is possible or not to detect subassembly failures using suitable of the subassembly outlet temperature signal. 15 hours of digital and analog recording were taped for five different power distributions in the bundle. The total power dissipation remained constant during the whole run. Two flow rates and seven axial location were investigated. It is shown that the different temperature profiles produce slight differences in the variance and skewness of the temperature signal measured along the axis of the pipe over 20 dias

  10. Studies on the sugars development of irradiated potatoes receiving different nitrogen levels during growth and stored at different temperatures

    International Nuclear Information System (INIS)

    Badshah, N.; Iritani, W.M.; Rom, C.R.; Patterson, M.E.

    1990-01-01

    Tubers of Russet Burbank potatoes from 0, 181.8 and 363.6 kg/ha nitrogen were irradiated with 0, 0.05, 0.1 and 0.2 kGy of gamma rays (Co 60 source) and stored for three months at temperatures of 10 and 15.5°C. Changes in reducing sugars and sucrose contents were significantly influenced by nitrogen and irradiation levels while storage temperatures had no significant effect. Nitrogen and irradiation significantly decreased reducing and non-reducing sugars while temperature had no significant effect. Reducing sugars decreased with increasing levels of nitrogen and irradiation. Tubers from zero fertilizer regime developed 1.5% reducing sugars. Irradiation at 0.2 kGy dosage decreased reducing sugars from 1.7 to 0.9%. The breakdown of non-reducing sugars increased with increasing nitrogen levels but decreased with irradiation. Tubers from the maximum nitrogen plot had a 36% decrease of non-reducing sugars. Irradiation at 0.1 kGy dosage had the least change (4.9% decrease) of non-reducing sugars. (author)

  11. Day/night temperature differences (DNTD) trigger changes in nutrient removal and functional bacteria in membrane bioreactors.

    Science.gov (United States)

    Zhang, Shaoqing; Sheng, Binbin; Lin, Wenting; Meng, Fangang

    2018-09-15

    Temperature is a well-known environmental stress that influences both microbial metabolism and community structure in the biological wastewater treatment systems. In this study, responses of biological performance and sludge microbiota to the long-term day/night temperature differences (DNTD) were investigated in membrane bioreactors (MBRs). The results showed that the functional bacteria could sustained their ecological functions at low DNTD (20/30 °C), resulting in relatively stable performance with respect to nutrient removal. However, when the activated sludge was subjected to a high DNTD (17/33 °C), the effluent concentrations of COD, TN and TP were significantly higher in MBR-B than that in MBR-A. In addition, more severe membrane fouling occurred under the perturbation of high DNTD as revealed by the transmembrane pressure (TMP) profile, which was mainly attributed to the accumulation of extracellular polymeric substances (EPS). The results of 16S rRNA gene sequencing showed that DNTD showed negligible effect on the bacterial community structures. Nonetheless, the functional bacteria responded differently to DNTD, which were in accordance with the bioreactor performances. Specifically, Nitrospina (NOB) and Tetrasphaera (PAOs) appeared to be sensitive to both low and high DNTD. In contrast, a low DNTD showed marginal effects on the denitrifiers, while a high DNTD significantly decreased their abundances. More strikingly, filamentous bulking bacteria were found to be well-adapted to DNTD, indicating their tolerance to the daily temperature fluctuation. This study will advance our knowledge regarding the response of microbial ecology of activated sludge to daily temperature variations in full-scale MBRs. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Comparison of three inert markers in measuring apparent nutrient digestibility of juvenile abalone under different culture condition and temperature regimes

    Science.gov (United States)

    Nur, K. U.; Adams, L.; Stone, D.; Savva, N.; Adams, M.

    2018-03-01

    A comparative research using three inert markers, chromic oxide, yttrium and ytterbium to measure the apparent nutrient digestibility of experimental feed in juvenile Hybrid abalone (Haliotis rubra X H. laevigata) and Greenlip abalone (H.laevigata) revealed that apparent digestibility of crude protein (ADCP) measured using yttrium and ytterbium in hybrid abalone were significantly different across the treatments. Protein digestibility measured in experimental tanks was higher than those measured in indoor and outdoor commercial tanks, regardless of inert marker used. Chromic oxide led to overestimated ADCP compared to when measured using yttrium and ytterbium. There were no significant interactions between temperature and inert markers when measuring ADCP and apparent digestibility of gross energy (ADGE). However, there was a significant difference of ADCP amongst inert markers when measured in greenlip abalone cultured at two temperatures. While measurements of ADge calculated using three inert markers shared the same value.

  13. Metabolic responses of Eucalyptus species to different temperature regimes

    NARCIS (Netherlands)

    Mokochinski, Joao Benhur; Mazzafera, Paulo; Sawaya, Alexandra Christine Helena Frankland; Mumm, Roland; Vos, de Ric Cornelis Hendricus; Hall, Robert David

    2018-01-01

    Species and hybrids of Eucalyptus are the world's most widely planted hardwood trees. They are cultivated across a wide range of latitudes and therefore environmental conditions. In this context, comprehensive metabolomics approaches have been used to assess how different temperature regimes may

  14. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Kazumichi Nagasawa

    2013-08-01

    The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control and a low environmental temperature (5°C, cold exposure. Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.

  15. Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures

    International Nuclear Information System (INIS)

    Naeem, M.A.; Khalid, M.; Arshad, M.; Ahmad, R.

    2014-01-01

    Variation in pyrolytic temperatures and feedstocks affects the yield and nutrient composition of biochar. Selection of suitable feedstock and optimum pyrolytic temperature is crucial before using it for agricultural purposes. We compared biochars produced from two feedstocks (wheat straw and rice) at three temperatures (300, 400 and 500 degree C). Biochar yield decreased significantly (p<0.05) with increasing pyrolysis temperature, while ash contents were increased. The cation exchange capacity was significantly higher (119 cmolc kg/sup -1/) at temperature 400 degree C. The pH, electrical conductivity (EC) and carbon content of biochars increased significantly with increasing temperature and maximum pH (10.4) and EC (3.35 dS m/sup -1/) were observed in rice straw biochar (WSB) at 500 degree C and carbon content (662 g kg/sup -1/) in wheat straw biochar (RSB) at 500 degree C. Concentration of phosphorus (P) and potassium (K) increased significantly with increasing temperature, while of nitrogen (N) decreased. Overall, the maximum N (13.8 g kg/sup -1/at 300 degree C) and P (3.4 g kg/sup -1/at 500 degree C) concentrations were observed in WSB while, maximum K (48 g kg/sup -1/ at 500 degree C)in RSB. High pyrolysis temperature reduced AB-DTPA extractable nutrients (expect Mn). The highest AB-DTPA extractable nutrients such as P (113 mg kg/sup -1/) and Ca (1.07 g kg/sup -1/) were observed in WSB at 300 degree C while, K (18 g kg/sup -1/) and magnesium (Mg) (1.55 g kg/sup -1/) in RSB at 300 degree C. Selected feedstock and use of low pyrolysis temperature may produce nutrient-rich biochar, with high CEC and low pH and these could have positive effects on calcareous soils. (author)

  16. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins.

    Science.gov (United States)

    Roldán, Mar; Antequera, Teresa; Martín, Alberto; Mayoral, Ana Isabel; Ruiz, Jorge

    2013-03-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70, and 80 °C) and time (6, 12, and 24 h). Different physicochemical, histological and structural parameters were studied. Increasing cooking temperatures led to higher weight losses and lower moisture contents, whereas the effect of cooking time on these variables was limited. Samples cooked at 60 °C showed the highest lightness and redness, while increasing cooking temperature and cooking time produced higher yellowness values. Most textural variables in a texture profile analysis showed a marked interaction between cooking temperature and time. Samples cooked for 24h showed significantly lower values for most of the studied textural parameters for all the temperatures considered. Connective tissue granulation at 60 °C and gelation at 70 °C were observed in the SEM micrographs. The sous-vide cooking of lamb loins dramatically reduced microbial population even with the less intense heat treatment studied (60 °C-6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    Science.gov (United States)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  18. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

    Science.gov (United States)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

    2015-06-01

    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest

  19. Estimating significances of differences between slopes: A new methodology and software

    Directory of Open Access Journals (Sweden)

    Vasco M. N. C. S. Vieira

    2013-09-01

    Full Text Available Determining the significance of slope differences is a common requirement in studies of self-thinning, ontogeny and sexual dimorphism, among others. This has long been carried out testing for the overlap of the bootstrapped 95% confidence intervals of the slopes. However, the numerical random re-sampling with repetition favours the occurrence of re-combinations yielding largely diverging slopes, widening the confidence intervals and thus increasing the chances of overlooking significant differences. To overcome this problem a permutation test simulating the null hypothesis of no differences between slopes is proposed. This new methodology, when applied both to artificial and factual data, showed an enhanced ability to differentiate slopes.

  20. The coupled dynamical problem of thermoelasticity in case of large temperature differences

    International Nuclear Information System (INIS)

    Szekeres, A.

    1981-01-01

    In the tasks of thermoelasticity in general, also in dynamical problems it is common to suppose small temperature differences. The equations used in scientific literature refer to these. It arises the thought of what is the influence on the dynamical problems of taking into account the large temperature changes. To investigate this first we present the general equation of heat conduction in case of small temperature differences according to Nowacki and Biot. On this basis we introduce the general equation of heat conduction with large temperature changes. Some remarks show the connection between the two cases. Using the latter in the equations of thermoelasticity we write down the expressions of the problem for the thermal shock of a long bar. Finally we show the results of the numerical example and the experimental opoortunity to measure some of the constants. (orig.)

  1. Temperature-dependent elimination efficiency on Phaeocystis globosa by different initial population sizes of rotifer Brachionus plicatilis.

    Science.gov (United States)

    Sun, Yunfei; Wang, Yuanyuan; Lei, Jin; Qian, Chenchen; Zhu, Xuexia; Akbar, Siddiq; Huang, Yuan; Yang, Zhou

    2018-07-01

    Due to sea water eutrophication and global warming, the harmful Phaeocystis blooms outbreak frequently in coastal waters, which cause a serious threat to marine ecosystem. The application of rotifer to control the harmful alga is a promising way. To investigate the influence of initial rotifer density and temperature on the ability of rotifer Brachionus plicatilis to eliminate Phaeocystis globosa population, we cultured P. globosa with different initial rotifer densities (1, 3, 5 inds mL -1 ) at 19, 22, 25, 28, and 31 °C for 9-16 d. Results showed that the population of rotifer feeding on Phaeocystis increased rapidly and higher temperatures favored the growth of P. globosa and B. plicatilis. With increased initial rotifer density and temperature, both the clearance rate of rotifer and the reduction rate of P. globosa increased, and thus P. globosa were eliminated earlier. Both temperature and initial rotifer density had significant effects on clearance rate of rotifer and the time to Phaeocystis extinction, and there was a significant interaction between the two factors on the two parameters, i.e., the effect of initial rotifer density on eliminating Phaeocystis decreased with increasing temperature. The rotifer in 5 inds mL -1 at 28 °C eliminated P. globosa in 4 d, whereas the rotifer in 1 ind mL -1 at 19 °C spent about 16 d on eliminating P. globosa. In conclusion, higher temperature and bigger initial rotifer density promote rotifer to eliminate the harmful P. globosa, and the optimal temperature for rotifer to clear P. globosa is 28 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effects of different temperature treatments on biological ice nuclei in snow samples

    Science.gov (United States)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  3. Comparison of the Argon Triple-Point Temperature in Small Cells of Different Construction

    Science.gov (United States)

    Kołodziej, B.; Kowal, A.; Lipiński, L.; Manuszkiewicz, H.; Szmyrka-Grzebyk, A.

    2017-06-01

    The argon triple point (T_{90} = 83.8058 \\hbox {K}) is a fixed point of the International Temperature Scale of Preston-Thomas (Metrologia 27:3, 1990). Cells for realization of the fixed point have been manufactured by several European metrology institutes (Pavese in Metrologia 14:93, 1978; Pavese et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Hermier et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The Institute of Low Temperature and Structure Research has in its disposal a few argon cells of various constructions used for calibration of capsule-type standard platinum resistance thermometers (CSPRT) that were produced within 40 years. These cells differ in terms of mechanical design and thermal properties, as well as source of gas filling the cell. This paper presents data on differences between temperature values obtained during the realization of the triple point of argon in these cells. For determination of the temperature, a heat-pulse method was applied (Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The comparisons were performed using three CSPRTs. The temperatures difference was determined in relation to a reference function W(T)=R(T_{90})/R(271.16\\hbox {K}) in order to avoid an impact of CSPRT resistance drift between measurements in the argon cells. Melting curves and uncertainty budgets of the measurements are given in the paper. A construction of measuring apparatus is also presented in this paper.

  4. Temperature effects on flocculation, using different coagulants.

    Science.gov (United States)

    Fitzpatrick, C S B; Fradin, E; Gregory, J

    2004-01-01

    Temperature is known to affect flocculation and filter performance. Jar tests have been conducted in the laboratory, using a photometric dispersion analyser (PDA) to assess the effects of temperature on floc formation, breakage and reformation. Alum, ferric sulphate and three polyaluminium chloride (PACI) coagulants have been investigated for temperatures ranging between 6 and 29 degrees C for a suspension of kaolin clay in London tap water. Results confirm that floc formation is slower at lower temperatures for all coagulants. A commercial PACl product, PAX XL 19, produces the largest flocs for all temperatures; and alum the smallest. Increasing the shear rate results in floc breakage in all cases and the flocs never reform to their original size. This effect is most notable for temperatures around 15 degrees C. Breakage, in terms of floc size reduction, is greater for higher temperatures, suggesting a weaker floc. Recovery after increased shear is greater at lower temperatures implying that floc break-up is more reversible for lower temperatures.

  5. The use of a DNA stabilizer in human dental tissues stored under different temperature conditions and time intervals

    Science.gov (United States)

    TERADA, Andrea Sayuri Silveira Dias; da SILVA, Luiz Antonio Ferreira; GALO, Rodrigo; de AZEVEDO, Aline; GERLACH, Raquel Fernanda; da SILVA, Ricardo Henrique Alves

    2014-01-01

    Objective The present study evaluated the use of a reagent to stabilize the DNA extracted from human dental tissues stored under different temperature conditions and time intervals. Material and Methods A total of 161 teeth were divided into two distinct groups: intact teeth and isolated dental pulp tissue. The samples were stored with or without the product at different time intervals and temperature. After storage, DNA extraction and genomic DNA quantification were performed using real-time PCR; the fragments of the 32 samples that represented each possible condition were analyzed to find the four pre-selected markers in STR analysis. Results The results of the quantification showed values ranging from 0.01 to 10,246.88 ng/μL of DNA. The statistical difference in the quantity of DNA was observed when the factors related to the time and temperature of storage were analyzed. In relation to the use of the specific reagent, its use was relevant in the group of intact teeth when they were at room temperature for 30 and 180 days. The analysis of the fragments in the 32 selected samples was possible irrespective of the amount of DNA, confirming that the STR analysis using an automated method yields good results. Conclusions The use of a specific reagent showed a significant difference in stabilizing DNA in samples of intact human teeth stored at room temperature for 30 and 180 days, while the results showed no justification for using the product under the other conditions tested. PMID:25141206

  6. Single-sided natural ventilation driven by wind pressure and temperature difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Heiselberg, Per

    2008-01-01

    -scale wind tunnel experiments have been made with the aim of making a new expression for calculation of the airflow rate in single-sided natural ventilation. During the wind tunnel experiments it was found that the dominating driving force differs between wind speed and temperature difference depending......Even though opening a window for ventilation of a room seems very simple, the flow that occurs in this situation is rather complicated. The amount of air going through the window opening will depend on the wind speed near the building, the temperatures inside and outside the room, the wind...

  7. Different histopathological subtypes of Hodgkin lymphoma show significantly different levels of FDG uptake

    DEFF Research Database (Denmark)

    Hutchings, Martin; Loft, Annika; Hansen, Mads

    2006-01-01

    ) patients, 20.8 g/ml in 11 mixed cellularity (MC) patients, and 19.5 g/ml in four patients with unclassified classical HL (CHL-NOS), (ANOVA, p = 0.011). Out of 780 sites (600 lymph node regions plus 180 organs), 208 sites were found to be affected with HL. Mean SUV(max) was 8.3 g/ml in the 12 sites with NLP......, 11.2 g/ml in the 147 sites affected with NS, 14.6 g/ml in the 36 sites with MC, and 13.1 g/ml in the 13 sites with CHL-NOS (ANOVA, p = 0.002). There is a significant difference in FDG/glucose uptake between the different histopathological subtypes of HL....

  8. One arm exercise induces significant interarm diastolic blood pressure difference.

    Science.gov (United States)

    Hong, Dezhi; Wang, Jiwei; Su, Hai; Xu, Jingsong; Liu, Yanna; Peng, Qiang; Wang, Lijuan

    2011-06-01

    This study is designed to investigate the inducing effect of one arm exercise on interarm difference (IAD) in the blood pressure (BP). Fifty healthy young participants were included in the study. Three-minute exercises of the right arm elbow flexion and extension were performed. The bilateral brachial BP was simultaneously measured with two automatic BP measurement devices before (basic) and immediately 0, 5, 10, 15, 20, and 30 min after exercise. The absolute difference in the systolic BP (SBP) and diastolic BP (DBP) between the left and right BP of at least 10 mmHg was recognized as sIAD and dIAD. The baseline data of the SBP and DBP in left and right arms revealed no significant difference (SBP: 110 ± 10 vs. 111 ± 11 mmHg; DBP: 66 ± 8 vs. 66 ± 9 mmHg, both not significant). The prevalence of dIAD was 2% at the baseline. However, this prevalence increased to 80% at 0 min, as right arm exercise induced the right DBP decrease and left DBP increase, and then the prevalence decreased gradually within a 30-min recovery period. The prevalence of sIAD was zero at the baseline and the maximal prevalence was 8% during the 20-min postexercise period. One arm exercise can lead to a significant IAD in DBP. Any arm exercise should be avoided before BP measurement.

  9. Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    Science.gov (United States)

    El-Shesheny, Ibrahim; Hijaz, Faraj; El-Hawary, Ibrahim; Mesbah, Ibrahim; Killiny, Nabil

    2016-02-01

    Temperature influences the life history and metabolic parameters of insects. Asian citrus psyllid (ACP), Diaphorina citri is a tropical and subtropical pest. ACP invaded new regions around the world and threatened the citrus industry as a vector for Huanglongbing (HLB) disease. ACP is widely distributed and can survive high (up to 45 °C) and low temperatures (as low as -6 °C). The precise mechanism of temperature tolerance in ACP is poorly understood. We investigated adult survival, cellular energy balance, gene expression, and nucleotide and sugar-nucleotide changes under the effect of different temperature regimes (0 °C to 45 °C with 5 °C intervals). The optimum temperatures for survival were 20 and 25 °C. Low temperatures of 0 °C and 5 °C caused 50% mortality after 2 and 4 days respectively, while one day at high temperature (40 °C and 45 °C) caused more than 95% mortality. The lowest quantity of ATP (3.69 ± 1.6 ng/insect) and the maximum ATPase enzyme activities (57.43 ± 7.6 μU/insect) were observed at 25 °C. Correlation between ATP quantities and ATPase activity was negative. Gene expression of hsp 70, V-type proton ATPase catalytic subunit A and ATP synthase α subunit matched these results. Twenty-four nucleotides and sugar-nucleotides were quantified using HPLC in ACP adults maintained at low, high, and optimum temperatures. The nucleotide profiles were different among treatments. The ratios between AMP:ATP and ADP:ATP were significantly decreased and positively correlated to adults survival, whereas the adenylate energy charge was increased in response to low and high temperatures. Exploring energy metabolic regulation in relation with adult survival might help in understanding the physiological basis of how ACP tolerates newly invaded regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  11. Effect of Sodium Bicarbonate Supplementation on Carcass Characteristics of Lambs Fed Concentrate Diets at Different Ambient Temperature Levels

    Directory of Open Access Journals (Sweden)

    Demba B. Jallow

    2014-08-01

    Full Text Available The objective of this study was to investigate the influence of ambient temperatures on carcass characteristics of lambs fed concentrate diets with or without NaHCO3 supplementation. A slaughter study was carried on 12 male Black Belly Barbados lambs randomly drawn from a growth trial (35 weeks. The lambs were divided into four equal groups and allotted in a 2×2 factorial design. The lambs were allotted at random to two dietary treatments of a basal diet (35:65 roughage:concentrate or basal diet supplemented with 4% NaHCO3 at different ambient temperatures (20°C and 30°C in an environment controlled chamber for 10 days. Lambs were slaughtered for carcass evaluation at about 262 days of age (245 days of growth trial, 7 days adaptation and 10 days of experimental period. Ambient temperature had significant (p0.05 effects on pH, and water holding capacity on both muscles. These results indicated that NaHCO3 supplementation at low ambient temperatures had caused an increase in carcass characteristics leading to significant effect on meat quality.

  12. Reliability of single aliquot regenerative protocol (SAR) for dose estimation in quartz at different burial temperatures: A simulation study

    International Nuclear Information System (INIS)

    Koul, D.K.; Pagonis, V.; Patil, P.

    2016-01-01

    The single aliquot regenerative protocol (SAR) is a well-established technique for estimating naturally acquired radiation doses in quartz. This simulation work examines the reliability of SAR protocol for samples which experienced different ambient temperatures in nature in the range of −10 to 40 °C. The contribution of various experimental variables used in SAR protocols to the accuracy and precision of the method is simulated for different ambient temperatures. Specifically the effects of paleo-dose, test dose, pre-heating temperature and cut-heat temperature on the accuracy of equivalent dose (ED) estimation are simulated by using random combinations of the concentrations of traps and centers using a previously published comprehensive quartz model. The findings suggest that the ambient temperature has a significant bearing on the reliability of natural dose estimation using SAR protocol, especially for ambient temperatures above 0 °C. The main source of these inaccuracies seems to be thermal sensitization of the quartz samples caused by the well-known thermal transfer of holes between luminescence centers in quartz. The simulations suggest that most of this inaccuracy in the dose estimation can be removed by delivering the laboratory doses in pulses (pulsed irradiation procedures). - Highlights: • Ambient temperatures affect the reliability of SAR. • It overestimates the dose with increase in burial temperature and burial time periods. • Elevated temperature irradiation does not correct for these overestimations. • Inaccuracies in dose estimation can be removed by incorporating pulsed irradiation procedures.

  13. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    DEFF Research Database (Denmark)

    Waade, C.; Waade, Charlotte

    1997-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six-factor fractional design. The amounts of individual amino acids were measured and the effects...... that the amounts of the volatile compounds, 2-methyl propanal, 2- and 3-methyl butanal, were inversely correlated with the amounts of valine, isoleucine and leucine, respectively, indicating that those volatiles were degradation products of the latter. (C) 1997 Elsevier Science Ltd....

  14. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  15. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.

    Science.gov (United States)

    Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H

    2018-01-01

    Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.

  16. Charge transport parameters of HBC at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J. [Max Planck Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Marcon, V.; Kremer, K.; Andrienko, D. [Max Planck Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Nelson, J. [Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2008-05-15

    We study the dependence on temperature of the charge transport parameters for hexabenzocoronene (HBC). Following from Marcus theory, two charge transport parameters will be calculated: the transfer integral and the difference in site energies. These parameters are strongly dependent on the orientation and position of molecules. Position and orientation of molecules are determined using molecular dynamics. Transfer integrals are calculated from a simplified INDO method. A technique to compute energetic disorder, that is the spread in site energies for the charge carriers, is developed. In the herringbone phase transfer integrals are higher, but so is energetic disorder. We consider three derivatives of HBC with different side chains, which lead to different phase behaviour and distributions of charge transport parameters. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes

    Directory of Open Access Journals (Sweden)

    Veronika Řezáčová

    2018-04-01

    Full Text Available Common mycorrhizal networks (CMNs formed by arbuscular mycorrhizal fungi (AMF interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp. with different photosynthetic metabolism types (C3 or C4. The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible zone added with 15N-labeled plant (clover residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night or ambient temperature (25/21°C day/night applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5 in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp. in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as

  18. Effects of Different Temperatures for Drying Cervical Mucus Smear ...

    African Journals Online (AJOL)

    The effects of different room temperatures for drying cervical mucus on crystallisation of fern-tree patterns was determined using cervical mucus smears from 60 women undergoing investigation for infertility at the University of Benin Teaching Hospital. Cervical mucus smears were dried in the oven at 15, 20, 25, 30 and 35C ...

  19. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities.

    Science.gov (United States)

    Hussain, Mubasher; Akutse, Komivi Senyo; Ravindran, Keppanan; Lin, Yongwen; Bamisile, Bamisope Steve; Qasim, Muhammad; Dash, Chandra Kanta; Wang, Liande

    2017-09-01

    The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field-collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3-5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host-symbionts interactions between D. citri and its associated endosymbionts. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Ab initio molecular dynamics study of thermite reaction at Al and CuO nano-interfaces at different temperatures

    Science.gov (United States)

    Tang, Cui-Ming; Chen, Xiao-Xu; Cheng, Xin-Lu; Zhang, Chao-Yang; Lu, Zhi-Peng

    2018-05-01

    The thermite reaction at Al/CuO nano-interfaces is investigated with ab initio molecular dynamics calculations in canonical ensemble at 500 K, 800 K, 1200 K and 1500 K, respectively. The reaction process and reaction products are analyzed in terms of chemical bonds, average charge, time constants and total potential energy. The activity of the reactants enhances with increasing temperature, which induces a faster thermite reaction. The alloy reaction obviously expands outward at Cu-rich interface of Al/CuO system, and the reaction between Al and O atoms obviously expands outward at O-rich interface as temperature increases. Different reaction products are found at the outermost layer of different interfaces in the Al/CuO system. In generally, the average charge of the outer layer aluminum atoms (i.e., Al1, Al2, Al5 and Al6) increases with temperature. The potential energy of Al/CuO system decreases significantly, which indicates that drastic exothermic reaction occurs at the Al/CuO system. This research enhances fundamental understanding in temperature effect on the thermite reaction at atomic level, which can potentially open new possibilities for its industrial application.

  1. Growth temperature of different local isolates of Bacillus sp. in the solid state affects production of raw starch digesting amylases

    Directory of Open Access Journals (Sweden)

    Šokarda-Slavić Marinela

    2014-01-01

    Full Text Available Natural amylase producers, wild type strains of Bacillus sp., were isolated from different regions of Serbia. Strains with the highest amylase activity based on the starch-agar plate test were grown on solid-state fermentation (SSF on triticale. The influence of the substrate and different cultivation temperature (28 and 37°C on the production of amylase was examined. The tested strains produced α-amylases when grown on triticale grains both at 28 and at 37°C, but the activity of amylases and the number and intensity of the produced isoforms were different. Significant hydrolysis of raw cornstarch was obtained with the Bacillus sp. strains 2B, 5B, 18 and 24B. The produced α-amylases hydrolyzed raw cornstarch at a temperature below the temperature of gelatinization, but the ability for hydrolysis was not directly related to the total enzyme activity, suggesting that only certain isoforms are involved in the hydrolysis. [Projekat Ministarstva nauke Republike Srbije, br. 172048

  2. Field significance of performance measures in the context of regional climate model evaluation. Part 1: temperature

    Science.gov (United States)

    Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker

    2018-04-01

    A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as "field" or "global" significance. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Monthly temperature climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. In winter and in most regions in summer, the downscaled distributions are statistically indistinguishable from the observed ones. A systematic cold summer bias occurs in deep river valleys due to overestimated elevations, in coastal areas due probably to enhanced sea breeze circulation, and over large lakes due to the interpolation of water temperatures. Urban areas in concave topography forms have a warm summer bias due to the strong heat islands, not reflected in the observations. WRF-NOAH generates appropriate fine-scale features in the monthly temperature field over regions of complex topography, but over spatially homogeneous areas even small biases can lead to significant deteriorations relative to the driving reanalysis. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the

  3. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  4. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    Science.gov (United States)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module

  5. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  6. Pharmacodynamics of alfaxalone after single-dose intramuscular administration in red-eared sliders (Trachemys scripta elegans): a comparison of two different doses at two different ambient temperatures.

    Science.gov (United States)

    Shepard, Molly K; Divers, Stephen; Braun, Christina; Hofmeister, Erik H

    2013-11-01

    This study compares the pharmacodynamics of two different doses of alfaxalone administered intramuscularly (IM) to red-eared sliders at two ambient temperatures. Prospective blinded crossover experimental study. Nine adult female sliders (Trachemys scripta elegans). Following a 2-week acclimation at 22-25 °C, nine sliders were randomly assigned to receive alfaxalone, 10 mg kg(-1) (W10), or 20 mg kg(-1) (W20) IM. Each turtle received each dose, with a minimum 7-day washout period. A blinded observer evaluated heart rate (HR), palpebral and corneal reflexes, muscle relaxation, handling, and response to toe pinch at the following points: pre-injection, and 5, 12, 20, 30, 45, 60, and 120 minutes post-injection. Turtles then acclimated to 18-20 °C for 63 days, and the experiment was repeated in this lower-temperature environment, with treatment groups C10 (alfaxalone 10 mg kg(-1)) and C20 (alfaxalone 20 mg kg(-1)) subjected to the same crossover design. C10 and C20 groups had significantly lower intraanesthetic HR than W10 or W20, respectively. C10 and W20 were significantly more relaxed and easier to handle than W10. No significant differences were observed in palpebral reflex, nor responsiveness to the toe pinch stimulus. None of the turtles lost corneal reflex. W20 and C20 had prolonged recoveries, compared to low-dose groups within the same temperature environment. Recovery was also longer at C20 and C10 compared to W10. Turtles given 10 mg kg(-1) were more relaxed and easier to handle in cold than warm conditions. Warm turtles were more relaxed and easier to handle when given 20 mg kg(-1) than those given 10 mg kg(-1). Cold conditions correlated with lower HR and longer recovery time for each dose category. The turtles had dose-dependent and inconsistent responses to alfaxalone. Lower ambient temperature augmented the behavioral effects of this drug. © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  7. The sectional size effect on the deformation behaviour of Inconel 718 at different temperatures

    Directory of Open Access Journals (Sweden)

    Zhao R.

    2015-01-01

    Full Text Available Inconel 718, as a multiphase super-alloy, is widely used in aeronautics and astronautics industries. In this field, a modified Hall-Petch equation was used to describe the grain size effect on the deformation behaviour of Inconel 718 sheet in uniaxial tension test. There is a piecewise linearity in the σ-d−1 curve: With the thickness t is a constant, the slope changes obviously after a critical t/d ratio, which increases with strain. Moreover, the influence on sectional curve caused by temperature is also an interesting issue. To address that, the sectionalized curve was fitted at different strains and temperatures, and the phenomena of grain size effect in piecewise curve at different temperatures were further explained. A surface model of Inconel 718 was proposed to explain the intrinsic mechanism of different slopes. The research provided an in-depth understanding of the size effect on the deformation behaviour of Inconel 718 at different hot working temperatures.

  8. Effect of Different Tree canopies on the Brightness Temperature of Snowpack

    Science.gov (United States)

    Mousavi, S.; De Roo, R. D.; Brucker, L.

    2017-12-01

    Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.

  9. Tungsten self-sputtering yield with different incidence angles and target temperatures

    International Nuclear Information System (INIS)

    Bandourko, V.; Nakamura, K.; Akiba, M.; Jimbou, R.

    1998-01-01

    The self-sputtering of different types of tungsten due to 1 keV W + bombardment at temperatures of 25 C and 600 C and incident angles in the range of 30-60 was studied by means of the weight loss method. The experimental data at room temperature agreed reasonably with the results of TRIM calculations. Enhanced self-sputtering yields due to beam-induced desorption of WO 2 were found at a temperature of 600 C. The weight loss of W-Cu composite is larger than that of the CVD-W and ps-W under the same irradiation conditions due to the selective removal of copper. (orig.)

  10. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2015-05-01

    Full Text Available Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  11. Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats.

    Science.gov (United States)

    Smith, Amanda L; Garbus, Haley; Rosenkrantz, Ted S; Fitch, Roslyn Holly

    2015-05-22

    Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  12. Utilising temperature differences as constraints for estimating parameters in a simple climate model

    International Nuclear Information System (INIS)

    Bodman, Roger W; Karoly, David J; Enting, Ian G

    2010-01-01

    Simple climate models can be used to estimate the global temperature response to increasing greenhouse gases. Changes in the energy balance of the global climate system are represented by equations that necessitate the use of uncertain parameters. The values of these parameters can be estimated from historical observations, model testing, and tuning to more complex models. Efforts have been made at estimating the possible ranges for these parameters. This study continues this process, but demonstrates two new constraints. Previous studies have shown that land-ocean temperature differences are only weakly correlated with global mean temperature for natural internal climate variations. Hence, these temperature differences provide additional information that can be used to help constrain model parameters. In addition, an ocean heat content ratio can also provide a further constraint. A pulse response technique was used to identify relative parameter sensitivity which confirmed the importance of climate sensitivity and ocean vertical diffusivity, but the land-ocean warming ratio and the land-ocean heat exchange coefficient were also found to be important. Experiments demonstrate the utility of the land-ocean temperature difference and ocean heat content ratio for setting parameter values. This work is based on investigations with MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) as the simple climate model.

  13. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    Science.gov (United States)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  14. Interspecific Differences in Metabolic Rate and Metabolic Temperature Sensitivity Create Distinct Thermal Ecological Niches in Lizards (Plestiodon).

    Science.gov (United States)

    Watson, Charles M; Burggren, Warren W

    2016-01-01

    Three congeneric lizards from the southeastern United States (Plestiodon fasciatus, P. inexpectatus, and P. laticeps) exhibit a unique nested distribution. All three skink species inhabit the US Southeast, but two extend northward to central Ohio (P. fasciatus and P. laticeps) and P. fasciatus extends well into Canada. Distinct interspecific differences in microhabitat selection and behavior are associated with the cooler temperatures of the more Northern ranges. We hypothesized that interspecific differences in metabolic temperature sensitivity locally segregates them across their total range. Resting oxygen consumption was measured at 20°, 25° and 30°C. Plestiodon fasciatus, from the coolest habitats, exhibited greatly elevated oxygen consumption compared to the other species at high ecologically-relevant temperatures (0.10, 0.17 and 0.83 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Yet, P. inexpectatus, from the warmest habitats, exhibited sharply decreased oxygen consumption compared to the other species at lower ecologically-relevant temperatures (0.09, 0.27 and 0.42 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Plestiodon laticeps, from both open and closed microhabitats and intermediate latitudinal range, exhibited oxygen consumptions significantly lower than the other two species (0.057, 0.104 and 0.172 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Overall, Plestiodon showed metabolic temperature sensitivities (Q10s) in the range of 2-3 over the middle of each species' normal temperature range. However, especially P. fasciatus and P. inexpectatus showed highly elevated Q10s (9 to 25) at the extreme ends of their temperature range. While morphologically similar, these skinks are metabolically distinct across the genus' habitat, likely having contributed to their current distribution.

  15. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    under different control strategies of the heating system (Pseudo Random Binary Sequence signal controlling all the heaters (PRBS) or thermostatic control of the heaters (THERM)). A comparison of the measured temperatures within the room, for the five series of experiments, shows a better correlation...

