WorldWideScience

Sample records for showed veneer fractures

  1. Fracture strengths of chair-side-generated veneers cemented with glass fibers.

    Science.gov (United States)

    Turkaslan, S; Bagis, B; Akan, E; Mutluay, M M; Vallittu, P K

    2015-01-01

    CAD/CAM (computer-aided design and computer-aided manufacturing) systems have refreshed the idea of chair-side production of restorations, but the fracture of ceramic veneers remains a problem. Cementation with glass fibers may improve the fracture strengths and affect the failure modes of CAD/CAM-generated ceramic veneers. Therefore, this study compared the fracture strengths of ceramic veneers produced at chair side and cemented with or without glass fibers with those of composite veneers. Thirty intact mandibular incisors were randomly divided into three groups ( n = 10) and treated with CAD/CAM-fabricated veneers cemented with dual-cure composite resin luting cement (CRLC; Group 1), CAD/CAM-fabricated veneers cemented with a glass fiber network (GFN) and dual-cure CRLC (Group 2), and a direct particulate filler composite veneer constructed utilizing fiber and a restorative composite resin (Group 3). The specimens were tested with a universal testing machine after thermal cycling treatment. The loads at the start of fracture were the lowest for traditionally fabricated composite veneers and higher for CAD/CAM-generated. Veneers cemented either without or with the GFN. The failure initiation loads (N) for the veneers were 798.92 for Group 1, 836.27 for Group 2, and 585.93 for Group 3. The predominant failure mode is adhesive failure between the laminates and teeth for Group 1, cohesive failure in the luting layer for Group 2, and cohesive laminate failure for Group 3, which showed chipping and small fractures. Ceramic material is a reliable alternative for veneer construction at chair side. Fibers at the cementation interface may improve the clinical longevity and provide higher fracture strength values.

  2. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.

    Science.gov (United States)

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-11-01

    Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive

  3. Fracture and Fatigue Resistance of Cemented versus Fused CAD-on Veneers over Customized Zirconia Implant Abutments.

    Science.gov (United States)

    Nossair, Shereen Ahmed; Aboushelib, Moustafa N; Morsi, Tarek Salah

    2015-01-05

    To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). Cemented CAD-on restorations demonstrated significantly higher (F = 72, p CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers. © 2014 by the American College of Prosthodontists.

  4. [An in vitro study of the fracture strength of tooth preparations for Empress 2 veneers and crowns and mandibular incisors restored with Empress 2 veneers and crowns].

    Science.gov (United States)

    Wei, Xue; Li, Yan

    2009-12-01

    To compare the fracture resistance of mandibular incisors' preparations for veneers and crowns, mandibular incisors restored with Empress 2 veneers and crowns. 50 human mandibular incisors were randomly divided into five groups. Each group consisted of ten teeth and the treatment obtained as follows: A, tooth preparations for veneers; B, tooth preparations for crowns; C, teeth restored with veneers; D, teeth restored with crowns; E, untreated group. The teeth received standardized preparation and the restorations were manufactured with Empress 2 system and cemented with resin luting agent. The fracture resistances of teeth were measured by Instron universal testing machine and statistically analyzed with one-way ANOVA. The fracture resistances of A, B, C, D, E were (576.11 +/- 91.53), (204.13 +/- 85.88), (451.50 +/- 116.81), (386.16 +/- 117.75) and (566.05 +/- 121.37) N, respectively. The statistical analysis demonstrated significant differences between five groups. There were no significant differences between group A and E, group C and D. Tooth preparations for veneers did not significantly reduce the fracture resistance of mandibular incisor. The fracture resistance of teeth restored with Empress 2 veneers and crowns did not significantly differ from each other.

  5. Fracture strengths of chair‑side‑generated veneers cemented with ...

    African Journals Online (AJOL)

    Introduction: CAD/CAM (computer‑aided design and computer‑aided manufacturing) systems have refreshed the idea of chair‑side production of restorations, but the fracture of ceramic veneers remains a problem. Cementation with glass fibers may improve the fracture strengths and affect the failure modes of ...

  6. Fracture strengths of chair‑side‑generated veneers cemented with ...

    African Journals Online (AJOL)

    2014-06-09

    Jun 9, 2014 ... Group 1), CAD/CAM‑fabricated veneers cemented with a glass fiber ... specimens were tested with a universal testing machine after thermal cycling treatment. ... The purpose of the current in vitro study is to determine the ..... fracture resistance of fiber reinforced cups‑replacing composite restorations.

  7. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  8. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  9. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers.

    Science.gov (United States)

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1-7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8-11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. There was a significant difference (Pdesigns, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS(®) (1,806±165 N) and e.max(®) ZirPress (1,854±115 N) and the state-of-the-art design with VITA VM(®) 9 (1,849±150 N) demonstrated the highest mean fracture values. The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass-ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows

  10. Influence of bruxism on survival of porcelain laminate veneers.

    Science.gov (United States)

    Granell-Ruíz, Maria; Agustín-Panadero, Rubén; Fons-Font, Antonio; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda

    2014-09-01

    This study aims to determine whether bruxism and the use of occlusal splints affect the survival of porcelain laminate veneers in patients treated with this technique. Restorations were made in 70 patients, including 30 patients with some type of parafunctional habit. A total of 323 veneers were placed, 170 in patients with bruxism activity, and the remaining 153 in patients without it. A clinical examination determined the presence or absence of ceramic failure (cracks, fractures and debonding) of the restorations; these incidents were analyzed for association with bruxism and the use of splints. Analysis of the ceramic failures showed that of the 13 fractures and 29 debonding that were present in our study, 8 fractures and 22 debonding were related to the presence of bruxism. Porcelain laminate veneers are a predictable treatment option that provides excellent results, recognizing a higher risk of failure in patients with bruxism activity. The use of occlusal splints reduces the risk of fractures.

  11. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    Directory of Open Access Journals (Sweden)

    Mahmood DJH

    2016-02-01

    cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass–ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows differences between the milled veneers and over-pressed or built-up veneers, where the milled ones show numerically more veneer cracks and the other groups only show complete connector fractures. Keywords: all-ceramic FDPs, connector design radius, state-of-the-art, CAD/CAM, multilayer technique, veneering ceramic techniques

  12. Damage Maps of Veneered Zirconia under Simulated Mastication

    Science.gov (United States)

    Kim, Jae-Won; Kim, Joo-Hyung; Janal, Malvin N.; Zhang, Yu

    2016-01-01

    Zirconia based restorations often fracture from chipping and/or delamination of the porcelain veneers. We hypothesize that veneer chipping/delamination is a result of the propagation of near-contact induced partial cone cracks on the occlusal surface under mastication. Masticatory loading involves the opposing tooth sliding along the cuspal inner incline surface with an applied biting force. To test this hypothesis, flat porcelain veneered zirconia plates were cemented to dental composites and cyclically loaded (contact–slide–liftoff) at an inclination angle as a simplified model of zirconia based restorations under occlusion. In the light of in-situ observation of damage evolution in a transparent glass/zirconia/polycarbonate trilayer, postmortem damage evaluation of porcelain/zirconia/composite trilayers using a sectioning technique revealed that deep penetrating occlusal surface partial cone fracture is the predominant fracture mode of porcelain veneers. Clinical relevance is discussed. PMID:19029080

  13. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    Science.gov (United States)

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (pgrinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its

  14. Influence of various bonding techniques on the fracture strength of thin CAD/CAM-fabricated occlusal glass-ceramic veneers.

    Science.gov (United States)

    Yazigi, Christine; Kern, Matthias; Chaar, Mohamed Sad

    2017-11-01

    To evaluate the efficiency of immediate dentin sealing and the effects of different bonding protocols on the fracture strength of CAD/CAM occlusal veneers bonded to exposed dentin. Ninety-six extracted maxillary premolars were initially divided into three main groups with 32 specimens each: without immediate dentin sealing, immediate dentin sealing/total etching and immediate dentin sealing/selective etching. Teeth were identically prepared in the dentin to receive occlusal veneers of 0.8mm thickness, milled from lithium disilicate ceramic blocks (IPS e.max CAD). Each main group was later subdivided, according to the pre-cementation surface etching protocol (total/selective), into two subgroups with 16 specimens each. All restorations were adhesively bonded using a resin cement (Variolink Esthetic). Half of the specimens of each subgroup were subjected to thermo-dynamic loading in a chewing simulator with 1,200,000 cycles at 10kg load. The other half and the surviving specimens were subjected to quasi-static loading until failure. Statistical analysis was performed using three-way ANOVA and Tukey's post-hoc tests. All specimens except one survived the artificial aging. A significantly higher fracture strength of restorations (p ≤ 0.001) was obtained when immediate dentin sealing was followed regardless of the etching method with values ranging from a minimum of 1122 ± 336N to a maximum of 1853 ± 333N. Neither the pre-cementation treatment nor the artificial aging had a statistical significant effect on the fracture strength. Immediate dentin sealing protocol is recommended whenever dentin is exposed during the preparation for thin glass-ceramic occlusal veneers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Interface bond and compatibility between GI-II glass/alumina composite and Vitadur alpha veneering porcelain].

    Science.gov (United States)

    Meng, Yukun; Chao, Yonglie; Liao, Yunmao

    2002-01-01

    Multiple layer techniques were commonly employed in fabricating all-ceramic restorations. Bond and compatibility between layers were vitally important for the clinical success of the restorations. The purposes of this study were to investigate the bond of the interface between the GI-II glass/alumina composite and Vitadur alpha veneering porcelain, and to study the thermal compatibility between them. Prepared a bar shaped specimen of GI-II glass/alumina composite 25 mm x 5 mm x 1 mm in size, with bottom surface pre-notched. The upper surface was veneered with Vitadur alpha veneering porcelain (0.2 mm opaque dentin and 0.6 mm dentin porcelain), then fractured and the fracture surface were examined under scanning electron microscope (SEM) and electron microprobe analyzer (EMPA) with electron beam of 10 micrometer in diameter; ten all-ceramic single crowns for an upper right central incisor were fabricated and the temperatures of thermal shock resistance were tested. SEM observation showed tight bond between the composite and the porcelain; The results of EMPA showed that penetration of Na, Al elements from glass/alumina into veneering porcelain and Si, K, Ca elements from veneering porcelain into glass/alumina occurred after sintering baking; The temperature of thermal shock resistance for anterior crowns in this study was 158 +/- 10.3 degrees C, cracks were mainly distributed in veneering porcelain with thicker layer. Chemical bond exists between the GI-II glass/alumina composite and Vitadur alpha veneering porcelain, and there is good thermal compatibility between them.

  16. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    International Nuclear Information System (INIS)

    Diniz, Alexandre C.; Nascimento, Rubens M.; Souza, Julio C.M.; Henriques, Bruno B.; Carreiro, Adriana F.P.

    2014-01-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  17. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Alexandre C. [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil); Nascimento, Rubens M. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Souza, Julio C.M. [Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Henriques, Bruno B. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Carreiro, Adriana F.P., E-mail: adrianadafonte@hotmail.com [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil)

    2014-05-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  18. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    Science.gov (United States)

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Evaluation of a novel multiple phase veneering ceramic.

    Science.gov (United States)

    Sinthuprasirt, Pannapa; van Noort, Richard; Moorehead, Robert; Pollington, Sarah

    2015-04-01

    To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness. A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure. Chemical solubility, biaxial flexural strength (BFS), fracture toughness, hardness, total transmittance and coefficient of thermal expansion (CTE) were all measured in comparison to a commercial veneering ceramic (VITA VM9). Thermal shock resistance of the leucite-diopside and VITA VM9 veneered onto a commercial high strength zirconia (Vita In-Ceram YZ) was also assessed. Statistical analysis was undertaken using Independent Samples t-test. Weibull analysis was employed to examine the reliability of the strength data. The mean chemical solubility was 6 μg/cm(2) for both ceramics (P=1.00). The mean BFS was 109 ± 8 MPa for leucite-diopside ceramic and 79 ± 11 MPa for VITA VM9 ceramic (P=0.01). Similarly, the leucite-diopside ceramic demonstrated a significantly higher fracture toughness and hardness. The average total transmittance was 46.3% for leucite-diopside ceramic and 39.8% for VITA VM9 (P=0.01). The leucite-diopside outperformed the VITA VM9 in terms of thermal shock resistance. Significance This novel veneering ceramic exhibits significant improvements in terms of mechanical properties, yet retains a high translucency and is the most appropriate choice as a veneering ceramic for a zirconia base core material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Science.gov (United States)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  1. Influence of thermal expansion mismatch on residual stress profile in veneering ceramic layered on zirconia: Measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Najjar, Achref; Jakubowicz-Kohen, Boris D; Sadoun, Michaël J

    2015-09-01

    Mismatch in thermal expansion coefficient between core and veneering ceramic (Δα=αcore-αveneer, ppm/°C) is reported as a crucial parameter influencing veneer fractures with Yttria-tetragonal-zirconia-polycrystal (Y-TZP) prostheses, which still constitutes a misunderstood problem. However, the common positive Δα concept remains empirical. The objective of this study is to investigate the Δα dependence of residual stress profiles in veneering ceramic layered on Y-TZP frameworks. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 0.7mm thick Y-TZP framework and a 1.5mm thick veneer layer. 3 commercial and 4 experimental veneering ceramics (n=3 per group) were used to obtain different Δα varying from -1.3ppm/°C to +3.2ppm/°C, which were determined by dilatometric analyses. Veneer fractures were observed in samples with Δα≥+2.3 or ≤-0.3ppm/°C. Residual stress profiles measured in other groups showed compressive stresses in the surface, these stresses decreasing with depth and then becoming more compressive again near the interface. Small Δα variations were shown to induce significant changes in residual stress profiles. Compressive stress near the framework was found to decrease inversely to Δα. Veneer CTE close to Y-TZP (+0.2ppm/°C Δα) gived the most favorable stress profile. Yet, near the framework, Δα-induced residual stress varied inversely to predictions. This could be explained by the hypothesis of structural changes occurrence within the Y-TZP surface. Consequently, the optimum Δα value cannot be determined before understanding Y-TZP's particular behavior when veneered. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    International Nuclear Information System (INIS)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T; Padipatvuthikul, P

