WorldWideScience

Sample records for si-o-c glass phase

  1. Si-O-C ceramic foams derived from polymethylphenylsiloxane precursor with starch as foaming agent

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Chlup, Zdeněk; Strachota, Adam; Svítilová, Jaroslava; Schweigstillová, Jana; Halasová, Martina; Rýglová, Šárka

    2015-01-01

    Roč. 35, č. 13 (2015), s. 3427-3436 ISSN 0955-2219 R&D Projects: GA ČR GAP107/12/2445 Institutional support: RVO:67985891 ; RVO:68081723 ; RVO:61389013 Keywords : pyrolysis * ceramic foam * precursor * starch * Si-O-C Subject RIV: JI - Composite Materials; JH - Ceramics, Fire-Resistant Materials and Glass (UFM-A) Impact factor: 2.933, year: 2015

  2. SiOx-C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance

    Science.gov (United States)

    Lv, Pengpeng; Zhao, Hailei; Gao, Chunhui; Du, Zhihong; Wang, Jie; Liu, Xin

    2015-01-01

    Glass-like Si-O-C composites have recently attracted considerable attention because of their potential as high capacity anode for rechargeable lithium ion batteries. However, the existence of Si-C bonds in Si-O-C phase restricts in a certain degree the electrochemical activity of silicon. Here, we demonstrate the synthesis and electrochemical performance of SiOx-C dual-phase glass consisting of amorphous SiOx and free carbon phases and without Si-C bonds in SiOx phase. Dual-phase glass synthesis is achieved through a simple sol-gel route. The SiOx-C dual-phase glass electrode delivers high reversible capacity of 840 mAh g-1 for 100 cycles and exhibits excellent rate-capability. The superior electrochemical properties can be attributed to the unique dual-phase glass structure that the amorphous SiOx phase well-disperses and dense-contacts with free carbon component at nanoscale level. The SiOx phase with a lower O/Si ratio contributes the high reversible capacity while the well-contacted free carbon provides a good electronic conductivity for electrode reaction. In addition, the free carbon component can alleviate the volume change of SiOx component during discharge/charge process, which ensures an enhanced structural stability and an excellent cycling performance.

  3. Ku-band electromagnetic wave absorbing properties of polysiloxane derived Si-O-C bulk ceramics

    Science.gov (United States)

    Ding, Donghai; Li, Zipei; Xiao, Guoqing; Yang, Shaoyu

    2018-02-01

    The bulk Si-O-C ceramics were prepared by polymer derived ceramics (PDCs) route using polysiloxane as precursor and their properties were investigated for electromagnetic wave absorbing in the frequency range of 12.4-18 GHz (Ku-band). It was found that the catalytic pyrolysis can enhance substantially the absorbing properties by in situ formation of turbostratic carbon network, ordered carbon, and multi-wall carbon nanotubes. The matching thickness of sample containing 1.5 wt% FeCl3 (FPSO-1.5) is 2.2 mm, and its reflection loss exceeds -10 dB in the whole Ku-band with an absorption peak of -35.48 dB at 14.16 GHz. For sample containing 1.5 wt% FeCl3, its absorption peak increases to -15.78 dB, but its matching thickness decreases significantly to 2.2 mm. The polymer derived Si-O-C ceramics could be used as excellent electromagnetic functional devices working in harsh environments.

  4. Influence of Adhesive System on Performance of SiO/C Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    Teng Xin

    2015-01-01

    Full Text Available Silicon based anode material is turning into the research hot point of lithium-ion battery material field due to Si inside supporting higher capacity. Furthermore binder applied as major accessory material of anode system could bring anode material & current collector together, thus the influence given by binder system to battery performance becomes the key point. The paper describes the procedure of adopting commercial LiCoO2 SiO/C as composite material & electrolyte, with using styrene butadiene rubber and acrylic acid copolymer as binder to figure out lithium-ion battery with 2.5Ah, which is testified to present better performance on cold temperature & cycle life plus having a little bit swelling compared with the lithium-ion battery using only styrene butadiene rubber as binder.

  5. Phase separation in an ionomer glass

    DEFF Research Database (Denmark)

    Pedersen, Malene Thostrup; Tian, K.V.; Dobó-Nagy, C.

    2015-01-01

    conclusively determined. In this work, we identify these phases by performing differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses on both the as-received glass and heat-treated samples. We detected three glass transitions in the as-received G338 glass during DSC upscaning, implying......The G338 ionomer glass is a fluoro-alumino-silicate system, which is used as the powder component of glass ionomer cements (GICs) in dental applications. However, despite progress in understanding the nature of this glass, chemical identity of its separated amorphous phases has not yet been...... amorphous phases in G388 are Ca/Na-Al-Si-O, Ca-Al-F and Ca-P-O-F phases, respectively. However, the exact chemical compositions of the three phases still require further exploration. The results of this work are important for understanding the impact of phase separation within ionomer glasses on the setting...

  6. Si-O-C Aerogels for TPS of Reentry Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has expressed a need to identify and develop breakthrough technologies that have potential to provide increased scientific return at lower cost, and to enable...

  7. Correlation between the dielectric constant and X-ray diffraction pattern of Si-O-C thin films with hydrogen bonds

    International Nuclear Information System (INIS)

    Oh, Teresa; Oh, Kyoung Suk; Lee, Kwang-Man; Choi, Chi Kyu

    2004-01-01

    The amorphous structure of organic-inorganic hybrid type Si-O-C thin films was studied using the first principles molecular-dynamics method with density functional techniques. The correlation between the dielectric constant and the degree of amorphous structure in organic-inorganic hybrid type Si-O-C thin films was studied. Si-O-C thin films were deposited by high-density plasma chemical vapor deposition using bis-trimethylsilylmethane and oxygen precursors. As-deposited films and films annealed at 500 deg. C were analyzed by X-ray diffraction (XRD). For quantitative analysis, the X-ray diffraction patterns of the samples were transformed to the radial distribution function (RDF) using Fourier analysis. Hybrid type Si-O-C thin films can be divided into three types using their amorphous structure and the dielectric constant: those with organic, hybrid, and inorganic properties

  8. The Berry phase in frustrated spin glass

    International Nuclear Information System (INIS)

    Banerjee, D.

    2007-12-01

    In this letter we have pointed out that frustration in spin glass is realized through the Berry phase due to the conflict between the spin ordering in the course of parallel transport. We came to the point that the Berry phase depicting the chiral change of helicity of a quantized spinor is prominent only in the presence of frustration. (author)

  9. Phase transformations in metallic glasses

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    2003-01-01

    Recent development of grain-size effect on phase transformations induced by pressure is reported. A thermodynamic theory is presented and three components: the ratio of volume collapses, the surface energy differences, and the internal energy differences, governing the change of transition pressure...... in nanocrystals were uncovered. They can be used to explain the results reported in the literature and to identify the main factor to the change of the transition pressure in nanocrystals. We demonstrated that the grain-size effect on the structural stability in nanocrystals with respect to transition pressure...

  10. Phase separation of borosilicate glass with molybdenum oxide addition and pore structure of porous glass

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Yazawa, Tetsuo; Eguchi, Kiyohisa

    1985-01-01

    Porous glass prepared by acid leaching of phase-separated soda borosilicate glass usually contains colloidal silica which originates from the silica component in the borate phase. Molybdenum trioxide was added to the starting borosilicate glass to prevent the formation of colloidal silica. It promoted the opacification of the starting glass. Opaque glasses in as-cast state showed a spherical phase-separated structure and were amorphous by X-ray doffraction. The phase separation was related to the solubility of molybdenum oxide in the glass. The phase separation occurs at a high temperature and proceeds rapidly in the cooling process of the cast glass. Another type of phase separation, which was assigned to the phase separation in the ternary soda borosilicate glass, took place during the heat treatment of the opaque glasses. When the phase-separated structure of the heat-treated glasses is interconnected, the porous glasses composed of silica skeleton are obtained by the acid leaching of the phase-separated glasses. The colloidal silica in the porous glass increased with increasing silica content of the starting glass and at the same time the volume of the pores of skeleton decreased markedly. (author)

  11. Plutonium alteration phases from lanthanide borosilicate glass

    International Nuclear Information System (INIS)

    Fortner, J.A.; Mertz, C.J.; Chamberlain, D.C.; Bates, J.K.

    1997-01-01

    A prototype lanthanide borosilicate (LaBS) glass containing 10 mass % plutonium was reacted with water vapor at 200 C for periods of 14 to 56 days. These tests, while not designed to replicate specific conditions that may be found in a potential geologic repository (e.g., Yucca Mountain), have been shown to accelerate alteration phase formation. The surfaces of the glass samples, along with alteration phases, were examined with a transmission electron microscope (TEM). Tests of 14 days produced macroscopic (∼ 20 microm) crystallites of a plutonium-lanthanide silicate. An extensive alteration layer was found on the glass surface containing amorphous aluminosilicate layered with bands of a cryptocrystalline plutonium silicate. After 56 days of testing, additional alteration phases were formed, including a strontium lanthanide oxide phase. One of the options for disposal of surplus plutonium, particularly for impure residues that may be unfit for production of MOX fuel, is vitrification followed by geologic disposal. Since geologic disposal requires a passive system to isolate the radiotoxic elements from the biosphere, it is important to understand the possible corrosion mechanisms of the waste form

  12. Enhanced LAW Glass Correlation - Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Isabelle S. [The Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Matlack, Keith S. [The Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Joseph, Innocent [Atkins Energy Federal EPC, Inc., Columbia, MD (United States)

    2016-12-01

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility on the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.

  13. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  14. Flight Deck I-Glasses, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Deck i-Glasses is a color, stereoscopic 3-D display mounted on consumer style eye glass frames that will enhance operator performance and multi-modal...

  15. Glass formulation for phase 1 high-level waste vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B 2 O 3 content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B 2 O 3 and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume

  16. ILAW Glass Testing for Disposal at IDF: Phase 1 Testing

    International Nuclear Information System (INIS)

    Papathanassiu, Adonia; Swanberg, David J.

    2011-01-01

    This document reports the results of the testing of phase 1 ORP LAW (low activity waste) glasses, also identified as enhanced LAW glasses. Testing involved are SPFT (Single Pass Flow Through), VHT (Vapor Hydration Test), and PCT (Product Consistency Test), along with the analytical tests (XRD and SEM-EDS). This report contains the data of the high waste loading ORP LAW glasses that will be used for the performance assessment of the IDF (Integrated Disposal Facility).

  17. ILAW Glass Testing for Disposal at IDF: Phase 1 Testing

    Energy Technology Data Exchange (ETDEWEB)

    Papathanassiu, Adonia [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Muller, Isabelle S. [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Brandys, Marek [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Barkatt, Aaron [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Joseph, Innocent [EnergySolutions Federal EPC, Inc., Columbia, MD (United States); The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States). Virteous State Lab.; Brown, Elvie E. [Washington River Protection Solutions, LLC, Richland, WA (United States); Swanberg, David J. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2011-04-11

    This document reports the results of the testing of phase 1 ORP LAW (low activity waste) glasses, also identified as enhanced LAW glasses. Testing involved are SPFT (Single Pass Flow Through), VHT (Vapor Hydration Test), and PCT (Product Consistency Test), along with the analytical tests (XRD and SEM-EDS). This report contains the data of the high waste loading ORP LAW glasses that will be used for the performance assessment of the IDF (Integrated Disposal Facility).

  18. Phase transitions between different spin-glass phases and between different chaoses in quenched random chiral systems

    Science.gov (United States)

    Ćaǧlar, Tolga; Berker, A. Nihat

    2017-09-01

    The left-right chiral and ferromagnetic-antiferromagnetic double-spin-glass clock model, with the crucially even number of states q =4 and in three dimensions d =3 , has been studied by renormalization-group theory. We find, for the first time to our knowledge, four spin-glass phases, including conventional, chiral, and quadrupolar spin-glass phases, and phase transitions between spin-glass phases. The chaoses, in the different spin-glass phases and in the phase transitions of the spin-glass phases with the other spin-glass phases, with the non-spin-glass ordered phases, and with the disordered phase, are determined and quantified by Lyapunov exponents. It is seen that the chiral spin-glass phase is the most chaotic spin-glass phase. The calculated phase diagram is also otherwise very rich, including regular and temperature-inverted devil's staircases and reentrances.

  19. Frustration and curvature - Glasses and the cholesteric blue phase

    Science.gov (United States)

    Sethna, J. P.

    1983-01-01

    An analogy is drawn between continuum elastic theories of the blue phase of cholesteric liquid crystals and recent theories of frustration in configurational glasses. Both involve the introduction of a lattice of disclination lines to relieve frustration; the frustration is due to an intrinsic curvature in the natural form of parallel transport. A continuum theory of configurational glasses is proposed.

  20. Magnetically ordered phase near transition to Bose-glass phase

    Science.gov (United States)

    Syromyatnikov, A. V.; Sizanov, A. V.

    2017-01-01

    We discuss a magnetically ordered ("superfluid") phase near quantum transition to the Bose-glass phase in a simple modeling system, a Heisenberg antiferromagnet with spatial dimension d >2 in an external magnetic field with disorder in exchange coupling constants. Our analytical consideration is based on hydrodynamic description of long-wavelength excitations. Results obtained are valid in the entire critical region near the quantum critical point (QCP), allowing us to describe a possible crossover from one critical behavior to another. We demonstrate that the system behaves in full agreement with predictions by M. P. Fisher et al. [Phys. Rev. B 40, 546 (1989), 10.1103/PhysRevB.40.546] in close vicinity to the QCP. We find as an extension to that analysis that the anomalous dimension η =2 -d and β =ν d /2 , where β and ν are critical exponents of the order parameter and the correlation length, respectively. The density of states per spin of low-energy localized excitations is found to be independent of d ("superuniversal"). We show that many recent experimental and numerical results obtained in various three-dimensional (3D) systems can be described by our formulas using percolation critical exponents. Then, it is a possibility that a percolation critical regime arises in the ordered phase in some 3D systems not very close to the QCP.

  1. Thermal phase stability of some simulated Defense waste glasses

    International Nuclear Information System (INIS)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450 0 C to 1100 0 C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7 0 C/hour from an 1100 0 C melt down to 500 0 C where it was removed from the furnace. The following were observed. The slow cooling rate of 7 0 C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO 2 and (Ni, Mn, Fe) 2 O 4 form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500 0 C there is but little devitrification occurring implying that glass canisters stored at 300 0 C may be kinetically stable despite not being thermodynamically so

  2. Thermal phase stability of some simulated Defense waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  3. Glass phase in municipal and industrial waste incineration bottom ashes

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high

  4. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process.

    Science.gov (United States)

    Xing, Mingfei; Fu, Zegang; Wang, Yaping; Wang, Jingyu; Zhang, Zhiyuan

    2017-01-15

    In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B 2 O 3 in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na 2 O, K 2 O, Al 2 O 3, BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5mol/L HNO 3 . The lead removal rate was 99.80% and high silica glass powder (SiO 2 purity >95wt%) was obtained by setting the temperature, B 2 O 3 added amount and holding time at 1000°C, 20% and 30mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Thermodynamical modeling of nuclear glasses: coexistence of amorphous phases

    International Nuclear Information System (INIS)

    Adjanor, G.

    2007-11-01

    Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)

  6. Superconducting phase of YBa2Cu3O7-δ films in high magnetic fields: Vortex glass or Bose glass

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Swueste, J.; de Wijn, H.W.

    1993-01-01

    Nonlinear current-voltage (I-V) curves are measured in laser-ablated YBa 2 Cu 3 O 7-δ films deposited onto SrTiO 3 . The measurements are performed near the glass phase transition in a magnetic field of 5 T at various angles from the c axis. From a critical scaling analysis, the angular dependencies of the glass transition temperature and the critical glass exponents are extracted. At small angles, these results distinguish between a vortex glass, caused by random pointlike disorder, and a Bose glass, caused by linelike disorder. The results can be understood in terms of the vortex-glass model only. No evidence is found for the existence of a Bose-glass phase

  7. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  8. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Mingfei [Henan Key Laboratory Cultivation Base of Mine Environmental Protection and Ecological Remediation, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Fu, Zegang [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Wang, Yaping, E-mail: wangyp326@163.com [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China (China); Wang, Jingyu [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Zhang, Zhiyuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2017-01-15

    Highlights: • CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. • A part of PbO was reduced into Pb and detached from the glass phase. • The rest of PbO and other metal oxides were mainly concentrated in the B{sub 2}O{sub 3} phase. • PbO enriched in the interconnected B{sub 2}O{sub 3} phase can be completely leached out by HNO{sub 3}. • High silica glass powder(SiO{sub 2} purity >95%) was obtained after the leaching process. - Abstract: In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na{sub 2}O, K{sub 2}O, Al{sub 2}O{sub 3,} BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5 mol/L HNO{sub 3}. The lead removal rate was 99.80% and high silica glass powder (SiO{sub 2} purity >95 wt%) was obtained by setting the temperature, B{sub 2}O{sub 3} added amount and holding time at 1000 °C, 20% and 30 mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

  9. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  10. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  11. High-performance geometric phase elements in silica glass

    Science.gov (United States)

    Drevinskas, Rokas; Kazansky, Peter G.

    2017-06-01

    High-precision three-dimensional ultrafast laser direct nanostructuring of silica glass resulting in multi-layered space-variant dielectric metasurfaces embedded in volume is demonstrated. Continuous phase profiles of nearly any optical component are achieved solely by the means of geometric phase. Complex designs of half-wave retarders with 90% transmission at 532 nm and >95% transmission at >1 μm, including polarization gratings with efficiency nearing 90% and computer generated holograms with a phase gradient of ˜0.8π rad/μm, were fabricated. A vortex half-wave retarder generating a single beam optical vortex with a tunable orbital angular momentum of up to ±100ℏ is shown. The high damage threshold of silica elements enables the simultaneous optical manipulation of a large number of micro-objects using high-power laser beams. Thus, the continuous control of torque without altering the intensity distribution was implemented in optical trapping demonstration with a total of 5 W average power, which is otherwise impossible with alternate beam shaping devices. In principle, the direct-write technique can be extended to any transparent material that supports laser assisted nanostructuring and can be effectively exploited for the integration of printed optics into multi-functional optoelectronic systems.

  12. High-performance geometric phase elements in silica glass

    Directory of Open Access Journals (Sweden)

    Rokas Drevinskas

    2017-06-01

    Full Text Available High-precision three-dimensional ultrafast laser direct nanostructuring of silica glass resulting in multi-layered space-variant dielectric metasurfaces embedded in volume is demonstrated. Continuous phase profiles of nearly any optical component are achieved solely by the means of geometric phase. Complex designs of half-wave retarders with 90% transmission at 532 nm and >95% transmission at >1 μm, including polarization gratings with efficiency nearing 90% and computer generated holograms with a phase gradient of ∼0.8π rad/μm, were fabricated. A vortex half-wave retarder generating a single beam optical vortex with a tunable orbital angular momentum of up to ±100ℏ is shown. The high damage threshold of silica elements enables the simultaneous optical manipulation of a large number of micro-objects using high-power laser beams. Thus, the continuous control of torque without altering the intensity distribution was implemented in optical trapping demonstration with a total of 5 W average power, which is otherwise impossible with alternate beam shaping devices. In principle, the direct-write technique can be extended to any transparent material that supports laser assisted nanostructuring and can be effectively exploited for the integration of printed optics into multi-functional optoelectronic systems.

  13. Effect of heat treatment duration on phase separation of sodium borosilicate glass, containing copper

    International Nuclear Information System (INIS)

    Shejnina, T.G.; Gutner, S.Kh.; Anan'in, N.I.

    1989-01-01

    The effect of heat treatment duration on phase separation of sodium borosilicate (SBS) glass, containing copper is studied. It is stated that phase separation close to equilibrium one is attained under 12 hours of heat treatment of SBS glass containing copper

  14. An ordered metallic glass solid solution phase that grows from the melt like a crystal

    International Nuclear Information System (INIS)

    Chapman, Karena W.; Chupas, Peter J.; Long, Gabrielle G.; Bendersky, Leonid A.; Levine, Lyle E.; Mompiou, Frédéric; Stalick, Judith K.; Cahn, John W.

    2014-01-01

    We report structural studies of an Al–Fe–Si glassy solid that is a solid solution phase in the classical thermodynamic sense. We demonstrate that it is neither a frozen melt nor nanocrystalline. The glass has a well-defined solubility limit and rejects Al during formation from the melt. The pair distribution function of the glass reveals chemical ordering out to at least 12 Å that resembles the ordering within a stable crystalline intermetallic phase of neighboring composition. Under isothermal annealing at 305 °C the glass first rejects Al, then persists for approximately 1 h with no detectable change in structure, and finally is transformed by a first-order phase transition to a crystalline phase with a structure that is different from that within the glass. It is possible that this remarkable glass phase has a fully ordered atomic structure that nevertheless possesses no long-range translational symmetry and is isotropic

  15. Liquid-liquid phase transition and glass transition in a monoatomic model system.

    Science.gov (United States)

    Xu, Limei; Buldyrev, Sergey V; Giovambattista, Nicolas; Stanley, H Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  16. Phase transformations in lithium bearing sodiumborosilicate base glass melts for the solidification of HAW

    International Nuclear Information System (INIS)

    Goettlicher, J.

    1994-10-01

    Metastable phase separation has been observed in the Li-bearing basic glass SM58. This observation gave rise to examine the exsolution behaviour in model glasses by chemical substitution. It is impossible to produce metastable phase separation in the Li-free HAW-glasses VG98/12 and VG98/12.2. However, one can't exclude textural changes of Li-bearing glasses, because in a HAW-container the central temperature remains at about 300 C for more than 50 years. For the first time it has been tried to find a relationship between glass textures and structural parameters by combining textural investigations (electron microscopy) with structural determinations (NMR, WAXS). Modell glasses belong to the system (Li, Na) 2 O.B 2 O 3 , (Al 2 O 3 ).n(TO 2 ), with T=Si, Ge and n=2, 4, 6. Furthermore glasses from the KfK and from Mol (PAMELA) were investigated. A newly built apparatus was used to prepare glasses by replica technique (PtIrC oblique shadowing) for TEM investigations. This method turned out to be well suited to study glass textures with features down to 5 nm. Sometimes direct examinations of ion-thinned glasses showed that their textures were affected by radiation damage, caused by accelerated electrons. LVSE-(Low Voltage Scanning Electron)- and AF-(Atomic Force)- microscopy seems to be a promising method for studying glass surfaces and their textures directly. (orig./MM) [de

  17. Composition/Property Relationships for the Phase 2 Am-Cm Glass Variability Study

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    2000-06-09

    The objective of this research was to evaluate the effect of compositional uncertainties on the primary processing and product performance criteria for potential glasses to stabilize the Tank 17.1 Am-Cm solution and to identify the AGCR in which glasses simultaneously meet both process and product performance criteria as defined for Phase 2.

  18. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  19. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials.

    Science.gov (United States)

    Chung, In; Jang, Joon I; Malliakas, Christos D; Ketterson, John B; Kanatzidis, Mercouri G

    2010-01-13

    We report that the one-dimensional polar selenophosphate compounds APSe(6) (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients chi((2)) of 151.3 and 149.4 pm V(-1) for K(+) and Rb(+) salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe(6) exhibits comparable SHG intensities to the top infrared NLO material AgGaSe(2) without any poling treatments. APSe(6) exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe(6) (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe(6) bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

  20. Monolithic Rare Earth Doped PTR Glass Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of the project is to demonstrate the feasibility of a monolithic solid state laser on the basis of PTR glass co-doped with luminescent rare earth ions....

  1. Temperature-stress phase diagram of strain glass Ti48.5Ni51.5

    International Nuclear Information System (INIS)

    Wang, Y.; Ren, X.; Otsuka, K.; Saxena, A.

    2008-01-01

    The temperature and stress dependence of the properties of a recently discovered strain glass Ti 48.5 Ni 51.5 , which is a glass of frozen local lattice strains, was investigated systematically. It was found that the ideal freezing temperature (T 0 ) of the strain glass decreases with increasing stress. When the stress exceeds a critical value σ c (T), the pseudo-B2 strain glass transforms into B19' martensite. However, the stress-strain behavior associated with such a stress-induced transition showed a crossover at a crossover temperature T CR , which is ∼20 K below T 0 . Above T CR , the sample showed superelastic behavior; however, below T CR , the sample demonstrated plastic behavior. More interestingly, the σ c vs. temperature relation for unfrozen strain glass obeys the Clausius-Clapyeron relationship, whereas that for frozen strain glass disobeys this universal thermodynamic law. A phenomenological explanation is provided for all the phenomena observed, and it is shown that all the anomalous effects come from the broken ergodicity of the glass system and a temperature-dependent relative stability of the martensitic phase. Based on experimental observations, a temperature-stress phase diagram is constructed for this strain glass, which may serve as a guide map for understanding and predicting the properties of strain glass

  2. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  3. glasses

    Indian Academy of Sciences (India)

    composed of VO5 pyramids. The vanadates-based glasses show semiconducting ..... the composition 1 mol% of CeO2. The AC conductivity obeys a power law. The glass samples exhibit typical inor- ganic semiconducting behaviour. The activation energy and conductivity at room temperature were found to be 0.09 eV ...

  4. Secondary phases formed during nuclear waste glass-water interactions: Thermodynamic and derived properties

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-08-01

    The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases

  5. A review of phase separation in borosilicate glasses, with reference to nuclear fuel waste immobilization

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-08-01

    This report reviews information on miscibility limits in borosilicate glass-forming systems. It includes both a literature survey and an account of experimental work performed within the Canadian Nuclear Fuel Waste Management Program. Emphasis is placed on the measurement and depiction of miscibility limits in multicomponent (mainly quaternary) systems, and the effects of individual components on the occurrence of phase separation. The behaviour of the multicomponent system is related to that of simpler (binary and ternary) glass systems. The possible occurrence of phase separation, as well as its avoidance, during processing of nuclear waste glasses is discussed

  6. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  7. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  8. Phase separation and dynamical scaling in borate glasses

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1986-01-01

    Quasi-binary B 2 O 3 - PbO - (Al 2 O 3 ) glasses of two different compositions and at several temperature inside the miscibility gap were investigated using small angle X-ray scattering. Measurements were carried out using an X-ray beam from a synchrotron source in spin-hole collimation and the samples were isothermally annealed in situ. (Author) [pt

  9. 2014 Enhanced LAW Glass Property-Composition Models, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Isabelle [The Catholic Univ. of America, Washington, DC (United States); Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States); Joseph, Innocent [Energy Solutions, Salt Lake City, UT (United States); Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States)

    2015-10-28

    This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.

  10. Phase formation during corrosion experiments with two simulated borosilicate nuclear waste glasses

    International Nuclear Information System (INIS)

    Haaker, R.F.

    1985-10-01

    Corrosion products resulting from the reaction of simulated high-level radioactive waste glasses with various solutions have been identified. At 200degC, in saturated NaCl, a degree of reaction of 10 g C31-3 glass or 2.6 g SON 68 glass per liter of solution was obtained. Analcime, vermiculite (a phyllosilicate) and a 2:1 zinc silicate are the major silica containing alteration products for the C31-3 glass. Analcime was the only silicate alteration product which could be identified for SON 68 glass. C31-3 glass appeared to be less reactive with a quinary brine containing Mg ++ than with NaCl. With the quinary brine, montmorillonite (a phyllosilicate) was the predominant silica containing alteration product. Hydrotalcite (a Mg-Al hydroxysulfate) and montmorillonite were the major Al-containing phases. A phyllosilicate, probably montmorillonite, was observed to form during the reaction of SON 68 glass with quinary brine. With either glass, modified NaCl brines which contained small amounts of MgCl 2 seem to have the effect of decreasing the amount of analcime and increasing the amount of phyllosilicate which is formed. In the case of C31-3 glass, there is approximately enough Mg, Al and Zn to precipitate most of the leached Si; measured Si concentrations remain well below that expected for amorphous silica. SON 68 glass has less Zn, Al and Mg than C31-3 glass and much higher Si concentrations of the leachates. (orig./RB)

  11. Molecular dynamics simulations of disordered materials from network glasses to phase-change memory alloys

    CERN Document Server

    Massobrio, Carlo; Bernasconi, Marco; Salmon, Philip S

    2015-01-01

    This book is a unique reference work in the area of atomic-scale simulation of glasses. For the first time, a highly selected panel of about 20 researchers provides, in a single book, their views, methodologies and applications on the use of molecular dynamics as a tool to describe glassy materials. The book covers a wide range of systems covering ""traditional"" network glasses, such as chalcogenides and oxides, as well as glasses for applications in the area of phase change materials. The novelty of this work is the interplay between molecular dynamics methods (both at the classical and firs

  12. Dynamic characterization of crystalline and glass phases of deuterated 1,1,2,2 tetrachloroethane

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Silvina C., E-mail: clyde@famaf.unc.edu.ar; Zuriaga, Mariano, E-mail: zuriaga@famaf.unc.edu.ar; Serra, Pablo, E-mail: serra@famaf.unc.edu.ar; Wolfenson, Alberto, E-mail: wolf@famaf.unc.edu.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba and IFEG-CONICET, Ciudad Universitaria, X5016LAE Córdoba (Argentina); Negrier, Philippe, E-mail: philippe.negrier@u-bordeaux.fr [Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and LOMA, UMR 5798, F-33400 Talence (France); Tamarit, Josep Lluis, E-mail: josep.lluis.tamarit@upc.edu [Grup de Caracterització de Materials, Departament de Física i Enginyeria Nuclear, ETSEIB, Diagonal 647, Universitat Politècnica de Catalunya, 08028 Barcelona, Catalonia (Spain)

    2015-10-07

    A thorough characterization of the γ, β, and glass phases of deuterated 1,1,2,2 tetrachloroethane (C{sub 2}D{sub 2}Cl{sub 4}) via nuclear quadrupole resonance and Molecular Dynamic Simulations (MDSs) is reported. The presence of molecular reorientations was experimentally observed in the glass phase and in the β phase. In the β phase, and from MDS, these reorientations are attributed to two possible movements, i.e., a 180°  reorientation around the C{sub 2} molecular symmetry axis and a reorientation of the molecule between two non-equivalent positions. In the glass phase, the spin-lattice relaxation time T{sub 1} is of the order of 16 times lower than in the crystalline phase and varies as T{sup −1} below 100 K in good agreement with the strong quadrupolar relaxation observed in amorphous materials and in the glassy state of molecular organic systems. The activation energy of molecular reorientations in the glass phase (19 kJ/mol) is comparable to that observed in the glassy crystal of a “molecular cousin” compound, Freon 112 (C{sub 2}F{sub 2}Cl{sub 4}), for the secondary β-relaxation. Moreover, the on-site orientational motion of tetrachloroethane molecules offers a new indirect evidence of the prominent role of such orientational disorder in glassy dynamics.

  13. glasses

    Indian Academy of Sciences (India)

    materials and electrochemical batteries.8 Rare earth metal ions when added to borate act as network modifiers and change the properties of glasses. In rare earth ... room temperature to 600◦C. For electrical measurements, samples were polished and conducting silver paste was deposited on both sides. The sample area ...

  14. Low temperature spin-glass-like phases in magnetic nano-granular composites

    KAUST Repository

    Zhang, Bei

    2012-09-01

    It is a common understanding that the dipole-dipole interaction among the magnetic nanoparticles may result in a low-temperature spin-glass phase, which has been evidenced by observation of aging effect and memory effect. However, several studies on the nano-particles systems showed that some of the observed spin-glass-like phenomena could be due to the existence of spin-glasslike shells surrounding the ferrimagnetic cores. Therefore, it is very important to understand that how the dipole-dipole interaction induce the spin-glass phase. In order to address this issue, we have fabricated Co-SiO 2 and Fe-SiO 2 nano-granular thin films and measured the memory effect for them. Spin-glass-like phase has been observed at low temperatures. We found that, after annealing, the size of the clusters increased significantly. Based on a simple model, the dipole-dipole interaction between the clusters must be increased accordingly for the annealed samples. Interestingly, the memory effect is greatly weakened in the annealed films, which strongly suggested that the dipole-dipole interaction may not be the major factor for the formation of the low-temperature spin-glass-like phase. Copyright © 2012 American Scientific Publishers All rights reserved.

  15. Glass

    OpenAIRE

    Parker, K

    2010-01-01

    Audio recording of the sea from the breakwater in Plymouth Sound, by Stuart Moore. Presentations and exhibitions of the film Glass include: Finding Place exhibition, Plymouth (3 > 26 February 2010); University of the West of England's Radical British Screens symposium (3 September 2010); Plymouth University Festival of Research: Materiality and Technology film programme presented by the Centre for Media Art and Design Research (MADr), Jill Craigie Cinema, Plymouth University (14 March 2011); ...

  16. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    International Nuclear Information System (INIS)

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Allen Haynes, J

    2013-01-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie–Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military. (paper)

  17. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    Science.gov (United States)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen

    2013-08-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  18. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    Science.gov (United States)

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  19. VO2-dispersed glass: A new class of phase change material.

    Science.gov (United States)

    Muramoto, Kei; Takahashi, Yoshihiro; Terakado, Nobuaki; Yamazaki, Yoshiki; Suzuki, Shigeru; Fujiwara, Takumi

    2018-02-02

    Energy storage technology is crucial for a sustainable society, and its realisation strongly depends on the development of materials. Oxide glass exhibits high durability. Moreover, the amorphous structure of the glass without periodic ordering demonstrates excellent formability and controllability, thus enabling a large-scale production. These factors provide impetus for the development of new materials for thermal management applications. As vanadium dioxide (VO 2 ) with a strongly correlated electron system exhibits a structural phase transition, leading to a large heat of transition. Therefore, VO 2 demonstrates immense potential as a phase change material (PCM). This study reports the fabrication of VO 2 -dispersed glass and examines its potential as a new latent heat storage material, which can be applied for massive PCM heat storage applications.

  20. Chemical composition of glass and crystalline phases in coarse coal gasification ash

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Matjie; Zhongsheng Li; Colin R. Ward; David French [Sasol Technology (Pty) Ltd., Sasolburg (South Africa)

    2008-05-15

    A procedure has been developed for determining the chemical composition and relative abundance of the amorphous or glassy material, as well as crystalline phases, present in coarse coal gasification ash, in order to assist in predicting the behaviour of the material in cement/brick/concrete applications. The procedure is based on a combination of quantitative X-ray diffraction (XRD), chemical analysis and electron microprobe studies. XRD analysis indicates that the clinker samples contain a number of crystalline high temperature phases, including anorthite, mullite, cristobalite, quartz and diopside. Quantitative evaluation using Rietveld-based techniques has been used to determine the percentages of both the individual crystalline phases and the glass component. These data were then combined with the chemistry of the crystalline phases and the overall chemical composition of the ash to estimate the chemical composition of the glass phase, which is typically the most abundant component present in the different materials. Although there is some degree of scatter, comparison between the inferred glass composition from XRD and bulk chemistry and actual data on the glass composition using electron microprobe techniques suggest that the two approaches are broadly consistent. The microprobe further indicates that a range of compositions are present in the glassy and crystalline components of the ashes, including Si-Al-rich glass, metakaolin and Fe-Ca-Mg-Ti phases, as well as quartz, anorthite and an aluminophosphate material. Electron microprobe and XRD studies also show that pyrrhotite (FeS), representing a high temperature transformation product of pyrite, is present in some clinker and partially burnt carbonaceous shale samples. 27 refs., 5 figs., 7 tabs.

  1. Phase selection and microstructure in directional solidification of glass forming Pd-Si-Cu alloys

    Science.gov (United States)

    Huo, Yang

    Phase selection and microstructure formation during the rapid solidification of alloy melts has been a topic of substantial interest over the last several decades, attributed mainly to the access to novel structures involving metastable crystalline and non-crystalline phases. In this work, Bridgeman type directional solidification was conducted in Pd-Si-Cu glass forming system to study such cooling rate dependent phase transition and microstructure formation. The equilibrium state for Pd-Si-Cu ternary system was investigated through three different works. First of all, phase stabilities for Pd-Si binary system was accessed with respects of first-principles and experiments, showing Pd5Si, Pd9Si2, Pd3Si and Pd 2Si phase are stable all way to zero Kevin while PdSi phase is a high temperature stable phase, and Pd2Si phase with Fe2P is a non-stoichiometry phase. A thermodynamic database was developed for Pd-Si system. Second, crystal structures for compounds with ternary compositions were studied by XRD, SEM and TEM, showing ordered and disordered B2/bcc phases are stable in Pd-rich part. At last, based on many phase equilibria and phase transitions data, a comprehensive thermodynamic discrption for Pd-Si-Cu ternary system was first time to be developed, from which different phase diagrams and driving force for kinetics can be calculated. Phase selection and microstructure formation in directional solidification of the best glass forming composition, Pd 77.5Si16.5Cu6, in this system with growth velocities from 0.005 to 7.5mm/s was systematically studied and the solidification pathways at different conditions were interpreted from thermodynamic simulation. The results show that for growth velocities are smaller than 0.1mm/s Pd 3Si phase is primary phase and Pd9Si2 phase is secondary phase, the difficulty for Pd9Si2 phase nucleation gives rise to the formation of two different eutectic structure. For growth velocities between 0.4 and 1mm/s, instead of Pd3Si phase, Pd9Si2

  2. Issues related to volatilization, phase alteration, and presence of unreacted feed in the borosilicate glass wasteform

    International Nuclear Information System (INIS)

    Jain, V.