  16. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  17. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  18. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  19. Bands of respiratory rate and cloacal temperature for different broiler chicken strains

    Directory of Open Access Journals (Sweden)

    Sheila Tavares Nascimento

    2012-05-01

    Full Text Available The objective of this investigation was to estimate ideal bands of respiratory rate and cloacal temperature for broiler chicken strains during the rearing period and to evaluate the influence of time of exposure on bird physiological variables under different thermal stress conditions. The research was conducted in a climatic chamber during the six weeks of the rearing period, with Avian and Cobb strains exposed to two climatic conditions (comfort and stress, in three distinct times of exposure, in three conditions (before going to the chamber; at the end of exposure time; 30 minutes after the end of exposure, in four treatments: comfort with 60 minutes of exposure; stress with 30 minutes of exposure; stress with 60 minutes of exposure; stress with 90 minutes of exposure. Bands of respiratory rate and cloacal temperature were elaborated for both strains, for each one of the weeks of the rearing period. Strains differed, regardless of treatments and conditions adopted in the research on the third, fifth and sixth weeks of life in relation to the cloacal temperature. The Cobb strain is more tolerant to thermal stress in comparison with the Avian. There was difference for both variables between comfort and stress, but time of exposure to stress did not influence the physiological response of birds, except for cloacal temperature on the second week of life.

  20. Difference in canopy and air temperature as an indicator of grassland water stress

    International Nuclear Information System (INIS)

    Duffková, R.

    2006-01-01

    In 2003–2005 in conditions of the moderately warm region of the Třeboň Basin (Czech Republic) the difference between canopy temperature (T c ) and air temperature at 2 m (T a ) was tested as an indicator of grassland water stress. To evaluate water stress ten-minute averages of temperature difference T c –T a were chosen recorded on days without rainfall with intensive solar radiation from 11.00 to 14.00 CET. Water stress in the zone of the major portion of root biomass (0–0.2 m) in the peak growing season (minimum presence of dead plant residues) documented by a sudden increase in temperature difference, its value 5–12°C and unfavourable canopy temperatures due to overheating (> 30°C) was indicated after high values of suction pressure approaching the wilting point (1300 kPa) were reached. High variability of temperature difference in the conditions of sufficient supply of water to plants was explained by the amount of dead plant residues in canopy, value of vapour pressure deficit (VPD), actual evapotranspiration rate (ETA) and soil moisture content. At the beginning of the growing season (presence of dead plant residues and voids) we proved moderately strong negative linear correlations of T c –T a with VPD and T c –T a with ETA rate and moderately strong positive linear correlations of ETA rate with VPD. In the period of intensive growth (the coverage of dead plant residues and voids lower than 10%) moderately strong linear correlations of T c –T a with VPD and multiple linear correlations of T c –T a with VPD and soil moisture content at a depth of 0.10–0.40 m were demonstrated. (author)

  1. Significance of perfectionism in understanding different forms of insomnia

    Directory of Open Access Journals (Sweden)

    Totić-Poznanović Sanja

    2012-01-01

    Full Text Available Introduction. Studies consistently show a connection between perfectionism as a multidimensional construct with various psychological and psychopathological states and characteristics. However, studies that analyze the connection between this concept and sleep disturbances, especially modalities of insomnia, are rare. Objective. The aim of this study was to examine whether dimensions of perfectionism can explain different forms of insomnia; difficulties initiating sleep (insomnia early, difficulties during the sleep (insomnia middle, waking in early hours of the morning (insomnia late and dissatisfaction with sleep quality (subjective insomnia. Methods. The sample consisted of 254 students of the School of Medicine in Belgrade. Predictive significance of nine perfectionism dimensions, measured by Frost’s and Hewitt’s and Flett’s scales of multi-dimensional perfectionism, related to four modalities of insomnia, measured by a structured questionnaire, was analyzed by multiple linear regression method. Results. Perfectionism dimensions are significant predictors of each of the tested forms of insomnia. Doubt about actions significantly predicts initial insomnia; to other-oriented perfectionism in the negative pole and socially prescribed perfectionism underlie the difficulties during the sleep, while organization and parental criticism underlie late insomnia. Significant predictors of subjective insomnia are personal standards and organization and to other-oriented perfectionism on the negative pole. Three of nine analyzed dimensions were not confirmed as significant; concern over mistakes, parental expectations and self-oriented perfectionism. Conclusion. Various aspects of perfectionism can be considered as a vulnerability factor for understanding some forms of insomnia. Out of all forms of insomnia tested, perfectionism as the personality trait proved to be the most significant for understanding subjective insomnia.

  2. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2010-01-01

    Samples of concrete at different water-to-cement ratios and air contents subjected to freeze/thaw cycles with the lowest temperature at about -80 degrees C are investigated. By adopting a novel technique, a scanning calorimeter is used to obtain data from which the ice contents at different freeze...... temperatures can be calculated. The length change caused by temperature and ice content changes during test is measured by a separate experiment using the same types of freeze-thaw cycles as in the calorimetric tests. In this way it was possible to compare the amount of formed ice at different temperatures...... and the corresponding measured length changes. The development of cracks in the material structure was indicated by an ultra-sonic technique by measuring on the samples before and after the freeze-thaw tests. Further the air void structure was investigated using a microscopic technique in which air'bubble' size...

  3. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale.

    Science.gov (United States)

    Carnicer, Jofre; Barbeta, Adrià; Sperlich, Dominik; Coll, Marta; Peñuelas, Josep

    2013-01-01

    Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines.

  4. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale.

    Directory of Open Access Journals (Sweden)

    Jofre eCarnicer

    2013-10-01

    Full Text Available Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit, xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC, wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines.

  5. Individual differences in temperature perception: evidence of common processing of sensation intensity of warmth and cold.

    Science.gov (United States)

    Green, Barry G; Akirav, Carol

    2007-01-01

    The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29 degrees C) or heating (37 degrees C) local regions of the forearm. Stimuli were delivered via a 4 x 4 array of 8 mm x 8 mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r = 0.83, p sensations produced by the two temperatures were also correlated, but to a lesser degree (r = 0.44), and the associations between nociceptive and thermal sensations (r = 0.35 and 0.22 for 37 and 29 degrees C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.

  6. Magnetic resonance imaging detects significant sex differences in human myocardial strain

    Directory of Open Access Journals (Sweden)

    Reynolds Lina M

    2011-08-01

    Full Text Available Abstract Background The pathophysiology responsible for the significant outcome disparities between men and women with cardiac disease is largely unknown. Further investigation into basic cardiac physiological differences between the sexes is needed. This study utilized magnetic resonance imaging (MRI-based multiparametric strain analysis to search for sex-based differences in regional myocardial contractile function. Methods End-systolic strain (circumferential, longitudinal, and radial was interpolated from MRI-based radiofrequency tissue tagging grid point displacements in each of 60 normal adult volunteers (32 females. Results The average global left ventricular (LV strain among normal female volunteers (n = 32 was significantly larger in absolute value (functionally better than in normal male volunteers (n = 28 in both the circumferential direction (Male/Female = -0.19 ± 0.02 vs. -0.21 ± 0.02; p = 0.025 and longitudinal direction (Male/Female = -0.14 ± 0.03 vs. -0.16 ± 0.02; p = 0.007. Conclusions The finding of significantly larger circumferential and longitudinal LV strain among normal female volunteers suggests that baseline contractile differences between the sexes may contribute to the well-recognized divergence in cardiovascular disease outcomes. Further work is needed in order to determine the pathologic changes that occur in LV strain between women and men with the onset of cardiovascular disease.

  7. Core body temperature in obesity.

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  8. Temperature effects on sinking velocity of different Emiliania huxleyi strains.

    Science.gov (United States)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2018-01-01

    The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.

  9. Potential Causes of Significant Inventory Differences at Bulk Handling Facilities and the Importance of Inventory Difference Action Levels

    International Nuclear Information System (INIS)

    Homer, Alan; O’Hagan, Brendan

    2015-01-01

    Accountancy for nuclear material can be split into two categories. Firstly, where possible, accountancy should be in terms of items that can be transferred as discrete packages and their contents fixed at the time of their creation. All items must remain accounted for at all times, and a single missing item is considered significant. Secondly, where nuclear material is unconstrained, for example in a reprocessing plant where it can change form, there is an uncertainty that relates to the amount of material present in any location. Cumulatively, these uncertainties can be summed and provide a context for any estimate of material in a process. Any apparent loss or gain between what has been physically measured within a facility during its physical inventory take and what is reported within its nuclear material accounts is known as an inventory difference. The cumulative measurement uncertainties can be used to set an action level for the inventory difference so that if an inventory difference is observed outside of such action levels, the difference is classified as significant and an investigation to find the root cause(s) is required. The purpose of this paper is to explore the potential causes of significant inventory differences and to provide a framework within which an inventory difference investigation can be carried out.

  10. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available The principle of enzyme kinetics suggests that the temperature sensitivity (Q10 of soil organic matter (SOM decomposition is inversely related to organic carbon (C quality, i.e., the C quality-temperature (CQT hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm, microaggregates (MI, 53-250 μm, and mineral fractions (MF, MF>bulk soil >MI(P <0.05. The Q10 values were highest for MA, followed (in decreasing order by bulk soil, MF, and MI. Similarly, the activation energies (Ea for MA, bulk soil, MF, and MI were 48.47, 33.26, 27.01, and 23.18 KJ mol-1, respectively. The observed significant negative correlations between Q10 and C quality index in bulk soil and soil aggregates (P<0.05 suggested that the CQT hypothesis is applicable to soil aggregates. Cumulative C emission differed significantly among aggregate size classes (P <0.0001, with the largest values occurring in MA (1101 μg g-1, followed by MF (976 μg g-1 and MI (879 μg g-1. These findings suggest that feedback from SOM decomposition in response to changing temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  11. Cell cycle analysis of brain cells as a growth index in larval cod at different feeding conditions and temperatures

    Directory of Open Access Journals (Sweden)

    Rafael González-Quirós

    2007-09-01

    Full Text Available The percentage of cells dividing in a specific tissue of individual larvae can be estimated by analyzing DNA per cell by flow cytometry. An experimental test was carried out with cod (Gadus morhua larvae, with brain as the target tissue, to validate this technique as an appropriate growth index for larval fish. Standard length (SL, myotome height, and %S-phase (% of cells in the S-phase of the cell-division cycle variability were analyzed, with temperature (6 and 10°C, food level (high- and no-food and larval developmental stage (first feeding, pre-metamorphosis and post-metamorphosis as independent factors. Cod larvae grew faster (in SL and presented a higher %S-phase under high-food conditions. Larval SL increased with temperature in rearing and experimental tanks. However, there was a significant interaction between temperature and food in the %S-phase. There were no significant differences in the %S-phase between 6 and 10°C at high-food levels. We suggest that this result is a consequence of temperature-dependency of the duration of the cell cycle. In the absence of food, larvae at 10ºC had a lower %S-phase than larvae at 6°C, which may be related to increased metabolic costs with increasing temperature. Considering the effect of temperature, the mean % S-phase explained 74% of the variability in the estimated standard growth rate.

  12. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  13. Thermoluminescence of KI:Eu2+ Stimulated by Ultraviolet Irradiation at Different Temperatures

    International Nuclear Information System (INIS)

    Aguirre de Carcer, I.; Jaque, F.; Townsend, P.D.

    1999-01-01

    The thermoluminescence (TL) of KI:Eu 2+ after ultraviolet (254 nm) irradiation at different temperatures from -40 deg. C to +40 deg. C has been studied. Two main glow peaks and some minor features have been identified on the thermoluminescence glow curves. Irradiating at low temperature gives a strong peak at γ5 deg. C and a less pronounced one at 230 deg. C. The TL glow peak emission spectra were analysed as consisting of the addition of several Gaussian shaped emission bands. The position of the Gaussian peaks, and their widths, are coincident with divalent europium emission at different sites of the KI:Eu 2+ system. A new emission band centred at 3.05 eV, 0.16 eV FWHM for Eu 2+ has been observed from the TL emission spectra. The changes in the spectral distribution of the TL emission with irradiation temperature are discussed. (author)

  14. Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors.

    Science.gov (United States)

    Nie, Pengcheng; Dong, Tao; He, Yong; Xiao, Shupei

    2018-01-29

    Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are widely used for rapid detection of nutrients in soil. However, soil texture, soil moisture content and drying temperature all affect soil nitrogen detection using near infrared sensors. In order to investigate the effects of drying temperature on the nitrogen detection in black soil, loess and calcium soil, three kinds of soils were detected by near infrared sensors after 25 °C placement (ambient temperature), 50 °C drying (medium temperature), 80 °C drying (medium-high temperature) and 95 °C drying (high temperature). The successive projections algorithm based on multiple linear regression (SPA-MLR), partial least squares (PLS) and competitive adaptive reweighted squares (CARS) were used to model and analyze the spectral information of different soil types. The predictive abilities were assessed using the prediction correlation coefficients (R P ), the root mean squared error of prediction (RMSEP), and the residual predictive deviation (RPD). The results showed that the loess (R P = 0.9721, RMSEP = 0.067 g/kg, RPD = 4.34) and calcium soil (R P = 0.9588, RMSEP = 0.094 g/kg, RPD = 3.89) obtained the best prediction accuracy after 95 °C drying. The detection results of black soil (R P = 0.9486, RMSEP = 0.22 g/kg, RPD = 2.82) after 80 °C drying were the optimum. In conclusion, drying temperature does have an obvious influence on the detection of soil nitrogen by near infrared sensors, and the suitable drying temperature for different soil types was of great significance in enhancing the detection accuracy.

  15. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  16. Effects of foliage plants on human physiological and psychological responses at different temperatures

    Science.gov (United States)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  17. Impact of storage conditions on seed germination and seedling growth of wild oat (Avena fatua L. at different temperatures

    Directory of Open Access Journals (Sweden)

    Marija Sarić-Krsmanović

    2015-12-01

    Full Text Available The influence of seed storage conditions and different temperatures (5˚C, 10˚C, 15˚C, 20˚C, 25˚C, 30˚C and 26˚C/21˚C during germination and seedling development on seed germination, shoot length and germination rate of wild oat (Avena fatua L. was examined. Germinated seeds were counted daily over a period of ten days and shoot length was measured on the last day, while germination rates were calculated from those measurements. The results showed that seed storage under controlled conditions (T1: temperature 24±1°C, humidity 40-50%; T2: temperature 26±1°C, humidity 70-80% and T3: temperature 4˚C for periods of 3 (t1 and 12 (t2 months had a significant influence on germination of wild oat seeds. The percentage of germinated seeds under all examined temperatures was higher when they were stored for 12 months under controlled temperature and humidity. The results also showed that temperature had a significant effect on the percentage of germination and germination rate of A. fatua seeds. The highest total germination occurred at 15˚C temperature (T1: t1 - 41.25%, t2 - 44.37%; T2: t1 - 28.13%, t2 - 34.37%; T3: t1 - 10.63%, t2 - 12.50%. Germination percentage under an alternating day /night photoperiod at 26˚C/21˚C temperature was higher in all treatment variants (T1: t1 - 8.13%, t2 - 10.00%; T2: t1 - 11.87%, t2 - 13.13%; T3: t1 - 2.42%, t2 - 2.70% than germination in the dark at 25˚C, 30˚C and 5˚C.

  18. The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine treeline.

    Science.gov (United States)

    Baig, M N; Tranquillini, W

    1980-01-01

    The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms -1 ) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.

  19. The effect of cooling to different subzero temperatures on dog sperm cryosurvival.

    Science.gov (United States)

    Alcantar-Rodriguez, A; Medrano, A

    2017-06-01

    The objective was to assess the effect of cooling to different subzero temperatures around ice formation (-5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris-egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris-egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 10 6  cells/ml). Sperm were packaged in 0.5-ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to -3, -5 or -7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to -3 or -5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was -14.3 ± 2.05°C (mean ± SD); cooling to +5, -3, -5 and -7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, -3, and -5°C produced no differences on sperm survival and plasma membrane fluidity after freeze-thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing. © 2017 Blackwell Verlag GmbH.

  20. The Effect of Different Storage Temperatures on the Agronomic Characteristics and Yield of Two Varieties of Potatoes

    Directory of Open Access Journals (Sweden)

    A. H Jalali

    2016-10-01

    , one treatment of 80 degree-day (T5, and control treatment (T6 on agronomic characteristics and yield of Marfona and Ramus cultivars was investigated by using a factorial experiment based on randomized complete block design with four replications at Kabootar Abad Agriculture Research Center of Isfahan. Period of 10 days and 12 ° C were found in all treatments. For example, in the treatment of T3, the tissue repair process that is carried out for 10 days at 12 ° C to 80 GDD is received by the tubers (8 × 10, 8 for the reason that, 4 ° C is base temperature and should be minus of 12. Salable and non-salable yield, number of stems produced, emergence rate, the number of tubers per plant, tubers weight and the tubers size were measured in this study. Results and Discussion The results of this study showed that the effect of temperature treatment and the interaction of temperature treatment and cultivar on yield and yield components were considered statistically significant. Marfona cultivar and use of T3 treatment with 51733 kg ha-1 had the highest tuber yield. However, there was not significant difference between this treatment and use of T2 treatment, and also using of Ramus cultivar and T3 and T4 temperature storage. For both cultivars used in this study, T3 treatment produced maximum number of stems per plant. Harvest index was fluctuated at different temperature treatments from 63.5 to 76.1 percent in the Ramos cultivar, and from 64 to 79.6 percent in Marfona cultivar. In summary, management of storage temperature can increase potato crop yields, especially in areas with short growing seasons. It seems that effects of physiological age differ between cultivars and different varieties of potatoes have different abilities to produce tuber yields in response to different heat treatments. Increasing of total tuber yield, especially as affected by thermal temperature storage application higher than 500 GDD was reported in some studies such as Knowles and Botar (1992 in

  1. Chemical, sensory, and functional properties of whey-based popsicles manufactured with watermelon juice concentrated at different temperatures.

    Science.gov (United States)

    Martins, Carolina P C; Ferreira, Marcus Vinicius S; Esmerino, Erick A; Moraes, Jeremias; Pimentel, Tatiana C; Rocha, Ramon S; Freitas, Mônica Q; Santos, Jânio S; Ranadheera, C Senaka; Rosa, Lana S; Teodoro, Anderson J; Mathias, Simone P; Silva, Márcia C; Raices, Renata S L; Couto, Silvia R M; Granato, Daniel; Cruz, Adriano G

    2018-07-30

    The effects of the concentration of watermelon juice at different temperatures (45, 55, or 65 °C) on the physicochemical and sensory characteristics, antioxidant capacity, and volatile organic compounds (VOCs) of whey-based popsicles were investigated. Total phenolic content, lycopene, citrulline, VOCs, melting rate, instrumental colour, antioxidant capacity, and the sensory characteristics (hedonic test and free listing) were determined. The temperature led to a significant decrease in bioactive compounds (total phenolics, lycopene, and citrulline). The popsicle manufactured with reconstituted watermelon juice concentrated to 60 °Brix at 65 °C presented higher antioxidant capacity and was characterized by the presence of alcohols, aldehydes and ketones and presented a similar acceptance to the untreated popsicle (except for flavour). It is possible to combine whey and concentrated watermelon juice for the manufacture of bioactive-rich popsicles, using the concentration temperature of 65 °C as a suitable processing condition for potential industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Chemical and microbiological analysis of red wines during storage at different temperatures

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2014-11-01

    Full Text Available Overall, chemical and microbiological analyses are very important for the quality of wine during and after winemaking process. One of the most important factors during wine storage is the temperature of storage. During storage of red wines in tanks, barrique barrels or glass bottles underway many physical, chemical and biochemical changes, which have significant influence for the stabilize of taste, scent, colour and general character of wine. The aim of our study we used two different wines, specifically Cabernet Sauvignon and Blaufränkisch and chemically and microbiologically analysed these wines during storage at different temperatures. These wines were bottled in 2011 and 2013. We stored these samples at different temperatures. The first four samples were stored at 6-8°C in refrigerator, and the next four were stored at 20-25°C in room temperature. We had together eight wine samples. We had determined in all wine samples sequentially the free and total sulphur dioxide content, ethyl-alcohol content, extract, sugars, total and volatile acids. The wine sample Cabernet Sauvignon 2011 at 6-8°C had content 12,14% ethyl-alcohol, 2.3% sugars, 5.6% total acids, 0,444 g.L-1 volatile acids, 25.6 g.L-1 extract, 8 mg.L-1 free SO2 and 18 mg.L-1total SO2. The wine sample Cabernet Sauvignon 2011 at 20-25°C had content 12,05% ethyl-alcohol, 2.4% sugars, 5.6% total acids, 0,456 g.L-1 volatile acids, 27.4 g.L-1extract, 6 mg.L-1 free SO2 and 18 mg.L-1total SO2.The wine sample Cabernet Sauvignon 2013 at 6-8°C had content 11,98% ethyl-alcohol, 1.8% sugars, 5.9% total acids, 0,324 g.L-1 volatile acids, 25.7 g.L-1extract, 24 mg.L-1 free SO2 and 42 mg.L-1total SO2. The wine sample Cabernet Sauvignon 2013 at 20-25°C had content 11,98% ethyl-alcohol, 1.8% sugars, 5.9% total acids, 0,324 g.L-1 volatile acids, 25.7 g.L-1 extract, 24 mg.L-1 free SO2 and 42 mg.L-1total SO2.These results were collected from one measuring, but we had results from three measuring

  3. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    Science.gov (United States)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  4. Temperature control during therapeutic hypothermia for newborn encephalopathy using different Blanketrol devices.

    Science.gov (United States)

    Laptook, Abbot R; Kilbride, Howard; Shepherd, Edward; McDonald, Scott A; Shankaran, Seetha; Truog, William; Das, Abhik; Higgins, Rosemary D

    2014-12-01

    Therapeutic hypothermia improves the survival and neurodevelopmental outcome of infants with newborn encephalopathy of a hypoxic-ischemic origin. The NICHD Neonatal Research Network (NRN) Whole Body Cooling trial used the Cincinnati Sub-Zero Blanketrol II to achieve therapeutic hypothermia. The Blanketrol III is now available and provides additional cooling modes that may result in better temperature control. This report is a retrospective comparison of infants undergoing hypothermia using two different cooling modes of the Blanketrol device. Infants from the NRN trial were cooled with the Blanketrol II using the Automatic control mode (B2 cohort) and were compared with infants from two new NRN centers that adopted the NRN protocol and used the Blanketrol III in a gradient mode (B3 cohort). The primary outcome was the percent time the esophageal temperature stayed between 33°C and 34°C (target 33.5°C) during maintenance of hypothermia. Cohorts had similar birth weight, gestational age, and level of encephalopathy at the initiation of therapy. Baseline esophageal temperature differed between groups (36.6°C ± 1.0°C for B2 vs. 33.9°C ± 1.2°C for B3, p<0.0001) reflecting the practice of passive cooling during transport prior to initiation of active device cooling in the B3 cohort. This difference prevented comparison of temperatures during induction of hypothermia. During maintenance of hypothermia the mean and standard deviation of the percent time between 33°C and 34°C was similar for B2 compared to B3 cohorts (94.8% ± 0.1% vs. 95.8% ± 0.1%, respectively). Both the automatic and gradient control modes of the Blanketrol devices appear comparable in maintaining esophageal temperature within the target range during maintenance of therapeutic hypothermia.

  5. Exchange bias behavior in Ni{sub 50.0}Mn{sub 35.5} In{sub 14.5} ribbons annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, T. [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Sato Turtelli, R.; Groessinger, R. [Institut fur Festkoerperphysik, Technische Universitaet Wien, Wiedner Hauptstr. 8-10, 1040 Vienna (Austria); Sanchez, M.L.; Santos, J.D.; Rosa, W.O.; Prida, V.M. [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Escoda, Ll.; Sunol, J.J. [Campus de Montilivi, Universidad de Girona, edifici PII, Lluis Santalo s/n. 17003 Girona (Spain); Koledov, V. [Kotelnikov Institute of Radio Engineering and Electronics, RAS, Moscow 125009 (Russian Federation); Hernando, B., E-mail: grande@uniovi.es [Dept. de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2012-10-15

    Heusler alloy Ni{sub 50.0}Mn{sub 35.5}In{sub 14.5} ribbons were prepared by melt-spinning technique. Several short time annealings were carried out in order to enhance the exchange bias effect in this alloy ribbon. The magnetic transition temperature increases with the annealing, compared to the as-spun sample, however no significant differences in respective Curie temperatures were observed for austenite and martensite phases in such annealed samples. Exchange bias effect is observed at low temperatures for all samples and practically vanishes at 60 K for the as-spun sample, whereas for the annealed ribbons it vanishes at 100 K.

  6. Temperature differences within the detector of the Robertson-Berger sunburn meter, model 500, compared to global radiation

    Science.gov (United States)

    Kjeldstad, Berit; Grandum, Oddbjorn

    1993-11-01

    The Robertson-Berger sunburn meter, model 500, has no temperature compensation, and the effect of temperature on the instrument response has been investigated and discussed in several reports. It is recommended to control the temperature of the detector or at least measure it. The temperature sensor is recommended to be positioned within the detector unit. We have measured the temperature at three different positions in the detector: At the edge of the green filter where the phosphor layer is placed; at the glass tube covering the cathode; and, finally, the air temperature inside the instrument. These measurements have been performed outdoors since July 1991, with corresponding measurements of the global and direct solar radiation. There was no difference between the temperature of the glasstube covering the cathode and the air inside the instrument, at any radiation level. However, there was a difference between the green filter and the two others. The difference is linearly dependent on the amount of global radiation. The temperature difference, (Delta) T (temperature between the green filter and the air inside the sensor), increased 0.8 degree(s)C when the global irradiation increased by 100 W/m2. At maximum global radiation in Trondheim (latitude 63.4 degree(s)N) (Delta) T was approximately 5 - 6 K when the global radiation was about 700 W/m2. This was valid for temperatures between 7 degree(s)C and 30 degree(s)C. Only clear days were evaluated.

  7. Seed vigor and germination of facheiro plants (Pilosocereus catingicola (Gurke Byles & Rowley Subsp. Salvadorensis (Werderm. Zappi (Cactaceae at different temperatures

    Directory of Open Access Journals (Sweden)

    Robson Luis Silva de Medeiros

    2017-10-01

    Full Text Available Several species of endemic Cactaceae are found in northeastern Brazil, which are important plants to the local fauna and flora; nevertheless, there are only a few studies assessing the germination of this plant genus. Understanding the germination of species native to the Caatinga is essential to subsidize conservation actions for such ecosystem. The objective of this study was to investigate the influence of three localities and different temperatures on the vigor and germination of facheiro seeds. The experiment was conducted by evaluating seed vigor and germination in three distinct areas (Arara, Bananeiras, and Boa Vista at different temperatures (20, 25, 30, 35, 40, and 20-30 ºC. Quantitative data were submitted to polynomial regression analysis at 5% significance with four replicates of 50 seeds. In Arara, germination rates at 20 and 25 ºC reached 96% and, at 30 ºC, 86%. The temperatures of 25 and 30 ºC presented the best germination speed index. For the three studied areas, the highest germination rates were recorded at a constant temperature of 25 ºC and at the alternating temperature (20-30 ºC. Yet the highest germination speed was reached at 30 ºC. Based on its sexual propagation, the taxon in question is able to survive in environments with temperatures ranging from 20 to 30 ºC, as seen in the studied habitats.

  8. Significant interarm blood pressure difference predicts cardiovascular risk in hypertensive patients

    Science.gov (United States)

    Kim, Su-A; Kim, Jang Young; Park, Jeong Bae

    2016-01-01

    Abstract There has been a rising interest in interarm blood pressure difference (IAD), due to its relationship with peripheral arterial disease and its possible relationship with cardiovascular disease. This study aimed to characterize hypertensive patients with a significant IAD in relation to cardiovascular risk. A total of 3699 patients (mean age, 61 ± 11 years) were prospectively enrolled in the study. Blood pressure (BP) was measured simultaneously in both arms 3 times using an automated cuff-oscillometric device. IAD was defined as the absolute difference in averaged BPs between the left and right arm, and an IAD ≥ 10 mm Hg was considered to be significant. The Framingham risk score was used to calculate the 10-year cardiovascular risk. The mean systolic IAD (sIAD) was 4.3 ± 4.1 mm Hg, and 285 (7.7%) patients showed significant sIAD. Patients with significant sIAD showed larger body mass index (P < 0.001), greater systolic BP (P = 0.050), more coronary artery disease (relative risk = 1.356, P = 0.034), and more cerebrovascular disease (relative risk = 1.521, P = 0.072). The mean 10-year cardiovascular risk was 9.3 ± 7.7%. By multiple regression, sIAD was significantly but weakly correlated with the 10-year cardiovascular risk (β = 0.135, P = 0.008). Patients with significant sIAD showed a higher prevalence of coronary artery disease, as well as an increase in 10-year cardiovascular risk. Therefore, accurate measurements of sIAD may serve as a simple and cost-effective tool for predicting cardiovascular risk in clinical settings. PMID:27310982

  9. Effects of high ambient temperature on ambulance dispatches in different age groups in Fukuoka, Japan.

    Science.gov (United States)

    Kotani, Kazuya; Ueda, Kayo; Seposo, Xerxes; Yasukochi, Shusuke; Matsumoto, Hiroko; Ono, Masaji; Honda, Akiko; Takano, Hirohisa

    2018-01-01

    The elderly population has been the primary target of intervention to prevent heat-related illnesses. According to the literature, the highest risks have been observed among the elderly in the temperature-mortality relationship. However, findings regarding the temperature-morbidity relationship are inconsistent. This study aimed to examine the association of temperature with ambulance dispatches due to acute illnesses, stratified by age group. Specifically, we explored the optimum temperature, at which the relative health risks were found to be the lowest, and quantified the health risk associated with higher temperatures among different age groups. We used the data for ambulance dispatches in Fukuoka, Japan, during May and September from 2005 to 2012. The data were grouped according to age in 20-year increments. We explored the pattern of the association of ambulance dispatches with temperature using a smoothing spline curve to identify the optimum temperature for each age group. Then, we applied a distributed lag nonlinear model to estimate the risks of the 85th-95th percentile temperature relative to the overall optimum temperature, for each age group. The relative risk of ambulance dispatches at the 85th and 95th percentile temperature for all ages was 1.08 [95% confidence interval (CI): 1.05, 1.12] and 1.12 (95% CI: 1.08, 1.16), respectively. In comparison, among age groups, the optimum temperature was observed as 25.0°C, 23.2°C, and 25.3°C for those aged 0-19, 60-79, and ≥80, respectively. The optimum temperature could not be determined for those aged 20-39 and 40-59. The relative risks of high temperature tended to be higher for those aged 20-39 and 40-59 than those for other age groups. We did not find any definite difference in the effect of high temperature on ambulance dispatches for different age groups. However, more measures should be taken for younger and middle-aged people to avoid heat-related illnesses.

  10. Influence of different storage times and temperatures on blood gas ...

    African Journals Online (AJOL)

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted ...

  11. Temperature rise during adhesive and composite polymerization with different light-curing sources.

    Science.gov (United States)

    Pereira Da Silva, A; Alves Da Cunha, L; Pagani, C; De Mello Rode, S

    2010-05-01

    This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.

  12. The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties.

    Science.gov (United States)

    Hozain, Moh'd I; Salvucci, Michael E; Fokar, Mohamed; Holaday, A Scott

    2010-01-01

    Significant inhibition of photosynthesis occurs at temperatures only a few degrees (temperature is a major factor limiting the geographic ranges of most plants, the aim of this study was to use two Populus species adapted to contrasting thermal environments for determining the factors that constrain photosynthetic assimilation (A) under moderate heat stress in tree species. Consistent with its native range in temperate regions, Populus deltoides Bartr. ex Marsh. exhibited a significantly higher temperature optimum for A than did Populus balsamifera L., a boreal species. The higher A exhibited by P. deltoides at 33-40 degrees C compared to that for P. balsamifera was associated with a higher activation state of Rubisco and correlated with a higher ATPase activity of Rubisco activase. The temperature response of minimal chlorophyll a fluorescence for darkened leaves was similar for both species and was not consistent with a thylakoid lipid phase change contributing to the decline in A in the range of 30-40 degrees C. Taken together, these data support the idea that the differences in the temperature response of A for the two Populus species could be attributed to the differences in the response of Rubisco activation and ultimately to the thermal properties of Rubisco activase. That the primary sequence of Rubisco activase differed between the species, especially in regions associated with ATPase activity and Rubisco recognition, indicates that the genotypic differences in Rubisco activase might underlie the differences in the heat sensitivity of Rubisco activase and photosynthesis at moderately high temperatures.

  13. Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3-xTiO3 with different lithium contents

    International Nuclear Information System (INIS)

    Geng Hongxia; Lan Jinle; Mei Ao; Lin Yuanhua; Nan, C.W.

    2011-01-01

    Li 3x La 2/3-x TiO 3 (LLTO) powder with different lithium contents (nominal 3x = 0.03-0.75) was synthesized via a simple sol-gel route and then calcination of gel-derived precursor at 900 o C which was much below the calcination temperature required for synthesizing the LLTO powder via solid state reaction route. The LLTO powder of sub-micron sized particles, derived from such sol-gel method, showed almost no aggregation. Starting from the sol-gel-derived powder, the LLTO ceramics with different lithium contents were prepared at different sintering temperatures of 1250 and 1350 o C. It demonstrated that our sol-gel route is quite simple and convenient compared to the previous sol-gel method and requires lower temperature for the LLTO. Our results also illustrated that lithium content significantly affects the structure and ionic conductivity of the LLTO ceramics. The dependence of the ionic conductivity on the lithium content, lattice structure, microstructure and sintering temperature was investigated systematically.

  14. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  15. Effects of Wax Coating on the Moisture Loss of Cucumbers at Different Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-01-01

    Full Text Available The effects of wax coating on moisture loss of cucumbers (Cucumis sativus L., cv. Jinglv were investigated at different temperatures. Cucumbers were treated with 10% (volume : volume wax and then stored at 15, 20, 25, or 30°C and 55% relative humidity. The changes in the mass of samples were recorded every 6 h. Results showed that wax coating along with low temperature was very effective in preventing moisture loss of cucumbers during simulated distribution. After 48 h storage, moisture loss in wax treated cucumbers at 15°C was 45% lower than the control at 30°C. Furthermore, a kinetic model was developed to study the influence of temperature on moisture loss based on the Arrhenius law. The model successfully described changes in cucumber moisture loss at different temperatures during storage. The shelf life of cucumber was also predicted using the kinetic model. A synergistic effect was found between wax coating and storage temperature on cucumber shelf life. Wax coating combined with low storage temperature was an effective method to extend the shelf life of cucumber fruit.

  16. Floor Response Spectra of a Base Isolated Auxiliary Building in Different Temperature Environments

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Youngsun; Choi, Inkil

    2013-01-01

    It is necessary to investigate the aging effect of degradation factors and to evaluate the seismic response of base isolated NPPs with age-related degradation. In this study, the seismic responses for NPPs using high damping rubber bearing with age-related degradation in different temperature were investigated by performing a nonlinear time history analysis. The floor response spectrums (FRS) were presented with time in different temperature environments. The degradation of HRB is found to be particularly sensitive to the ambient temperature. The increase of HRB stiffness leads to the increase of FRS it was observed that the seismic demand for equipment located in the AUX was changed. Therefore it is required that the seismic evaluation for the isolation system (e. g. isolators, equipment located in isolated structure) is performed considering the temperature environments. From the seismic fragility analysis, the seismic capacity of cabinet was affected by the degradation of HRB. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the degradation during the life time

  17. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures

    Science.gov (United States)

    Tesei, Donatella; Marzban, Gorji; Zakharova, Kristina; Isola, Daniela; Selbmann, Laura; Sterflinger, Katja

    2012-01-01

    Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi – Coniosporium perforans, Exophiala jeanselmei – and of the extremophilic fungus – Friedmanniomyces endolithicus – were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum. PMID:22862921

  18. High-temperature change of the creep rate in YBa2Cu3O7-δ films with different pinning landscapes

    Science.gov (United States)

    Haberkorn, N.; Miura, M.; Baca, J.; Maiorov, B.; Usov, I.; Dowden, P.; Foltyn, S. R.; Holesinger, T. G.; Willis, J. O.; Marken, K. R.; Izumi, T.; Shiohara, Y.; Civale, L.