    2011-01-01

    Silicon nitride (Si 3 N 4 ) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si 3 N 4 ceramic as a dental core material. The white Si 3 N 4 was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si 3 N 4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si 3 N 4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder ( 2 O 3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si 3 N 4 specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10 -6 deg. C -1 , rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  3. Wettability and Impact Performance of Wood Veneer/Polyester Composites

    Directory of Open Access Journals (Sweden)

    Shayesteh Haghdan

    2015-07-01

    Full Text Available Fiber-reinforced thermosetting composites have been of interest since the 1940s due to their ease of use in processing, fast curing times, and high specific stiffness and strength. While the use of plant fibers in a polyester matrix has been thoroughly studied, only limited information is available regarding using wood as reinforcement. In this study, composites of thin wood veneer and a polyester matrix were made and the difficulties in the lamination and curing processes were investigated. Sheets of Douglas fir, maple, and oak veneers using a catalyzed polyester resin were assembled as unidirectional, balanced, and unbalanced cross-ply laminates. These were compared to control specimens using glass fiber as reinforcement. The impact properties of the samples, with respect to the laminate thicknesses, were characterized using a drop-weight impact tester. The wettability and surface roughness of unsanded and sanded wood veneers were also investigated. Results showed that Douglas fir cross-ply laminates had an impact energy equivalent to glass fiber laminates, making them an interesting alternative to synthetic fiber composites. Wood/polyester laminates absorbed a considerable amount of energy through a higher number of fracture modes. The balanced lay-up limited twisting of the wood/polyester composites. The lowest contact angle and highest wettability were observed in unsanded Douglas fir veneers.

  4. Fracture load of different crown systems on zirconia implant abutments.

    Science.gov (United States)

    Albrecht, T; Kirsten, A; Kappert, H F; Fischer, H

    2011-03-01

    The purpose of this study was to evaluate the fracture load of single zirconia abutment restorations using different veneering techniques and materials. The abutment restorations were divided into 6 groups with 20 samples each: test abutments (control group A), lithium disilicate ceramic crowns bonded on incisor abutments (group B), leucite ceramic crowns bonded on incisor abutments (group C), premolar abutments directly veneered with a fluor apatite ceramic (group D (layered) and group E (pressed)) and premolar abutments bonded with lithium disilicate ceramic crowns (group F). The fracture load of the restorations was evaluated using a universal testing machine. Half of each group was artificially aged (chewing simulation and thermocycling) before evaluating the fracture load with the exception of the test abutments. The fracture load of the test abutments was 705 ± 43N. Incisor abutments bonded with lithium disilicate or leucite ceramic crowns (groups B and C) showed fracture loads of about 580N. Premolar restorations directly veneered with fluor apatite ceramic (groups D and E) showed fracture loads of about 850N. Premolar restorations bonded with lithium disilicate ceramic crowns (group F) showed fracture loads of about 1850N. The artificial ageing showed no significant influence on the strength of the examined restorations. All ceramic crowns made of lithium disilicate glass-ceramic, adhesively bonded to premolar abutments showed the highest fracture loads in this study. However, all tested groups can withstand physiological bite forces. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Main Clinical Outcomes of Feldspathic Porcelain and Glass-Ceramic Laminate Veneers: A Systematic Review and Meta-Analysis of Survival and Complication Rates.

    Science.gov (United States)

    Morimoto, Susana; Albanesi, Rafael Borges; Sesma, Newton; Agra, Carlos Martins; Braga, Mariana Minatel

    2016-01-01

    The aim of this study was to perform a systematic review and meta-analysis based on clinical trials that evaluated the main outcomes of glass-ceramic and feldspathic porcelain laminate veneers. A systematic search was carried out in Cochrane and PubMed databases. From the selected studies, the survival rates for porcelain and glass-ceramic veneers were extracted, as were complication rates of clinical outcomes: debonding, fracture/chipping, secondary caries, endodontic problems, severe marginal discoloration, and influence of incisal coverage and enamel/dentin preparation. The Cochran Q test and the I(2) statistic were used to evaluate heterogeneity. Out of the 899 articles initially identified, 13 were included for analysis. Metaregression analysis showed that the types of ceramics and follow-up periods had no influence on failure rate. The estimated overall cumulative survival rate was 89% (95% CI: 84% to 94%) in a median follow-up period of 9 years. The estimated survival for glass-ceramic was 94% (95% CI: 87% to 100%), and for feldspathic porcelain veneers, 87% (95% CI: 82% to 93%). The meta-analysis showed rates for the following events: debonding: 2% (95% CI: 1% to 4%); fracture/chipping: 4% (95% CI: 3% to 6%); secondary caries: 1% (95% CI: 0% to 3%); severe marginal discoloration: 2% (95% CI: 1% to 10%); endodontic problems: 2% (95% CI: 1% to 3%); and incisal coverage odds ratio: 1.25 (95% CI: 0.33 to 4.73). It was not possible to perform meta-analysis of the influence of enamel/dentin preparation on failure rates. Glass-ceramic and porcelain laminate veneers have high survival rates. Fracture/ chipping was the most frequent complication, providing evidence that ceramic veneers are a safe treatment option that preserve tooth structure.

  6. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Energy Technology Data Exchange (ETDEWEB)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Padipatvuthikul, P, E-mail: raayaa_chula@hotmail.com [Faculty of Dentistry, Srinakharinwirot University, Bangkok (Thailand)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si{sub 3}N{sub 4} ceramic as a dental core material. The white Si{sub 3}N{sub 4} was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si{sub 3}N{sub 4} ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si{sub 3}N{sub 4} specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y{sub 2}O{sub 3} - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si{sub 3}N{sub 4} specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10{sup -6} deg. C{sup -1}, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  7. Effect of core/veneer thickness ratio and veneer translucency on absolute and relative translucency of CAD-On restorations

    Directory of Open Access Journals (Sweden)

    Mennatallah Mohie el-Din Wahba, (BDS, MSc

    2017-06-01

    Conclusions: Only veneer translucency had significant effect over contrast ratio values, while on the other hand, absolute translucency values were significantly affected by the core/veneer thickness ratio, veneer translucency and interaction between them. It was clear that absolute translucency measurements showed higher translucency values for the restorations than contrast ratio measurements.

  8. Arab Societal Awareness of Dental Veneers.

    Science.gov (United States)

    Alfouzan, Afnan; Al-Sanie, Aisha A; Al-Dhafiri, Reem A

    2018-03-01

    The aim of this study is to assess the Arab society's knowledge, awareness, and attitudes toward dental veneers. A cross-sectional study was performed by collecting data through an online questionnaire created using the Survey Monkey website and distributed among Middle Eastern societies through social media to ascertain participants' knowledge and awareness regarding dental veneers. The sample included Arab laypeople who were over 18 years old, to represent the awareness of the majority regarding dental veneers. The sample of this study included 1,332 subjects from different Middle Eastern nationalities, mainly Saudis, Kuwaitis, and Emiratis (15.6% of males and 84.4% of females). The results of this study showed that the total knowledge of dental veneers is 50.12%. The respondents with the highest level of knowledge acquired their information mainly from newspapers and magazines, followed by the Internet, then dentists, then social media, and, finally, friends and relatives. Cost was the only factor limiting 38.4% of subjects from receiving veneers, and 56% of the subjects would receive veneers if they were free of cost. In total, 72.6% of the respondents believed that veneers are currently overused. The knowledge and awareness of dental veneers were below a satisfactory level. Participants who relied on social media as a source of information had lower knowledge levels. This study emphasized the need for continual societal education regarding dental veneers.

  9. Fracture Resistance of Ceramic Laminate Veneers Bonded to Teeth with Class V Composite Fillings after Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Leyla Sadighpour

    2018-01-01

    Full Text Available Purpose. Porcelain laminate veneers (PLVs are sometimes required to be used for teeth with composite fillings. This study examined the fracture strength of PLVs bonded to the teeth restored with different sizes of class V composite fillings. Materials and Methods. Thirty-six maxillary central incisors were divided into three groups (n=12: intact teeth (control and teeth with class V composite fillings of one-third or two-thirds of the crown height (small or large group, resp.. PLVs were made by using IPS e.max and bonded with a resin cement (RelyX Unicem. Fracture resistance (N was measured after cyclic loading (1 × 106 cycles, 1.2 Hz. For statistical analyses, one-way ANOVA and Tukey test were used (α=0.05. Results. There was a significant difference between the mean failure loads of the test groups (P=0.004, with the Tukey-HSD test showing lower failure loads in the large-composite group compared to the control (P=0.02 or small group (P=0.05. The control and small-composite groups achieved comparable results (P>0.05. Conclusions. Failure loads of PLVs bonded to intact teeth and to teeth with small class V composite fillings were not significantly different. However, extensive composite fillings could compromise the bonding of PLVs.

  10. A comparative study of progressive wear of four dental monolithic, veneered glass-ceramics.

    Science.gov (United States)

    Zhang, Zhenzhen; Yi, Yuanping; Wang, Xuesong; Guo, Jiawen; Li, Ding; He, Lin; Zhang, Shaofeng

    2017-10-01

    This study evaluated the wear performance and wear mechanisms of four dental glass-ceramics, based on the microstructure and mechanical properties in the progressive wear process. Bar (N = 40, n = 10) and disk (N = 32, n = 8) specimens were prepared from (A) lithium disilicate glass-ceramic (LD), (B) leucite reinforced glass-ceramic (LEU), (C) feldspathic glass-ceramic (FEL), and (D) fluorapatite glass-ceramic (FLU). The bar specimens were tested for three-point flexural strength, hardness, fracture toughness and elastic modulus. The disk specimens paired with steatite antagonists were tested in a pin-on-disk tribometer with 10N up to 1000,000 wear cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 200,000 wear cycles. Wear loss of steatite antagonists was calculated by measuring the weight and density using sensitive balance and Archimedes' method. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). The crystalline phase compositions were determined using X-ray diffraction (XRD). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pair-wise comparison of means was performed by Tukey's post-hoc test. LD showed the highest fracture toughness, flexural strength, elastic modulus and crystallinity, followed by LEU and FEL, and FLU showed the lowest. However, the hardness of LD was lower than all the other three types of ceramics. For steatite antagonists, LD produced the least wear loss of antagonist, followed by LEU and FEL, and FLU had the most wear loss. For glass-ceramic materials, LD exhibited similar wear loss as LEU, but more than FLU and FEL did. Moreover, fracture occurred on the wear surface of FLU. In the progressive wear process, veneering porcelains showed better wear resistance but fluorapatite veneering porcelains appeared fracture surface. Monolithic lithium disilicate glass-ceramics with higher mechanical properties showed more wear loss, however

  11. Effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain.

    Science.gov (United States)

    Li, Kai Chun; Waddell, J Neil; Prior, David J; Ting, Stephanie; Girvan, Liz; van Vuuren, Ludwig Jansen; Swain, Michael V

    2013-11-01

    To investigate the effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain. The strain energy release rate using a four-point bending stable fracture test was evaluated for two different porcelains [leucite containing (VM9) and glass (Zirox) porcelain] veneered to zirconia. Prior to veneering the zirconia had been subjected to 0 (control), 1, 5, 10 and 20 autoclave cycles. The specimens were manufactured to a total bi-layer dimension of 30 mm × 8 mm × 3 mm. Subsequent scanning electron microscopy/energy dispersive spectrometry, electron backscatter diffraction and X-ray diffraction analysis were performed to identify the phase transformation and fracture behavior. The strain energy release rate for debonding of the VM9 specimens were significantly higher (pautoclave cycles lowered the strain energy release rate significantly (pautoclave cycles between 5 and 20. The monoclinic phase reverted back to tetragonal phase after undergoing conventional porcelain firing cycles. EBSD data showed significant changes of the grain size distribution between the control and autoclaved specimen (cycle 20). Increasing autoclave cycles only significantly decreased the adhesion of the VM9 layered specimens. In addition, a conventional porcelain firing schedule completely reverted the monoclinic phase back to tetragonal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  13. Production of laminated veneer lumber LVL using veneer of Schizolobium amazonicum, Eucalyptus saligna and Pinus taeda

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2010-12-01

    Full Text Available This research evaluated the quality of laminated veneer lumber - LVL manufactured with veneers of Schizolobium amazonicum (paricá, Eucalyptus saligna and Pinus taeda. The LVL panels were manufactured in the laboratory conditions composed by seven veneers, 2,0 mm thickness, with different structural compositions, using phenol-formaldehyde resin. The veneers of Schizolobium amazonicum- paricá- were pre-classified by using stress wave machine. The veneers of Eucalyptus saligna and Pinus taeda were disposed in the face layer to reinforce the structural strength of LVL panels. The LVL quality was evaluated using glue line shear strength and static bending test (MOE and MOR, edge and flat. Grading of paricá veneers based on MOEd did not affected significantly the results of the glue line shear strength and MOE and MOR edge. For the MOE and MOR flat, the use of veneers of MOEd grade 1 contributed significantly to increasing the average values of these properties. In the same way, using the Eucalyptus saligna veneers on the face of LVL resulted in higher average values of MOE and MOR, edge and flat.