    1994-01-01

    The U.S. Department of Energy's Office of Civilian Radioactive Waste Management has outlined the requirements in the Waste Acceptance Product Specifications (WAPS) that must be met before they will accept West Valley canistered vitrified waste forms for shipment to a federal depository. In this study the glass volatilization was studied using a thermogravimetric analyzer (TGA) to evaluate the absence of free gases, free liquids, explosives, pyrophorics, combustibles, and organics in the waste form. The total carbon in the samples was analyzed using a carbon determinator, phase alteration by heat-treating samples for extended periods of time (45-day) at T g -10 degrees C and T g +10 degrees C (where T g is the glass transition temperature), and the presence of unreacted feed in glass by comparing x-ray diffraction (XRD) patterns for glass and dried feed. The results of this study indicate that the West Valley vitrification process completely transforms the feed into glass. Also the TGA, XRD, and scanning transmission electron microscopy data indicates that there is no significant volatilization, redox reactions, and phase alterations in the waste form up to more than 200 degrees C above the T g . 7 refs., 1 fig., 4 tabs

  3. Kinetics of Phase Formation in a Glass Ceramic Base Glass Studied With Different Small-Angle Scattering Techniques

    Science.gov (United States)

    Brueckner, Rainer; Lembke, Ulrich; Kranold, Rainer

    1997-03-01

    A glass ceramic base glass with chemical composition 11.0 MgO-31.0 Al_2O_3-47.1 SiO_2-1.8 TiO_2+2.2 (LiF, SnO_2, Fe_2O_3, Na_2O, K_2O) (weight-%), which was heat treated in order to achieve a controlled crystallization, has been investigated by combining small-angle scattering of X-rays (SAXS), neutrons (SANS), and visible light (VLS). The early stages of crystallization were studied in situ at the treatment temperature of 820^oC by SAXS of synchrotron radiation using a high temperature sample chamber. The globular crystallites formed grew according to a power law R^2∝t indicating diffusion-limited independent growth. Additionally, the phases developed were characterized by transmission electron microscopy, and their chemical composition was determined with an electron microprobe analyzer. By combining the results of ultra SAXS (USAXS), SANS and VLS the effect of both interparticle interference and diffusion zones on the scattering pattern was investigated. The structural arrangement of TiO2 and ZrO_2, added to the glass as catalysts for crystal nucleation, was studied by varying the contrast using anomalous SAXS (ASAXS) and SANS. As revealed by these experiments, TiO2 is concentrated in the interface between the 2ZrO_2\\cdotTiO_2\\cdotn(MgO, Al_2O_3, SiO_2) mixed crystals and the glassy matrix whereas ZrO2 preferentially participates in the formation of small ZrO_2-enriched crystallites.

  4. Vortex- and Bragg-glass phases in bulk MgB2

    International Nuclear Information System (INIS)

    Maple, M.B.; Taylor, B.J.; Li, Shi; Frederick, N.A.; Nesterenko, V.F.; Indrakanti, S.S.

    2003-01-01

    A more complete magnetic field-temperature (H-T) phase diagram, containing the upper critical field H c2 (T), the vortex-glass melting line H g (T), and the magnetic irreversibility line H irr (T) has been established for bulk MgB 2 (T c =38.5 K), synthesized under 200 MPa pressure by hot isostatic pressing (HIPing). Scaling analysis of resistivity data, J c data, and electric field vs current density (E-J) isotherms in the mixed-state suggest that a Bragg-glass state exists for H c ) behaviors in high and low magnetic field critical scaling regions

  5. Two rigidity-percolation transitions on binary Bethe networks and the intermediate phase in glass.

    Science.gov (United States)

    Moukarzel, Cristian F

    2013-12-01

    Rigidity percolation is studied analytically on randomly bonded networks with two types of nodes, respectively, with coordination numbers z(1) and z(2), and with g(1) and g(2) degrees of freedom each. For certain cases that model chalcogenide glass networks, two transitions, both of first order, are found, with the first transition usually rather weak. The ensuing intermediate pase, although not isostatic in its entirety, has very low self-stress. Our results suggest a possible mechanism for the appearance of intermediate phases in glass that does not depend on a self-organization principle.

  6. Spin glass phase transitions in the random feedback vertex set problem

    OpenAIRE

    Qin, Shao-Meng; Zeng, Ying; Zhou, Hai-Jun

    2016-01-01

    A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph. Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs this problem can be efficiently solved after converting it into an appropriate spin glass model [H.-J. Zhou, Eur. Phys. J. B 86 (2013) 455]. In the present work we study the local stability and the phase transition properties of this spin glass model on random graphs. For both regul...

  7. Thermodynamical modeling of nuclear glasses: coexistence of amorphous phases; Modelisation thermodynamique des verres nucleaires: coexistence entre phases amorphes

    Energy Technology Data Exchange (ETDEWEB)

    Adjanor, G

    2007-11-15

    Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)

  8. Workshop for Conducting Phase 2 of the INTEC Glass Composition Variation Study

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Staples; C. A. Musick

    1999-06-01

    During March 30-31, 1999, the Phase 2 Idaho Nuclear Technology and Engineering Center (INTEC) Glass Composition Variation Study Workshop was held at the Shilo Inn in Idaho Falls, Idaho. The workshop had the purpose of establishing a preparation and characterization protocol for the phase 2b glasses of the INTEC composition variation study. The workshop also had the purpose of reviewing the most recent estimates of INTEC high-level waste compositions for their impacts on the vitrification of these wastes. Waste composition estimates discussed included those of the various calcine types and of the high activity waste fractions from the calcine dissolution/separations process. Persons from the Idaho National Engineering and Environmental Laboratory, Pacific Northwest Laboratories, and Savannah River Technology Center participated in this workshop. As a result of the workshop, details for the preparation and characterization of the phase 2b matrix of glasses were completed. The impac ts on vitrification of updated waste composition estimates were discussed. Actions for the preparation and characterization of the glasses and development of the separations flowsheet were established.

  9. Ion-implantation-induced phase separation and crystallization in lithia-silica glasses

    International Nuclear Information System (INIS)

    Arnold, G.W.; Peercy, P.S.; Doyle, B.L.

    1980-01-01

    Crystallization of annealed Li 2 O.2SiO 2 glasses implanted with inert ions and fused SiO 2 glass implanted with Li ions was monitored using infrared reflection spectroscopy. Elastic recoil detection analysis was used to study changes in the Li and H concentration induced in these glasses by implantation and annealing. Implantation of Li 2 O.2SiO 2 with inert ions results in Li depletion, accompanied by H indiffusion, in the implanted region. For Li-implanted SiO 2 , crystallization of α-quartz is accompanied by appreciable Li diffusion to the surface and attendant H migration to the Li-depleted region. The crystallization mechanisms are discussed in terms of phase separation in the lithia-silica system

  10. Multicolor emission based on amorphous-to-crystalline phase transitions in nanostructured Mn-doped glass

    Science.gov (United States)

    Hoshino, Yoshinobu; Takahashi, Yoshihiro; Terakado, Nobuaki; Fujiwara, Takumi

    2017-12-01

    We fabricated glass-ceramics composed of emissive nanocrystals that show variation in photoluminescence coloration. The change in emission color is based on the amorphous-to-crystalline phase transformation in a Mn-containing zincogermanate glass. The transformation occurred at a 50 °C temperature range (538–588 °C), resulting in a change in photoluminescence color from orange to white to green. The color change is attributed to the co-crystallization of emissive nanophases and a change in the coordination state of Mn2+. Using laser-induced crystallization, we also achieved the space-selective arrangement of the different photoluminescence colors, indicating that photoluminescence coloration can be tuned in this Mn-doped glass.

  11. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry

    Science.gov (United States)

    Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping

    2017-10-01

    Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.

  12. Phase 2B experimental design for the INEEL glass composition variation study

    International Nuclear Information System (INIS)

    Peeler, D.

    2000-01-01

    The U.S. Department of Energy's (DOE's) Offices of Science and Technology (through the Tanks Focus Area [TFA]) and Waste Management are sponsoring a partnership among Idaho National Engineering and Environmental Laboratory (INEEL), Pacific Northwest National Laboratory (PNNL), and the Savannah River Technology Center (SRTC) for a collaborative glass composition variation study (CVS). The purpose of the CVS is to investigate property - composition relationships within a glass-composition region compatible with the expected range of Idaho Nuclear Technology and Engineering Center (INTEC) high-activity wastes (HAWs). The CVS has been conducted in phases to allow INEEL, PNNL, and SRTC researchers to adjust the glass composition region of interest as flowsheet options are refined and/or waste-stream compositions become more defined

  13. On the competition in phase formation during the crystallisation of Al-Ni-Y metallic glasses

    International Nuclear Information System (INIS)

    Styles, M.J.; Sun, W.W.; East, D.R.; Kimpton, J.A.; Gibson, M.A.; Hutchinson, C.R.

    2016-01-01

    Glassy metals exhibit a range of interesting properties including high strength and corrosion resistance, but often have poor toughness and tensile ductility in the fully amorphous state. It has been shown that combinations of desirable properties can be achieved by the partial crystallisation of glass-forming alloys, either during controlled solidification or by annealing a fully amorphous glass. The aim of this investigation is to understand the competition in phase formation during the crystallisation of metallic glasses in the Al-Ni-Y system. High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the first crystallisation product was found to vary from FCC Al to the intermetallic Al 9 Ni 2 phase with increasing Ni concentration. In addition, the crystallisation sequence also changed from a two-stage to a three-stage process. High number densities of crystallites (∼10 23  m −3 ) were observed initially for both FCC Al and Al 9 Ni 2 . Upon cooling, the partially disordered Al 9 Ni 3 Y phase was found to form preferentially over the intermetallic phases observed during heating. The difference in competition in phase formation during heating and cooling are discussed in terms of nucleation barriers calculated using a recent thermodynamic assessment of the Al-Ni-Y system. The role of compositional heterogeneities in the as-quenched glasses and long-range diffusion on the nucleation process is discussed. - Graphical abstract: High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the

  14. Photostimulated luminescence from a fluorobromozirconate glass-ceramic and the effect of crystallite size and phase

    CERN Document Server

    Secu, M; Spaeth, J M; Edgar, A; Williams, G V M; Rieser, U

    2003-01-01

    We report a systematic study of the photoluminescence (PL), photostimulated luminescence (PSL) and thermostimulated luminescence (TSL) from europium-and bromine-doped fluorozirconate glass-ceramics. Eu sup 2 sup + ions in the as-prepared glass show no PL, but after suitable thermal annealing hexagonal phase and orthorhombic phase barium bromide crystallites are precipitated and PL is observed from Eu sup 2 sup + ions in these crystallites. Room temperature PSL is observed from the orthorhombic phase, with an efficiency which is up to 9% of the well known crystalline storage phosphor BaFBr:Eu sup 2 sup +. The emission is at 404 nm, and there is a maximum in the stimulation at 580 nm. We associate the PSL with an optically quenchable peak in the glow curve, which has an activation energy of 1.20 eV and attribute this feature to a perturbed F centre. Room temperature PSL from glass-ceramics containing predominantly the hexagonal phase of BaBr sub 2 has a relative efficiency of less than 0.07%. The resultant trap...

  15. A Bragg glass phase in the vortex lattice of a type II superconductor.

    Science.gov (United States)

    Klein, T; Joumard, I; Blanchard, S; Marcus, J; Cubitt, R; Giamarchi, T; Le Doussal, P

    2001-09-27

    Although crystals are usually quite stable, they are sensitive to a disordered environment: even an infinitesimal amount of impurities can lead to the destruction of crystalline order. The resulting state of matter has been a long-standing puzzle. Until recently it was believed to be an amorphous state in which the crystal would break into 'crystallites'. But a different theory predicts the existence of a novel phase of matter: the so-called Bragg glass, which is a glass and yet nearly as ordered as a perfect crystal. The 'lattice' of vortices that contain magnetic flux in type II superconductors provide a good system to investigate these ideas. Here we show that neutron-diffraction data of the vortex lattice provides unambiguous evidence for a weak, power-law decay of the crystalline order characteristic of a Bragg glass. The theory also predicts accurately the electrical transport properties of superconductors; it naturally explains the observed phase transitions and the dramatic jumps in the critical current associated with the melting of the Bragg glass. Moreover, the model explains experiments as diverse as X-ray scattering in disordered liquid crystals and the conductivity of electronic crystals.

  16. Glass transition in the spin-density wave phase of (TMTSF)2PF6

    DEFF Research Database (Denmark)

    Lasjaunias, J.C.; Biljakovic, K.; Nad, F.

    1994-01-01

    We present the results of low frequency dielectric measurements and a detailed kinetic investigation of the specific heat anomaly in the spin-density wave phase of (TMTSF)(2)PF6 in the temperature range between 2 and 4 K. The dielectric relaxation shows a critical slowing down towards a ''static'......'' glass transition around 2 K. The jump in the specific heat in different controlled kinetic conditions shows all the characteristics of freezing in supercooled liquids. Both effects give direct evidence of a glass transition in the spin-density wave ground state.......We present the results of low frequency dielectric measurements and a detailed kinetic investigation of the specific heat anomaly in the spin-density wave phase of (TMTSF)(2)PF6 in the temperature range between 2 and 4 K. The dielectric relaxation shows a critical slowing down towards a ''static...

  17. Gas Phase Transport, Adsorption and Surface Diffusion in Porous Glass Membrane

    Czech Academy of Sciences Publication Activity Database

    Yang, J.; Čermáková, Jiřina; Uchytil, Petr; Hamel, Ch.; Seidel-Morgenstern, A.

    2005-01-01

    Roč. 104, 2-4 (2005), s. 344-351 ISSN 0920-5861. [International Conference on Catalysis in Membrane Reactors /6./. Lahnstein, 06.07.2004-09.07.2004] R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas phase transport * vycor glass * adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.365, year: 2005

  18. Gibbs free-energy difference between the glass and crystalline phases of a Ni-Zr alloy

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1993-01-01

    The heats of eutectic melting and devitrification, and the specific heats of the crystalline, glass, and liquid phases have been measured for a Ni24Zr76 alloy. The data are used to calculate the Gibbs free-energy difference, Delta G(AC), between the real glass and the crystal on an assumption that the liquid-glass transition is second order. The result shows that Delta G(AC) continuously increases as the temperature decreases in contrast to the ideal glass case where Delta G(AC) is assumed to be independent of temperature.

  19. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua; Zhao, Lijuan

    2016-01-01

    Tm 3+ ions doped β-PbF 2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm 3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O h to D 4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm 3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field

  20. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  1. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    Science.gov (United States)

    Giovambattista, Nicolas; Loerting, Thomas; Lukanov, Boris R.; Starr, Francis W.

    2012-01-01

    Water has multiple glassy states, often called amorphous ices. Low-density (LDA) and high-density (HDA) amorphous ice are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation connects to a first-order liquid-liquid phase transition (LLPT) above the glass transition temperature Tg. Direct experimental evidence of the LLPT is challenging to obtain, since the LLPT occurs at conditions where water rapidly crystallizes. In this work, we explore the implications of a LLPT on the pressure dependence of Tg(P) for LDA and HDA by performing computer simulations of two water models – one with a LLPT, and one without. In the absence of a LLPT, Tg(P) for all glasses nearly coincide. When there is a LLPT, different glasses exhibit dramatically different Tg(P) which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario including a LLPT. PMID:22550566

  2. Experimental signatures of a nonequilibrium phase transition governing the yielding of a soft glass.

    Science.gov (United States)

    Hima Nagamanasa, K; Gokhale, Shreyas; Sood, A K; Ganapathy, Rajesh

    2014-06-01

    We present direct experimental signatures of a nonequilibrium phase transition associated with the yield point of a prototypical soft solid-a binary colloidal glass. By simultaneously quantifying single-particle dynamics and bulk mechanical response, we identified the threshold for the onset of irreversibility with the yield strain. We extracted the relaxation time from the transient behavior of the loss modulus and found that it diverges in the vicinity of the yield strain. This critical slowing down is accompanied by a growing correlation length associated with the size of regions of high Debye-Waller factor, which are precursors to yield events in glasses. Our results affirm that the paradigm of nonequilibrium critical phenomena is instrumental in achieving a holistic understanding of yielding in soft solids.

  3. Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites

    Science.gov (United States)

    Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.

    2017-07-01

    Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.

  4. Dynamics and Geometry of Icosahedral Order in Liquid and Glassy Phases of Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Masato Shimono

    2015-07-01

    Full Text Available The geometrical properties of the icosahedral ordered structure formed in liquid and glassy phases of metallic glasses are investigated by using molecular dynamics simulations. We investigate the Zr-Cu alloy system as well as a simple model for binary alloys, in which we can change the atomic size ratio between alloying components. In both cases, we found the same nature of icosahedral order in liquid and glassy phases. The icosahedral clusters are observed in liquid phases as well as in glassy phases. As the temperature approaches to the glass transition point Tg, the density of the clusters rapidly grows and the icosahedral clusters begin to connect to each other and form a medium-range network structure. By investigating the geometry of connection between clusters in the icosahedral network, we found that the dominant connecting pattern is the one sharing seven atoms which forms a pentagonal bicap with five-fold symmetry. From a geometrical point of view, we can understand the mechanism of the formation and growth of the icosahedral order by using the Regge calculus, which is originally employed to formulate a theory of gravity. The Regge calculus tells us that the distortion energy of the pentagonal bicap could be decreased by introducing an atomic size difference between alloying elements and that the icosahedral network would be stabilized by a considerably large atomic size difference.

  5. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr--Ni--Cu--Al metallic glasses

    International Nuclear Information System (INIS)

    Fan, Cang; Li, Chunfei; Inoue, Akihisa; Haas, Volker

    2001-01-01

    This work shows that the crystallization process of Zr--Ni--Cu--Al metallic glass is greatly influenced by adding Nb as an alloying element. Based on the results of the differential scanning calorimetry experiments for metallic glasses Zr 69-x Nb x Ni 10 Cu 12 Al 9 (x=0--15at.%), the crystallization process takes place through two individual stages. For Zr 69 Ni 10 Cu 12 Al 9 (x=0), metastable hexagonal ω-Zr and a small fraction of tetragonal Zr 2 Cu are precipitated upon completion of the first exothermic reaction. Contrary to this alloy, the precipitation of a nanoquasicrystalline phase is detected when 5--10 at.% Nb is added. Furthermore, the crystallization temperature T x , supercooled liquid region ΔT x and reduced temperature T g /T L (T g is the glass transition temperature, T L the liquidus temperature) increase with increasing Nb content. These results indicate that adding Nb content to Zr--Ni--Cu--Al metallic glasses not only induces quasicrystalline phase formation, but also enhances glass-forming ability. Copyright 2001 American Institute of Physics

  6. Devitrification kinetics and phase selection mechanisms in Cu-Zr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Ilkay [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Metallic glasses have been a promising class of materials since their discovery in the 1960s. Indeed, remarkable chemical, mechanical and physical properties have attracted considerable attention, and several excellent reviews are available. Moreover, the special group of glass forming alloys known as the bulk metallic glasses (BMG) become amorphous solids even at relatively low cooling rates, allowing them to be cast in large cross sections, opening the scope of potential applications to include bulk forms and net shape structural applications. Recent studies have been reported for new bulk metallic glasses produced with lower cooling rates, from 0.1 to several hundred K/s. Some of the application products of BMGs include sporting goods, high performance springs and medical devices. Several rapid solidification techniques, including melt-spinning, atomization and surface melting have been developed to produce amorphous alloys. The aim of all these methods is to solidify the liquid phase rapidly enough to suppress the nucleation and growth of crystalline phases. Furthermore, the production of amorphous/crystalline composite (ACC) materials by partial crystallization of amorphous precursor has recently given rise to materials that provide better mechanical and magnetic properties than the monolithic amorphous or crystalline alloys. In addition, these advances illustrate the broad untapped potential of using the glassy state as an intermediate stage in the processing of new materials and nanostructures. These advances underlie the necessity of investigations on prediction and control of phase stability and microstructural dynamics during both solidification and devitrification processes. This research presented in this dissertation is mainly focused on Cu-Zr and Cu-Zr-Al alloy systems. The Cu-Zr binary system has high glass forming ability in a wide compositional range (35-70 at.% Cu). Thereby, Cu-Zr based alloys have attracted much attention according to fundamental

  7. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.

    Science.gov (United States)

    Nelson, G M; Nychka, J A; McDonald, A G

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to

  8. Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaoke, E-mail: muxiaoke@gmail.com [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Karlsruhe Institute of Technology (KIT), 89081 Ulm (Germany); Wang, Di [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Feng, Tao [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology (NJUST), 210094 Nanjing (China); Kübel, Christian [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Karlsruhe Institute of Technology (KIT), 89081 Ulm (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)

    2016-09-15

    Characterizing heterogeneous nanostructured amorphous materials is a challenging topic, because of difficulty to solve disordered atomic arrangement in nanometer scale. We developed a new transmission electron microscopy (TEM) method to enable phase analysis and mapping of heterogeneous amorphous structures. That is to combine scanning TEM (STEM) diffraction mapping, radial distribution function (RDF) analysis, and hyperspectral analysis. This method was applied to an amorphous zirconium oxide and zirconium iron multilayer system, and showed extreme sensitivity to small atomic packing variations. This approach helps to understand local structure variations in glassy composite materials and provides new insights to correlate structure and properties of glasses. - Highlights: • A method for phase mapping of nanostructured amorphous materials was developed. • The phase mapping is purely based on structural information. • The method combines STEM diffraction with radial distribution function analysis. • The method was applied on an amorphous multilayer for demonstrating its sensitivity.

  9. Zero-temperature phase of the XY spin glass in two dimensions: Genetic embedded matching heuristic

    Science.gov (United States)

    Weigel, Martin; Gingras, Michel J. P.

    2008-03-01

    For many real spin-glass materials, the Edwards-Anderson model with continuous-symmetry spins is more realistic than the rather better understood Ising variant. In principle, the nature of an occurring spin-glass phase in such systems might be inferred from an analysis of the zero-temperature properties. Unfortunately, with few exceptions, the problem of finding ground-state configurations is a nonpolynomial problem computationally, such that efficient approximation algorithms are called for. Here, we employ the recently developed genetic embedded matching (GEM) heuristic to investigate the nature of the zero-temperature phase of the bimodal XY spin glass in two dimensions. We analyze bulk properties such as the asymptotic ground-state energy and the phase diagram of disorder strength vs disorder concentration. For the case of a symmetric distribution of ferromagnetic and antiferromagnetic bonds, we find that the ground state of the model is unique up to a global O(2) rotation of the spins. In particular, there are no extensive degeneracies in this model. The main focus of this work is on an investigation of the excitation spectrum as probed by changing the boundary conditions. Using appropriate finite-size scaling techniques, we consistently determine the stiffness of spin and chiral domain walls and the corresponding fractal dimensions. Most noteworthy, we find that the spin and chiral channels are characterized by two distinct stiffness exponents and, consequently, the system displays spin-chirality decoupling at large length scales. Results for the overlap distribution do not support the possibility of a multitude of thermodynamic pure states.

  10. Liquid phase sintering of dense and porous glass-ceramics from coal fly-ash and waste glass

    Directory of Open Access Journals (Sweden)

    Bossert J.

    2004-01-01

    Full Text Available Glass-ceramics were produced utilizing fly-ash from coal power stations and waste glass of TV monitors, windows and flask glass. The powder technology route was employed. The mixture of 50% fly ash and 50% waste TV glass increases the bending strength from 12±1 to 56±4 MPa and E-modulus from 6±1 to 26±3 GPa. Using polyurethane foam and C-fibers as pore creators porosity of 70±4 and 55±5 %, respectively, can be obtained-modulus and bending strength of the porous systems obtained by polyurethane foam and C-fibers was 2.7±0.5 GPa and 4.5±1 MPa and 7.1±1 GPa and 9.3±2 MPa respectively.

  11. Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Ji, Young Su; Chung, Sung Jae; Ok, Myoung-Ryul; Hong, Kyung Tae; Suh, Jin-Yoo; Byeon, Jai Won; Yoon, Jin-Kook; Lee, Kyung Hwan; Lee, Kyung Sub

    2007-01-01

    The crystallization behavior of Cu 43 Zr 43 Al 7 Ag 7 (numbers indicate at.%) bulk metallic glass was investigated using the isothermal electrical resistivity measurements at 450 deg. C in the supercooled liquid region. The crystallization process is a single step phase transformation. To analyze the electrical resistivity reduction, microstructure evolutions were analyzed using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering. The Avrami parameter of the electrical resistivity reduction step was 1.73, indicating that the crystallization process is a diffusion-controlled growth of intermetallic compounds with decreasing nucleation rate

  12. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites.

    Science.gov (United States)

    Lu, Yan; Niu, Wenqi; Zou, Xue; Shen, Chengyin; Xia, Lei; Huang, Chaoqun; Wang, Hongzhi; Jiang, Haihe; Chu, Yannan

    2017-05-05

    Breath analysis is a non-invasive approach which may be applied to disease diagnosis and pharmacokinetic study. In the case of offline analysis, the exhaled gas needs to be collected and the sampling bag is often used as the storage vessel. However, the sampling bag usually releases some extra compounds, which may interfere with the result of the breath test. In this study, a novel breath sampling glass bottle was developed with a syringe needle sampling port for solid phase microextraction (SPME). Such a glass bottle scarcely liberates compounds and can be used to collect exhaled gas for ensuing analysis by gas chromatography-mass spectrometry (GC-MS). The glass bottle sampling SPME-GC-MS analysis was carried out to investigate the breath metabolites of myrtol, a multicompound drug normally used in the treatment of bronchitis and sinusitis. Four compounds, α-pinene, 2,3-dehydro-1,8-cineole, d-limonene and 1,8-cineole were found in the exhaled breath of all eight volunteers who had taken the myrtol. While for other ten subjects who had not used the myrtol, these compounds were undetectable. In the SPME-GC-MS analysis of the headspace of myrtol, three compounds were detected including α-pinene, d-limonene and 1,8-cineole. Comparing the results of breath and headspace analysis, it indicates that 2,3-dehydro-1,8-cineole in the breath is the metabolite of 1,8-cineole. It is the first time that this metabolite was identified in human breath. The study demonstrates that the glass bottle sampling SPME-GC-MS method is applicable to exhaled gas analysis including breath metabolites investigation of drugs like myrtol. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)

    1996-10-01

    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  14. Formation and properties of two-phase bulk metallic glasses by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.

  15. Contribution of di- and trivalent oxides to crystal phase formations and properties of yttrium aluminosilicate glass-ceramics

    Directory of Open Access Journals (Sweden)

    Saad M. Salman

    2015-09-01

    Full Text Available The crystallization behaviour, phase composition, microhardness and chemical durability of some silicate glasses and glass-ceramics based on LiAlSi2O6-YAlSiO5 system were investigated. The effects of partial replacements of LiAlSi2O6 mostly with LiFeSi2O6 and complete replacement of YAlSiO5 with CaMgSi2O6 were considered. In some cases small amount of Cr2O3 was introduced as nucleating agent or Fe2O3 was partially replaced with chromium or indium oxides. The main crystalline phases formed after controlled heat-treatments of the glasses were yttrium-containing β-spodumene solid solution (ss - Li(Al,YSi2O6, together with varieties of pyroxene-ss including lithium iron pyroxene-ss - LiFeSi2O6-CaMgSi2O6, augite ' Ca(Mg,FeSi2O6, chromoaugitess, Li-aegirine - LiFeSi2O6, diopside - CaMgSi2O6 and lithium indium silicate - LiInSi2O6 phases. The Vickers’ microhardness values of the studied glasses (ranged from 4610 to 6185 MPa were greatly affected by the modifications of the glass compositions. On the other hand, the glass-ceramics’ microhardness (7245–8175 MPa was markedly improved depending on the microstructure and the nature of crystalline phases formed. The glass-ceramics have chemical stability better than those for the corresponding glasses.

  16. Studies on Se75Te25–x In x chalcogenide glasses; a material for phase change memory

    Science.gov (United States)

    Srivastava, Archana; Tiwari, S. N.; Alvi, M. A.; Khan, Shamshad A.

    2018-01-01

    This research paper describes the non-isothermal crystallization during phase transformation in Se75Te25–x In x glasses synthesized by melt quenching method. For crystallization studies in these glasses, non-isothermal differential scanning calorimetry (DSC) measurements was done at constant heating rates of 5, 10, 15, 20 and 25 K min‑1 in air atmosphere. The glass transition temperature (T g), on-set crystallization temperature (T c), peak crystallization temperature (T p) and melting temperatures (T m) were derived by DSC thermograms. Using various thermal parameters the activation energy of glass transition and crystallization were determined by using Kissinger, Moynihan and Ozawa approaches and found to be in good agreement. The value of the activation energy of glass transition (ΔE t) was found to be minimum for Se75Te19In6 alloys confirming its maximum probability of transition in a metastable state. Thermal stability parameters of Se75Te25–x In x were determined and found to be increased with indium content. High resolution x-ray diffraction and field emission scanning electron microscopy studies were employed for the study of phase transformation in Se75Te25–x In x glasses. The outcome of these studies shows that the investigated materials may be suitable for phase change memory devices.

  17. Development of Fe-B Based Bulk Metallic Glasses: Morphology of Residual Phases in Fe50Ni16Mo6B18Zr10 Glass

    Directory of Open Access Journals (Sweden)

    Tiburce A. Aboki

    2013-04-01

    Full Text Available Iron-boron based bulk metallic glasses (BMG development has been initiated using Fe40Ni38Mo4B18 as precursor. Addition of zirconium up to 10 atomic % along with the reduction of Ni proportion improves the glass forming ability (GFA, which is optimum when Ni is suppressed in the alloy. However melting instability occurred during the materials fabrication resulting in the formation of residual crystalline phases closely related to the amorphous phase. Microstructure study shows an evolution from amorphous structure to peculiar acicular structure, particularly for Fe50Ni16Mo6B18Zr10, suggesting the amorphous structure as interconnected atomic sheets like “atomic mille feuilles” whose growth affects the alloys’ GFA.

  18. Developing methodologies for source attribution. Glass phase separation in Trinitite using NF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Koeman, Elizabeth C.; Simonetti, Antonio [Notre Dame Univ., IN (United States). Dept. of Civil and Environmental Engineering and Earth Sciences; McNamara, Bruce K.; Smith, Frances N. [Pacific Northwest National Laboratory, Richland, WA (United States). Nuclear Chemistry and Engineering; Burns, Peter C. [Notre Dame Univ., IN (United States). Dept. of Civil and Environmental Engineering and Earth Sciences; Notre Dame Univ., IN (United States). Dept. of Chemistry and Biochemistry

    2017-08-01

    This study details thermal reactions between glasses, common minerals, and Trinitite post-detonation material with the fluorinating agent nitrogen trifluoride (NF{sub 3}). The ultimate goal of our investigation is to develop a relatively rapid method for the effective separation of bomb components from complex matrices resulting from a nuclear explosion. Trinitite samples, silicate minerals (quartz; plagioclase and microcline), amorphous SiO{sub 2}, calcite, a natural glass (obsidian), and two synthetic glasses were characterized extensively before and after the fluorination to fully understand the effects of the NF{sub 3} thermal treatment. Samples were reacted with NF{sub 3} using a combined thermogravimetric (TG) differential thermal analysis (DTA) unit, as well as in a stainless steel bomb reactor connected to a fluorination line. Subsequent to the NF{sub 3} treatment, samples were imaged by scanning electron microscopy in order to document changes in grain size and morphology. Energy dispersive spectroscopy was performed to determine changes in major element abundances. Results demonstrate that rates of reaction are dependent on grain size, temperature, pressure, and time of fluorination. All mineral samples experienced mass loss during fluorination. Specifically, amorphous SiO{sub 2} (∝90% mass loss) experienced the most while calcite experienced the least (∝18%). Major element analysis reveals that mass loss is attributable to the volatilization of silica (SiO{sub 2}) in Si-bearing phases, or sample decomposition in calcite due to fluorination. Results for fluorinated samples of Trinitite demonstrate that mass loss occurs at different rates for each sample, but each sample experienced an expected large decrease in Si content (resulting from volatilization of SiF{sub 4}). Hence, the concentration of metals in the residual material increased due to the volatilization of Si. These results validate that this thermal-fluorination technique allows the

  19. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.

    2005-01-01

    Rolling deformation of bulk Cu60Zr20Ti20 metallic glass has been performed at cryogenic temperature. The specimens exhibit excellent ductility, and are rolled up to 97% reduction in thickness without fracture. Crystallization is suppressed during the deformation, however, phase separation is obse...... is observed in the glassy matrix when the thickness reduction exceeds 89%. Once the phase separation occurs, the microhardness of the specimen increases drastically, indicating the existence of work hardening by severe plastic deformation of the metallic glass.......Rolling deformation of bulk Cu60Zr20Ti20 metallic glass has been performed at cryogenic temperature. The specimens exhibit excellent ductility, and are rolled up to 97% reduction in thickness without fracture. Crystallization is suppressed during the deformation, however, phase separation...

  20. Laser Shock Compression Studies of Phase Changes in Ce3 Al Metallic Glass

    Science.gov (United States)

    Bryant, Alex; Wehrenberg, Christopher; Alamgir, Faisal; Remington, Bruce; Thadhani, Naresh

    2017-06-01

    Laser shock-compression of Ce3 Al metallic glass (MG) was performed to probe pressure-induced phase transitions. Ce3 Al MG has been previously shown to crystallize into a single crystal FCC phase during static compression at 25 GPa. In the present work, experiments were performed using the 3J Nd:YAG pulse laser at Georgia Tech and the high energy laser at the OMEGA facility. Characterization of shock compressed samples recovered from the OMEGA laser experiments were performed using XRD and PDF measurements at the NSLS-2 synchrotron at Brookhaven National Lab. The results showed evidence of a permanent polyamorphous phase change at pressures > 10 GPa and crystallization at pressures > 75 GPa. Particle velocities were measured using VISAR in experiments performed at Georgia Tech and simulated using Hyades and Abaqus to create an empirical equation of state and correlate with results obtained from XRD and PDF characterization. The results attained to-date in terms of the evolution of the high pressure amorphous and crystalline phases and their correlations with the shock conditions will be presented. This work is supported in part by ARO Grant No. W9HNF-09-1-0403 and the National Science Foundation Graduate Research Fellowship Program awarded to Alex Bryant under Grant No. 0946809.

  1. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  2. Ceramic composite resistors of B4C modified by TIO2 and glass phase

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.

    1998-01-01

    Technical progress in the manufacturing technology of composite materials resulted in arising of new generation of bulk resistors, resistant to high levels of overloads and high temperature. These resistors can be applied in extremely heavy working conditions, for instance in cooperation with ignition circuits. The resistors investigated in our research were performed on the basis of ceramic composite consisted of semiconductor boron carbide B 4 C as conductive phase, aluminium oxide Al 2 O 3 and non-alkali glass as insulators and titanium dioxide TiO 2 . The technological procedure of the fabrication of resistors and the results of the tests, such as temperature dependence of the electrical resistance exploitation trials, are presented. (author)

  3. Vanishing Hall conductance in the phase-glass Bose metal at zero temperature

    Science.gov (United States)

    May-Mann, Julian; Phillips, Philip W.

    2018-01-01

    Motivated in part by numerical simulations [H. G. Katzgraber and A. P. Young, Phys. Rev. B 66, 224507 (2002), 10.1103/PhysRevB.66.224507; J. M. Kosterlitz and N. Akino, Phys. Rev. Lett. 81, 4672 (1998), 10.1103/PhysRevLett.81.4672; Phys. Rev. Lett. 81, 4672 (1998), 10.1103/PhysRevLett.81.4672] that reveal that the energy to create a defect in a gauge or phase glass scales as Lθ with θ N. P. Breznay and Kapitulnik (unpublished); Y. Wang, I. Tamir, D. Shahar, and N. P. Armitage, arXiv:1708.01908 [cond-mat.supr-con

  4. Trace phase formation, crystallization kinetics and crystallographic evolution of a lithium disilicate glass probed by synchrotron XRD technique

    Science.gov (United States)

    Huang, Saifang; Huang, Zhaohui; Gao, Wei; Cao, Peng

    2015-03-01

    X-ray diffraction technique using a laboratory radiation has generally shown limitation in detectability. In this work, we investigated the in situ high-temperature crystallization of a lithium disilicate glass-ceramic in the SiO2-Li2O-CaO-P2O5-ZrO2 system with the aid of synchrotron radiation. The formation of lithium metasilicate and other intermediate phases in trace amount was successfully observed by synchrotron X-ray diffraction (SXRD). The crystallization mechanism in this glass was thus intrinsically revised to be the co-nucleation of lithium metasilicate and disilicate, instead of the nucleation of lithium disilicate only. The phase content, crystallite size and crystallographic evolutions of Li2Si2O5 in the glass-ceramic as a function of annealing temperature were studied by performing Rietveld refinements. It is found that the growth of Li2Si2O5 is constrained by Li2SiO3 phase at 580-700°C. The relationship between the crystallographic evolution and phase transition was discussed, suggesting a common phenomenon of structural response of Li2Si2O5 along its c axis to other silicon-related phases during glass crystallization.

  5. Development of Hermetic Sealing Glasses for Solid Oxide Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sealing glasses, either rigid glass-ceramics or viscous, non-crystallizing compositions, will be developed and sealing processes will be optimized based on NASA's...

  6. Expanded High-Level Waste Glass Property Data Development: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

    2011-01-21

    Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

  7. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing.