    2012-05-01

    Magnetic relaxation measurements in YBa2Cu3O7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (Jc). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high Jc values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.

  19. Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China

    Science.gov (United States)

    Zhong, Keyuan; Zheng, Fenli; Xu, Ximeng; Qin, Chao

    2018-06-01

    Different precipitation phases (rain, snow or sleet) differ greatly in their hydrological and erosional processes. Therefore, accurate discrimination of the precipitation phase is highly important when researching hydrologic processes and climate change at high latitudes and mountainous regions. The objective of this study was to identify suitable temperature thresholds for discriminating the precipitation phase in the Songhua River Basin (SRB) based on 20-year daily precipitation collected from 60 meteorological stations located in and around the basin. Two methods, the air temperature method (AT method) and the wet bulb temperature method (WBT method), were used to discriminate the precipitation phase. Thirteen temperature thresholds were used to discriminate snowfall in the SRB. These thresholds included air temperatures from 0 to 5.5 °C at intervals of 0.5 °C and the wet bulb temperature (WBT). Three evaluation indices, the error percentage of discriminated snowfall days (Ep), the relative error of discriminated snowfall (Re) and the determination coefficient (R2), were applied to assess the discrimination accuracy. The results showed that 2.5 °C was the optimum threshold temperature for discriminating snowfall at the scale of the entire basin. Due to differences in the landscape conditions at the different stations, the optimum threshold varied by station. The optimal threshold ranged 1.5-4.0 °C, and 19 stations, 17 stations and 18 stations had optimal thresholds of 2.5 °C, 3.0 °C, and 3.5 °C respectively, occupying 90% of all stations. Compared with using a single suitable temperature threshold to discriminate snowfall throughout the basin, it was more accurate to use the optimum threshold at each station to estimate snowfall in the basin. In addition, snowfall was underestimated when the temperature threshold was the WBT and when the temperature threshold was below 2.5 °C, whereas snowfall was overestimated when the temperature threshold exceeded 4

  20. The Effects of High Temperature on Gessoes with Different Admixtures

    Science.gov (United States)

    Budu, Ana-Maria; Sandu, Ion; Cristache, Raluca Anamaria

    2014-11-01

    This paper presents the effects of temperature on gessoes that have different substances added, usually used in painting or restoration to enhance the flexibility of the ground layer or to create a suitable gesso for the specific painting technique. Five samples of gesso were made and applied on Balsa wood (a dry, stable wood that is used in restoration for completing the missing elements of the panel). After the thermal treatment, the samples were analyzed optical, by microscopy and colorimetry. The results showed small differences in colour, but no cracks of the gessoes

  1. Effect of Static Soaking Under Different Temperatures on the Lime Stabilized Gypseous Soil

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Zubaydi

    2013-04-01

    Full Text Available This study concerns with the effect of long-term soaking on the unconfined compressive strength, loss in weight and gypsum dissolution of gypseous soil stabilized with (4% lime, take into account the following variables: initial water content, water temperature, soaking duration. The results reveals that, the unconfined compressive strength was dropped, and the reduction in values was different according to the initial water content and water temperature, so that the reduction of the unconfined compressive strength of samples soaked in water at low temperatures (50 and 250 C was greater than those soaked in water temperatures  at (490 and 600 C. The results obtained shows that the increase in soaking period decreases the percentage amount of gypsum and loss in weight for all water temperatures and soaking durations.

  2. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes (“Temperature Control” and “Power Control”) on Procedural Outcome

    International Nuclear Information System (INIS)

    Sommer, C. M.; Arnegger, F.; Koch, V.; Pap, B.; Holzschuh, M.; Bellemann, N.; Gehrig, T.; Senft, J.; Nickel, F.; Mogler, C.; Zelzer, S.; Meinzer, H. P.; Stampfl, U.; Kauczor, H. U.; Radeleff, B. A.

    2012-01-01

    Purpose: This study was designed to analyze the effect of two different ablation modes (“temperature control” and “power control”) of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96°C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96°C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 ± 0 s in group I and 102 ± 21 s in group II. Long axis diameter was 20.3 ± 4.6 mm in group I and 19.8 ± 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 ± 2 mm in group I and 10.5 ± 2.4 mm in group II (NS). Circularity was 0.5 ± 0.1 in group I and 0.5 ± 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.

  3. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  4. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs

    Directory of Open Access Journals (Sweden)

    Bo Liang

    2018-04-01

    Full Text Available To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05. Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.

  5. Crude oil degradation by bacterial consortia under four different redox and temperature conditions.

    Science.gov (United States)

    Xiong, Shunzi; Li, Xia; Chen, Jianfa; Zhao, Liping; Zhang, Hui; Zhang, Xiaojun

    2015-02-01

    There is emerging interest in the anaerobic degradation of crude oil. However, there is limited knowledge about the geochemical effects and microbiological activities for it. A mixture of anaerobic sludge and the production water from an oil well was used as an inoculum to construct four consortia, which were incubated under sulfate-reducing or methanogenic conditions at either mesophilic or thermophilic temperatures. Significant degradation of saturated and aromatic hydrocarbons and the changing quantities of some marker compounds, such as pristane, phytane, hopane and norhopane, and their relative quantities, suggested the activity of microorganisms in the consortia. Notably, the redox conditions and temperature strongly affected the diversity and structure of the enriched microbial communities and the oil degradation. Although some specific biomarker showed larger change under methanogenic condition, the degradation efficiencies for total aromatic and saturated hydrocarbon were higher under sulfate-reducing condition. After the 540-day incubation, bacteria of unknown classifications were dominant in the thermophilic methanogenic consortia, whereas Clostridium dominated the mesophilic methanogenic consortia. With the exception of the dominant phylotypes that were shared with the methanogenic consortia, the sulfate-reducing consortia were predominantly composed of Thermotogae, Deltaproteobacteria, Spirochaeta, and Synergistetes phyla. In conclusion, results in this study demonstrated that the different groups of degraders were responsible for degradation in the four constructed crude oil degrading consortia and consequently led to the existence of different amount of marker compounds under these distinct conditions. There might be distinct metabolic mechanism for degrading crude oil under sulfate-reducing and methanogenic conditions.

  6. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  7. Differences between the most used equations in BAT-human studies to estimate parameters of skin temperature in young lean men.

    Science.gov (United States)

    Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; Acosta, Francisco M; Alcantara, Juan M A; Boon, Mariëtte R; Rensen, Patrick C N; Ruiz, Jonatan R

    2017-09-05

    Cold exposure is necessary to activate human brown adipose tissue (BAT), resulting in heat production. Skin temperature is an indirect measure to monitor the body's reaction to cold. The aim of this research was to study whether the most used equations to estimate parameters of skin temperature in BAT-human studies measure the same values of temperature in young lean men (n = 11: 23.4 ± 0.5 years, fat mass: 19.9 ± 1.2%). Skin temperature was measured with 26 ibuttons at 1-minute intervals in warm and cold room conditions. We used 12 equations to estimate parameters of mean, proximal, and distal skin temperature as well as skin temperature gradients. Data were analysed with Temperatus software. Significant differences were found across equations to measure the same parameters of skin temperature in warm and cold room conditions, hampering comparison across studies. Based on these findings, we suggest to use a set of 14 ibuttons at anatomical positions reported by ISO STANDARD 9886:2004 plus five ibuttons placed on the right supraclavicular fossa, right middle clavicular bone, right middle upper forearm, right top of forefinger, and right upper chest.

  8. Analysis of simultaneous measurement of temperature and strain using different combinations of FBG

    Science.gov (United States)

    Ashik T., J.; Kachare, Nitin; Kalyani bai, K.; Kumar, D. Sriram

    2017-06-01

    The Fiber Bragg Grating (FBG) can be used for measuring temperature and or strain. In this paper analysis of different combinations of FBG is made. Certain parameters of FBG are considered such as Bandwidth, Side lobes, Peak power, and Sensitivity. Simultaneous measurement of temperature and strain is made using two combinations of FBG. The setup is simulated using two software. Optigrating 4.2.2 is used for designing different types of gratings such as Uniform, Apodized, Tilted and Superstructure. After designing, these files are exported to Optisystem 12 to simulate the spectrum and to observe the parameters.

  9. The role of specimen temperature difference in the elevated temperature pitting/transfer of PE16 and 20/25/Nb SS during impact wear

    International Nuclear Information System (INIS)

    Morri, J.

    1989-01-01

    A previous study of the impact fretting wear characteristics of PE16 + impacting 20/25 Nb SS (carried out on the BNL twin vibrator rig) identified a pitting-transfer form of wear at 480 0 C. This behaviour was thought to be dependent upon the temperature difference ΔT(ΔT = T 20/25 -T PE 16 ) between the two specimens. In that series of tests, however, no localised temperature control over the specimens was possible and specimen temperature effects could only be assessed by interchanging their positions in the rig. The introduction of locally positioned auxilliary heaters permitted a degree of control over the specimen temperature difference. The effect of ΔT upon pitting and transfer of the PE16 and 20/25 was then assessed and is reported in this paper. The study confirmed that the pitting transfer process was dependent on the temperature difference between the two surfaces. The direction and size of the transfer/pitting effect was independent of the material. Under the particular set of conditions employed in the test, pitting occurred only when the magnitude of ΔT exceeded 20 0 C. At high ΔT the initial period of high friction was extended and was associated with the tendency for gross transfer and pitting. (author)

  10. Thermodynamic analysis of a binary power cycle for different EGS geofluid temperatures

    International Nuclear Information System (INIS)

    Zhang Fuzen; Jiang Peixe

    2012-01-01

    Enhanced Geothermal Systems show promise for meeting growing energy demands. The Organic Rankine Cycle (ORC) can be used to convert low and medium-temperature geothermal energy to electricity, but the working fluid must be carefully selected for the ORC system design. This paper compares the system performance using R134a, isobutane, R245fa and isopentane for four typical geofluid temperatures below 200 °C. Three type (subcritical, superheated and transcritical) power generation cycles and two heat transfer control models (total heat control model and vaporization control model) are used for different EGS source temperatures and working fluids. This paper presents a basic analysis method to select the most suitable working fluid and to optimize the operating and design parameters for a given EGS resource based on the thermodynamics. - Highlights: ► We present a method to selecting working fluids for EGS resources. ► Working fluids with critical temperatures near geofluid temperature is priority. ► Operating conditions requiring use of total heat control model give good behave. ► Transcritical cycle is good choice.

  11. Individual differences in normal body temperature: longitudinal big data analysis of patient records

    Science.gov (United States)

    Samra, Jasmeet K; Mullainathan, Sendhil

    2017-01-01

    Abstract Objective To estimate individual level body temperature and to correlate it with other measures of physiology and health. Design Observational cohort study. Setting Outpatient clinics of a large academic hospital, 2009-14. Participants 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Main outcome measures Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. Results In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (–0.021°C for every decade, Ptemperature (eg, hypothyroidism: –0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, Pbody mass index: 0.002 per m/kg2, Ptemperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). Conclusions Individuals’ baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. PMID:29237616

  12. QUALITY OF MINIMALLY PROCESSED YAM (Dioscorea sp. STORED AT TWO DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    ADRIANO DO NASCIMENTO SIMÕES

    2016-01-01

    Full Text Available This work studied the physical, chemical and bio chemical alterations in minimally processed yam stored at two different temperatures, as well a s the incidence of bacteria of the genus Pseudomonas . The experimental design was completely randomised in a 2x8 factorial design, with two storage temperature s (5 and 10°C and eight storage times (0, 2, 4, 6, 8, 1 0, 12 and 14 days. Experiments were in triplicate. Yam was selected, peeled and cut into slices of approximate ly 3 cm thickness. The slices were rinsed with wate r, sanitised and then drained in kitchen strainers. Ap proximately 300 g of the processed product were pac ked in nylon multilayers 15 μ m thick, 15 cm wide and 20 cm long. The packs were sealed, weighed and kept at 5 and 10 ± 2°C for 14 days. Fresh weight loss, baking tim e, enzymatic activity of polyphenol oxidases, perox idases and catalases, total soluble phenol content, and an tioxidant capacity were evaluated, as well as visua l analysis and incidence of Pseudomonas sp. Means of temperatures were compared by Tukey ́s test at 5% significance. Yam storage at 5°C reduced weight loss and kept vis ual quality for longer; it also reduced cooking tim e and the activity of the enzymes polyphenol oxidase and pero xidase. In contrast, it promoted higher content of total soluble phenols, as well as a higher catalase activ ity and antioxidant capacity. During the storage ti me, there was no incidence of Pseudomonas sp. Minimally processed yam stored at 10°C may be sold for up to six days, and yam stored at 5ºC for up to 14 days.

  13. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Javed; Chaudhry, Mansoora Ahmed

    2009-01-01

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10 -3 to 25 . 10 -3 ) mol . kg -1 . The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs

  14. Assessing the Total Mortality Caused by Two Species of Trichogramma on Its Natural Host Plutella xylostella (L.) at Different Temperatures.

    Science.gov (United States)

    Marchioro, C A; Krechemer, F S; Foerster, L A

    2015-06-01

    Trichogramma pretiosum Riley and Trichogramma atopovirilia Oatman & Platner are natural enemies of Plutella xylostella (L.) in Southern Brazil. Laboratory studies to evaluate parasitoids performance under different conditions, such as temperature regimes, are necessary to assess their potential as biocontrol agents of P. xylostella. In most studies involving Trichogramma, parasitism rate is the main parameter used to evaluate parasitoid performance, ignoring that parasitoids can cause egg mortality by feeding on the host content and/or to multiple drilling without laying eggs. This study was conducted to investigate three main issues: how temperature affects T. pretiosum and T.atopovirilia development on eggs of P. xylostella, whether or not these species respond differently to temperature, and how important is the mortality they cause besides parasitism on P. xylostella. Temperature effects (from 10 to 30°C) on development, survival, parasitism rate, mortality, and total mortality caused by T. pretiosum and T. atopovirilia on eggs of P. xylostella were evaluated. Temperature affected the development time, female longevity, parasitism rate, mortality not directly related to parasitoid larval development, and total mortality caused on the host. No significant differences were recorded for the estimated thermal requirements for T. pretiosum and T. atopovirilia. However, the higher mortality caused by T. pretiosum indicates that this parasitoid is the most suitable to be used against P. xylostella. Also, the results suggest that the use of parasitism rate as the only parameter to evaluate the performance of T. pretiosum and T. atopovirilia may underestimate the potential of these parasitoids in regulating pest populations.

  15. Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.

    Science.gov (United States)

    Portes, Maria Teresa; Figueiredo-Ribeiro, Rita de Cássia L; de Carvalho, Maria Angela M

    2008-10-09

    In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions

  16. Confinement properties of JET plasmas with different temperature and density profiles

    International Nuclear Information System (INIS)

    Watkins, M.L.; Balet, B.; Bhatnagar, V.P.

    1989-01-01

    The confinement properties of plasmas with substantially different temperature and density profiles have been analysed. The effects of fast particles and energy pedestals on the overall confinement of plasma energy in limiter (L-mode) and X-point (L- and H-modes) discharges heated by NBI or ICRF or both are determined. The importance of the bootstrap current when such energy pedestals are formed is noted. Using sets of consistent experimental data, including ion temperature profile measurements, the local transport properties are compared in the L- and H-phases of a single null X-point medium density NBI heated discharge, the ''enhanced'' confinement phase of a limiter high density pellet-fuelled and ICRF heated discharge, the hot-ion phase of a double null X-point low density NBI heated discharge and the hot-ion and H-phases of a double null X-point low density high temperature NBI heated discharge. (author)

  17. Quench-in of different high T complexities of glassformers for leisurely study at lower temperatures

    DEFF Research Database (Denmark)

    Angell, C. A.; Yue, Yuanzheng; Wang, L. M.

    Quenching-in of different high T complexities of glassformers for leisurely study at lower temperatures We describe a series of experiments on glass-forming liquids that are motivated by a common idea. The idea is that of trapping in a high enthalpy, high entropy, and state of the system by quenc......Quenching-in of different high T complexities of glassformers for leisurely study at lower temperatures We describe a series of experiments on glass-forming liquids that are motivated by a common idea. The idea is that of trapping in a high enthalpy, high entropy, and state of the system...... by quenching to the glassy state at extreme rates, and then observing the way the system evolves at low temperatures during a controlled annealing procedure. In this manner, events that normally occur during change of temperature may be observed occurring during passage of time, at much lower temperatures....... At these low temperatures, the smearing effects of vibrationally excited modes may be greatly reduced. We study both relaxational properties and vibrational properties and find that the high fictive temperature states are characterized by short relaxation times (already known) and considerably more intense...

  18. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mjiqauchem@yahoo.com; Chaudhry, Mansoora Ahmed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-02-15

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10{sup -3} to 25 . 10{sup -3}) mol . kg{sup -1}. The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs.

  19. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  20. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    Science.gov (United States)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  1. The Effect of Different Water Temperatures on Retention Loss and Material Degradation of Locator Attachments.

    Science.gov (United States)

    Chiu, Lillian Pui Yuk; Vitale, Nicola Di; Petridis, Haralampos; McDonald, Ailbhe

    2017-08-01

    To examine the changes in Locator attachments after exposure to different water temperatures and cyclic loading. Four groups of pink Locator attachments (3.0 lb. light retention replacement patrix attachments; 10 per group) were soaked for the equivalent of 5 years of use in distilled water at the following temperatures: 20°C, 37°C, 60°C. One group was kept dry to test the effect of water. A universal testing machine was used to measure the retention force of each treated attachment during 5500 insertion and removal cycles, simulating approximately 5 years of use. The results were compared using Kruskal-Wallis one-way ANOVA by ranks. Surface changes of tested attachments were examined using scanning electron microscopy (SEM). The exposure to 60°C water significantly increased the percentage of retention loss in Locator attachments (p < 0.05) compared to the 20°C water group and significantly reduced the final retention force compared to the other groups (p < 0.05). SEM examinations revealed severe cracking and material degradation in Locator attachments after exposure to 60°C water and cyclic loading, which were not evident in other groups. Cracking was observed after exposure to 60˚C water before cyclic loading. Exposure to 60°C water, potentially similar to denture cleansing procedures, could cause cracking in Locator attachments. Cracking is associated with hydrolytic degradation of nylon at 60°C. The change in structure could result in a significant loss of retention. © 2016 by the American College of Prosthodontists.

  2. Study of flue-gas temperature difference in supercritical once-through boiler

    Science.gov (United States)

    Kang, Yanchang; Li, Bing; Song, Ang

    2018-02-01

    The 600 MW coal-fired once-through Boilers with opposed firing at a power plant are found to experience marked temperature variation and even overtemperature on the wall of the heating surface as a result of flue-gas temperature (FGT) variation in the boiler. In this study, operational adjustments were made to the pulverizing, combustion, and secondary air box systems in these boilers, in order to solve problems in internal combustion. The adjustments were found to reduce FGT difference and optimize the boiler’ combustion conditions. The results of this study can provide a reference for optimization of coal-fired boiler of the same type in similar conditions.

  3. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Zodape, Sangesh P.; Parwate, Dilip V.

    2012-01-01

    Highlights: ► Study of aqueous solutions of biologically important compounds has been reported. ► MH is used for treating type II diabetes, RH is in treatment of peptic ulcer and TH is used to treat severe pain. ► All the compounds act as structure makers by volumetric studies. ► MH and RH act as weak structure breakers and TH acts as a weak structure maker by viscometric studies. - Abstract: Density and viscosity measurements are reported for aqueous solutions of the drugs like Metformin hydrochloride (MH), Ranitidine hydrochloride (RH) and Tramadol hydrochloride (TH) at different temperatures T = (288.15, 298.15, and 308.15) K within the concentration range (0 to 0.15) mol · kg −1 . The density and viscosity data are used to obtain apparent molar volume of solute (φ V ) and relative viscosity (η r ) of aqueous solutions at different temperatures. The limiting apparent molar volume of solute (φ V 0 ), limiting apparent molar expansivity (φ E 0 ), thermal expansion coefficient (α ∗ ), hydration number (n h ), Jones–Dole equation viscosity A and B coefficients, experimental slope (S V ) at different temperatures, and temperature coefficient of Bi.e.(dB/dT) at T = 298.15 K were also obtained. The results obtained have been interpreted in terms of solute–solvent and solute–solute interactions and structure making/breaking ability of solute in the aqueous solution.

  4. Dielectric response of capacitor structures based on PZT annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchikov, Mikhail V., E-mail: Mikhailkamenshchikov@yandex.ru [Tver State University, 170002, Tver (Russian Federation); Solnyshkin, Alexander V. [Tver State University, 170002, Tver (Russian Federation); Pronin, Igor P. [Ioffe Institute, 194021, St. Petersburg (Russian Federation)

    2016-12-09

    Highlights: • Correlation of the microstructure of PZT films and dielectric response was found. • Difference of dielectric responses under low and high bias is caused by domains. • Internal fields is discussed on the basis of the space charges. • Dependences of PZT films characteristics on synthesis temperature are extremal. - Abstract: Dielectric response of thin-film capacitor structures of Pt/PZT/Pt deposited by the RF magnetron sputtering method and annealed at temperatures of 540–570 °C was investigated. It was found that dielectric properties of these structures depend on the synthesis temperature. Stability of a polarized state is considered on the basis of the analysis of hysteresis loops and capacitance–voltage (C–V) characteristics. The contribution of the domain mechanism in the dielectric response of the capacitor structure comprising a ferroelectric is discussed. Extreme dependences of electrophysical characteristics of PZT films on their synthesis temperature were observed. Correlation of dielectric properties with microstructure of these films is found out.

  5. Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data

    Science.gov (United States)

    Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.

    The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.

  6. Effects of xylazine on acid-base balance and arterial blood-gas tensions in goats under different environmental temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    E.G.M. Mogoa

    2000-07-01

    Full Text Available The effects of acute exposure to 3 different temperature and humidity conditions on arterial blood-gas and acid-base balance in goats were investigated after intravenous bolus administration of xylazine at a dose of 0.1 mg/kg. Significant (P < 0.05 changes in the variables occurred under all 3 environmental conditions. Decreases in pH, partial pressure of oxygen and oxyhaemoglobin saturation were observed, and the minimum values for oxygen tension and oxyhaemoglobin saturation were observed within 5 min of xylazine administration. The pH decreased to its minimum values between 5 and 15 min. Thereafter, the variables started to return towards baseline, but did not reach baseline values at the end of the 60 min observation period. Increases in the partial pressure of carbon dioxide, total carbon dioxide content, bicarbonate ion concentration, and the actual base excess were observed. The maximum increase in the carbon dioxide tension occurred within 5 min of xylazine administration. The increase in the actual base excess only became significant after 30 min in all 3 environments, and maximal increases were observed at 60 min. There were no significant differences between the variables in the 3 different environments. It was concluded that intravenous xylazine administration in goats resulted in significant changes in arterial blood-gas and acid-base balance that were associated with hypoxaemia and respiratory acidosis, followed by metabolic alkalosis that continued for the duration of the observation period. Acute exposure to different environmental temperature and humidity conditions after xylazine administration did not influence the changes in arterial blood-gas and acid-base balance.

  7. The Analysis of Three-Body Contact Temperature under the Different Third Particle Size, Density, and Value of Friction

    Directory of Open Access Journals (Sweden)

    Horng-Wen Wu

    2017-10-01

    Full Text Available Recently, many studies have investigated the friction, wear, and temperature characteristics of the interface between two relative movements. Such analyses often set the coefficient of friction as a fixed value and are analyzed in cases of two-body contact; however, the interface is often a three-body contact and the coefficient of friction varies depending on the operating conditions. This is a significant error in the analysis of contact characteristics, therefore, in this study, the actual interface and the change of the coefficient of friction were analyzed based on three-body micro-contact theory where the contact temperature was also analyzed and the difference between the generally assumed values were compared. The results showed that under three-body contact, the coefficient of total friction increased with an increase in particle size; and at a different particle size and area density of particles, the surface contact temperature increased with the plasticity index and load increases, and the particle contact temperature increased with the increasing particle size. The surface temperature rise was mainly affected by the ratio of the average temperature between surface 1 and surface 2 to the multiplication between the 100th root of the area density of particles and the square root of the equivalent surface roughness (Ts1s2_ave*/ηa0.01σ0.5 and the ratio of the 10th root of the mean particle diameter to the 100th root of the equivalent surface roughness (xa0.1/σ0.001. Particle temperature was mainly affected by the ratio of the 10th root of the mean particle diameter to the 100th root of the equivalent surface roughness (xa0.1/σ0.001 and the area density of particles ηa. Our study indicated that when the contact of surface with surface and the contact of the particles with the surface, the resulting heat balance was assigned to the particles and the surface in a three-body contact situation. Under this contact behavior, it could avoid

  8. Analyzing the LiF thin films deposited at different substrate temperatures using multifractal technique

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R.P. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); Dwivedi, S., E-mail: suneetdwivedi@gmail.com [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Mittal, A.K. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Kumar, Manvendra [Nanotechnology Application Centre, University of Allahabad, Allahabad, UP 211002 (India); Pandey, A.C. [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Nanotechnology Application Centre, University of Allahabad, Allahabad, UP 211002 (India)

    2014-07-01

    The Atomic Force Microscopy technique is used to characterize the surface morphology of LiF thin films deposited at substrate temperatures 77 K, 300 K and 500 K, respectively. It is found that the surface roughness of thin film increases with substrate temperature. The multifractal nature of the LiF thin film at each substrate temperature is investigated using the backward two-dimensional multifractal detrended moving average analysis. The strength of multifractility and the non-uniformity of the height probabilities of the thin films increase as the substrate temperature increases. Both the width of the multifractal spectrum and the difference of fractal dimensions of the thin films increase sharply as the temperature reaches 500 K, indicating that the multifractility of the thin films becomes more pronounced at the higher substrate temperatures with greater cluster size. - Highlights: • Analyzing LiF thin films using multifractal detrended moving average technique • Surface roughness of LiF thin film increases with substrate temperature. • LiF thin films at each substrate temperature exhibit multifractality. • Multifractility becomes more pronounced at the higher substrate temperatures.

  9. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  10. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P...

  11. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    Science.gov (United States)

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  12. Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines

    International Nuclear Information System (INIS)

    Mitov, Mihail I.; Harris, Jennifer W.; Alstott, Michael C.; Zaytseva, Yekaterina Y.; Evers, B. Mark; Butterfield, D. Allan

    2017-01-01

    Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, microplate based, label-free detection approach. This study investigates how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32 °C, 37 °C and 42 °C using assay medium conditions and equipment settings adjusted to produce equal oxygen and pH levels ubiquitously at the beginning of all experiments. The results suggest that temperature significantly changes multiple components of glycolytic and mitochondrial function of all cell lines tested. Under hypothermia conditions (32 °C), the extracellular acidification rates (ECAR) of CRC cells were significantly lower compared to the same basal ECAR levels measured at 37 °C. Mitochondrial stress test for SW480 cells at 37 °C vs 42 °C demonstrated increased proton leak while all other OCR components remained unchanged (similar results were detected also for the patient-derived xenograft cells Pt.93). Interestingly, the FCCP dose response at 37 °C vs 42 °C show significant shifts in profiles, suggesting that single dose FCCP experiments might not be sufficient to characterize the mitochondrial metabolic potential when comparing groups, conditions or treatments. These findings provide valuable insights for the metabolic and bioenergetic changes of CRC cells under hypo- and hyperthermia conditions that could potentially lead to development of better targeted and personalized strategies for patients undergoing combined thermotherapy with chemotherapy.

  13. Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mitov, Mihail I., E-mail: m.mitov@uky.edu [Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Harris, Jennifer W. [Department of Surgery, University of Kentucky, Lexington, KY 40506 (United States); Alstott, Michael C.; Zaytseva, Yekaterina Y. [Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Department of Surgery, University of Kentucky, Lexington, KY 40506 (United States); Butterfield, D. Allan [Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States)

    2017-05-15

    Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, microplate based, label-free detection approach. This study investigates how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32 °C, 37 °C and 42 °C using assay medium conditions and equipment settings adjusted to produce equal oxygen and pH levels ubiquitously at the beginning of all experiments. The results suggest that temperature significantly changes multiple components of glycolytic and mitochondrial function of all cell lines tested. Under hypothermia conditions (32 °C), the extracellular acidification rates (ECAR) of CRC cells were significantly lower compared to the same basal ECAR levels measured at 37 °C. Mitochondrial stress test for SW480 cells at 37 °C vs 42 °C demonstrated increased proton leak while all other OCR components remained unchanged (similar results were detected also for the patient-derived xenograft cells Pt.93). Interestingly, the FCCP dose response at 37 °C vs 42 °C show significant shifts in profiles, suggesting that single dose FCCP experiments might not be sufficient to characterize the mitochondrial metabolic potential when comparing groups, conditions or treatments. These findings provide valuable insights for the metabolic and bioenergetic changes of CRC cells under hypo- and hyperthermia conditions that could potentially lead to development of better targeted and personalized strategies for patients undergoing combined thermotherapy with chemotherapy.

  14. Development and health status of Centropomus undecimalisparasitized by Rhabdosynochus rhabdosynochus (Monogenea under different salinity and temperature conditions

    Directory of Open Access Journals (Sweden)

    Giovanni Lemos de Mello

    Full Text Available This study evaluated the correlation of hematological parameters with the mean abundance of the monogenean helminth Rhabdosynochus rhabdosynochus in Centropomus undecimalis reared at different temperatures and salinities. The experimental conditions were: 28 °C/0 ppt (parts per thousand; 28 °C/15 ppt; 28 °C/32 ppt; 25 °C/0 ppt; 25 °C/15 ppt; and 25 °C/32 ppt. The prevalence was 100.0% in fish at 28 °C/15 ppt, 28 °C/32 ppt and 25 °C/15 ppt, which was significantly different (p < 0.05 from those at 25 °C/32 ppt. The red blood cell (RBC count, hematocrit and total leukocyte (WBC count were significantly higher in fish at 28 °C/15 ppt and 28 °C/32 ppt. The mean abundance of R. rhabdosynochus, hematocrit and RBC showed positive correlations (P < 0.05 with temperature (ρ= 0.3908; ρ= 0.4771 and ρ = 0.2812. Mean abundance showed negative correlations with hemoglobin (ρ= -0.3567 and mean corpuscular hemoglobin concentration (MCHC (ρ = -0.2684. No correlation between abundance and salinity was detected among the experimental conditions (ρ = -0.0204. The low numbers of monogeneans recorded (min -1 and max -33 explain the few changes to fish health. This suggests that these experimental conditions may be recommended for development of rearing of C. undecimalis in Brazil, without any influence or economic losses from R. rhabdosynochus.

  15. Different extraction pretreatments significantly change the flavonoid contents of Scutellaria baicalensis

    Science.gov (United States)

    Yu, Chunhao; Qu, Fengyun; Mao, Yanyong; Li, Dong; Zhen, Zhong; Nass, Rachael; Calway, Tyler; Wang, Yunwei; Yuan, Chun-Su; Wang, Chong-Zhi

    2014-01-01

    Context Scutellaria baicalensis is one of the most commonly used medicinal herbs, especially in traditional Chinese medicine. However, compared to many pharmacological studies of this botanical, much less attention has been paid to the quality control of the herb’s pretreatment prior to extract preparation, an issue that may affect therapeutic outcomes. Objective The current study was designed to evaluate whether different pretreatment conditions change the contents of its four major flavonoids in the herb, i.e., two glycosides (baicalin and wogonoside) and two aglycons (baicalein and wogonin). Materials and methods An HPLC assay was used to quantify the contents of these four flavonoids. The composition changes of four flavonoids by different pretreatment conditions including solvent, treatment time, temperature, pH value, and herb/solvent ratio were evaluated. Results After selection of the first order time-curve kinetics, our data showed that at 50°C, 1:5 herb/water (in w/v) ratio and pH 6.67 yielded an optimal conversion rate from flavonoid glycosides to their aglycons. In this optimized condition, the contents of baicalin and wogonoside were decreased to 1/70 and 1/13, while baicalein and wogonin were increased 3.5 and 3.1 folds, respectively, compared to untreated herb. Discussion and conclusion The markedly variable conversion rates by different pretreatment conditions complicated the quality control of this herb, mainly due to the high amount of endogenous enzymes of S. baicalensis. Optimal pretreatment conditions obtained from this study could be used obtain the highest level of desired constituents to achieve better pharmacological effects. PMID:23738852

  16. Electrolysis test of different composite membranes at elevated temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    temperatures, phosphoric acid (H3PO4)[1] and zirconium phosphate (ZrP)[2] were introduced. These composite membranes were tested in an electrolysis setup. A typical electrolysis test was performed at 130°C with a galvanostatic load. Polarization curves were recorded under stationary conditions. Testing...... night at 150°C in a zirconium phosphate saturated 85wt% phosphoric acid solution. Different thicknesses of membranes were tested and as expected, the performance increased when the thickness of the membranes decreased. Furthermore composite membranes only treated with phosphoric acid or only treated...

  17. temperature overspecification

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2001-01-01

    Full Text Available Two different finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the (3,3 alternating direction implicit (ADI finite difference scheme and the (3,9 alternating direction implicit formula. These schemes are unconditionally stable. The basis of analysis of the finite difference equation considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett [17]. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. These schemes use less central processor times than the fully implicit schemes for two-dimensional diffusion with temperature overspecification. The alternating direction implicit schemes developed in this report use more CPU times than the fully explicit finite difference schemes, but their unconditional stability is significant. The results of numerical experiments are presented, and accuracy and the Central Processor (CPU times needed for each of the methods are discussed. We also give error estimates in the maximum norm for each of these methods.

  18. Study on temperature field airborne remote sensing survey along shore nuclear power station in different tide status

    International Nuclear Information System (INIS)

    Liang Chunli; Li Mingsong

    2010-01-01

    Nuclear Power Station needs to let large quantity of cooling water to the near sea area when it is running. Whether the cooling water has effect to surrounding environment and the running of Nuclear Power Station needs further research. Temperature Drainage Mathematic Model and Physical Analogue Model need to acquire the distribution characteristic of near Station sea surface temperature field in different seasons and different tide status. Airborne Remote Sending Technique has a advantage in gaining high resolution sea surface temperature in different tide status, and any other manual method with discrete point survey can not reach it. After a successful implementation of airborne remote sensing survey to gain the near-shore temperature drainage information in Qinshan Nuclear Power Station, it provides the reference methods and ideas for temperature drainage remote sensing survey of Nuclear Power Station. (authors)

  19. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle

    International Nuclear Information System (INIS)

    Yanagisawa, O.; Fukubayashi, T.

    2010-01-01

    Aim: To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Materials and methods: Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20 o C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Results: Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0 o C, -27.8% at 10 o C, and -22.6% at 20 o C; ADC2: -26% at 0 o C, -21.1% at 10 o C, and -14.6% at 20 o C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0 o C, -51.1% at 10 o C, and -26.8% at 20 o C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Conclusion: Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling.

  20. Comparison of the Spatiotemporal Variability of Temperature, Precipitation, and Maximum Daily Spring Flows in Two Watersheds in Quebec Characterized by Different Land Use

    Directory of Open Access Journals (Sweden)

    Ali A. Assani

    2016-01-01

    Full Text Available We compared the spatiotemporal variability of temperatures and precipitation with that of the magnitude and timing of maximum daily spring flows in the geographically adjacent L’Assomption River (agricultural and Matawin River (forested watersheds during the period from 1932 to 2013. With regard to spatial variability, fall, winter, and spring temperatures as well as total precipitation are higher in the agricultural watershed than in the forested one. The magnitude of maximum daily spring flows is also higher in the first watershed as compared with the second, owing to substantial runoff, given that the amount of snow that gives rise to these flows is not significantly different in the two watersheds. These flows occur early in the season in the agricultural watershed because of the relatively high temperatures. With regard to temporal variability, minimum temperatures increased over time in both watersheds. Maximum temperatures in the fall only increased in the agricultural watershed. The amount of spring rain increased over time in both watersheds, whereas total precipitation increased significantly in the agricultural watershed only. However, the amount of snow decreased in the forested watershed. The magnitude of maximum daily spring flows increased over time in the forested watershed.