  14. Role of core support material in veneer failure of brittle layer structures.

    Science.gov (United States)

    Hermann, Ilja; Bhowmick, Sanjit; Lawn, Brian R

    2007-07-01

    A study is made of veneer failure by cracking in all-ceramic crown-like layer structures. Model trilayers consisting of a 1 mm thick external glass layer (veneer) joined to a 0.5 mm thick inner stiff and hard ceramic support layer (core) by epoxy bonding or by fusion are fabricated for testing. The resulting bilayers are then glued to a thick compliant polycarbonate slab to simulate a dentin base. The specimens are subjected to cyclic contact (occlusal) loading with spherical indenters in an aqueous environment. Video cameras are used to record the fracture evolution in the transparent glass layer in situ during testing. The dominant failure mode is cone cracking in the glass veneer by traditional outer (Hertzian) cone cracks at higher contact loads and by inner (hydraulically pumped) cone cracks at lower loads. Failure is deemed to occur when one of these cracks reaches the veneer/core interface. The advantages and disadvantages of the alumina and zirconia core materials are discussed in terms of mechanical properties-strength and toughness, as well as stiffness. Consideration is also given to the roles of interface strength and residual thermal expansion mismatch stresses in relation to the different joining methods. Copyright 2006 Wiley Periodicals, Inc.

  15. Cyclic testing of porcelain laminiate veneers on superficial enamel and dentin: Pressed vs. conventional layered porcelain

    Science.gov (United States)

    Tawde, Shweta

    specimens were fabricated with making a wax-up of the required dimensions and pressing them in the Programmat 5000 system after sprueing and investing them. After all the 40 veneers were checked for internal fit and margins/edges, they were cemented with Variolink Veneer luting cement. Prior to that, the veneers and teeth were prepared for cementation with IPS Ceramic Etching gel and Monobond S and teeth were prepared with Total Etch and ExciTE bond. A thin coat of Rubber separating medium was applied on the root surface of the teeth to simulate the periodontal ligament. Teeth were mounted in Resin rock at 45°. Cyclic loading on an Instron 5848 testing machine was performed. Compressive loading was applied in a cyclical manner using a ramp waveform at a rate of 50N/s. Failure was defined as a crack in the veneer, a crack in the tooth of the veneer, delamination or fracture lines on the veneer/tooth surface. For the first 1000 cycles, the maximum amplitude of the loading was 50N.If the construct survived, another 1000 cycles of loading were applied, using maximum amplitude of 100N. Energy to Failure evaluation was conducted to evaluate the amount of energy the construct absorbed before it failed. All specimens were classified as to whether they survived 2000 cycles of loading, failed during the 100N cyclic loading, or failed during the 50 N cyclic loading. Results: A total of 33 specimens were included in the study. 7 specimens showed catastrophic failure in the initial phases of setting-up the testing parameters on the Instron machine. Mean survivability was higher for the stackable material than the pressed material, and for the veneers attached to enamel than to dentin. When only the material was considered, there was a statistically significant difference between the two groups (p=0.032) in terms of overall survivability with more of the stackable veneers surviving the testing. When the element of veneer thickness is added to the data analysis, failure mode analysis

  16. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Veneer industry and timber use, North Central Region, 1980.

    Science.gov (United States)

    James E. Blyth; W. Brad Smith

    1984-01-01

    Shows 1980 veneer-log production and receipts by species in the Lake State (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with similar data collected in 1976. Includes tables showing veneer-log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the...

  18. Veneer-log production and receipts, North Central Region, 1976.

    Science.gov (United States)

    James E. Blyth; Jerold T. Hahn

    1978-01-01

    Shows 1976 veneer-log production and receipts by species in the Lake States (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with similar data for 1974. Includes tables showing veneer-log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the Central...

  19. Veneer-log production and receipts, North Central Region, 1974.

    Science.gov (United States)

    James E. Blyth; Jerold T. Hahn

    1976-01-01

    Shows 1974 veneer-log production and receipts by species in the Lake States (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with similar data for 1972. Includes tables showing veneer-log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the Central...

  20. Survival of ceramic veneers made of different materials after a minimum follow-up period of five years: a systematic review and meta-analysis.

    Science.gov (United States)

    Petridis, Haralampos P; Zekeridou, Alkisti; Malliari, Maria; Tortopidis, Dimitrios; Koidis, Petros

    2012-01-01

    The purpose of this systematic review was to compare the survival and complication rates of ceramic veneers produced with different techniques and materials after a minimum follow-up time of 5 years. A literature search was conducted, using electronic databases, relevant references, citations and journal researching, for clinical studies reporting on the survival of ceramic veneers fabricated with different techniques and materials with a mean followup time of at least 5 years. The search period spanned from January 1980 up to October 2010. Event rates were calculated for the following complications associated with ceramic veneers: fracture, debonding, marginal discoloration, marginal integrity, and caries. Summary estimates, and 5-year event rates were reported. Comparison between subgroups of different materials, as well as statistical significance, was calculated using a mixed effects model. Nine studies were selected for final analysis over an initial yield of 409 titles. No study directly compared the incidence of complications between ceramic veneers fabricated from different materials. Four of the included studies reported on the survival of ceramic veneers made out of feldspathic ceramics; four studies were on glass-ceramic veneers and one study included veneers fabricated from both materials. The mean observation time ranged between 5 and 10 years. Overall, the 5-year complication rates were low, with the exception of studies reporting on extended ceramic veneers. The most frequent complication reported was marginal discoloration (9% at 5 years), followed by marginal integrity (3.9-7.7% at 5 years). There was no statistically significant difference in the event rates between the subgroups of different materials (feldspathic vs. glass-ceramic). The results of this systematic review showed that ceramic veneers fabricated from feldspathic or glass-ceramics have an adequate clinical survival for at least 5 years of clinical service, with very low complication

  1. Western hemlock as a veneer resource.

    Science.gov (United States)

    Thomas D. Fahey; Jr. Woodfin

    1982-01-01

    Presents recovery of veneer grade and volume from western hemlock from Oregon and Washington. Veneer grade recovery varied by grade and size of logs. Veneer volume recovered was about 45 percent of the cubic volume of the log and varied somewhat with log diameter.

  2. Fracture mode during cyclic loading of implant-supported single-tooth restorations

    DEFF Research Database (Denmark)

    Hosseini, Mandana; Kleven, Erik; Gotfredsen, Klaus

    2012-01-01

    restorations of zirconia abutment-retained crowns with zirconia copings veneered with glass-ceramics (n=8) and feldspathic ceramics (n=8). The control group was composed of 16 metal ceramic restorations of titanium abutment-retained crowns with gold alloy copings veneered with glass (n=8) and feldspathic...... ceramics (n=8). The palatal surfaces of the crowns were exposed to cyclic loading of 800 N with a frequency of 2 Hz, which continued to 4.2 million cycles or until fracture of the copings, abutments, or implants. The number of cycles and the fracture modes were recorded. The fracture modes were analyzed...

  3. Flexural properties of laminated veneer lumber manufactured from ultrasonically rated red maple veneer : a pilot study.

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Brian K. Brashaw; Steven A. Verhey; John W. Forsman; John R. Erickson

    2003-01-01

    The study described in this report was conducted to examine the flexural properties of laminated veneer lumber (LVL) manufactured from red maple veneer. Ultrasonically rated veneer, which was peeled from low value red maple saw-logs, was fabricated into 1/2-in.-(1.3-cm-) and 2-in.-(5-cm-) thick LVL billets. The flexural properties of the billets and of corresponding...

  4. [Preliminary study of bonding strength between diatomite-based dental ceramic and veneering porcelains].

    Science.gov (United States)

    Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min

    2015-04-01

    In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.

  5. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Yong-Seok Jang

    2018-01-01

    Full Text Available This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered on zirconia through heat press forming. Microtensile and crown fracture tests were conducted in order to evaluate, respectively, the bonding strength between the zirconia cores and heat pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of bilayered zirconia all-ceramic crowns. The role of lithium-disilicate spray-liner at the interface between zirconia and lithium-disilicate glass-ceramic veneers was investigated through surface and cross-sectional analyses. We confirmed that both the mean bonding strength between the zirconia ceramics and lithium-disilicate glass-ceramic veneers and the fracture strength of the liner-treated groups were significantly higher than those of the untreated groups, which resulted, on the one hand, from the chemical bonding at the interface of the zirconia and lithium-disilicate liner, and, on the other, from the existence of a microgap in the group not treated with liner.

  6. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques

    Science.gov (United States)

    Baldassarri, Marta; Zhang, Yu; Thompson, Van P.; Rekow, Elizabeth D.; Stappert, Christian F. J.

    2011-01-01

    Summary Objectives To compare fatigue failure modes and reliability of hand-veneered and over-pressed implant-supported three-unit zirconium-oxide fixed-dental-prostheses(FDPs). Methods Sixty-four custom-made zirconium-oxide abutments (n=32/group) and thirty-two zirconium-oxide FDP-frameworks were CAD/CAM manufactured. Frameworks were veneered with hand-built up or over-pressed porcelain (n=16/group). Step-stress-accelerated-life-testing (SSALT) was performed in water applying a distributed contact load at the buccal cusp-pontic-area. Post failure examinations were carried out using optical (polarized-reflected-light) and scanning electron microscopy (SEM) to visualize crack propagation and failure modes. Reliability was compared using cumulative-damage step-stress analysis (Alta-7-Pro, Reliasoft). Results Crack propagation was observed in the veneering porcelain during fatigue. The majority of zirconium-oxide FDPs demonstrated porcelain chipping as the dominant failure mode. Nevertheless, fracture of the zirconium-oxide frameworks was also observed. Over-pressed FDPs failed earlier at a mean failure load of 696 ± 149 N relative to hand-veneered at 882 ± 61 N (profile I). Weibull-stress-number of cycles-unreliability-curves were generated. The reliability (2-sided at 90% confidence bounds) for a 400N load at 100K cycles indicated values of 0.84 (0.98-0.24) for the hand-veneered FDPs and 0.50 (0.82-0.09) for their over-pressed counterparts. Conclusions Both zirconium-oxide FDP systems were resistant under accelerated-life-time-testing. Over-pressed specimens were more susceptible to fatigue loading with earlier veneer chipping. PMID:21557985

  7. UV curing of teak veneers for decorative panel

    International Nuclear Information System (INIS)

    Gatot Trimulyadi Rekso; Darsono

    1999-01-01

    The radiation curing of surface coating of teak veneers for decorative panels has been conducted by using ultra violet (UV) as radiation source. In this experiment teak wood veneer was use as a substrate. Epoxy acrylate (import product,) and unsaturated polyester (locally product) were used as coating materials after being added with difunctional monomer TPGDA, and photo-initiator darocur 1173 or irgacure 184. Irradiation was conducted using 80 watt/cm LTV source at conveyor speed of 3,0 m/min. Parameters observed were viscosity of coating materials, hardness, adhesion, appearance, abrasion and chemical resistance of cured films. In general the results showed that viscosity of the formulations based on epoxy acrylate and unsaturated polyester resin were effected by the storage. Film cured by LTV made of epoxy acrylate and unsaturated polyester on the teak veneer wood have the same adhesion and abrasion resistant properties but the hardness and chemical resistant of epoxy acrylate are better than unsaturated polyester. From the experiment result it can be concluded the unsaturated polyester (locally product) can be used as radiation curable material for coating teak veneer panels

  8. [Veneer computer aided design based on reverse engineering technology].

    Science.gov (United States)

    Liu, Ming-li; Chen, Xiao-dong; Wang, Yong

    2012-03-01

    To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.

  9. Fabrication of Hydrophobic Surface on Wood Veneer via Electroless Nickel Plating Combined with Chemical Corrosion

    Directory of Open Access Journals (Sweden)

    Zhaojun Tang

    2015-12-01

    Full Text Available Birch veneers were coated with Ni-P films by a combined process of KBH4 activation and electroless plating. The plated veneers were further chemically corroded to obtain hydrophobic surfaces on wood. The effect of chemical corrosion on the contact angle of the veneers was investigated. The hydrophobic veneers were characterized by X-ray photo electron spectroscopy (XPS, scanning electron microscopy (SEM, and X-ray diffraction (XRD. The surface contact angle of birch veneer before and after it was plated with Ni-P alloy coating was 41º and 121º, respectively. The contact angle reached 136.7º when the nickel-coated veneers were corroded in CuSO4 aqueous solution for 30 min. XPS analysis showed that Cu0 cluster doped with little CuO formed on the corroded surface of Ni-P alloy film after chemical corrosion. SEM and XRD showed that rough copper clusters formed on the surface of the wood veneer and revealed the reason of the surface hydrophobicity. This study provides a new pathway for fabricating hydrophobic wood.

  10. Influence of Thinning and Pruning on Southern Pine Veneer Quality

    Science.gov (United States)

    Mark D. Gibson; Terry R. Clason; Gary L. Hill; George A. Grozdits

    2002-01-01

    This paper presents the effects of intensive pine plantation management on veneer yields, veneer grade distribution and veneer MOE as measured by ultrasonic stress wave transmission (Metriguard). Veneer production trials were done at a commercial southern pine plywood plant to elucidate the effects of silvicultural treatments on veneer quality, yield, and modulus of...

  11. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  12. Porcelain veneer post-bonding crack repair by resin infiltration.