    Science.gov (United States)

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-06-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μ m to 5 μ m) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

  8. Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: Phase-separation-controlled crystallization and optical property

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Chen, Yan; Yu, Hua; Lu, Hongwei; Ji, Zhenguo; Huang, Ping

    2015-01-01

    Highlights: • Na 5 Gd 9 F 32 nanocrystals embedded glass ceramics were fabricated for the first time. • Such glass ceramics were achieved by phase-separation-controlled crystallization. • Elemental mapping evidenced the segregation of activators into the Na 5 Gd 9 F 32 lattice. • Luminescent color could be tuned by controlling glass crystallization temperature. - Abstract: Lanthanide-activated cubic Na 5 Gd 9 F 32 nanocrystals were precipitated from a borosilicate glass with a specifically designed composition. The precursor glass is already phase-separated after melt-quenching, which is beneficial to the realization of the controllable glass crystallization for affording desirable size, morphology and activator partition. Elemental mapping in the scanning transmission electron microscopy evidenced that the segregation of lanthanide ions into the Na 5 Gd 9 F 32 lattice was in situ formed without the requirement of long-range ionic diffusion. Impressively, such fabricated glass ceramic co-doped with Yb 3+ /Er 3+ ions exhibited intense upconversion luminescence, which was about 500 times higher than that of the precursor glass, and its luminescent color could be easily tuned from red to green by controlling glass crystallization temperature. It is anticipated that such phase-separation synthesis strategy with precise control over nanostructure of glass ceramics offer a great opportunity to design other highly transparent nanocomposites with a wide range of tunable optical properties

  9. Evidence of a one-dimensional thermodynamic phase diagram for simple glass-formers

    DEFF Research Database (Denmark)

    Hansen, H. W.; Sanz, A.; Adrjanowicz, K.

    2018-01-01

    Glass formers show motional processes over an extremely broad range of timescales, covering more than ten orders of magnitude, meaning that a full understanding of the glass transition needs to comprise this tremendous range in timescales. Here we report simultaneous dielectric and neutron spectr...

  10. A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments.

    Science.gov (United States)

    Karadimitriou, N K; Joekar-Niasar, V; Hassanizadeh, S M; Kleingeld, P J; Pyrak-Nolte, L J

    2012-09-21

    In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micro-model with dimensions of 5 × 35 mm(2) and constant depth of 43 microns is described. This is the first time that a micro-model with such depth and dimensions has been etched in glass by using a dry etching technique. The micro-model was visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously. Quasi-static drainage experiments were conducted in order to obtain equilibrium data points that relate capillary pressure to phase saturation. By measuring the flow rate of water through the flow network for known pressure gradients, the intrinsic permeability of the micro-model's flow network was also calculated. The experimental results were used to calibrate a pore-network model and test its validity. Finally, we show that glass-etched micro-models can be valuable tools in single and/or multi-phase flow studies and their applications.

  11. Sulfur Solubility Testing and Characterization of LAW Phase 1 Matrix Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-24

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analysis results for a series of simulated low-activity waste (LAW) glass compositions. These data will be used in the development of improved sulfur solubility models for LAW glass. A procedure developed at Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study.

  12. Sulfur Solubility Testing and Characterization of Hanford LAW Phase 2, Inner Layer Matrix Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Caldwell, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-27

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated low activity waste (LAW) glass compositions. A procedure developed at the Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study. These data will be used in the development of improved sulfur solubility models for LAW glass.

  13. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  14. Net Shaping of Multifunctional Bulk Metallic Glass Containers and Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Demand for novel manufacturing methods for space systems brings unique properties of bulk metallic glasses (BMG) into the spotlight. In addition to superior...

  15. Thermoplastic forming of bulk metallic glasses for precision robotics components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Demand for novel manufacturing methods for space systems brings unique properties of bulk metallic glasses (BMG) into the spotlight. In addition to superior...

  16. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    Science.gov (United States)

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  17. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  18. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  19. In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo L.

    2000-01-01

    Full Text Available Composites that can mimic the in vitro bioactive behavior of bioactive glasses were designed to fulfill two main features of bioactive glasses that are responsible for their high bond-to-bone rates: (1 capability of providing ions such as calcium and phosphate to the nearby environment and (2 ideal surface structure that allows fast heterogeneous precipitation of hydroxy-carbonate-apatite (HCA. The novel composites were prepared by incorporating bioactive glass particles into polymer matrices. The in vitro bioactivity test was performed by introducing samples into a buffered solution as well as into a simulated body fluid solution. FTIR was used to evaluate the kinetics of HCA (hydroxy-carbonate-apatite precipitation. The results showed that the obtained composites can supply ions, such as silicates and phosphates in rates and concentrations comparable or superior than bulk bioactive glasses. Moreover, the surface chemistry of the composites was altered to mimic the surface of bioactive glasses. It was demonstrated that the in vitro bioactivity of the composites was enhanced by chemically modifying polymer surfaces through the introduction of special alkoxysilane groups.

  20. First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories

    Energy Technology Data Exchange (ETDEWEB)

    Garrahan, Juan P [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Jack, Robert L [Department of Chemistry, University of California, Berkeley, CA 94720-1460 (United States); Lecomte, Vivien; Duijvendijk, Kristina van; Wijland, Frederic van [Laboratoire Matiere et Systemes Complexes (CNRS UMR 7057), Universite Paris Diderot, 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Pitard, Estelle [Laboratoire des Colloides, Verres et Nanomateriaux (CNRS UMR 5587), Universite de Montpellier II, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France)

    2009-02-20

    We investigate the dynamics of kinetically constrained models of glass formers by analysing the statistics of trajectories of the dynamics, or histories, using large deviation function methods. We show that, in general, these models exhibit a first-order dynamical transition between active and inactive dynamical phases. We argue that the dynamical heterogeneities displayed by these systems are a manifestation of dynamical first-order phase coexistence. In particular, we calculate dynamical large deviation functions, both analytically and numerically, for the Fredrickson-Andersen model, the East model, and constrained lattice gas models. We also show how large deviation functions can be obtained from a Landau-like theory for dynamical fluctuations. We discuss possibilities for similar dynamical phase-coexistence behaviour in other systems with heterogeneous dynamics.

  1. Effect of borojo (Borojoa patinoi Cuatrecasas) three-phase composition and gum arabic on the glass transition temperature.

    Science.gov (United States)

    Rodríguez-Bernal, Jenny M; Tello, Edisson; Flores-Andrade, Enrique; Perea-Flores, Maria de Jesús; Vallejo-Cardona, Alba A; Gutiérrez-López, Gustavo F; Quintanilla-Carvajal, Maria X

    2016-02-01

    The search for natural, novel, high-quality, stable food ingredients is an ongoing practice in the food industry. Pulp of borojo (Borojoa patinoi Cuatrecasas), which is a fruit of the Colombian Pacific region, can be separated into three phases: liquid (LP), medium (MP) and solid (SP) phases. The objective of this work was to evaluate the effect of the three-phase composition and gum arabic on their glass transitions temperatures (T(g)). The best mixture, LP-MP, MP-SP and LP-SP and gum arabic (GA) was identified by response surface methodology. When adding GA to SP borojo phase in a 1:1 proportion, the resulting T(g) of the mixture was 132.27 °C whereas Tg for GA and SP-phase were 154.89 °C and 79.86 °C respectively, which supported this combination as attractive from a processing perspective and supports an industrial advantage of using borojo as food ingredient. Phases were characterized by high-performance liquid chromatography, Fourier transform infrared spectroscopy, confocal laser scanning microscopy and mass spectrometry. Low molecular weight compounds such as fructose for MP lowered T(g) whereas the presence of lignin increased T(g) of the mixtures as with the SP. The addition of GA significantly increased T(g) of borojo phases so leading to propose them as novel food processing materials. © 2015 Society of Chemical Industry.

  2. Thick film titania on glass supports for vapour phase photocatalytic degradation of toluene, acetone, and ethanol

    Czech Academy of Sciences Publication Activity Database

    Neti, R.N.; Parmar, G.R.; Bakardjieva, Snejana; Šubrt, Jan

    2010-01-01

    Roč. 163, č. 3 (2010), s. 219-229 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z40320502 Keywords : titania photocatalyst * thick films * glass support Subject RIV: CA - Inorganic Chemistry Impact factor: 3.074, year: 2010

  3. Mean-field solution of the Potts glass near the transition temperature to the ordered phase

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Klíč, Antonín

    2011-01-01

    Roč. 84, č. 6 (2011), "064446-1"-"064446-10" ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100520 Keywords : Potts glass * hierarchic solutions with replicated spins * continuous replica-symmetry breaking Subject RIV: BE - Theoretical Physics Impact factor: 3.691, year: 2011

  4. Pronounced Plasticity Caused by Phase Separation and β-relaxation Synergistically in Zr-Cu-Al-Mo Bulk Metallic Glasses.

    Science.gov (United States)

    Wang, Tuo; Wang, Lu; Wang, Qinjia; Liu, Yanhui; Hui, Xidong

    2017-04-27

    Bulk metallic glasses (BMGs) are known to have extraordinary merits such as ultrahigh strength and dynamic toughness etc. but tied to the detrimental brittleness, which has become a critical issue to the engineering application and understanding the glass nature. In this article, we report a new class of Zr-Cu-Al-Mo BMGs with extraordinary plastic strain above 20%. "Work-hardening" effect after yielding in a wide range of plastic deformation process has been detected for this kind of BMGs. Compositional heterogeneity, which can be classified into ZrMo- and Cu-rich zones, was differentiated in this kind of BMG. Pronounced humps have been observed on the high frequency kinetic spectrum in Mo containing BMGs, which is the indicator of β-relaxation transition. The underlying mechanism for the excellent plastic deforming ability of this class of BMGs is ascribed to the synergistic effects of soft ZrMo-rich glass formed through phase separation and abundant flow units which related to β-relaxation.

  5. Nature of the spin-glass phase at experimental length scales

    International Nuclear Information System (INIS)

    Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Maiorano, A; Martin-Mayor, V; Monforte-Garcia, J; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Seoane, B; Tarancon, A; Guidetti, M; Mantovani, F; Schifano, S F; Tripiccione, R; Marinari, E; Parisi, G; Muñoz Sudupe, A; Navarro, D

    2010-01-01

    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64T c . We demonstrate the relevance of equilibrium finite size simulations to understanding experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a timescale of 1 h can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies in ensuring equilibration in parallel tempering simulations

  6. Chemical Composition Analysis and Product Consistency Tests of the ORP Phase 5 Nepheline Study Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Caldwell, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-02-01

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high-level waste glass compositions fabricated by the Pacific Northwest National Laboratory (PNNL). These data will be used in the development of improved models for the prediction of nepheline crystallization in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP).

  7. Change of quasilattice constant during amorphous-to-quasicrystalline phase transformation in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Rasmussen, A.R.; Jensen, C.H.

    2002-01-01

    The amorphous-to-quasicrystalline phase transformation in a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass has been investigated by monitoring the quasilattice constant and the composition of quasicrystalline particles in the samples annealed in vacuum at 663 K for various times. It is found......Cu7.5Ag10 metallic glass is a nonpolymorphous reaction....

  8. Reentrant Superspin Glass Phase in a La_{0.82}Ca_{0.18}MnO_{3} Ferromagnetic Insulator

    Directory of Open Access Journals (Sweden)

    P. Anil Kumar

    2014-03-01

    Full Text Available We report results of the magnetization and ac susceptibility measurements down to very low fields on a single crystal of the perovskite manganite, La_{0.82}Ca_{0.18}MnO_{3}. This composition falls in the intriguing ferromagnetic insulator region of the manganite phase diagram. In contrast to earlier beliefs, our investigations reveal that magnetically (and in every other sense, this is a single-phase system with a ferromagnetic ordering temperature of around 170 K. However, this ferromagnetic state is magnetically frustrated, and the system exhibits pronounced glassy dynamics below 90 K. Based on measured dynamical properties, we propose that this quasi-long-ranged ferromagnetic phase, and the associated superspin glass behavior, is the true magnetic state of the system, rather than being a macroscopic mixture of ferromagnetic and antiferromagnetic phases, as often suggested. Our results provide an understanding of the quantum phase transition from an antiferromagnetic insulator to a ferromagnetic metal via this ferromagnetic insulating state as a function of x in La_{1−x}Ca_{x}MnO_{3}, in terms of the possible formation of magnetic polarons.

  9. Phase Separation and Crystallization in soda-lime borosilicate glass enriched in MoO{sub 3} studied by in situ Raman spectroscopy at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, M.; Schuller, S.; Advocat, T. [CEA Valrho, DEN/DTCD/SCDV, Laboratoire d' Etude de Base sur les Verres, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Caurant, D.; Majerus, O. [Laboratoire de Chimie de la Matiere Condensee de Paris- LCMCP - UMR-CNRS 7574, Ecole Nationale Superieure de Chimie de Paris - ENSCP, Paristech, 75231 Paris (France); Ligny, D. de [Laboratoire de Physico-Chimie des Materiaux Luminescents- LPCML - UMR-CNRS 5620, Universite Claude Bernard Lyon1, 69622 Villeurbanne (France)

    2008-07-01

    Phase separation and crystallisation processes may arise in molten glass when the MoO{sub 3} content exceeds its solubility limit. Molybdenum combined with other elements such as alkali and alkaline-earth may form crystalline molybdates, known as 'yellow phases' in nuclear glasses. In order to establish the sequence of phase separation and crystallization processes occurring during the cooling of the melt, a non-radioactive simplified glass composition was chosen in the SiO{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O-CaO system, with 2 mol.% MoO{sub 3}. Various cooling scenarios were tested: cooling by air blowing, quenching between two copper plates and cooling on metallic plate. The resulting glass specimens were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy in temperature. These observations made it possible to determine the sequence and the appearance temperature of phenomena upon cooling: first, a phase separation occurs, (small droplets dispersed in the molten glass) followed by molybdates crystallization inside the droplets. (authors)

  10. Study of phase equilibria and glass formation in the CaO-WO3-P2O5 system

    International Nuclear Information System (INIS)

    Bielis, I.Ya.

    1980-01-01

    The method of quenching has been used to investigate the liquidus surface of a portion of the CaO-WO 3 -P 2 O 5 system limited by the Ca(PO 3 ) 2 -W 2 O 3 (PO 4 ) 2 and CaWO 4 -Ca 2 P 2 O 7 cross-sections. The primary crystallization fields on the compounds: WO 3 , W 2 O 3 (PO 4 ) 2 , CaWO 4 , Ca 2 P 7 O 7 , Ca(PO 3 ) 2 are separated. The liquidus surface isotherms at 900, 1000, 1100 and 1200 deg C have been plotted on the concentration triangle plane. It has been found that the cross-sections of W 2 O 3 (PO 4 ) 2 -Ca(PO 3 ) 2 , WO 3 -Ca(PO 3 ) 2 , WO 3 -Ca 2 P 2 O 7 and CaWO 4 -Ca 2 P 2 O 7 are eutectic-type quasi-binary systems. The position of the glass transition region in the CaO-WO 3 -P 2 O 5 system has been determined for the treatment temperatures of 1100, 1200 and 1300 deg C and a correlation between the configuration of the glass transition region and the phase diagram of the system has been demonstrated [ru

  11. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  12. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Allen Haynes, J.

    2013-07-15

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  13. Advanced temperature measurement system for the US glass industry melt tanks and delivery system. Phase 1 [final] report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Improved temperature measurement in the melting and delivery systems of the glass making process will aid in energy conservation. The ``Needs Analysis`` survey found the greatest problem was the inability to identify in situ decalibration (drift). Phase I objectives are: a more rugged reliable sensor; high quality inner protective sheath; improved data transmission hardened to the melt tank environs; a system that reduces or eliminates drift; and an improved outer protection sheath. Results show that 4 of the 5 problem areas have been resolved; with the help of the Univ. of Missouri-Rolla`s materials group, the fifth may be solvable. The major identified problem, the inability to identify in-situ drift has been solved.

  14. Final Report on DE-FG02-04ER46107: Glasses, Noise and Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Clare C. [Univ. of California, Irvine, CA (United States)

    2011-12-31

    We showed that noise has distinct signatures at phase transitions in spin systems. We also studied charge noise, critical current noise, and flux noise in superconducting qubits and Josephson junctions.

  15. Polymorphism in glasses

    International Nuclear Information System (INIS)

    Landa, L.M.; Nikolaeva, I.N.

    1979-01-01

    To defect phase interfaces and spasmodic properties change, the inhomogeneity and the second radiation effects in quartz glass, metamict phase and intermediate states have been investigated. When irradiating with fast neutrons the transformation of quartz glass - metamict phase occurs completely. The transformation is completed at 2x10 20 part./cm 2 dose. Thermal treatment not only increases the number of inhomogeneities but also results in increasing quartz glass density. Annealing transforms the metamict phase into common quartz glass at 1400 K. The fact, that thermal treatment results in the complete transformation of metamict phase into quartz glass, and the inverse transformation occurs only partially, is quite regular, as the metamict phase has a lesser entropy and is a more ordered state. It is shown that different amorphous phases of a chemical composition have different structures and properties, that there are interfaces between them, and the transformation from one state to another in microvolumes is realized spasmodically and requires expenditure of energy

  16. Chemical Composition Analysis of INEEL Phase 3 Glasses: Task Technical and QA Plan

    International Nuclear Information System (INIS)

    Peeler, D.

    2000-01-01

    For about four decades radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive waste from decontamination, laboratory activities and fuels storage activities have also been collected and stored as liquid. These liquid high-activity wastes (HAW) are collectively called Sodium Bearing Wastes (SBW). Currently about 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as a treatment option for SBW. The resulting glass can be sent to either the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as remote handled transuranic waste (RH-TRU) or to the federal geologic repository for final disposal. In addition to the SBW, roughly 4,000 m3 of calcined high-level wastes (HLW) are currently being stored at INEEL in stainless steel bin sets. These calcined HLW may also be vitrified, either with or without a dissolution and separation process, and sent to the federal geologic repository for final disposal

  17. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange

    International Nuclear Information System (INIS)

    Wegner, S.; Van Wullen, L.; Tricot, G.; Tricot, G.

    2010-01-01

    In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27 Al and 31 P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11 B MAS, 29 Si MAS and in situ 29 Si{ 11 B} REAPDOR NMR spectroscopy. (authors)

  18. The Effects of Oxygen Partial Pressure on Liquidus Temperature of a High-Level Waste Glass with Spinel as the Primary Phase

    International Nuclear Information System (INIS)

    Izak, Pavel; Hrma, Pavel R.; Wilson, Benjamin K.; Vienna, John D.

    2000-01-01

    The redox state of iron affects spinal crystallization in vitrified high-level waste (HLW) glass. Simulated HLW glass with spinel as the primary crystalline phase field was heat treated at constant temperatures within the interval from 850 C to 1300 C under varying atmospheres with oxygen partial pressure, Po2, ranging from 1x10-16 kPa (pure CO) to 101 kPa (pure O2). Liquidus temperature (TL) of glass increased with decreasing Po2 up to Po2 > 3 x 10-9 kPa. At Po2 < 3 x 10-9 kPa, Ni-Fe alloy precipitated from the glass, and TL decreased. Samples were analyzed with optical microscope and scanning electron microscope. The mass fraction of spinel in glass was determined using quantitative X-ray diffraction. Spinel composition was investigated with energy disperse spectroscopy. Ferrous-ferric equilibrium at TL was calculated in a HLW glass as a function of temperature and Po2, based on the previous studies by Schreiber. TL/FeO over the interval 0.0063 < gFeO < 0.051 (1x10-2 kPa < Po2 < 3x10-9 kPa) was estimated from calculated ferrous-ferric equilibrium at TL as 1835 C

  19. Multiple glass transitions in the plastic crystal phase of triphenylene derivates

    NARCIS (Netherlands)

    Yildirim, Z.; Wubbenhorst, M.; Mendes, E.; Picken, S.J.; Paraschiv, I.; Marcelis, A.T.M.; Zuilhof, H.; Sudhölter, E.J.R.

    2005-01-01

    The dynamics and phase behavior of the discotic liquid crystalline compound hexahexyloxytriphenylene (HAT6) and a derivative were studied by broad-band dielectric spectroscopy, differential scanning calorimetry, X-ray diffraction and optical microscopy. While the pristine compound HAT6 forms both a

  20. Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics

    Directory of Open Access Journals (Sweden)

    Guo H.W.

    2011-01-01

    Full Text Available The Bi2O3-SiO2 (BS glass-ceramics were prepared by melt-quench technique, and the crystallization kinetics and phase transformation behavior were investigated in accordance with Kissinger and Johson-Mehl-Avrami equation, DSC, XRD and SEM. The results show that in the heat treatment process (or termed as re-crystallizing process Bi2SiO5 and Bi4Si3O12 crystals were found consequently. Respectively, the crystallization activation energies of the two crystals are Ep1=14.8kJ/mol and Ep2=34.1kJ/mol. And the average crystallization index of n1=1.73 and n2=1.38 suggested volume nucleation, one-dimensional growth and surface nucleation, one-dimensional growth from surface to the inside respectively. The meta-stable needle-like Bi2SiO5 crystals are easily to be transformed into stable prismatic Bi4Si3O12 crystals. By quenching the melt and hold in 850°C for 1h, the homogenous single Bi4Si3O12 crystals were found in the polycrystalline phase of the BS glassceramics system.

  1. Hydrothermal alteration of the glass R7T7. Glass dissolution kinetics at 150 and 2500, role of neo-formed phases

    International Nuclear Information System (INIS)

    Caurel, J.

    1990-01-01

    The glass R7T7 is chosen in France for vitrification of solution from reprocessing. Safety requires the knowledge of R7T7 long term behavior in deep geologic formations. Temperature dependence of leaching between 50 and 300 0 C is studied by static tests for 7 days. An activation energy of 30kJ/Mole is calculated between 50; 75 or 100 0 C and 250 0 C. Results suggest similar corrosion mechanisms between 90-100 and 250 0 C by a complete change between 250 and 275 0 C. Glass corrosion kinetics at 150 0 C and 250 0 C between 1 day and 1 year evidence the precipitation of aluminosilicates and formation of thick amorphous gels progressively enriched with silica. Glass dissolution at 150 0 C and 250 0 C is simulated with the geochemical DISSOL code. Results suggest that dissolution kinetics are controlled by activity of H 4 SiO 4 in solution only. Silica contained into the gel controls corrosion kinetics different from 0. Even if the nature of dissolution mechanisms does not seem modified between 150 and 250 0 C, sample cracking at 250 0 C induces an increase of dissolved glass that does not allow a direct comparison of corrosion kinetics between 150 and 250 0 C [fr

  2. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks Part II: Characterization of devitrification and glass-ceramic phase assemblages

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, T.

    2017-01-01

    nucleation, and that the growth mechanism gradually changed from three-dimensional growth at the onset of devitrification towards one-dimensional growth in later stages, when heterogeneous nucleation was absent or less dominating. Most glasses developed entangled and fibrous microstructures with little...... diopside, substituting for Al and Si, but the so established substitution partly disappeared with time during the heat treatment....

  3. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    Science.gov (United States)

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.

  4. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    Science.gov (United States)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  5. Experimental study of the hydrothermal alteration of a chemical analogue of the French nuclear glass in a thermal gradient: characterization of newly formed phases and of matter transfers

    International Nuclear Information System (INIS)

    Poinssot, Christophe

    1994-01-01

    As the most dangerous radioactive wastes are to be stored in deep geological layers after having been packaged in barrels made of borosilicate glasses, this research report addresses the study of the alteration of such glasses through the study of a chemical analogue. In order to experimentally model phenomena involved within a storage, the studied glass has been submitted to different thermal gradients between 320 and 150 C and during 3 to 5 months. These gradients comply with those met about the parcels, and allows the spatial evolution of the waste parcel at a given moment, as well as the evolution in time (progressive cooling of wastes) to be simultaneously simulated. The different phases formed within the gradient have been studied and characterized by scanning electronic microscopy, semi-quantitative microanalysis, and X-ray micro-diffraction [fr

  6. Thermodynamic modeling of the insoluble phases in the nuclear waste glasses. Application to the vitrification of molybdenum and of platinoid fission products

    International Nuclear Information System (INIS)

    Bordier, Sebastien

    2015-01-01

    After the dissolution of the used fuel and the separation of several elements by the Purex process, the high level nuclear wastes composed of fission products and minor actinides are reprocessed and vitrified in nuclear glasses at AREVA La Hague plant. Some of the fission products precipitate: they are not solubilized in the glass matrix. On the one hand, depending on the oxygen potential of the glass melt, the platinoid elements Pd-Ru-Rh form complex solid oxide phases or intermetallic compounds containing chalcogen elements such as selenium and tellurium. On the other hand, the molybdenum forms only oxide phases. It reacts strongly with the oxide phases present in the glass melt to form molybdate phases able to solubilise other elements like lanthanides. These phases can locally precipitate for a high load in molybdenum. Nevertheless, the formation of the molybdate phases has to remain transient. In this thesis, the thermodynamics of the chemical Systems containing the platinoid elements Pd-Rh-Ru and the chalcogen elements Se and Te were experimentally investigated. The Systems containing the platinoids were studied by DTA, DSC, Tian-Calvet drop calorimetry and by annealing. For the Systems containing the molybdenum, the interactions between MoO 3 and the main oxides composing the glass (Na 2 O, SiO 2 , MoO 3 and CaO) were studied by high temperature XRD. In the meantime, the thermodynamics of these chemical Systems was modeled with the Calphad method so as to be able to predict the crystallization phenomena of molybdenum and of the platinoids. The ternary Systems Ru-Rh-O and Pd-Se-Te were optimized to understand the platinoids thermochemistry. The Systems CaO-MoO 3 , Na 2 O-MoO 3 and Na 2 MoO 4 -CaMoO 4 were modeled to assess the thermodynamics of the molybdate phases. Moreover, the Systems Na 2 0 - SiO 2 and Na 2 O-SiO 2 -MoO 3 were optimized to describe the interaction between the molybdate phases and the glass melt. These modelling allow to perform

  7. Phase change and optical band gap behavior of Se0.8S0.2 chalcogenide glass films

    International Nuclear Information System (INIS)

    Abdel Rafea, M.; Farid, Huda

    2009-01-01

    Se 0.8 S 0.2 chalcogenide glass films have been prepared by thermal vacuum evaporation technique with thickness 583 nm. Annealing process at T ≥ 333 K crystallizes the films and nanostructured films are formed. The crystallite size was increased to 24 nm as the annealing temperature increased to 373 K. Orthorhombic crystalline system was identified for the annealed films. SEM micrographs show that films consist of two parallel surfaces and the thickness was determined by cross section imaging. The optical transmittance is characterized by interference patterns as a result of these two parallel surfaces, besides their average value at longer wavelength decreases as a result of annealing process. The band gap, E g is red shifted due to crystallization by annealing. As the phase of the films changes from amorphous to crystalline in the annealing temperature range 333-363 K, a non sharp change of the band gap (E g ) is observed. This change was explained by Brus's model of the energy gap confinement behavior of the nanostructured films. The optical refractive index increases suddenly when the system starts to be crystallized by annealing

  8. In-flight particle measurement of glass raw materials in hybrid heating of twelve-phase AC arc with oxygen burner

    International Nuclear Information System (INIS)

    Liu, Y; Tanaka, M; Ikeba, T; Choi, S; Watanabe, T

    2012-01-01

    The high temperature provided by a 12-phase AC arc plasma is beneficial to finish vitrification reaction in milliseconds. Another heating method called “hybrid plasma” combines multi-phase AC arc and oxygen burner are expected to improve glass quality and increase productivity with minimum energy consumption. In this study, recent works on the development of in-flight particle measurement in hybrid plasma system are presented. Two-colour pyrometry offers considerable advantages for measuring particle temperatures in flight. A high-speed camera equipped with a band-pass filter system was applied to measure the in-flight temperatures of glass particles. The intensity recorded by the camera was calibrated using a tungsten halogen lamp. This technique also allows evaluating the fluctuation of the average particle temperature within millisecond in plasma region.

  9. Final Report - Enhanced LAW Glass Property - Composition Models - Phase 1 VSL-13R2940-1, Rev. 0, dated 9/27/2013

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Muller, I.; Gilbo, K.; Joseph, I.; Pegg, I. L.

    2013-11-13

    The objectives of this work are aimed at the development of enhanced LAW propertycomposition models that expand the composition region covered by the models. The models of interest include PCT, VHT, viscosity and electrical conductivity. This is planned as a multi-year effort that will be performed in phases with the objectives listed below for the current phase.  Incorporate property- composition data from the new glasses into the database.  Assess the database and identify composition spaces in the database that need augmentation.  Develop statistically-designed composition matrices to cover the composition regions identified in the above analysis.  Prepare crucible melts of glass compositions from the statistically-designed composition matrix and measure the properties of interest.  Incorporate the above property-composition data into the database.  Assess existing models against the complete dataset and, as necessary, start development of new models.

  10. Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass.

    Science.gov (United States)

    Eisenhauer, David; Köppel, Grit; Jäger, Klaus; Chen, Duote; Shargaieva, Oleksandra; Sonntag, Paul; Amkreutz, Daniel; Rech, Bernd; Becker, Christiane

    2017-06-01

    Recently, liquid phase crystallization of thin silicon films has emerged as a candidate for thin-film photovoltaics. On 10 μm thin absorbers, wafer-equivalent morphologies and open-circuit voltages were reached, leading to 13.2% record efficiency. However, short-circuit current densities are still limited, mainly due to optical losses at the glass-silicon interface. While nano-structures at this interface have been shown to efficiently reduce reflection, up to now these textures caused a deterioration of electronic silicon material quality. Therefore, optical gains were mitigated due to recombination losses. Here, the SMooth Anti-Reflective Three-dimensional (SMART) texture is introduced to overcome this trade-off. By smoothing nanoimprinted SiO x nano-pillar arrays with spin-coated TiO x layers, light in-coupling into laser-crystallized silicon solar cells is significantly improved as successfully demonstrated in three-dimensional simulations and in experiment. At the same time, electronic silicon material quality is equivalent to that of planar references, allowing to reach V oc values above 630 mV. Furthermore, the short-circuit current density could be increased from 21.0 mA cm -2 for planar reference cells to 24.5 mA cm -2 on SMART textures, a relative increase of 18%. External quantum efficiency measurements yield an increase for wavelengths up to 700 nm compared to a state-of-the-art solar cell with 11.9% efficiency, corresponding to a j sc, EQE gain of 2.8 mA cm -2 .

  11. Phase diagram with an enhanced spin-glass region of the mixed Ising-XY magnet LiHoxEr1-xF4

    DEFF Research Database (Denmark)

    Piatek, J. O.; Dalla Piazza, B.; Nikseresht, N.

    2013-01-01

    LiErF4 have been identified. Below x=0.86, an embedded spin-glass phase is observed, where a spin glass exists within the ferromagnetic structure. Below x=0.57, an Ising spin glass is observed consisting of frozen needlelike clusters. For x∼0.3–0.1, an antiferromagnetically coupled spin glass occurs....... A reduction of TC(x) for the ferromagnet is observed which disobeys the mean-field predictions that worked for LiHoxY1-xF4....

  12. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Department of Applied Physics, G. J. University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.

  13. Changing the Tendency of Glass-Forming Liquid To Crystallize by Moving Along Different Isolines in the T-p Phase Diagram

    DEFF Research Database (Denmark)

    Adrjanowicz, Karolina; Koperwas, Kajetan; Tarnacka, Magdalena

    2016-01-01

    that the crystallization tendency of the investigated liquids can be tuned by moving along specific thermodynamic pathways. In particular, we highlight that among considered isolines the overall crystallization rate is the least affected by the density increase for the isochronal (T, p) state points. Interestingly......Controlling crystallization and glass-forming tendencies of molecular liquids is of great scientific and practical importance. In the present work, we show that a lot can be learned regarding this process by introducing temperature and pressure as thermodynamic control variables. For the glass......-forming liquid ketoprofen and its non-hydrogen bonded analogue, we have investigated changes in the crystallization rate along different isolines located in the two-dimensional T–p phase space. This has included isobaric (p = const), isothermal (T = const), and isochronal (τα = const) data. Our results reveal...

  14. Phase-glass scaling near the coherence transition in granular HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Roa-Rojas, J.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A. A. 14490, Bogota DC (Colombia); Prieto, P. [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia)

    2005-07-01

    Systematic measurements of electrical magnetoconductivity near the coherence transition of granular HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films are reported. Experiments performed in magnetic fields ranging from 0 to 2500 Oe reveal that close to the coherence transition temperature T{sub c0}(H), the correlation length scales as a power law of temperature with a thermal-dependent critical exponent, {nu}. In low external fields the corresponding value of {nu} is consistent with the two-dimensional phase-glass model, which is in the same dynamical universality class of the so-called vortex-glass model. At applied fields H > 1000 Oe, the vortex dynamics becomes stronger and the coherence transition is not observed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Contrasting the magnetic response between magnetic-glass and reentrant spin-glass

    OpenAIRE

    Roy, S. B.; Chattopadhyay, M. K.

    2008-01-01

    Magnetic-glass is a recently identified phenomenon in various classes of magnetic systems undergoing a first order magnetic phase transition. We shall highlight here a few experimentally determined characteristics of magnetic-glass and the relevant set of experiments, which will enable to distinguish a magnetic-glass unequivocally from the well known phenomena of spin-glass and reentrant spin-glass.

  16. Spherical 2+p spin-glass model: An exactly solvable model for glass to spin-glass transition

    International Nuclear Information System (INIS)

    Crisanti, A.; Leuzzi, L.

    2004-01-01

    We present the full phase diagram of the spherical 2+p spin-glass model with p≥4. The main outcome is the presence of a phase with both properties of full replica symmetry breaking phases of discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking. This phase has a finite complexity which leads to different dynamic and static properties. The phase diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin glass phase transitions

  17. Crystallization of bismuth borate glasses

    International Nuclear Information System (INIS)

    Bajaj, Anu; Khanna, Atul

    2009-01-01

    Bismuth borate glasses with Bi 2 O 3 concentration of 20-66 mol% were prepared by melt quenching and devitrified by heat treatment above their glass transition temperatures. All glasses show a strong tendency towards crystallization on annealing that increases with Bi 2 O 3 concentration. The crystalline phases formed on devitrification were characterized by FTIR absorption spectroscopy and DSC measurements. Our studies reveal that phases produced in glasses are strongly determined by initial glass composition and the two most stable crystalline phases are: Bi 3 B 5 O 12 and Bi 4 B 2 O 9 . The metastable BiBO 3 phase can also be formed by devitrification of glass with 50 mol% of Bi 2 O 3 . This phase is, however, unstable and decomposes into Bi 3 B 5 O 12 and Bi 4 B 2 O 9 on prolonged heat treatment.

  18. Transversal spin freezing and re-entrant spin glass phase in chemically disordered Fe-containing perovskite multiferroics

    Czech Academy of Sciences Publication Activity Database

    Stephanovich, V. A.; Laguta, Valentyn

    2016-01-01

    Roč. 18, č. 10 (2016), s. 7229-7234 ISSN 1463-9076 R&D Projects: GA ČR GA13-11473S Institutional support: RVO:68378271 Keywords : multiferroic * spin glass * antiferromagnetic * ferroelectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.123, year: 2016

  19. Understanding the structural origin of crystalline phase transformations in nepheline (NaAlSiO4)-based glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Deshkar, A.; Marcial, J.; Southern, S. A.; Kobera, Libor; Bryce, D. L.; McCloy, J. S.; Goel, A.

    2017-01-01

    Roč. 100, č. 7 (2017), s. 2859-2878 ISSN 0002-7820 Institutional support: RVO:61389013 Keywords : aluminosilicates * crystals/crystallization * glass Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.841, year: 2016

  20. Phase equilibrium and crystallization of glasses in Na2O-La2O3-Y2O3-P2O5 system

    International Nuclear Information System (INIS)

    Fedorova, E.N.; Shmatok, L.K.; Kozhina, I.I.; Barabanova, T.P.

    1986-01-01

    Phase diagrams of La(PO 3 ) 3 -NaPO 3 and Y(PO 3 ) 3 -NaPO 3 sections in which binary metaphosphates NaLa(PO 3 ) 4 and NaY(PO 3 ) 4 are formed have been studied. For La(PO 3 ) 3 -Y(PO 3 ) 3 and LaP 5 O 14 -YP 5 O 14 sections liquidus curves are plotted. In the pentaphosphate system the existence of solid solutions has been found. In La(PO 3 ) 3 -NaPO 3 , Y(PO 3 ) 3 -NaPO 3 , La(PO 3 ) 3 -Y(PO 3 ) 3 and LaP 5 O 17 -YP 5 O 14 pseudobinary systems in the whole concentration range glasses are formed. Pentaphosphate glasses have the least tendency to crystallization. The glasses of La(PO 3 ) 3 -NaPO 3 , Y(PO 3 ) 3 -NaPO 3 , La(PO 3 ) 3 -Y(PO 3 ) 3 sections possess high crystallizability. Crystallooptical and roentgenometric characteristics of La(PO 3 ) 3 , Y(PO 3 ) 3 , NaPO 3 , NaLa(PO 3 ) 4 and NaY(PO 3 ) 4 compounds are determined

  1. Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere.

    Science.gov (United States)

    Koop, Thomas; Bookhold, Johannes; Shiraiwa, Manabu; Pöschl, Ulrich

    2011-11-21

    Recently, it has been proposed that organic aerosol particles in the atmosphere can exist in an amorphous semi-solid or solid (i.e. glassy) state. In this perspective, we analyse and discuss the formation and properties of amorphous semi-solids and glasses from organic liquids. Based on a systematic survey of a wide range of organic compounds, we present estimates for the glass forming properties of atmospheric secondary organic aerosol (SOA). In particular we investigate the dependence of the glass transition temperature T(g) upon various molecular properties such as the compounds' melting temperature, their molar mass, and their atomic oxygen-to-carbon ratios (O:C ratios). Also the effects of mixing different compounds and the effects of hygroscopic water uptake depending on ambient relative humidity are investigated. In addition to the effects of temperature, we suggest that molar mass and water content are much more important than the O:C ratio for characterizing whether an organic aerosol particle is in a liquid, semi-solid, or glassy state. Moreover, we show how the viscosity in liquid, semi-solid and glassy states affect the diffusivity of those molecules constituting the organic matrix as well as that of guest molecules such as water or oxidants, and we discuss the implications for atmospheric multi-phase processes. Finally, we assess the current state of knowledge and the level of scientific understanding, and we propose avenues for future studies to resolve existing uncertainties. This journal is © the Owner Societies 2011

  2. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  3. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  4. [Basic studies on CaO-P2O5-MgO-SiO2-CaF system glass ceramics. 1. Morphology under the phase-contrast microscope and growth of cultured cells].