  1. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    Science.gov (United States)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  2. Interactive effects of temperature and UVB radiation on methane emissions from different organs of pea plants grown in hydroponic system.

    Science.gov (United States)

    Abdulmajeed, Awatif M; Derby, Samantha R; Strickland, Samantha K; Qaderi, Mirwais M

    2017-01-01

    There is no information on variation of methane (CH 4 ) emissions from plant organs exposed to multiple environmental factors. We investigated the interactive effects of temperature and ultraviolet-B (UVB) radiation on CH 4 emissions from different organs of pea (Pisum sativum L. var. UT234 Lincoln). Plants were grown hydroponically under two temperatures (22/18°C and 28/24°C; 16h day/8h night) and two levels of UVB radiation [0 and 5kJm -2 d -1 ] in controlled-environment growth chambers for ten days, after two weeks of initial growth under ambient temperatures. Methane emission, dry mass, growth index, electrical conductivity (EC), pectin, total chlorophyll content, gas exchange and flavonoids were measured in the appropriate plant organs - leaf, stem and root. Higher temperatures increased CH 4 emissions, leaf mass ratio, and shoot: root mass ratio. Neither temperature nor UVB had significant effects on leaf, stem, root and total dry mass, EC, pectin, total chlorophyll, as well as specific leaf mass. Among plant organs, there were differences in CH 4 , EC, pectin and total chlorophyll. Methane and EC were highest for the stem and lowest for the leaf; leaf had highest, but stem had lowest, pectin content; total chlorophyll was highest in the leaf but lowest in the root. Higher temperatures decreased leaf flavonoids, net carbon dioxide assimilation, and water use efficiency. Overall, environmental stressors increased aerobic CH 4 emission rates, which varied with plant organs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Energy harvesting through gas dynamics in the free molecular flow regime between structured surfaces at different temperatures

    DEFF Research Database (Denmark)

    Baier, Tobias; Dölger, Julia; Hardt, Steffen

    2014-01-01

    For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured...... from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations...

  4. Solvated electrons at elevated temperatures in different alcohols: Temperature and molecular structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Lin, Mingzhang [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.j [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Fu, Haiying; Muroya, Yusa [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)

    2010-12-15

    The absorption spectra of solvated electrons in pentanol, hexanol and octanol are measured from 22 to 200, 22 to 175 and 50 to150 {sup o}C, respectively, at a fixed pressure of 15 MPa, using nanosecond pulse radiolysis technique. The results show that the peak positions of the absorption spectra have a red-shift (shift to longer wavelengths) as temperature increases, similar to water and other alcohols. Including the above mentioned data, a compilation of currently available experimental data on the energy of absorption maximum (E{sub max}) of solvated electrons changed with temperature in monohydric alcohols, diols and triol is presented. E{sub max} of solvated electron is larger in those alcohols that have more OH groups at all the temperatures. The molecular structure effect, including OH numbers, OH position and carbon chain length, is investigated. For the primary alcohols with same OH group number and position, the temperature coefficient increases with increase in chain length. For the alcohols with same chain length and OH numbers, temperature coefficient is larger for the symmetric alcohols than the asymmetric ones.

  5. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    International Nuclear Information System (INIS)

    Yang, Jun; Wang, Yuwei; Leconte, Jérémy; Forget, François; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S.

    2016-01-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m 2 ; differences in shortwave reach up to 60 W m 2 , especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m 2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  6. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing (China); Leconte, Jérémy; Forget, François [Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Paris (France); Wolf, Eric T. [Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, CO (United States); Goldblatt, Colin [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Feldl, Nicole [Division of Geological and Planetary Sciences, California Institute of Technology, CA (United States); Merlis, Timothy [Department of Atmospheric and Oceanic Sciences at McGill University, Montréal (Canada); Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S., E-mail: junyang@pku.edu.cn, E-mail: abbot@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL (United States)

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  7. Measuring significant inhomogeneity and anisotropy in indoor convective air turbulence in the presence of 2D temperature gradient

    International Nuclear Information System (INIS)

    Razi, E Mohammady; Rasouli, Saifollah

    2014-01-01

    Using a novel set up, experimental study of the statistical properties of a light beam propagating horizontally through indoor convective air turbulence in the presence of a 2D temperature gradient (TG) is presented. A laser beam enters a telescope from its back focal point by virtue of an optical fiber and is expanded and recollimated by it and then passes through the turbulent area. Then the beam enters another telescope’s aperture. A mask consisting of four similar widely separated small subapertures was installed in front of the second telescope’s aperture. The subapertures were equidistant from the optical axis of the telescope and located at the corners of a square. A flat plane heater is used to produce a vertical TG in the medium. Due to the limited width of the heater, a horizontal component for the TG appeared. Near the focal plane of the second telescope, four distinct images of the source are formed and recorded by a CCD camera. Due to the turbulence all the images (spots) in the successive frames fluctuate. Using the four spot displacements we have calculated the fluctuations of the angle of arrival (AA) over the subapertures. The statistical properties of the optical turbulence are investigated using variance analysis of the AA component fluctuations at horizontal and vertical directions over the subapertures for different temperatures of the heater at different heights of the beam path from the heater. Experimental results show that when the heater is turned off, the variances of horizontal and vertical components of the AA fluctuations are approximately equal to zero over all the subapertures. When it is turned on, the variance of the horizontal component of the AA fluctuations over all of the subapertures are larger than those from the vertical one. In addition, in this case, we find a significant dependence of the variance of the AA components on the height from the heater. (paper)

  8. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  9. Temperature and time variations during osteotomies performed with different piezosurgical devices: an in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Sacks, D; Palermo, A; Calvo-Guirado, J L; Perez-Albacete, C; Romanos, G E

    2016-09-01

    The aim of this experimental in vitro study was to evaluate the effects of the piezoelectric device in temperature and time variations in standardized osteotomies performed with similar tip inserts in bovine bone blocks. Two different piezosurgical devices were used the OE-F15(®) (Osada Inc., Los Angeles, California, USA) and the Surgybone(®) (Silfradent Inc., Sofia, Forli Cesena, Italy). Serrated inserts with similar geometry were coupled with each device (ST94 insert/test A and P0700 insert/test B). Osteotomies 10 mm long and 3 mm deep were performed in bone blocks resembling type II (dense) and type IV (soft) bone densities with and without irrigation. Thermal changes and time variations were recorded. The effects of bone density, irrigation, and device on temperature changes and time necessary to accomplish the osteotomies were analyzed. Thermal analysis showed significant higher temperatures during piezosurgery osteotomies in hard bone without irrigation (P  0.05). Time analysis showed that the mean time values necessary to perform osteotomies were shorter in soft bone than in dense bone (P piezosurgery osteotomies in dense bone without irrigation; the time to perform the osteotomy with piezosurgery is shorter in soft bone compared to hard bone; and the piezosurgical device have a minimal influence in the temperature and time variations when a similar tip design is used during piezosurgery osteotomies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Biochemical and Microbiological Changes during the Ivorian Sorghum Beer Deterioration at Different Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Constant K. Attchelouwa

    2017-08-01

    Full Text Available In order to extend shelf life of traditional sorghum beers, it is of importance to evaluate their spoilage characteristics. Therefore, the microbiological, biochemical, and sensory changes of the Ivorian sorghum beer tchapalo during storage at ambient temperature (28 to 30 °C for four days and at 4 °C for six days were assessed. The aerobic mesophilic bacteria and the yeast counts remained stable during the storage time. However, variations were observed in the lactic acid bacteria and acetic acid bacteria counts. The deteriorating tchapalo acidity did not show significant variations. In contrast, the total soluble solids decreased at ambient temperature and remained stable at 4 °C. Lactic acid was a major compound during storage, and acetic acid was found at a detectable level of 1.26 mg/mL after the third day at ambient temperature. The ethanol contents increased significantly at ambient temperature after two days and then decreased but showed a fair decrease at 4 °C. Evaluating the beer’s appearance, odor, and taste, a panel considered the beers to be spoiled after two days when stored at 28 to 30 °C and after three days when stored at 4 °C.

  11. Behavior of Arcobacter butzleri and Arcobacter cryaerophilus in ultrahigh-temperature, pasteurized, and raw cow's milk under different temperature conditions.

    Science.gov (United States)

    Giacometti, Federica; Serraino, Andrea; Pasquali, Frederique; De Cesare, Alessandra; Bonerba, Elisabetta; Rosmini, Roberto

    2014-01-01

    The growth and survival of Arcobacter butzleri and Arcobacter cryaerophilus in milk were investigated at different storage temperatures. Three strains of each Arcobacter species were inoculated into ultrahigh-temperature (UHT), pasteurized, and raw cow's milk and stored at 4, 10, and 20°C for 6 days. The survival of Arcobacter spp. during storage was evaluated by a culture method. Results clearly showed that A. butzleri and A. cryaerophilus remained viable in milk when stored at 4°C and 10°C for a period of 6 days. When UHT and pasteurized milk were stored at 20°C, the A. butzleri count increased, with a longer lag-phase in pasteurized milk, whereas the A. cryaerophilus count increased in the first 48 h and then rapidly decreased to below the detection limit on the sixth storage day. When raw milk was stored at 20°C, the A. butzleri and A. cryaerophilus counts decreased from the first day of storage and no viable bacteria were recovered on the last day of storage. Generally, A. butzleri displayed a significantly better growth and survival capacity than A. cryaerophilus in milk. The present study is the first to assess the survival and/or growth of A. butzleri and A. cryaerophilus in milk. The evidence suggests that in case of primary contamination of milk or secondary contamination due to postprocessing contamination, milk can act as a potential source of Arcobacter infection in humans and could have public health implications, especially for raw milk consumption.

  12. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M.Sh [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni -Suef University, Beni-Suef (Egypt); Al-ghamdi, Attieh A. [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Dahlan, Ammar sadik [Department of architecture, faculty of environmental design, King Abdulaziz University, Jeddah (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt)

    2016-01-15

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ{sup (3)} was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  13. Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations

    International Nuclear Information System (INIS)

    Overdieck, D.; Ziche, D.; Bottcher-Jungclaus, K.

    2007-01-01

    This study investigated relationships between wood anatomical properties, growth, and mass allocation of well-watered beech saplings growing in different temperature and carbon dioxide (CO 2 ) regimes. The study was conducted to test whether growth was enhanced by increasing temperature and CO 2 , as well as to determine whether the leaf area to stem cross-sectional area ratio, leaf mass ratio, and leaf area ratio declined with increasing temperature. The study also investigated the hypothesis that vessel member and size decreases with increasing temperature and CO 2 as well as the hypothesis that wood parenchyma content declines with increasing temperature and increases in response to elevated CO 2 . The beech saplings were grown in 7-1 pots for 2.5 years in field-phytotron chambers supplied with ambient or elevated CO 2 . Temperatures in the chambers ranged in increments of 2 degrees C. Soil was not fertilized and soil water and air humidity were kept constant. Data were evaluated by regression analysis. Results of the study showed that stem diameter was significantly larger at increased temperatures. In addition, stems were taller, and leaf area and stem mass were greater. The allocation pattern was influenced by temperature, as leaf mass ratio and leaf area ratio decreased with increasing temperature. Elevated CO 2 enhanced height growth by 8.8 per cent, and decreased coarse root mass and total mass by 10.3 per cent. The root/shoot ratio was decreased by 11.7 per cent. At final harvest, a synergistic interaction was observed between elevated CO 2 and temperature yielded trees that were 3.2 per cent taller at -4 degrees C, and 12.7 per cent taller at 4 degrees C than trees grown in ambient CO 2 . After 2.5 seasons, the cross-sectional area of the oldest stem part was approximately 32 per cent greater in the 4 degree C treatment than the -4 degree C treatment. In the final year, approximately 67 per cent more leaf area per unit tree ring area was produced in the

  14. Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

    Directory of Open Access Journals (Sweden)

    Yu-hui Shang

    2016-05-01

    Full Text Available The yeast (Saccharomyces cerevisiae strain 2137 involved in lychee wine production was used to investigate acetate metabolism at different temperatures during lychee wine fermentation. Fermentation tests were conducted using lychee juice supplemented with acetic acid. The ability of yeast cells to metabolize acetic acid was stronger at 20 °C than at 25 °C or 30 °C. The addition of acetic acid suppressed the yeast cell growth at the tested temperatures. The viability was higher and the reactive oxygen species concentration was lower at 20 °C than at 30 °C; this result indicated that acid stress adaptation protects S. cerevisiae from acetic-acid-mediated programmed cell death. The acetic acid enhanced the thermal death of yeast at high temperatures. The fermentation temperature modified the metabolism of the yeasts and the activity of related enzymes during deacidification, because less acetaldehyde, less glycerol, more ethanol, more succinic acid and more malic acid were produced, with higher level of acetyl–CoA synthetase and isocitrate lyase activity, at 20 °C.

  15. Comparison of post-tonsillectomy pain with two different types of bipolar forceps: low temperature quantum molecular resonance device versus high temperature conventional electrocautery.

    Science.gov (United States)

    Chang, Hyun; Hah, J Hun

    2012-06-01

    The low temperature device did not show any advantages over the conventional high temperature electrocautery in terms of the postoperative pain, operation time, and complications in pediatric tonsillectomy. To compare post-tonsillectomy pain following the use of two different instruments with the same bipolar forceps techniques: low temperature quantum molecular resonance (QMR) device versus conventional high temperature electrocautery. Pediatric patients admitted from July 2008 through January 2009 were included. The participants underwent bilateral tonsillectomy; one side by the QMR device and the other by the bipolar electrocautery. The sides for each instrument were counterbalanced by the order of presentation. The postoperative pain was measured using the faces pain rating scale. In all, 33 patients with a mean age of 7.6 years were enrolled. The postoperative pain, operation time, and complications in 33 sides dissected by the electrocautery and 33 sides by the QMR device were compared. The average operation times with each device were not statistically different. The mean ratings of the perception of pain related to each instrument were not different on operation day and postoperative day 1, day 4, and day 7 (p = 0.133, 0.057, 0.625, and 1.0, respectively). There was no postoperative complication in any of the patients.

  16. MTF measurement of IR optics in different temperature ranges

    Science.gov (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  17. Effect of different seed treatments on maize seed germination parameters under optimal and suboptimal temperature conditions

    Directory of Open Access Journals (Sweden)

    Vujošević Bojana

    2017-01-01

    Full Text Available The aim of this study was to determine the effect of different seed treatments on germination parameters of three maize genotypes under optimal and suboptimal temperature conditions. Seed was treated with recommended doses of three commercial pesticide formulations: metalaxyl-m 10 g/L + fludioxonil 25 g/L, metalaxyl 20 g/kg + prothioconazole 100 g/kg and thiacloprid 400 g/L. Testing was conducted at 25°C and 15°C. Results of the study indicate that there are differences in response of maize genotypes to applied seed treatments, as well as to a specific treatment at optimal and suboptimal temperatures. Some treatments, depending on the mixing partner and temperature conditions, can affect final germination. In other cases, germination rate can be accelerated or prolonged, but with no effect on final germination. In order to provide fast and uniform emergence under different temperature conditions, further examination of the response of maize genotypes to specific seed treatments would be beneficial.

  18. Low-temperature deuteron irradiation of differently reacted Nb3Sn superconductors

    International Nuclear Information System (INIS)

    Maier, P.; Seibt, E.

    1978-01-01

    Irradiation measurements with 50 MeV deuterons at 18 K and subsequent annealing measurements were performed on Nb 3 Sn single and multifilamentary superconductors at the Helium-Bath Irradiation Facility of the Karlsruhe Cyclotron. The critical current densities jsub(c) of Nb 3 Sn bronze-reacted wire samples at various reaction temperatures (Tsub(R)=650,700,750,800 and 850 0 C) with equal layer thickness were measured for integral deuteron fluxes up to PHIsub(t)=0.7x10 18 cm -2 . After a decrease in jsub(c) of 85% at maximum dose a relatively small annealing effect (4 to 10%) was observed at ambient temperatures. The maximum value of the normalized critical current density, jsub(c)/jsub(c0), at PHIsub(t)approximately=10 17 cm -2 increases with increasing reaction temperature. The difference in volume pinning forces before and after irradiation increases less than linear (approximately√PHIsub(t)) with the irradiation dose. An almost linear dependence between the inverse grain diameter (dsub(K) -1 )) and volume pinning force is obtained both before and after irradiation. (Auth.)

  19. Shelf-life of almond pastry cookies with different types of packaging and levels of temperature.

    Science.gov (United States)

    Romeo, F V; De Luca, S; Piscopo, A; Santisi, V; Poiana, M

    2010-06-01

    Almond pastries are typical cookies of the south of Italy. Introduction of new packaging for this kind of cookies requires shelf-life assessments. This study, related to different types of packaging under various storage conditions of time and temperature, identifies critical parameters, as color and texture, to track during storage studies and to extend the shelf-life. The cookies were packed in three different ways and stored at two different temperatures. The pastries were separately stored: (1) in polyvinylchloride film; (2) in aluminum foil (ALL); (3) with modified atmosphere (MAP) in plastic vessels sealed into a polyamide/ polyethylene film; and (4) in vessels without any polymeric film. The storage temperatures were 20 and 30 °C. Evolution of texture, water activity, dry matter and color was assessed. Texture was evaluated by a texture analyzer with a puncturing test. Indices for hardening were the area under the curve (N × mm) up to 10 mm of distance, and the maximum force (N) corresponding to the crust fracture. The best results were obtained with ALL packaging and MAP condition, and above all, in all the trials a temperature of 30 °C reduced the crust hardness.

  20. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature

    Directory of Open Access Journals (Sweden)

    Ninoska eCordero

    2016-03-01

    Full Text Available Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8 ºC of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8 °C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature.

  1. Foot model for tracking temperature of safety boot insoles: application to different insole materials in firefighter boots.

    Science.gov (United States)

    García-Hernández, César; Sánchez-Álvarez, Eduardo J; Huertas-Talón, José-Luis

    2016-01-01

    This research is based on the development of a human foot model to study the temperature conditions of a foot bottom surface under extreme external conditions. This foot model is made by combining different manufacturing techniques to enable the simulation of bones and tissues, allowing the placement of sensors on its surface to track the temperature values of different points inside a shoe. These sensors let researchers capture valuable data during a defined period of time, making it possible to compare the features of different safety boots, socks or soles, among others. In this case, it has been applied to compare different plantar insole materials, placed into safety boots on a high-temperature surface.

  2. The validity of tympanic and exhaled breath temperatures for core temperature measurement

    International Nuclear Information System (INIS)

    Flouris, Andreas D; Cheung, Stephen S

    2010-01-01

    We examined the efficacy of tympanic (T ty ) and exhaled breath (T X ) temperatures as indices of rectal temperature (T re ) by applying heat (condition A) and cold (condition B) in a dynamic A-B-A-B sequence. Fifteen healthy adults (8 men; 7 women; 24.9 ± 4.6 years) volunteered. Following a 15 min baseline period, participants entered a water tank maintained at 42 °C water temperature and passively rested until their T re increased by 0.5 °C above baseline. Thereafter, they entered a different water tank maintained at 12 °C water temperature until their T re decreased by 0.5 °C below baseline. This procedure was repeated twice (i.e. A-B-A-B). T ty demonstrated moderate response delays to the repetitive changes in thermal balance, whereas T X and T re responded relatively fast. Both T ty and T X correlated significantly with T re (P < 0.05). Linear regression models were used to predict T re based on T ty and T X . The predicted values from both models correlated significantly with T re (P < 0.05) and followed the changes in T re during the A-B-A-B thermal protocol. While some mean differences with T re were observed (P < 0.05), the 95% limits of agreement were acceptable for both models. It is concluded that the calculated models based on tympanic and exhaled breath temperature are valid indicators of core temperature. (note)

  3. Solubility of rosuvastatin calcium in different neat solvents at different temperatures

    International Nuclear Information System (INIS)

    Alshora, Doaa H.; Haq, Nazrul; Alanazi, Fars K.; Ibrahim, Mohamed A.; Shakeel, Faiyaz

    2016-01-01

    Highlights: • Solubility of rosuvastatin calcium (ROSCa) in seven neat solvents was determined. • The solubility of ROSCa was recorded highest in propylene glycol. • Experimental solubilities were correlated with Apelblat and ideal models. • Good correlation was existed between experimental and calculated solubilities. - Abstract: In the current research work, the solubility of rosuvastatin calcium (ROSCa) in seven different neat solvents such as water, ethanol, 1-butanol, 2-butanol, ethylene glycol (EG), isopropyl alcohol (IPA) and propane-1,2-diol (PG) was measured at five different temperatures i.e. T = (298.15 to 318.15) K and atmospheric pressure. Values of the experimental solubility of ROSCa were correlated with Apelblat and ideal models which showed good correlation and model fitting. The solubility (as mole fraction) of ROSCa was recorded highest in PG (1.89 · 10"−"2 at T = 318.15 K) followed by 1-butanol (8.20 · 10"−"4 at T = 318.15 K), ethanol (6.81 · 10"−"4 at T = 318.15 K), IPA (5.66 · 10"−"4 at T = 318.15 K), EG (5.03 · 10"−"4 at T = 318.15 K), 2-butanol (1.08 · 10"−"4 at T = 318.15 K) and water (1.40 · 10"−"5 at T = 318.15 K). The experimental results from this research work would be helpful in the development of conventional and advanced liquid dosage forms of ROSCa.

  4. Pricing of temperature index insurance

    Directory of Open Access Journals (Sweden)

    Che Mohd Imran Che Taib

    2012-01-01

    Full Text Available The aim of this paper is to study pricing of weather insurance contracts based on temperature indices. Three different pricing methods are analysed: the classical burn approach, index modelling and temperature modelling. We take the data from Malaysia as our empirical case. Our results show that there is a significant difference between the burn and index pricing approaches on one hand, and the temperature modelling method on the other. The latter approach is pricing the insurance contract using a seasonal autoregressive time series model for daily temperature variations, and thus provides a precise probabilistic model for the fine structure of temperature evolution. We complement our pricing analysis by an investigation of the profit/loss distribution from the contract, in the perspective of both the insured and the insurer.

  5. Optimization of temperature differences in a utilizer in relation to the lowest sum of capital and operating cost

    International Nuclear Information System (INIS)

    Kustrin, I.; Tuma, M.

    1992-01-01

    Our environment and nature are currently overburdened with the emission of noxious substances. Steam boilers fired with coal are therefore not very popular. Wherever possible, they are being replaced by devices which are less harmful for the environment because they use different fuel. This paper discusses replacing a steam boiler with a gas turbine and an utilizer. A mathematical model for performing the optimization of capital and operating costs is presented. The model optimizes the degree of preheating of the flue gases i.e. the temperature of the entering flue gases. The smallest temperature difference (pinch point) was not estimated by the pinch technology because the presented example is relatively simple and the pinch point temperature difference was chosen according to the values reported in various literature sources. The optimization is supplemented with an analysis of the thermal and exergetical efficiencies of the utilizer under different conditions (average temperature difference between the hot gases and water or steam, exit temperature of the hot gases), which condition the choice of the type of utilizer

  6. Radically Different Kinetics at Low Temperatures

    Science.gov (United States)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M

  7. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  8. Can qualitatively similar temperature-histories be obtained in different pilot HP units?

    NARCIS (Netherlands)

    Landfeld, A.; Matser, A.M.; Strohalm, J.; Oey, I.; Plancken, van der I.; Grauwet, T.; Hendrickx, M.; Moates, G.; Furfaro, M.E.; Waldron, K.W.; Betz, M.; Halama, R.; Houska, M.

    2011-01-01

    An experimental protocol to harmonize the pressure and temperature-histories of model samples treated in different individual high pressure pilot units was developed. This protocol was based on the endpoint strategy. Step zero of this protocol consisted of an exploratory measurement of the pressure,

  9. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus 54187 (Turkey)

    2016-04-21

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry test were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.

  10. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    Science.gov (United States)

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  11. Core body temperature in obesity123

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C

    2011-01-01

    Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) <30] and obese (BMI ≥30) adults swallowed wireless core temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Conclusions: Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952

  12. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    Science.gov (United States)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  13. Evaluating efficacy of filtration + UV-C radiation for ballast water treatment at different temperatures

    Science.gov (United States)

    Casas-Monroy, Oscar; Linley, Robert D.; Chan, Po-Shun; Kydd, Jocelyn; Vanden Byllaardt, Julie; Bailey, Sarah

    2018-03-01

    To prevent new ballast water-mediated introductions of aquatic nonindigenous species (NIS), many ships will soon use approved Ballast Water Management Systems (BWMS) to meet discharge standards for the maximum number of viable organisms in ballast water. Type approval testing of BWMS is typically conducted during warmer seasons when plankton concentrations are highest, despite the fact that ships operate globally year-round. Low temperatures encountered in polar and cool temperate climates, particularly during the winter season, may impact treatment efficacy through changes in plankton community composition, biological metabolic rates or chemical reaction rates. Filtration + UV irradiance is one of the most common ballast water treatment methods, but its effectiveness at low temperatures has not been assessed. The objective in this study was to examine the efficacy of filtration + UV-C irradiation treatment at low temperatures for removal or inactivation of phytoplankton and zooplankton populations during simulated ballast water treatment. Organisms from two size classes (≥ 10 to < 50 μm and ≥ 50 μm) were identified and enumerated using microscope and culture techniques. The response of organisms in both size categories to UV-C irradiation was evident across a range of temperatures (18 °C, 12 °C and 2 °C) as a significant decrease in concentration between controls and treated samples. Results indicate that filtration + UV-C irradiation will be effective at low temperatures, with few viable organisms ≥ 10 to < 50 μm recorded even 21 days following UV exposure (significantly lower than in the control treatment).

  14. Zero sound velocity in π, ρ mesons at different temperatures

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Tomio, L.; Araujo, C.F. de Jr.

    1994-07-01

    Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T=T ν ≠ 0 and that the numerical value of this T ν depends on the nature of the meson. The average thermal energy of mesons go linearly with T near T ν , with much smaller slope for the pion. The T ν - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy ion collision at mid-rapidity. It would be interesting to check the presence of different T ν - s in present day finite T lattice theory. (author). 22 refs, 1 fig., 2 tabs

  15. Properties of concrete containing different type of waste materials as aggregate replacement exposed to elevated temperature – A review

    Science.gov (United States)

    Ghadzali, N. S.; Ibrahim, M. H. W.; Sani, M. S. H. Mohd; Jamaludin, N.; Desa, M. S. M.; Misri, Z.

    2018-04-01

    Concrete is the chief material of construction and it is non-combustible in nature. However, the exposure to the high temperature such as fire can lead to change in the concrete properties. Due to the higher temperature, several changes in terms of mechanical properties were observed in concrete such as compressive strength, modulus of elasticity, tensile strength and durability of concrete will decrease significantly at high temperature. The exceptional fire-proof achievement of concrete is might be due to the constituent materials of concrete such as its aggregates. The extensive use of aggregate in concrete will leads to depletion of natural resources. Hence, the use of waste and other recycled and by-product material as aggregates replacements becomes a leading research. This review has been made on the utilization of waste materials in concrete and critically evaluates its effects on the concrete performances during the fire exposure. Therefore, the objective of this paper is to review the previous search work regarding the concrete containing waste material as aggregates replacement when exposed to elevated temperature and come up with different design recommendations to improve the fire resistance of structures.

  16. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available Hydrolytic degradations of polylactic acid/rice hulls (PLA/RH composites with various rice hulls contents due to water absorptions at 23, 51 and 69°C were investigated by studying the thermal properties, chemical composition, molecular weight, and morphology of the degraded products. The results have attested that the stability of PLA/RH composites in water depends slightly on rice hulls contents but it is significantly influenced by water temperature. Water absorption in 30 days at 23°C was between 0.87 and 9.25% depending on rice hull contents. However, at thermophilic temperatures, the water absorption and degradation of these products were increased significantly. Saturations were achieved in less than 25 and 9 days at 51°C and 69°C, respectively, while hydrolytic degradation was demonstrated by an increase in fragility and development of crystallinity. At 69°C, there were significant reductions of the decomposition and glass transition temperatures of the polymer by 13°C. These changes were associated with the reduction of the molecular weight of PLA from 153.1 kDa to ~10.7 kDa due to hydrolysis of its ester group.

  17. Genetic aftereffects of increased temperature in Larix

    Science.gov (United States)

    Michael S. Greenwood; Keith W. Hutchinson

    1996-01-01

    We tested the hypothesis that temperature during gametogenesis and embryogenesis can affect progeny genotype and phenotype. Identical crosses were made among cloned parents of Larix spp. inside and outside a greenhouse, where the temperature inside averaged 4?C above the outside temperature. Significant growth differences as a function of crossing...

  18. Sensitivity of regional climate to global temperature and forcing

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; O’Neill, Brian; Lamarque, Jean-François

    2015-01-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250–1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m −2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway. (letter)

  19. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures

    International Nuclear Information System (INIS)

    Igual Munoz, A.; Garcia Anton, J.; Lopez Nuevalos, S.; Guinon, J.L.; Perez Herranz, V.

    2004-01-01

    The corrosion behavior of three stainless steels EN 14311, EN 14429 (austenitic stainless steels) and EN 14462 (duplex stainless steel) was studied in a commercial LiBr solution (850 g/l LiBr solution containing chromate as inhibitor) at different temperatures (25, 50, 75 and 85 deg C) by electrochemical methods. Open circuit potentials shifted towards more active values as temperature increased, while corrosion potentials presented the opposite tendency. The most resistant alloys to general corrosion were EN 14429 and EN 14462 because they had the lowest corrosion current for all temperatures. In all the cases corrosion current increases with temperature. Pitting corrosion resistance is improved by the EN 14462, which presented the highest pitting potential, and the lowest passivation current for the whole range of temperatures studied. The duplex alloy also presents the worst repassivation behavior (in terms of the narrowest difference between corrosion potential and pitting potential); it does not repassivate from 50 deg C

  20. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 °C and around 40 °C at the substations. To avoid the proliferation of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest energy cost for DHW preparation. To achieve optimal design and operation for the ULTDH substation, the electricity peak loads of the in-line electric heaters were analysed according to different DHW-heating strategies. - Highlights: • Five different substations supplied with ultra-low-temperature district heating were measured. • The relative heat and electricity delivered for DHW preparation were modelled for different substations. • The levelized cost of the five substations in respect of DHW preparation was calculated. • The feasibility of applying instantaneous electric heater with normal power supply was tested.

  1. Comparison of different statistical modelling approaches for deriving spatial air temperature patterns in an urban environment

    Science.gov (United States)

    Straub, Annette; Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Geruschkat, Uta; Jacobeit, Jucundus; Kühlbach, Benjamin; Kusch, Thomas; Richter, Katja; Schneider, Alexandra; Umminger, Robin; Wolf, Kathrin

    2017-04-01

    Frequently spatial variations of air temperature of considerable magnitude occur within urban areas. They correspond to varying land use/land cover characteristics and vary with season, time of day and synoptic conditions. These temperature differences have an impact on human health and comfort directly by inducing thermal stress as well as indirectly by means of affecting air quality. Therefore, knowledge of the spatial patterns of air temperature in cities and the factors causing them is of great importance, e.g. for urban planners. A multitude of studies have shown statistical modelling to be a suitable tool for generating spatial air temperature patterns. This contribution presents a comparison of different statistical modelling approaches for deriving spatial air temperature patterns in the urban environment of Augsburg, Southern Germany. In Augsburg there exists a measurement network for air temperature and humidity currently comprising 48 stations in the city and its rural surroundings (corporately operated by the Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health and the Institute of Geography, University of Augsburg). Using different datasets for land surface characteristics (Open Street Map, Urban Atlas) area percentages of different types of land cover were calculated for quadratic buffer zones of different size (25, 50, 100, 250, 500 m) around the stations as well for source regions of advective air flow and used as predictors together with additional variables such as sky view factor, ground level and distance from the city centre. Multiple Linear Regression and Random Forest models for different situations taking into account season, time of day and weather condition were applied utilizing selected subsets of these predictors in order to model spatial distributions of mean hourly and daily air temperature deviations from a rural reference station. Furthermore, the different model setups were

  2. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs.

    Science.gov (United States)

    Thompson, K R; MacFarlane, P D

    2013-01-01

    This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT) while dogs in group W received warmed (W) irrigation fluid (36°C). A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1) pre-anaesthetic examination, (T2) arrival into theatre, (T3) end of surgery and (T4) arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1) and return to the recovery suite (T4) was significant in both groups, with a fall of 1.06±0.58°C (pdogs were hypothermic (temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses.

  3. Dietary probiotic supplementation improved gut amylase to trypsin ratio in European seabass reared at different temperatures and survival after handling stress

    Directory of Open Access Journals (Sweden)

    Luís Filipe Ferreira Pereira

    2014-07-01

    Full Text Available Antibiotics and chemical treatments are often used as disease control strategy. A prophylactic and alternative method to this chemical approach are the probiotics [1]. Probiotics are defined as "live microorganisms which when administered in adequate amounts confer a health benefit on the host" (FAO, 2001. The benefits of probiotic treatments are improvements in host nutritional retention [2], antagonistic properties to bacterial pathogen proliferation [3], modulation of immune responses [4], among others. Temperature plays a major role in dietary nutrient utilization and immune responses in fish, and have a modulatory effect on probiotic activity in intestine. The current study evaluated the use of a dietary probiotic supplementation in European seabass (Dicentrarchus labrax, one of the most important fish species in Southern Europe. Fish were fed on a multi-species probiotic (Bacillus sp., Pedicoccus sp., Enterococcus sp., Lactobacillus sp. , reared under 3 different temperatures (17, 20 and 23 ºC for 70 days. Fish were pair-fed, fixed to the voluntary feed intake of fish reared at 17 º C, in order to have similar probiotic intake among the temperature groups. Final body weight tripled initial weight (12.7 to 30.7g. At the end of the growth trial, all fish were subjected to a handling stress, in which stocking density increased by 6 fold (from 4 kg/m3 to 25 kg/m3, followed by a 15 min chase with a pole. Growth performance was not affected by the dietary treatment. Post-stress cumulative mortality were significantly higher in the 17ºC control group (figure 1A. Digestive enzymes activity were significantly affected by temperature and diet interaction. The activity ratio of amylase to trypsin (figure 1B increased with temperature and dietary probiotic supplementation, an indication that probiotic treatment at 23oC have a positive influence on the metabolic flexibility of carbohydrate-protein utilization. Non-specific immune response (ACH50

  4. Statistical significant changes in ground thermal conditions of alpine Austria during the last decade

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas

    2016-04-01

    Longer data series (e.g. >10 a) of ground temperatures in alpine regions are helpful to improve the understanding regarding the effects of present climate change on distribution and thermal characteristics of seasonal frost- and permafrost-affected areas. Beginning in 2004 - and more intensively since 2006 - a permafrost and seasonal frost monitoring network was established in Central and Eastern Austria by the University of Graz. This network consists of c.60 ground temperature (surface and near-surface) monitoring sites which are located at 1922-3002 m a.s.l., at latitude 46°55'-47°22'N and at longitude 12°44'-14°41'E. These data allow conclusions about general ground thermal conditions, potential permafrost occurrence, trend during the observation period, and regional pattern of changes. Calculations and analyses of several different temperature-related parameters were accomplished. At an annual scale a region-wide statistical significant warming during the observation period was revealed by e.g. an increase in mean annual temperature values (mean, maximum) or the significant lowering of the surface frost number (F+). At a seasonal scale no significant trend of any temperature-related parameter was in most cases revealed for spring (MAM) and autumn (SON). Winter (DJF) shows only a weak warming. In contrast, the summer (JJA) season reveals in general a significant warming as confirmed by several different temperature-related parameters such as e.g. mean seasonal temperature, number of thawing degree days, number of freezing degree days, or days without night frost. On a monthly basis August shows the statistically most robust and strongest warming of all months, although regional differences occur. Despite the fact that the general ground temperature warming during the last decade is confirmed by the field data in the study region, complications in trend analyses arise by temperature anomalies (e.g. warm winter 2006/07) or substantial variations in the winter

  5. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    Science.gov (United States)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  6. Responses of antennal campaniform sensilla to rapid temperature changes in ground beetles of the tribe platynini with different habitat preferences and daily activity rhythms.