    Science.gov (United States)

    Gresnigt, Marco; Magne, Michel; Magne, Pascal

    Ceramic laminate veneer restorations are indicated in several clinical situations. Indirect restorations are usually chosen if the less-invasive options - bleaching, resin infiltration, or composite resin restorations - are not possible, or when it is too difficult to achieve an esthetically pleasing result in the long term. Bonded indirect partial restorations are highly dependent on their adhesive interface, as these thin restorations have a relatively low cohesive strength. Therefore, preservation of sound enamel, conditioning of the restorations and of the substrate, and luting procedures are of paramount importance for a successful outcome. Even when utmost care is taken during every step of the procedure, failures such as fractures, chipping, or marginal discoloration and defects sometimes occur. Only very few of these cases of failure are presented or are a subject of interest. In this case presentation, a fracture repair is performed using an infiltration technique with a resin composite material.

  13. Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling.

    Science.gov (United States)

    Fukushima, K A; Sadoun, M J; Cesar, P F; Mainjot, A K

    2014-02-01

    The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Study on Flexural Creep Parameters of Overlayed Particleboard by Natural and Melaminated Veneers

    Directory of Open Access Journals (Sweden)

    Abdollah Najafi

    2012-06-01

    Full Text Available In this study, effects of natural and artificial veneer on flexural creep behavior of particleboard was investigated. Particleboard panels were prepared from Pars Neopan industries with 660 kg/m3 density and then overlaid by natural and melamine veneers. Their creep behavior was compared to control particleboard. For evaluating maximum bending load in static flexural test, specimens were cut from panels according to ASTM D 1037 with dimensions of 370×50×16 mm. Then, The flexural creep tests at 20% and 40% of failure bending load was applied to test specimens. Results of flexural tests indicated that the MOR and MOE values of veneered particleboard were highest. Results of creep showed that levels of stresses are effective on all creep parameters, but showed less effect on relative creep. Also, creep parameters less effective on specimens overlaid by natural veneer.

  15. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    Science.gov (United States)

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  16. Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations

    Directory of Open Access Journals (Sweden)

    Massimo Marrelli

    2013-01-01

    Full Text Available Introduction. The mechanical strength and the surface hardness of commercially available yttrium-doped zirconia were investigated. Furthermore, a comparative study of eight different ceramic veneers, to be used for the production of two-layered all-ceramic restorative systems, was carried out. Materials and Methods. Four types of zirconia specimens were analyzed, according to a standard ISO procedure (ISO 6872. Besides, two-layered zirconia-veneer specimens were prepared for three-point bending tests. Results. A strong effect of the surface roughness on the mechanical strength of zirconia specimens was observed. Finally, a comparative study of eight commercially available veneering ceramics shows different modes of failure between the selected veneers. Conclusion. The results indicate that close attention should be paid to the preparation of zirconia-based crowns and bridges by CAD/CAM process, because surface roughness has an important effect on the mechanical strength of the material. Finally, the results of the mechanical tests on two-layered specimens represent an important support to the choice of the veneering ceramic.

  17. Evaluation of the retentive means, opacifiers and veneering materials for veneered crowns using 137 Cs

    International Nuclear Information System (INIS)

    Nour, A.M.; El-Sadeek; M.E.; Ramadan, F.A.; Eskander, M.

    1991-01-01

    The purpose of this investigation is to evaluate the best plastic veneering material, which affords initial sealing and adaptation to the metal backing. Cs chloride is used for this purpose. The effect of different retentive means, namely, under cuts, wire loops, stainless steel grills, and acrylic beads, as well as the effect of different opaquers were studied. The influence of time factor and changing temperature was considered as well. The results obtained showed the following: 1- A quantitative method for the evaluation of micro leakage is essential parallel to the semiquantitative one. 2- The tested opaquer exhibits a better sealing ability. 3- The leakage increases significantly by temperature cycling, and by time duration with all the veneering materials tested. Composite is the least leak-sensitive material to changes in temperature. 4- Beads offered the best means of retention, to obtain the best sealing qualities.1 tab., 2 fig

  18. Defining Hardwood Veneer Log Quality Attributes

    Science.gov (United States)

    Jan Wiedenbeck; Michael Wiemann; Delton Alderman; John Baumgras; William Luppold

    2004-01-01

    This publication provides a broad spectrum of information on the hardwood veneer industry in North America. Veneer manufacturers and their customers impose guidelines in specifying wood quality attributes that are very discriminating but poorly defined (e.g., exceptional color, texture, and/or figure characteristics). To better understand and begin to define the most...

  19. Simplified treatment of severe dental erosion with ultrathin CAD-CAM composite occlusal veneers and anterior bilaminar veneers.

    Science.gov (United States)

    Schlichting, Luís Henrique; Resende, Tayane Holz; Reis, Kátia Rodrigues; Magne, Pascal

    2016-10-01

    Restorative treatment for patients with dental erosion requires an analysis of the degree of structural damage. Patients affected by moderate to severe dental erosion are particularly challenging because complex occlusal reconstruction will be needed. Ultrathin bonded occlusal veneers represent a conservative alternative to traditional onlays and complete coverage crowns for the treatment of severe erosion. This article describes a complete mouth rehabilitation with ultrathin computer-aided design and computer-aided manufacturing (CAD-CAM) composite resin occlusal veneers in a patient with a severely eroded dentition. In the maxillary anterior teeth, the bilaminar approach was chosen with lingual composite resin veneers and labial porcelain veneers. The main benefit of this approach is the possibility of using additive adhesive techniques, allowing only strategic reduction of sound dental structure or no preparation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. An indirect veneer technique for simple and esthetic treatment of anterior hypoplastic teeth

    Directory of Open Access Journals (Sweden)

    Amit Khatri

    2010-01-01

    Full Text Available This study describes a technique for treating anterior hypoplastic teeth using indirect nanocomposite veneer restoration. The prime advantage of an indirect veneer technique is that it provides an esthetic and conservative result. One of the most frequent reasons that patients seek dental care is discolored anterior teeth. Although treatment options such as removal of surface stains, bleaching, microabrasion or macroabrasion, veneering, and placement of porcelain crowns are available, conservative approach such as veneer preserves the natural tooth as much as possible. Full veneers are recommended for the restoration of localized defects or areas of intrinsic discoloration, which are caused by deeper internal stains or enamel defects. Indirectly fabricated veneers are much less sensitive compared to a operator′s technique and if multiple teeth are to be veneered, indirect veneers can be usually placed much more expeditiously. Indirect veneers last much longer than the direct veneers. Therefore, indirectly fabricated veneers are more advantageous than directly fabricated veneers in many cases.

  1. Six-year follow-up with Empress veneers.

    Science.gov (United States)

    Fradeani, M

    1998-06-01

    This study reports on 6 years experience with IPS Empress laminate veneers. A total of 83 anterior veneers were positioned in 21 patients from January 1991 to December 1996 in the author's private practice. Final evaluation was carried out in May and June 1997. Color match, marginal discoloration, recurrent caries, contour, and marginal integrity were evaluated using the modified U.S. Public Health Service criteria at baseline and subsequent recall appointments. On the basis of the criteria used, a large percentage of veneers were rated Alfa. Only one failure was recorded, resulting in a success rate of 98.8%. A thorough description of clinical procedures and laboratory techniques through which anterior teeth can be successfully treated with ceramic veneers is supplied. A clinical case is presented to demonstrate the satisfactory esthetic results obtained using this very conservative restorative technique.

  2. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.

    Science.gov (United States)

    Kanat, Burcu; Cömlekoğlu, Erhan M; Dündar-Çömlekoğlu, Mine; Hakan Sen, Bilge; Ozcan, Mutlu; Ali Güngör, Mehmet

    2014-08-01

    The objectives of this study were to evaluate the fracture resistance (FR), flexural strength (FS), and shear bond strength (SBS) of zirconia framework material veneered with different methods and to assess the stress distributions using finite element analysis (FEA). Zirconia frameworks fabricated in the forms of crowns for FR, bars for FS, and disks for SBS (N = 90, n = 10) were veneered with either (a) file splitting (CAD-on) (CD), (b) layering (L), or (c) overpressing (P) methods. For crown specimens, stainless steel dies (N = 30; 1 mm chamfer) were scanned using the labside contrast spray. A bilayered design was produced for CD, whereas a reduced design (1 mm) was used for L and P to support the veneer by computer-aided design and manufacturing. For bar (1.5 × 5 × 25 mm(3) ) and disk (2.5 mm diameter, 2.5 mm height) specimens, zirconia blocks were sectioned under water cooling with a low-speed diamond saw and sintered. To prepare the suprastructures in the appropriate shapes for the three mechanical tests, nano-fluorapatite ceramic was layered and fired for L, fluorapatite-ceramic was pressed for P, and the milled lithium-disilicate ceramics were fused with zirconia by a thixotropic glass ceramic for CD and then sintered for crystallization of veneering ceramic. Crowns were then cemented to the metal dies. All specimens were stored at 37°C, 100% humidity for 48 hours. Mechanical tests were performed, and data were statistically analyzed (ANOVA, Tukey's, α = 0.05). Stereomicroscopy and scanning electron microscopy (SEM) were used to evaluate the failure modes and surface structure. FEA modeling of the crowns was obtained. Mean FR values (N ± SD) of CD (4408 ± 608) and L (4323 ± 462) were higher than P (2507 ± 594) (p mechanical tests, whereas a layering technique increased the FR when an anatomical core design was employed. File splitting (CAD-on) or layering veneering ceramic on zirconia with a reduced framework design may reduce ceramic chipping

  3. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  4. Veneered zirconia inlay-retained fixed dental prostheses: 10-Year results from a prospective clinical study.

    Science.gov (United States)

    Rathmann, Friederike; Bömicke, Wolfgang; Rammelsberg, Peter; Ohlmann, Brigitte

    2017-09-01

    The purpose of this study was to evaluate the 10-year clinical performance of zirconia-based inlay-retained fixed dental prostheses (IRFDP). For replacement of a molar in 27 patients, 30 IRFDP were luted by use of different cements, Panavia F (Kuraray Europe GmbH) or Multilink Automix (Ivoclar Vivadent GmbH), with use of inlay/inlay, inlay/full-crown, or inlay/partial-crown retainers for anchorage. Frameworks were milled from yttria-stabilized zirconia (IPS e.maxZirCAD; Ivoclar Vivadent GmbH) and fully veneered with pressable ceramic (IPS e.max ZirPress; Ivoclar Vivadent GmbH). Before luting, the IRFDP were silica-coated (Rocatec; 3M Espe) and silanized (Monobond S; Ivoclar Vivadent GmbH). Complications (for example, chipping or delamination of the veneering ceramic, debonding, secondary caries, endodontic treatment, and abutment tooth fracture) and failure were reported, by use of standardized report forms, 2 weeks, 6 months, and 1, 2, and 10 years after cementation. Statistical analysis included Kaplan-Meier survival and success (complication-free survival) and Cox regression analysis (α=0.05 for all). During the 10-year observation period, the complications most often observed were chipping of the veneer and debonding. Twenty-five restorations failed and one participant dropped out. Cumulative 10-year survival and success were 12.1% and 0%, respectively. The design of the retainer, use of a dental dam, choice of cement, and location in the dental arch had no statistically significant effect on the occurrence of complications. Use of fully veneered zirconia-based IRFDP with this technique cannot be recommended. A large incidence of complications and poor survival were observed for fully veneered zirconia-based IRFDP, revealing an urgent need for further design improvements for this type of restoration. This, again, emphasizes the need for testing of new restoration designs in clinical trials before implementation in general dental practice. Copyright © 2017

  5. Residual stress measurement in veneering ceramic by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Short-Term Prospective Clinical Evaluation of Monolithic and Partially Veneered Zirconia Single Crowns.

    Science.gov (United States)

    Bömicke, Wolfgang; Rammelsberg, Peter; Stober, Thomas; Schmitter, Marc

    2017-02-01

    The purpose of this study was to prospectively evaluate the short-term clinical performance and esthetics of monolithic and partially (i.e., facially) veneered zirconia single crowns (MZC and PZC, respectively). Between September 2011 and June 2013, 68 participants received 90 MZCs and 72 PZCs. Clinical study documentation was performed at crown cementation (baseline), at the 6-month follow-up, and then yearly thereafter using standardized report forms. Eight participants with 14 single crowns (eight MZCs and six PZCs) dropped out during clinical follow-up. Thus, 60 participants (28 male, mean age 62.5 ± 13.1 years) fitted with 82 MZCs and 66 PZCs were analyzed in February 2016 (Kaplan-Meier survival; mean observation time for the restorations 35.1 ± 6.3 months). Descriptive statistics were calculated for participants' and dentists' esthetic ratings on a numerical rating scale from 0 to 10 (0 = unacceptable color and shape; 10 = excellent color and shape). Complications were predominantly biological in nature. One PZC was affected by minor chipping. Cumulative 3-year failure-free survival was 98.5% (standard error (SE), 1.5%) for both MZCs and PZCs. Three-year cumulative complication-free survival (success) was 93.6% (SE 2.8%) for MZCs and 95.5% (SE 2.6%) for PZCs. Three-year cumulative fracture-free survival was 100% for MZCs and 98.5% (SE 1.5%) for PZCs. Crowns of both types were awarded high esthetic scores by participants and dentists. Monolithic and partially veneered zirconia crowns can be used clinically with excellent short-term survival and success and without compromising esthetic appearance. Longer-term follow-up is, however, desirable. During the observation time, both monolithic and partially veneered zirconia crowns showed an outstanding low technical complication rate: only one minor chipping and three losses of retention were observed. Additionally, esthetics was excellent. Based on these results the clinical use of this kind of

  7. Ultrathin CAD-CAM Ceramic Occlusal Veneers and Anterior Bilaminar Veneers for the Treatment of Moderate Dental Biocorrosion: A 1.5-Year Follow-Up.