    Science.gov (United States)

    Yoshimoto, Y; Hara, Y; Abe, T; Akamine, A; Maeda, K; Aono, M

    1989-06-01

    In order to determine the biocompatibility of glass ceramics which is one of the new biomaterials, in vitro studies were carried out by a cell culture method using four established cell lines. Materials used were glass ceramic disks with a diameter of 3 mm, and polystyrene coverslips of the same size as controls of the growth curve. Cells of each line were inoculated into 24-well multiplates at an appropriate density onto glass ceramic disks, and examined by phase contrast microscopy on the 1st, 3rd, 6th and 8th day. In addition, doubling time and saturation density were calculated from the growth curve. The results obtained were as follows. 1) Phase-contrast microscopy revealed that cells of each line attached to the disk within 24 hours and their numbers increased with time. After 8 days of cultivation, all of them reached confluence. 2) Contact with the glass ceramics did not cause cellular death or degeneration. Furthermore, the cultured cells showed the same morphological features as the control cells. 3) According to the growth curves, doubling time of all cells cultured with glass ceramics was shorter than that of the control cultures. On the other hand, saturation density was reduced to a minimum of 80% of the controls. These findings led to the conclusion that glass ceramic materials do not prevent the growth of cultured cells. According to the above results, glass ceramics possess the characteristics needed for bone grafts and implant materials.

  5. Low-thermal expansion infrared glass ceramics

    Science.gov (United States)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (nano-crystals in a residual glass phase. The major crystalline phase is zirconium tungstate (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  6. Iron Phosphate Glass-ceramics

    Directory of Open Access Journals (Sweden)

    Andrea Moguš-Milanković

    2015-12-01

    Full Text Available The crystallization of 40Fe2O3-60P2O5, 10ZnO-30Fe2O3-60P2O5 and (43.3−xPbO–(13.7+xFe2O3–43P2O5, (0 x < 30, glasses and glass-ceramic have been investigated. The structural evolution of glasses during heat treatment at various temperatures and the tendency for crystallization for series of glasses with modified composition are characterized by a dendrite-like phase separation in the early stage of crystallization. Such a behavior leads to the formation of randomly dispersed agglomerates which contain the anhedrally shaped crystallites embedded in glass matrix. Therefore, regardless of the type of crystallization, controlled or spontaneous, the formation of crystalline phases in these phosphate glasses and glass-ceramics is attributed to the disordered interfaces between crystalline grains and glassy matrix.

  7. The effect of liquid phase separation on the Vickers microindentation shear bands evolution in a Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Askari-Paykani, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Nili Ahmadabadi, M., E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Seiffodini, A. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Yazd University, Department of Material Science and Engineering, Yazd 84196 (Iran, Islamic Republic of)

    2013-11-15

    The Vickers microindentation experiments and associated plastic deformation in as-cast and annealed (Fe{sub 0.9}Ni{sub 0.1}){sub 77}Mo{sub 5}P{sub 9}C{sub 7.5}B{sub 1.5} bulk metallic glass was conducted. In addition to the bulk indentation behavior, the shear band morphology underneath the Vickers microindenter was examined by employing the bonded interface technique. Microstructural characterization revealed that a liquid phase separation occurred during melting process. Atomic force microscopy of the glassy matrix of the as-cast specimen reveals the composition inhomogeneity induced by the liquid phase separation. This effect generates shear band branching or deflection during the shear band propagation. For the bulk indentation, the trends in the hardness vs. indentation load were found related to the pressure sensitive index and the phase separation process simultaneously. The results show that the as-cast as well as the annealed specimens are deformed through semi-circular and radial shear bands. In addition, in the partially crystalized specimen, the change in the properties and microstructure of the BMG induced by the partial crystallization treatment and phase separation process resulted in tertiary shear bands formation.

  8. Glass Ceramic Formulation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  9. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  10. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    Science.gov (United States)

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  12. The borosilicate glass for 'PAMELA'

    International Nuclear Information System (INIS)

    Schiewer, E.

    1986-01-01

    The low enriched waste concentrate (LEWC) stored at Mol, Belgium, will be solidified in the vitrification plant 'PAMELA'. An alkali-borosilicate glass was developed by the Hahn-Meitner-Institut, Berlin, which dissolves (11 +- 3)wt% waste oxides while providing sufficient flexibility for changes in the process parameters. The development of the glass labelled SM513LW11 is described. Important properties of the glass melt (viscosity, resistivity, formation of yellow phase) and of the glass (corrosion in aqueous solutions, crystallization) are reported. The corrosion data of this glass are similar to those of other HLW-glasses. Less than five wt% of crystalline material are produced upon cooling of large glass blocks. Crystallization does not affect the chemical durability. (Auth.)

  13. Study of recombination processes during the expansion phase of titanium-plasma produced by picosecond Nd:glass laser radiation

    Science.gov (United States)

    Abd El-Hameed, Afaf M.; Azzouz, I. M.; Abou-Koura, G. H.; Gamal, Yosr E. E.-D.

    2003-05-01

    An investigation of the plasma dynamics during its expansion phase is presented. The analysis is based on a numerical model, which considers the adiabatic plasma expansion as well as a three-body recombination process as the main source for plasma cooling. The result shows that a fast energy transfer between electrons and ions is observed during the early stage of plasma expansion. Three-body recombination process exhibits a pronounced effect leading to a ;freezing; feature in the average charge states of heavy particles. This process seems to control the fractional population of ionic species at the end of the expansion phase.

  14. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  15. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne.......The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  16. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 4: Plagioclase, orthopyroxene, clinopyroxene, glass geobarometer, and application to Mt. Ruapehu, New Zealand

    Science.gov (United States)

    Harmon, Lydia J.; Cowlyn, James; Gualda, Guilherme A. R.; Ghiorso, Mark S.

    2018-01-01

    A new phase equilibria geobarometer determines magmatic storage and crystallization conditions, including pressure, temperature, oxygen fugacity ({f_{{{o}_2}}}), and the presence of a fluid phase for glass-bearing rocks containing the assemblage plagioclase + pyroxene(s). This newly developed geobarometer can better constrain crystallization conditions of shallow (New Zealand. The samples from Mt. Ruapehu are tested from 5 to 400 MPa and from super-liquidus to 90% crystalline ( 1200 to 700 °C). Mt. Ruapehu serves as a methodological testing ground for the geobarometer, and results from our geobarometer agree with recent Mt. Ruapehu studies. Results show a distribution of crystallization pressures ranging from 50 to 150 MPa ( 2.0 to 5.9 km) for different eruptions, with modes of 110 MPa ( 4.3 km) and 130 MPa ( 5.1 km). These are consistent with field interpretations of different eruptive styles based on juvenile clast textures and previous knowledge of the magma plumbing system. Mt. Ruapehu magmas are fluid saturated, with {f_{{{o}_2}}} of ΔQFM + 1 (NNO).

  17. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  18. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  19. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length of the ...

  20. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    Abstract. I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length ...

  1. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  2. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  3. Investigation of carbon-coated silicon oxide phase changes during charge/discharge by oxygen and lithium K-Edge X-ray absorption fine structure spectroscopy

    Science.gov (United States)

    Hirose, Takakazu; Morishita, Masanori; Yoshitake, Hideya; Sakai, Tetsuo

    2018-01-01

    To understand the phase changes associated with the charge/discharge mechanism during cycling, we evaluated the electronic states of oxygen and lithium atoms in the high-capacity anode material SiO-C using O and Li K-edge X-ray absorption fine structure (XAFS) spectroscopy. Multiple peaks observed in the O K-edge spectrum in the 532-548 eV range were likely related to Osbnd Si bonds. During the initial charge, when SiO-C occludes Li, a new peak related to Lisbnd O bonds appeared at 534 eV. During the initial discharge, this peak was maintained at potentials below 0.7 V vs. Li/Li+, but decreased at higher potentials, suggesting the presence of a phase change point near 0.7 V vs. Li/Li+. This change was also supported by the Li K-edge spectrum. An examination of the phase change after charge/discharge cycling at negative electrode termination potentials of 0.66 and 1.1 V vs. Li/Li+ confirmed that the phase structure was stable when cycling at potentials below the phase change point, but unstable at higher potentials. Thus, stable charge/discharge cycling can be achieved by designing batteries with negative electrode termination potentials that are lower than the potential at which the phase change occurs.

  4. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  5. Drastic decrease of Ba(Zn1/3Ta2/3O3 sintering temperature by lithium salts and glass phase addition

    Directory of Open Access Journals (Sweden)

    Marinel, S.

    2011-04-01

    Full Text Available The complex perovskite oxide Ba(Zn1/3Ta2/3O3 (BZT has been studied for its attractive dielectric properties which make this material interesting for applications such as multilayer ceramics capacitors or hyperfrequency resonators. Nevertheless, BZT ceramic requires high temperature to be correctly sintered (≅1450°C, that is too high to envisage a silver co-sintering (Tf(Ag = 961°C. For this reason, the lowering of the sintering temperature of BZT by glass phase’s additions has been investigated. This material is sinterable at low temperature with combined glass phase –lithium salt additions, and exhibits, at 1MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 5 wt% of ZnO-SiO2-B2O3 glass phase and 1 wt% of LiF added BZT sample sintered at 900°C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant εr of 32, low dielectrics losses (tan (δ-3 and a temperature coefficient of permittivity τε of -10ppm/°C. Their good dielectric properties and their compatibility with silver electrodes, make these ceramics suitable for L.T.C.C applications.Se ha estudiado el óxido complejo con estructura tipo perovskita Ba (Zn1/3Ta2/3 O3 (BZT. Sus atractivas propiedades dieléctricas le hacen muy interesante para aplicaciones como condensadores cerámicos multicapa o resonadores de microondas. No obstante, los cerámicos de BZT requieren temperaturas de sinterización superiores a 1450 ° C, que es muy alta para abordar un proceso de co-sinterización con electrodos de plata (Tf (Ag = 961 ° C. Para ello, se ha estudiado la bajada de la temperatura de sinterización del BZT mediante la adición de una fase vítrea. La suma combinada de la fase vítrea y la sal de litio lleva la sinterización de este material a temperaturas bajas. Las propiedades dieléctricas presentan pérdidas muy bajas, constante diel

  6. Fracture, roughness and phase transformation in CAD/CAM milling and subsequent surface treatments of lithium metasilicate/disilicate glass-ceramics.

    Science.gov (United States)

    Alao, Abdur-Rasheed; Stoll, Richard; Song, Xiao-Fei; Abbott, John R; Zhang, Yu; Abduo, Jaafar; Yin, Ling

    2017-10-01

    This paper studied surface fracture, roughness and morphology, phase transformations, and material removal mechanisms of lithium metasilicate/disilicate glass ceramics (LMGC/LDGC) in CAD/CAM-milling and subsequent surface treatments. LMGC (IPS e.max CAD) blocks were milled using a chairside dental CAD/CAM milling unit and then treated in sintering, polishing and glazing processes. X-ray diffraction was performed on all processed surfaces. Scanning electron microscopy (SEM) was applied to analyse surface fracture and morphology. Surface roughness was quantitatively characterized by the arithmetic average surface roughness R a and the maximum roughness R z using desktop SEM-assisted morphology analytical software. The CAD/CAM milling induced extensive brittle cracks and crystal pulverization on LMGC surfaces, which indicate that the dominant removal mechanism was the fracture mode. Polishing and sintering of the milled LMGC lowered the surface roughness (ANOVA, p 0.05). In comparison of all applied fabrication process routes, it is found that CAD/CAM milling followed by polishing and sintering produced the smoothest surface with R a = 0.12 ± 0.08µm and R z = 0.89 ± 0.26µm. Thus , it is proposed as the optimized process route for LMGC/LDGC in dental restorations. This route enables to manufacture LMGC/LDGC restorations with cost effectiveness, time efficiency, and improved surface quality for better occlusal functions and reduced bacterial plaque accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mössbauer study of local environment effects in the ordered Fe 70Al 30 Invar alloy: Temperature dependence of isomer shift in the spin-glass phase

    Science.gov (United States)

    Delyagin, N. N.; Erzinkyan, A. L.; Parfenova, V. P.; Rozantsev, I. N.

    2011-12-01

    The systematic studies of the magnetic hyperfine field distribution for 57Fe in the spin-glass (SG) phase of the ordered Fe70Al30 Invar alloy have been performed using Mössbauer spectroscopy technique in the temperature range from 5 to 80 K. Particular emphasis has been placed on the low-field component of the distribution, which is considered as corresponding to the Fe sites in the SG magnetic configurations. The main result is the observation of the pronounced temperature dependence of isomer shift for several atomic SG configurations. The temperature behavior of the local electron density is strongly correlated to the Invar properties of the Fe70Al30 alloy. We argue that the observed temperature dependence of the isomer shift due to a local volume effect. The temperature range, for which the pronounced decrease in atomic volume is observed, coincides with the range of the existence of the Invar effect. The influence of the competition between opposite in sign exchange interactions on the Invar properties is discussed.

  8. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  10. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhuang, Yanxin; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal...... and growth models together with the Johnson-Mehl-Avrami model. The Avrami exponent was found to be near I at all four temperatures, also indicating that atomic diffusion might involve in the amorphous-to-quasicrystalline phase transformation for the Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. It is found...

  11. Effect of phase transformation and partial crystallization on the mechanical properties of glass and glass-ceramics based on 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO system; Uma analise do efeito das transformacoes de fase e da cristalizacao parcial no comportamento mecanico de vidros e vitroceramicos bioativos do sistema 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO

    Energy Technology Data Exchange (ETDEWEB)

    Daguano, J.K.M.F.; Simba, B.G., E-mail: ju_daguano@yahoo.com.br [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Santos, C. [Centro Universitario de Volta Redonda (MeMAT/UNIFOA), RJ (Brazil). Pro-Reitoria de Pesquisa e Extensao

    2011-07-01

    In this work, glass and glass-ceramics of the 3CaO.P{sub 2}O{sub 5}-SiO{sub 2}-MgO system were developed aiming to produce different crystallization degrees. Glasses were melted at 1600 deg C and heat treated at 700 deg C. Part of the glasses was crystallized using heat treatments at 770 deg C and 1150 deg C for 4h. The partial crystallization and phase transformations were responsible for different mechanical properties (bending strength, young modulus, fracture toughness and hardness) in each temperature. The mechanical response of the material is discussed in relation to the microstructure, crystalline phases, and porosity of the materials. (author)

  12. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  13. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  14. Experimental design of a waste glass study

    International Nuclear Information System (INIS)

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150 degrees C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases

  15. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  16. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  17. Preparation of Si/O/C Nanotubes Using Ge Nanowires as Template

    Czech Academy of Sciences Publication Activity Database

    Krabáč, Lubomír; Klementová, Mariana; Šubrt, Jan; Fajgar, Radek; Kupčík, Jaroslav; Bastl, Zdeněk; Stuchlíková, The-Ha; Dřínek, Vladislav

    2012-01-01

    Roč. 97, SEP (2012), s. 94-98 ISSN 0165-2370 R&D Projects: GA ČR GA203/09/1088 Institutional support: RVO:67985858 ; RVO:61388980 ; RVO:68378271 ; RVO:61388955 Keywords : cvd * nanomaterials * germanium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.560, year: 2012

  18. Metallic glasses

    NARCIS (Netherlands)

    Schaafsma, Arjen Sybren

    1981-01-01

    It is shown in section 7.1. that the influence of topological disorder on the range of magnetic interactions in ferromagnetic transition metal-metalloid (TM-M) glasses, is much less than often assumed. This is demonstrated via a study of the temperature dependence of the average iron hyperfine field

  19. INORGANIC PHOSPHORS IN GLASS BASED ON LEAD SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2014-09-01

    Full Text Available We created and synthesized luminescent composite of the "phosphor in glass" type, based on the lead-silicate matrix and fine-dispersed powder of cerium-activated yttrium-aluminum garnet crystal. Lead-silicate system (40SiO2- 20PbO-(40-x PbF2-xAlF3, x = 0-25 was chosen as the glassy matrix. Initial glass was reduced to powder (frit for "phosphor in glass" composite with a particle size about 50 µm. Glass frit and powder of commercial YAG:Ce3+ phosphor were mixed in a ratio of 30 to 70 (wt %. Then this composite was pressed in a tablet and sintered on a quartz substrate at 823 К for 30 minutes. Thus, the plane parallel sheet for composite of the "phosphor in glass" was obtained with a diameter equal to 10 mm. For the purpose to reduce the loss of light in the presence of dispersion at a glass-phosphor boundary, optimization of glass mixture was done by adjusting the refractive index. X-ray phase and spectral-luminescent analysis of the derived composite were done. The results of these studies showed that there was no degradation of YAG: Ce powder during sintering. Dependence of luminescence intensity from temperature in the range from room temperature to 473 К was studied. It was shown, that with the phosphor in glass usage thermal quenching of luminescence was reduced in comparison with the silicone. The model of white LED was created with the "phosphor in glass" composite based on lead-silicate glasses with low temperature of vitrifying. The derived LED emits white light with a color temperature of 4370 K, and the luminous efficiency is equal to 58 lm/W. The developed luminescent composite based on the lead-silicate matrix can be used for the production of high-power white light LED.

  20. Glass ceramic fibres

    International Nuclear Information System (INIS)

    Blaschek, O.; Paulitsch, P.

    1983-01-01

    As the correlation between mineralogical phase and chemical composition influences the type of application at different high temperatures, we studied the mineralogical phases of nine crystal glass fibres of the temperature ranges 1 150 degrees Celsius (Type 1), 1 400 degrees Celsius (Type 2) and 1 500 degrees Celsius (Type 3) at various high temperatures. The methods used in the study were microscopy, X-ray diffraction, transmission electron microscopy and differential thermal analysis. The investigations showed that mullite forms in glassy fibres of the system Al 2 O 3 . SiO 2 from 850 degrees Celsius to 990 degrees Celsius as 2/1 mullite; 3/2 mullite appeared above 990 degrees Celsius besides the crystallization of cristobalite. Fibres with 95 per cent Al 2 O 3 include the phases delta-Al 2 O 3 and alpha- Al 2 O 3 and mullite. Delta- Al 2 O 3 is stable up to 1 100 degrees Celsius. Alpha-Al 2 O 3 and mullite are only stable phases at 1 400 degrees Celsius. These different crystal phases influence the quality of the technical fibre according to the stability field of glass and crystals. This study has determined that it is possible to identify different fibres from different productions by their mineralogical compositions and to relate them to the high temperature application

  1. The structure of ZrO{sub 2} phases and deviltrification processes in a Ca-Zr-Si-O-based glass ceramic: a combined a-XRD and XAS study

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, C. [Rome-3 Univ. (Italy). Dipt. di Fisica; INFM-OGG, 38 - Grenoble (France); Mobilio, S. [Rome-3 Univ. (Italy). Dipt. di Fisica; Lusvarghi, L.; Bondioli, F.; Ferrari, A.M.; Manfredini, T.; Siligardi, C. [Dipt. Ingegneria dei Materiali e dell' Ambiente, Modena (Italy)

    2004-12-01

    The structure of Zr atomic environment in a CaO-ZrO{sub 2}-Si{sub 2} glass ceramic as a function of thermal treatments has been studied, combining X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD) and anomalous XRD (a-XRD) techniques. The analysis of XRD patterns demonstrates that the devitrification process proceeds through the partial segregation of Zr-depleted phases (wollastonite-like) and Zr-rich phases (Zr oxides). The XAS and a-XRD measurements at the Zr K-edge have been exploited in order to obtain a closer insight into the atomic structure around the Zr atoms. In the as-quenched glass the Zr atom is sixfold coordinated to O atoms in an amorphous environment rich in Ca and Si. Thermal treatment firstly (T=1273-1323 K) causes partial segragation of Zr in the form of an oxide with a tetragonal zirconia (t-ZrO{sub 2}) crystalline structure. Raising the temperature (T=1373 K) causes the formation of ZrO{sub 2} crystallites in the monoclinic crystallographic phase (baddeleyite, m-ZrO{sub 2}). Analysis of the XAS data shows that a considerable amount of Zr remains in an amorphous calcium silicate phase. (orig.)

  2. Experimental seawater-basaltic glass interaction at 50°C: Study of early developed phases by electron microscopy and X-ray photoelectron spectrometry

    Science.gov (United States)

    Crovisier, J. L.; Thomassin, J. H.; Juteau, T.; Eberhart, J. P.; Touray, J. C.; Baillif, P.

    1983-03-01

    Experiments on seawater-basaltic glass interaction were made using a particulary high seawater-basaltic glass ratio (14.5 g/cm 2; weight ratio: 50). A layered alteration skin is observed at the glass surface, while the variations in the composition of the seawater are imperceptible. Three zones of different composition and structure are distinguished: 1) An external zone, the composition of which evolved to saponite. 2) A median zone of hydrotalcite-like hydroxycarbonate (Mg 6Al 2CO 3(OH) 164H 2O). 3) An internal zone, between glass and hydroxycarbonates, richer in Fe and in Mg and in which a 10 Å interval is observed (by dark field examination) compatible with a TOT type clay mineral. The composition of this zone indicates a mixing of poorly crystalline products. The principal chemical exchanges between glass and solution are the release of Ca in solution and the contribution of Mg and CO 2 from seawater to form hydroxycarbonates, which are considered precursors of phyllosilicates. Comparison with natural phenomena (palagonitization) is made.

  3. Database and Interim Glass Property Models for Hanford HLW Glasses

    International Nuclear Information System (INIS)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-01-01

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region

  4. Database and Interim Glass Property Models for Hanford HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

    2001-07-24

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  5. 2D-3D crossover effects on the vortex-glass phase transition in thin YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.

    1994-01-01

    Nonlinear current-voltage characteristics have been measured for ultrathin (16-400 A) YBa 2 Cu 3 O 7-δ films in high magnetic fields. A scaling analysis of these data reveals deviations from the universal vortex-glass critical scaling behavior observed for thick films. This is argued to be a dimensionality effect: At large currents, one probes length scales smaller than the film thickness, i.e., the three-dimensional (3d) vortex-glass behavior, whereas at low currents the vortex excitations involve typical length scales which exceed the film thickness, hence the 2d behavior is exhibited. Further evidence for this picture is found from the 3d vortex-glass correlation length, which appears to be cut off by the film thickness. (orig.)

  6. Phase evolution and its effect on magnetic properties of Nd sub 6 sub 0 Al sub 1 sub 0 Fe sub 2 sub 0 Co sub 1 sub 0 bulk metallic glass

    CERN Document Server

    Lei Xia; Pan, M X; Zhao, D Q; Wang, W H; Dong, Y D

    2003-01-01

    The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic properties were studied for as-cast Nd sub 6 sub 0 Al sub 1 sub 0 Fe sub 2 sub 0 Co sub 1 sub 0 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hard magnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.

  7. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    Science.gov (United States)

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Headspace sorptive solid phase microextraction (HS-SPME) combined with a spectrophotometry system: A simple glass devise for extraction and simultaneous determination of cyanide and thiocyanate in environmental and biological samples.

    Science.gov (United States)

    Al-Saidi, H M; Al-Harbi, Sami A; Aljuhani, E H; El-Shahawi, M S

    2016-10-01

    A simple, low cost and efficient headspace sorptive solid phase microextraction (HS-SPME) method for determination of cyanide has been developed. The system comprises of a glass tube with two valves and a moveable glass slide fixed at its centre. It includes an acceptor phase polyurethane foam treated mercury (II) dithizonate [Hg(HDz)2-PUF] complex fixed inside by a septum cap in a cylindrical configuration (5.0cm length and 1.0cm diameter). The extraction is based upon the contact of the acceptor phase to the headspace and subsequently measuring the absorbance of the recovered mercury (II) dithizonate from PUFs sorbent. Unlike other HSSE, extraction and back - extractions was carried out in a closed system, thereby improving the analytical performance by preventing the analyte loss. Under the optimized conditions, a linear calibration plot in the range of 1.0-50.0µmolL(-1) was achieved with limits of detection (LOD) and quantification (LOQ) of 0.34, 1.2µmolL(-1) CN(-), respectively. Simultaneous analysis of cyanide and thiocyanate in saliva was also performed with satisfactory recoveries. Copyright © 2016. Published by Elsevier B.V.

  9. Laser stimulated third harmonic generation studies in ZnO-Ta2O5-B2O3 glass ceramics entrenched with Zn3Ta2O8 crystal phases

    Science.gov (United States)

    Siva Sesha Reddy, A.; Jedryka, J.; Ozga, K.; Ravi Kumar, V.; Purnachand, N.; Kityk, I. V.; Veeraiah, N.

    2018-02-01

    In this study zinc borate glasses doped with different concentrations Ta2O5 were synthesized and were crystallized by heat treatment for prolonged times. The samples were characterized by XRD, SEM, IR and Raman spectroscopy techniques. The SEM images of the crystallized samples have indicated that the samples contain randomly distributed crystal grains with size ∼1 μm entrenched in the residual amorphous phase. XRD studies have exhibited diffraction peaks identified as being due to the reflections from (1 1 1) planes of monoclinic Zn3Ta2O8 crystal phase that contains intertwined tetrahedral zinc and octahedral tantalate structural units. The concentration of such crystal phases in the bulk samples is observed to increase with increase of Ta2O5 up to 3.0 mol%. The IR and Raman spectroscopy studies have confirmed the presence of ZnO4 and TaO6 structural units in the glass network in addition to the conventional borate structural units. For measuring third harmonic generation (THG) in the samples, the samples were irradiated with 532 nm laser beam and the intensity of THG of probing beam (Nd:YAG λ = 1064 nm 20 ns pulsed laser (ω)) is measured as a function of fundamental beam power varying up to 200 J/m2. The intensity of THG is found to be increasing with increase of fundamental beam power and found to be the maximal for the glass crystallized with 3.0 mol% of Ta2O5. The intensity of THG of the ceramicized samples is found to be nearly 5 times higher with respect to that of pre-crystallized samples. The generation of 3ω is attributed to the perturbation/interaction between Zn3Ta2O8 anisotropic crystal grains and the incident probing beam.

  10. Static corrosion of radioactive glass at 400C and corrosion of radioactive glass under dynamic conditions

    International Nuclear Information System (INIS)

    1986-01-01

    The goals of the project were to establish to what extent results obtained on non-radioactive glass are applicable to real waste glasses and also to develop a basis for understanding the effects of the components in the waste package on the glass dissolution behaviour as well as to obtain basic data on the temperature dependence of dissolution and the glass behaviour under flow conditions. Based on the results from these initial three phases, a model for predicting the dissolution behaviour of highly radioactive glass under realistic conditions in a granitic repository is being developed and refined. (orig./PW)

  11. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  12. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  13. Nepheline Formation Potential in Sludge Batch 4 (SB4) and Its Impact on Durability: Selecting Glasses for a Phase 2 Study

    International Nuclear Information System (INIS)

    Peeler, D

    2005-01-01

    The likelihood for the formation of nepheline in Sludge Batch 4 (SB4) glass systems and the potential impact of nepheline on the durability of these systems is part of the frit development efforts for SB4. The effect of crystallization on glass durability is complex and depends on several interrelated factors including the change in residual glass composition, the formation of internal stress or microcracks, and the preferential attack at the glass-crystal interface. Perhaps one of the most significant effects is the type and extent (or fraction) of crystallization and the change to the residual glass composition. A strong increase in glass dissolution (or decrease in durability) has been observed in previous studies in glasses that formed aluminum-containing crystals, such as NaAlSiO 4 (nepheline) and LiAlSi 2 O 6 , and crystalline SiO 2 . Although it is well known that the addition of Al 2 O 3 to borosilicate glasses enhances the durability of the waste form (through creation of network-forming tetrahedral Na + -[AlO 4/2 ] - pairs), the combination of high Al 2 O 3 and Na 2 O can lead to the formation of nepheline (NaAlSiO 4 ). Given the projected high concentration of Al 2 O 3 in SB4 and the potential use of a high Na 2 O based frit to improve melt rate and a high Na 2 O sludge due to settling problems, the potential formation of nepheline in various SB4 systems continues to be assessed. The most recent compositional projections from the Closure Business Unit (CBU) for SB4 may be framed around three decision areas: the sodium molarity of the sludge (at values of 1M Na and 1.6M Na), the SB3 heel that will be included in the batch (expressed in inches of SB3 sludge with values of 0, 40, and 127''), and the introduction of an ARP stream into the sludge (which is represented by six options: no ARP, ARPa, ARPe, ARPk, ARPm, and ARPv). Candidate frits are being identified for these options via a paper study approach with the intent of downselecting to a set of key

  14. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  15. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    International Nuclear Information System (INIS)

    Tournier, Robert F.

    2014-01-01

    An undercooled liquid is unstable. The driving force of the glass transition at T g is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change −V m ×Δp at T g where V m is the molar volume. A stable glass–liquid transition model predicts the specific heat jump of fragile liquids at T≤T g , the Kauzmann temperature T K where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between T K and T g , the maximum nucleation rate at T K of superclusters containing magic atom numbers, and the equilibrium latent heats at T g and T K . Strong-to-fragile and strong-to-strong liquid transitions at T g are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid–liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at T K of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at T g without stable-glass formation while a strong glass is stable after transition

  16. The phase transformation and crystallization kinetics of (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Cheng, Chih-Wei [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming; Chen, Yong-Feng [Department of Electrical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hsi, Chi-Shiung, E-mail: chsi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China)

    2010-09-01

    The phase transformation and crystallization kinetics of (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses have been studied by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analysis. The crystallization temperature at the exothermic peak increases from 1171 to 1212 K when the Na{sub 2}O content increases from 0 to 0.6 mol. The crystalline phase is composed of spodumene crystallization when the Na{sub 2}O content increases from 0 to 0.6 mol. The activation energy of spodumene crystallization decreases from 444.0 {+-} 22.2 to 284.0 {+-} 10.8 kJ mol{sup -1} when the Na{sub 2}O content increases from 0 to 0.4 mol. Moreover, the activation energy increases from 284.0 {+-} 10.8 to 446.0 {+-} 23.2 kJ mol{sup -1} when the Na{sub 2}O content increases from 0.4 to 0.6 mol. The crystallization parameters m and n approach 2, indicating that the surface nucleation and two-dimensional growth are dominant in (1 - x)Li{sub 2}O-xNa{sub 2}O-Al{sub 2}O{sub 3}-4SiO{sub 2} glasses.

  17. The phase transformation and crystallization kinetics of (1 - x)Li2O-xNa2O-Al2O3-4SiO2 glasses

    International Nuclear Information System (INIS)

    Wang, Moo-Chin; Li, Wang-Long; Cheng, Chih-Wei; Chang, Kuo-Ming; Chen, Yong-Feng; Hsi, Chi-Shiung

    2010-01-01

    The phase transformation and crystallization kinetics of (1 - x)Li 2 O-xNa 2 O-Al 2 O 3 -4SiO 2 glasses have been studied by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analysis. The crystallization temperature at the exothermic peak increases from 1171 to 1212 K when the Na 2 O content increases from 0 to 0.6 mol. The crystalline phase is composed of spodumene crystallization when the Na 2 O content increases from 0 to 0.6 mol. The activation energy of spodumene crystallization decreases from 444.0 ± 22.2 to 284.0 ± 10.8 kJ mol -1 when the Na 2 O content increases from 0 to 0.4 mol. Moreover, the activation energy increases from 284.0 ± 10.8 to 446.0 ± 23.2 kJ mol -1 when the Na 2 O content increases from 0.4 to 0.6 mol. The crystallization parameters m and n approach 2, indicating that the surface nucleation and two-dimensional growth are dominant in (1 - x)Li 2 O-xNa 2 O-Al 2 O 3 -4SiO 2 glasses.

  18. Moessbauer study of local environment effects in the ordered Fe{sub 70}Al{sub 30} Invar alloy: Temperature dependence of isomer shift in the spin-glass phase

    Energy Technology Data Exchange (ETDEWEB)

    Delyagin, N.N., E-mail: delyagin@srd.sinp.msu.ru [Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation); Erzinkyan, A.L.; Parfenova, V.P.; Rozantsev, I.N. [Institute of Nuclear Physics, Moscow State University, 119991 Moscow (Russian Federation)

    2011-12-15

    The systematic studies of the magnetic hyperfine field distribution for {sup 57}Fe in the spin-glass (SG) phase of the ordered Fe{sub 70}Al{sub 30} Invar alloy have been performed using Moessbauer spectroscopy technique in the temperature range from 5 to 80 K. Particular emphasis has been placed on the low-field component of the distribution, which is considered as corresponding to the Fe sites in the SG magnetic configurations. The main result is the observation of the pronounced temperature dependence of isomer shift for several atomic SG configurations. The temperature behavior of the local electron density is strongly correlated to the Invar properties of the Fe{sub 70}Al{sub 30} alloy. We argue that the observed temperature dependence of the isomer shift due to a local volume effect. The temperature range, for which the pronounced decrease in atomic volume is observed, coincides with the range of the existence of the Invar effect. The influence of the competition between opposite in sign exchange interactions on the Invar properties is discussed. - Highlights: > Spin-glass phase of the ordered Fe{sub 70}Al{sub 30} Invar alloy has been investigated using Moessbauer spectroscopy technique. > Main result is the observation of the pronounced temperature dependence of isomer shifts for several atomic configurations. > Observed temperature dependencies due to a local volume effect. > Temperature variations of the isomer shifts are strongly correlated to the Invar properties of the Fe{sub 70}Al{sub 30} alloys.

  19. Comment on 'Spherical 2+p spin-glass model: An analytically solvable model with a glass-to-glass transition'

    International Nuclear Information System (INIS)

    Krakoviack, V.

    2007-01-01

    Guided by old results on simple mode-coupling models displaying glass-glass transitions, we demonstrate, through a crude analysis of the solution with one step of replica symmetry breaking (1RSB) derived by Crisanti and Leuzzi for the spherical s+p mean-field spin glass [Phys. Rev. B 73, 014412 (2006)], that the phase behavior of these systems is not yet fully understood when s and p are well separated. First, there seems to be a possibility of glass-glass transition scenarios in these systems. Second, we find clear indications that the 1RSB solution cannot be correct in the full glassy phase. Therefore, while the proposed analysis is clearly naive and probably inexact, it definitely calls for a reassessment of the physics of these systems, with the promise of potentially interesting developments in the theory of disordered and complex systems

  20. GLASS AND GLASS-DERIVATIVE SEALS FOR USE IN ENERGY-EFFICIENT FUEL CELLS AND LAMPS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Misture; Arun Varshneya; Matthew Hall; Sylvia DeCarr; Steve Bancheri

    2004-08-15

    As the project approaches the end of the first year, the materials screening components of the work are ahead of schedule, while all other tasks are on schedule. For solid oxide fuel cells (SOFC), a series of 16 sealing glasses have been prepared and characterized. Traditional melting was used to prepare all of the glasses, and the sol-gel approach has been used to prepare some of the glasses as well as other compositions that might be viable because of the low processing temperatures afforded by the sol-gel method. The glass characterization included measurements of the viscosity and thermal expansion of the glasses, as well as the thermal expansion of the partly crystalline glass ceramics. In addition, the wetting and sintering behavior of all glasses has been measured, as well as the crystallization behavior. The time and temperature at which crystalline phases form from the glasses has been determined for all of the glasses. Each glass ceramic contains at least two crystalline phases, and most of the crystalline phases have been positively identified. Room temperature leak testing has been completed for all sealants, and experiments are in progress to determine the DC electrochemical degradation and degradation in wet hydrogen. The second component of the work, focused on seals for higher-temperature discharge lighting, has focused on determining the phase relations in the yttria--alumina--silica system at various silica levels. Again, traditional melting and sol-gel synthesis have been employed, and the sol-gel method was successful for preparing new phases that were discovered during the work. High temperature diffraction and annealing studies have clarified the phase relations for the samples studies, although additional work remains. Four new phases have been identified and synthesized in pure form, from which full structure solutions were obtained as well as the anisotropic thermal expansion for each phase. Functional testing of lamps are on on-going and

  1. Crystallization of lithium borate glasses

    Science.gov (United States)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  2. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  3. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  4. Role of diffusion in glass formation and crystallization in metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Banerjee, S.

    1999-01-01

    A considerable amount of interest has been generated with the advent of metallic glasses produced by rapid solidification earlier and bulk metallic glasses in recent times. Diffusion has a very important role to play during glass formation. The nucleation and growth of crystals in the metallic melt involves diffusion of atoms and these two processes need to be suppressed for formation of a glassy phase. Slower diffusion rates are particularly important in the case of alloys undergoing bulk metallic glass formation. Crystallization involves the nucleation and growth of crystals in the glassy solid. The nature of diffusion occurring during crystallization depends on the mode of crystallization. Whereas primary crystallization involves long range diffusion, atomic jumps across the crystal/glass interface occur during polymorphic crystallization. In this paper, an attempt has been made to describe the role of factors governing the rate of diffusion during glass formation and crystallization in metallic glasses. (author)

  5. [Quantitative determination of glass content in monazite glass-ceramics by IR technique].

    Science.gov (United States)

    He, Yong; Zhang, Bao-min

    2003-04-01

    Monazite glass-ceramics consist of both monazite and metaphoshate glass phases. The absorption bands of both phases do not overlap each other, and the absorption intensities of bands 1,275 and 616 cm-1 vary with the glass contents. The correlation coefficient between logarithmic absorbance ratio of the two bands and glass contents was r = 0.9975 and its regression equation was y = 48.356 + 25.93x. The absorbance ratio of bands 952 and 616 cm-1 also varied with different ratios of Ce2O3/La2O3 in synthetic monazites, with r = 0.9917 and a regression equation y = 0.2211 exp (0.0221x). High correlation coefficients show that the IR technique could find new application in the quantitative analysis of glass content in phosphate glass-ceramics.