    Science.gov (United States)

    Must, Anne; Merivee, Enno; Luik, Anne; Mänd, Marika; Heidemaa, Mikk

    2006-05-01

    Responses of temperature sensitive (cold) cells from the antenna of ground beetles (tribe Platynini) were compared in species with different ecological preferences and daily activity rhythms. Action potential rates were characterized at various temperatures (ranges 23-39 degrees C) and during rapid changes in it (Deltat=0.5-15 degrees C). The stationary firing frequencies were nearly twice as high in eurythermic open field ground beetles Agonum muelleri and Anchomenus dorsalis (firing rates ranging from 22 to 47imp/s) than in a stenothermic forest species Platynus assimilis. In the eurythermic species, the firing rate did not significantly depend on temperature (Anchomenus dorsalis range of 23-27 degrees C and Agonum muelleri range of 23-33 degrees C) but plots of firing rate versus temperature showed rapid declines when lethally high temperatures were approached. In contrast, a nearly linear decline of the firing rate/temperature curve was observed in Platynus assimilis. Responses to rapid temperature decreases were also considerably higher in eurythermic species. Both the peak frequency of the initial burst (maximum 420-650Hz) as well as the sustained discharge in the first 4s of the response were higher than in Platynus assimilis. Long silent periods, lasting up to several seconds, that occurred at the beginning of the response to rapid warming were significantly shorter in Agonum muelleri and Anchomenus dorsalis compared to Platynus assimilis. These findings suggest that the responses of thermoreceptors to temperature changes may be correlated with specific ecological preferences.

  7. Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures.

    Science.gov (United States)

    Hemmings, Sarah N J; Hartel, Peter G

    2006-01-01

    When poultry litter is landspread, steroidal hormones present in the litter may reach surface waters, where they may have undesirable biological effects. In a laboratory study, we determined the mineralization of [4-14C]-labeled 17beta-estradiol, estrone, and testosterone in breeder litter at three different water potentials (-56, -24, and -12 MPa) and temperatures (25, 35, and 45 degrees C), and in broiler litter at two different water potentials (-24 and -12 MPa) and temperatures (25 and 35 degrees C). Mineralization was similar in both litters and generally increased with increasing water content and decreasing temperature. After 23 wk at -24 MPa, an average of 27, 11, and litter was mineralized to 14CO2 at 25, 35, and 45 degrees C, respectively. In contrast, mineralization of the radiolabeled estradiol and estrone was mineralized. The minimal mineralization suggests that the litters may still be potential sources of hormones to surface and subsurface waters.

  8. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Michaela M., E-mail: michaela.hell@uk-erlangen.de [Department of Cardiology, University of Erlangen (Germany); Dey, Damini [Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Taper Building, Room A238, 8700 Beverly Boulevard, Los Angeles, CA 90048 (United States); Marwan, Mohamed; Achenbach, Stephan; Schmid, Jasmin; Schuhbaeck, Annika [Department of Cardiology, University of Erlangen (Germany)

    2015-08-15

    Highlights: • Overestimation of coronary lesions by coronary computed tomography angiography and subsequent unnecessary invasive coronary angiography and revascularization is a concern. • Differences in plaque characteristics and contrast density difference between hemodynamically significant and non-significant stenoses, as defined by invasive fractional flow reserve, were assessed. • At a threshold of ≥24%, contrast density difference predicted hemodynamically significant lesions with a specificity of 75%, sensitivity of 33%, PPV of 35% and NPV of 73%. • The determination of contrast density difference required less time than transluminal attenuation gradient measurement. - Abstract: Objectives: Coronary computed tomography angiography (CTA) allows the detection of obstructive coronary artery disease. However, its ability to predict the hemodynamic significance of stenoses is limited. We assessed differences in plaque characteristics and contrast density difference between hemodynamically significant and non-significant stenoses, as defined by invasive fractional flow reserve (FFR). Methods: Lesion characteristics of 59 consecutive patients (72 lesions) in whom invasive FFR was performed in at least one coronary artery with moderate to high-grade stenoses in coronary CTA were evaluated by two experienced readers. Coronary CTA data sets were acquired on a second-generation dual-source CT scanner using retrospectively ECG-gated spiral acquisition or prospectively ECG-triggered axial acquisition mode. Plaque volume and composition (non-calcified, calcified), remodeling index as well as contrast density difference (defined as the percentage decline in luminal CT attenuation/cross-sectional area over the lesion) were assessed using a semi-automatic software tool (Autoplaq). Additionally, the transluminal attenuation gradient (defined as the linear regression coefficient between intraluminal CT attenuation and length from the ostium) was determined

  9. ESTABLISHING EMPIRICAL RELATION TO PREDICT TEMPERATURE DIFFERENCE OF VORTEX TUBE USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    PRABAKARAN J.

    2012-12-01

    Full Text Available Vortex tube is a device that produces cold and hot air simultaneously from the source of compressed air. In this work an attempt has been made to investigate the effect of three controllable input variables namely diameter of the orifices, diameter of the nozzles and inlet pressure over the temperature difference in the cold side as output using Response Surface Methodology (RSM. Experiments are conducted using central composite design with three factors at three levels. The influence of vital parameters and interaction among these are investigated using analysis of variance (ANOVA. The proposed mathematical model in this study has proven to fit and in line with experimental values with a 95% confidence interval. It is found that the inlet pressure and diameter of nozzle are significant factors that affect the performance of vortex tube.

  10. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation.

    Science.gov (United States)

    De Filippis, Francesca; Troise, Antonio Dario; Vitaglione, Paola; Ercolini, Danilo

    2018-08-01

    Kombucha is a traditional beverage produced by tea fermentation, carried out by a symbiotic consortium of bacteria and yeasts. Acetic Acid Bacteria (AAB) usually dominate the bacterial community of Kombucha, driving the fermentative process. The consumption of this beverage was often associated to beneficial effects for the health, due to its antioxidant and detoxifying properties. We characterized bacterial populations of Kombucha tea fermented at 20 or 30 °C by using culture-dependent and -independent methods and monitored the concentration of gluconic and glucuronic acids, as well as of total polyphenols. We found significant differences in the microbiota at the two temperatures. Moreover, different species of Gluconacetobacter were selected, leading to a differential abundance of gluconic and glucuronic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae seeds

    Directory of Open Access Journals (Sweden)

    Noel Ndihokubwayo

    2016-08-01

    Full Text Available Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae, a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north–eastern and south–western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C, seeds from the majority of the populations showed >90% germination percentage (GP and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C and seasons (in summer or autumn were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6% was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C, and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

  12. Effects of origin, seasons and storage under different temperatures on germination of Senecio vulgaris (Asteraceae) seeds.

    Science.gov (United States)

    Ndihokubwayo, Noel; Nguyen, Viet-Thang; Cheng, Dandan

    2016-01-01

    Invasive plants colonize new environments, become pests and cause biodiversity loss, economic loss and health damage. Senecio vulgaris L. (Common groundsel, Asteraceae), a widely distributing cosmopolitan weed in the temperate area, is reported with large populations in the north-eastern and south-western part, but not in southern, central, or north-western parts of China. We studied the germination behavior of S. vulgaris to explain the distribution and the biological invasion of this species in China. We used seeds originating from six native and six invasive populations to conduct germination experiments in a climate chamber and under outdoor condition. When incubated in a climate chamber (15 °C), seeds from the majority of the populations showed >90% germination percentage (GP) and the GP was equal for seeds with a native and invasive origin. The mean germination time (MGT) was significantly different among the populations. Under outdoor conditions, significant effects of origin, storage conditions (stored at 4 °C or ambient room temperature, ca. 27 °C) and seasons (in summer or autumn) were observed on the GP while the MGT was only affected by the season. In autumn, the GP (38.6%) was higher and the MGT was slightly longer than that in summer. In autumn, seeds stored at 4 °C showed higher GP than those stored at ambient room temperature (ca.27 °C), and seeds from invasive populations revealed higher GP than those from native populations. The results implied that the high temperature in summer has a negative impact on the germination and might cause viability loss or secondary dormancy to S. vulgaris seeds. Our study offers a clue to exploring what factor limits the distribution of S. vulgaris in China by explaining why, in the cities in South-East China and central China such as Wuhan, S. vulgaris cannot establish natural and viable populations.

  13. Effect of preservatives and different methods of dehydration on the physiochemical properties of cows meat stored at room temperature

    International Nuclear Information System (INIS)

    Talib, M. A.; Bouba, A. I.

    2010-01-01

    Meat strips were dipped in three different concentrations (2, 4 and 8%) of sodium chloride (NaCl) each containing 120 ppm sodium nitrite combined with 300 ppm ascorbic acid for 30 minutes at ambient temperature. Pretreated meat samples were then divided into two equal batches and subjected to solar or oven drying. Untreated meat samples were used as control. Both meat samples were kept in plastic containers for two months at room temperature. Samples of meat were taken just after drying and during storage period of two months. Then physiochemical (moisture content, total lipid, total protein and pH) analyses were carried out. Results demonstrated that physicochemical analyses of meat samples treated with salt and preservatives decreased gradually. The decrease was proportional to the increase in NaCl concentrations. During storage period of two months total protein and lipid showed a decrease, meanwhile moisture content and pH slightly increased. No significant difference was observed between meat samples dehydrated using oven and solar drying. Therefore solar drying should be considered the best due to its energy cost. (author)

  14. Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes

    Directory of Open Access Journals (Sweden)

    Windisch Heidrun Sigrid

    2012-10-01

    Full Text Available Abstract Background Studies of temperature-induced adaptation on the basis of genomic sequence data were mainly done in extremophiles. Although the general hypothesis of an increased molecular flexibility in the cold is widely accepted, the results of thermal adaptation are still difficult to detect at proteomic down to the genomic sequence level. Approaches towards a more detailed picture emerge with the advent of new sequencing technologies. Only small changes in primary protein structure have been shown to modify kinetic and thermal properties of enzymes, but likewise for interspecies comparisons a high genetic identity is still essential to specify common principles. The present study uses comprehensive transcriptomic sequence information to uncover general patterns of thermal adaptation on the RNA as well as protein primary structure. Results By comparing orthologous sequences of two closely related zoarcid fish inhabiting different latitudinal zones (Antarctica: Pachycara brachycephalum, temperate zone: Zoarces viviparus we were able to detect significant differences in the codon usage. In the cold-adapted species a lower GC content in the wobble position prevailed for preserved amino acids. We were able to estimate 40-60% coverage of the functions represented within the two compared zoarcid cDNA-libraries on the basis of a reference genome of the phylogenetically closely related fish Gasterosteus aculeatus. A distinct pattern of amino acid substitutions could be identified for the non-synonymous codon exchanges, with a remarkable surplus of serine and reduction of glutamic acid and asparagine for the Antarctic species. Conclusion Based on the differences between orthologous sequences from confamiliar species, distinguished mainly by the temperature regimes of their habitats, we hypothesize that temperature leaves a signature on the composition of biological macromolecules (RNA, proteins with implications for the transcription and

  15. Seed viability of Dimorphandra gardneriana subject to water stress in different temperatures

    Directory of Open Access Journals (Sweden)

    Marina Matias Ursulino

    Full Text Available ABSTRACT: The forest species Dimorphandra gardneriana Tul. is widely used for various pharmacological products, yet few basic studies have been undertaken to understand their ecological and physiological attributes under stress conditions. The goal of this research was to evaluate the seed germination and vigor when subjected to different osmotic potentials and temperatures. Water restriction was simulated with polyethylene glycol 6000 solution (PEG 6000 with osmotic potentials of 0; -0,2; -0,4; -0,6; -0,8, and -1,0MPa at temperatures of 20, 25, 30, and 35°C. The effect of the treatment was determined by the germination and vigor (germination speed index, length and phytomass of dry shoot and roots of the seeds, in an entirely random design with four repetitions. From-0, 4MPa it occurs a drastic reduction in germination and vigor of seeds although these factors were less affected at temperature of 25°C up to -0, 2MPa.

  16. Molecular and Cellular Effects Induced in Mytilus galloprovincialis Treated with Oxytetracycline at Different Temperatures

    Science.gov (United States)

    Banni, Mohamed; Sforzini, Susanna; Franzellitti, Silvia; Oliveri, Caterina; Viarengo, Aldo; Fabbri, Elena

    2015-01-01

    The present study evaluatedthe interactive effects of temperature (16°C and 24°C) and a 4-day treatment with the antibiotic oxytetracycline (OTC) at 1 and 100μg/L on cellular and molecular parameters in the mussel Mytilus galloprovincialis. Lysosomal membrane stability (LMS), a sensitive biomarker of impaired health status in this organism, was assessed in the digestive glands. In addition, oxidative stress markers and the expression of mRNAs encoding proteins involved in antioxidant defense (catalase (cat) and glutathione-S-transferase (gst)) and the heat shock response (hsp90, hsp70, and hsp27) were evaluated in the gills, the target tissue of soluble chemicals. Finally, cAMP levels, which represent an important cell signaling pathway related to oxidative stress and the response to temperature challenges, were also determined in the gills. Exposure to heat stress as well as to OTC rendered a decrease in LMS and an increase in malonedialdehyde accumulation (MDA). CAT activity was not significantly modified, whereas GST activity decreased at 24°C. Cat and gst expression levels were reduced in animals kept at 24°C compared to 16°C in the presence or absence of OTC. At 16°C, treatment with OTC caused a significant increase in cat and gst transcript levels. Hsp27 mRNA was significantly up-regulated at all conditions compared to controls at 16°C. cAMP levels were increased at 24°C independent of the presence of OTC. PCA analysis showed that 37.21% and 25.89% of the total variance was explained by temperature and OTC treatment, respectively. Interestingly, a clear interaction was observed in animals exposed to both stressors increasing LMS and MDA accumulation and reducing hsp27 gene expression regulation. These interactions may suggest a risk for the organisms due to temperature increases in contaminated seawaters. PMID:26067465

  17. Wavelength properties of DCG holograms under the conditions of different temperature and humidity

    Science.gov (United States)

    Liu, Yujie; Li, Wenqiang; Ding, Quanxin; Yan, Zhanjun

    2014-12-01

    Holograms recorded in dichromated gelatin (DCG) are usually sealed with a glass plate cemented with an epoxy glue to protect the holograms from moisture in the environment. An investigation of the wavelength properties of sealed DCG holograms had been carried out paying attention to holograms which were exposed to different temperature and humidity environment in this work. The investigation had revealed that (a) exposing the sealed DCG holograms to high relative humidity (RH=98%) environment or immersing them in room-temperature water for 20 hours can not affect the holograms; (b) the sealed DCG holograms can be used at temperature below 50°C without showing undue detrimental effects regarding their optical properties; (c) the peak wavelength of sealed DCG holograms can cause blue shift of several nanometers at 70°C~85°C and the velocity of blue shift is proportional to the environmental temperature; (d) the holograms can be destroyed at 100° or above. The experimental results above will be analyzed and discussed in this paper. A method to improve the stability of sealed DCG holograms is proposed: baking the sealed DCG holograms at proper temperature (e.g., 85°C in this study).

  18. The Ability of Different Imputation Methods to Preserve the Significant Genes and Pathways in Cancer

    Directory of Open Access Journals (Sweden)

    Rosa Aghdam

    2017-12-01

    Full Text Available Deciphering important genes and pathways from incomplete gene expression data could facilitate a better understanding of cancer. Different imputation methods can be applied to estimate the missing values. In our study, we evaluated various imputation methods for their performance in preserving significant genes and pathways. In the first step, 5% genes are considered in random for two types of ignorable and non-ignorable missingness mechanisms with various missing rates. Next, 10 well-known imputation methods were applied to the complete datasets. The significance analysis of microarrays (SAM method was applied to detect the significant genes in rectal and lung cancers to showcase the utility of imputation approaches in preserving significant genes. To determine the impact of different imputation methods on the identification of important genes, the chi-squared test was used to compare the proportions of overlaps between significant genes detected from original data and those detected from the imputed datasets. Additionally, the significant genes are tested for their enrichment in important pathways, using the ConsensusPathDB. Our results showed that almost all the significant genes and pathways of the original dataset can be detected in all imputed datasets, indicating that there is no significant difference in the performance of various imputation methods tested. The source code and selected datasets are available on http://profiles.bs.ipm.ir/softwares/imputation_methods/.

  19. A critical review of the use and performance of different function types for modeling temperature-dependent development of arthropod larvae.

    Science.gov (United States)

    Quinn, Brady K

    2017-01-01

    Temperature-dependent development influences production rates of arthropods, including crustaceans important to fisheries and agricultural pests. Numerous candidate equation types (development functions) exist to describe the effect of temperature on development time, yet most studies use only a single type of equation and there is no consensus as to which, if any model predicts development rates better than the others, nor what the consequences of selecting a potentially incorrect model equation are on predicted development times. In this study, a literature search was performed of studies fitting development functions to development data of arthropod larvae (99 species). The published data of most (79) of these species were then fit with 33 commonly-used development functions. Overall performance of each function type and consequences of using a function other than the best one to model data were assessed. Performance was also related to taxonomy and the range of temperatures examined. The majority (91.1%) of studies were found to not use the best function out of those tested. Using the incorrect model lead to significantly less accurate (e.g., mean difference±SE 85.9±27.4%, range: -1.7 to 1725.5%) predictions of development times than the best function. Overall, more complex functions performed poorly relative to simpler ones. However, performance of some complex functions improved when wide temperature ranges were tested, which tended to be confined to studies of insects or arachnids compared with those of crustaceans. Results indicate the biological significance of choosing the best-fitting model to describe temperature-dependent development time data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Ultrachopper tip: a wound temperature study.

    Science.gov (United States)

    Barlow, William R; Pettey, Jeff; Olson, Randall J

    2013-12-01

    To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  1. Early warning signals of abrupt temperature change in different regions of China over the past 50 years

    International Nuclear Information System (INIS)

    Tong Ji-Long; Wu Hao; Hou Wei; He Wen-Ping; Zhou Jie

    2014-01-01

    In this paper, the early warning signals of abrupt temperature change in different regions of China are investigated. Seven regions are divided on the basis of different climate temperature patterns, obtained through the rotated empirical orthogonal function, and the signal-to-noise temperature ratios for each region are then calculated. Based on the concept of critical slowing down, the temperature data that contain noise in the different regions of China are preprocessed to study the early warning signals of abrupt climate change. First, the Mann–Kendall method is used to identify the instant of abrupt climate change in the temperature data. Second, autocorrelation coefficients that can identify critical slowing down are calculated. The results show that the critical slowing down phenomenon appeared in temperature data about 5–10 years before abrupt climate change occurred, which indicates that the critical slowing down phenomenon is a possible early warning signal for abrupt climate change, and that noise has less influence on the detection results of the early warning signals. Accordingly, this demonstrates that the model is reliable in identifying the early warning signals of abrupt climate change based on detecting the critical slowing down phenomenon, which provides an experimental basis for the actual application of the method. (geophysics, astronomy, and astrophysics)

  2. Variable temperature ion trap studies of CH4+ + H2, HD and D2: negative temperature dependence and significant isotope effect

    International Nuclear Information System (INIS)

    Asvany, O.; Savic, I.; Schlemmer, S.; Gerlich, D.

    2004-01-01

    Reactions of methane cations, CH 4 + , with H 2 , HD and D 2 have been studied in a variable temperature 22-pole ion trap from room temperature down to 15 K. The formation of CH 5 + in collisions with H 2 is slow at 300 K, but it becomes faster by at least one order of magnitude when the temperature is lowered to 15 K. This behavior is tentatively explained with a longer complex lifetime at low temperatures. However, since tunneling is most probably not responsible for product formation, other dynamical or statistical restrictions must be responsible for the negative temperature dependence. In collisions of CH 4 + with HD, the CH 5 + product ion (68% at 15 K) prevails over CH 4 D + (32%). Reaction of CH 4 + with D 2 is found to be much slower than with H 2 or HD. The rate coefficient for converting CH 4 + into CH 3 D + by H-D exchange has been determined to be smaller than 10 -12 cm 3 /s, indicating that scrambling in the CH 6 + complex is very unlikely

  3. Effects of different rearing temperatures on muscle development and stress response in the early larval stages of Acipenser baerii

    Directory of Open Access Journals (Sweden)

    Lucia Aidos

    2017-11-01

    Full Text Available The present study aims at investigating muscle development and stress response in early stages of Siberian sturgeon when subjected to different rearing temperatures, by analysing growth and development of the muscle and by assessing the stress response of yolk-sac larvae. Siberian sturgeon larvae were reared at 16°C, 19°C and 22°C until the yolk-sac was completely absorbed. Sampling timepoints were: hatching, schooling and complete yolk-sac absorption stage. Histometrical, histochemical and immunohistochemical analyses were performed in order to characterize muscle growth (total muscle area, TMA; slow muscle area, SMA; fast muscle area, FMA, development (anti-proliferating cell nuclear antigen -PCNA or anticaspase as well as stress conditions by specific stress biomarkers (heat shock protein 70 or 90, HSP70 or HSP90. Larvae subjected to the highest water temperature showed a faster yolk-sac absorption. Histometry revealed that both TMA and FMA were larger in the schooling stage at 19°C while no differences were observed in the SMA at any of the tested rearing temperatures. PCNA quantification revealed a significantly higher number of proliferating cells in the yolk-sac absorption phase at 22°C than at 16°C. HSP90 immunopositivity seems to be particularly evident at 19°C. HPS70 immunopositivity was never observed in the developing lateral muscle.

  4. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures

    International Nuclear Information System (INIS)

    Ortuño, Nuria; Moltó, Julia; Conesa, Juan A.; Font, Rafael

    2014-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant worldwide. A detailed examination of the degradation products emitted during thermal decomposition of TBBPA is presented in the study. Runs were performed in a laboratory furnace at different temperatures (650 and 800 °C) and in different atmospheres (nitrogen and air). More than one hundred semivolatile compounds have been identified by GC/MS, with special interest in brominated ones. Presence of HBr and brominated light hydrocarbons increased with temperature and in the presence of oxygen. Maximum formation of PAHs is observed at pyrolytic condition at the higher temperature. High levels of 2,4-, 2,6- and 2,4,6- bromophenols were found. The levels of polybrominated dibenzo-p-dioxins and furans have been detected in the ppm range. The most abundant isomers are 2,4,6,8-TeBDF in pyrolysis and 1,2,3,7,8-PeBDF in combustion. These results should be considered in the assessment of thermal treatment of materials containing brominated flame retardants. - Highlights: • Decomposition of a brominated flame retardant is performed in a laboratory furnace. • Both pyrolysis and combustion at two different temperatures are studied. • Brominated organic compounds such as Br-dioxins and furans are analysed. • Main product of decomposition is HBr, accounting for ca. 50%. • Very high and dangerous levels of PBDD/Fs and precursors (bromophenols) are detected. - TBBPA mainly decomposes to give HBr and brominated hydrocarbons at high temperature, but high levels of bromophenols and polybrominated dibenzo-p-dioxins and furans are also produced

  5. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Science.gov (United States)

    Wang, Qing; Wang, Dan; Wen, Xuefa; Yu, Guirui; He, Nianpeng; Wang, Rongfu

    2015-01-01

    The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm), microaggregates (MI, 53-250 μm), and mineral fractions (MF, temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (Ptemperature in the following order: MA>MF>bulk soil >MI(P classes (P temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  6. Thermodynamics for proton binding of phytate in KNO3(aq) at different temperatures and ionic strengths

    International Nuclear Information System (INIS)

    Bretti, Clemente; De Stefano, Concetta; Lando, Gabriele; Sammartano, Silvio

    2013-01-01

    Highlights: • Protonation data were modeled in a wide range of temperatures and ionic strengths. • Protonation values decrease with increasing ionic strength and temperature. • In KNO 3 proton binding process is slightly exothermic, but less than in NaCl. • The major contribution for the proton association is entropic in nature. • Results are in agreement with previous findings for KCl and NaCl. - Abstract: Potentiometric measurements were performed in KNO 3(aq) , to determine the apparent protonation constants of phytate at different temperatures (278.15 ≤ T (K) ≤ 323.15) and ionic strengths (0.25 ≤ I (mol) dm −3 ≤ 3.0) values. In general, the protonation constants decrease with increasing both temperature and ionic strength. The data reported were critically compared with previous results obtained in KCl and the values are in a good agreement, considering the experimental errors and slight differences between the activity coefficients of the various species in KCl and KNO 3 . Experimental data were then modeled as a function of temperature and ionic strength using, with comparable results, two approaches: the extended Debye–Hückel equation and the specific ion interaction theory (SIT). The single specific ion interaction coefficients, ε, were also determined. The corresponding values are higher than those in Na + media. The protonation constants were also analyzed considering a simplified weak interaction model using an empirical equation that contains an additional term which takes into account the formation of weak complexes. The results obtained for the modeling of the protonation constants are in agreement with the literature findings. Thermodynamic protonation parameters were also obtained at different temperatures and ionic strengths. The proton association process is slightly exothermic and the enthalpic contribution is less negative than that in NaCl solution. As observed in other cases for phytate anion, the major contribution for

  7. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    Science.gov (United States)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  8. Daphnia magna fitness during low food supply under different water temperature and brownification scenarios

    Directory of Open Access Journals (Sweden)

    Andrea Gall

    2016-11-01

    Full Text Available Much of our current knowledge about non-limiting dietary carbon supply for herbivorous zooplankton is based on experimental evidence and typically conducted at ~1 mg C L-1 and ~20°C. Here we ask how low supply of dietary carbon affects somatic growth, reproduction, and survival of Daphnia magna and test effects of higher water temperature (+3 °C relative to ambient and brownification (3X higher than natural water color; both predicted effects of climate change during fall cooling. We predicted that even at very low carbon supply (~5µg C L-1, higher water temperature and brownification will allow D. magna to increase its fitness. Neonates (<24 h old were incubated with lake seston for 4 weeks (October-November 2013 in experimental bottles submerged in outdoor mesocosms to explore effects of warmer and darker water. Higher temperature and brownification did not significantly affect food quality, as assessed by its fatty acid composition. Daphnia exposed to both increased temperature and brownification had highest somatic growth and were the only that reproduced, and higher temperature caused the highest Daphnia survival success. These results suggest that even under low temperature and thus lower physiological activity, low food quantity is more important than its quality for D. magna fitness.

  9. Are Simulated and Observed Twentieth Century Tropical Pacific Sea Surface Temperature Trends Significant Relative to Internal Variability?

    Science.gov (United States)

    Coats, S.; Karnauskas, K. B.

    2017-10-01

    Historical trends in the tropical Pacific zonal sea surface temperature gradient (SST gradient) are analyzed herein using 41 climate models (83 simulations) and 5 observational data sets. A linear inverse model is trained on each simulation and observational data set to assess if trends in the SST gradient are significant relative to the stationary statistics of internal variability, as would suggest an important role for external forcings such as anthropogenic greenhouse gasses. None of the 83 simulations have a positive trend in the SST gradient, a strengthening of the climatological SST gradient with more warming in the western than eastern tropical Pacific, as large as the mean trend across the five observational data sets. If the observed trends are anthropogenically forced, this discrepancy suggests that state-of-the-art climate models are not capturing the observed response of the tropical Pacific to anthropogenic forcing, with serious implications for confidence in future climate projections. There are caveats to this interpretation, however, as some climate models have a significant strengthening of the SST gradient between 1900 and 2013 Common Era, though smaller in magnitude than the observational data sets, and the strengthening in three out of five observational data sets is insignificant. When combined with observational uncertainties and the possibility of centennial time scale internal variability not sampled by the linear inverse model, this suggests that confident validation of anthropogenic SST gradient trends in climate models will require further emergence of anthropogenic trends. Regardless, the differences in SST gradient trends between climate models and observational data sets are concerning and motivate the need for process-level validation of the atmosphere-ocean dynamics relevant to climate change in the tropical Pacific.

  10. Lateralized Difference in Tympanic Membrane Temperature: Emotion and Hemispheric Activity

    Directory of Open Access Journals (Sweden)

    Ruth E Propper

    2013-03-01

    Full Text Available We review literature examining relationships between tympanic membrane temperature (TMT, affective/motivational orientation, and hemispheric activity. Lateralized differences in TMT might enable real-time monitoring of hemispheric activity in real-world conditions, and could serve as a corroborating marker of mental illnesses associated with specific affective dysregulation. We support the proposal that TMT holds potential for broadly indexing lateralized brain physiology during tasks demanding the processing and representation of emotional and/or motivational states, and for predicting trait-related affective/motivational orientations. The precise nature of the relationship between TMT and brain physiology, however, remains elusive. Indeed the limited extant research has sampled different participant populations and employed largely different procedures and measures, making for seemingly discrepant findings and implications. We propose, however, that many of these discrepancies can be resolved by considering how emotional states map onto motivational systems, and further examining how validated methods for inducing lateralized brain activity might affect TMT.

  11. Microstructural characterisation of a P91 steel normalised and tempered at different temperatures

    International Nuclear Information System (INIS)

    Hurtado-Norena, C.; Danon, C.A.; Luppo, M.I.; Bruzzoni, P.

    2015-01-01

    9%Cr-1%Mo martensitic-ferritic steels are used in power plant components with operating temperatures of around 600 deg. C because of their good mechanical properties at high temperature as well as good oxidation resistance. These steels are generally used in the normalised and tempered condition. This treatment results in a structure of tempered lath martensite where the precipitates are distributed along the lath interfaces and within the martensite laths. The characterisation of these precipitates is of fundamental importance because of their relationship with the creep behaviour of these steels in service. In the present work, the different types of precipitates found in these steels have been studied on specimens in different metallurgical conditions. The techniques used in this investigation were X-ray diffraction with synchrotron light, scanning electron microscopy, energy dispersive microanalysis and transmission electron microscopy. (authors)

  12. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece

    Science.gov (United States)

    Panagoulia, Dionysia; Vlahogianni, Eleni I.

    2018-06-01

    A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to

  13. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    user

    significant difference in the mean temperature at different position or sections of the silos and as well between the two silos. ... environment since the constituents are present normally in ... fungi, thereby reducing the production of mycotoxins;.

  14. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    Science.gov (United States)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  15. Temperature affects radiation use efficiency in maize

    International Nuclear Information System (INIS)

    Andrade, F.H.; Uhart, S.A.; Cirilo, A.

    1993-01-01

    The objective of this work was to study, under field conditions, the effect of temperature on radiation use efficiency (RUE) of maize. Field evidence of the negative effect of low temperature on this variable is lacking. Experiments with different sowing dates and five years of experimentation with October plantings provided a range of average temperatures during the vegetative period from 15.8 to 20.9°C. Delaying the sowing time from September to November produced a highly significant increase in RUE. There was a positive association between RUE and mean temperature from emergence to flowering. Efficiencies varied from 2.27 to 3.17 g of dry matter per MJ of intercepted photosynthetically active radiation for October plantings of five different years. With these data, a positive and significant association between RUE and mean temperature during the November–December vegetative period was found. Across years and planting dates, RUE and mean temperature during the vegetative period were closely correlated (r = 0.87). The regression equation was RUE = −1.8 + 0.07 T. Based on this evidence, it was concluded that low temperatures reduce RUE in maize. (author)

  16. Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2017-05-01

    Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.

  17. Evolution of microstructural defects with strain effects in germanium nanocrystals synthesized at different annealing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghuan; Cai, Rongsheng; Zhang, Yujuan; Wang, Chao [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); College of Chemistry and Chemical Engineering, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); Wang, Yiqian, E-mail: yqwang@qdu.edu.cn [The Cultivation Base for State Key Laboratory, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); College of Physics Science, Qingdao University, No. 308, Ningxia Road, Qingdao 266071 (China); Ross, Guy G.; Barba, David [INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2014-07-01

    Ge nanocrystals (Ge-ncs) were produced by implantation of {sup 74}Ge{sup +} into a SiO{sub 2} film on (100) Si, followed by high-temperature annealing from 700 °C to 1100 °C. Transmission electron microscopy (TEM) studies show that the average size of Ge-ncs increases with the annealing temperature. High-resolution TEM (HRTEM) investigations reveal the presence of planar and linear defects in the formed Ge-ncs, whose relative concentrations are determined at each annealing temperature. The relative concentration of planar defects is almost independent of the annealing temperature up to 1000 °C. However, from 1000 °C to 1100 °C, its concentration decreases dramatically. For the linear defects, their concentration varies considerably with the annealing temperatures. In addition, by measuring the interplanar spacing of Ge-ncs from the HRTEM images, a strong correlation is found between the dislocation percentage and the stress field intensity. Our results provide fundamental insights regarding both the presence of microstructural defects and the origin of the residual stress field within Ge-ncs, which can shed light on the fabrication of Ge-ncs with quantified crystallinity and appropriate size for the advanced Ge-nc devices. - Highlights: • Growth of Ge nanocrystals at different annealing temperatures was investigated. • Strain field has great effects on the formation of dislocations. • Different mechanisms are proposed to explain growth regimes of Ge nanocrystals.

  18. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    Science.gov (United States)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % ( p ≤ 0.001). Two-way ANOVA revealed significant differences ( p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  19. The Ability of Different Imputation Methods to Preserve the Significant Genes and Pathways in Cancer.

    Science.gov (United States)

    Aghdam, Rosa; Baghfalaki, Taban; Khosravi, Pegah; Saberi Ansari, Elnaz

    2017-12-01

    Deciphering important genes and pathways from incomplete gene expression data could facilitate a better understanding of cancer. Different imputation methods can be applied to estimate the missing values. In our study, we evaluated various imputation methods for their performance in preserving significant genes and pathways. In the first step, 5% genes are considered in random for two types of ignorable and non-ignorable missingness mechanisms with various missing rates. Next, 10 well-known imputation methods were applied to the complete datasets. The significance analysis of microarrays (SAM) method was applied to detect the significant genes in rectal and lung cancers to showcase the utility of imputation approaches in preserving significant genes. To determine the impact of different imputation methods on the identification of important genes, the chi-squared test was used to compare the proportions of overlaps between significant genes detected from original data and those detected from the imputed datasets. Additionally, the significant genes are tested for their enrichment in important pathways, using the ConsensusPathDB. Our results showed that almost all the significant genes and pathways of the original dataset can be detected in all imputed datasets, indicating that there is no significant difference in the performance of various imputation methods tested. The source code and selected datasets are available on http://profiles.bs.ipm.ir/softwares/imputation_methods/. Copyright © 2017. Production and hosting by Elsevier B.V.