    Science.gov (United States)

    Resende, T H; Reis, K R; Schlichting, L H; Magne, P

    2018-03-27

    Dental biocorrosion can produce a devastating impact on oral health. The restorative phase of the treatment should not cause additional damage of the remaining sound tooth structure. Ultrathin occlusal veneers are a conservative alternative to traditional onlays and complete crowns for the treatment of severe biocorrosive lesions. This strategy is explained in the present case report through a full-mouth rehabilitation of a patient with moderate biocorrosion. Maxillary anterior teeth were restored using the bilaminar technique (lingual direct composite veneers with labial ceramic veneers) and posterior teeth using ultrathin CAD-CAM ceramic occlusal veneers. The technical aspects required for the implementation of this new restorative design are presented with a special emphasis on the control of tooth preparation based on diagnostic wax-up, provisionalization, and the use of CAD-CAM technology.

  8. Advances in dental veneers: materials, applications, and techniques.

    Science.gov (United States)

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers.

  9. 3D-characterization of the veneer-zirconia interface using FIB nano-tomography.

    Science.gov (United States)

    Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme

    2013-02-01

    The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Masking ability of bi- and tri- laminate all-ceramic veneers on tooth-colored ceramic discs.

    Science.gov (United States)

    Farhan, Daniel; Sukumar, Smitha; von Stein-Lausnitz, Axel; Aarabi, Ghazal; Alawneh, Ahmad; Reissmann, Daniel R

    2014-01-01

    A predictable esthetic outcome is imperative when placing ceramic veneers. Discolored teeth pose a major challenge as sufficient material thickness is required to achieve a good esthetic result. There is limited evidence in the literature that compares the masking ability of multi-laminate veneers. The aim of this in-vitro study was to compare the masking ability of bi-laminate (BL) and tri-laminate (TL) all-ceramic veneers cemented on tooth-colored ceramic discs. A total of 40 veneers (shade A1, 10-mm diameter, 0.8-mm thick) were manufactured-20 BL veneers (0.4-mm pressable ceramic coping veneered with 0.4-mm thick enamel layer) and 20 TL veneers (0.4-mm coping veneered with 0.2-mm thick opaque interlayer and 0.2-mm thick enamel layer). A bonding apparatus was utilized to adhesively cement all veneers on the ceramic discs (shade A1), simulating teeth of light and dark color. The resulting groups (N = 10 each) were the reference groups (shade A1 ceramic base) BL-1 and TL-1 veneers, and the test groups (shade A4 ceramic base) BL-4 and TL-4 veneers. The color of the cemented veneers was measured using a spectrophotometer. The data were converted to CIE L*a*b* coordinates, and ΔE* were calculated to allow for statistical analysis. The color differences between the samples with the A1 and A4 ceramic bases were significantly lower when covered with TL veneers (mean ΔE*: 3.2 units) than with BL veneers (mean ΔE*: 4.0 units: p bi-laminate veneers. Patients with discolored/darker teeth may benefit from a more predictable esthetic result when teeth restored with tri-laminate rather than bi-laminate veneers. © 2014 Wiley Periodicals, Inc.

  11. The clinical microscope and direct composite veneer

    DEFF Research Database (Denmark)

    Pascotto, Renata C; Benetti, Ana Raquel

    2010-01-01

    This paper presents the advantages and limitations related to the use of a clinical microscope in restorative dentistry, and it demonstrates the aid of magnification during preparation and restoration of a direct composite veneer. Good illumination and visibility is important to adequately viewin...... the adjacent dental tissues so that the resin composite buildup can mimic natural teeth. The reproduction of details results in a naturally esthetic direct veneer....

  12. The Effect of Core and Veneering Design on the Optical Properties of Polyether Ether Ketone.

    Science.gov (United States)

    Zeighami, S; Mirmohammadrezaei, S; Safi, M; Falahchai, S M

    2017-12-01

    This study aimed to evaluate the effect of core shade and core and veneering thickness on color parameters and translucency of polyether ether ketone (PEEK). Sixty PEEK discs (0.5 and 1 mm in thickness) with white and dentine shades were veneered with A2 shade indirect composite resin with 0.5, 1 and 1.5 mm thickness (n=5). Cores without the veneering material served as controls for translucency evaluation. Color parameters were measured by a spectroradiometer. Color difference (ΔE₀₀) and translucency parameters (TP) were computed. Data were analyzed using one-way ANOVA and Tukey's test (for veneering thickness) and independent t-test (for core shade and thickness) via SPSS 20.0 (p⟨0.05). Regarding the veneering thickness, white cores of 0.5 mm thickness showed significant differences in all color parameters. In white cores of 1 mm thickness and dentine cores of 0.5 and 1 mm thickness, there were statistically significant differences only in L∗, a∗ and h∗. The mean TP was significantly higher in all white cores of 1 mm thickness than dentine cores of 1 mm. Considering ΔE₀₀=3.7 as clinically unacceptable, only three groups had higher mean ΔE₀₀ values. Core shade, core thickness, and the veneering thickness affected the color and translucency of PEEK restorations. Copyright© 2017 Dennis Barber Ltd.

  13. Influence of firing time and framework thickness on veneered Y-TZP discs curvature.

    Science.gov (United States)

    Jakubowicz-Kohen, Boris D; Sadoun, Michaël J; Douillard, Thierry; Mainjot, Amélie K

    2014-02-01

    The objective of the present work was to study the curvature of very thinly, veneered Y-TZP discs of different framework thicknesses submitted to different firing times. Fifteen 20-mm-wide Y-TZP discs were produced in three different thicknesses: 0.75, 1, 1.5mm. One disc from each group was left unveneered while the others were layered with a 0.1mm veneering ceramic layer. All discs underwent five firing cycles for a total cumulative firing time of 30 min, 1, 2, 5 and 10h at 900°C. The curvature profile was measured using a profilometer after the veneering process and after each firing cycle respectively. A fitted curve was then used to estimate the, curvature radius. The coefficient of thermal expansion (CTE) measurements were taken on veneering, ceramic and Y-TZP beam samples that underwent the same firing schedule. Those data were used to calculate the curvature generated by CTE variations over firing time. All bilayered samples exhibited a curvature that increased over firing time inversely to framework thickness. However non-veneered samples did not exhibit any curvature modification. The results of the present study reveal that even a very thin veneer layer (0.1mm) can induce a significant curvature of Y-TZP discs. The dilatometric results showed that Tg and CTE, variations are not sufficient to explain this curvature. A chemical-induced zirconia volume, augmentation located at the framework sub-surface near the interface could explain the sample, curvature and its increase with firing time. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Evaluation of veneer yields and grades from yellow-poplar, white oak, and sweetgum from the southeast

    Science.gov (United States)

    Robert H. McAlister

    1980-01-01

    Dry volume yields and standard grades of veneer are given for yellow-poplar, sweetgum, and white oak by tree diameter and location within the stem. Results show that the typical stands of mixed southern pine and hardwood timer yield enough veneer to utilize almost 90 percent of the stand volume in the production of COM-PLY lumber and panels

  15. [A preliminary study on the color effect of IPS Empress all-ceramic veneers].

    Science.gov (United States)

    Li, Zhi-yong; Cheng, Xiang-rong; Wang, Yi-ning

    2004-09-01

    To evaluate the opaquing capacity, color compatibility and stability of IPS Empress all-ceramic veneers. A total of 86 IPS Empress all-ceramic veneers were made for 18 patients. The patients were divided into three groups: Group A was tetracycline teeth, 64 veneers for 5 patients; Group B was non-tetracycline teeth, 22 veneers for 13 patients; Group C was 22 natural vital teeth with normal color as control group. Before and after veneers were inserted, ShadeEye NCC was employed to obtain L * a * b * values of each tooth. The values of cemented veneers used as the baseline, the L * a * b * values of each veneer were measured half a year, 1 year, and 2 years after restoration respectively. All L * a * b * values at different evaluation times were analyzed by SPSS 10.0. Before and after veneers were restored, the L * a * b * values of both Group A and Group B were significantly different, the color difference being 5.01 and 4.15 respectively. The color difference between Group A and selected shade guides was 2.45. Compared with the baseline value, the L * value of Group A significantly decreased 2 years after restoration, but the DeltaE of different evaluation times was not significantly different. The color difference between Group B and Group C was 0.22 and there was no significant color difference after restoration. IPS Empress all-ceramic veneers have excellent opaquing capacity, color compatibility and stability to non-tetracycline teeth. To tetracycline teeth IPS Empress all-ceramic veneers have a certain opaquing capacity, but they cannot completely match with shade guides; the L * value is significantly different after restoration and further studies are needed to evaluate its color effect.

  16. Interfacial Adhesion and Damping Characteristics of Laminated Veneer Lumber Intercalated with Rubber Sheets

    Directory of Open Access Journals (Sweden)

    Jingquan Han

    2016-06-01

    Full Text Available Laminated wood veneer lumber intercalated with rubber sheets (LLVR was fabricated using a layered adhesive system composed of polyaryl polymethylene isocyanate (PAPI for wood-rubber inter-bonding and phenol formaldehyde (PF resin to glue the wood veneers. The optimized manufacturing process (chloroprene rubber: CR; PAPI: 80 g/m2; PF: 200 g/m2; and silane: 9.0 wt.% was determined. The process as developed was then utilized to fabricate nine-ply LLVRs of five balanced constructions with two or three CR laminates used as various layers. The physico-mechanical properties of the LLVRs were evaluated, and the results showed that LLVRs had strong shear strength, sound dimensional stability, decent bending strength, and favorable toughening and buffering performances. The newly developed product is an interesting potential alternative to traditional laminated veneer lumber or plywood.

  17. Numerical simulation of hot-pressed veneer products: Forming - Spring back – Distortion

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Sandberg, Dick

    2007-01-01

    Customers demand very high quality of veneered furniture products with regard to surface appearance, shape stability and stiffness. To meet these requirements, it is important to improve the manufacturing process by a better understanding of the thermo-hygro-mechanical behaviour of the individual...... veneers. During the manufacture of strongly curved products, the veneers are exposed to large membrane and bending deformations and to high pressure in the radial fibre direction. When hot-press forming is used, the veneers are also exposed to a high surface temperature during the pressing time (curing...... time). These severe conditions can result in plastic deformation perpendicular to the veneer surface as well as mechano-sorptive strains in the curved regions, since the heating can have a significant influence on the moisture distribution. How strong an influence these factors have on the distortion...

  18. A Step-by-Step Conservative Approach for CAD-CAM Laminate Veneers

    Directory of Open Access Journals (Sweden)

    Gerardo Durán Ojeda

    2017-01-01

    Full Text Available The use of CAD/CAM technology has allowed the fabrication of ceramic restorations efficiently and with predictable results. Lithium disilicate is a type of glass ceramic material that can be used for the elaboration of laminate veneers, being monolithic restorations which require characterization through a covering ceramic in order to achieve acceptable esthetic results. The next case report shows a predictable clinical protocol for the rehabilitation of the anterior teeth through the preparation of CAD/CAM veneers (e.max CAD, Ivoclar Vivadent, Liechtenstein which have been characterized by a nanofluorapatite ceramic (e.max Ceram, Ivoclar Vivadent, Liechtenstein through the layering technique.

  19. [The effect of core veneer thickness ratio on the flexural strength of diatomite-based dental ceramic].

    Science.gov (United States)

    Jiang, Jie; Zhang, Xin; Gao, Mei-qin; Zhang, Fei-min; Lu, Xiao-li

    2015-06-01

    To evaluate the effect of different core veneer thickness ratios on the flexural strength and failure mode of bilayered diatomite-based dental ceramics. Diatomite-based dental ceramics blocks (16 mm×5.4 mm×1 mm) were sintered with different thickness of veneer porcelains: 0 mm (group A), 0.6 mm (group B), 0.8 mm (group C) and 1.0 mm (group D). Flexural strength was detected and scanning electron microscope was used to observe the interface microstructure. Statistical analysis was performed using SPSS 17.0 software package. With the increase of the thickness of the veneer porcelain, flexural strength of group C showed highest flexural strength up to (277.24±5.47) MPa. Different core veneer thickness ratios can significantly influence the flexural strength of bilayered diatomite-based dental ceramics. Supported by Science and Technology Projects of Nantong City (HS2013010).

  20. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  1. Effect of immediate and delayed dentin sealing on the fracture strength, failure type and Weilbull characteristics of lithiumdisilicate laminate veneers

    NARCIS (Netherlands)

    Gresnigt, Marco M.M.; Cune, Marco S.; de Roos, Joanne G.; Özcan, Mutlu

    OBJECTIVES: Adhesion on dentin is less reliable than on enamel, which could affect the durability of laminate veneers (LV). Immediate dentin sealing (IDS) is suggested instead of delayed dentin sealing (DDS) to overcome hypersensitivity and prevent debonding from dentin. This study evaluated the

  2. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-09-01

    The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Color management of porcelain veneers: influence of dentin and resin cement colors.

    Science.gov (United States)

    Dozic, Alma; Tsagkari, Maria; Khashayar, Ghazal; Aboushelib, Moustafa

    2010-01-01

    Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence of natural dentin and resin cement colors on final color match of porcelain veneers. A preselected shade tab (A1) was chosen as the target color for a maxillary central incisor, and its color parameters (L*a*b*) were measured using a digital spectrophotometer (SpectroShade, MHT). Nine natural dentin colors (Natural Die Material, Ivoclar Vivadent) representing a wide range of tooth colors were used to prepare resin replicas of the maxillary central incisor with a standard preparation for porcelain veneers. The prepared porcelain veneers (IPS Empress Esthetic, A1, 0.6 mm thick, Ivoclar Vivadent) were cemented on the resin dies (nine groups of natural dentin colors) using seven shades of resin cement (Variolink Veneers, Ivoclar Vivadent). The L*a*b* values of the cemented veneers were measured, and DE values were calculated against the preselected target color (A1). DE greater than 3.3 was considered as a significant color mismatch detectable by the human eye. The seven shades of resin cement had no significant influence on the final color of the veneers, as the measured DE values were almost identical for every test group. On the other hand, the color of natural dentin was a significant factor that influenced final color match. None of the 63 tested combinations (nine natural dentin colors and seven resin cement colors) produced an acceptable color match. Thin porcelain veneers cannot mask underlying tooth color even when different shades of resin cement are used. Incorporation of opaque porcelain (high chroma) may improve final color match.