  6. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  7. Impact Strength of Glass and Glass Ceramic

    Science.gov (United States)

    Bless, S.; Tolman, J.

    2009-12-01

    Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.

  8. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  9. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  10. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  11. Structural transformation of Nb containing glass - ceramics at thermal treatment

    International Nuclear Information System (INIS)

    Pelss, J.; Misnovs, A.; Berzina, L.; Cimdins, R.; Bossert, J.

    2004-01-01

    Full text: Niobium glass ceramics is know as biomaterial in medicine: stomatology, maxillofacial surgery. The material structure and phase amount influenced on chemical and biological activity of glass-ceramics. Samples from glass powder in system NaO: CaO: Nb 2 O 5 : P 2 O 5 treated at different temperatures (750-1050 0 C) and at different time - from 1 to 6 hours. The glass - ceramics structure investigated by DTA, X-ray and SEM methods

  12. Bloomington (LL6) chondrite and its shock melt glasses

    International Nuclear Information System (INIS)

    Dodd, R.T.; Olsen, E.J.; Clarke, R.S. Jr.; National Museum of Natural History, Washington, DC; Field Museum of Natural History, Chicago, IL)

    1985-01-01

    The shock melt glasses of the Bloomington LL-group chondrite were examined using electron-beam microscopy and compared with data from studies of other shock melt glasses. Petrologic and mineralogic characterizations were also performed of the samples. The metal contents of the meteorite were almost wholly Ni-rich martensite. The glasses resembled shock melt glasses in L-group chondrites, and were indicative of isochemical melting during one melt phase, i.e., a very simple history. 12 references

  13. Thermodynamics, dielectric permittivity and phase diagrams of the Rb1-x(NH4xH2PO4 type proton glasses

    Directory of Open Access Journals (Sweden)

    S.I. Sorokov

    2010-01-01

    Full Text Available The cluster pseudospin model of proton glasses, which takes into account the energy levels of protons around the PO4 group, the long-range interactions between the hydrogen bonds, and an internal random deformational field is used to investigate thermodynamical characteristics, longitudinal and transverse dielectric permittivities of Rb1-x(ND4xD2PO4 and Rb1-x(NH4xH2AsO4 compounds. A review of experimental and theoretical works on the Rb1-x(NH4xH2PO4 type crystals is presented.

  14. Glass and glass-derivative seals for use in energy-efficient fuel cells and lamps

    Energy Technology Data Exchange (ETDEWEB)

    Scott Misture; Arun Varshineya; Matthew Hall; Sylvia DeCarr; Steve Bancheri

    2005-07-28

    For solid oxide fuel cells (SOFC), a series of 18 sealing glasses have been prepared and characterized. From the whole design space, several glasses were ''downselected'' and studied in detail to describe their behaviors in simulated fuel cell environments. One of the glasses was found to outperform all others, including the well-known G18 sealant developed at Pacific Northwest National Laboratory. The new glass composition showed lower bulk electrical conductivity, excellent sealing and wetting behavior when sealing under applied load, and qualitatively superior performance when exposed to wet hydrogen for 800 hours. Traditional melting was used to prepare all of the glasses that were studied in detail. The sol-gel approach was used to synthesize several compositions, but it was found that the glasses crystallized very rapidly during heating, precluding sealing. The glass characterization included measurements of the viscosity and thermal expansion of the glasses, as well as the thermal expansion of the partly crystalline glass ceramics. In addition, the wetting and sintering behavior of all glasses has been measured, as well as the crystallization behavior. The time and temperature at which crystalline phases form from the glasses has been determined for all of the glasses. Each glass ceramic contains at least two crystalline phases, and most of the crystalline phases have been positively identified. The body of fundamental data provides a platform for future developments for high temperature sealants, and the newly-developed glass compositions appear promising for large-scale testing. The second component of the work, focused on seals for higher-temperature discharge lighting, has focused on determining the phase relations in the yttria-alumina-silica system at various silica levels. Functional testing of one of the candidate sealants demonstrated that it performs well in current HID lighting applications. Further testing is required to

  15. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  16. Gauge theory of glass transition

    International Nuclear Information System (INIS)

    Vasin, Mikhail

    2011-01-01

    A new analytical approach for the description of the glass transition in a frustrated system is suggested. The theory is based on the non-equilibrium dynamics technique, and takes into account the interaction of the local order field with the massive gauge field, which describes frustration-induced plastic deformation. The glass transition is regarded as a phase transition interrupted because of the premature critical slowing-down of one of the degrees of freedom caused by the frustrations. It is shown that freezing of the system appears when the correlation length and relaxation time of the gauge field diverge. The Vogel–Fulcher–Tammann relation for the transition kinetics and the critical exponent for the nonlinear susceptibility, 2.5∼ t correlation function dependence on time, and explains the boson peak appearance on this curve. In addition, the function of the glass transition temperature value with cooling rate is derived; this dependence fully conforms with known experimental data

  17. Engineered glass seals for solid-oxide fuel cells

    Science.gov (United States)

    Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry; Muth, Joseph Thomas; Armstrong, Beth L.; Shyam, Amit; Trejo, Rosa M.; Wang, Yanli; Chou, Yeong Shyung; Shultz, Travis Ray

    2017-02-07

    A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.

  18. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications; Sintese e processamento de compositos a base de alumina e zirconia com infiltracao de fase vitrea para aplicacoes odontologicas

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Daniel Gomes

    2009-07-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning

  19. Glass reactive sintering as an alternative route for the synthesis of NZP glass-ceramics

    International Nuclear Information System (INIS)

    Chenu, Sebastien; Lebullenger, Ronan; Benard-Rocherulle, Patricia; Calvez, Guillaume; Guillou, Olivier; Rocherulle, Jean; Kidari, Abdessamad; Pomeroy, Mickael J.; Hampshire, Stuart

    2012-01-01

    The NZP-type crystal structure allows a large number of ionic substitutions which leads to ceramics with adjustable thermal expansion properties or interesting ionic conductivity. However, NZP is difficult to fabricate into monoliths because it requires both high temperatures and long sintering times. An alternative low temperature route to obtain a tungsten (IV) and tin (IV) containing NZP crystalline phase uses a process of glass reactive sintering of a phosphate glass. Using a microwave oven, a glass with the appropriate composition in the NaPO 3 -Sn(II)O-W(VI)O 3 ternary diagram is prepared by a conventional melting and casting technique. After crushing, the glass powder is pressed at room temperature. The green pellet is cured during various times at temperatures where glass reactive sintering takes place. From XRD and DTA experiments, we have shown that different parameters influence the achievement of NZP phase. Consequently, specific conditions, such as (i) initial glass composition, (ii) equimolar quantities of SnO and WO 3 , (iii) glass particle size lower than 100 μ m, and (iv) curing conducted under air, are required to obtain a glass-ceramic with a single crystalline phase with the NZP-type crystal structure. (authors)

  20. Fission products in glasses. Pt. 2

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Malow, G.; Schiewer, E.

    1977-09-01

    Glass ceramics of different composition with high leach and impact resistance can be produced for fission product solidification. In contrast to commercial glass products, they consist of a number of crystalline phases and a residual glass phase. The major crystalline phase allows a classification into celsian, diopside, encryptite, and perovskite ceramics. They all are of special importance as host phases for long-lived fission products. The paper reports on relations between product composition and melting properties, viscosity, crystallization properties, and fixation capability for fission products. Further investigations deal with dimensional stability, impact resistance, thermal expansion, and thermal conductivity. The properties of the ceramics are compared with those of the basic products. The problems still to be solved with regard to further improvement and application of these products are discussed. (RB) [de

  1. Charge density glass from fictions to facts

    Energy Technology Data Exchange (ETDEWEB)

    Biljakovic, K. [Institute of Physics, Zagreb (Croatia)], E-mail: katica@ifs.hr; Staresinic, D.; Dominko, D. [Institute of Physics, Zagreb (Croatia); Lasjaunias, J.C. [Institut Neel, Grenoble (France)

    2009-03-01

    Thirty years ago Fukuyama [J. Phys. Soc. Jpn. 45 (1978) 1474] predicted a transition from charge density wave (CDW) state to the charge density glass (CDG) at a finite temperature as the consequence of the competition between the uniform commensurability pinning and the random impurity pinning. We present strong evidence that the CDG phase indeed exists as a generic feature of density wave systems. However, it arises from the competition of the random impurity pinning and the electrostatic intra-CDW interaction which tends to establish a uniform phase at low temperature. The glass transition occurs at the temperature at which the free carriers cannot efficiently screen the phase distortions. The characteristic length scale of the disorder, i.e. the size of the phase coherent domains, governs the glass properties.

  2. Charge density glass from fictions to facts

    International Nuclear Information System (INIS)

    Biljakovic, K.; Staresinic, D.; Dominko, D.; Lasjaunias, J.C.

    2009-01-01

    Thirty years ago Fukuyama [J. Phys. Soc. Jpn. 45 (1978) 1474] predicted a transition from charge density wave (CDW) state to the charge density glass (CDG) at a finite temperature as the consequence of the competition between the uniform commensurability pinning and the random impurity pinning. We present strong evidence that the CDG phase indeed exists as a generic feature of density wave systems. However, it arises from the competition of the random impurity pinning and the electrostatic intra-CDW interaction which tends to establish a uniform phase at low temperature. The glass transition occurs at the temperature at which the free carriers cannot efficiently screen the phase distortions. The characteristic length scale of the disorder, i.e. the size of the phase coherent domains, governs the glass properties

  3. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  4. Structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films grown on glass substrates by solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Department of Chemistry, The University of Tokyo (Japan)

    2017-03-15

    We investigated the structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films on glass substrates. The NbO{sub 2} films were crystallized from amorphous precursor films grown by pulsed laser deposition at various oxygen partial pressures (P{sub O2}). The electrical and optical properties of the precursor films systematically changed with P{sub O2}, demonstrating that the oxygen content of the precursor films can be finely controlled with P{sub O2}. The precursors were crystallized into polycrystalline NbO{sub 2} films by annealing under vacuum at 600 C. The NbO{sub 2} films possessed extremely flat surfaces with branching patterns. Even optimized films showed a low resistivity (ρ) of 2 x 10{sup 2} Ω cm, which is much lower than the bulk value of 1 x 10{sup 4} Ω cm, probably because of the inferior crystallinity of the films compared with that of a bulk NbO{sub 2} crystal. Both oxygen-rich and -poor NbO{sub 2} films showed lower ρ than that of the stoichiometric film. The NbO{sub 2} film with the highest ρ showed an indirect bandgap of 0.7 eV. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A machine learning approach for the classification of metallic glasses

    Science.gov (United States)

    Gossett, Eric; Perim, Eric; Toher, Cormac; Lee, Dongwoo; Zhang, Haitao; Liu, Jingbei; Zhao, Shaofan; Schroers, Jan; Vlassak, Joost; Curtarolo, Stefano

    Metallic glasses possess an extensive set of mechanical properties along with plastic-like processability. As a result, they are a promising material in many industrial applications. However, the successful synthesis of novel metallic glasses requires trial and error, costing both time and resources. Therefore, we propose a high-throughput approach that combines an extensive set of experimental measurements with advanced machine learning techniques. This allows us to classify metallic glasses and predict the full phase diagrams for a given alloy system. Thus this method provides a means to identify potential glass-formers and opens up the possibility for accelerating and reducing the cost of the design of new metallic glasses.

  6. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  7. Viscous Glass Sealants for SOFC Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott Misture

    2012-09-30

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  8. Forming Glasses from Se and Te

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2009-10-01

    Full Text Available Despite being close neighbors on the Periodic Table, selenium and tellurium present a totally different abilities to form glasses. Se is a very good glass former, and gives rise to numerous glass compositions which are popular for their transparency in the infrared range and their stability against crystallization. These glasses can be shaped into sophisticated optical devices such as optical fibers, planar guides or lenses. Nevertheless, their transparencies are limited at about 12 μm (depending on the thickness of the optical systems due to the relatively small mass of the Se element. On the other hand, tellurium is heavier and its use in substitution for Se permits to shift the IR cutoff beyond 20 μm. However, the semimetallic nature of Te limits its glass formation ability and this glass family is known to be unstable and consequently has found application as phase change material in the Digital Versatile Disk (DVD technology. In this paper, after a review of selenide glasses and their applications, it will be shown how, in a recent past, it has been possible to stabilize tellurium glasses by introducing new elements like Ga or I in their compositions.

  9. Measurement of sound propagation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1995-01-01

    A new acoustic method for directly measuring the flow resistance, and the compressibility of fibrous materials such as glass wool, is given. Measured results for monochromatic sound in glass wool are presented and compared with theoretically calculated results. The agreement between experimental...... results and theory is good. Results of measurements of characteristic impedance, attenuation, and phase shift for plane monochromatic traveling waves are presented and compared with theoretically calculated ones. Good agreement between experimental and theoretical results was found....

  10. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  11. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    provide models and parameter values that can be used to calculate the dissolution rates for the different modes of water contact. The analyses were conducted to identify key aspects of the mechanistic model for glass dissolution to be included in the abstracted models used for PA calculations, evaluate how the models can be used to calculate bounding values of the glass dissolution rates under anticipated water contact modes in the disposal. system, and determine model parameter values for the range of potential waste glass compositions and anticipated environmental conditions. The analysis of a bounding rate also considered the effects of the buildup of glass corrosion products in the solution contacting the glass and potential effects of alteration phase formation. Note that application of the models and model parameter values is constrained to the anticipated range of HLW glass compositions and environmental conditions. The effects of processes inherent to exposure to humid air and dripping water were not modeled explicitly. Instead, the impacts of these processes on the degradation rate were taken into account by using empirically measured parameter values. These include the rates at which water sorbs onto the glass, drips onto the glass, and drips off of the glass. The dissolution rates of glasses that were exposed to humid air and dripping water measured in laboratory tests are used to estimate model parameter values for contact by humid air and dripping water in the disposal system

  12. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    Science.gov (United States)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  13. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  14. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  15. Measurement of optical glasses

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  16. Integrated Glass Coating Manufacturing Line

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  17. Technique for Machining Glass

    Science.gov (United States)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  18. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  19. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs

  20. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  1. Basaltic glass alteration in confined media: analogy with nuclear glass in geological disposal conditions

    International Nuclear Information System (INIS)

    Parruzot, Benjamin

    2014-01-01

    This dissertation concerns basaltic glass alteration mechanisms and rates. Through a better understanding of the processes controlling the basaltic glass durability, this thesis attempts to establish a link between laboratory studies and volcanic glass alteration in natural environment. The methodology used here is similar to the one used for nuclear glasses. Thus, we measured for the first time the residual alteration rate of basaltic glasses. Protective effect of the alteration film is clearly established. Moreover, synthetic glass representativeness is evaluated through a study focused on the effect of iron oxidation degree on the glass structure and leaching properties. A minor effect of Fe II on the forward rate and a negligible effect on the residual rate are shown. The residual rate is extrapolated at 5 C and compared to the mean alteration rate of natural samples of ages ranging from 1900 to 10 7 years. Non-zeolitized natural glasses follow this linear tendency, suggesting a control of the long-term rate by clayey secondary phase precipitation. Natural environments are open environments: a parametric study was performed in order to quantify the water flow rate effect on chemical composition of the alteration layer. When applied to two natural samples, the obtained laws provide coherent results. It seems possible to unify the descriptive approach from the study of natural environments to the mechanistic approach developed at the laboratory. The next step will consist in developing a model to transpose these results to nuclear glasses. (author) [fr

  2. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero.

    Science.gov (United States)

    Zhang, G; Stillinger, F H; Torquato, S

    2016-11-28

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a "perfect glass". A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  3. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  4. Plutonium Solubility In High-Level Waste Alkali Borosilicate Glass

    International Nuclear Information System (INIS)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-01

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to ∼18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m 3 of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m 3 3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt

  5. Neutron- and light-scattering studies of the liquid-to-glass and glass-to-glass transitions in dense copolymer micellar solutions

    International Nuclear Information System (INIS)

    Chen Weiren; Chen Sowhsin; Mallamace, Francesco; Glinka, Charles J.; Fratini, Emiliano

    2003-01-01

    Recent mode coupling theory (MCT) calculations show that if a short-range attractive interaction is added to the pure hard sphere system, one may observe a new type of glass originating from the clustering effect (the attractive glass) as a result of the attractive interaction. This is in addition to the known glass-forming mechanism due to the cage effect in the hard sphere system (the repulsive glass). The calculations also indicate that if the range of attraction is sufficiently short compared to the diameter of the particle, within a certain interval of volume fractions where the two glass-forming mechanisms nearly balance each other, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass reentrance and the glass-to-glass transitions possible. Here we present experimental evidence of both transitions, obtained from small-angle neutron-scattering and photon correlation measurements taken from dense L64 copolymer micellar solutions in heavy water. Varying the temperature in certain predicted volume fraction range triggers a sharp transition between these two different types of glass. In particular, according to MCT, there is an end point (called A 3 singularity) of this glass-to-glass transition line, beyond which the long-time dynamics of the two glasses become identical. Our findings confirm this theoretical prediction. Surprisingly, although the Debye-Waller factors, the long-time limit of the coherent intermediate scattering functions, of these two glasses obtained from photon correlation measurements indeed become identical at the predicted volume fraction, they exhibit distinctly different intermediate time relaxation. Furthermore, our experimental results obtained from volume fractions beyond the end point are characterized by the same features as the repulsive glass obtained before the end point. A complete phase diagram giving the boundaries of the structural arrest transitions for L64 micellar system is

  6. Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics.

    Science.gov (United States)

    Kansal, Ishu; Tulyaganov, Dilshat U; Goel, Ashutosh; Pascual, Maria J; Ferreira, José M F

    2010-11-01

    Glass-ceramics in the diopside (CaMgSi2O6)-fluorapatite (Ca5(PO4)3F)-wollastonite (CaSiO3) system are potential candidates for restorative dental and bone implant materials. The present study describes the influence of varying SiO2/CaO and CaF2/P2O5 molar ratio on the structure and thermal behavior of glass compositions in the CaO-MgO-SiO2-P2O5-Na2O-CaF2 system. The structural features and properties of the glasses were investigated by nuclear magnetic resonance (NMR), infrared spectroscopy, density measurements and dilatometry. Sintering and crystallization behavior of the glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. The microstructure and crystalline phase assemblage in the sintered glass powder compacts were studied under non-isothermal heating conditions at 825 °C. X-ray diffraction studies combined with the Rietveld-reference intensity ratio (R.I.R) method were employed to quantify the amount of amorphous and crystalline phases in the glass-ceramics, while scanning electron microscopy was used to shed some light on the microstructure of resultant glass-ceramics. An increase in CaO/SiO2 ratio degraded the sinterability of the glass powder compacts, resulting in the formation of akermanite as the major crystalline phase. On the other hand, an increase in P2O5/CaF2 ratio improved the sintering behavior of the glass-ceramics, while varying the amount of crystalline phases, i.e. diopside, fluorapatite and wollastonite. Copyright © 2010. Published by Elsevier Ltd.

  7. Multiple Glass Ceilings

    OpenAIRE

    Russo, Giovanni; Hassink, Wolter

    2011-01-01

    Both vertical (between job levels) and horizontal (within job levels) mobility can be sources of wage growth. We find that the glass ceiling operates at both margins. The unexplained part of the wage gap grows across job levels (glass ceiling at the vertical margin) and across the deciles of the intra-job-level wage distribution (glass ceiling at the horizontal margin). This implies that women face many glass ceilings, one for each job level above the second, and that the glass ceiling is a p...

  8. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  9. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  10. Acoustics of glass harmonicas

    Science.gov (United States)

    Rossing, Thomas D.

    2004-05-01

    Glass musical instruments are probably as old as glassmaking. At least as early as the 17th century it was discovered that wine glasses, when rubbed with a wet finger, produced a musical tone. A collection of glasses played in this manner is called a glass harp. Another type of glass harmonica, called the armonica by its inventor Benjamin Franklin, employs glass bowls or cups turned by a horizontal axle, so the performer need only touch the rim of the bowls as they rotate to set them into vibration. We discuss the modes of vibration of both types of glass harmonica, and describe the different sounds that are emitted by rubbing, tapping, or bowing them. Rubbing with a wet finger tends to excite only the (2,0) mode and its harmonics through a ``stick-slip'' process, while tapping excites the other modes as well.

  11. Leaching of glass

    International Nuclear Information System (INIS)

    Hench, L.L.

    1977-01-01

    Understanding surface compositional profiles of glasses over a range of 0-2000 A with a variety of analytical instruments shows that five general types of glass surfaces exist. The surface character of a glass article depends upon bulk composition and environmental history during which surface dealkalization, film formation, and network dissolution can occur. Environmental-surface interactions generally result in complex compositional profiles of all the constituents in a glass. Durable glasses almost always develop a stable surface film which has a higher concentration of network formers than the bulk composition. Compositional effects that are used to improve glass durability usually improve the stability of the surface films. Durability tests or service conditions that lead to film destruction are especially severe for the most silicate glasses. 43 references

  12. A new method locating good glass-forming compositions

    International Nuclear Information System (INIS)

    Yu, Dechuan; Geng, Yan; Li, Zhengkun; Liu, Dingming; Fu, Huameng; Zhu, Zhengwang; Qi, Yang; Zhang, Haifeng

    2015-01-01

    A new method was proposed to pinpoint the compositions with good glass forming ability (GFA) by combining atomic clusters and mixing entropy. The clusters were confirmed by analyzing competing crystalline phases. The method was applied to the Zr–Al–Ni–Cu–Ag alloy system. A series of glass formers with diameter up to 20 mm were quickly detected in this system. The good glass formers were located only after trying 5 compositions around the calculated composition. The method was also effective in other multi-component systems. This method might provide a new way to understand glass formation and to quickly pinpoint compositions with high GFA. - Highlights: • A new method was proposed to quickly design glass formers with high glass forming ability. • The method of designing pentabasic Zr–Al–Ni–Cu–Ag alloys was applied. • A series of new Zr-based bulk metallic glasses with critical diameter of 20 mm were discovered

  13. Dynamics and thermodynamics of polymer glasses.

    Science.gov (United States)

    Cangialosi, D

    2014-04-16

    The fate of matter when decreasing the temperature at constant pressure is that of passing from gas to liquid and, subsequently, from liquid to crystal. However, a class of materials can exist in an amorphous phase below the melting temperature. On cooling such materials, a glass is formed; that is, a material with the rigidity of a solid but exhibiting no long-range order. The study of the thermodynamics and dynamics of glass-forming systems is the subject of continuous research. Within the wide variety of glass formers, an important sub-class is represented by glass forming polymers. The presence of chain connectivity and, in some cases, conformational disorder are unfavourable factors from the point of view of crystallization. Furthermore, many of them, such as amorphous thermoplastics, thermosets and rubbers, are widely employed in many applications. In this review, the peculiarities of the thermodynamics and dynamics of glass-forming polymers are discussed, with particular emphasis on those topics currently the subject of debate. In particular, the following aspects will be reviewed in the present work: (i) the connection between the pronounced slowing down of glassy dynamics on cooling towards the glass transition temperature (Tg) and the thermodynamics; and, (ii) the fate of the dynamics and thermodynamics below Tg. Both aspects are reviewed in light of the possible presence of a singularity at a finite temperature with diverging relaxation time and zero configurational entropy. In this context, the specificity of glass-forming polymers is emphasized.

  14. Crystallization in lead tungsten fluorophosphate glasses

    International Nuclear Information System (INIS)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G.

    2014-01-01

    The glass forming ability was investigated in the ternary system NaPO 3 -WO 3 -PbF 2 with a constant NaPO 3 /WO 3 ratio of 3/2 and increasing amounts of PbF 2 . It has been found that glass samples can be obtained from PbF 2 contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF 2 is the lead fluorophosphates phase Pb 5 F(PO 4 ) 3 whereas the sample containing 60% of PbF 2 exhibits a preferential crystallization of cubic lead fluoride β-PbF 2 . (author)

  15. Comparative analysis of the water resistance of glass composites and homogeneous glass matrices for immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Karlina, O.K.; Ozhovan, M.I.; Popov, M.V.

    1994-01-01

    The reliability of immobilizing radioactive wastes in glass composites as compared to homogeneous glasses containing the same amount of radioactive components is evaluated. The resistance criterion of the glass composites is defined as the condition where their water resistance is no worse than that of a homogeneous glass of the same composition without unexpected sample decompositions. The water resistance of the glass composites and the homogeneous matrices in addition to its change after induced sample fragmentation are experimentally studied. The limit is found for the maximal particle size of the dispersed radioactive phase in the glass composites. The maximal achievable size of the radioactive inclusions depends on the properties of the glass matrix used and the distribution coefficient of the radionuclides between the additive and the matrix

  16. Controlling Mackey-Glass chaos

    Science.gov (United States)

    Kiss, Gábor; Röst, Gergely

    2017-11-01

    The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.

  17. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...... for the topology of multicomponent melts, before accurate prediction of phase relations within boron-containing glass ceramics can be obtained....

  18. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  19. Anisotropy and sound propagation in glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1999-01-01

    will be considered. The computations are based on the geometry of the glass wool that is decribed by the density of fibers and their diameters. The air drags viscously on the fibers, and movements of the fiber skeleton are important at low frequencies. Propagation of elastic waves in the skeleton is computed...... by regarding it as a continuous medium described by its elastic moduli and mass density. The computed attenuation of sound waves, for frequencies 50–5000 Hz, will be compared with experimental results for glass wool with fiber diameters of 6.8 micrometers, mass density of 15 and 30 kg/m3, and elastic moduli......Sound propagation in glass wool is studied theoretically and experimentally. Theoretical computation of attenuation and phase velocity for plane, harmonic waves will be presented. Glass wool is a highly anisotropic material, and sound waves propagating in different directions in the material...

  20. Raman spectroscopy of tellurate-tungstate glasses

    International Nuclear Information System (INIS)

    Gugov, I.B.; Brovchenko, I.M.; Kabanov, V.O.; Yanush, O.V.

    1989-01-01

    The Raman spectra of xTeO 2 - (1-x)WO 3 glasses, where 0.75 4 , WO 4 and WO 6 structural groups observed. This is in accordance with the absence of some chemical compounds between TeO 2 and WO 3 in the phase diagram of the system. The presence of WO 4 tetrahedra in the glasses, not observed in the different WO 3 crystalline modifications and the crystallized glasses, was defined as a feature of WO 3 g lassy state . It was suggested that the WO 4 tetrahedron does not replace equivalently the TeO 4 polyhedron in the glass structure, as it was reported previously, because of the different valency state of both cations. (author)

  1. Structural role of molybdenum in nuclear glasses: an EXAFS study

    International Nuclear Information System (INIS)

    Calas, G.; Le Grand, M.; Galoisy, L.; Ghaleb, D.

    2003-01-01

    The Mo environment has been investigated in inactive nuclear glasses using extended X-ray absorption spectroscopy (XAS). Mo is present in a tetrahedron coordinated to oxygen in the form of molybdate groups [MoO 4 ] 2- (d(Mo-O)=1.78 A). This surrounding is not affected by the presence of noble metal phases in the nuclear glass. Relying on the XAS results, on the bond-valence model and on molecular dynamics simulations of a simplified borosilicate model glass, we show that these groups are not directly linked to the borosilicate network but rather located within alkali and alkaline-earth rich domains in the glass. This specific location in the glass network is a way to understand the low solubility of Mo in glasses melted under oxidizing conditions. It also explains the possible phase separation of a yellow phase enriched in alkali molybdates in molten nuclear glasses or the nucleation of calcium molybdates during thermal aging of these glasses. Boron coordination changes in the molten and the glassy states may explain the difference in the composition of the crystalline molybdates, as they exert a direct influence on the activity of alkalis in borosilicate glasses and melts

  2. Crystallization in Pd40Ni40P20 glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, K.; Nishiyama, N.

    2002-01-01

    Phase segregation and the effect of pressure on crystallization of bulk and ribbon Pd40Ni40P20 glasses have been studied by means of differential scanning calorimetry (DSC) and x-ray diffraction. The DSC measurements show only one glass transition event in the samples annealed at different...... temperatures in the supercooled liquid region. Phase analyses reveal at least five crystalline phases crystallized from the glass: monoclinic; body-centered tetragonal; orthorhombic; Ni2Pd2P and fcc-(Ni,Pd) solid solution phases. In the pressure range from 0 to 4.2 GPa, the crystallization temperature...... increases with pressure having a slope of 11 K/GPa. The eutectic crystallization reaction mode and crystalline phases formed are unchanged in the pressure range used. The enhancement of the crystallization temperature with increasing pressure in the glass can be explained by the suppression of atomic...

  3. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.

    Science.gov (United States)

    Teixeira, S R; Magalhães, R S; Arenales, A; Souza, A E; Romero, M; Rincón, J M

    2014-02-15

    Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming ad...... calorimetric data show that panel glass possesses good stability against crystallisation. X-ray diffraction data show that the foaming agents enhance the surface crystallisation of the panel glass. We find that the crystallisation impedes the formation of low density foam glass.......Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...

  5. Paramagnetic and glass transitions in sudoku

    Science.gov (United States)

    Williams, A.; Ackland, G. J.

    2012-09-01

    We study the statistical mechanics of a model glassy system based on sudoku, a familiar and popular mathematical puzzle. Sudoku puzzles provide a very rare example of a class of frustrated systems with a unique ground state without symmetry. Here, the puzzle is recast as a thermodynamic system where the number of violated rules defines the energy. We use Monte Carlo simulation to show that the “sudoku Hamiltonian” exhibits two transitions as a function of temperature, a paramagnetic, and a glass transition. Of these, the intermediate condensed phase is the only one that visits the ground state (i.e., it solves the puzzle, though this is not the purpose of the study). Both transitions are associated with an entropy change, paramagnetism measured from the dynamics of the Monte Carlo run, showing a peak in specific heat, while the residual glass entropy is determined by finding multiple instances of the glass by repeated annealing. There are relatively few such simple models for frustrated or glassy systems that exhibit both ordering and glass transitions; sudoku puzzles are unique for the ease with which they can be obtained, with the proof of the existence of a unique ground state via the satisfiability of all constraints. Simulations suggest that in the glass phase there is an increase in information entropy with lowering temperature. In fact, we have shown that sudoku puzzles have the type of rugged energy landscape with multiple minima that typifies glasses in many physical systems. This puzzling result is a manifestation of the paradox of the residual glass entropy. These readily available puzzles can now be used as solvable model Hamiltonian systems for studying the glass transition.

  6. Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes

    International Nuclear Information System (INIS)

    Lokken, R.O.; Chick, L.A.; Thomas, L.E.

    1982-09-01

    Basalt-based waste forms were developed for the immobilization of transuranic (TRU) contaminated wastes. The specific waste studied is a 3:1 blend of process sludge and incinerator ash. Various amounts of TRU blended waste were melted with Pomona basalt powder. The vitreous products were subjected to a variety of heat treatment conditions to form glass ceramics. The total crystallinity of the glass ceramic, ranging from 20 to 45 wt %, was moderately dependent on composition and heat treatment conditions. Three parent glasses and four glass ceramics with varied composition and heat treatment were produced for detailed phase characterization and leaching. Both parent glasses and glass ceramics were mainly composed of a continuous, glassy matrix phase. This glass matrix entered into solution during leaching in both types of materials. The Fe-Ti rich dispersed glass phase was not significantly degraded by leaching. The glass ceramics, however, exhibited four to ten times less elemental releases during leaching than the parent glasses. The glass ceramic matrix probably contains higher Fe and Na and lower Ca and Mg relative to the parent glass matrix. The crystallization of augite in the glass ceramics is believed to contribute to the improved leach rates. Leach rates of the basalt glass ceramic are compared to those of other TRU nuclear waste forms containing 239 Pu

  7. The mineral phase evolution behaviour in the production of glass-ceramics from municipal solid waste incineration fly ash by melting technology.

    Science.gov (United States)

    Luan, Jingde; Chai, Meiyun; Li, Rundong; Yao, Pengfei; Khan, Agha Saood

    2016-01-01

    High energy consumption was the major obstacle to the widespread application of melting technology in the treatment of municipal solid waste incineration fly ash. Aiming to lower the ash-melting temperature (AMT) for energy-saving, differential scanning calorimetry, X-ray diffraction and the scanning electron microscope were used to investigate the relations between AMT and the mineral evolution. The results indicated that the change of AMT was determined by the types and the contents of mineral crystals. The transition from refractory minerals to fluxing minerals was the key. The transition of the main crystalline phase from pseudowollastonite (Ca3(Si3O9)) to wollastonite (CaSiO3) played a significant role in AMT reduction. A quantum chemistry calculation was carried out to investigate the effect of crystal reaction activity on AMT. In the chemical reaction, the highest occupied molecular orbital and the lowest unoccupied molecular orbital played a more important role than any other orbits. Cations (Ca(2+), Mg(2+), Na(+), K(+)) were apt to enter into the crystal lattice of wollastonite and gehlenite mainly through Si (3), O (1), Si (6), O (10) and Al (2), O (10), and broke the covalent bonds of Si (3)-O (7), Al (1)-O (9) and Al (1)-O (15), respectively. This deconstruction behaviour provided convenient conditions for restructuring and promoted the formation of fluxing minerals. In melts, the excess SiO2 monomers which existed in the form of cristobalite and quartz caused AMT increase.

  8. Photoacoustic investigation of glass transition in AsxTe1-x glasses

    International Nuclear Information System (INIS)

    Madhusoodanan, K.N.; Nandakumar, K.; Philip, J.; Titus, S.S.K.; Asokan, S.; Gopal, E.S.R.

    1989-01-01

    Photoacoustic (Pa) technique is used to study glass transition and temperature dependence of thermal diffusivity in As x Te 1-x glasses with 0.25 ≤ x ≤ 0.60. PA amplitude goes through a minimum and the phase shows a maximum at glass transition temperature T g . The variation of thermal diffusivity with temperature shows sharp decrease near T g . The variation of thermal diffusivity with composition shows maximum at x = 0.40 for all temperatures T ≤ T g . (author)

  9. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  10. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  11. Aging, rejuvenation and memory phenomena in spin glasses

    Indian Academy of Sciences (India)

    laws used to describe the isothermal aging observed in spin glasses after a quench down to the low-temperature phase. ... has been cooled down below its glass temperature Tg, and t is the time elapsed since the excitation has been applied. ..... [22] M Sales, J P Bouchaud and F Ritort, J. Phys. A: Math. Gen. 36, 665 (2003).

  12. Electrical conductivity and viscosity of borosilicate glasses and melts

    DEFF Research Database (Denmark)

    Ehrt, Doris; Keding, Ralf

    2009-01-01

    , 0 to 62·5 mol% B2O3, and 25 to 85 mol% SiO2. The glass samples were characterised by different methods. Refractive indices, density and thermal expansion were measured. Phase separation effects were investigated by electron microscopy. The electrical conductivity of glasses and melts were determined...

  13. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  14. Fractography of glass

    CERN Document Server

    Tressler, Richard

    1994-01-01

    As the first major reference on glass fractography, contributors to this volume offer a comprehensive account of the fracture of glass as well as various fracture surface topography Contributors discuss optical fibers, glass containers, and flatglass fractography In addition, papers explore fracture origins; the growth of the original flaws of defects; and macroscopic fracture patterns from which fracture patterns evolve This volume is complete with photographs and schematics

  15. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  16. Glass to contain wastes

    International Nuclear Information System (INIS)

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  17. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  18. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  19. Extraction of Sm from Sm-Fe alloys by the glass slag method

    International Nuclear Information System (INIS)

    Saito, Tetsuji; Sato, Hironori; Motegi, Tetsuichi

    2005-01-01

    Application of the glass slag method to the extraction of samarium from Sm-Fe alloys was studied. The magnetic Sm 2 Fe 17 phase was decomposed into the Sm oxide phase and Fe phases by the glass slag method. The Sm oxide phase was extracted by the surrounding molten glass slag material in the glass slag method. The resultant alloys consisted of neither the Sm 2 Fe 17 phase nor the Sm oxide phase. The Sm-Fe alloys were therefore separated into Sm-containing glass slag material and an Fe-B alloy by the glass slag method. This method was found to be suitable for the extraction of Sm from Sm-Fe alloys, as was the case for the extraction of neodymium from Nd-Fe-B alloys

  20. Planar glass devices for efficient periodic poling

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase-matching wav......We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase......-matching wavelength and bandwidth, and a normalised conversion efficiency of 1.4×10-3 %/W/cm2 which, to our knowledge, is the highest obtained so far with periodic glass poling....

  1. Basaltic glasses from Iceland and the deep sea: Natural analogues to borosilicate nuclear waste-form glass

    International Nuclear Information System (INIS)

    Jercinovic, M.J.; Ewing, R.C.