  20. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic microporous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP (Quantachrome Instruments, Boynton Beach, Florida, USA). As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micropores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micropores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT), and graphitized carbon black (Supelco). The Qst values decrease with increasing pore sizes. The

  1. Clinical significance of changes of serum osteocalcin (BGP) levels in subjects of different age-groups

    International Nuclear Information System (INIS)

    Jiang Lihua; Zhang Jin; Han Cuihua; Ouyang Qiaohong

    2006-01-01

    Objective: To investigate the changes of serum BGP levels in different age-groups. Methods: Serum BGP levels were determined with RIA in 306 subjects of different age-groups. Results: The serum BGP levels were highest in subjects of the pre-adolescent group (age5-15, n=60, vs other groups, all P 50, n=80, P<0.001). Levels in the middle age group were the lowest and were significantly lower than those in the old age group (P<0.001). No sex related differences were observed in the pre-adolescent and middle age groups, but in the youth group, serum BGP levels were significantly higher in the males than those in the females (P<0.05). However, in the old age group, the reverse was true i.e. values being significantly higher in the females (vs males, P<0.01). Conclusion: Serum BGP levels varied greatly among the different age groups. (authors)

  2. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, Karimat [XRD Lab, Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt); Mohamed, Mohamed Bakr, E-mail: mbm1977@yahoo.com [XRD Lab, Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt); Hamdy, Sh.; Ata-Allah, S.S. [Reactor Physics Department, NRC, Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    2017-02-01

    Nano-crystalline NiFe{sub 2}O{sub 4} was synthesized by citrate and sol–gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution. - Highlights: • Annealed nano NiFe{sub 2}O{sub 4} was prepared by different methods. • The crystallite sizes are critical. • Mössbauer spectra show superparamagnetic doublet. • Cations distributions by MÓ§ssbauer and Bertaut method are constituents. • Cations distribution are significantly affects the magnetic properties.

  3. Inactivation kinetics of spores of Bacillus cereus strains treated by a peracetic acid-based disinfectant at different concentrations and temperatures.

    Science.gov (United States)

    Sudhaus, Nadine; Pina-Pérez, Maria Consuelo; Martínez, Antonio; Klein, Günter

    2012-05-01

    The purpose of this study was to assess the effect of a commercial peracetic acid-based disinfectant against spores of Bacillus cereus, to identify the most influential factor for the final number of microorganisms after different disinfection procedures, and to evaluate the nature of the inactivation kinetics. The spores of four different strains of B. cereus (DSM 318, 4312, 4313, and 4384) were treated with five different disinfectant concentrations (0.25%, 0.5%, 1.0%, 1.5%, and 2.0% [w/v]) at three different temperatures (10°C, 15°C, and 20°C) with or without protein load. A higher temperature and PES 15/23 concentration resulted in a higher inactivation. Inactivation of B. cereus strain 4312 was around 2 log₁₀ cycles at 10°C and around 7 log₁₀ at 20°C (conc=1% [w/v] PAA; t=60 min; without protein). The protein load at higher concentrations did not significantly reduce the efficacy of the disinfectant (p>0.05). This article indicates the applicability of the Weibull model to fit the B. cereus disinfectant survival curves. A Monte Carlo simulation was used to carry out a sensitivity analysis, which revealed the most influential factors affecting the final number of microorganisms after the disinfection process.

  4. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  5. Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas

    International Nuclear Information System (INIS)

    Jing, Li; Gang, Pei; Jie, Ji

    2010-01-01

    The presented low temperature solar thermal electric generation system mainly consists of compound parabolic concentrators (CPC) and the Organic Rankine Cycle (ORC) working with HCFC-123. A novel design is proposed to reduce heat transfer irreversibility between conduction oil and HCFC-123 in the heat exchangers while maintaining the stability of electricity output. Mathematical formulations are developed to study the heat transfer and energy conversion processes and the numerical simulation is carried out based on distributed parameters. Annual performances of the proposed system in different areas of Canberra, Singapore, Bombay, Lhasa, Sacramento and Berlin are simulated. The influences of the collector tilt angle adjustment, the connection between the heat exchangers and the CPC collectors, and the ORC evaporation temperature on the system performance are investigated. The results indicate that the three factors have a major impact on the annual electricity output and should be the key points of optimization. And the optimized system shows that: (1) The annual received direct irradiance can be significantly increased by two or three times optimal adjustments even when the CPC concentration ratio is smaller than 3.0. (2) Compared with the traditional single-stage collectors, two-stage collectors connected with the heat exchangers by two thermal oil cycles can improve the collector efficiency by 8.1-20.9% in the simultaneous processes of heat collection and power generation. (3) On the use of the market available collectors the optimal ORC evaporation temperatures in most of the simulated areas are around 120 C. (author)

  6. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures

    International Nuclear Information System (INIS)

    Jia Wangcun; Aguilar, Guillermo; Wang Guoxiang; Nelson, J Stuart

    2004-01-01

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic therapy. However, the dominant mechanisms of heat transfer during the transient cooling process are incompletely understood. The objective of this study is to elucidate the physics of CSC by measuring the effect of initial substrate temperature (T 0 ) on cooling dynamics. Cryogen was delivered by a straight-tube nozzle onto a skin phantom. A fast-response thermocouple was used to record the phantom temperature changes before, during and after the cryogen spray. Surface heat fluxes (q'') and heat-transfer coefficients (h) were computed using an inverse heat conduction algorithm. The maximum surface heat flux (q'' max ) was observed to increase with T 0 . The surface temperature corresponding to q'' max also increased with T 0 but the latter has no significant effect on h. It is concluded that heat transfer between the cryogen spray and skin phantom remains in the nucleate boiling region even if T 0 is 80 0 C

  7. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves.

    Science.gov (United States)

    Luo, Hai-Bo; Ma, Ling; Xi, Hui-Feng; Duan, Wei; Li, Shao-Hua; Loescher, Wayne; Wang, Jun-Fang; Wang, Li-Jun

    2011-01-01

    The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.

  8. Research for the influence on PRHR HX performance with different inlet temperature and flow rate

    International Nuclear Information System (INIS)

    Jia Bin; Jing Jianping; An Jieru; Bi Jinsheng; Li Yuanshan; Zhuang Shaoxin

    2014-01-01

    To study the residual heat removal capacity of PRHR HX, numerical simulation is demonstrated using FLUENT. Meanwhile to research the trends of PRHR HX residual heat removal capacity, different operating modes have been simulated with parameters deviated from design value. Finally it's found that when the coolant inlet temperature is higher than design valve the residual heat removal capacity is better and the higher the temperature is the lower the coolant outlet temperature can be obtained. And meanwhile the faster the coolant flows the better the residual heat in the core can be removed. (authors)

  9. Impact of cold temperatures on the shear strength of Norway spruce joints glued with different adhesives

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2015-01-01

    As wood construction increasingly uses engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives used. Bondline strength is a crucial issue for engineered wood applications, especially in cold climates. In this study, Norway spruce (Picea abies) joints (150 mm...... adhesive was tested at six temperatures: 20, −20, −30, −40, −50 and −60 °C. Generally, within the temperature test range, temperature changes significantly affected the shear strength of solid wood and wood joints. As the temperature decreased, the shear strength decreased. PUR adhesive in most cases...... resulted in the strongest shear strength and MUF adhesive resulted in the weakest. MF and PRF adhesives responded to temperature changes in a similar manner to that of the PUR adhesive. The shear strengths of wood joints with PVAc and EPI adhesives were more sensitive to temperature change. At low...

  10. Comparison of Different Energy Levels of Er:YAG Laser Regarding Intrapulpal Temperature Change During Safe Ceramic Bracket Removal.

    Science.gov (United States)

    Nalbantgil, Didem; Tozlu, Murat; Oztoprak, Mehmet Oguz

    2018-04-01

    This study was done to compare the intrapulpal temperature change generated by different energy levels of Er:YAG laser used during debonding of ceramic brackets and find the most suitable level for clinical use. Eighty polycrystalline alumina brackets were bonded on bovine incisor teeth, which were randomly divided into 4 groups of 20. One group was assigned as control. In the study groups, after laser exposure with 2, 4, or 6 Watt energy levels, brackets were debonded using an Instron Universal Testing machine. Adhesive remnant index (ARI) scores were recorded to evaluate the site of debonding. To assess intrapulpal thermal increase, 60 human premolar teeth that were prepared in the same way, at the same energy levels, by a thermocouple were used. When the debonding forces, intrapulpal temperature increases, and ARI of the groups were examined, statistically significant difference was observed between the groups. Mean temperature increases of 0.67°C ± 0.12°C, 1.25°C ± 0.16°C, and 2.36°C ± 0.23°C were recorded for the 2, 4, and 6 Watt laser groups. The mean shear bond strength was 21.35 ± 3.43 megapascals (MPa) for the control group, whereas they were 8.79 ± 2.47, 3.28 ± 0.73, and 2.46 ± 0.54 MPa for the 2, 4, and 6 Watt laser groups, respectively. Four watts is the most efficient and safe energy level to be used, utilizing Er:YAG laser with water cooling spray for 6 sec by scanning method during debonding of polycrystalline alumina brackets without any carbonization effects and detrimental temperature changes at debond sites.

  11. Mechanical properties of rock at high temperatures

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Abe, Tohru; Wakabayashi, Naruki; Ishida, Tsuyoshi.

    1997-01-01

    The laboratory tests have been performed in order to investigate the effects of temperature up to 300degC and pressure up to 30 MPa on the mechanical properties of three types of rocks, Inada granite, Sanjoume andesite and Oya tuff. The experimental results indicated that the significant differences in temperature dependence of mechanical properties exist between the three rocks, because of the difference of the factors which determine the mechanical properties of the rocks. The effect of temperature on the mechanical properties for the rocks is lower than that of pressure and water content. Temperature dependence of the mechanical properties is reduced by increase in pressure in the range of pressure and temperature investigated in this paper. (author)

  12. Perception of foot temperature in young women with cold constitution: analysis of skin temperature and warm and cold sensation thresholds.

    Science.gov (United States)

    Sadakata, Mieko; Yamada, Yoshiaki

    2007-06-01

    To examine the disease state of cold constitution, physiological measurements of the foot were conducted by investigating thermal sensations under an environmental condition of 25 degrees C-26 degrees C (neutral temperature) in 29 young women with and without cold constitution. The subjects were classified into 3 groups according to their experiences with cold constitution: cold constitution, intermediate, and normal groups. Foot skin temperature was measured by thermography. Thermal sensations were measured on the dorsum of the left foot using a thermal stimulator. Cold and warm spots on the dorsum of the right foot were ascertained. Thermal stimulation was delivered by a copper probe. No significant differences in foot skin temperature among these 3 groups were identified as measured in a laboratory under neutral temperature conditions. However, the mean warm sensation threshold was +6.3+/-1.09 degrees C (mean+/-SEM) for the cold constitution group (n=14), +3.4+/-2.10 degrees C (mean+/-SEM) for the intermediate group (n=7), and -0.25+/-1.96 degrees C (mean+/-SEM) for the normal group (n=6). The difference was significant between the cold constitution and normal groups. No significant differences among the 3 groups were found in the cold sensation threshold. This may be attributable to the distribution of thermal receptors and to chronically reduced blood flow in subcutaneous tissues, where the skin temperature receptors responsible for temperature sensation are located.

  13. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures

    International Nuclear Information System (INIS)

    Li, Jing; Pei, Gang; Li, Yunzhu; Wang, Dongyue; Ji, Jie

    2012-01-01

    The energetic and exergetic performance of an updated ORC (organic Rankine cycle) is investigated. The thermal efficiencies of the ORC at different heat source temperatures of about 100, 90, 80, and 70 °C are explored. The thermodynamic irreversibility that takes place in the evaporator, condenser, turbine, pump, and separator is revealed. The ORC feasibility for low-temperature applications is demonstrated. With a hot side temperature of around 80 °C, a thermal efficiency of 7.4% and a turbine isentropic efficiency of 0.68 can be achieved. The present research further indicates that exergy destruction caused by heat transfer through an appreciable temperature difference in the evaporator is the largest in the energy conversion process, followed by that in the condenser. The exergy destroyed in the heat exchangers amounts to 74% of the overall exergy loss. The total system exergy efficiency is approximately 40%; thus, ways to improve exergy efficiency are required. HCFC-123, a dry fluid, is experimentally confirmed to be highly superheated after expansion in this study. A regenerator should be used to preheat HCFC-123 prior to entering the evaporator. Meanwhile the heat-transfer configuration with two oil cycles can be a good solution to overcome the thermodynamic disadvantage of a one-stage evaporator. -- Highlights: ► An updated ORC system is introduced. ► The ORC feasibility for low-temperature applications is experimentally demonstrated. ► Thermodynamic irreversibility in ORC components is revealed. ► Suggestions are given to reduce the exergy destruction.

  14. Temperature Increase during Different Post Space Preparation Systems: An In Vitro Study.

    Science.gov (United States)

    Nazari Moghadam, Kiumars; Shahab, Shahriar; Shirvani, Soghra; Kazemi, Ali

    2011-01-01

      The purpose of this study was to evaluate external root surface temperature rise during post space preparation using LA Axxess bur, Beefill pack System, and Peeso Reamer drill. The distal canals of forty-five extracted human permanent mandibular first molars were instrumented in crown-apical manner and obturated with lateral condensation technique. Teeth were then randomly divided into three groups according to post space preparation technique including: group 1. LA Axxess bur (Sybronendo Co., CA, USA), group 2 Beefill pack System (VD W Co., Munich, Germany) and group 3 Peeso Reamer drill (Mani Co., Tochigi-ken, Japan). Temperature was measured by means of digital thermometer MT-405 (Comercio Co., Sao Paulo, Brazil) which was installed on the root surfaces. Data was collected and submitted to one-way ANOVA and Post hoc analysis. Root surface temperatures were found to be significantly higher (7.3±2.7 vs. 4.3±2.1 and 4±2.4,) in samples of Beefill pack System compared with the two other groups (P<0.02). Using Beefill pack System during post space preparation may be potentially hazardous for periodontal tissues.

  15. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures

    Science.gov (United States)

    Chen, Qi; Li, Ni; Wang, Xing; Ma, Li; Huang, Jian-Bin; Huang, Guo-Hua

    2017-01-01

    Parapoynx crisonalis is an important pest of many aquatic vegetables including water chestnuts. Understanding the relationship between temperature variations and the population growth rates of P. crisonalis is essential to predicting its population dynamics in water chestnuts ponds. These relationships were examined in this study based on the age-stage, two-sex life table of P. crisonalis developed in the laboratory at 21, 24, 27, 30, 33 and 36°C. The results showed that the values of Sxj (age-stage–specific survival rate), fxj (age-stage-specific fecundity), lx (age specific survival rate) and mx (age-specific fecundity) increased as the temperature rose from 21 to 27°C, then decreased from 30 to 36°C. Temperature also had a significant effect on the net reproductive rate (R0), gross reproductive rate (GRR), intrinsic rate of increase (r) and finite rate of increase (λ). The value of these parameters were at low levels at 21, 33, and 36°C. Further, the r value decreased as the temperature rose from 24 to 30°C, while the GRR reached its highest level at 27°C. The results indicated that optimal growth and development of P. crisonalis occurred at temperatures between 24°C to 30°C when compared to the lowest temperature (21°C) and higher temperatures of 33°C and 36°C. PMID:28264022

  16. Diurnal temperature asymmetries and fog at Churchill, Manitoba

    Science.gov (United States)

    Gough, William A.; He, Dianze

    2015-07-01

    A variety of methods are available to calculate daily mean temperature. We explore how the difference between two commonly used methods provides insight into the local climate of Churchill, Manitoba. In particular, we found that these differences related closely to seasonal fog. A strong statistically significant correlation was found between the fog frequency (hours per day) and the diurnal temperature asymmetries of the surface temperature using the difference between the min/max and 24-h methods of daily temperature calculation. The relationship was particularly strong for winter, spring and summer. Autumn appears to experience the joint effect of fog formation and the radiative effect of snow cover. The results of this study suggests that subtle variations of diurnality of temperature, as measured in the difference of the two mean temperature methods of calculation, may be used as a proxy for fog detection in the Hudson Bay region. These results also provide a cautionary note for the spatial analysis of mean temperatures using data derived from the two different methods particularly in areas that are fog prone.

  17. The effect of different temperature and concentration of sodium hypochlorite on the elimination of E.Faecalis using rotary instrumentation and intermittent passive ultrasonic irrigation

    International Nuclear Information System (INIS)

    AlMadi, Ebtissam M

    2008-01-01

    The purpose of this study was to compare the intracanal bacterial reduction using rotary instrumentation and intermittent passive ultrasonic irrigation (IPUI) with different concentrations and temperatures of NaOCl in different canal tapers. The root canals of seventy-two extracted single-rooted teeth were instrumented up to size 20k file and inoculated with E. faecalis. The teeth were divided into 5 experimental groups and one control. The root canals in the control group were shaped to a 0.04 taper using ProFile rotary files, with 1.5 minute of IPUI by NaOCl at a concentration of 2.5% and room temperature of 25degreeC for 30 seconds at a time at three intervals. In Group 1, the canals were shaped to a 0.06 taper, and in Groups 2 and 3 - the temperature of NaOCl used was 37degreeC and 45degreeC respectively, and in Groups 4 and 5 - the concentrations of NaOCl were 1% and 5% respectively. The canals were incubated at 37 degree C for 48 hours and bacterial samples were obtained using paper points and plated on agar plates. The zones of bacterial growth were measured and statistical analysis was performed. There was significantly more bacterial growth in the control group than in Groups 1, 2, 3 and 5. Furthermore, there was a significant reduction in bacterial growth in Group V compared to Group 4. The result of this study showed that significant bacterial reduction in contaminated root canals could be obtained using intermittent passive ultrasonic irrigation combined with 2.5% NaOCl at 37degreeC in canals prepared to a taper of 0.06. In addition, complete bacterial eradication could be obtained using IPUI with 2.5% NaOCl at 45degreeC or 5% NaOCl at room temperature (37degreeC). (author)

  18. A comparison of three different types of temperature measurement in HITU fields

    Science.gov (United States)

    Haller, J.; Jenderka, K.-V.; Seifert, F.; Klepsch, T.; Martin, E.; Shaw, A.; Durando, G.; Guglielmone, C.; Girard, F.

    2012-10-01

    The spatial and temporal distribution of the temperature elevation caused by high-intensity therapeutic ultrasound (HITU) in a tissue-mimicking material (TMM) has been determined with magnetic resonance (MR) thermometry, infrared (IR) thermometry and a thermal test object with an integrated thin-film thermocouple at three different National Metrological Institutes (PTB/Germany, NPL/UK, INRIM/Italy). Results obtained from the different types of measurement are compared and some general aspects of the methods are discussed, particularly with regard to their suitability for the in vitro characterization of transducers for treatment planning.

  19. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens; Møller, Per

    2012-01-01

    The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25–200°C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface...... different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cosθ values. Studies of the effect of roughness and surface flaws on wettability...... contact angle and cleanability. In addition to surface wettability with oil many other factors such as roughness and surface defects play an essential role in determining their cleanability....

  20. Improving efficiency of heat pumps by use of zeotropic mixtures for different temperature glides

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Jensen, Jonas Kjær; Cignitti, Stefano

    2017-01-01

    The present study demonstrates the optimization of a heat pump for an application with a large temperature glide on the sink and a smaller temperature glide on the source side. The study includes a simulation of a heat pump cycle for all possible binary mixtures from a list of 14 natural...... refrigerants, which enables a match of the temperature glide of sink and source with the temperature of the working fluid during phase change and thus, a reduction of the exergy destruction due to heat transfer. The model was evaluated for four different boundary conditions. For a separated evaluation...... of the irreversibility solely caused by the fluid properties, the exergy destruction in the heat exchangers has been distinguished accordingly and an indicator quantifying the glide match has been defined to analyse the influence on the performance. It was observed that a good glide match can contribute to an increased...

  1. Acute Exercise-Associated Skin Surface Temperature Changes after Resistance Training with Different Exercise Intensities

    Directory of Open Access Journals (Sweden)

    Martin Weigert

    2018-01-01

    Full Text Available Background: Studies showed, that changes in muscular metabolic-associated heat production and blood circulation during and after muscular work affect skin temperature (T but the results are inconsistent and the effect of exercise intensity is unclear. Objective: This study investigated the intensity-dependent reaction of T on resistance training. Methods: Ten male students participated. After acclimatization (15 min, the participants completed 3x10 repetitions of unilateral biceps curl with 30, 50 or 70% of their one-repetition-maximum (1RM in a randomized order. Skin temperature of the loaded and unloaded biceps was measured at rest (Trest, immediately following set 1, 2 and 3 (TS1,TS2,TS3 and 30 minutes post exercise (T1 - T30 with an infrared camera. Results: Two-way ANOVA detected a significant effect of the measuring time point on T (Trest to T30 of the loaded arm for 30% (Eta²=0.85, 50% (Eta²=0.88 and 70% 1RM (Eta²=0.85 and of the unloaded arm only for 30% 1RM (Eta²=0.41 (p0.05. The T values at the different measuring time points (Trest - T30 did not differ between the intensities at any time point. The loaded arm showed a mean maximum T rise to Trest of 1.8°C and on average, maximum T was reached approximately 5 minutes after the third set.  Conclusion: This study indicate a rise of T, which could be independent of the exercise intensity. Infrared thermography seems to be applicable to identify the primary used functional muscles in resistance training but this method seems not suitable to differentiate between exercise intensity from 30 to 70% 1RM.

  2. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing

    NARCIS (Netherlands)

    Janssen, Léon P.B.M.; Karman, Andre P.; Graaf, Robbert A. de

    Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal

  3. Temperature dependence of 1.55 μm VCSELs

    Science.gov (United States)

    Masum, J.; Balkan, N.; Adams, M. J.

    1998-08-01

    The temperature for minimum threshold carrier concentration in 1.55 μm VCSELs can be significantly lower than that at which the peak gain matches the cavity resonance. A simple model is implemented to investigate the magnitude of this temperature difference and to aid the design of VCSELs for room temperature operation.

  4. Molecular and Cellular Effects Induced in Mytilus galloprovincialis Treated with Oxytetracycline at Different Temperatures.

    Directory of Open Access Journals (Sweden)

    Mohamed Banni

    Full Text Available The present study evaluated the interactive effects of temperature (16°C and 24°C and a 4-day treatment with the antibiotic oxytetracycline (OTC at 1 and 100 μg/L on cellular and molecular parameters in the mussel Mytilus galloprovincialis. Lysosomal membrane stability (LMS, a sensitive biomarker of impaired health status in this organism, was assessed in the digestive glands. In addition, oxidative stress markers and the expression of mRNAs encoding proteins involved in antioxidant defense (catalase (cat and glutathione-S-transferase (gst and the heat shock response (hsp90, hsp70, and hsp27 were evaluated in the gills, the target tissue of soluble chemicals. Finally, cAMP levels, which represent an important cell signaling pathway related to oxidative stress and the response to temperature challenges, were also determined in the gills. Exposure to heat stress as well as to OTC rendered a decrease in LMS and an increase in malonedialdehyde accumulation (MDA. CAT activity was not significantly modified, whereas GST activity decreased at 24°C. Cat and gst expression levels were reduced in animals kept at 24°C compared to 16°C in the presence or absence of OTC. At 16°C, treatment with OTC caused a significant increase in cat and gst transcript levels. Hsp27 mRNA was significantly up-regulated at all conditions compared to controls at 16°C. cAMP levels were increased at 24°C independent of the presence of OTC. PCA analysis showed that 37.21% and 25.89% of the total variance was explained by temperature and OTC treatment, respectively. Interestingly, a clear interaction was observed in animals exposed to both stressors increasing LMS and MDA accumulation and reducing hsp27 gene expression regulation. These interactions may suggest a risk for the organisms due to temperature increases in contaminated seawaters.

  5. Microstructure, optical characterization and light induced degradation in a-Si:H deposited at different temperatures

    International Nuclear Information System (INIS)

    Minani, E.; Sigcau, Z.; Adgebite, O.; Ramukosi, F.L.; Ntsoane, T.P.; Harindintwari, S.; Knoesen, D.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2006-01-01

    The microstructure and optical properties of a series of hydrogenated amorphous silicon layers deposited on glass substrates at different temperature have been characterized by means of X-ray diffraction techniques and optical spectroscopy. The radial distribution function of the as-deposited samples showed an increase in the bond angle and a decrease in the radial distance indicating a relaxation of the amorphous network with increasing the deposition temperature. Light induced degradation was studied using a simulated daylight spectrum. The changes in hydrogen bonding configuration, associated with the light soaking at different stages of illumination, was monitored via the transmission bands of the vibrational wag and stretch modes of the IR spectrum

  6. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei106, Taiwan (China)

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  7. Sublattice-specific ordering of ZnO layers during the heteroepitaxial growth at different temperatures

    International Nuclear Information System (INIS)

    Redondo-Cubero, A.; Vinnichenko, M.; Muecklich, A.; Kolitsch, A.; Krause, M.; Munoz, E.; Gago, R.

    2011-01-01

    The effect of the substrate temperature on the sublattice ordering in ZnO layers grown by reactive pulsed magnetron sputtering on sapphire has been investigated by different techniques. The improvement of the crystal quality and heteroepitaxial growth at relatively low temperatures (550 deg. C) is verified by x-ray diffraction, high-resolution transmission electron microscopy, Rutherford backscattering spectrometry in channeling mode (RBS/C), and Raman spectroscopy. Sublattice-resolved analysis by resonant RBS/C and Raman spectroscopy reveals that the progressive transition to the single crystal phase is accomplished in a faster way for Zn- than for O-sublattice. This behavior is attributed to the preferential annealing of defects in the Zn sublattice at low temperatures when compared to those of the O sublattice.

  8. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  9. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  10. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    International Nuclear Information System (INIS)

    Rani, Sumita; Kumar, Mukesh; Kumar, Dinesh; Sharma, Sumit

    2015-01-01

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO 2 /Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents

  11. The forms of alkalis in the biochar produced from crop residues at different temperatures.

    Science.gov (United States)

    Yuan, Jin-Hua; Xu, Ren-Kou; Zhang, Hong

    2011-02-01

    The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700°C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    Science.gov (United States)

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Development of fabrication method for thermal expansion difference irradiation temperature monitor

    International Nuclear Information System (INIS)

    Noguchi, Kouichi; Takatsudo, Hiroshi; Miyakawa, Shun-ichi; Kobori, Takahisa; Miyo, Toshimasa

    1998-03-01

    This report describes the development activities for the fabrication of the Thermal Expansion Difference irradiation temperature monitor (TED) at the Oarai Engineering Center (OEC)/PNC. TED is used for various irradiation tests in the experimental fast reactor JOYO. TED is the most accurate off-line temperature monitor used for irradiation examination. The TED is composed of a metallic sphere lid and either a stainless steel or nickel alloy container. Once the container is filled with sodium, the metallic sphere lid is sealed by using a resistance weld. This capsule is then loaded into a reactor. Once a TED is loaded into the JOYO reactor, the sodium inside the metallic container increases as a result of thermal expansion. The TED identifies the peak irradiation temperature of the reactor based on a formula correlating temperature to increment values. This formula is established specifically for the particular TED being used during a calibration process performed when the TED is fabricated. Initially the TED was developed by Argonne National Laboratory (ANL) in the United States, and was imported by PNC for use in the JOYO reactor. In 1992 PNC decided to fabricate TED domestically in order to ensure the stability of future supplies. Based on technical information provided by ANL, PNC began fabrication of a TED on an experimental basis. In addition, PNC endeavored to make the domestically produced TED more efficient. This involved improving the techniques used in the sodium filling and the metallic sphere welding processes. These quality control efforts led to PNC's development of processes enabling the capsules to be filled with sodium to nearly 100%. As a result, the accuracy of the temperature dispersion in the out-pile calibration test was improved from +/-10degC to +/-5degC. In 1996 the new domestically fabricated TED was attached to a JOYO irradiation rig. In March of 1997, irradiation of the rig was started on the 30th duty cycle operation, and should be

  14. Simulation of leaf photosynthesis of C3 plants under fluctuating light and different temperatures

    DEFF Research Database (Denmark)

    Öztürk, Isik; Holst, Niels; Ottosen, Carl-Otto

    2012-01-01

    An induction-dependent empirical model was developed to simulate the C3 leaf photosynthesis under fluctuating light and different temperatures. The model also takes into account the stomatal conductance when the light intensity just exceeds the compensation point after a prolonged period...... of darkness (initial stomatal conductance, ). The model was parameterized for both Chrysanthemum morifolium and Spinacia oleracea by artificially changing the induction states of the leaves in the climate chamber. The model was tested under natural conditions that were including frequent light flecks due...... to partial cloud cover and varying temperatures. The temporal course of observed photosynthesis rate and the carbon gain was compared to the simulation. The ability of the current model to predict the carbon assimilation rate was assessed using different statistical indexes. The model predictions were...

  15. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Malek, M. F., E-mail: firz-solarzelle@yahoo.com [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Alrokayan, Salman A. H., E-mail: dr.salman@alrokayan.com; Khan, Haseeb A., E-mail: khan-haseeb@yahoo.com [Chair of Targeting and Treatment of Cancer Using Nanoparticles, Deanship of Scientific Research, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M., E-mail: rusop@salam.uitm.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  16. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    International Nuclear Information System (INIS)

    Abdullah, M. A. R.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-01-01

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  17. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  18. Impacts of precipitation and temperature trends on different time scales on the water cycle and water resource availability in mountainous Mediterranean catchments.

    Science.gov (United States)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2017-04-01

    Climatology trends, precipitation and temperature variations condition the hydrological evolution of the river flow response at basin and sub-basin scales. The link between both climate and flow trends is crucial in mountainous areas, where small variations in temperature can produce significant impacts on precipitation (occurrence as rainfall or snowfall), snowmelt and evaporation, and consequently very different flow signatures. This importance is greater in semiarid regions, where the high variability of the climatic annual and seasonal regimes usually amplifies this impact on river flow. The Sierra Nevada National Park (Southern Spain), with altitudes ranging from 2000 to 3500 m.a.s.l., is part of the global climate change observatories network and a clear example of snow regions in a semiarid environment. This mountain range is head of different catchments, being the Guadalfeo River Basin one of the most influenced by the snow regime. This study shows the observed 55-year (1961-2015) trends of annual precipitation and daily mean temperature, and the associated impacts on snowfall and snow persistence, and the resulting trend of the annual river flow in the Guadalfeo River Basin (Southern Spain), a semiarid abrupt mountainous area (up to 3450 m a.s.l.) facing the Mediterranean Sea where the Alpine and Mediterranean climates coexist in a domain highly influenced by the snow regime, and a significant seasonality in the flow regime. The annual precipitation and annual daily mean temperature experimented a decreasing trend of 2.05 mm/year and an increasing trend of 0.037 °C/year, respectively, during the study period, with a high variability on a decadal basis. However, the torrential precipitation events are more frequent in the last few years of the study period, with an apparently increasing associated dispersion. The estimated annual snowfall trend shows a decreasing trend of 0.24 mm/year, associated to the decrease of precipitation rather than to temperature

  19. Factors correlating with significant differences between X-ray structures of myoglobin

    International Nuclear Information System (INIS)

    Rashin, Alexander A.; Domagalski, Marcin J.; Zimmermann, Michael T.; Minor, Wladek; Chruszcz, Maksymilian; Jernigan, Robert L.

    2014-01-01

    Conformational differences between myoglobin structures are studied. Most structural differences in whale myoglobin beyond the uncertainty threshold can be correlated with a few specific structural factors. There are always exceptions and a search for additional factors is needed. The results might have serious implications for biological insights from conformational differences. Validation of general ideas about the origins of conformational differences in proteins is critical in order to arrive at meaningful functional insights. Here, principal component analysis (PCA) and distance difference matrices are used to validate some such ideas about the conformational differences between 291 myoglobin structures from sperm whale, horse and pig. Almost all of the horse and pig structures form compact PCA clusters with only minor coordinate differences and outliers that are easily explained. The 222 whale structures form a few dense clusters with multiple outliers. A few whale outliers with a prominent distortion of the GH loop are very similar to the cluster of horse structures, which all have a similar GH-loop distortion apparently owing to intermolecular crystal lattice hydrogen bonds to the GH loop from residues near the distal histidine His64. The variations of the GH-loop coordinates in the whale structures are likely to be owing to the observed alternative intermolecular crystal lattice bond, with the change to the GH loop distorting bonds correlated with the binding of specific ‘unusual’ ligands. Such an alternative intermolecular bond is not observed in horse myoglobins, obliterating any correlation with the ligands. Intermolecular bonds do not usually cause significant coordinate differences and cannot be validated as their universal cause. Most of the native-like whale myoglobin structure outliers can be correlated with a few specific factors. However, these factors do not always lead to coordinate differences beyond the previously determined uncertainty

  20. Factors correlating with significant differences between X-ray structures of myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); Iowa State University, 112 Office and Lab Bldg, Ames, IA 50011-3020 (United States); Domagalski, Marcin J. [University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908 (United States); Zimmermann, Michael T. [Iowa State University, 112 Office and Lab Bldg, Ames, IA 50011-3020 (United States); Minor, Wladek [University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908 (United States); Chruszcz, Maksymilian [University of Virginia, 1340 Jefferson Park Avenue, Jordan Hall, Room 4223, Charlottesville, VA 22908 (United States); University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States); Jernigan, Robert L. [Iowa State University, 112 Office and Lab Bldg, Ames, IA 50011-3020 (United States); BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States)

    2014-02-01

    Conformational differences between myoglobin structures are studied. Most structural differences in whale myoglobin beyond the uncertainty threshold can be correlated with a few specific structural factors. There are always exceptions and a search for additional factors is needed. The results might have serious implications for biological insights from conformational differences. Validation of general ideas about the origins of conformational differences in proteins is critical in order to arrive at meaningful functional insights. Here, principal component analysis (PCA) and distance difference matrices are used to validate some such ideas about the conformational differences between 291 myoglobin structures from sperm whale, horse and pig. Almost all of the horse and pig structures form compact PCA clusters with only minor coordinate differences and outliers that are easily explained. The 222 whale structures form a few dense clusters with multiple outliers. A few whale outliers with a prominent distortion of the GH loop are very similar to the cluster of horse structures, which all have a similar GH-loop distortion apparently owing to intermolecular crystal lattice hydrogen bonds to the GH loop from residues near the distal histidine His64. The variations of the GH-loop coordinates in the whale structures are likely to be owing to the observed alternative intermolecular crystal lattice bond, with the change to the GH loop distorting bonds correlated with the binding of specific ‘unusual’ ligands. Such an alternative intermolecular bond is not observed in horse myoglobins, obliterating any correlation with the ligands. Intermolecular bonds do not usually cause significant coordinate differences and cannot be validated as their universal cause. Most of the native-like whale myoglobin structure outliers can be correlated with a few specific factors. However, these factors do not always lead to coordinate differences beyond the previously determined uncertainty

  1. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  2. Effect of fluorescence on the technological characteristics of cocoons at different cooking temperatures

    Directory of Open Access Journals (Sweden)

    M. Panayotov

    2016-12-01

    Full Text Available Abstract. The subject of research are Bombyx mori L. cocoons, differentiated by the nature of their fluorescent radiation. In each fluorescent group 2 subgroups were formed prepared for unreeling through cooking at 80 and 90°C for 5 min. To account for the effect of fluorescence at various cooking temperature levels the basic technological traits signs of the silk filament and cocoons have been defined and analysed: total length of the silk filament (m, nonbroken filament length (m, %, raw silk pesentage (% and reelability (%. It was found that fluorescence of cocoons has statistically significant (p≤0.01- 0.001 effect on the phenotypic manifestation of the technological traits. Within the two cooking temperature levels, the yellow fluorescent cocoons demonstrate higher values at 80 °C, and violet ones at 90°C. The better technological qualities and the lower cooking temperature in the yellow fluorescent cocoons give reason to believe that their use is economically more profitable for the silk reeling industry compared with violet fluorescent cocoons

  3. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    International Nuclear Information System (INIS)

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H.; Marchioni, Eric

    2009-01-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a 60 Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  4. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: renatocduarte@yahoo.com.br; Marchioni, Eric [Universite de Strasbourg, Illkirch (France). Faculte de Pharmacie. Lab. de Chimie Analytique et Sciences de l' Aliment

    2009-07-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a {sup 60}Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  5. Physical, Mineralogical, and Micromorphological Properities of Expansive Soil Treated at Different Temperature

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-01-01

    Full Text Available Different characterizations were carried out on unheated expansive soil and samples heated at different temperature. The samples are taken from the western outskirts of Nanning of Guangxi Province, China. In the present paper, the mineral and chemical composition and several essential physical parameters of unheated expansive soil are indicated by XRD and EDX analysis. Moreover, the structural transition and change of mechanical properties of samples heated in the range of room temperature to 140°C are proved by TG-DTA and SEM observation. The mean particle diameter, density, hydraulic behaviors, and bond strength also have been investigated. The results indicate that, along with the loss of free water, physical absorbed water, and chemically bound water, the microstructure experiences some obvious change. In addition, the particle size and density both will increase rapidly before 100°C and undertake a slow growth or decline when higher than 100°C. The hydraulic behaviors and strength performance of unheated samples and the one heated at 100°C are given out as well. All these researches play fundamental role in the pollution prevention, modification, and engineering application of expansive soil.