  4. Three-unit posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with layered and milled (CAD-on) veneering ceramics: 1-year follow-up of a randomized controlled clinical trial.

    Science.gov (United States)

    Grohmann, Philipp; Bindl, Andreas; Hämmerle, Christoph; Mehl, Albert; Sailer, Irena

    2015-01-01

    The aim of this multicenter randomized controlled clinical trial was to test posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with a computer-aided design/computer- assisted manufacture (CAD/CAM) lithium disilicate veneering ceramic (CAD-on) and manually layered zirconia veneering ceramic with respect to survival of the FDPs, and technical and biologic outcomes. Sixty patients in need of one posterior three-unit FDP were included. The zirconia frameworks were produced with a CAD/CAM system (Cerec inLab 3D/Cerec inEOS inLab). Thirty FDPs were veneered with a CAD/CAM lithium disilicate veneering ceramic (Cad-on) (test) and 30 were veneered with a layered zirconia veneering ceramic (control). For the clinical evaluation at baseline, 6, and 12 months, the United States Public Health Service (USPHS) criteria were used. The biologic outcome was judged by comparing the plaque control record (PCR), bleeding on probing (BOP), and probing pocket depth (PPD). Data were statistically analyzed. Fifty-six patients were examined at a mean follow-up of 13.9 months. At the 1-year follow-up the survival rate was 100% in the test and in the control group. No significant differences of the technical outcomes occurred. Major chipping occurred in the control group (n = 3) and predominantly minor chipping in the test group (minor n = 2, major n = 1). No biologic problems or differences were found. Both types of zirconia-ceramic FDPs exhibited very good clinical outcomes without differences between groups. Chipping occurred in both types of FDPs at small amounts, yet the extension of the chippings differed. The test FDPs predominantly exhibited minor chipping, the control FDPs major chipping.

  5. Cervical and incisal marginal discrepancy in ceramic laminate veneering materials: A SEM analysis

    Directory of Open Access Journals (Sweden)

    Hemalatha Ranganathan

    2017-01-01

    Full Text Available Context: Marginal discrepancy influenced by the choice of processing material used for the ceramic laminate veneers needs to be explored further for better clinical application. Aims: This study aimed to evaluate the amount of cervical and incisal marginal discrepancy associated with different ceramic laminate veneering materials. Settings and Design: This was an experimental, single-blinded, in vitro trial. Subjects and Methods: Ten central incisors were prepared for laminate veneers with 2 mm uniform reduction and heavy chamfer finish line. Ceramic laminate veneers fabricated over the prepared teeth using four different processing materials were categorized into four groups as Group I - aluminous porcelain veneers, Group II - lithium disilicate ceramic veneers, Group III - lithium disilicate-leucite-based veneers, Group IV - zirconia-based ceramic veneers. The cervical and incisal marginal discrepancy was measured using a scanning electron microscope. Statistical Analysis Used: ANOVA and post hoc Tukey honest significant difference (HSD tests were used for statistical analysis. Results: The cervical and incisal marginal discrepancy for four groups was Group I - 114.6 ± 4.3 μm, 132.5 ± 6.5 μm, Group II - 86.1 ± 6.3 μm, 105.4 ± 5.3 μm, Group III - 71.4 ± 4.4 μm, 91.3 ± 4.7 μm, and Group IV - 123.1 ± 4.1 μm, 142.0 ± 5.4 μm. ANOVA and post hoc Tukey HSD tests observed a statistically significant difference between the four test specimens with regard to cervical marginal discrepancy. The cervical and incisal marginal discrepancy scored F = 243.408, P < 0.001 and F = 180.844, P < 0.001, respectively. Conclusion: This study concluded veneers fabricated using leucite reinforced lithium disilicate exhibited the least marginal discrepancy followed by lithium disilicate ceramic, aluminous porcelain, and zirconia-based ceramics. The marginal discrepancy was more in the incisal region than in the cervical region in all the groups.

  6. In situ polymerization of polyaniline in wood veneers.

    Science.gov (United States)

    Trey, Stacy; Jafarzadeh, Shadi; Johansson, Mats

    2012-03-01

    The present study describes the possibility to polymerize aniline within wood veneers to obtain a semi-conducting material with solid wood acting as the base template. It was determined that it is possible to synthesize the intrinsically conductive polymer (ICP) polyaniline in situ within the wood structure of Southern yellow pine veneers, combining the strength of the natural wood structure with the conductivity of the impregnated polymer. It was found that polyaniline is uniformly dispersed within the wood structure by light microscopy and FT-IR imaging. A weight percent gain in the range of 3-12 wt % was obtained with a preferential formation in the wood structure and cell wall, rather than in the lumen. The modified wood was found to be less hydrophilic with the addition of phosphate doped polyaniline as observed by equilibrium water swelling studies. While wood itself is insulating, the modified veneers had conductivities of 1 × 10(-4) to 1 × 10(-9) S cm(-1), demonstrating the ability to tune the conductivity and allowing for materials with a wide range of applications, from anti-static to charge-dispersing materials. Furthermore, the modified veneers had lower total and peak heat releases, as determined by cone calorimetry, because of the char properties of the ICP. This is of interest if these materials are to be used in building and furniture applications where flame retardance is of importance. © 2012 American Chemical Society

  7. Relationship between stress wave velocities of green and dry veneer

    Science.gov (United States)

    Brian K. Brashaw; Xiping Wang; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This paper evaluates the relationship between the stress wave velocities of green and dry southern pine and Douglas-fir veneers. A commercial stress wave timer and a laboratory signal analysis system were used to measure the transit time required for an induced stress wave to travel the longitudinal length of each veneer. Stress wave transit times were measured in the...

  8. Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic

    NARCIS (Netherlands)

    Siavikis, G.; Behr, M.; van der Zel, J.M.; Feilzer, A.J.; Rosentritt, M.

    2011-01-01

    Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of

  9. Shear bond strength of porcelain laminate veneers to enamel, dentine and enamel-dentine complex bonded with different adhesive luting systems.

    Science.gov (United States)

    Öztürk, Elif; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta

    2013-02-01

    The aim of this study was to evaluate the shear bond strength of porcelain laminate veneers to 3 different surfaces by means of enamel, dentine, and enamel-dentine complex. One hundred thirty-five extracted human maxillary central teeth were used, and the teeth were randomly divided into 9 groups (n=15). The teeth were prepared with 3 different levels for bonding surfaces of enamel (E), dentine (D), and enamel-dentine complex (E-D). Porcelain discs (IPS e.max Press, Ivoclar Vivadent) of 2mm in thickness and 4mm in diameter were luted to the tooth surfaces by using 2 light-curing (RelyX Veneer [RV], 3M ESPE; Variolink Veneer [VV], Ivoclar Vivadent) and a dual-curing (Variolink II [V2], Ivoclar Vivadent) adhesive systems according to the manufacturers' instructions. Shear bond strength test was performed in a universal testing machine at 0.5mm/min until bonding failure. Failure modes were determined under a stereomicroscope, and fracture surfaces were evaluated with a scanning electron microscope. The data were statistically analysed (SPSS 17.0) (p=0.05). Group RV-D exhibited the lowest bond strength value (5.42±6.6MPa). There was statistically no difference among RV-D, V2-D (13.78±8.8MPa) and VV-D (13.84±6.2MPa) groups (p>0.05). Group VV-E exhibited the highest bond strength value (24.76±8.8MPa). The type of tooth structure affected the shear bond strength of the porcelain laminate veneers to the 3 different types of tooth structures (enamel, dentine, and enamel-dentine complex). When dentine exposure is necessary during preparation, enough sound enamel must be protected as much as possible to maintain a good bonding; to obtain maximum bond strength, preparation margins should be on sound enamel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Yield and ultrasonic modulus of elasticity of red maple veneer

    Science.gov (United States)

    Robert J. Ross; Steven Verhey; John R. Erickson; John W. Forsman; Brian K. Brashaw; Crystal L. Pilon; Xiping Wang

    2004-01-01

    The purpose of the study was to assess the potential for using red maple sawlogs to manufacture laminated veneer lumber (LVL). The primary objective was to determine the yield of ultrasonically graded veneer from red maple logs. A sample of 48 logs was obtained from six Eastern and Lake States in the United States. The logs were visually graded and shipped to a plywood...

  11. Opalescence of all-ceramic core and veneer materials.

    Science.gov (United States)

    Cho, Moon-Sang; Yu, Bin; Lee, Yong-Keun

    2009-06-01

    The enamel of natural teeth is opalescent, where there is light scattering of the shorter wavelengths of the visible spectrum, giving a tooth a bluish appearance in the reflected color and an orange/brown appearance in the transmitted color. The objective of this study was to determine the opalescence of all-ceramic core, veneer and layered specimens with a color measuring spectrophotometer. Colors of core (A2-corresponding shade), veneer (A2- and A3-corresponding shades) and layered (A2- and A3-layered) ceramics for all-ceramic restorations in clinically relevant thicknesses were measured in the reflectance and transmittance modes. The opalescence parameter (OP), which was calculated as the difference in blue-yellow coordinate (Deltab(*)) and red-green coordinate (Deltaa(*)), and the differences in blue-yellow coordinate (Deltab(*)) and in color (DeltaE(ab)(*)) between the reflected and transmitted colors were calculated. One-way ANOVA was performed for the OP values of the core, veneer and layered specimens by the kind of materials. Regression analysis was performed between the OP and Deltab(*), and the OP and DeltaE(ab)(*) values. The range of the OP value was 1.6-6.1, 2.0-7.1, 1.3-5.0 and 1.6-4.2 for the core, veneer, A2- and A3-layered specimens, respectively, all of which were significantly influenced by the kind of materials (pOpalescence varied by kind of ceramics. The OP values of ceramics were lower than those of tooth enamel. All-ceramic materials that can simulate the opalescence of natural teeth should be developed.

  12. ESTIMATING THE SIZE OF LATE VENEER IMPACTORS FROM IMPACT-INDUCED MIXING ON MERCURY

    International Nuclear Information System (INIS)

    Rivera-Valentin, E. G.; Barr, A. C.

    2014-01-01

    Late accretion of a ''veneer'' of compositionally diverse planetesimals may introduce chemical heterogeneity in the mantles of the terrestrial planets. The size of the late veneer objects is an important control on the angular momenta, eccentricities, and inclinations of the terrestrial planets, but current estimates range from meter-scale bodies to objects with diameters of thousands of kilometers. We use a three-dimensional global Monte Carlo model of impact cratering, excavation, and ejecta blanket formation to show that evidence of mantle heterogeneity can be preserved within ejecta blankets of mantle-exhuming impacts on terrestrial planets. Compositionally distinct provinces implanted at the time of the late veneer are most likely to be preserved in bodies whose subsequent geodynamical evolution is limited. Mercury may have avoided intensive mixing by solid-state convection during much of its history. Its subsequent bombardment may have then excavated evidence of primordial mantle heterogeneity introduced by the late veneer. Simple geometric arguments can predict the amount of mantle material in the ejecta blanket of mantle-exhuming impacts, and deviations in composition relative to geometric predictions can constrain the length-scale of chemical heterogeneities in the subsurface. A marked change in the relationship between mantle and ejecta composition occurs when chemically distinct provinces are ∼250 km in diameter; thus, evidence of bombardment by thousand-kilometer-sized objects should be readily apparent from the variation in compositions of ejecta blankets in Mercury's ancient cratered terrains

  13. Relative translucency of six all-ceramic systems. Part II: core and veneer materials.

    Science.gov (United States)

    Heffernan, Michael J; Aquilino, Steven A; Diaz-Arnold, Ana M; Haselton, Debra R; Stanford, Clark M; Vargas, Marcos A

    2002-07-01

    STATEMENT OF PROBLEM All-ceramic core materials with various strengthening compositions have a range of translucencies. It is unknown whether translucency differs when all-ceramic materials are fabricated similarly to the clinical restoration with a veneered core material. This study compared the translucency of 6 all-ceramic materials veneered and glazed at clinically appropriate thicknesses. Core specimens (n = 5 per group) of Empress dentin, Empress 2 dentin, In-Ceram Alumina, In-Ceram Spinell, In-Ceram Zirconia, and Procera AllCeram were fabricated as described in Part I of this study and veneered with their corresponding dentin porcelain to a final thickness of 1.47 +/- 0.01 mm. These specimens were compared with veneered Vitadur Alpha opaque dentin (as a standard), a clear glass disc (positive control), and a high-noble metal-ceramic alloy (Porc. 52 SF) veneered with Vitadur Omega dentin (negative control). Specimen reflectance was measured with an integrating sphere attached to a spectrophotometer across the visible spectrum (380 to 700 nm); 0-degree illumination and diffuse viewing geometry were used. Measurements were repeated after a glazing cycle. Contrast ratios were calculated from the luminous reflectance (Y) of the specimens with a black (Yb) and a white backing (Yw) to give Yb/Yw with CIE illuminant D65 and a 2-degree observer function (0.0 = transparent, 1.0 = opaque). One-way analysis of variance and Tukey's multiple-comparison test were used to analyze the data (P<.05). Significant differences in contrast ratios were found among the ceramic systems tested when they were veneered (P<.0001) and after the glazing cycle (P<.0001). Significant changes in contrast ratios (P<.0001) also were identified when the veneered specimens were glazed. Within the limitations of this study, a range of translucency was identified in the veneered all-ceramic systems tested. Such variability may affect their ability to match natural teeth. The glazing cycle resulted

  14. [Effect of ceramic thickness and resin cement shades on final color of heat-pressed ceramic veneers].