    1987-12-01

    The report provides a detailed analysis of the alteration process and products for natural basaltic glasses. Information of specific applicability to the JSS project include: * The identification of typical alteration products which should be expected during the long-term corrosion process of low-silica glasses. The leached layers contain a relatively high proportion of crystalline phases, mostly in the form of smectite-type clays. Channels through the layer provide immediate access of solutions to the fresh glass/alteration layer interface. Thus, glasses are not 'protected' from further corrosion by the surface layer. * Corrosion proceeds with two rates - an initial rate in silica-undersaturated environments and a long-term rate in silica-saturated environments. This demonstrates that there is no unexpected change in corrosion rate over long periods of time. The long-term corrosion rate is consistent with that of borosilicate glasses. * Precipitation of silica-containing phases can result in increased alteration of the glass as manifested by greater alteration layer thicknesses. This emphasizes the importance of being able to predict which phases form during the reaction sequence. * For natural basaltic glasses the flow rate of water and surface area of exposed glass are critical parameters in minimizing glass alteration over long periods of time. The long-term stability of basalt glasses is enhanced when silica concentrations in solution are increased. In summary, there is considerable agreement between corrosion phenomena observed for borosilicate glasses in the laboratory and those observed for natural basalt glasses of great age. (With 121 refs.) (authors)

  2. Properties of Desert Sand and CMAS Glass

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2014-01-01

    As-received desert sand from a Middle East country has been characterized for its phase composition and thermal stability. X-ray diffraction analysis showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H2O), and NaAlSi3O8 phases in as-received desert sand and showed weight loss of approx. 35 percent due to decomposition of CaCO3 and CaSO4.2H2O when heated to 1400 C. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at approx. 1500 C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al2O3-61.6SiO2-0.6Fe2O3-1K2O (mole percent). Various physical, thermal and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cc, Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (T (sub g)) 706 C, softening point (T (sub d)) 764 C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m (sup 1/2), and coefficient of thermal expansion (CTE) 9.8 x 10 (exp -6)/degC in the temperature range 25 to 700 C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-Fulcher-Tamman (VFT) equation. The glass remained amorphous after heat treating at 850 C for 10 hr but crystallized into CaSiO3 and Ca-Mg-Al silicate phases at 900 C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Activation energies for the crystallization of two different phases in the glass were calculated to be 403 and 483 kJ/mol, respectively.

  3. Hexatic vortex glass in disordered superconductors

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.

    1989-01-01

    It is shown that interaction of the flux-line lattice with randomly arranged pinning centers should destroy the long-range positional order in the lattice, but not the long-range orientational order. A new phase: hexatic vortex glass, is suggested for the mixed state of disordered, type-II superconductors. Relevance to amorphous and high-T c superconductors is discussed

  4. Glass effect in a prescribed marriage system

    Science.gov (United States)

    Tainaka, Kei-ichi; Itoh, Yoshiaki

    1994-04-01

    By computer simulation, the spatial pattern formation in a marriage system is studied. Depending on the interaction range between persons, this system shows a phase transition which resembles the glass transition. It is found that the life style of Australian aborigines can be fitted quite well with such a marriage system. Moreover, we can roughly estimate the population size of tribes of Australian aborigines.

  5. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  6. Glass transition and density fluctuations in the fragile glass former orthoterphenyl

    International Nuclear Information System (INIS)

    Monaco, G.; Fioretto, D.; Comez, L.; Ruocco, G.

    2001-01-01

    High-resolution Brillouin light scattering is used to measure the dynamic structure factor of the fragile glass former orthoterphenyl (OTP) in a wide temperature range around the glass transition region and up to the boiling point. The whole set of spectra is described in terms of a phenomenological generalized hydrodynamic model. In the supercooled phase, we show the contemporary existence of the structural process, whose main features come out to be consistent with the results obtained with other spectroscopies, and of a secondary, activated process, which occurs on the 10 -11 s time scale and has a low activation energy (E a f =0.28 kcal/mol). This latter process, which is also present in the glassy phase and seems to be insensitive to the glass transition, is attributed to the coupling between the density modes and intramolecular degrees of freedom. In the normal liquid phase, the two processes merge together, and the resulting characteristic time is no longer consistent with those derived with other spectroscopies. The analysis points to the conclusion that, for what concerns the long-wavelength density fluctuations in fragile glass formers such as OTP, the universal dynamical features related to the glass transition come out clearly only in the supercooled phase and at frequencies lower than ∼10 6 Hz

  7. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  8. Getting Started with Glass

    Science.gov (United States)

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…

  9. Radioresistance of inorganic glasses

    International Nuclear Information System (INIS)

    Vorob'ev, A.A.; Zavadovskaya, E.K.; Fedorov, B.V.; Starodubtsev, V.A.

    1977-01-01

    Regularities are considered in the variation of properties of glass due to irradiations. On the basis of previous theoretical statements and experimental investigations, it is inferred that the irradiation resistance of glasses of the same type, synthesis conditions, content of impurities and amount of imperfections, is a function of the ''element-oxygen'' bond energy. The irradiation resistance depends on the number and the nature of glass structure imperfections. The averaged level of bonding forces is indicative of the glass formation temperature; the imperfections in glasses are formed in structure elements whose amount predominates as compared to the others. Electric charges which accumulate on the crack surface tend to increase its size, thus lessening even further the electric strength of the dielectric. The greater the irradiation time, the greater the number of irradiation imperfections causing a drop in the electric strength of glass. When choosing a glass for service in a radiation field, it is necessary to select those of a highest temperature of glass formation and with a least amount of imperfections

  10. Electric glass capturing markets

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  11. Dramatic Stained Glass.

    Science.gov (United States)

    Prater, Michael

    2002-01-01

    Describes an art project that is appropriate for students in fifth through twelfth grade in which they create Gothic-style stained-glass windows. Discusses how college students majoring in elementary education created stained-glass windows. Addresses how to adapt this lesson for younger students. (CMK)

  12. Acoustic study of nano-crystal embedded PbO–P2O5 glass

    Indian Academy of Sciences (India)

    Unknown

    properties of nano-crystal embedded glass matrix have attracted attention of technologists as well as scientists for fabrication of glass ceramic through controlled crysta- llization. ... To ensure the complete forma- tion of crystal phases one of the glass samples was heat- treated for a period of 2 h at 673 K which is above the.

  13. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    International Nuclear Information System (INIS)

    Guerrero, H.N.

    2001-01-01

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained

  14. Strain Glass as a Novel Multi-functional Material

    Science.gov (United States)

    Wang, Yu; Wang, Dong; Zhou, Yumei; Zhang, Jian; Xue, Dezhen; Ren, Xiaobing

    Strain glass is a frozen disordered state of local lattice strains (nano-martensite domains), which is the third state of the martensitic/ferroelastic system in addition to parent phase and martensite. In this chapter, the key features of strain glass and its multi-functional properties are reviewed. It is shown that strain glass exhibits a number of interesting properties like shape memory effect, superelasticity with narrow hysteresis, tunable damping, together with unusual properties like Invar effect, Elinvar effect as discovered in β-Ti strain glass alloys. All these multi-functional properties stem from the response of the nano-domains of strain glass to temperature change and external stress. With the recent finding of ferromagnetic strain glass, novel magneto-elastic functionalities may be anticipated.

  15. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  16. Oxide glass to high temperature ceramic superconductors - a novel route

    International Nuclear Information System (INIS)

    Chaudhuri, B.K.; Som, K.K.

    1992-01-01

    Recently it has been discovered that many of transition metal oxide (TMO) glasses like Bi-Sr-Ca-Cu-O, Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O etc. can be directly converted to the corresponding high temperature superconducting phases by properly annealing the respective glasses. In this review recent developements in this field are summarised. The structural, electrical, dielectrical, magnetic, optical, and other properties of these new type of (TMO) glass systems have been elucidated comparing them with the corresponding results of already known (TMO) glasses which do not become superconductors on annealing above their glass transition temperatures (T g ). The electrical properties of this novel glass system have been analysed with reference to the various existing theoretical models based on polaron hopping conduction mechanism. The electrical, magnetic, and other properties of the respective superconductors obtained from their corresponding glass phases by annealing above (T g ) and the possibility of drawing wires, ribbons etc. from these glass matrices and then converting them to their high T c superconducting phases have also been discussed. (author). 107 refs., 32 figs., 5 tabs

  17. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  18. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  19. Laboratory testing of glasses for Lockheed Idaho Technology Company: Final report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Luo, J.S.; Wolf, S.F.; Bates, J.K.

    1997-06-01

    Tests have been conducted at Argonne National Laboratory (ANL) in support of the efforts of Lockheed Idaho Technology Company (LITCO) to vitrify high-level waste calcines. Tests were conducted with three classes of LITCO glass formulations: Formula 127 (fluorine-bearing), Formula 532 (fluorine-free), and 630 series (both single- and mixed-alkali) glasses. The test matrices included, as appropriate, the Product Consistency Test Method B (PCT-B), the Materials Characterization Center Test 1 (MCC-1), and the Argonne vapor hydration test (VHT). Test durations ranged from 7 to 183 d. In 7-d PCT-Bs, normalized mass losses of major glass-forming elements for the LITCO glasses are similar to, or lower than, normalized mass losses obtained for other domestic candidate waste glasses. Formula 532 glasses form zeolite alteration phases relatively early in their reaction with water. The formation of those phases increased the dissolution rate. In contrast, the Formula 127 glass is highly durable and forms alteration phases only after prolonged exposure to water in tests with very high surface area to volume ratios; these alteration phases have a relatively small effect on the rate of glass corrosion. No alteration phases formed within the maximum test duration of 183 d in PCT-Bs with the 630 series glasses. The corrosion behavior of the mixed-alkali 630 series glasses is similar to that of 630 series glasses containing sodium alone. In VHTs, both single- and mixed-alkali glasses form zeolite phases that increase the rate of glass reaction. The original 630 series glasses and those based on a revised surrogate calcine formulation react at the same rate in PCT-Bs and form the same major alteration phases in VHTs

  20. Contribution of germanium dioxide to the thermal expansion characteristics of some borosilicate glasses and their corresponding glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, H.; Salama, S.N.; Salman, S.M. [National Research Centre, Cairo (Egypt). Glass Research Dept.

    2002-07-01

    The thermal expansion characteristics of some lithium aluminium germanium borosilicate glasses and their crystalline solids have been investigated. The base glass composition was modified by partial replacement of germanium dioxide instead of silica. In some cases, however, TiO{sub 2} was also added to some selected glasses as a nucleation catalyst. Slight increase in the thermal expansion coefficient ({alpha}) values of the glasses and corresponding slight decrease in both transition (Tg) and softening (Ts) temperatures are detected by GeO{sub 2}/SiO{sub 2} replacements, however, the reverse results were recorded by TiO{sub 2} addition. The obtained data were correlated to the local structure changes induced by GeO{sub 2} or TiO{sub 2} and their contributions to the thermal expansion property of the glasses. On the crystallization, the expansivity of the glasses was markedly changed. It was greatly affected by crystallization of GeO{sub 2}-containing phases and aluminosilicate solid solutions together with the TiO{sub 2}-containing phases formed. The results obtained were explained in relation to the nature, composition and concentration of all phases formed in the glass-ceramics including a residual glass matrix. (orig.)

  1. COMPARISON OF BIOACTIVITY IN VITRO OF GLASS AND GLASS CERAMIC MATERIALS DURING SOAKING IN SBF AND DMEM MEDIUM

    Directory of Open Access Journals (Sweden)

    GABRIELA LUTIŠANOVÁ

    2011-09-01

    Full Text Available This paper investigated the surface reactivity of two sets of glasses and glass ceramic materials belonging to the Li2O–SiO2–CaO–P2O5–CaF2 system. The in vitro bioactivity of coatings was evaluated using simulated body fluid (SBF and Dulbecco’s Modified Eagle’s Medium (DMEM soaking test in static regime for up to 28 days at 36.5°C in microincubator. The surface structure changes were examined by scanning electron microscopy (SEM and electron probe micro-analyzer (EPMA methods. The functional groups of the silicate and phosphates were identified by infrared spectroscopy (IR. The crystal phases of the glasses and glass ceramics were identified by X-ray diffraction analysis (XRD. The results suggest the bioactivity behavior for all compositions of glasses as well as glass ceramic samples after 28 days in the SBF and DMEM medium. The surface characterization and in vitro tests revealed a few variations in the reactivity of the different glasses and glass ceramic samples in their pristine form. The best results show the samples of glass and glass ceramic samples with higher content of fluorapatite (FA. The use of the acellular culture medium DMEM resulted in a delay at the start of precipitation.

  2. Glass transition behavior and crystallization kinetics of Cu0.3(SSe20)0.7 chalcogenide glass

    International Nuclear Information System (INIS)

    Soliman, A.A.

    2005-01-01

    The glass transition behavior and crystallization kinetics of Cu 0.3 (SSe 20 ) 0.7 chalcogenide glass were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD). Two crystalline phases (SSe 20 and Cu 2 Se) were identified after annealing the glass at 773 K for 24 h. The activation energy of the glass transition (E g ), the activation energy of crystallization (E c ), the Avrami exponent (n) and the dimensionality of growth (m) were determined. Results indicate that this glass crystallizes by a two-stage bulk crystallization process upon heating. The first transformation, in which SSe 20 precipitates from the amorphous matrix with a three-dimensional crystal growth. The second transformation, in which the residual amorphous phase transforms into Cu 2 Se compound with a two-dimensional crystal growth

  3. Long-term behavior of glass-ceramic zirconolite

    International Nuclear Information System (INIS)

    Martin, Ch.

    2003-01-01

    This work is a part of the investigation of new containment matrices considered for specific conditioning of radionuclides after separation. The aim was to demonstrate the long-term aqueous corrosion resistance of the glass-ceramic zirconolite considered for the conditioning of plutonium and the minor actinides. This material is composed of crystals of zirconolite (CaZrTi 2 O 7 ) dispersed in a residual vitreous phase. It appears that glass-ceramic zirconolite presents a better kinetic behavior than the nuclear glass R 7T7. This is mainly due to a more important rate decrease that occurs more rapidly, that induces a quantity of glass altered at least 10 times as small as for R 7T7 glass. This high slowdown of the alteration rate is attributed to the formation of an alteration film that has been the subject of a specific study. We have demonstrated that the rate decrease was controlled as for the R7T7 glass by the amorphous phase of the alteration film forming a diffusion barrier for reactive species. It seems that the porosity is not the single parameter that explains the protective effect of the gel. The main differences compared with R7T7 glass are that silicon does not control the alteration of the material and that the gel is composed of two distinct phases. We have in particular identified a dense phase enriched in titanium and neodymium that probably influences deeply the kinetics. (author)

  4. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...... with different gas compositions. The foam glasses were characterised concerning densities, open/closed porosity and crystallinity. We find out, through analytical calculations and experiments, how the thermal conductivity of foam glass depends on density, glass composition and gas composition. Certain glass...

  5. Effect of particle size on kinetics crystallization of an iron-rich glass

    OpenAIRE

    Romero, Maximina; Kovacova, Milota; Rincón López, Jesús María

    2008-01-01

    The effect of glass particle size on the crystallization kinetics of an iron-rich glass from a nickel leaching waste has been investigated by means of differential thermal analysis (DTA). The results show that the crystallization of a pyroxene phase occurs by bulk nucleation from a constant number of nuclei. The crystallization mode and the dimensionality of crystals are strongly dependent of the glass particle size, being 100µm the critical size. Glass fractions with particle size >100µm sho...

  6. A Picture behind Glass

    Directory of Open Access Journals (Sweden)

    Poprzęcka, Maria

    2010-04-01

    Full Text Available The paper considers the singular situation of reception occasioned by a painting shielded with a reflective pane of glass. The reflections in the glass dramatically break the cohesion of the painting and bring about distracting – although sometimes intriguing – surprises. The glass is an iconoclastic intrusion, an infection of the artistic order by an invading disorder and transient immediacy, which however can be very attractive visually. The accidental obliterates the significant. "The truth of art" is confronted here with a delusive phantom. Not only two entirely different visual effects are mixed here, but also different ontological and axiological spheres.

  7. Orbital glass in HTSC

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-10-01

    The physical reasons why the orbital glass may exist in granular high-temperature superconductors and the existing experimental data appeared recently are discussed. The orbital glass is characterized by the coexistence of the orbital paramagnetic state with the superconducting state and occurs at small magnetic fields H c0 c1 . The transition in orbital glass arises at the critical field H c0 which is inversely proportional to the surface cross-area S of an average grain. In connection with theoretical predictions the possible experiments are proposed. (author). 10 refs

  8. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  9. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-01-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the U.S. Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the immiscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the open-quotes alkaliclose quotes corner of the NBS submixture

  10. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-04-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the US Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the miscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the ''alkali'' corner of the NBS submixture

  11. Fun with Singing Wine Glasses

    Science.gov (United States)

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-01-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency…

  12. Glass Stronger than Steel

    Science.gov (United States)

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  13. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  14. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    The use of glass as a load carrying material in structural elements is rarely seen even though glass is a popular material for many architects. This is owed to the unreliable and low tensile strength, which is due to surface flaws and high brittleness of the material. These properties lead...... to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... presented. The experiments show that it is possible to obtain a very ductile structural behavior using the right amount of reinforcement. A Finite Element Model including - in a simple manner - the effects of cracking of glass is presented. Based on a comparison between experimental and model results...

  15. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  16. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  17. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  18. Baseline LAW Glass Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  19. Properties of glass-bonded zeolite monoliths

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-01-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m 2 d in 28-day tests in deionized water and in brine at 363 K (90 degrees C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young's modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt

  20. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  1. Glass microsphere lubrication

    Science.gov (United States)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  2. Glass formation and crystallization in high-temperature glass-ceramics and Si3N4

    Science.gov (United States)

    Drummond, Charles H., III

    1991-01-01

    The softening of glassy grain boundaries in ceramic matrix composites and Si3N4 at high temperatures reduces mechanical strength and the upper-use temperature. By crystallizing this glass to a more refractory crystalline phase, a material which performs at higher temperatures may result. Three systems were examined: a cordierite composition with ZrO2 as a nucleating agent; celsian compositions; and yttrium silicate glasses both in bulk and intergranular in Si3N4. For the cordierite compositions, a series of metastable phases was obtained. The crystallization of these compositions was summarized in terms of metastable ternary isothermal sections. Zircon formed at the expense of ZrO2 and spinel. In SiC composites, the transformations were slower. In celsian, two polymorphs were crystallized. One phase, hexacelsian, which always crystallized, even when metastable, had an undesirable volume change. The other phase, celsian, was very difficult to crystallize. In yttrium silicate bulk glasses, similar in composition to the intergranular glass in Si3N4, a number of polymorphs of Y2Si2O7 were crystallized. The conditions under which these polymorphs formed are compared with crystallization in Si3N4.

  3. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  4. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  5. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    Science.gov (United States)

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  6. Mean-field theory of spin-glasses with finite coordination number

    Science.gov (United States)

    Kanter, I.; Sompolinsky, H.

    1987-01-01

    The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.

  7. Sinter recrystalization and properties evaluation of glass-ceramic from waste glass bottle and magnesite for extended application

    Directory of Open Access Journals (Sweden)

    As'mau Ibrahim Gebi

    2016-12-01

    Full Text Available In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF, X-ray diffraction (XRD and Thermo gravimetric analysis (TGA were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD and Scanning Electron Microscope (SEM, the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.

  8. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    International Nuclear Information System (INIS)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-01

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B 2 O 3 -10SiO 2 were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T g ) and of the maximum crystallization temperature (T p ) on the heating rate was used to determine the activation energy associated with the glass transition (E g ), the activation energy for crystallization (E c ), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB 2 O 4 ) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba 5 Si 8 O 21 ). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E c (χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures

  9. Electrical characterization of strontium titanate borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy

    International Nuclear Information System (INIS)

    Thakur, O.P.; Kumar, Devendra; Parkash, Om; Pandey, Lakshman

    2003-01-01

    The ac electrical data, measured in the frequency range 0.1 kHz-1 MHz, were used to study the electrical response of strontium titanate borosilicate glass ceramic system with bismuth oxide addition. Complex plane plots from these electrical data for various glass ceramic samples reveal contributions from simultaneously operating polarization mechanisms to overall dielectric behavior. The complex modulus (M * ) representation of electrical data for various glass ceramic samples were found to be more informative. Equivalent circuit models, which represent the electrical behavior of glass ceramic samples, were determined using complex non-linear least square (CNLS) fitting. An attempt has been made to understand the dielectric behavior of various glass ceramics in terms of contributions arising from different polarization processes occurring at glassy matrix, crystalline phases, glass to crystal interface region and blocking electrodes. Glass ceramics containing SrTiO 3 and TiO 2 (rutile) phases show thermally stable dielectric behavior

  10. Algebraic topology of spin glasses

    International Nuclear Information System (INIS)

    Koma, Tohru

    2011-01-01

    We study the topology of frustration in d-dimensional Ising spin glasses with d ≥ 2 with nearest-neighbor interactions. We prove the following. For any given spin configuration, the domain walls on the unfrustration network are all transverse to a frustrated loop on the unfrustration network, where a domain wall is defined to be a connected element of the collection of all the (d - 1)-cells which are dual to the bonds having an unfavorable energy, and the unfrustration network is the collection of all the unfrustrated plaquettes. These domain walls are topologically nontrivial because they are all related to the global frustration of a loop on the unfrustration network. Taking account of the thermal stability for the domain walls, we can explain the numerical results that three- or higher-dimensional systems exhibit a spin glass phase, whereas two-dimensional ones do not. Namely, in two dimensions, the thermal fluctuations of the topologically nontrivial domain walls destroy the order of the frozen spins on the unfrustration network, whereas they do not in three or higher dimensions. This may be interpreted as a global topological effect of the frustrations.

  11. Metastability and thermophysical properties of metallic bulk glass forming alloys

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  12. The structural heterogeneity and optical properties in chalcogenide glass films

    International Nuclear Information System (INIS)

    Shurgalin, Max; Fuflyigin, Vladimir N; Anderson, Emilia G

    2005-01-01

    The microscopic structure and optical properties of glassy films prepared by vapour phase deposition process from the germanium-arsenic-selenium family of chalcogenide glasses have been studied. A number of different molecular clusters or domains that can exist in the glass structure are found to play a significant role in determining the absorption characteristics and refractive index of the glass films. Modifications of the glass structure can be described by a variation of relative concentrations of the clusters and can be effected by modifications of film chemical composition and deposition conditions. Changes in absorption spectra are directly correlated with variation in relative concentrations of the structural fragments with different electronic bandgap properties. Experimental results suggest structural heterogeneity and support validity of the cluster structural model for the chalcogenide glasses

  13. Devitrification of defense nuclear waste glasses: role of melt insolubles

    International Nuclear Information System (INIS)

    Bickford, D.F.; Jantzen, C.M.

    1985-01-01

    Time-temperature-transformation (TTT) curves have been determined for simulated nuclear waste glasses bounding the compositional range in the Defense Waste Processing Facility (DWPF). Formulations include all of the minor chemical elements such as ruthenium and chromium which have limited solubility in borosilicate glasses. Heterogeneous nucleation of spinel on ruthenium dioxide, and subsequent nucleation of acmite on spinel is the major devitrification path. Heterogeneous nucleation on melt insolubles causes more rapid growth of crystalline devitrification phases, than in glass free of melt insolubles. These studies point out the importance of simulating waste glass composition and processing as accurately as possible to obtain reliable estimates of glass performance. 11 refs., 8 figs., 1 tab

  14. SYNTHESIS OF DENTAL FLUOROAPATITE GLASS-CERAMIC GLAZES

    Directory of Open Access Journals (Sweden)

    G. Aabolfathi

    2011-12-01

    Full Text Available A dental glass-ceramic glaze based on the SiO2–Li2O3–P2O5–CaO system, which is currently used as dentin for lithiumdisilicate glass-ceramic cores, was synthesized. The role of Na2O, CaO and P2O5 in sintering and crystallization of the related glasses were studied by firing at temperatures higher than their dilatometric softening point. Sintering of glasses led to precipitation of needle - like fluoroapatite crystalline particles. However, in spite of current definition about glassceramics, the final synthesized composition and a similar trade mark sample, which was used as reference, did not show considerable amounts of crystalline phases after sintering process. Furthermore, reducing the constituent‘s of fluoroapatite in glass composition led to reduction of sinterability and fusibility of the system.

  15. Glass matrix armor

    Science.gov (United States)

    Calkins, Noel C.

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  16. Theory of glass

    International Nuclear Information System (INIS)

    Rivier, N.

    1985-01-01

    The physical properties of glass are direct consequences of its non-crystalline structure. The structure is described from a topological point of view, since topology is the only geometry surviving non-crystallinity, i.e. absence of metric and trivial space group. This fact has two main consequences: the overall homogeneity of glass is a gauge symmetry, and the only extended, structurally stable constituents are odd lines (or 2π-disclinations in the elastic continuum limit). A gauge theory of glass, based on odd lines as sources of frozen-in strain, can explain those properties of glasses which are both specific to, and universal in amorphous solids: low-temperature excitations, and relaxation at high temperatures. The methods of statistical mechanics can be applied to give a minimal description of amorphous structures in statistical equilibrium. Criteria for statistical equilibrium of the structure and detailed balance are given, together with structural equations of state, which turn out to be well-known empirically among botanists and metallurgists. This review is based on lectures given in 1984 in Niteroi. It contains five parts: I - Structure, from a topological viewpoint; II - gauge invariance; III - Tunneling modes; IV - Supercooled liquid and the glass transitions; V - Statistical crystallography. (Author) [pt

  17. Superspin glass phase and hierarchy of interactions in multiferroic PbFe.sub.1/2./sub.Sb.sub.1/2./sub.O.sub.3./sub.: an analog of ferroelectric relaxors?

    Czech Academy of Sciences Publication Activity Database

    Laguta, Valentyn; Stephanovich, V. A.; Savinov, Maxim; Maryško, Miroslav; Kuzian, R. O.; Kondakova, I.V.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Yu.V.; Raevski, I. P.; Raevskaya, S. I.; Prosandeev, S. A.

    2014-01-01

    Roč. 16, Nov (2014), "113041-1"-"113041-19" ISSN 1367-2630 R&D Projects: GA ČR GA13-11473S Institutional support: RVO:68378271 Keywords : multiferroics * spin glass * superantiferromagnetism * ferroelectrics * relaxors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.558, year: 2014

  18. Unusual glass-forming ability induced by changes in the local atomic structure in Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Y C; Chang, H J; Kim, D H; Kim, W T; Cha, P R

    2007-01-01

    The effect of partial replacement of Cu by Be in Ti 50 Cu 32 Ni 15 Sn 3 alloy on the thermal properties, structure, and forming ability of an amorphous phase were investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and high-resolution transmission electron microscopy (HRTEM). Ti 50 Cu 25 Ni 15 Sn 3 Be 7 alloy shows enhanced glass-forming ability, enabling one to fabricate a fully amorphous bulk metallic glass sample 2 mm in diameter by injection casting. With the replacement, the supercooled liquid region ΔT x (= T x -T g , where T x is the crystallization temperature and T g is the glass transition temperature) decreased from 73 to 45 K and the reduced glass transition temperature T rg (= T g /T 1 , where T 1 is the liquidus temperature) increased from 0.53 to 0.57. The amorphous Ti 50 Cu 25 Ni 15 Sn 3 Be 7 phase showed a formation of short-range-ordered clusters 1-2 nm in size, which is attributed to the strong interaction between Ti and Be. The results show that ΔT x can be used as a thermal parameter reflecting the glass-forming ability of the alloy only when the phase formed during crystallization is the same as the phase competing with the glass transition during solidification

  19. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  20. Calorimetric glass transition in a mean-field theory approach.

    Science.gov (United States)

    Mariani, Manuel Sebastian; Parisi, Giorgio; Rainone, Corrado

    2015-02-24

    The study of the properties of glass-forming liquids is difficult for many reasons. Analytic solutions of mean-field models are usually available only for systems embedded in a space with an unphysically high number of spatial dimensions; on the experimental and numerical side, the study of the properties of metastable glassy states requires thermalizing the system in the supercooled liquid phase, where the thermalization time may be extremely large. We consider here a hard-sphere mean-field model that is solvable in any number of spatial dimensions; moreover, we easily obtain thermalized configurations even in the glass phase. We study the 3D version of this model and we perform Monte Carlo simulations that mimic heating and cooling experiments performed on ultrastable glasses. The numerical findings are in good agreement with the analytical results and qualitatively capture the features of ultrastable glasses observed in experiments.

  1. NMR determination of the order parameter in proton and deuteron glasses

    International Nuclear Information System (INIS)

    Blinc, R.; Dolinsek, J.; Zalar, B.

    1989-01-01

    The inhomogeneous broadening of the ND + deuteron, O-D--O deuteron and 87 Rb quadrapole perturbed NMR spectra in Rb 0.56 (ND 4 ) 0.44 D 2 PO 4 is used for a direct determination of the Edwards-Anderson pseudo-spin glass order parameter. The data provide strong support for a model where the basic difference between magnetic spin glasses and proton or deuteron glasses is the presence of an inherent random field resulting from substitutional disorder which linearly couples to the O-D--O pseudo spins. In these systems we do not deal with a transition from a paraelectric to a pseudo-spin glass phase but rather with a transition from an ergodic pseudo-spin glass phase with a single order parameter q to a non-ergodic pseudo-spin glass phase with an infinite number of order parameters. (author). 11 refs.; 6 figs

  2. Consolidation process model for film stacking glass/PPS laminates

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Akkerman, Remko

    2010-01-01

    A model is proposed to optimise the processing parameters for the consolidation of glass/polyphenylene sulphide (PPS) laminates using a film stacking procedure. In a split approach, the heating and consolidation phase are treated separately. The heating phase is modelled using the one-dimensional

  3. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  4. Porous vycor glass tube joined to borosilicate glass

    Science.gov (United States)

    Abe, Shinichi; Kikuchi, Takemitsu; Onodera, Shinji

    1992-09-01

    Porous glass can absorb various size of molecules with large surface area even in high temperature. However, it is difficult to use porous glass tubes at high-temperature, for example as a separation membrane for hydrogen condensation, because adhesives at joining sites could be damaged. In this study, welding of a porous glass tube and a glass tube was attempted to develop a gas separation membrane used at 500 C. Since forms present in porous glass may cause crack at high temperature, it is necessary to remove such forms by heat processing. Such porous glass is called to be porous vycor glass, which contains quartz 6 percents, and can be joined with a quartz tube. As a result, a gas separator with porous glass membrane which is joined by this process could endure high temperature up to 600 C and could maintain high vacuum.

  5. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  6. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    formation of the zeolitic phase. Therefore, the kinetics of secondary phase formation is an important parameter that should be taken into account in future glass dissolution modeling efforts. Secondly, the results indicate that, in the absence of a gel layer, the glass dissolution rate controls the rate of analcime precipitation in the long term. Finally, the meaning of these results pertinent to long-term glass durability is discussed.

  7. Light-scattering study of the glass transition in lubricants

    Science.gov (United States)

    Alsaad, M. A.; Winer, W. O.; Medina, F. D.; Oshea, D. C.

    1977-01-01

    The sound velocity of four lubricants has been measured as a function of temperature and pressure using Brillouin scattering. A change in slope of the velocity as a function of temperature or pressure allowed the determination of the glass transition temperature and pressure. The glass transition data were used to construct a phase diagram for each lubricant. The data indicate that the glass transition temperature increased with pressure at a rate which ranged from 120 to 200 C/GPa. The maximum pressure attained was 0.69 GPa and the temperature range was from 25 to 100 C.

  8. Ceramic-glass-metal seal by microwave heating

    Science.gov (United States)

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  9. Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    The increasing focus on better building insulation is important to lower energy consumption. Development of new and improved insulation materials can contribute to solving this problem. Foam glass has a good insulating effect due to its large gas volume (porosity >90 %). It can be produced with o...... the thermal conductivity varies with gas composition. This allows us to determine the contribution of the gas and solid phase to the total thermal conductivity of a foam glass....

  10. Water’s second glass transition

    Science.gov (United States)

    Amann-Winkel, Katrin; Gainaru, Catalin; Handle, Philip H.; Seidl, Markus; Nelson, Helge; Böhmer, Roland

    2013-01-01

    The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water’s calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This “double Tg scenario” is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate–dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20–25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known (“superstrong”), and also high-density liquid is classified as a strong liquid. PMID:24101518

  11. Factors controlling crystallization of miserite glass-ceramic.

    Science.gov (United States)

    Muhammed, Fenik K; Moorehead, Robert; van Noort, Richard; Pollington, Sarah

    2015-12-01

    The purpose of this study was to investigate a range of variables affecting the synthesis of a miserite glass-ceramic (GC). Miserite glass was synthesized by the melt quench technique. The crystallization kinetics of the glass were determined using Differential Thermal Analysis (DTA). The glasses were ground with dry ball-milling and then sieved to different particle sizes prior to sintering. These particle sizes were submitted to heat treatment regimes in a high temperature furnace to form the GC. The crystal phases of the GC were analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to examine the microstructure of the cerammed glass. XRD analysis confirmed that the predominant crystalline phase of the GC was miserite along with a minor crystalline phase of cristobalite only when the particle size is <20 μm and the heat treatment at 1000°C was carried out for 4h and slowly cooled at the furnace rate. For larger particle sizes and faster cooling rates, a pseudowollastonite crystalline phase was produced. Short sintering times produced either a pseudowollastonite or xonotolite crystalline phase. The current study has shown that particle size and heat treatment schedules are major factors in controlling the synthesis of miserite GC. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Aging in a Structural Glass

    OpenAIRE

    Kob, Walter; Barrat, Jean-Louis

    1998-01-01

    We discuss the relaxation dynamics of a simple structural glass which has been quenched below its glass transition temperature. We demonstrate that time correlation functions show strong aging effects and investigate in what way the fluctuation dissipation theorem is violated.

  13. Synthesis and characterization of niobium and iron phosphate glasses for U3O8 immobilization

    International Nuclear Information System (INIS)

    Ghussn, Luciana

    2005-01-01

    Niobium and iron phosphate glasses were produced by melting inorganic compound mixtures in electric furnaces and microwave ovens. The chemical durability was compared among niobium phosphate glasses produced by both processes, and equivalent results were obtained. Leaching tests were also performed to compare the chemical durability among monolithic glass blocks and sintered glasses. The glass transition, crystallization and melting temperatures as well the Hruby parameter (K H ) and the activation energy for crystallization were determined from differential thermal analysis of niobium phosphate glasses produced in electric furnaces. Niobium phosphate glasses are thermally more stable (K H =0.82 +- 0.04) than iron phosphate glasses (K H = 0.42 +- 0.03). Sintered glasses were produced from particles with different particle size distributions and sintering temperatures in the range of 720 - 800 deg C for niobium phosphate and 530 - 680 deg C for iron phosphate glasses. The sintering process was suitable because a glass with composition 37P 2 O 5 -23K 2 O-40Nb 2 O 5 showing leaching rate of 10 -6 g.cm -2 .d -1 , 99 % of the monolithic density and none crystalline phases was obtained. This glass only crystallizes itself after re heating at temperatures above 800 deg C , showing two crystalline phases identified as KNb 3 O 8 e K 3 NbP 2 O 9 . The activation energies for crystallization are 496 +- 7 kJ/mol and 513 +- 14 kJ/mol. Niobium phosphate sintered glasses are better densified than sintered iron phosphate glasses. The leaching rate of sintered glasses that show open porosity is higher than monolithic glass blocks. This effect is related to an increase of the surface area associated to open porous and, a correction of the value of the surface area used to calculate the leaching rate is required. A model was proposed based on the surface area of spherical porous to take in account that effect. Even after correcting the surface area, the leaching rates of sintered

  14. Selection of the Composition with High Glass Forming Ability in Zr-Cu-Ni-Al Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yajuan Sun

    2014-01-01

    Full Text Available Three new Zr-Cu-Ni-Al bulk metallic glasses were developed through appropriate mixing of three binary eutectics Zr38.2Cu61.8, Zr51Al49, and Zr64Ni36. By suppressing solidification of competing crystalline phases, a new glass forming alloy Zr51Cu24.22Ni14.06Al10.72 with the critical diameter of up to 10 mm is obtained.

  15. What Glass Ceiling?

    Science.gov (United States)

    Lynch, Michael; Post, Katherine

    1996-01-01

    A recent study drawing on data from the Census Bureau and the Bureau of Labor Statistics suggests that the wage gap between men and women has virtually disappeared, and that the so-called "glass ceiling" results more from age and qualifications than from explicit discrimination. (SLD)

  16. Glass ceilings of professionalisation.

    Science.gov (United States)

    Stott, Dawn L

    2016-04-01

    The term glass ceiling is a political term often used to describe an unbreakable barrier that isnot visible with the human eye, but it keeps minorities from rising up i.e. it is a barrier to minoritygroups, in the past (and sometimes still) for women, that stops them from achieving theirtrue potential.

  17. in glass transition region

    Indian Academy of Sciences (India)

    Unknown

    compositions of arsenic. An effort has also been made to develop an empirical model for the composition dependence of ∆H. A good agreement has been observed between the experimental values and the results of model calculation. Keywords. Glass transition temperature; activation energy; heat absorbed; composition ...

  18. Glass as matter

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingl...... recognized as precious and important feature, both for technical resons and for their expression af aesthetic values....

  19. "Stained Glass" Landscape Windows

    Science.gov (United States)

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  20. in glass transition region

    Indian Academy of Sciences (India)

    Unknown

    wave-guides e.g. in welding and surgery (Nishi et al. 1992). Especially amorphous chalcogenide alloys exhibit the property of reversible transformation. This property makes these systems very useful in optical memory. Glasses are amorphous (Elliot 1990) in nature, i.e. they form a disordered and metastable structure.

  1. Glass as matter

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingl...