  6. Intrapartum caesarean rates differ significantly between ethnic groups--relationship to induction.

    LENUS (Irish Health Repository)

    Ismail, Khadijah I

    2012-01-31

    OBJECTIVE: Given international variation in obstetric practices and outcomes, comparison of labour outcomes in different ethnic groups could provide important information regarding the underlying reasons for rising caesarean delivery rates. Increasing numbers of women from Eastern European countries are now delivering in Irish maternity hospitals. We compared labour outcomes between Irish and Eastern European (EE) women in a large tertiary referral center. STUDY DESIGN: This was a prospective consecutive cohort study encompassing a single calendar year. The cohort comprised 5550 Irish and 867 EE women delivered in a single institution in 2009. Women who had multiple pregnancies, breech presentation, and elective or pre-labour caesarean sections (CS) were excluded. Data obtained from birth registers included maternal age, nationality, parity, gestation, onset of labour, mode of delivery and birth weight. RESULTS: The overall intrapartum CS rate was 11.4% and was significantly higher in Irish compared to EE women (11.8% vs. 8.8%; p=0.008). The proportion of primiparas was lower in Irish compared to EE women (44.8% vs. 63.6%; p<0.0001). The intrapartum CS rate was almost doubled in Irish compared to EE primiparas (20.7% vs. 11.0%; p<0.0001). Analysis of primiparas according to labour onset revealed a higher intrapartum CS rate in Irish primiparas in both spontaneous (13.5% vs. 7.2%; p<0.0001) and induced labour (29.5% vs. 19.3%; p=0.005). Irish women were older with 19.7% of primiparas aged more than 35, compared to 1.6% of EE women (p<0.0001). The primigravid CS rate in Irish women was significantly higher in women aged 35 years or older compared women aged less than 35 (30.6% vs. 18.3%; p<0.0001) consistent in both spontaneous and induced labour. The primiparous induction rate was 45.4% in Irish women compared to 32% in EE women, and more Irish women were induced before 41 weeks gestation. CONCLUSION: The results highlight that primigravid intrapartum CS rates were

  7. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica)

    Science.gov (United States)

    Wukovits, Julia; Enge, Annekatrin Julie; Wanek, Wolfgang; Watzka, Margarete; Heinz, Petra

    2017-06-01

    Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with 13C and 15N labelled freeze-dried Dunaliella tertiolecta (green algae) at the start of the experiment and were incubated at 20, 25 and 30 °C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels) could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus. These conditions are

  8. Nanodiamond infiltration into porous silicon through etching of solid carbon produced at different graphitization temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, C. R. B., E-mail: claudia_rbm@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais-INPE, Centro de Ciencias do Sistema Terrestre-CCST, Centro de Ciencias do Sistema Terrestre-CCST (Brazil); Baldan, M. R.; Beloto, A. F.; Ferreira, N. G. [CTE/INPE, Centro de Tecnologias Espaciais (Brazil)

    2011-09-15

    Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 Degree-Sign C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm{sup -1} attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.

  9. Biographical Narratives of Encounter: The Significance of Mobility and Emplacement in Shaping Attitudes towards Difference

    Science.gov (United States)

    Sadgrove, Joanna

    2014-01-01

    This paper is located within work in urban studies about the significance of contact with difference as a means for reducing prejudice and achieving social change. Recent approaches, influenced by theories of affect, have emphasised non-conscious everyday negotiations of difference in the city. In this paper it is argued that such approaches lose sight of the significance of the subject: of the reflective judgements of ‘others’ made by individuals; of our ability to make decisions around the control of our feelings and identifications; and of the significance of personal pasts and collective histories in shaping the ways we perceive and react to encounters. Rather, this paper uses a biographical approach focusing on interviewees’ narratives of encounter. Through its attention to processes of mobility and emplacement, it contributes to debates about when contact with difference matters by highlighting the importance of everyday social normativities in the production of moral dispositions. PMID:26300566

  10. Membrane fouling related to microbial community and extracellular polymeric substances at different temperatures.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2013-09-01

    An anoxic-aerobic membrane bioreactor was established to investigate the role of microorganisms and microbial metabolites in membrane fouling at different temperatures. The results showed that the membrane fouling cycle at 303, 293, and 283 K were 30, 29, and 5.5 days, respectively. Polysaccharides dominated the extracellular polymeric substances (EPS) and soluble microbial products (SMP) at 303 and 293 K, instead, proteins was the predominant composition of metabolites at 283 K. The correlation coefficient (r(2)) was calculated to identify the relationship between temperature (T), filtration resistance (R) and compositions of EPS and SMP. In biocake, the EPS polysaccharides (EPSc) was the most correlative factor to temperature (T) and filtration resistance (R); in mixed liquor, the ratio of SMP polysaccharides to proteins (SMPc/p) was the most correlative factor. The microbial community structure and the dominant species was the major reason causing the change of EPS and SMP composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effect of different levels of alpha tocopherol on performance traits, serum antioxidant enzymes, and trace elements in Japanese quail ( Coturnix coturnix japonica under low ambient temperature

    Directory of Open Access Journals (Sweden)

    Assar Ali Shah

    Full Text Available ABSTRACT This study was designed to find the effect of vitamin E supplementation on growth, serum antioxidant enzymes, and some trace elements in Japanese quail (Coturnix coturnix japonica under low ambient temperature. A total of 180 day-old Japanese quails were randomly divided into four groups and provided with 0 (group A, 50 (group B, 100 (group C, and 150 IU/kg (group D vitamin E (dl-α-tocopherol acetate under an average temperature of 9±0.5 °C for an experimental period of 42 days. The result showed that feed intake per day, body weight, weight gain per day, and feed conversion ratio did not differ significantly between the groups. Serum concentrations of superoxide and glutathione peroxidase were significantly high in birds supplemented with 150 mg/kg of vitamin E. The concentration of aspartate aminotransferase was not significantly affected between the control and treated groups; however, alanine transaminase concentration significantly reduced in group D. Zinc concentration in the blood increased significantly in group D, with no significant effect on copper and manganese between the control and treated groups. Vitamin E at the level of 150 IU/kg of feed improves the blood antioxidant status and zinc concentration, with no effect on the performance traits of quail reared under low ambient temperature.

  12. Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method

    Science.gov (United States)

    Ha, J.; Kim, J.; Kwak, M.; Ha, K.

    2007-12-01

    A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.

  13. Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins.

    Science.gov (United States)

    Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge

    2014-04-15

    Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The impact of different cooling modalities on the physiological responses in firefighters during strenuous work performed in high environmental temperatures.

    Science.gov (United States)

    Barr, David; Reilly, Thomas; Gregson, Warren

    2011-06-01

    This study investigated the impact of ice vests and hand/forearm immersion on accelerating the physiological recovery between two bouts of strenuous exercise in the heat [mean (SD), 49.1(1.3)°C, RH 12 (1)]. On four occasions, eight firefighters completed two 20-min bouts of treadmill walking (5 km h, 7.5% gradient) while wearing standard firefighter protective clothing. Each bout was separated by a 15-min recovery period, during which one of four conditions were administered: ice vest (VEST), hand/forearm immersion (W), ice vest combined with hand/forearm immersion (VEST + W) and control (CON). Core temperature was significantly lower at the end of the recovery period in the VEST + W (37.97 ± 0.23°C) and W (37.96 ± 0.19°C) compared with the VEST (38.21 ± 0.12°C) and CON (38.29 ± 0.25°C) conditions and remained consistently lower throughout the second bout of exercise. Heart rate responses during the recovery period and bout 2 were similar between the VEST + W and W conditions which were significantly lower compared with the VEST and CON which did not differ from each other. Mean skin temperature was significantly lower at the start of bout 2 in the cooling conditions compared with CON; these differences reduced as exercise progressed. These findings demonstrate that hand/forearm immersion (~19°C) is more effective than ice vests in reducing the physiological strain when firefighters re-enter structural fires after short rest periods. Combining ice vests with hand/forearm immersion provides no additional benefit.

  15. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic......This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 degrees C and around 40 degrees C at the substations. To avoid the proliferation...... performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated...

  16. Temperature Effect on Power Drop of Different Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Emad Talib Hahsim

    2016-05-01

    Full Text Available Solar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si, poly-crystalline Silicon (pc-Si, amorphous Silicon (a-Si and Cupper Indium Gallium di-selenide (CIGS photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit voltage by -0.0912V/ºC while mc-Si and a-Si had nearly -0.07V/ºC and the CIGS has -0.0123V/ºC. The results showed a slightly increase in short circuit current with temperature increasing about 0.3mA/ºC ,4.4mA/ºC and 0.9mA/ºC for mc-Si , pc-Si and both a-Si and CIGS. The mc-Si had the largest drop in output power about -0.1353W/ºC while -0.0915, -0.0114 and -0.0276 W/ºC for pc-Si, a-Si and CIGS respectively. The amorphous silicon is the more suitable module for high operation temperature but it has the lowest conversion efficiency between the tested modules.

  17. Comparison of axillary and rectal temperatures for healthy Beagles in a temperature- and humidity-controlled environment.

    Science.gov (United States)

    Mathis, Justin C; Campbell, Vicki L

    2015-07-01

    To compare axillary and rectal temperature measurements obtained with a digital thermometer for Beagles in a temperature- and humidity-controlled environment. 26 healthy Beagles (17 sexually intact males and 9 sexually intact females). Dogs were maintained in a temperature- and humidity-controlled environment for 56 days before rectal and axillary temperatures were measured. Axillary and rectal temperatures were obtained in triplicate for each dog by use of a single commercially available manufacturer-calibrated digital thermometer. Mean rectal and axillary temperatures of Beagles maintained in a temperature- and humidity-controlled environment were significantly different, with a median ± SD difference of 1.4° ± 0.15°C (range, 0.7° to 2.1°C). Mean rectal and axillary temperatures were 38.7°C (range, 37.6° to 39.5°C) and 37.2°C (range, 36.6° to 38.3°C), respectively. Results of this study indicated that the historical reference of a 0.55°C gradient between rectal and axillary temperatures that has been clinically used for veterinary patients was inaccurate for healthy Beagles in a temperature- and humidity-controlled environment. Rectal and axillary temperatures can be measured in veterinary patients. Reliable interpretation of axillary temperatures may accommodate patient comfort and reduce patient anxiety when serial measurement of temperatures is necessary. Further clinical studies will be needed.

  18. Heat stress in urban areas. Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Franck, Ulrich; Roeder, Stefan; Schlink, Uwe [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Core Facility Studies; Krueger, Michael [Leipzig Univ. (Germany). Inst. of Geography; Schwarz, Nina [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Computational Landscape Ecology; Grossmann, Katrin [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Urban and Environmental Sociology

    2013-04-15

    Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night) are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for both outdoor and

  19. Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

    Directory of Open Access Journals (Sweden)

    Ulrich Franck

    2013-04-01

    Full Text Available Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for

  20. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Science.gov (United States)

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity.

  1. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    International Nuclear Information System (INIS)

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-01-01

    Highlights: ► Catalytic mechanisms of thermophilic–mesophilic enzymes may differ. ► Product release is rate-determining for thermophilic IGPS at low temperatures. ► But at higher temperatures, proton transfer from the general acid is rate-limiting. ► Rate-determining step is different still for mesophilic IGPS. ► Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic–mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 °C for thermophilic IGPS, near its adaptive temperature (75 °C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO 2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

  2. Effect of Cacl2 Solution at Different Temperatures on Qualitative and Quantitative Characteristics and Shelf Life of Peach Fruit, Cv. Anjiri Maliki

    Directory of Open Access Journals (Sweden)

    F. Karamnejad

    2014-04-01

    Full Text Available In order to study the effect of CaCl2 treatment on postharvest quality and storage behavior of peach fruit cv. Anjiri Maliki, the fruits were dipped in CaCl2 solution, at concentration of 0 as control and 60mM, in different temperatures (4, 8, 16, 32 and 64°C for 5 minutes. The trial was carried out as a factorial experiment if frame of complete randomized design (CRD with three replications. The fruits were stored at 2-3°C and 85-90% R.H for finally 28 days, and then the fruit parameters were measured weekly. Traits such as titratable acidity (TA, total soluble solids (TSS, vitamin C, weight loss, tissue firmness and calcium concentration were determined. Results showed that in total storage period (four measurements times, treatment with CaCl2, at temperature of 64°C was the best treatment according to maintaining flesh firmness, maintaining TSS, preventing the degradation of ascorbic acid, reducing the TA changes, modulation of weight loss and increasing the amount of calcium content in fruits. Also thermal treatments at temperatures of 32 and 64°C, alone end without CaCl2, had significant effects on maintaining fruit firmness, TA and acid ascorbic and caused to modulation in weight loss. On the other hand the application of calcium chloride at temperatures of 4 and 32°C had significant effect on quality parameters.

  3. Fluorinated Graphene Prepared by Direct Fluorination of N, O-Doped Graphene Aerogel at Different Temperatures for Lithium Primary Batteries

    Directory of Open Access Journals (Sweden)

    Xu Bi

    2018-06-01

    Full Text Available Fluorinated graphene (FG has been a star material as a new derivative of graphene. In this paper, a series of fluorinated graphene materials are prepared by using N, O-doped graphene aerogel as precursor via a direct fluorination method, and the effect of fluorination temperature on the FG structure is investigated. The prepared FG samples are systematically characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. It is found that the structure of FG, including features such as layer size, chemical composition, chemical bond state of the component elements, etc., is significantly related to the fluorination temperature. With the change of the fluorination temperature, fluorine atoms enter the graphene framework by a substitution process of the N, O-containing groups, including residual phenol, ether, carbonyl groups, or C–N groups, and the addition to CC bonds, subsequently forming a fluoride with different fluorine contents. The fluorine content increases as the fluorination temperature increases from 200 °C to 300 °C, but decreases at a fluorination temperature of 350 °C due to the decomposition of the fluorinated graphene. The prepared FG samples are used as cathode material for lithium primary batteries. The FG sample prepared at 300 °C gives a high specific capacity of 632 mAh g−1 and a discharge plateau of 2.35 V at a current density of 10 mA g−1, corresponding to a high energy density of 1485 Wh kg−1.

  4. Differences in the physiological responses to temperature among stonechats from three populations reared in a common environment

    NARCIS (Netherlands)

    Tieleman, B. Irene

    The physiological response to variation in air temperature (T-a) can provide insights into how animals are adapted to different environments. I measured metabolic rate, total evaporative water loss (TEWL) and body temperature (T-b) as a function of T. in stonechats from equatorial Kenya, temperate

  5. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    Science.gov (United States)

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  6. Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing

    International Nuclear Information System (INIS)

    Arora, H.S.; Singh, H.; Dhindaw, B.K.

    2012-01-01

    Highlights: ► Magnesium alloy AE42 was friction stir processed under different cooling conditions. ► Heat flow model was developed using finite difference heat equations. ► Generalized MATLAB code was developed for solving heat flow model. ► Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.

  7. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach.

    Science.gov (United States)

    Ribeiro, Paulo Roberto; Fernandez, Luzimar Gonzaga; de Castro, Renato Delmondez; Ligterink, Wilco; Hilhorst, Henk W M

    2014-08-12

    Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing environments. In this context, we analysed the effect of temperature on growth of young R. communis seedlings and we measured primary and secondary metabolites in roots and cotyledons. Three genotypes, recommended to small family farms as cash crop, were used in this study. Seedling biomass was strongly affected by the temperature, with the lowest total biomass observed at 20°C. The response in terms of biomass production for the genotype MPA11 was clearly different from the other two genotypes: genotype MPA11 produced heavier seedlings at all temperatures but the root biomass of this genotype decreased with increasing temperature, reaching the lowest value at 35°C. In contrast, root biomass of genotypes MPB01 and IAC80 was not affected by temperature, suggesting that the roots of these genotypes are less sensitive to changes in temperature. In addition, an increasing temperature decreased the root to shoot ratio, which suggests that biomass allocation between below- and above ground parts of the plants was strongly affected by the temperature. Carbohydrate contents were reduced in response to increasing temperature in both roots and cotyledons, whereas amino acids accumulated to higher contents. Our results show that a specific balance between amino acids, carbohydrates and organic acids in the cotyledons and roots seems to be an important trait for faster and more efficient growth of genotype MPA11. An increase in temperature triggers the mobilization of carbohydrates to support the preferred growth of the aerial parts, at the expense of the roots. A shift in the carbon-nitrogen metabolism towards the accumulation of nitrogen-containing compounds seems to be the main biochemical

  8. Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions

    Directory of Open Access Journals (Sweden)

    Alefsi David Sanchez-Reinoso

    2014-12-01

    Full Text Available Heat stress due to high daytime temperatures is one of the main limiting factors in rice (Oryza sativa L. yield in Colombia. Thus, the objective of the present research was to analyze the effect of three different daytime temperatures (25, 35, and 40 °C on the physiological responses of three Colombian rice cultivars (F60, F733, and F473, thereby contributing to the knowledge of rice acclimation mechanisms. For 10 d, eight plants of each of the three cultivars were subjected daily to 5 h periods of 35 and 40 °C. The control treatment corresponded to normal growth conditions (25 °C. Thermal stress was assessed based on a series of physiological and biochemical parameters. The 35 °C treatment produced photosynthetic and respiratory differences in all three cultivars. At 40 °C, 'F60' displayed the lowest photosynthetic rate and the highest respiratory rate. Although this cultivar experienced particularly strong electrolyte leakage and changes in proline when subjected to the high-temperature treatments, similar trends were observed in 'F733' and 'F473'. At 40 °C, the concentration of malondialdehyde (MDA was lower in 'F473' than in the other cultivars. These results may explain the poor agronomic performance of 'F60' in the field under daytime heat stress. The methodologies employed in the present work may be useful in Colombian rice breeding programs, particularly for the selection of heat-tolerant breeding stocks.

  9. Study on the Key Indexes of Carambola Quality Safety under Logistics Environment of Different Temperature

    OpenAIRE

    Lei Wang; Ruhe Xie; Yifeng Zou

    2015-01-01

    By using layered factor analysis method, the key indexes of quality safety of Carambola are determined. The whole logistics process from picking, storing, transportation to selling is simulated in the experiment. At the same time, the key indexes are detected and analyzed under different temperature in logistics environment. The results indicate that both temperature and package have certain effect on the quality of Carambola. As shown in the study, the following conclusions are made. The tem...

  10. Similarities and differences among fluid milk products: traditionally produced, extended shelf life and ultrahigh-temperature processed.

    Science.gov (United States)

    Grabowski, N T; Ahlfeld, B; Brix, A; Hagemann, A; von Münchhausen, C; Klein, G

    2013-06-01

    Extended shelf life milk is a relatively new kind of fluid milk, generally manufactured by high-temperature treatment and/or micro-filtration. Being advertised as 'pasteurized milk with an extended shelf life', its flavour, compositional quality and labelling was questioned. Extended shelf life (high-temperature treatment), pasteurized ('traditionally produced') and ultrahigh-temperature milk were, therefore, compared at the beginning and end of shelf life. In triangle tests, panellists distinguished clearly between all products. High-temperature treatment milk's flavour was closer to ultrahigh-temperature and traditionally produced milk in the beginning and at the end of shelf life, respectively. Physicochemically and bacteriologically, all three types could be distinguished. Since 'extended shelf life' comprises many process varieties (each affecting flavour differently), consumer information and appropriate package labelling beyond 'long-lasting' is necessary, e.g. by mentioning the heat treatment applied.

  11. Free amino acids in the shrimp crangon crangon and their osmoregulatory significance

    NARCIS (Netherlands)

    Weber, R.E.; Marrewijk, W.J.A. van

    Measurements of the concentrations of ninhydrin positive substance () and of the individual free amino acids in muscle and haemolymph of Crangon crangon, adapted to various salinities at different temperatures, are recorded, and their significance as osmotic effectors is evaluated. The pattern of

  12. The Statistical Differences Between the Gridded Temperature Datasets, and its Implications for Stochastic Modelling

    Science.gov (United States)

    Fredriksen, H. B.; Løvsletten, O.; Rypdal, M.; Rypdal, K.

    2014-12-01

    Several research groups around the world collect instrumental temperature data and combine them in different ways to obtain global gridded temperature fields. The three most well known datasets are HadCRUT4 produced by the Climatic Research Unit and the Met Office Hadley Centre in UK, one produced by NASA GISS, and one produced by NOAA. Recently Berkeley Earth has also developed a gridded dataset. All these four will be compared in our analysis. The statistical properties we will focus on are the standard deviation and the Hurst exponent. These two parameters are sufficient to describe the temperatures as long-range memory stochastic processes; the standard deviation describes the general fluctuation level, while the Hurst exponent relates the strength of the long-term variability to the strength of the short-term variability. A higher Hurst exponent means that the slow variations are stronger compared to the fast, and that the autocovariance function will have a stronger tail. Hence the Hurst exponent gives us information about the persistence or memory of the process. We make use of these data to show that data averaged over a larger area exhibit higher Hurst exponents and lower variance than data averaged over a smaller area, which provides information about the relationship between temporal and spatial correlations of the temperature fluctuations. Interpolation in space has some similarities with averaging over space, although interpolation is more weighted towards the measurement locations. We demonstrate that the degree of spatial interpolation used can explain some differences observed between the variances and memory exponents computed from the various datasets.

  13. Lanthanoid titanate film structure deposited at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Kushkov, V.D.; Zaslavskij, A.M.; Mel'nikov, A.V.; Zverlin, A.V.; Slivinskaya, A.Eh.

    1991-01-01

    Influence of deposition temperature on the structure of lanthanoid titanate films, prepared by the method of high-rate vacuum condensation. It is shown that formation of crystal structure, close to equilibrium samples, proceeds at 1100-1300 deg C deposition temperatures. Increase of temperature in this range promotes formation of films with higher degree of structural perfection. Amorphous films of lanthanoid titanates form at 200-1000 deg C. Deposition temperature shouldn't exceed 1400 deg C to prevent the formation of perovskite like phases in films

  14. Effect of different storage temperatures on bacterial spoilage of ...

    African Journals Online (AJOL)

    This study determined the bacterial organisms associated with Oreochromis niloticus spoilage at two storage temperatures (6 and 20°C) and also assessed the ability of the individual bacterial isolates to cause spoilage at the two storage temperatures. Bacteriological analysis revealed the association of five bacteria ...

  15. Effect of composite resin polymerization modes on temperature rise in human dentin of different thicknesses: an in vitro study

    International Nuclear Information System (INIS)

    Baggio Aguiar, Flavio Henrique; Kanda Peres Barros, Gisele; Alves Nunes Leite Lima, Debora; Bovi Ambrosano, Glaucia Maria; Lovadino, Jose Roberto

    2006-01-01

    The aim of this in vitro study was to evaluate the effect of different polymerization modes on temperature rise in human dentin of different thicknesses, and to evaluate the relation between dentin thickness and temperature rise (TR). For this purpose, 60 specimens were assigned into 20 groups (n = 3): five polymerization modes (1-conventional; 2-soft-start; 3-high intensity; 4-ramp cure: progressive and high intensity; 5-high intensity with the tip of the light-curing unit at a distance of 1.3 cm for 10 s and the tip leaning on the sample) at four dentin thicknesses (0, 1, 2, 3 mm). During composite sample polymerization (2 mm), the temperature was measured by a digital laser thermometer (CMSS2000-SL/SKF). The statistical analyses were conducted by ANOVA (p = 0.05) and post-hoc Tukey's test. There were statistical differences of TR among polymerization modes and dentin thicknesses. The temperature rise was dependent on the polymerization mode and the dentin thickness: the thicker the dentin and the lower the polymerization mode energy, the lower the temperature rise

  16. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    Science.gov (United States)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  17. Measurement of temperature induced in bone during drilling in minimally invasive foot surgery.

    Science.gov (United States)

    Omar, Noor Azzizah; McKinley, John C

    2018-02-19

    There has been growing interest in minimally invasive foot surgery due to the benefits it delivers in post-operative outcomes in comparison to conventional open methods of surgery. One of the major factors determining the protocol in minimally invasive surgery is to prevent iatrogenic thermal osteonecrosis. The aim of the study is to look at various drilling parameters in a minimally invasive surgery setting that would reduce the risk of iatrogenic thermal osteonecrosis. Sixteen fresh-frozen tarsal bones and two metatarsal bones were retrieved from three individuals and drilled using various settings. The parameters considered were drilling speed, drill diameter, and inter-individual cortical variability. Temperature measurements of heat generated at the drilling site were collected using two methods; thermocouple probe and infrared thermography. The data obtained were quantitatively analysed. There was a significant difference in the temperatures generated with different drilling speeds (pdrilled using different drill diameters. Thermocouple showed significantly more sensitive tool in measuring temperature compared to infrared thermography. Drilling at an optimal speed significantly reduced the risk of iatrogenic thermal osteonecrosis by maintaining temperature below the threshold level. Although different drilling diameters did not produce significant differences in temperature generation, there is a need for further study on the mechanical impact of using different drill diameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Evaluation of temperature change during antimicrobial photodynamic therapy with two different photosensitizers in dental caries.

    Science.gov (United States)

    Mirzaie, Mansoreh; Yassini, Esmael; Ashnagar, Sajjad; Hadadi, Azadeh; Chiniforush, Nasim

    2016-06-01

    Many attempts have been made in elimination of bacteria in infected and demineralized dentin to not only provide efficient bactericidal potential, but to have minimal damage for tooth structure. The aim of this study was to assess the temperature change during aPDT with ICG and TBO compared with conventional Diode laser irradiation. 48 premolar teeth which were selected for this study. A class I cavity was drilled in each teeth, with dimensions of 2mm width, 4mm length and depth of 2.5-3.5mm, providing a dentinal wall of approximately 0.5mm for pulp chamber. Then teeth were randomly allocated in 4 experimental groups (n=12); Group 1: TBO+LED, Group 2: ICG+Diode Laser, Group 3: Diode laser with output power of 0.5W, Group 4: Diode laser with output power of 1W. Thermocouple device was held by experimenter hand and the sensor was in pulp chamber of the teeth. Heat generated during irradiation was reported on LCD screen by NUX Plus software. Repeated measure ANOVA was used in order to compare the temperature before and after laser application. Tukey HSD was used to compare the results between groups. Temperature was risen for about 0.54±0.05°C for group 1, 1.67±0.14°C for group 2, 4.21±0.83°C for group 3, and 4. 50±0.32°C for group 4. The difference between group 1 & 2, 1 & 3 and 1 & 4 was significant (p<0.0001). According to results of this study, Diode (with or without photosensitizer- 0.5 and 1W) can be safely used as alternative approach for disinfection after caries removal in thermal point of view. Copyright © 2016. Published by Elsevier B.V.

  19. Different temperature and cooling patterns at the blunt and sharp egg poles reflect the arrangement of eggs in an avian clutch.

    Science.gov (United States)

    Šálek, Miroslav E; Zárybnická, Markéta

    2015-01-01

    Incubation is an energetically demanding process during which birds apply heat to their eggs to ensure embryonic development. Parent behaviours such as egg turning and exchanging the outer and central eggs in the nest cup affect the amount of heat lost to the environment from individual eggs. Little is known, however, about whether and how egg surface temperature and cooling rates vary among the different areas of an egg and how the arrangement of eggs within the clutch influences heat loss. We performed laboratory (using Japanese quail eggs) and field (with northern lapwing eggs) experiments using infrared imaging to assess the temperature and cooling patterns of heated eggs and clutches. We found that (i) the sharp poles of individual quail eggs warmed to a higher egg surface temperature than did the blunt poles, resulting in faster cooling at the sharp poles compared to the blunt poles; (ii) both quail and lapwing clutches with the sharp poles oriented towards the clutch centre (arranged clutches) maintained higher temperatures over the central part of the clutch than occurred in those clutches where most of the sharp egg poles were oriented towards the exterior (scattered clutches); and (iii) the arranged clutches of both quail and lapwing showed slower cooling rates at both the inner and outer clutch positions than did the respective parts of scattered clutches. Our results demonstrate that egg surface temperature and cooling rates differ between the sharp and blunt poles of the egg and that the orientation of individual eggs within the nest cup can significantly affect cooling of the clutch as a whole. We suggest that birds can arrange their eggs within the nest cup to optimise thermoregulation of the clutch.

  20. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    Science.gov (United States)

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The significance of climate change in the Netherlands. An analysis of historical and future trends (1901-2020) in weather conditions, weather extremes and temperature-related impacts

    Energy Technology Data Exchange (ETDEWEB)

    Visser, H.

    2005-07-01

    A rigorous statistical analysis reveals changes in Dutch climate that are statistically significant over the last century. Annually averaged temperatures have increased by 1.5 about 0.5 degrees Centigrade; the number of summer days has roughly doubled from 14 about 5 to 27 about 9 days; annual precipitation has increased by 120 about 100 mm; and the number of extremely wet days has increased by about 40%, from 19 about 3 to 26 about 3 days. Several other changes in Dutch climate, such as spring temperatures rising more rapidly than winter temperatures, the increase of the coldest temperature in each year by 0.9 degrees Centigrade and the annual maximum day sum of precipitation, turn out to be not (yet) statistically significant. The changes in Dutch climate have already led to several statistically significant impacts. The length of the growing season has increased by nearly a month, and the number of heating-degree days, a measure for the energy needed for the heating of houses and buildings, has decreased by 14 about 5%. Projections of future temperature increase in 2020 based on the statistical analysis closely resemble projections based on climate models: temperatures continue to increase from 10.4 about 0.4 degrees Centigrade in 2003 to 10.7 about 0.6 degrees Centigrade in 2010 and 11.1 about 1.0 degrees Centigrade in 2020. The energy needed for heating of houses and buildings is expected to decrease further. This warming effect is expected to lower projections of future Dutch greenhouse-gas emissions by 3.5 Mton CO2 equivalents, which is relevant in the context of commitments under the Kyoto Protocol. Finally, over the course of the 20th century the chance on an 'Elfstedentocht', an outdoor skating event in the Netherlands, has decreased from once every five years to once every ten years. Even though this impact change is not yet statistically significant, it resides 'on the edge' of significance: within a few years more evidence may

  2. Clinical, cardiopulmonary and haemocytological effects of xylazine in goats after acute exposure to different environmental temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    E.G.M. Mogoa

    2000-07-01

    Full Text Available This study was carried out to assess the influence of xylazine administration on clinical, cardiopulmonary and haemocytological variables after acute exposure to different environmental conditions. Xylazine hydrochloride was administered intravenously at 0.1 mg/kg body mass to 6 clinically healthy, castrated male goats. All animals were exposed for 60 min to 3 sets of climatic conditions: 14 °C, 33% relative humidity; 24 °C, 55% RH, and 34 °C, 65% RH. The variables that were measured for a period of 60 min after xylazine administration were sedation, analgesia, salivation, urination, ventilation rate, heart-rate, mean arterial blood pressure, oesophageal temperature, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin concentration. Xylazine induced sedation, analgesia, salivation and urination independently of the 3 environmental conditions. Environment had no influence on the onset, duration and recovery from sedation. In the 14 °C environment, xylazine resulted in a significant decrease in ventilation and heart-rate from baseline values. Significant changes in mean arterial blood pressure, haemoglobin concentration, mean corpuscular volume, haematocrit and red cell count were observed in the 3 environments. Total plasma protein was significantly altered at 24 °C and 34 °C. Acute exposure of goats to different environmental conditions had no significant influence on the clinical, cardiopulmonary and haemocytological variables. Physiological changes induced by xylazine were therefore independent of the environment.

  3. Explanation of significant differences for the TNX groundwater operable unit

    International Nuclear Information System (INIS)

    Palmer, E.R.

    1997-01-01

    This Explanation of Significant Differences (ESD) is being issued by the Department of Energy (DOE), the lead agency for the Savannah River Site (SRS), with concurrence by the Environmental Protection Agency-Region IV (EPA) and South Carolina Department of Health and Environmental Control (SCDHEC) to announce changes in the interim remediation strategy selected for the TNX Groundwater Operable Unit. The TNX Area is located adjacent to the Savannah River in the southwestern portion of SRS. The remedy selected in the Interim Record of Decision (IROD) to achieve the interim action goals was the Hybrid Groundwater Corrective Action (HGCA). The HGCA consisted of a recirculation well system and an air stripper with a series of groundwater extraction wells. The original remediation strategy needs to be modified because the recirculation well system was determined to be ineffective in this area due to geological factors and the nature of the contamination

  4. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    Science.gov (United States)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  5. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jagiello, J.; Thommes, M.

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic micro-porous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications [1]. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP [Quantachrome Instruments, Boynton Beach, Florida, USA]. As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micro-pores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micro-pores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT) [2], and graphitized carbon black (Supelco). The Qst values decrease with increasing pore

  6. Assessing the growth of Escherichia coli O157:H7 and Salmonella in spinach, lettuce, parsley and chard extracts at different storage temperatures.

    Science.gov (United States)

    Posada-Izquierdo, G; Del Rosal, S; Valero, A; Zurera, G; Sant'Ana, A S; Alvarenga, V O; Pérez-Rodríguez, F

    2016-06-01

    The objective of this work was to study the growth potential of Escherichia coli O157:H7 and Salmonella spp. in leafy vegetable extracts at different temperature conditions. Cocktails of five strains of E. coli O157:H7 and of Salmonella enterica were used. Inoculated aqueous vegetable extracts were incubated at 8, 10, 16 and 20°C during 21 days. Microbial growth was monitored using Bioscreen C(®) . In spinach extract, results showed that for E. coli O157:H7 and Salmonella significant differences (P parsley showed the lowest values of μabs , below 0·008 h(-1) . The coefficients of variance (CoV) calculated for the different replicates evidenced that at low temperature (8°C) a more variable behaviour of both pathogens is expected (CoV > 180%). This study provides evidence that aqueous extracts from vegetable tissues can result in distinct growth niche producing different response in various types of vegetables. Finally, these results can be used as basis to establish risk rankings of pathogens and leafy vegetable matrices with relation to their potential growth. © 2016 The Society for Applied Microbiology.

  7. Isolating the Roles of Different Forcing Agents in Global Stratospheric Temperature Changes Using Model Integrations with Incrementally Added Single Forcings

    Science.gov (United States)

    Aquila, V.; Swartz, W. H.; Waugh, D. W.; Colarco, P. R.; Pawson, S.; Polvani, L. M.; Stolarski, R. S.

    2016-01-01

    Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichon (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of AMIP-style simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely

  8. Influence of MR imaging on the central body temperature and peripheral temperature in humans

    International Nuclear Information System (INIS)

    Vogl, T.; Krimmel, K.; Dopmeier, D.; Seiderer, M.; Lissner, J.