    Science.gov (United States)

    Ren, D F; Zhan, K R; Chen, X D; Xing, W Z

    2017-02-09

    Objective: To analyze the effect of ceramic materials thickness and resin cement shades on the final color of ceramic veneers in the discolored teeth, and to investigate the color agreement of try-in pastes to the corresponding resin cements. Methods: Sixty artificial maxillary central incisor teeth (C2 shade) were used to simulate the natural discolored teeth and prepared according to veneer tooth preparation protocol. Veneers of different thickness in the body region (0.50 and 0.75 mm) were fabricated using ceramic materials (LT A2 shade, IPS e.max Press). The ceramic veneer specimens were bonded to the artificial teeth using the 6 shades of resin cements (Variolink Veneer: shades of LV-3, LV-2, HV+3; RelyX™ Veneer: shades of TR, A3, WO) ( n= 5). A clinical spectrophotometer was used to measure the color parameters of ceramic veneers at the cervical, body and incisal regions. Color changes of veneers before and after cementation were calculated and registered as ΔE1, and the changes between try-in paste and the corresponding resin cements were registered as ΔE2. Results: Three-way ANOVA indicated that ΔE1 and ΔE2 values were significantly affected by the ceramic thickness, resin cement shades and measuring regions ( Pceramic veneers were cemented with resin cements in shades of HV+3 and WO. The ΔE2 values of six shades ranged from 0.60-2.56. The shades of HV+3, WO and A3 resin cements were more than 1.60. Conclusions: Different thickness of ceramic materials, resin cement shades and measuring regions could affect the final color of ceramic veneers. The color differences of some resin cements and corresponding try-in pastes might be observed in clinical practice.

  15. Stiffness and Density Analysis of Rotary Veneer Recovered from Six Species of Australian Plantation Hardwoods

    Directory of Open Access Journals (Sweden)

    Robert Lee McGavin

    2015-08-01

    Full Text Available Commercial interest in Australian hardwood plantations is increasing. The timber industry is investigating alternative supplies of forest resources, and the plantation growing industry is eager to explore alternative markets to maximize financial returns. Identifying suitable processing strategies and high-value products that suit young, plantation-grown hardwoods have proven challenging; however, recent veneer processing trials using simple veneer technology have demonstrated more acceptable recoveries of marketable products. The recovered veneers have visual qualities that are suitable for structurally-based products; however, the mechanical properties of the veneer are largely unknown. Veneers resulting from processing trials of six commercially important Australian hardwood species were used to determine key wood properties (i.e., density, dynamic modulus of elasticity (MoE, and specific MoE. The study revealed that a wide variation of properties existed between species and also within species. Simple mathematical modeling, using sigmoidal curves, was demonstrated to be an effective method to model the evolution of key wood properties across the billet radius and along the resulting veneer ribbon with benefits for tree breeders and processors.

  16. Origin and mixing timescale of Earth's late veneer

    Science.gov (United States)

    Prescher, C.; Allu Peddinti, D.; Bell, E. A.; Bello, L.; Cernok, A.; Ghosh, N.; Tucker, J.; Wielicki, M. M.; Zahnle, K. J.

    2012-12-01

    Experimental studies on the partitioning behavior of highly siderophile elements (HSE) between silicate and metallic melts imply that the Earth's mantle should have been highly depleted in these elements by core formation in an early magma ocean. However, present HSE contents of the Earth's mantle are ~3 orders of magnitude higher than that expected by experiments. The apparent over-abundance of HSE has commonly been explained by the addition of meteoritic material in the "late veneer" which describes the exogenous mass addition following the moon forming impact and concluding with the late heavy bombardment at ~3.8-3.9 Ga. The strongest evidence for this theory is that the platinum group element (PGE) contents in today's mantle are present in chondritic relative abundances, as opposed to a fractionated pattern expected with metal-silicate partitioning. Archean komatiites indicate that the PGE content of the Earth's mantle increased from about half their present abundances at 3.5 Ga to their present abundances at 2.9 Ga. This secular increase in PGE content suggests a progressive mixing of the late veneer material into the Earth's mantle. However, this time scale also implies that the whole mantle was relatively well mixed by 2.9 Ga. We use a compilation of existing isotopic and trace element data in order to constrain the origin and composition of the late veneer. We use PGE abundances, W abundances and W isotopic compositions in chondritic meteorites and the primitive upper mantle to compute the amount of mass delivered during the late veneer and find the late veneer mass to be ~0.6 % the mass of the bulk silicate Earth (consistent with earlier estimates). We also use the 187Re-187Os and 190Pt-186Os systems to constrain the composition and timing of delivery of the impacting population. We model the efficiency of mantle mixing in this time frame by using 3-dimensional numerical geodynamical simulations and geochemical constraints. Initial parameters include the

  17. The effect of veneering on the marginal fit of CAD/CAM-generated, copy-milled, and cast metal copings.

    Science.gov (United States)

    Ates, Sabit Melih; Yesil Duymus, Zeynep; Caglar, Ipek; Hologlu, Bilal

    2017-11-01

    This in vitro study investigated the marginal fit of metal and zirconia copings before and after veneering on dies with shoulder/chamfer (s/c) finish lines. Using CAD/CAM, ten (n = 10) each s/c zirconia (NZ) copings and ten (n = 10) each s/c metal (MM) copings were generated. As controls, ten (n = 10) each s/c zirconia copings were copy-milled (ZZ) and ten (n = 10) each s/c metal copings were cast (CC). The vertical marginal discrepancy of the copings was measured at 20 predefined spots of the circular shoulder and chamfer finish lines in microns (μm) before and after a first and a second veneering firing using a stereomicroscope at ×40 magnification. Data were statistically analyzed, and the comparisons of CAD/CAM-milled (NZ, MM), copy-milled (ZZ), and cast (CC) copings before and after veneering were made at a significance level of p < 0.05. Gap width at s/c finish lines of ZZ was (91 ± 11/100 ± 28) and increased significantly (109 ± 21/141 ± 18) after the first firing (ZZ1). NZ showed significantly smaller gaps than ZZ (36 ± 6/46 ± 12) and (NZ1) after the first firing (61 ± 16/71 ± 29). Gap widths of CC groups (36 ± 8/25 ± 4) were not significantly different from NZ but were significantly lower after the (CC1) first veneering firing (40 ± 8/42 ± 7). MM copings showed gap values similar to NZ. Second firings did not significantly increase gaps in all groups except ZZ2 of chamfer finish line. Veneering increased the marginal gap width of copings. Within the limits of this in vitro study, aesthetic ceramic veneering of CAD/CAM-generated copings caused a statistically significant but tolerable loss of marginal fit precision.

  18. Influence of abutment type and esthetic veneering on preload maintenance of abutment screw of implant-supported crowns.

    Science.gov (United States)

    Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves

    2014-02-01

    The effect of veneering materials on screw joint stability remains inconclusive. Thus, this study evaluated the preload maintenance of abutment screws of single crowns fabricated with different abutments and veneering materials. Sixty crowns were divided into five groups (n = 12): UCLA abutment in gold alloy with ceramic (group GC) and resin (group GR) veneering, UCLA abutment in titanium with ceramic (group TiC) and resin (group TiR) veneering, and zirconia abutment with ceramic veneering (group ZiC). Abutment screws made of gold were used with a 35 Ncm insertion torque. Detorque measurements were obtained initially and after mechanical cycling. Data were analyzed by ANOVA and Fisher's exact test at a significance level of 5%. For the initial detorque means (in Ncm), group TiC (21.4 ± 1.78) exhibited statistically lower torque maintenance than groups GC (23.9 ± 0.91), GR (24.1 ± 1.34), and TiR (23.2 ± 1.33) (p abutment type and veneering material. More irregular surfaces in the hexagon area of the castable abutments were observed. The superiority of any veneering material concerning preload maintenance was not established. © 2013 by the American College of Prosthodontists.

  19. Impact of Bruxism on Ceramic Defects in Implant-Borne Fixed Dental Prostheses: A Retrospective Study.

    Science.gov (United States)

    Mikeli, Aikaterini; Walter, Michael H

    2016-01-01

    Ceramic veneer fracture is a frequent complication in implant-borne fixed restorations. The retrospective clinical study assesses the effect of bruxism on this complication. A sample of 507 implant-borne fixed units inserted between 1995 and 2011 in 144 patients were examined. Any detected veneer fractures were assigned to one of four groups according to extent and position. A hypothetical correlation between bruxism and ceramic veneer fractures was examined. Of 34 patients (23.6%) with at least one ceramic veneer fracture, 24 were bruxers (70%) and 10 were nonbruxers (30%) (P = .002). Bruxism may pose a risk for ceramic fractures.

  20. Surface roughness of composite resin veneer after application of herbal and non-herbal toothpaste

    Science.gov (United States)

    Nuraini, S.; Herda, E.; Irawan, B.

    2017-08-01

    The aim of this study was to find out the surface roughness of composite resin veneer after brushing. In this study, 24 specimens of composite resin veneer are divided into three subgroups: brushed without toothpaste, brushed with non-herbal toothpaste, and brushed with herbal toothpaste. Brushing was performed for one set of 5,000 strokes and continued for a second set of 5,000 strokes. Roughness of composite resin veneer was determined using a Surface Roughness Tester. The results were statistically analyzed using Kruskal-Wallis nonparametric test and Post Hoc Mann-Whitney. The results indicate that the highest difference among the Ra values occurred within the subgroup that was brushed with the herbal toothpaste. In conclusion, the herbal toothpaste produced a rougher surface on composite resin veneer compared to non-herbal toothpaste.

  1. Some properties of LVL composed of poplar and beech veneer and possibilities of their application for window frames

    Directory of Open Access Journals (Sweden)

    Zdravković Vladislav

    2017-01-01

    Full Text Available The subject of this paper was a research of physical and mechanical properties of LVL composed of peeled poplar veneers in core layers and only outer layers of beech peeled veneers, so as the examination of window frame glue joint strength produced of this material. LVL boards have been hot pressed in industrial conditions, using appropriate phenol formaldehyde (PP adhesive. Samples for corner window frame glue joint strength testing were glued with PVAc D4 class adhesive. Statistical analysis showed that there were significant differences both in moisture content and density of LVL boards regarding their thickness, while in the case of hardness this difference did not exist. Examinations of LVL glue line shear strength showed that both phenol formaldehyde (PP and PVAc D4 class adhesives fulfilled standard requirements. The results of corner window frame double tenon glue joint strength produced from combined poplar-beech veneer LVL indicated that such material could be used to produce window frame corner joint, strong enough to withstand the additional load, without an increase of the cross section.

  2. Physical, mechanical, and fire properties of oriented strandboard with fire retardant treated veneers

    Science.gov (United States)

    Nadir Ayrilmis; Zeki Candan; Robert White

    2007-01-01

    This study evaluated physical, mechanical and fire properties of oriented strand boards (OSB) covered with fire retardant treated veneers. The beech (Fagus orientalis Lipsky) veneers were treated with either monoammonium phosphate, diammonium phosphate, lime water or a borax/boric acid (1 : 1 by weight) mixture. Physical and mechanical properties of the specimens were...

  3. The Effect of Veneer Layers on the Bending Shear Strength and Delamination of Laminated Veneer Lumber (LVL) from Oil Palm Trunk (OPT)

    Science.gov (United States)

    Jamaludin, M. A.; Nordin, K.; Bahari, S. A.; Ahmad, M.

    2010-03-01

    The aim of this study was to evaluate the effects of the number of veneer layers on the bending shear strength and delamination of Laminated Veneer Lumber (LVL) from oil palm trunk (OPT). Five (5), Six (6) and Seven (7) veneer layers of OPT LVL were manufactured. The dimension of the boards was 45 cm by 45 cm by 1.9 cm. The boards were hot pressed for 13 minutes at a pressure of 31 kgf per m2. Urea formaldehyde (UF) supplied by a local adhesive manufacturer was used as the binder for the boards. The bending shear tests consisted of the edgewise and flatwise tests, whereas the delamination test consisted of the cold and hot water boil tests. The preparation of the test specimens and tests set-up was in accordance to the Japanese Standards, JAS-1991 [1]. Six replications were used for each test. The results were analyzed by Analysis of Variance (ANOVA) using the Duncan's Multiple Range Test to test for significant differences. The results indicated that as the number of layers increased the strength also increased. All the boards passed the standard. The difference in strength between the different types of samples was significant at 95 percent confidence level. Bending shear failures were primarily in the veneers. It is possible to use the boards as light weight interior building and furniture components. Over the years, the supply of quality timber resources from the natural forest has decrease as the wood-based industry experienced rapid growth. The supply of rubberwood for the furniture industry is also decreasing as a result of increase latex price. Accordingly, OPT LVL can be an alternative or supplementary raw material for the wood-based industry.