  2. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  3. Thermal shock properties of glass-ceramics synthesized from a glass frit

    Directory of Open Access Journals (Sweden)

    Cocic Mira

    2017-01-01

    Full Text Available In this study, the behavior of glass-ceramics synthesized from a glass frit of FFW (Final Flotation Waste originated from the RTB Bor Company was investigated. Thermal shock resistance was monitored in order to assess the possibility of application of such waste material. Thermal shock of the samples was conducted using water quench test. Image analysis and ultrasonic measurements were used as nondestructive methods for quantification of thermal shock damage at the surface and in the bulk of the specimens. Phase composition of samples was determined by X-ray powder diffraction (XRPD. The degradation level of samples was about 43 % after 20 cycles of water quench tests. The results pointed out that glass-ceramic material exhibited good thermal shock resistance. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI176010 and Grant no. III45012

  4. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  5. Yesterday's Trash Makes Tomorrow's "Glass"

    Science.gov (United States)

    Wayne, Dale

    2010-01-01

    In this article, the author describes a glass art project inspired by Dale Chihuly. This project uses two-liter plastic soda bottles which are cut apart and trimmed. Applying heat using a hair dryer, the plastic curls and takes an uneven blown-glass quality. The "glass" is then painted using acrylic paint. (Contains 2 resources and 1 online…

  6. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    . Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  7. Scaling Concepts in Describing Continuous Phase Transitions

    Indian Academy of Sciences (India)

    Advanced Scientific. Research, Bengaluru. His research addresses the behaviour of liquids and disordered soft matter, including glassy dynamics and the glass transition, glasses, jamming, and phase transformations in liquids. Phase transitions, like the boiling of water upon increasing temperature, are a part of everyday ...

  8. Shear band formation and mechanical properties of Zr{sub 38}Ti{sub 17}Cu{sub 10.5}Co{sub 12}Be{sub 22.5} bulk metallic glass/porous tungsten phase composite by hydrostatic extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Y.F., E-mail: xueyunfei@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, L.; Cheng, H.W.; Wang, F.C. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-08-20

    Zr{sub 38}Ti{sub 17}Cu{sub 10.5}Co{sub 12}Be{sub 22.5} bulk metallic glass/porous tungsten phase composites were prepared via a method by combining infiltrating the molten alloy into the reinforcement with hydrostatic extrusion. The deformation and failure behavior of the as-extruded composite were investigated at room temperature under quasistatic compression. Compared to the as-cast composite, the as-extruded composite presented greater flow stress and lower fracture strain. Different from the fracture mode of multiple macro shear bands for the as-cast composite, fractrographic analysis revealed that the specimen for the as-extruded composite fractured by a mixture of shearing and axial splitting. It is suggested that the increase in flow stress for the as-extruded composite is attributed to the extrusion process which introduced hardened condition in the tungsten phase. The fracture strain of the as-extruded composite decreased by comparison with the as-cast composite is proposed to result from the joint effects of the employed extrusion process sacrificed part of the plasticity, relatively high flow stress exceeded the fracture stress of the pure metallic glass, and the elongated grain structure resulted in splitting mode for the as-extruded composite.

  9. U-based metallic glasses with superior glass forming ability

    Science.gov (United States)

    Xu, Hongyang; Ke, Haibo; Huang, Huogen; Zhang, Pengguo; Pu, Zhen; Zhang, Pei; Liu, Tianwei

    2018-02-01

    By using Al as the third and B as the fourth but minor alloying elements for the U66.7Co33.3 basic metallic glass, a series of U-Co-Al(-B) alloys were designed. The quaternary U-Co-Al-B alloys exhibit significantly improved glass-forming ability (GFA) than previously reported U-based metallic glasses. Low fragility (∼24) is found for these new U-based metallic glasses. The improvement in GFA would result from denser atomic packing in the undercooled liquids due to the presence of small B atoms. Some U-Co-Al(-B) glasses showed corrosion resistance comparable to that of U64Co34Al2 glass, known for premium anti-corrosive performance among the unveiled U-based glasses.

  10. Alteration of rhyolitic (volcanic) glasses in natural Bolivian salt lakes. - Natural analogue for the behavior of radioactive waste glasses in rock salt repositories

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-06-01

    Alteration experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 CaCl 2 -saturated brine (formation of hydrotalcite and chlorite-serpentine at short-term and saponite at long-term). These results support the use of volcanic glasses alteration patterns in Mg-rich solutions (seawater, brines) to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The neoformed phases in the sediments are: Smectite, alunite, pyrite, barite, celestite and cerianite. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long-term in brines and the trapping of certain radionuclides in secondary phases. (orig.) [de

  11. An Insulating Glass Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data

  12. The incorporation of technetium into a representative low-activity waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bakel, A.J.; Bowers, D.L.; Buck, E.C.; Emery, J.W.

    1997-01-01

    A glass that has been tested to understand the corrosion behavior of waste glasses with high soda contents for immobilizing Hanford incidental wastes has been made by melting crushed glass with either TcO 2 or NaTcO 4 at 1,100--1,300 C. Incorporation of technetium in the glass was affected by solubility or kinetic effects. Metallic technetium inclusions formed in all the TcO 2 -doped glasses. Inclusions also formed in glasses with added NaTcO 4 that were melted at 1,100 C, but a glass melted at 1,200 C did not contain detectable inclusions. The presence of Tc-bearing inclusions complicates the interpretation of results from dissolution tests because of the simultaneous release of technetium from more than one phase, the unknown surface areas of each phase, and the possible incorporation of technetium that is released from one phase into another phase. A glass containing about 0.15 mass % Tc dissolved in the glass is being used in dissolution tests to study the release behavior of technetium

  13. Network structure and thermal stability study of high temperature seal glass

    Science.gov (United States)

    Lu, K.; Mahapatra, M. K.

    2008-10-01

    High temperature seal glass has stringent requirement on glass thermal stability, which is dictated by glass network structures. In this study, a SrO-La2O3-Al2O3-B2O3-SiO2 based glass system was studied using nuclear magnetic resonance, Raman spectroscopy, and x-ray diffraction for solid oxide cell application purpose. Glass structural unit neighboring environment and local ordering were evaluated. Glass network connectivity as well as silicon and boron glass former coordination were calculated for different B2O3:SiO2 ratios. Thermal stability of the borosilicate glasses was studied after thermal treatment at 850 °C. The study shows that high B2O3 content induces BO4 and SiO4 structural unit ordering, increases glass localized inhomogeneity, decreases glass network connectivity, and causes devitrification. Glass modifiers interact with either silicon- or boron-containing structural units and form different devitrified phases at different B2O3:SiO2 ratios. B2O3-free glass shows the best thermal stability among the studied compositions, remaining stable after thermal treatment for 200 h at 850 °C.

  14. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  15. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... the foaming process for foam glass with closed pores. In addition, it is shown that melt foaming should preferably be performed in a viscosity limited regime. Finally, it is suggested that the foaming agent contributes significantly to the solid conductivity of foam glass....

  16. Glass/Jamming Transition in Colloidal Aggregation

    Science.gov (United States)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  17. Composition effects on synthetic glass alteration mechanisms: Part 1. Experiments

    International Nuclear Information System (INIS)

    Rajmohan, Natarajan; Frugier, P.; Gin, St.

    2010-01-01

    Alteration of nuclear waste glasses and silicate minerals is governed by complex processes regulated by several coupled mechanisms. Among these processes is reactive mass transfer through the amorphous gel layer (known as the passivating reactive interphase (PRI) in case of a rate-limiting effect) located between the pristine glass and the bulk solution. In order to assess the influence of the glass composition and the pH on the properties of the PRI, and thus on the nuclear glass durability, an experimental leaching study was performed on borosilicate glass samples with or without Ca, Al, and Zr. Experiments were conducted to understand the influence of the pH and glass composition on the solvated cation diffusion coefficient within the PRI and to generate data for calibration of a PRI solubility model (not presented here). All the experiments were carried out at high S/V ratios so that silicon rapidly reached apparent saturated conditions and the PRI could form: in such conditions glass alteration is controlled only by diffusion of water and dissolved species through the PRI and by precipitation of crystallized secondary phases. The constituents in the PRI and the crystallized secondary phases depend to a large extent on the glass composition and pH. Alkali metal (Na) or preferentially alkaline earth (Ca) elements are retained in the PRI for charge compensation of Al and Zr. The apparent diffusion coefficient calculated from the release of boron, a good tracer, varies with the pH from less than 4 * 10 -22 to 9 * 10 -18 m 2 s -1 in the studied glasses. These very low diffusion coefficients decrease as the pH increases. Concerning the PRI composition we show that Si, Al, Ca and Zr have strong interactions and thus major consequences on the glass durability. Our findings indicate that the SiO 2 aq activity is relatively constant and independent of the pH below pH 9, followed by a drop at pH 10. In addition, the activity of SiO 2 aq is affected by the glass

  18. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  19. Incorporation of defects into the central atoms model of a metallic glass

    International Nuclear Information System (INIS)

    Lass, Eric A.; Zhu Aiwu; Shiflet, G.J.; Joseph Poon, S.

    2011-01-01

    The central atoms model (CAM) of a metallic glass is extended to incorporate thermodynamically stable defects, similar to vacancies in a crystalline solid, within the amorphous structure. A bond deficiency (BD), which is the proposed defect present in all metallic glasses, is introduced into the CAM equations. Like vacancies in a crystalline solid, BDs are thermodynamically stable entities because of the increase in entropy associated with their creation, and there is an equilibrium concentration present in the glassy phase. When applied to Cu-Zr and Ni-Zr binary metallic glasses, the concentration of thermally induced BDs surrounding Zr atoms reaches a relatively constant value at the glass transition temperature, regardless of composition within a given glass system. Using this 'critical' defect concentration, the predicted temperatures at which the glass transition is expected to occur are in good agreement with the experimentally determined glass transition temperatures for both alloy systems.

  20. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  1. Glasses for Mali

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, Bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  2. Breaking the glass ceiling.

    Science.gov (United States)

    Lazarus, A

    1997-03-01

    The glass ceiling is a form of organizational bias and discrimination that prevents qualified professionals from achieving positions of top governance and leadership. This article examines glass ceiling barriers that keep physicians from the upper reaches of management. While these factors apply mainly to women and minority physicians in academia, and are attributable to sexual harassment and discrimination, physicians as a class are frequently denied executive management positions. Such denial results from inadequate preparation for a career in health care administration. Important issues in the professional development of physician executives include mentoring, training and education, administrative experience, and cultural and personality factors. All of those must be considered when making the transition from medicine to management.

  3. Amorphous gauge glass theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-08-01

    Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)

  4. Nuclear traces in glass

    International Nuclear Information System (INIS)

    Segovia A, M. de N.

    1978-01-01

    The charged particles produce, in dielectric materials, physical and chemical effects which make evident the damaged zone along the trajectory of the particle. This damaged zone is known as the latent trace. The latent traces can be enlarged by an etching of the detector material. This treatment attacks preferently the zones of the material where the charged particles have penetrated, producing concavities which can be observed through a low magnification optical microscope. These concavities are known as developed traces. In this work we describe the glass characteristics as a detector of the fission fragments traces. In the first chapter we present a summary of the existing basic theories to explain the formation of traces in solids. In the second chapter we describe the etching method used for the traces development. In the following chapters we determine some chatacteristics of the traces formed on the glass, such as: the development optimum time; the diameter variation of the traces and their density according to the temperature variation of the detector; the glass response to a radiation more penetrating than that of the fission fragments; the distribution of the developed traces and the existing relation between this ditribution and the fission fragments of 252 Cf energies. The method which has been used is simple and cheap and can be utilized in laboratories whose resources are limited. The commercial glass which has been employed allows the registration of the fission fragments and subsequently the realization of experiments which involve the counting of the traces as well as the identification of particles. (author)

  5. Lead extraction and glass-ceramics synthesis from waste cathode ray tube funnel glass through cooperative smelting process with coal fly ash.

    Science.gov (United States)

    Lv, Jianfang; Yang, Hongying; Jin, Zhenan; Zhao, Minglei

    2018-03-14

    In this study, a novel process was developed for extracting lead from the hazardous waste cathode ray tube (CRT) funnel glass and simultaneously producing glass-ceramics. CRT funnel glass was mixed with coal fly ash and subjected to carbon thermal reduction with the addition of CaO. The homogeneous glass melt and reduced metallic lead were quenched in water. Glass-ceramics were produced from the parent glass through an appropriate heat treatment. The optimum carbon loading amount (calculated as the molar ratio of C/PbO), CaO/SiO 2 ratio, smelting temperature and holding time for lead recovery were 1.0, 0.3-0.6, 1450 °C and 2 h, respectively. Under these conditions, more than 95% of lead can be extracted from the funnel glass and a low lead content of the resultant parent glass below 0.6 wt% was successfully achieved. CaO behaved as a network modifier to reduce the viscosity of the glass and also acted as a substitution to release lead oxide from the silicate network structure, resulting in a high lead separation efficiency. X-ray diffraction (XRD) analysis revealed that the main crystalline phase was gehlenite when 50-70 wt% funnel glass was added. Scanning electron microscopy (SEM) observation showed that well-crystallized crystals occurred in the specimens with 50-70 wt% funnel glass additions, whereas the specimens with 40 wt% and 80 wt% glass additions exhibited a relative low crystallization degree. Furthermore, property measurements, chemical resistance tests and leaching characteristics of heavy metals confirmed the possibility of engineering and construction applications of the superior glass-ceramic products. Overall results indicate that the process proposed in this paper is an effective and promising approach for reutilization of obsolete CRT funnel glass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Crystallization study of a glass used for fission product storage

    International Nuclear Information System (INIS)

    Morlevat, J.-P.; Uny, Gisele; Jacquet-Francillon, Noel.

    1981-06-01

    The vitreous matrix used in France is a borosilicate glass of low melting point allowing introduction of volatil fission products and of good chemical stability. However, like any glass, if storage temperature is higher than transformation temperature a partial crystallization can occur. Before final storage, it is important to determine of leaching by water eventually occuring on the choosen site is modified by crystalline phases. The aim of this study is the determination of the leaching rate and the identification of crystalline phases formed during thermal treatment and evaluation of its volumic fraction [fr

  7. Athermal photofluidization of glasses

    Science.gov (United States)

    Fang, G. J.; Maclennan, J. E.; Yi, Y.; Glaser, M. A.; Farrow, M.; Korblova, E.; Walba, D. M.; Furtak, T. E.; Clark, N. A.

    2013-02-01

    Azobenzene and its derivatives are among the most important organic photonic materials, with their photo-induced trans-cis isomerization leading to applications ranging from holographic data storage and photoalignment to photoactuation and nanorobotics. A key element and enduring mystery in the photophysics of azobenzenes, central to all such applications, is athermal photofluidization: illumination that produces only a sub-Kelvin increase in average temperature can reduce, by many orders of magnitude, the viscosity of an organic glassy host at temperatures more than 100 K below its thermal glass transition. Here we analyse the relaxation dynamics of a dense monolayer glass of azobenzene-based molecules to obtain a measurement of the transient local effective temperature at which a photo-isomerizing molecule attacks its orientationally confining barriers. This high temperature (Tloc~800 K) leads directly to photofluidization, as each absorbed photon generates an event in which a local glass transition temperature is exceeded, enabling collective confining barriers to be attacked with near 100% quantum efficiency.

  8. Structural stability of Pd40Cu30Ni10P20 metallic glass in supercooled liquid region

    International Nuclear Information System (INIS)

    Jiang, J.Z.; Saksl, K.

    2004-01-01

    Phase separation of bulk and ribbon Pd 40 Cu 30 Ni 10 P 20 glasses, annealed in the supercooled liquid region at ambient pressure and high pressures, has been studied by means of differential scanning calorimetry (DSC) and X-ray diffraction techniques. DSC measurements show only one glass transition event in all annealed samples, indicating that no phase separation occurs in the alloy annealed in the supercooled liquid region. Phase analyses reveal at least six crystalline phases in the crystallized sample: monoclinic, tetragonal Cu 3 Pd-like, rhombohedral, fcc-Ni 2 Pd 2 P, fcc-(Ni, Pd) solid solution, and body-centered tetragonal (bct) Ni 3 P-like phases. Annealing treatments under external pressures in the vicinity of the glass transition temperature neither induce phase separation nor alter the glass transition temperature of the Pd 40 Cu 30 Ni 10 P 20 bulk glass

  9. Microstructures and luminescent properties of Ce-doped transparent mica glass-ceramics

    International Nuclear Information System (INIS)

    Taruta, Seiichi; Iwasaki, Yoshitomo; Nishikiori, Hiromasa; Yamakami, Tomohiko; Yamaguchi, Tomohiro; Kitajima, Kunio; Okada, Kiyoshi

    2012-01-01

    Highlights: ► Ce-doped transparent glass-ceramics and their parent glasses. ► TEM and STEM images for the microstructures. ► Each mica crystal did not contain Ce uniformly. ► Emission due to Ce 3+ ions in the glass phase and/or Ce 3+ ions in the mica crystals. - Abstract: Transparent mica glass-ceramics were prepared by heating parent glasses that had been doped with 0.5–15 mol% CeO 2 . During the melting and heat treatment, Ce 4+ ions in the specimens were reduced to Ce 3+ ions, and one or both of these ion species were then replaced with Li + ions in the interlayers of the separated mica crystals. However, scanning transmission electron microscope (STEM) and Z-contrast imaging revealed that the mica crystals did not contain the same amount of Ce. On excitation at 254 nm, the parent glasses and glass-ceramics emitted blue light, which originated from the 5d to 4f transition of the Ce 3+ ions. The emission of the glass-ceramic containing a smaller amount of Ce was attributed to the Ce 3+ ions in both the glass phase and the mica crystals, whereas that of the glass-ceramics containing a larger amount of Ce was caused mainly by Ce 3+ ions in the mica crystals. The dependence of the emission band of the parent glasses on the amount of Ce was a unique feature of the Ce-doped transparent mica glass-ceramics and was not observed in previous studies of Eu-doped parent glasses and mica glass-ceramics.

  10. Study of crystallization of a basalt glass

    International Nuclear Information System (INIS)

    Nishimura, Fernando Takahiro; Hashizume, Camila Mina; Toffoli, Samuel Marcio

    2009-01-01

    Basalt vitreous ceramics posses industrial importance by presenting high mechanical resistance to the abrasion. It was studied the obtention and the crystallization of a glass obtained from a basalt of Campinas, Sao Paulo, Brazil, aiming to develop a material with great abrasive resistance. Fusions were made at 1400 deg Celsius in electrical oven and in alumina crucible, of fine residues of basalt mining. The obtained glass was treated in a crystallization temperature of 880 deg Celsius, determined by DSC, by various time of treatment. The present main crystalline phases, detected by XRD, were the magnesium-ferrite (MgFe 2 O 4 ) and the diopsid Ca(Mg,Fe,Al)(Si,Al) 2 O 6 . Analysing the density by the Archimedes methodology and the DRX it was possible to follow the crystallization kinetic up.

  11. Glass transition in soft-sphere dispersions

    International Nuclear Information System (INIS)

    RamIrez-Gonzalez, P E; Medina-Noyola, M

    2009-01-01

    The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.

  12. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  13. NUCLEAR WASTE GLASSES: CONTINUOUS MELTING AND BULK VITRIFICAITON

    International Nuclear Information System (INIS)

    KRUGER, A.A.

    2008-01-01

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed

  14. Calorimetric signature of structural heterogeneity in a ternary silicate glass

    DEFF Research Database (Denmark)

    Zhang, Yanfei; Yang, G.; Yue, Yuanzheng

    2013-01-01

    We investigate the structural heterogeneity in a silicate glass by hyperquenching–annealing–calorimetry approach. The results show a striking phenomenon: two separated sub-Tg relaxation peaks appear on the calorimetric curve of the hyperquenched CaO–MgO–SiO2 glass, implying the existence of two...... distinct structural domains of higher and lower potential energies, respectively. The higher energy domains in nanoscale are so unstable that they become ordered during hyperquenching. This is verified by the high-resolution transmission electron microscopy image exhibiting nanoordered domains in the glass...... matrix. The higher energy domains relax similar to a strong glass phase, whereas the lower energy domains do similar to a fragile one....

  15. Piezoelectricity of a ferroelectric liquid crystal with a glass transition.

    Science.gov (United States)

    Jákli, A; Tóth-Katona, T; Scharf, T; Schadt, M; Saupe, A

    2002-07-01

    Pressure-electric (hydrostatic piezoelectric) measurements are reported on bookshelf textures of a ferroelectric smectic-C (Sm C*) liquid crystal with a glass transition. The continuous variation of a partially fluid state to the solid glass enables one to trace how the piezoelectric effect depends on the consistency of the material. It was observed that in the Sm C* samples with poled glass the piezoelectric constants are comparable to conventional piezoelectric crystals and poled piezoelectric polymers. This implies their application possibilities. The magnitude of the piezoelectric constant in the glassy state depends very much on the poling conditions. The studies indicate that there are two counteracting effects, which cancel each other out in the Sm C* phase near the glass transition. Our analysis indicates that the pressure-induced director tilt change has a dominating effect both in the fluid and the glassy Sm C* states.

  16. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  17. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  18. Analytical Plan for Roman Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  19. Synthesis and characterization of PbTiO3 based glass ceramics

    Science.gov (United States)

    Shankar, J.; Rani, G. Neeraja; Mamatha, B.; Deshpande, V. K.

    2017-05-01

    Glass samples with composition (50 - X) PbO - XCaO - 25 TiO2 - 25 B2O3 (where = 0, .5, 10 and 15 mol %) were prepared using conventional quenching technique. It was observed that with the addition of alkaline earth oxides to lead borate glass containing TiO2 alters the network (conversion of BO3 to BO4) increasing the rigidity of the glass which enhances the Tg. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The density values of glass ceramic samples are higher than those of corresponding glass samples. It was observed that there was good correlation between the density and CTE results of the glass-ceramics. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase and Ca3Ti2O7 as minor crystalline phase. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements.

  20. Foam Glass Production from Waste Glass by Compression

    Science.gov (United States)

    Khamidulina, D. D.; Nekrasova, S. A.; Voronin, K. M.

    2017-11-01

    The authors have identified the impact of the glass mixture briquetting process parameters (milling method, dispersibility, particle size distribution, particle form and compression parameters) on the performance characteristics and the physical and chemical properties of foam glass. It was demonstrated that briquette density increasing contributes to achieving a lower average density of foam glass. It was proven that briquettes produced from multifractional powders are characterized by a higher density than those produced from powders with a limited range of particle size distribution.

  1. Crystallization Kinetics of Barium and Strontium Aluminosilicate Glasses of Feldspar Composition

    Science.gov (United States)

    Hyatt, Mark J.; Bansal, Narottam P.

    1994-01-01

    Crystallization kinetics of BaO.Al2O3.2SiO2 (BAS) and SrO.Al2O3.2SiO2 (SAS) glasses in bulk and powder forms have been studied by non-isothermal differential scanning calorimetry (DSC). The crystal growth activation energies were evaluated to be 473 and 451 kJ/mol for bulk samples and 560 and 534 kJ/mol for powder specimens in BAS and SAS glasses, respectively. Development of crystalline phases on thermal treatments of glasses at various temperatures has been followed by powder x-ray diffraction. Powder samples crystallized at lower temperatures than the bulk and the crystallization temperature was lower for SAS glass than BAS. Crystallization in both glasses appeared to be surface nucleated. The high temperature phase hexacelsian, MAl2Si2O8 (M = Ba or Sr), crystallized first by nucleating preferentially on the glass surface. Also, monoclinic celsian does not nucleate directly in the glass, but is formed at higher temperatures from the transformation of the metastable hexagonal phase. In SAS the transformation to monoclinic celsian occurred rapidly after 1 h at 1100 C. In contrast, in BAS this transformation is sluggish and difficult and did not go to completion even after 10 h heat treatment at 1400 C. The crystal growth morphologies in the glasses have been observed by optical microscopy. Some of the physical properties of the two glasses are also reported.

  2. Effect of CASP glass doping on sintering and dielectric properties of SBN ceramics

    International Nuclear Information System (INIS)

    Chen Guohua; Qi Bing

    2009-01-01

    16CaO-29Al 2 O 3 -34SiO 2 -13PbO-4B 2 O 3 -2ZnO-2P 2 O 5 (CASP) glass doped-Sr 0.5 Ba 0.5 Nb 2 O 6 (SBN50) ceramics have been synthesized by solid-state ceramic route. The effects of CASP glass on the firing, microstructure and dielectric characterization of SBN50 ceramics are investigated. The densities of the ceramic samples firstly increase and then slightly decrease with increasing CASP glass content. The appropriate amount of doping glass is 2%. The SBN50 ceramics doped with CASP glass can be sintered at a relatively low temperature, 1200 deg. C. X-ray diffraction analysis shows the single phase (tetragonal tungsten bronze type structure) is preserved for all the samples. The diffuse character of the ceramic system increases and the dielectric constant at phase transition temperature (T c ) markedly decreases as CASP glass content increases. Interestingly, the CASP glass addition drastically alters the microstructure of the sintered ceramics. The isotropic grains in the pure SBN50 ceramics transform to rod like grains after the addition of CASP glass. The grain size of SBN phase is found to obviously increase with increase in CASP glass doping level

  3. Glass-liquid-glass reentrance in mono-component colloidal dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Gonzalez, P E; Medina-Noyola, M [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, SLP (Mexico); Vizcarra-Rendon, A [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Paseo la Bufa y Calzada Solidaridad, 98600, Zacatecas, Zac. (Mexico); Guevara-Rodriguez, F de J [Coordinacion de IngenierIa Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, DF (Mexico)

    2008-05-21

    The self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics is employed to describe the ergodic-non-ergodic transition in model mono-disperse colloidal dispersions whose particles interact through hard-sphere plus short-ranged attractive forces. The ergodic-non-ergodic phase diagram in the temperature-concentration state space is determined for the hard-sphere plus attractive Yukawa model within the mean spherical approximation for the static structure factor by solving a remarkably simple equation for the localization length of the colloidal particles. Finite real values of this property signals non-ergodicity and determines the non-ergodic parameters f(k) and f{sub s}(k). The resulting phase diagram for this system, which involves the existence of reentrant (repulsive and attractive) glass states, is compared with the corresponding prediction of mode coupling theory. Although both theories coincide in the general features of this phase diagram, there are also clear qualitative differences. One of the most relevant is the SCGLE prediction that the ergodic-attractive glass transition does not preempt the gas-liquid phase transition, but always intersects the corresponding spinodal curve on its high-concentration side. We also calculate the ergodic-non-ergodic phase diagram for the sticky hard-sphere model to illustrate the dependence of the predicted SCGLE dynamic phase diagram on the choice of one important constituent element of the SCGLE theory.

  4. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  5. Elaboration of optical glass-ceramic for frequency doubling

    International Nuclear Information System (INIS)

    Vigouroux, H.

    2012-01-01

    The High power laser development required the need of materials with nonlinear properties. Glass materials can be considered as ideal materials as they can be transparent and elaborated in very large dimension. Precipitation of non-centro symmetric crystalline particles in bulk glass leads to a material with bulk nonlinear properties. This glass-ceramic should be then easily integrated in such laser facilities. In this thesis, the results concerning the precipitation of the phase LiNbO 3 in the glassy-matrix 35 Li 2 O - 25 Nb 2 O 5 - 40 SiO 2 are detailed. The crystallization mechanism of this phase is studied through thermal analysis, optical and electronic microscopy as well as in-situ analyses. These studies reveal glass-ceramics are obtained through a precipitation of the lithium niobate crystalline phase in spherulite shape. The nonlinear optical properties are investigated on this materials and an original, isotropic Second Harmonic Generation Signal (SHG) is registered in the bulk glass-ceramic. A complete study using a multi-scale approach allows the correlation between the spherulite structure and the nonlinear optical properties. A mechanism at the origin of the SHG signal is proposed. This leads to a new approach for transparent inorganic materials development for isotropic SHG conversion. (author) [fr

  6. Standard test method for measuring waste glass or glass ceramic durability by vapor hydration test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 The vapor hydration test method can be used to study the corrosion of a waste forms such as glasses and glass ceramics upon exposure to water vapor at elevated temperatures. In addition, the alteration phases that form can be used as indicators of those phases that may form under repository conditions. These tests; which allow altering of glass at high surface area to solution volume ratio; provide useful information regarding the alteration phases that are formed, the disposition of radioactive and hazardous components, and the alteration kinetics under the specific test conditions. This information may be used in performance assessment (McGrail et al, 2002 (1) for example). 1.2 This test method must be performed in accordance with all quality assurance requirements for acceptance of the data. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practice...

  7. Development of soda-lime glasses from ornamental rock wastes

    International Nuclear Information System (INIS)

    Babisk, Michelle Pereira

    2009-01-01

    During the ornamental rocks production, among other steps, one saw the rock blocks in order to transform them into semi-finished plates. In this step, expressive amounts of residues are generated, which are not properly discharged in nature, without any programmed utilization. The residues of silicide rocks present, in their compositions, oxides which are raw materials employed to fabricate soda-lime type glasses (containing SiO 2 , Al 2 O 3 , CaO, Na 2 O and K 2 O). On the other hand the residues of carbonatic rocks are constituted of glass net modifier oxides, like CaO and MgO. In this work it was developed four types of soda-lime glasses using ornamental rock residues, where the glasses compositions were adjusted by adding sand, as silica source, as well as sodium and calcium carbonates as sources of Na 2 O and CaO, respectively. The obtained glasses were characterized by means of Archimed's method for densities measurements, microstructure by using optical and electronic microscopy, phases by means of X-ray diffraction (XRD), hardness by Vickers indentation, spectroscopy (UV/VIS), and hydrolytic resistance according to ISO 719. The XRD analyses confirmed the compositions total vitrification, where the greened aspect of the samples was due to the presence of the iron oxides. The produced glasses properties were compared with those of commercial glasses aiming their industrial employment. The main difference between the produced glasses and those commercials varied primarily regarding the amount of carbonates incorporated. The results showed that the ornamental rocks residues may be used as raw materials for glasses fabrication, and they found a useful economic destination rather than discharge which promotes undesirable environmental impact. (author)

  8. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures......Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  9. Relaxation Pathways in Metallic Glasses

    Science.gov (United States)

    Gallino, Isabella; Busch, Ralf

    2017-11-01

    At temperatures below the glass transition temperature, physical properties of metallic glasses, such as density, viscosity, electrical resistivity or enthalpy, slowly evolve with time. This is the process of physical aging that occurs among all types of glasses and leads to structural changes at the microscopic level. Even though the relaxation pathways are ruled by thermodynamics as the glass attempts to re-attain thermodynamic equilibrium, they are steered by sluggish kinetics at the microscopic level. Understanding the structural and dynamic pathways of the relaxing glassy state is still one of the grand challenges in materials physics. We review some of the recent experimental advances made in understanding the nature of the relaxation phenomenon in metallic glasses and its implications to the macroscopic and microscopic properties changes of the relaxing glass.

  10. Tank waste remediation system phase I high-level waste feed processability assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  11. THE IMPACT OF KINETICS ON NEPHELINE FORMATION IN NUCLEAR WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.

    2011-03-07

    Sixteen glass compositions were selected to study the potential impacts of the kinetics of nepheline formation in high-level nuclear waste (HLW) glass. The chosen compositions encompassed a relatively large nepheline discriminator (ND) range, 0.40-0.66, and included a relatively broad range, and amount of, constituents including high aluminum and high boron concentrations. All glasses were fabricated in the laboratory and subsequently exposed to six different cooling treatments. The cooling treatments consisted of three 'stepped' profiles and their corresponding 'smooth' profiles. Included in the cooling treatment was the Defense Waste Processing Facility (DWPF) canister centerline cooling (CCC) profile in addition to a 'faster' and a 'slower' total cooling line. After quenching and heat treating, x-ray diffraction confirmed the type and amount of any resultant crystallization. The target compositions were shown to be consistent with the measured compositions. Two quenched glasses and several treated glasses exhibited minor amounts of spinel and spinel-like phases. Nepheline was not observed in any of the quenched glasses but was observed in many of the treated glasses. The amount of nepheline ranged from approximately 2wt% to 30wt% for samples cooled over shorter times and longer times respectively. Differences were observed in the amount of nepheline crystallization after smooth and stepped cooling and increased with total cooling time. In some glasses, nepheline crystallization appeared to be directly proportional to total cooling time while the total amount of nepheline crystallization varied, suggesting that the nepheline crystallization rate was independent of (or at least faster than) cooling rate but, varied depending on the glass composition. On the contrary, in another glass, nepheline crystallization appeared to be inversely proportional to cooling rate. The high alumina glasses, predicted to form nepheline

  12. Formation of thin-film crystalline silicon on glass observed by in-situ XRD

    NARCIS (Netherlands)

    Westra, J.M.; Vavrunkova, V.; Sutta, P.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2010-01-01

    Thin-film poly-crystalline silicon (poly c-Si) on glass obtained by crystallization of an amorphous silicon (a-Si) film is a promising material for low cost, high efficiency solar cells. Our approach to obtain this material is to crystallize a-Si films on glass by solid phase crystallization (SPC).

  13. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Spin glasses; quantum phase transition; ferromagnetism; electron gas. ... We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent ...

  14. Pressure effect on crystallization temperature in Zr70Pd30 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Jeppesen, S; Saida, J.

    2004-01-01

    The pressure effect on amorphous-to-quasicrystalline-to-intermetallic phase transformations in a Zr70Pd30 metallic glass has been investigated by in situ x-ray diffraction measurements using synchrotron radiation. It is found that the glass crystallizes in two steps: (1) amorphous-to-icosahedral ...

  15. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  16. PLZT capacitor on glass substrate

    Science.gov (United States)

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  17. Who will buy smart glasses?

    DEFF Research Database (Denmark)

    Rauschnabel, Philipp; Brem, Alexander; Ivens, Bjørn S.

    2015-01-01

    of research that investigates the role of personality in predicting media usage by analyzing smart glasses, particularly Google Glass. First, we integrate AR devices into the current evolution of media and technologies. Then, we draw on the Big Five Model of human personality and present the results from two...... studies that investigate the direct and moderating effects of human personality on the awareness and innovation adoption of smart glasses. Our results show that open and emotionally stable consumers tend to be more aware of Google Glass. Consumers who perceive the potential for high functional benefits...

  18. Halide laser glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.J.

    1982-01-14

    Energy storage and energy extraction are of prime importance for efficient laser action and are affected by the line strengths and linewidths of optical transitions, excited-state lifetimes, nonradiative decay processes, spectroscopic inhomogeneities, nonlinear refractive index, and damage threshold. These properties are all host dependent. To illustrate this, the spectroscopic properties of Nd/sup 3 +/ have been measured in numerous oxide, oxyhalide, and halide glasses. A table summarizes the reported ranges of stimulated emission cross sections, peak wavelengths, linewidths, and radiative lifetimes associated with the /sup 4/F/sub 3/2/ ..-->.. /sup 4/I/sub 11/2/ lasing transition.

  19. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23

    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance

  20. Production of entropy on simplified dynamics in spin glass systems

    CERN Document Server

    Saakyan, D B

    2001-01-01

    In models of spin glasses one eliminates condition of extreme based on one of the order parameters. On the basis of the available expression for static sum one derived the effective hamiltonian for parameter and the appropriate energy. Relaxation of the system is studied as energy exchange between the degree of freedom related to the order slow parameter and with the rest of the system. At that level one may indicate point of glass capture within phase space on the basis of the static solutions. One studies p-spin model without magnetic field in case of replica symmetry violation. One studies dynamics of p-spin glass in magnetic field in replica-symmetrical phase. One studied model of spins with quadratic interaction when dynamic constants had temperature differing from temperature of space

  1. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1994-01-01

    Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  2. Glass-ceramic materials from electric arc furnace dust

    International Nuclear Information System (INIS)

    Kavouras, P.; Kehagias, T.; Tsilika, I.; Kaimakamis, G.; Chrissafis, K.; Kokkou, S.; Papadopoulos, D.; Karakostas, Th.

    2007-01-01

    Electric arc furnace dust (EAFD) was vitrified with SiO 2 , Na 2 CO 3 and CaCO 3 powders in an electric furnace at ambient atmosphere. Vitreous products were transformed into glass-ceramic materials by two-stage heat treatment, at temperatures determined by differential thermal analysis. Both vitreous and glass-ceramic materials were chemically stable. Wollastonite (CaSiO 3 ) was separated from the parent matrix as the dominant crystalline phase, verified by X-ray diffraction analysis and energy dispersive spectrometry. Transmission electron microscopy revealed that wollastonite crystallizes mainly in its monoclinic form. Knoop microhardness was measured with the static indentation test method in all initial vitreous products and the microhardness values were in the region of 5.0-5.5 GPa. Devitrification resulted in glass-ceramic materials with microhardness values strongly dependent on the morphology and orientation of the separated crystal phase

  3. Glass ceramic toughened with tetragonal zirconia

    Science.gov (United States)

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  4. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  5. Structural Glass Beams with Embedded Glass Fibre Reinforcement

    NARCIS (Netherlands)

    Louter, P.C.; Leung, Calvin; Kolstein, M.H.; Vambersky, J.N.J.A.; Bos, Freek; Louter, Pieter Christiaan; Veer, Fred

    2010-01-01

    This paper investigates the possibilities of pultruded glass fibre rods as embedded reinforcement in SentryGlas (SG) laminated glass beams. To do so, a series of pullout tests, to investigate the bond strength of the rods to the laminate, and a series of beam tests, to investigate the post-breakage

  6. Restorative Glass : Reversible, discreet restoration using structural glass components

    NARCIS (Netherlands)

    Oikonomopoulou, F.; Bristogianni, T.; Barou, L.; van Hees, R.P.J.; Nijsse, R.; Veer, F.A.; Henk, Schellen; van Schijndel, Jos

    2016-01-01

    The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and

  7. Spherical resonators coated by glass and glass-ceramic films

    Science.gov (United States)

    Ristic, Davor; Chiappini, Andrea; Chiasera, Alessandro; Armellini, Cristina; Carpentiero, Alessandro; Mazzola, Maurizio; Moser, Enrico; Varas, Stefano; Berneschi, Simone; Nunzi Conti, Gualtiero; Pelli, Stefano; Soria, Silvia; Speranza, Giorgio; Lunelli, Lorenzo; Pederzolli, Cecilia; Prudenzano, Francesco; Feron, Patrice; Ivanda, Mile; Cibiel, Gilles; Righini, Giancarlo C.; Ferrari, Maurizio

    2012-02-01

    Coating of spherical microresonators is a very promising technique for optimizing their optical properties. Optical coatings are constituted by glasses, polymer, and glass ceramics, passive or activated by luminescent species, Glass ceramic activated by rare earth ions are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing to develop interesting new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. At the state of art the fabrication techniques based on bottom-up and top-down approaches appear to be viable although a specific effort is required to achieve the necessary reliability and reproducibility of the preparation protocols. In particular, the dependence of the final product on the specific parent glass and on the employed synthesis still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including coating of spherical microresonators. Here we present a review regarding spherical microresonators coated by glass and glass-ceramic film activated by Er3+ ions. Er3+ ions appear to be embedded in a crystalline or amorphous environment and the lifetime dynamic is influenced by the geometry and by the morphology of the system. Photoluminescence results and morphologic properties are discussed for both amorphous and glass ceramic films.