    1986-01-01

    Thermal effects of in vitro and in vivo MR imaging were studied at different field strengths (0.35 T, 1.5 T) and radio frequency power, using a modified fluoroptical technique. A fiber optic probe that measures with an accuracy of up to 0.1 0 C was inserted via esophageal and rectal tubes in 20 test subjects to measure central body temperature. In another ten subjects the temperature was measured subcutaneously and by an intravenous catheter system. No significant temperature change was measurable in the central parts of the body (rectum, esophagus) within the static magnetic field and during MR imaging. Subcutaneous and intravenous measurements of the superficial temperature of the arm led to the same conclusions. Theoretical calculations of the absorbed energy confirm these findings

  9. Detection and analysis of anomalies in the brightness temperature difference field using MSG rapid scan data

    Czech Academy of Sciences Publication Activity Database

    Šťástka, J.; Radová, Michaela

    2013-01-01

    Roč. 123, SI (2013), s. 354-359 ISSN 0169-8095 R&D Projects: GA ČR GA205/07/0905 Institutional support: RVO:68378289 Keywords : brightness temperature difference (BTD) * BTD anomaly * cloud-top brightness temperature (BT) * convective storm * MSG Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.421, year: 2013 https://www.sciencedirect.com/science/article/pii/S0169809512001548

  10. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    OpenAIRE

    Santos, Roberta Machado; Voltolini, Tadeu Vinhas; Angelotti, Francislene; Aidar, Saulo de Tarso; Chaves, Agnaldo Rodrigues de Melo

    2014-01-01

    The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian) were compared. Cultivars were grown in growth chambers at three temperatures (day/night): 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × ...

  11. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk.

    Science.gov (United States)

    Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J

    2009-10-01

    The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can

  12. Quality changes of long-life foods during three-month storage at different temperatures

    Directory of Open Access Journals (Sweden)

    Zuzana Bubelová

    2017-01-01

    Full Text Available The aim of this study was to describe quality changes of eight long-life foods (instant potato purée with milk, instant goulash soup, canned white-type cheese, pre-baked baguette, szeged goulash meal-ready-to-eat, canned chicken meat, pork pate and canned tuna fish during three-month storage at 4 different temperatures (-18 °C, 5 °C, 23 °C and 40 °C. These temperatures were chosen to simulate various climatic conditions in which these foods could be used to ensure the boarding during crisis situations and military operations to provide high level of sustainability. Foods were assessed in terms of microbiological (total number of aerobic and/or facultative anaerobic mesophilic microorganisms, number of aerobic and anaerobic spore-forming microorganisms, number of enterobacteria, number of yeasts and/or moulds, chemical (pH-values, dry matter, fat, crude protein, ammonia and thiobarbituric acid reactive substances contents, texture profile (hardness and sensory (appearance, consistency, firmness, flavour and off-flavour analyses. Microbiological analyses showed expected results with the exception of szeged goulash, pork pate and tuna fish, which, although being sterilised products, contained some counts of bacteria. The decrease of pH-values and increase of dry matter, ammonia and thiobarbituric acid reactive substances contents were observed during the storage of all foods due to prolonged storage time and/or elevated storage temperature. Furthermore, according to texture profile analysis, hardness of cheese and baguette rose as a result of both storage temperature and time. Finally, the highest storage temperature (40 °C resulted in a deterioration of sensory quality (especially flavour of most foods; the exceptions were pate and tuna fish which retained good sensory quality throughout 3-month storage at all temperatures.

  13. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    Science.gov (United States)

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The potential for using urinary bladder temperature in monitoring whole body hyperthermia

    International Nuclear Information System (INIS)

    Martin, P.A.; Robins, H.I.; Dennis, W.H.

    1985-01-01

    Urinary bladder, esophageal and rectal temperatures of patients were determined by thermistor thermometry during systemic hyperthermia treatments. When deep temperatures were raised from 37 0 to 41.8 0 , the esophageal temperature increases led those of the bladder and rectum. Throughout the heating phases the paired difference of esophageal and bladder temperatures was significantly greater than zero while the difference between bladder and rectal was less. In this system, urinary bladder temperature is a measure of deep tissue temperature and not a good estimate of arterial blood temperature

  15. Effectiveness of the Entomopathogenic Nematodes Heterorhabditis bacteriophora and Steinernema feltiae against Tenebrio molitor (Yellow Mealworm) Larvae in Different Soil Types at Different Temperatures

    OpenAIRE

    SUSURLUK, Alper

    2014-01-01

    The efficiency of the entomopathogenic nematodes Steinernema feltiae Tur-S3 and Heterorhabditis bacteriophora Tur-H2, isolated in Turkey, against larvae of Tenebrio molitor L. was investigated in different soil type and temperature conditions. Sterilized and non-sterilized silver sand, clay-loam soil, and compost soil were tested, each at 12, 18, and 24 ºC. Temperature had the greatest effect on the mortality of T. molitor larvae caused by both nematode species. The efficiency of the 2 nemato...

  16. The Effect of Water Temperature on Argulus foliaceus L. 1758 (Crustacea; Branchiura on Different Fish Species

    Directory of Open Access Journals (Sweden)

    Mustafa KOYUN

    2011-05-01

    Full Text Available Parasites belonging to Argulus genus, known as fish louse (Argulus foliaceus L. significantly affect in negative way both in natural and farming environment. In this study, the pathogenic effect of fish louse temperature on fish depending on water was investigated. In this research to estimate the effects of several factors such as water temperature, gender of the fish and the infection of fish louse were studied through Poisson regression method. As fish species, Alburnus alburnus (bleak, Carassius carassius (crucian carp and Carassius auratus (golden carp were caught periodically, starting from May during the year, and the parasites were counted. The gender and metrical measures of the examined fish were categorized separately. The degrees of water temperature of the dam were measured. Results from Poisson regression analysis showed that fish louse has harmful effect on the mentioned fish, depending on the water temperature.

  17. Deep level centers in electron-irradiated silicon crystals doped with copper at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)

    2017-07-15

    The effect of bombardment with energetic particles on the deep-level spectrum of copper-contaminated silicon wafers is studied by space charge spectroscopy methods. The p-type FZ-Si wafers were doped with copper in the temperature range of 645-750 C and then irradiated with the 10{sup 15} cm{sup -2} fluence of 5 MeV electrons at room temperature. Only the mobile Cu{sub i} species and the Cu{sub PL} centers are detected in significant concentrations in the non-irradiated Cu-doped wafers. The properties of the irradiated samples are found to qualitatively depend on the copper in-diffusion temperature T{sub diff}. For T{sub diff} > 700 C, the irradiation partially reduces the Cu{sub i} concentration and introduces additional Cu{sub PL} centers while no standard radiation defects are detected. If T{sub diff} was below ∝700 C, the irradiation totally removes the mobile Cu{sub i} species. Instead, the standard radiation defects and their complexes with copper appear in the deep-level spectrum. A model for the defects reaction scheme during the irradiation is derived and discussed. DLTS spectrum of the Cu-contaminated and then irradiated silicon qualitatively depends on the copper in-diffusion temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Corrosion fatigue crack growth behaviour of low-alloy RPV steels at different temperatures and loading frequencies under BWR/NWC environment

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2004-01-01

    The strain-induced corrosion cracking or low-frequency corrosion fatigue (LFCF) crack growth behaviour of different reactor pressure vessel (RPV) steels and of a RPV weld filler/weld heat-affected zone (HAZ) material were characterized under simulated transient boiling water reactor/normal water chemistry conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in oxygenated high-temperature water at temperatures of either 288, 250, 200, or 150 deg. C. Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographic analysis by SEM were used to quantify the cracking response. Under low-flow and highly oxidising conditions (ECP > 0 mV SHE , O 2 = 0.4 ppm) the cycle-based LFCF crack growth rates (CGR) Δa/ΔN increased with decreasing loading frequency and increasing temperature with a maximum/plateau at/above 250 deg. C. Sustained environmentally-assisted crack growth could be maintained down to low frequencies of 10 -5 Hz. The LFCF CGR of low- and high-sulphur steels and of the weld filler/HAZ material were comparable over a wide range of loading conditions and conservatively covered by the 'high-sulphur line' of the General Electric-model. The 'ASME XI wet fatigue CGR curves' could be significantly exceeded in all materials by cyclic fatigue loading at low frequencies ( -2 Hz) at high and low load ratios R. (authors)

  19. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    Science.gov (United States)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi

    2015-05-01

    High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.

  20. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... and we propose that the fluid effect on mechanical properties of highly porous chalk may be the result of liquid‐solid friction. Applying a different strain or stress rate is influencing the rock strength and needs to be included. The resulting function is shown to relate to the material dependent...... and rate independent b-factor used when describing the time dependent mechanical properties of soft rock or soils. As a consequence it is then possible to further characterize the material constant from the porosity and permeability of the rock as well as from pore fluid density and viscosity which...

  1. Significant room-temperature ferromagnetism in porous ZnO films: The role of oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue; Liu, Huiyuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Sun, Huiyuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Liu, Lihu; Jia, Xiaoxuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Porous ZnO films were deposited on porous anodic alumina substrates. • Significant ferromagnetism (FM) has been observed in porous ZnO films (110 emu/cm{sup 3}). • The strong magnetic anisotropy was observed in the porous ZnO films. • The origin of FM is attributed to the oxygen vacancy with a local magnetic moment. - Abstract: Pure porous ZnO films were prepared by direct current reactive magnetron sputtering on porous anodic alumina substrates. Remarkably large room-temperature ferromagnetism was observed in the films. The highest saturation moment along the out-of-plane direction was about 110 emu/cm{sup 3}. Experimental and theoretical results suggested that the oxygen vacancies and the unique porous structure of the films are responsible for the large ferromagnetism. There are two modes of coupling between oxygen vacancies in the porous ZnO films: (i) exchange interactions directly between the oxygen vacancies and (ii) with the mediation of conduction electrons. In addition, it was found that the magnetic moment of ZnO films can be changed by tuning the concentration of oxygen vacancies. These observations may be useful in the development of ZnO-based spintronics devices.

  2. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    Energy Technology Data Exchange (ETDEWEB)

    Ashokkumar, Saranya, E-mail: saras@food.dtu.dk [Accoat A/S, Munkegardsvej 16, 3490 Kvistgard (Denmark); Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Adler-Nissen, Jens [Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Moller, Per [Department of Materials Science and Engineering, DTU Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2012-12-15

    Graphical abstract: Plot of cos {theta} versus temperature for metal and ceramic surfaces where cos {theta} rises linearly with increase in temperature. Highlights: Black-Right-Pointing-Pointer cos {theta} of olive oil on different surface materials rises linearly with increase in temperature. Black-Right-Pointing-Pointer Slopes are much higher for quasicrystalline and polymers than for ceramics. Black-Right-Pointing-Pointer Increase in surface roughness and surface flaws increases surface wettability. Black-Right-Pointing-Pointer Contact angle values gave information for grouping easy-clean polymers from other materials. Black-Right-Pointing-Pointer Contact angle measurements cannot directly estimate the cleanability of a surface. - Abstract: The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25-200 Degree-Sign C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface materials investigated include stainless steel (reference), PTFE (polytetrafluoroethylene), silicone, quasicrystalline (Al, Fe, Cr) and ceramic coatings: zirconium oxide (ZrO{sub 2}), zirconium nitride (ZrN) and titanium aluminum nitride (TiAlN). The ceramic coatings were deposited on stainless steel with two different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cos {theta} values. Studies of the effect of roughness and surface flaws on wettability revealed that the cos {theta} values increases with increasing roughness and surface flaws. Correlation analysis indicates that the measured contact angle values gave useful information for grouping easy-clean polymer materials from the other materials; for the latter group, there is no direct relation between

  3. Relationships between the normalised difference vegetation index and temperature fluctuations in post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Bujalský, L.; Jirka, V.; Zemek, František; Frouz, J.

    2018-01-01

    Roč. 32, č. 4 (2018), s. 254-263 ISSN 1748-0930 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : temperature * normalised difference * vegetation index (NDVI) * vegetation cover * remote sensing Subject RIV: DF - Soil Science Impact factor: 1.078, year: 2016

  4. Comparison of the temperature and humidity in the anesthetic breathing circuit among different anesthetic workstations: Updated guidelines for reporting parallel group randomized trials.

    Science.gov (United States)

    Choi, Yoon Ji; Min, Sam Hong; Park, Jeong Jun; Cho, Jang Eun; Yoon, Seung Zhoo; Yoon, Suk Min

    2017-06-01

    For patients undergoing general anesthesia, adequate warming and humidification of the inspired gases is very important. The aim of this study was to evaluate the differences in the heat and moisture content of the inspired gases with low-flow anesthesia using 4 different anesthesia machines. The patients were divided into 11 groups according to the anesthesia machine used (Ohmeda, Excel; Avance; Dräger, Cato; and Primus) and the fresh gas flow (FGF) rate (0.5, 1, and 4 L/min). The temperature and absolute humidity of the inspired gas in the inspiratory limbs were measured at 5, 10, 15, 30, 45, 60, 75, 90, 105, and 120 minutes in 9 patients scheduled for total thyroidectomy or cervical spine operation in each group. The anesthesia machines of Excel, Avance, Cato, and Primus did not show statistically significant changes in the inspired gas temperatures over time within each group with various FGFs. They, however, showed statistically significant changes in the absolute humidity of the inspired gas over time within each group with low FGF anesthesia (P humidity of the inspired gas over time within each group with an FGF of 4 L/min (P humidities of the inspired gas for all anesthesia machines were lower than the recommended values. There were statistical differences in the provision of humidity among different anesthesia workstations. The Cato and Primus workstations were superior to Excel and Avance. However, even these were unsatisfactory in humans. Therefore, additional devices that provide inspired gases with adequate heat and humidity are needed for those undergoing general anesthetic procedures.

  5. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    Science.gov (United States)

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  6. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  7. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.; O'Brien, James E.; Herring, J. Stephen

    2009-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  8. Fluorescent silver nanoclusters capped by polyethyleneimine with different molecular weights: Universal synthesis and application as a temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Fei, E-mail: qufei3323@163.com [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); Li, Qingjin [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); You, Jinmao, E-mail: jmyou6304@163.com [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001 (China)

    2016-09-15

    In this paper, we developed a universal, applicable and simple synthetic method of Ag nanoclusters capped by polyethyleneimine (PEI) with different molecular weights (AgNC-PEIs), including Mw 600, 1300, 1800, 2000, 10,000, 25,000, 70,000, and 750,000. Using formaldehyde as the sole reducing agent, silver nanoclusters could be successfully prepared by using these templates. Subsequently, several characterization techniques were employed to investigate the properties of AgNC-PEIs, and the results suggested that these AgNC-PEIs had similar sizes, structures, and optical features. However, besides the common characteristics, different temperature sensitivities were found for these nanoclusters, in which AgNC-PEI 25000 was proper to be applied as a temperature sensor. With increasing temperature, the fluorescence quenched dramatically, and this change could be readily observed by naked eyes under UV light. Injection of these temperature sensitive nanoclusters into a glass tube, a simple thermometer could be fabricated easily, thus AgNC-PEI 25000 would be a promising candidate for temperature sensing as a visible indicator.

  9. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  10. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  11. Prognostic significance of between-arm blood pressure differences.

    Science.gov (United States)

    Agarwal, Rajiv; Bunaye, Zerihun; Bekele, Dagim M

    2008-03-01

    Blood pressure (BP) recordings often differ between arms, but the extent to which these differences are reproducible and whether the differences have prognostic importance is unknown. We enrolled 421 consecutive patients from a medicine and a renal clinic at a veterans' hospital. Three BP recordings were obtained in each arm using an oscillometric device in a sequential manner and repeated in 1 week. Patients were followed for all-cause mortality arm had 5.1-mm Hg higher systolic BP that attenuated by approximately 2.2 mm Hg a week later. Systolic BP dropped 6.9 mm Hg over 1 week and by an additional 5.3 mm Hg in patients with chronic kidney disease. Accounting for the visit and arm effect improved the reproducibility of the BP measurements. The intraclass correlation coefficient was 0.74, which improved to 0.88 after accounting for visit and 0.93 after accounting for arm. The crude mortality rate was 6.33 per 100 patient-years. Every 10-mm Hg difference in systolic BP between the arms conferred a mortality hazard of 1.24 (95% CI: 1.01 to 1.52) after adjusting for average systolic BP and chronic kidney disease. BP differences between arms are reproducible and carry prognostic information. Patients should have evaluation of BP in both arms at the screening visit.

  12. Quantum entanglement at negative temperature

    International Nuclear Information System (INIS)

    Furman, G B; Meerovich, V M; Sokolovsky, V L

    2013-01-01

    An isolated spin system that is in internal thermodynamic equilibrium and that has an upper limit to its allowed energy states can possess a negative temperature. We calculate the thermodynamic characteristics and the concurrence in this system over the entire range of positive and negative temperatures. Our calculation was performed for different real structures, which can be used in experiments. It is found that the temperature dependence of the concurrence is substantially asymmetrical similarly to other thermodynamic characteristics. At a negative temperature the maximum concurrence and the absolute temperature of the entanglement appearance are significantly larger than those at a positive temperature. The concurrence can be characterized by two dimensionless parameters: the ratio between the Zeeman and dipolar energies and the ratio of the thermal and dipolar energies. It was shown that for all considered structures the dimensionless temperatures of the transition between entanglement and separability of the first and second spins are independent of spin structure and the number of spins. (paper)

  13. Change in the sensitivity of CR-39 for alpha-tracks after the storage at different temperatures

    International Nuclear Information System (INIS)

    Enomoto, Hiroko; Ishigure, Nobuhito

    2000-01-01

    The effect of storage on track registration property of CR-39 has been investigated. Pieces of CR-39 plate were irradiated with normally incident α-particles and fission fragments using a 252 Cf source prior and posterior to the storage of them in air for one year at different temperatures of -80degC, -23degC, 4degC, 23degC and 35degC. Periodical etching was performed for the pieces stored at different temperatures using the solution of NaOH with 7 mol+l -1 at 70degC for 4 hours. Bulk etch rate (V b ) was obtained from the etch pit diameter (D f ) of fission tracks using the equation: V b =D f /(2t), where t is etching time (h). The sensitivity for α-tracks (S) was obtained from the ratio of the etch pit diameters between α-tracks (D a ) and fission-tracks using the equation: S={1+(D a /D f ) 2 }/{1-(D a /D f ) 2 }-1. The present results show that both the bulk etch rate and α-track sensitivity are not constant, which tend to decrease with storage times and storage temperatures. At -80degC, -23degC and 4degC the change in the sensitivity was negligible. On the other hand, the storage at 23degC for 1 year decreased the sensitivity down to 74%. The most significant effect was observed on the α-track sensitivity at 35degC, which was reduced to 80% for one month, 61% for three months, 42% for six months and 32% for one year. By the comparison of experiments between fading and ageing it is shown that such storage effect is attributed not to fading of latent tracks but mainly to some changes in the detector itself. When CR-39 is used of radon monitoring or neutron monitoring, the following points should be paid attention to: (1) the detector should be stored in a refrigerator before exposure and until etching after the exposure, (2) the change in the sensitivity between the time of calibration and the time of use should be evaluated and the counting efficiency at the measurement should be corrected and (3) for comparison or for interpretation of experimental results

  14. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC

    International Nuclear Information System (INIS)

    Su, A.; Ferng, Y.M.; Shih, J.C.

    2010-01-01

    The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.

  15. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating

  16. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica

    Directory of Open Access Journals (Sweden)

    J. Wukovits

    2017-06-01

    Full Text Available Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with 13C and 15N labelled freeze-dried Dunaliella tertiolecta (green algae at the start of the experiment and were incubated at 20, 25 and 30 °C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus

  17. Study on Relationship between Seasonal Temperatures and Municipal Wastewater Pollutant Concentration and Removal Rate

    Directory of Open Access Journals (Sweden)

    Yuan Shaoxiong

    2016-01-01

    Full Text Available In this study, the temperatures, pollutant concentrations and other indicators of municipal wastewater influent and effluent were tested for 7 months in 6 constructed wetland microcosms; the hydraulic retention time is 2 days. The results indicated that for both influent and effluent, there was a highly significant negative correlation (P<0.01 between the temperature and the pollutant concentrations, there was a significant difference (P<0.05 between seasonal temperatures, and the pollutant concentrations in summer and autumn were significantly different from those in winter (P<0.05. Furthermore, a regression analysis of pollutant concentration (y based on changes in water temperature (x in different seasons was performed. The analysis revealed that the relationship has the form ‘y = a -bx + cx2’, that under certain circumstances, pollutant concentrations can be calculated based on the temperature, and that the concentrations of NH4-N, Total Phosphorus (TP and Soluble Reactive Phosphorus (SRP had a significantly negative correlation with their removal rate (P < 0.01. However, seasonal temperature clearly did not have a direct impact on the pollutant concentration, and some studies have indicated that the different manners in which urban residents use water as the temperature changes may be the real reason that the pollutant concentrations of municipal wastewater vary with seasonal temperature. Furthermore, when designing and operating constructed wetlands, the impact of the changes in pollutant concentrations generated by seasonal temperature should be fully considered, dilution and other means should be taken to ensure purification.

  18. Computation of temperature elevation in rabbit eye irradiated by 2.45-GHz microwaves with different field configurations.

    Science.gov (United States)

    Hirata, Akimasa; Watanabe, Soichi; Taki, Masao; Fujiwara, Osamu; Kojima, Masami; Sasaki, Kazuyuki

    2008-02-01

    This study calculated the temperature elevation in the rabbit eye caused by 2.45-GHz near-field exposure systems. First, we calculated specific absorption rate distributions in the eye for different antennas and then compared them with those observed in previous studies. Next, we re-examined the temperature elevation in the rabbit eye due to a horizontally-polarized dipole antenna with a C-shaped director, which was used in a previous study. For our computational results, we found that decisive factors of the SAR distribution in the rabbit eye were the polarization of the electromagnetic wave and antenna aperture. Next, we quantified the eye average specific absorption rate as 67 W kg(-1) for the dipole antenna with an input power density at the eye surface of 150 mW cm(-2), which was specified in the previous work as the minimum cataractogenic power density. The effect of administrating anesthesia on the temperature elevation was 30% or so in the above case. Additionally, the position where maximum temperature in the lens appears is discussed due to different 2.45-GHz microwave systems. That position was found to appear around the posterior of the lens regardless of the exposure condition, which indicates that the original temperature distribution in the eye was the dominant factor.

  19. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures.

    Science.gov (United States)

    Rotola-Pukkila, Minna K; Pihlajaviita, Seija T; Kaimainen, Mika T; Hopia, Anu I

    2015-12-01

    This study examined the concentrations of umami compounds in pork loins cooked at 3 different temperatures and 3 different lengths of cooking times. The pork loins were cooked with the sous vide technique. The free amino acids (FAAs), glutamic acid and aspartic acid; the 5'-nucleotides, inosine-5'-monophosphate (IMP) and adenosine-5'-monophosphate (AMP); and corresponding nucleoside inosine of the cooked meat and its released juice were determined by high-performance liquid chromatography. Under the experimental conditions used, the cooking temperature played a more important role than the cooking time in the concentration of the analyzed compounds. The amino acid concentrations in the meat did not remain constant under these experimental conditions. The most notable effect observed was that of the cooking temperature and the higher amino acid concentrations in the released juice of meat cooked at 80 °C compared with 60 and 70 °C. This is most likely due to the heat induced hydrolysis of proteins and peptides releasing water soluble FAAs from the meat into the cooking juice. In this experiment, the cooking time and temperature had no influence on the IMP concentrations observed. However, the AMP concentrations increased with the increasing temperature and time. This suggests that the choice of time and temperature in sous vide cooking affects the nucleotide concentration of pork meat. The Sous vide technique proved to be a good technique to preserve the cooking juice and the results presented here show that cooking juice is rich in umami compounds, which can be used to provide a savory or brothy taste. © 2015 Institute of Food Technologists®

  20. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rojacz, H., E-mail: rojacz@ac2t.at [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria); Mozdzen, G. [Aerospace & Advanced Composites GmbH, Viktor-Kaplan-Straße 2F, 2700 Wiener Neustadt (Austria); Weigel, F.; Varga, M. [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria)

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  1. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    International Nuclear Information System (INIS)

    Rojacz, H.; Mozdzen, G.; Weigel, F.; Varga, M.

    2016-01-01

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  2. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    Science.gov (United States)

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  3. Analyzing the Impact of Ambient Temperature Indicators on Transformer Life in Different Regions of Chinese Mainland

    Science.gov (United States)

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  4. Comparison of rectal, tympanic membrane and axillary temperature measurement methods in dogs.

    Science.gov (United States)

    Lamb, V; McBrearty, A R

    2013-11-30

    The aim of this study was to compare axillary and tympanic membrane (TM) temperature measurements to rectal temperature in a large group of clinical canine patients. We also sought to ascertain whether certain factors affected the differences between the measurements and to compare the ease of measurement. Axillary temperatures were easy to obtain but tended to be lower than rectal readings (median difference 0.6°C). In 54.7 per cent of dogs there was a difference of >0.5°C between the two readings. Weight, coat length, body condition score and breed size were significantly associated with the difference between the rectal and axillary temperature. TM temperatures were more similar to rectal temperatures (median difference 0°C) but in 25 per cent of dogs, there was a difference of >0.5°C between rectal and TM readings. TM measurements were less well tolerated than axillary measurements. None of the factors assessed were associated with the difference between the rectal and TM temperature. As a difference of >0.5°C has previously been described as unacceptable for different methods of temperature measurement, neither axillary nor TM temperatures are interchangeable with rectal temperatures for the measurement of body temperature.

  5. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  6. Effect of environmental temperature on radioiodine uptake by the thyroid gland of rats during ontogenetic development

    International Nuclear Information System (INIS)

    Samel, M.

    1975-01-01

    Radioiodine uptake by the thyroid gland of young rats, aged 1 to 30 days, was studied at nest temperature (35degC) and at the temperature of the animal room (24degC). In animals younger than two weeks 131 I uptake was significantly lower at 24degC than at nest temperature. In older animals, these temperature differences did not result in significantly different uptake values. It is suggested that short-term cold does not activate the pituitary-thyroid gland axis in younger animals with unstable body temperature, and that functional changes in the circulatory system might be responsible for the differences observed in 131 I uptake. (author)

  7. Effects of different oxyanions in solution on the precipitation of jarosite at room temperature.

    Science.gov (United States)

    Yeongkyoo, Kim

    2018-04-09

    The effects of five different oxyanions, AsO 4 , SeO 3 , SeO 4 , MoO 4 , and CrO 4 , on the precipitation of jarosite at room temperature were investigated by X-ray diffraction, scanning electron microscopy, and chemical analysis. Different amounts (2, 5, and 10 mol%) of oxyanions in the starting solution and different aging times (1 h-40 days) were used for the experiment. In the initial stage, only the amorphous phase appears for all samples. With increasing aging time, jarosite and jarosite with oxyanions start precipitating at room temperature with different precipitation rates and crystallinities. Jarosite with AsO 4 shows the lowest precipitation rate and lowest crystallinity. With increasing amounts of oxyanions, the crystallization rate decreases, especially for jarosite with AsO 4 . The jarosite samples with CrO 4 and SeO 4 show the fastest precipitation and highest crystallinities. For the jarosite samples with a low precipitation rate and low crystallinity, the amorphous phase contains high concentrations of oxyanions, probably because of the fast precipitation of the amorphous iron oxyanion phase; however, the phase with fast jarosite precipitation contains fewer oxyanions. The results show that coprecipitation of jarosite can play a more important role in controlling the behavior of CrO 4 than AsO 4 in acid mine drainage. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Temperature effect correction for muon flux at the Earth surface: estimation of the accuracy of different methods

    International Nuclear Information System (INIS)

    Dmitrieva, A N; Astapov, I I; Kovylyaeva, A A; Pankova, D V

    2013-01-01

    Correction of the muon flux at the Earth surface for temperature effect with the help of two simple methods is considered. In the first method, it is assumed that major part of muons are generated at some effective generation level, which altitude depends on the temperature profile of the atmosphere. In the second method, dependence of muon flux on the mass-averaged atmosphere temperature is considered. The methods were tested with the data of muon hodoscope URAGAN (Moscow, Russia). Difference between data corrected with the help of differential in altitude temperature coefficients and simplified methods does not exceed 1-1.5%, so the latter ones may be used for introduction of a fast preliminary correction.

  9. ANALYSING THE EFFECTS OF DIFFERENT LAND COVER TYPES ON LAND SURFACE TEMPERATURE USING SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    A. Şekertekin

    2015-12-01

    Full Text Available Monitoring Land Surface Temperature (LST via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  10. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    Science.gov (United States)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  11. THE DYEING PROCESS OF KNITTED FABRICS AT DIFFERENT TEMPERATURES USING ULTRASOUND

    Directory of Open Access Journals (Sweden)

    MITIC Jelena

    2014-05-01

    Full Text Available The dyeing of knitted fabrics made from 100 % cellulose using on-line procedure vinyl sulfonic reactive dye, with or without ultrasound energy, is carried out in this paper. The impact of temperature has been observed. The dye exhaustion is monitored using the method of absorption spectrophotometry, and the quality control of the coloration is monitored using color measurements. The acting of ultrasound on coloration consistency, as well as on some mechanical characteristics has also been examined. All examples of the ultrasound dyeing process show greater dye exhaustion in comparison to the conventional procedure. In addition, all the samples, which have been dyed with the ultrasound energy at 40°C, are significantly darker and have deeper color in comparison with the referent sample. The temperature has a great influence on kinetic energy of the dye molecules, and therefore on the diffusion processes in the dyeing system. The exhaustion chart indicates that when the temperature is lower the exhaustion degree drops. However, all the samples dyed with the ultrasound energy have bigger exhaustion. Besides that, ultrasound energy contributes to warming up the processing environment, so the additional warm up with the electricity is unnecessary, unlike the conventional way of dyeing. Since the reactive dyes chemically connect themselves with the cellulose substrate and in that way form covalent connection, the dyed fabrics have good washing consistency. Analysis results indicate that the consistencies are identical regardless the applied dyeing procedure. In other words, the dyeing method using the ultrasound energy produces the dyed fabric of the same quality. After analyzing the results of breaking force and elongation at break of knitted fabrics, it is noticeable that there is no degradation of previously mentioned knitted fabrics features (horizontally and vertically during the ultrasound wave’s activity.

  12. Effect of environmental temperature on shock absorption properties of running shoes.

    Science.gov (United States)

    Dib, Mansour Y; Smith, Jay; Bernhardt, Kathie A; Kaufman, Kenton R; Miles, Kevin A

    2005-05-01

    To determine the effect of temperature changes on the shock attenuation of 4 running shoe shock absorption systems. Prospective. Motion analysis laboratory. The shock attenuation of 4 different running shoes representing common shock absorption systems (Nike Air Triax, Asics Gel Nimbus IV, Adidas a3 cushioning, Adidas Supernova cushion) was measured at ambient temperatures of -20 degrees C, -10 degrees C, 0 degrees C, +10 degrees C, +20 degrees C, +30 degrees C, +40 degrees C, and +50 degrees C. Repeated-measures analysis of variance was used to determine differences between shoes. Shock attenuation as indicated by peak deceleration (g) measured by a mechanical impactor following ASTM Standard F1614-99. Shock attenuation decreased significantly with reduced temperature for each shoe tested. The Adidas a3 shoe exhibited significantly higher peak decelerations (lower shock attenuation) at cold temperatures compared with the other shoes. Cold ambient temperatures significantly reduce the shock attenuation of commonly used running shoes. These findings have important clinical implications for individuals training in extreme weather environments, particularly those with a history of lower limb overuse injuries.

  13. Comparative Photoelectrochemical Study of PEC Solar Cell Fabricated with n-TiO2 Photo-electrodes at Different Temperatures and under Different Oxygen Flow Rates

    International Nuclear Information System (INIS)

    Mishra, P.R.; Srivastava, O.N.; Shukla, P.K.

    2006-01-01

    Photoelectrochemical splitting of water induced by solar energy for hydrogen production has been studied in the present investigation. PEC solar cell was fabricated with n-TiO 2 photo-electrodes synthesized at different oxidation temperatures e.g. 700 C, 750 C, 800 C and 850 C under oxygen flow rate 200 ml/min, 350 ml/min and 500 ml/min. The optimum oxygen flow rate for all the temperatures was found to be 350 ml/min. This is therefore kept invariant for synthesis of electrodes at different temperatures. The photo-electrochemical characterization of the PEC cell was done in the three-electrode configuration, i.e Ti/n-TiO 2 /1M-NaOH/Pt. It has been observed that the optimum values of the PEC solar cell parameters are exhibited by the solar cell employing the photo-electrodes prepared at ∼7500 C. The XRD and SEM explorations revealed that the TiO 2 prepared at ∼7500 C is in the nano-metric range (∼100-150 nm). The TiO 2 films formed at this temperature has been found to exhibit optimum PEC solar cell parameters. The PEC parameters, like photocurrent density, photo-conversion efficiency and hydrogen production rate, with this photo-electrode correspond to 0.93 mA/cm 2 , 0.472% and 4.00 l/hm 2 respectively. (authors)

  14. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  15. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Science.gov (United States)

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  16. THE IMPORTANCE OF ‘SIGNIFICANT OTHERS’ IN BRIDGING THE GAPS BETWEEN DIFFERENT READING CONTEXTS

    Directory of Open Access Journals (Sweden)

    Anna-Karin Svensson

    2018-04-01

    Full Text Available The current research is an in-depth study of four pre-service teachers’ own experience of reading in various contexts and for different reasons. The aim is to analyse what has been significant regarding reading in a life history perspective by the use of narratives. A socio-cultural perspective on reading is used as analysis tool. The over-arching result from analysing pre-service teachers’ narratives is that reading is a relational process regardless of the context reading takes place in. The emerging themes allow a deeper understanding on critical aspects for developing reading in various contexts and at different levels. Significant others seem important in every reading practice, from new readers in primary school to pre-service teachers’ reading at university level. The narratives reveal a need for bridging the gaps that arise between the reading practices in the various contexts that students meet in school and university.

  17. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    International Nuclear Information System (INIS)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M; Hossain, Al; Kim, Jung Ho; Dou, Shi Xue; Acar, S

    2015-01-01

    High performance MgB 2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB 2 grains with a high level of homogeneous carbon doping were formed in these MgB 2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (J c ) in the as-prepared samples. In particular, the value of J c for the carbon-coated (Mg 1.1 B 2 )Cu 0.05 sample prepared here is even above 1 × 10 5 A cm −2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB 2 bulks or wires with excellent J c , as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive. (paper)

  19. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    Science.gov (United States)

    Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.

    2018-03-01

    As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin surface

  20. An Investigation of Porous Structure of TiNi-Based SHS-Materials Produced at Different Initial Synthesis Temperatures

    Science.gov (United States)

    Khodorenko, V. N.; Anikeev, S. G.; Kokorev, O. V.; Yasenchuk, Yu. F.; Gunther, V. É.

    2018-02-01

    An investigation of structural characteristics and behavior of TiNi-based pore-permeable materials manufactured by the methods of selfpropagating high-temperature synthesis (SHS) at the initial synthesis temperatures T = 400 and 600°C is performed. It is shown that depending on the temperature regime, the resulting structure and properties of the material can differ. It is found out that the SHS-material produced at the initial synthesis temperature T = 400°C possesses the largest number of micropores in the pore wall surface structure due to a high phase inhomogeneity of the alloy. The regime of structure optimization of the resulting materials is described and the main stages of formation of the pore wall microporous surfaces are revealed. It is demonstrated that after optimization of the surface structure of a TiNi-based fine-pore alloy by its chemical etching, the fraction of micropores measuring in size less than 50 nm increased from 59 to 68%, while the number of pores larger than 1 μm increased twofold from 11 to 22%. In addition, peculiar features of interaction between certain cell cultures with the surface of the SHS-material manufactured at different initial synthesis temperatures are revealed. It is found out that the dynamics of the cell material integration depends on the pore wall surface morphology and dimensions of macropores.