  8. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    Science.gov (United States)

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. A Kondo cluster-glass model for spin glass Cerium alloys

    International Nuclear Information System (INIS)

    Zimmer, F M; Magalhaes, S G; Coqblin, B

    2011-01-01

    There are clear indications that the presence of disorder in Ce alloys, such as Ce(Ni,Cu) or Ce(Pd,Rh), is responsible for the existence of a cluster spin glass state which changes continuously into inhomogeneous ferromagnetism at low temperatures. We present a study of the competition between magnetism and Kondo effect in a cluster-glass model composed by a random inter-cluster interaction term and an intra-cluster one, which contains an intra-site Kondo interaction J k and an inter-site ferromagnetic one J 0 . The random interaction is given by the van Hemmen type of randomness which allows to solve the problem without the use of the replica method. The inter-cluster term is solved within the cluster mean-field theory and the remaining intra-cluster interactions can be treated by exact diagonalization. Results show the behavior of the cluster glass order parameter and the Kondo correlation function for several sizes of the clusters, J k , J 0 and values of the ferromagnetic inter-cluster average interaction I 0 . Particularly, for small J k , the magnetic solution is strongly dependent on I 0 and J 0 and a Kondo cluster-glass or a mixed phase can be obtained, while, for large J k , the Kondo effect is still dominant, both in good agreement with experiment in Ce(Ni,Cu) or Ce(Pd,Rh) alloys.

  10. Crystallization characteristics of lithium calcium gallium aluminium borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, H.; Salama, S.N.; Salman, S.M. [National Research Centre, Cairo (Egypt). Glass Research Dept.

    2002-07-01

    The crystallization processes of lithium calcium gallium borosilicate glass containing Al{sub 2}O{sub 3} have been followed by X-ray diffractometry (XRD), differential thermal analysis (DTA) and scanning electron microscope (SEM). Lithium gallium silicate - LiGaSiO{sub 4} phase was formed as a major constituent during the crystallization of the base glass. Solid solutions of lithium aluminosilicate and lithium aluminium gallium silicate - LiAl{sub 0.5}Ga{sub 0.5}SiO{sub 4} phases were mostly formed as a function of Al{sub 2}O{sub 3}/Ga{sub 2}O{sub 3} ratios in the glasses. Varieties of lithium borate phases including Li{sub 2}B{sub 4}O{sub 7}, {alpha}-Li{sub 4}B{sub 2}O{sub 5}, Li{sub 3}BO{sub 3}, {beta}-LiBO{sub 2} and LiB{sub 3}O{sub 5} phases were detected together with lithium metasilicate and lithium disilicate. Different calcium bearing phases including wollastonite-CaSiO{sub 3}, calcium borosilicate -Ca{sub 2}B{sub 2}SiO{sub 7}, larnite -Ca{sub 2}SiO{sub 4}, rankinite -Ca{sub 3}Si{sub 2}O{sub 7}, and calcium borate -CaB{sub 2}O{sub 4} were mainly detected as a function of heat-treatment in the CaO-containing samples. The role played by the glass oxide constituents in determining the crystallization characteristics and the nature of the crystal phases formed in the glasses are discussed. (orig.)

  11. Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.

    Science.gov (United States)

    Djemour, A; Sanctuary, R; Baller, J

    2015-04-07

    Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.

  12. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  13. Glass formation and crystallization in Zr based alloys

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Metallic glasses have come in to prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. Though these have been produced for the last four decades, the necessity of rapid solidification at cooling rates of 10 5 K/sec or higher for their production, have restricted their geometry to thin ribbons and prevented their application to many areas despite their excellent properties. It has been shown in recent investigations that, many Zr base multicomponent alloys can be obtained in glassy state by cooling at much lower rate typically 10 2 to 10 3 K/sec. This has enabled production of these alloys in the glassy stat in bulk. By now, bulk metallic glasses have been produced in Mg, Ln, Zr, Fe, Pd-Cu, Pd-Fe, Ti and Ni- based alloys. Production of these glasses in bulk has opened avenue for their application in many areas where their excellent mechanical properties an corrosion resistance can be exploited. The transformation of the amorphous phase in these alloys to one or more crystalline phases, is an interesting phase transformation and can lead to formation of crystals in a variety of morphologies and a wide range of crystal sizes, including nanometer size crystals or nanocrystals. The bulk amorphous alloys exhibit higher fracture stress, combined with higher hardness and lower young's modulus than those of any crystalline alloy. The Zr- and Ti-based bulk amorphous alloy exhibit high bending and flexural strength values which are typically 2.0 to 2.5 time higher than those for crystalline counterparts. The composites of bulk metallic glass containing crystalline phases have been found to have special properties. This has been demonstrated in the case of composites of bulk metallic glass and tungsten wires wit the glass forming the matrix. Such a composite has a very high impact strength and is especially suitable for application as an armour penetrator in various types of shells used

  14. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R. Jeffrey; Mattigod, Shas V.

    2010-01-01

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 A - 105 m 3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 A - 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 A - 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by (1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  15. Thermal Properties of SiOC Glasses and Glass Ceramics at Elevated Temperatures.

    Science.gov (United States)

    Stabler, Christina; Reitz, Andreas; Stein, Peter; Albert, Barbara; Riedel, Ralf; Ionescu, Emanuel

    2018-02-10

    In the present study, the effect of the chemical and phase composition on the thermal properties of silicon oxide carbides (SiOC) has been investigated. Dense monolithic SiOC materials with various carbon contents were prepared and characterized with respect to their thermal expansion, as well as thermal conductivity. SiOC glass has been shown to exhibit low thermal expansion (e.g., ca. 3.2 × 10 -6 K -1 for a SiOC sample free of segregated carbon) and thermal conductivity (ca. 1.5 W/(m∙K)). Furthermore, it has been observed that the phase separation, which typically occurs in SiOC exposed to temperatures beyond 1000-1200 °C, leads to a decrease of the thermal expansion (i.e., to 1.83 × 10 -6 K -1 for the sample above); whereas the thermal conductivity increases upon phase separation (i.e., to ca. 1.7 W/(m∙K) for the sample mentioned above). Upon adjusting the amount of segregated carbon content in SiOC, its thermal expansion can be tuned; thus, SiOC glass ceramics with carbon contents larger than 10-15 vol % exhibit similar coefficients of thermal expansion to that of the SiOC glass. Increasing the carbon and SiC content in the studied SiOC glass ceramics leads to an increase in their thermal conductivity: SiOC with relatively large carbon and silicon carbides (SiC) volume fractions (i.e., 12-15 and 20-30 vol %, respectively) were shown to possess thermal conductivities in the range from 1.8 to 2.7 W/(m∙K).

  16. Incorporation of flat glass in red ceramic

    International Nuclear Information System (INIS)

    Caldas, T.C.C.; Morais, A.S.C.; Pereira, P.S.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This work have as objective evaluate the effect of incorporation of up to 10% by weight of powdered flat glass , from civil industry, in red ceramic. The bodies were obtained by uniaxial pressing at 20 MPa and fired at temperatures of 850 ° C and 1050 ° C. The parameters studied were linear firing shrinkage, apparent density, water absorption and flexural rupture stress for the evaluation of the mechanical physical properties. The microstructure was observed by scanning electron microscopy and phase identification was performed by X-ray diffraction. The results showed that the waste changes the microstructure and properties of red ceramics. (author)

  17. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  18. Thermally stable dexsil-400 glass capillary columns

    International Nuclear Information System (INIS)

    Maskarinec, M.P.; Olerich, G.

    1980-01-01

    The factors affecting efficiency, thermal stability, and reproducibility of Dexsil-400 glass capillary columns for gas chromatography in general, and for polycyclic aromatic hydrocarbons (PAHs) in particular were investigated. Columns were drawn from Kimble KG-6 (soda-lime) glass or Kimox (borosilicate) glass. All silylation was carried out at 200 0 C. Columns were coated according to the static method. Freshly prepared, degassed solutions of Dexsil-400 in pentane or methylene chloride were used. Thermal stability of the Dexsil 400 columns with respect to gas chromatography/mass spectrometry (GC/MS) were tested. Column-to-column variability is a function of each step in the fabrication of the columns. The degree of etching, extent of silylation, and stationary phase film thickness must be carefully controlled. The variability in two Dexsil-400 capillary column prepared by etching, silylation with solution of hexa methyl disilazone (HMDS), and static coating is shown and also indicates the excellent selectivity of Dexsil-400 for the separation of alkylated aromatic compounds. The wide temperature range of Dexsil-400 and the high efficiency of the capillary columns also allow the analysis of complex mixtures with minimal prefractionation. Direct injection of a coal liquefaction product is given. Analysis by GC/MS indicated the presence of parent PAHs, alkylated PAHs, nitrogen and sulfur heterocycles, and their alkylated derivatives. 4 figures

  19. Ideal glass transitions by random pinning

    Science.gov (United States)

    Cammarota, Chiara; Biroli, Giulio

    2012-01-01

    We study the effect of freezing the positions of a fraction c of particles from an equilibrium configuration of a supercooled liquid at a temperature T. We show that within the random first-order transition theory pinning particles leads to an ideal glass transition for a critical fraction c = cK(T) even for moderate supercooling; e.g., close to the Mode-Coupling transition temperature. First we derive the phase diagram in the T - c plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for |c - cK(T)| → 0, in particular the divergence of length and time scales, which are dominated by two zero-temperature fixed points. We also show that for c = cK(T) the typical distance between frozen particles is related to the static point-to-set length scale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition. PMID:22623524

  20. Enabling Tool for Innovative Glass Applications - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    James M. Gillis

    2005-11-16

    The use of abrasive waterjet (AWJ) cutting systems in the industrial sector has been limited to applications that are difficult to machine using conventional methods. A major factor for this limited use is the high cost of the garnet abrasive currently used. Initial studies indicated that glass can be processed to produce particles with the desired characteristics at a fraction of the existing price of garnet. Inexpensive abrasive waterjet cutting systems would allow a wider array of glass products to be produced while eliminating many existing design limitations. Availability of low-cost abrasive waterjet cutting media would open new markets for glass applications by making glass a more versatile material. A fundamental goal of this project was to scale up and refine the circuit that was established in the initial phase of this project, which using waste glass as a feed stream, could economically produce glass particles displaying high angularity, sharp edges and a low aspect ratio which would prove suitable for use in abrasive waterjet (AWJ) cutting systems. Using commercial scale equipment, demonstration runs were conducted at various manufacturers facilities to further establish that waste glass is a viable source for the production of an inexpensive AWJ media for use in cutting glass and a variety of other materials. The glass abrasive produced was used to demonstrate that processed waste glass could serve as a less costly alternative to garnet in many AWJ cutting applications. Studies indicated that glass can be processed to produce particles with the desired characteristics at less than 1% of the existing price of garnet. The waste stream resulting from the use of the glass abrasive in an AWJ system was in turn used as a source for inexpensive fillers in various polymers. The reduced energy requirements needed to produce glass abrasives and lower cost associated with the use of waste glass over garnet, as well as the environmental benefits associated with

  1. Conductivity in Ag-As-S(Se,Te) chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Kolář, J.; Bartoš, M.; Vlček, Milan; Frumar, M.; Zima, Vítězslav; Wágner, T.

    2010-01-01

    Roč. 181, 37/38 (2010), s. 1625-1630 ISSN 0167-2738 Institutional research plan: CEZ:AV0Z40500505 Keywords : chalcogenide glass es * ionics conductivity * phase separation Subject RIV: CA - Inorganic Chemistry Impact factor: 2.496, year: 2010

  2. High SBS-Threshold Er/Yb Co-Doped Phosphate Glass Fiber Amplifiers for High Power, Sub-us Pulsed, Narrow Linewidth, All Fiber-Based Laser Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, NP Photonics has achieved 1.2 kW peak power for 105 ns fiber laser pulses, and successfully demonstrated the feasibility to produce monolithic high SBS...

  3. Development of glass compositions with 9% waste content for the vitrification of high-level waste from LWR nuclear reactors

    International Nuclear Information System (INIS)

    Lakatos, T.

    1979-10-01

    Reduction of the contents of waste in glass from 20-25% to 9% causes a decrease of the leaching resistance of the glass. The addition of Zn0 reduces the leaching values by a factor of approximately 10. The crystallized glass ceramics have a lower coefficient of thermal expansion than glassy waste bodies. The separation of the phase which contains Mo occurs during heat treatment. The amount of separated Mo is lower for low alkali sac type (Si0 2 - A1 2 0 3 -Ca0 system) of glasses by a factor of approximately 50. All the glasses were prepared with simulated waste composition. (GBn.)

  4. Characterization of structural relaxation in inorganic glasses using length dilatometry

    Science.gov (United States)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  5. Study of rhyolitic glasses alteration in contact with natural brines (Bolivia). Application to the study of the long-term behaviour of the R7T7 nuclear glass

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-01-01

    The purpose of this work is to complement an experimental program on the R7T7 nuclear waste glass alteration in brines at 190 deg C in Germany by the analysis of the structure and the chemical composition of the alteration layers, and to study the alteration of rhyolitic glasses in natural brines from Bolivia as analogue for nuclear waste glasses disposed in salt formations. Alteration experiments with the R7T7 and basaltic glasses and obsidian in MgCl 2 -CaCl 2 -saturated brine at 190 deg. C were also conducted in order to study the influence of the glass composition on the nature of the secondary phases. The experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. These phases are stable for more than one year. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 -CaCl 2 -saturated brine. The abundance of Mg in solution permits the formation of similar magnesian clays on the glass samples independently of the nature of the initial glasses. These results support the use of volcanic glasses alteration patterns in Mg-rich solutions to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 deg. C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long

  6. "Glass Formulation and Testing with TWRS LAW Simulants," Final Report to Duratek Inc. and BNFL Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Buechele, Andrew C. [The Catholic University of America, Washington, DC (United States); Kim, C. [The Catholic University of America, Washington, DC (United States); Lai, Shan-Tao T. [The Catholic University of America, Washington, DC (United States); Del Rosario, G. [The Catholic University of America, Washington, DC (United States); Yan, Q. [The Catholic University of America, Washington, DC (United States); Kruger, Albert A. [The Catholic University of America, Washington, DC (United States)

    2015-06-22

    This report presents the results of glass formulation development with TWRS LAW simulants that was conducted at the Vitreous State Laboratory of The Catholic University of America during TWRS Phase I.

  7. Rediscovering ancient glass technologies through the examination of opacifier crystals

    Science.gov (United States)

    Lahlil, S.; Biron, I.; Galoisy, L.; Morin, G.

    2008-07-01

    The aim of the study is to understand how antimonate opacifying crystals were obtained throughout history. Two archaeological glass productions opacified with calcium and lead antimonates are studied in this paper, in order to rediscover ancient opaque glass technologies: Roman mosaic tesserae (1st cent. B.C. 4th cent. A.D.) and Nevers lampworking glass (18th cent. A.D.). The fine examination of crystalline phases and of the vitreous matrix is undertaken using various and complementary techniques. Results are compared with a modern reference production, for which the technological process is well known. We demonstrate that Ca-antimonate opacifiers in Roman mosaic tesserae, as well as in Nevers lampworking glass, were obtained by in situ crystallization. Nevertheless, Roman and Nevers glass would have undergone different firing processes. We propose that the addition of previously synthesized crystals or the use of “anime” could be the process used to obtain Pb-antimonate opacified glass, for both productions studied. We demonstrate that CaO, PbO and Sb2O3 concentrations in the bulk compositions and in the matrices, and their evolution with the crystallinity ratio, offer robust criteria for the distinction of the opacification process used. Also, the different crystalline structures help to provide information on the experimental conditions.

  8. Chemical states of molybdenum in radioactive waste glass

    International Nuclear Information System (INIS)

    Ishiguro, Katsuhiko; Kawanishi, Nobuo; Nagaki, Hiroshi; Naito, Aritsune

    1982-01-01

    In order to confirm an expectation that the chemical state of molybdenum in glass reflects the phase separation tendency of the yellow solid from the melt of borosilicate glass, simulated waste glasses were prepared, and ESCA analysis was performed using a commercially available electron spectrometer (PHI550 E) with an excitation source consisting of Mg Kα-ray. The effects of the concentration of Mo and FE 2 O 3 and the melting atmosphere (oxidizing or reducing) in which the samples were prepared on the chemical state of Mo and the solubility of MoO 3 were examined. From the observation of Mo spectra, it was shown that Mo in waste glass had several valencies, e.g., Mo(3), Mo(4), Mo(5) and Mo(6), while Mo in the yellow solid separated from the melts exhibited hexa-valent state, the peak intensity of higher valencies increased relatively with the increase of MoO 3 concentration, but the chemical state of Mo did not change remarkably around the solubility limit of MoO 3 , the melting atmosphere influenced on the Mo state in the waste glass, the peak intensity of Mo(6) increased relatively with the increasing Fe 2 O 3 concentration, and Mo in devitrified glass exhibited hexa-valent state. (Yoshitake, I.)

  9. Immobilization of radioactive iodine in silver aluminophosphate glasses.

    Science.gov (United States)

    Lemesle, Thomas; Méar, François O; Campayo, Lionel; Pinet, Olivier; Revel, Bertrand; Montagne, Lionel

    2014-01-15

    Silver aluminophosphate glasses have been investigated as matrices for the immobilization of radioactive iodine. In this study, up to 28mol% AgI have been incorporated without volatilization thanks to a low temperature synthesis protocol. Alumina was added in the composition in order to increase the glass transition temperature for a better thermal stability in a repository conditions. Two series of glasses have been investigated, based on AgPO3 and Ag5P3O10 compositions, and with 0-5mol% Al2O3. We report (31)P, (27)Al and (109)Ag NMR study of these glasses, including advanced measurement of the connectivities through {(27)Al}-(31)P cross-polarization and (31)P-(31)P double-quantum correlation. We confirm that AgI is inserted in the aluminophosphate glasses and does not form clusters. AgI does not induce any modification of the glass polymerization but only an expansion of the network. Despite no evidence for crystallization could be obtained from XRD, NMR revealed that the introduction of AgI induces an exclusion of alumina from the network, leading to the crystallization of aluminophosphate phases such as Al(PO3)3 or AlPO4. As a consequence, despite NMR gives evidence for the presence of aluminophosphate bonds, only a limited effect of alumina addition on thermal properties is observed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Properties of gallium lanthanum sulphide glass

    OpenAIRE

    Bastock, P.; Craig, C.; Khan, K.; Weatherby, E.; Yao, J.; Hewak, D.W.

    2015-01-01

    A series of gallium lanthanum sulphide (GLS) glasses has been studied in order to ascertain properties across the entire glass forming region. This is the first comprehensive study of GLS glass over a wide compositional range.

  11. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    Science.gov (United States)

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-01-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics. PMID:27734918

  12. A literature review of surface alteration layer effects on waste glass behavior

    International Nuclear Information System (INIS)

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution

  13. Alteration of national glass in radioactive waste repository host rocks: A conceptional review

    International Nuclear Information System (INIS)

    Apps, J.A.

    1987-01-01

    The storage of high-level radioactive wastes in host rocks containing natural glass has potential chemical advantages, especially if the initial waste temperatures are as high as 250 0 C. However, it is not certain how natural glasses will decompose when exposed to an aqueous phase in a repository environment. The hydration and devitrification of both rhyolitic and natural basaltic natural glasses are reviewed in the context of hypothetical thermodynamic phase relations, infrared spectroscopic data and laboratory studies of synthetic glasses exposed to steam. The findings are compared with field observations and laboratory studies of hydrating and devitrifying natural glasses. The peculiarities of the dependence of hydration and devitrification behavior on compositional variation is noted. There is substantial circumstantial evidence to support the belief that rhyolitic glasses differ from basaltic glasses in their thermodynamic stability and their lattice structure, and that this is manifested by a tendency of the former to hydrate rather than devitrify when exposed to water. Further research remains to be done to confirm the differences in glass structure, and to determine both physically and chemically dependent properties of natural glasses as a function of composition

  14. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, Steven A., E-mail: steven.luksic@pnnl.gov; Riley, Brian J.; Parker, Kent E.; Hrma, Pavel

    2016-10-15

    Technetium (Tc) retention during Hanford waste vitrification can be increased if the volatility can be controlled. Incorporating Tc into a thermally stable mineral phase, such as sodalite, is one way to achieve increased retention. Here, rhenium (Re)-bearing sodalite was tested as a vehicle to transport perrhenate (ReO{sub 4}{sup −}), a nonradioactive surrogate for pertechnetate (TcO{sub 4}{sup −}), into high-level (HLW) and low-activity waste (LAW) glass simulants. After melting HLW and LAW simulant feeds, the retention of Re in the glass was measured and compared with the Re retention in glass prepared from a feed containing Re{sub 2}O{sub 7}. Phase analysis of sodalite in both these glasses across a profile of temperatures describes the durability of Re-sodalite during the feed-to-glass transition. The use of Re sodalite improved the Re retention by 21% for HLW glass and 85% for LAW glass, demonstrating the potential improvement in Tc-retention if TcO{sub 4}{sup −} were to be encapsulated in a Tc-sodalite prior to vitrification. - Highlights: • Re retention is improved by incorporation into sodalite structure. • LAW-type glass shows lower retention but larger improvement with Re-sodalite. • Sodalite is stable to higher temperatures in high-alumina glass melts.

  15. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  16. Plutonium dioxide dissolution in glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  17. Plutonium dioxide dissolution in glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy's (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation's defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO 2 feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO 2 dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides

  18. Molecular mobility in sugar glasses

    NARCIS (Netherlands)

    Dries, van den I.J.

    2000-01-01

    Glasses are liquids that exhibit solid state behavior as a result of their extremely high viscosity. Regarding their application to foods, glasses play a role in the preservation of foods, due to their high viscosity and the concomitant low molecular mobility. This thesis focuses on sugar

  19. Degradable borate glass polyalkenoate cements.

    Science.gov (United States)

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time.

  20. Holder for rotating glass body

    International Nuclear Information System (INIS)

    Kolleck, F.W.

    1978-01-01

    A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint

  1. International Congress on Glass XII

    Energy Technology Data Exchange (ETDEWEB)

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W [eds.

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  2. OPAL Various Lead Glass Blocks

    CERN Document Server

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  3. Biocompatible glass-ceramic materials for bone substitution.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Verné, Enrica; Robiglio, Lorenza; Martinasso, Germana; Canuto, Rosa A; Muzio, Giuliana

    2008-01-01

    A new bioactive glass composition (CEL2) in the SiO(2)-P(2)O(5)-CaO-MgO-K(2)O-Na(2)O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass-ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300-600 microm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass-ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.

  4. Phonon scattering in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.

    1979-01-01

    The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses

  5. Photonic glass-ceramics: consolidated outcomes and prospects

    Science.gov (United States)

    Boulard, Brigitte; Van, Tran T. T.; Łukowiak, Anna; Bouajaj, Adel; Gonçalves, Rogéria R.; Chiappini, Andrea; Chiasera, Alessandro; Blanc, Wilfried; Duran, Alicia; Turrell, Sylvia; Prudenzano, Francesco; Scotognella, Francesco; Ramponi, Roberta; Marciniak, Marian; Righini, Giancarlo C.; Ferrari, Maurizio

    2014-03-01

    Transparent glass-ceramics are nanocomposite materials which offer specific characteristics of capital importance in photonics. This kind of two-phase materials is constituted by nanocrystals embedded in a glass matrix and the respective composition and volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramic. Among these properties transparency is crucial, in particular when confined structures, such as dielectric optical waveguides and optical fibers, are considered, and the number of papers devoted to this topic is continuously increasing. Another important point is the role of the nanocrystals when activated by luminescent species, as rare earth ions, and their effect on the spectroscopic properties of the glass-ceramic. The presence of the crystalline environment around the rare earth ion allows high absorption and emission cross sections, reduction of the non-radiative relaxation thanks to the lower phonon cut-off energy, and tailoring of the ion-ion interaction by the control of the rare earth ion partition. This last point is crucial and still object of intense experimental and theoretical studies. The composition of the glass matrix also impacts the properties of the rare earth ions located in nanoparticles. Moreover, some kinds of nanocrystals can play as effective rare earth sensitizers. Fabrication, assessment and application of glass-ceramic photonic systems, especially waveguides, deserve an appropriate discussion which is the aim of this paper, focused on luminescent glass-ceramics. In this work, a brief historical review, consolidated results and recent advances in this important scientific and technological area will be presented, and some perspectives will be outlined.

  6. Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia.

    Science.gov (United States)

    Baino, Francesco; Fiume, Elisa; Miola, Marta; Leone, Federica; Onida, Barbara; Laviano, Francesco; Gerbaldo, Roberto; Verné, Enrica

    2018-01-22

    This work deals with the synthesis and characterization of novel Fe-containing sol-gel materials obtained by modifying the composition of a binary SiO₂-CaO parent glass with the addition of Fe₂O₃. The effect of different processing conditions (calcination in air vs. argon flowing) on the formation of magnetic crystalline phases was investigated. The produced materials were analyzed from thermal (hot-stage microscopy, differential thermal analysis, and differential thermal calorimetry) and microstructural (X-ray diffraction) viewpoints to assess both the behavior upon heating and the development of crystalline phases. N₂ adsorption-desorption measurements allowed determining that these materials have high surface area (40-120 m²/g) and mesoporous texture with mesopore size in the range of 18 to 30 nm. It was assessed that the magnetic properties can actually be tailored by controlling the Fe content and the environmental conditions (oxidant vs. inert atmosphere) during calcination. The glasses and glass-ceramics developed in this work show promise for applications in bone tissue healing which require the use of biocompatible magnetic implants able to elicit therapeutic actions, such as hyperthermia for bone cancer treatment.

  7. Structural properties of molybdenum-lead-borate glasses.

    Science.gov (United States)

    Rada, M; Rada, S; Pascuta, P; Culea, E

    2010-11-01

    Glasses and glass ceramics in the system xMoO₃·(100 - x)[3B₂O₃·PbO] with 0 ≤ x ≤ 30 mol% have been prepared from melt quenching method and characterized by means of X-ray diffraction, FTIR, UV-VIS and EPR spectroscopy. We have examined and analyzed the effects of systematic molybdenum ions intercalation on lead-borate glasses and glass ceramics with interesting results. The observations present in these mechanisms show the lead ions bonded ionic have a strong affinity towards [BO₃] units containing non-bridging oxygens and [MoO₄]²⁻ molybdate units. The pronounced affinity towards molybdate anions yields the formation of the PbMoO₄ crystalline phase. Then, the excess of oxygen can be supported into the glass network by the formation of [MoO₆] and [Mo₂O₇] structural units. Pb²(+) ions with 6s² configuration show strong absorption in the ultraviolet due to parity allowed s²-sp transition and yield an absorption band centered at about 310 nm. The changes in the features of the absorption bands centered at about 310 nm can be explained as a consequence of the appearance of additional absorption shoulder due to photoinduced color centers in the glass such as the formation of borate-molybdate and lead-molybdate paramagnetic defect centers in the glasses. The concentration of molybdenum ions influences the shape and width of the EPR signals located at g ∼ 1.86, 1.91 and 5.19. The microenvironment of molybdenum ions in glasses is expected to have mainly sixfold coordination. However, there is a possibility of reduction of a part of molybdenum ions from the Mo⁶(+) to the Mo⁵(+) and Mo⁴(+) to the Mo³(+) states. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Study of mosaic glasses from the Alpha Basilica (sixth century of Nikopolis in Epirus, Greece

    Directory of Open Access Journals (Sweden)

    Cesare Fiori

    2014-02-01

    Full Text Available After collecting the essential historical, archaeological, and artistic information relative to the ancient town of Nikopolis in Epirus and its Alpha (or Doumetios Basilica, built in the sixth century A.D., glass tesserae belonging to degraded and lost parts of the mosaic floors of the basilica were analysed, determining their chemical composition and the possible presence of crystalline phases. As in all glasses produced in the Mediterranean area in that epoch, they are soda-lime silicate glasses, in part with lead, obtained using natron as a flux. The typology of the glass corresponds to that of Roman glasses, of the first centuries A.D., and is the same as that employed for the basilicas of Ravenna in the fifth and sixth centuries; in particular, a comparison was made with the glass tesserae of the St Vitale Basilica. The technological base for producing coloured glasses is also practically the same as that of the mosaic glasses of Ravenna. In particular, antimony was used as an opacifying element and a fusion was carried out under reducing conditions to obtain red glass with microparticles of metallic copper. Thus, it can be supposed there was a common source of production of the mosaic glasses used in Nikopolis and Ravenna in the sixth century and that this source was in the Near Orient.

  9. Optical properties of Er3+-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass

    International Nuclear Information System (INIS)

    Haro-Gonzalez, P.; Lahoz, F.; Gonzalez-Platas, J.; Caceres, J.M.; Gonzalez-Perez, S.; Marrero-Lopez, D.; Capuj, N.; Martin, I.R.

    2008-01-01

    Measurements of the optical properties of Er 3+ ions in strontium barium niobate glass and glass ceramics have been carried out. The glasses have been fabricated using a melt-quenching method, and the glass ceramic samples have been obtained from the glass precursor by a thermal treatment. The ceramic samples formed by a glassy phase, and a crystalline phase contains nanocrystals of Sr 1-x Ba x Nb 2 O 6 (SBN) doped with Er 3+ ions with a mean size of ∼50 nm, as confirmed with XRD. Green up-conversion emission has been obtained under excitation at 800 nm, and the temporal evolution of this emission has been reported with the purpose of determining the involved up-conversion mechanism. These optical measures have confirmed that the Er 3+ ions have been incorporated into the SBN matrix, after a thermal treatment, which produced an increment of the up-conversion efficiency

  10. Long-term modeling of glass waste in portland cement- and clay-based matrices

    International Nuclear Information System (INIS)

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ''templates'' was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ''affinity effect'' cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity

  11. Fabrication and characterization of MCC approved testing material: ATM-9 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1986-06-01

    The Materials Characterization Center ATM-9 glass is designed to be representative of glass to be produced by the Defense Waste Processing Facility at the Savannah River Plant, Aiken, South Carolina. ATM-9 glass contains all of the major components of the DWPF glass and corresponds to a waste loading of 29 wt %. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 Black Frit to which was added Ba, Cs, Md, Nd, Zr, as well as 99 Tc, depleted U, 237 Np, 239+240 Pu, and 243 Am. The glass was produced under reducing conditions by the addition of 0.7 wt % graphite during the final melting process. Three kilograms of the glass were produced from April to May of 1984. On final melting, the glass was formed into stress-annealed rectangular bars of two sizes: 1.9 x 1.9 x 10 cm and 1.3 x 1.3 x 10 cm. Seventeen bars of each size were made. The analyzed composition of ATM-9 glass is listed. Examination by optical microscopy of a single transverse section from one bar showed random porosity estimated at 0.36 vol % with nominal pore diameters ranging from approx. 5 μm to 200 μm. Only one distinct second phase was observed and it was at a low concentraction level in the glass matrix. The phase appeared as spherical metallic particles. X-ray diffraction analysis of this same sample did not show any diffraction peaks from crystalline components, indicating that the glass contained less than 5 wt % of crystalline devitrification products. The even shading on the radiograph exposure indicated a generally uniform distribution of radioactivity throughout the glass matrix, with no distinct high-concentration regions

  12. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Vieira, Heveline

    2008-01-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P 2 O 5 /K 2 O ratio constant and varying the amount of Nb 2 O 5 . These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10 -7 g. cm -2 . day -1 ) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  13. Joints in Tempered Glass Using Glass Dowel Discs

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Poulsen, Peter Noe

    One of the major reasons for using glass in structures is its transparency; however, traditional mechanical joints such as friction joints and steel dowel pinned connections are compromising the transparency. The present paper describes a novel joint which is practically maintaining the complete...... transparency of the glass. This is achieved by using a dowel disc made entirely of tempered glass. The concept of the joint is proved by pilot tests and numerical models. From the work it is seen that the load-carrying capacity of such a connection is similar to what is found for traditionally in-plane loaded...

  14. Impact of Redox on Glass Durability: The Glass Selection Process

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    Recent glass formulation activities have focused on developing alternative frit compositions for use with specific sludge batches to maximize melt rate and/or waste throughput. The general trend has been to increase the total alkali content in the glass through the use of a high alkali based frit, a less washed sludge, or a combination of the two. As a result, predictions of durability have become a limiting factor in defining the projected operating windows for the Defense Waste Processing Facility (DWPF) for certain systems. An additional issue for these high alkali glasses has been the effect of REDuction/OXidation (REDOX) on the durability of the glass. Recent analyses have indicated that the application of the durability model's value without consideration of the overall glass composition may lead to a more significant shift (larger magnitude) than needed. Therefore, activation of the REDOX term in the Product Composition Control System (PCCS) may have a significant impact on the predicted operational windows based on model predictions, but may not represent the realistic impact on the measured durability. In this report, two specific issues are addressed. First, a review of the data used to develop PCCS (in particular the durability model) showed the potential for a REDOX interaction that is not accounted for. More specifically, three terms were added to the current model and were found to be statistically significant at a confidence level of 95 per cent. These results suggest a possible interaction between REDOX and glass composition that is not accurately captured leading to potentially conservative decisions regarding the durability of reduced glasses. The second issue addressed in this report is the development of a 45 glass test matrix to assess the effect of REDOX on durability as well as to provide insight into specific interactive compositional effects on durability. The glasses were selected to support the assessment of the following specific

  15. Material development in the SI{sub 3}N{sub 4} system using glass encapsulated Hip`ing. Final report, Phase 2: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

    1992-04-01

    This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP`ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

  16. Long-term results from unsaturated testing of actinide-doped DWPF and WVDP waste glasses

    International Nuclear Information System (INIS)

    Fortner, J.A.; Bates, J.K.

    1995-01-01

    Results from drip tests designed to simulate the unsaturated conditions in the proposed Yucca Mountain Repository are reported for two actinide-doped glasses used as model waste forms. These tests are being conducted with reference glass compositions doped with neptunium, plutonium, and americium from the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), and have been ongoing for over 8 years. Solution compositions, including transuranics, have been periodically determined, and selected analyses of colloid formation and composition, glass corrosion layers, and solid alteration phases have been obtained by scanning and analytical transmission electron microscopies. The importance of integrated testing has been demonstrated, as complex interactions among the glass, the groundwater, and the sensitized stainless steel have been observed. The cumulative releases of both glass-forming and dopant elements are presented along with identification of reaction phases and their partitioning between solution and solid phases. Alteration phases, including smectite clay, iron silicates, uranium silicates, and calcium thorium phosphate, have been observed forming on the glass and stainless steel and have occasionally been found suspended in solution as colloids. Actinides, except neptunium, concentrate into alteration phases or sorb onto the stainless steel. The subsequent transport of the actinides is then controlled by these phases

  17. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. New insight into nanoparticle precipitation by electron beams in borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, M.M.; Moebus, G. [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2017-06-15

    Nanoprecipitation in different oxide glasses by means of electron irradiation in transmission electron microscopy (TEM) has been compared in this study. Upon irradiation, groups or patterns of nanoparticles with various morphologies and sizes were formed in borosilicate glasses, loaded with zinc, copper, and silver. The study successfully includes loading ranges for the target metal from doping level (1%) over medium level (20%) to majority phase (60%). It is found that particle patterning resolution is affected by parallel processes of amorphous phase separation, glass ablation, and delocalised precipitation. In addition, via an in-situ study, it is confirmed that by heating alone without irradiation, no precipitate nanoparticles form. (orig.)

  19. Glass Difractive Optical Elements (DOEs with complex modulation DLC thin film coated

    Directory of Open Access Journals (Sweden)

    Marina Sparvoli

    2008-09-01

    Full Text Available We developed a complex (amplitude and phase modulation Diffractive Optical Element (DOE with four phase levels, which is based in a glass substrate coated with DLC (Diamond Like Carbon thin film as the amplitude modulator. The DLC film was deposited by magnetron reactive sputtering with a graphite target and methane gas in an optical glass surface. The glass and DLC film roughness were measured using non destructive methods, such as a high step meter, Atomic Force Microscopy and Diffuse Reflectance. Other properties, such as refractive index of both materials were measured. The DOEs were tested using 632.8 nm HeNe laser.

  20. New insight into nanoparticle precipitation by electron beams in borosilicate glasses

    International Nuclear Information System (INIS)

    Sabri, M.M.; Moebus, G.

    2017-01-01

    Nanoprecipitation in different oxide glasses by means of electron irradiation in transmission electron microscopy (TEM) has been compared in this study. Upon irradiation, groups or patterns of nanoparticles with various morphologies and sizes were formed in borosilicate glasses, loaded with zinc, copper, and silver. The study successfully includes loading ranges for the target metal from doping level (1%) over medium level (20%) to majority phase (60%). It is found that particle patterning resolution is affected by parallel processes of amorphous phase separation, glass ablation, and delocalised precipitation. In addition, via an in-situ study, it is confirmed that by heating alone without irradiation, no precipitate nanoparticles form. (orig.)