  4. Digital workflow for virtually designing and milling ceramic lithium disilicate veneers: a clinical report.

    Science.gov (United States)

    Zandinejad, A; Lin, W S; Atarodi, M; Abdel-Azim, T; Metz, M J; Morton, D

    2015-01-01

    Laminate veneers have been routinely used to restore and enhance the appearance of natural dentition. The traditional pathway for fabricating veneers consisted of making conventional polyvinyl siloxane impressions, producing stone casts, and fabricating final porcelain prostheses on stone dies. Pressed ceramics have successfully been used for laminate veneer fabrication for several years. Recently, digital computer-aided design/computer-aided manufacturing scanning has become commercially available to make a digital impression that is sent electronically to a dental laboratory or a chairside milling machine. However, technology has been developed to allow digital data acquisition in conjunction with electronically transmitted data that enables virtual design of restorations and milling at a remote production center. Following the aforementioned workflow will provide the opportunity to fabricate a physical cast-free restoration. This new technique has been reported recently for all-ceramic IPS e.max full-coverage pressed-ceramic restorations. However, laminate veneers are very delicate and technique-sensitive restorations when compared with all-ceramic full-coverage ones made from the same material. Complete digital design and fabrication of multiple consecutive laminate veneers seems to be very challenging. This clinical report presents the digital workflow for the virtual design and fabrication of multiple laminate veneers in a patient for enhancing the esthetics of his maxillary anterior teeth. A step-by-step process is presented with a discussion of the advantages and disadvantages of this novel technique. Additionally, the use of lithium disilicate ceramic as the material of choice and the rationale for such a decision is discussed.

  5. Comparison of Marginal and Internal Adaptation of Heat-Pressed and CAD/CAM Porcelain Laminate Veneers and a 2-Year Follow-Up.

    Science.gov (United States)

    Yuce, Mert; Ulusoy, Mubin; Turk, Ayse Gozde

    2017-12-22

    To compare marginal and internal adaptations of porcelain laminate veneers fabricated with heat-pressed and CAD/CAM techniques, and to evaluate the clinical performances 2 years after cementation. Thirty heat-pressed and 31 CAD/CAM porcelain laminate veneers were fabricated for 12 patients. Silicone replicas of each veneer were obtained. Replicas were sectioned into 4 parts to measure adaptations of the veneers. A stereomicroscope was used to measure from 3 locations of replicas for marginal, and 9 locations for internal adaptations at 40x magnification. Clinical evaluations were done at baseline and 6, 12, 18, and 24 months after cementation according to the modified United States Public Health Service (USPHS) criteria. Independent samples t-test compared the adaptation values between heat-pressed and CAD/CAM groups. Paired t-test was used to evaluate marginal and internal adaptations of each group. Differences between the modified USPHS criteria ratings of heat-pressed and CAD/CAM groups were determined by the Mann-Whitney U test. Kaplan-Meier analysis was used to analyze the survival ratings of the veneers (p CAD/CAM veneers were 295 and 314.98 μm, respectively, and there was no statistically significant difference (p = 0.541). Internal adaptation values of groups were not statistically different either (201.82 μm for heat pressed; 195.47 μm for CAD/CAM p = 0.734). When marginal and internal adaptation values were compared within groups, there were significant differences both for heat-pressed (p CAD/CAM (p CAD/CAM or heat-pressed, had no effect on the marginal and internal adaptation of porcelain laminate veneers. The results showed that both fabrication techniques performed well after 2 years of clinical performance. © 2017 by the American College of Prosthodontists.

  6. Pre-sintered Y-TZP sandblasting: effect on surface roughness, phase transformation, and Y-TZP/veneer bond strength

    Directory of Open Access Journals (Sweden)

    Carla Müller Ramos-Tonello

    Full Text Available Abstract Sandblasting is a common method to try to improve the Y-TZP/veneer bond strength of dental prostheses, however, it may put stress on zirconia surfaces and could accelerate the t→m phase transformation. Y-TZP sandblasting before sintering could be an alternative to improve surface roughness and bonding strength of veneering ceramic. Objectives. The aim of this study was to analyze the effect of Y-TZP pre-sintering sandblasting on surface roughness, phase transformation, and the Y-TZP/veneer shear bond strength. Material and Methods. The Y-TZP specimen surface underwent sandblasting with aluminum oxide (50 μm pre-sintering (Z-PRE and post-sintering (Z-POS. Z-CTR was not subjected to surface treatment. After ceramic veneer application, the specimens were subjected to shear bond testing. Surface roughness was analyzed by confocal microscopy. Y-TZP monoclinic and tetragonal phases were evaluated by micro-Raman spectroscopy. Shear bond strength and surface roughness data were analyzed by One-way ANOVA and Tukey tests (α=0.05. Differences in the wave numbers and the broadening bands of the Raman spectra were compared among groups. Results. Z-POS (9.73±5.36 MPa and Z-PRE (7.94±2.52 MPa showed the highest bond strength, significantly higher than that of Z-CTR (5.54±2.14 MPa. The Ra of Z-PRE (1.59±0.23 µm was much greater and significantly different from that of Z-CTR (0.29±0.05 µm and Z-POS (0.77±0.13 µm. All groups showed bands typical of the tetragonal (T and monoclinic (M phases. Y-TZP sandblasting before sintering resulted in rougher surfaces but did not increase the shear bond strength compared to post-sintering and increased surface defects. Conclusions. Surface treatment with Al3O2, regardless of the moment and application, improves the results of Y-TZP/veneer bonding and is not a specific cause of t→m transformation.

  7. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  8. Influence of framework color and layering technique on the final color of zirconia veneered restorations

    NARCIS (Netherlands)

    Aboushelib, M.N.; Dozic, A.; Liem, J.K.

    2010-01-01

    Objective: To investigate the influence of colored zirconia frameworks on the overall color match of zirconia- veneered restorations. Method and Materials: Identical natural and colored zirconia frameworks (Cercon Base, Degudent) were layered using a veneer ceramic (IPS e.max Ceram Dentin, Ivoclar

  9. Effectiveness of optical illusions 
applied on a single composite resin veneer for the diastema closure 
of maxillary central incisors.

    Science.gov (United States)

    Katsarou, Thomai; Antoniadou, Maria; Papazoglou, Efstratios

    To assess the esthetic effectiveness of four illusion techniques applied to a composite resin veneer for diastema closure between maxillary central incisors. An acrylic model with six natural maxillary anterior teeth was fabricated with a 2-mm diastema between the central incisors. Resin veneers were constructed on the left central incisor and the following cases were derived: V0: no veneer; V1: veneer without optical illusion features; V2: veneer with centralized interproximal ridges; V3: veneer with curved incisal edges; V4: veneer with gray pigment mesially/distally; V5: veneer with gray pigment on the developmental lobes. Digital printed photos of the models (13.2 x 17.8 cm, and 6.1 x 8 cm), with low, medium, and high smile lines and without a smile line (processed by Adobe Photoshop CS6) were shown to three groups of people (faculty members, senior undergraduate students, and patients; n = 25/group) for them to assess the overall size and width of the two central incisors. The results were analyzed by Pearson's and chi-square goodness of fit tests. There was no significant influence in the estimation of the two central incisors as being the same size, according to the technique used (P = 0.869) and group of evaluators (P = 0.209). The estimated probability of assessing the tested incisor as wider was indicatively lower in V2 compared to V1 (adjusted odds ratio = 0.59; P = 0.088). The height of the smile line affected the evaluation of the veneers only in the large-sized photos. No interference is the best esthetic decision concerning a 2-mm diastema closure when restoring only one central incisor with a laminate veneer. The next best option is to deliver a veneer with centralized interproximal ridges.

  10. Marginal Vertical Discrepancies of Monolithic and Veneered Zirconia and Metal-Ceramic Three-Unit Posterior Fixed Dental Prostheses.

    Science.gov (United States)

    Lopez-Suarez, Carlos; Gonzalo, Esther; Pelaez, Jesus; Serrano, Benjamin; Suarez, Maria J

    2016-01-01

    The aim of this study was to investigate and compare the marginal fit of posterior fixed dental prostheses (FDPs) made of monolithic and veneered computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia ceramic with metal-ceramic posterior FDPs. Thirty standardized steel dies were prepared to receive posterior three-unit FDPs. Specimens were randomly divided into three groups (n = 10): (1) metal-ceramic (control group), (2) veneered zirconia, and (3) monolithic zirconia. All FDPs were cemented using a glass-ionomer cement. The specimens were subjected to thermal cycling (5°C to 55°C). A scanning electron microscope (SEM) with a magnification of ×500 was used for measurements. The data were statistically analyzed using one-way analysis of variance and paired t test. Both zirconia groups showed similar vertical marginal discrepancies, and no significant differences (P = .661) in marginal adaptation were observed among the groups. No differences were observed in either group in marginal discrepancies between surfaces or abutments. Monolithic zirconia posterior FDPs exhibit similar vertical marginal discrepancies to veneered zirconia posterior FDPs. No influence of localization measurements was observed.

  11. Straight studs from southern pine veneer cores and cordwood

    Science.gov (United States)

    Peter Koch

    1968-01-01

    An economically feasible system has been developed for converting southern pine veneer cores into straight 8-foot studs (2). Prototype studs - two per core - were 100 percent SPIB stud grade and better.

  12. Indirect veneer treatment of anterior maxillary teeth with enamel hypoplasia

    Directory of Open Access Journals (Sweden)

    Devi Eka Juniarti

    2010-09-01

    Full Text Available Background: Nowadays, aesthetic rehabilitation becomes a necessity. It is affected by patient’s background, especially career, social and economic status. The aesthetic abnormality of anterior teeth i.e discoloration, malposition and malformation can affect patient’s appearance, especially during smile. These dental abnormalities, as a result, can decrease patient’s performance. Dental malformation, for instance, can be caused by developmental tooth defect, such as enamel hypoplasia. Enamel hypoplasia is a developmental defect caused by the lack of matrix amount which leads to thin and porous enamel. Enamel hypoplasia can also be caused by matrix calcification disturbance starting from the formation and development of enamel matrix causing defect and permanent changes which can occur on one or more tooth. Purpose: The aim of the study is to improve dental discoloration and tooth surface texture on anterior maxillary teeth with enamel hypoplasia by using indirect veneer with porcelain material. Case: A 20 years-old woman with enamel hypoplasia came to the Dental Hospital, Faculty of Dentistry Airlangga University. The patient wanted to improve her anterior maxillary teeth. It is clinically known that there were some opaque white spots (chalky spotted and porous on anterior teeth’s surface. Case management: Indirect veneer with porcelain material had been chosen as a restoration treatment which has excellent aesthetics and strength, and did not cause gingival irritation. As a result, the treatment could improve the confidence of the patient, and could also make their function normal. Conclusion: Indirect veneer is an effective treatment, which can improve patient’s appearance and self confidence.Latar belakang: Saat ini perbaikan estetik menjadi suatu kebutuhan. Kebutuhan akan estetik dipengaruhi latar belakang penderita, terutama karir, status sosial dan ekonomi. Hal ini disebabkan, kelainan estetik seperti diskolorasi, malposisi

  13. Randomized controlled split-mouth clinical trial of direct laminate veneers with two micro-hybrid resin composites

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Kalk, Warner; Ozcan, M.; Ozcan, Mutlu

    Objectives: This randomized, split-mouth clinical study evaluated the survival rate of direct laminate veneers made of two resin-composite materials. Methods: A total of 23 patients (mean age: 52.4 years old) received 96 direct composite laminate veneers using two micro-hybrid composites in

  14. Additively Manufactured Titanium and Cobalt-Chromium Implant Frameworks: Fit and Effect of Ceramic Veneering.

    Science.gov (United States)

    Svanborg, Per; Eliasson, Alf; Stenport, Victoria

    The purpose of this study was to evaluate the fit of additively manufactured cobalt-chromium and titanium and CNC-milled titanium frameworks before and after ceramic veneering. Ten stone casts simulating an edentulous maxilla provided with six abutment analogs were produced. For each stone cast, one additively manufactured cobalt-chromium framework (AM CoCr) and one titanium framework (AM Ti) were fabricated. The fit was analyzed with a coordinate measuring machine in three dimensions (x, y, and z axes) using best-fit virtual matching of center point coordinates, before and after ceramic veneering. CNC-milled titanium frameworks (CNC Ti) and earlier results from CNC-milled cobalt-chromium frameworks (CNC CoCr) were used for comparison. All frameworks presented minor misfit before and after veneering in the horizontal plane (x- and y-axes) between 2.9 and 13.5 μm and in the vertical plane (z-axis) between 1.6 and 5.4 μm. Ceramic veneering affected the fit of all groups of frameworks. Both AM Ti and AM CoCr presented significantly smaller distortion in the vertical plane compared with the CNC-milled frameworks. Implant-supported frameworks can be produced in either Ti or CoCr using either CNC milling or additive manufacturing with a fit well within the range of 20 μm in the horizontal plane and 10 μm in the vertical plane. The fit of frameworks of both materials and production techniques are affected by the ceramic veneering procedure to a small extent.

  15. [Fractographic analysis of clinically failed anterior all ceramic crowns].

    Science.gov (United States)

    DU, Qian; Zhou, Min-bo; Zhang, Xin-ping; Zhao, Ke

    2012-04-01

    To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.

  16. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains.

    Directory of Open Access Journals (Sweden)

    Jie Min

    Full Text Available The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains.Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated.The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes.Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings.

  17. Porcelain veneer post-bonding crack repair by resin infiltration

    NARCIS (Netherlands)

    Gresnigt, Marco; Magne, Michel; Magne, Pascal

    2017-01-01

    Ceramic laminate veneer restorations are indicated in several clinical situations. Indirect restorations are usually chosen if the less-invasive options - bleaching, resin infiltration, or composite resin restorations - are not possible, or when it is too difficult to achieve an esthetically

  18. Cone calorimeter testing of foam core sandwich panels treated with intumescent paper underneath the veneer (FRV)

    Science.gov (United States)

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling

    2017-01-01

    Surfaces of novel foam core sandwich panels were adhered with intumescent fire‐retardant paper underneath the veneers (FRV) to improve their flammability properties. The panels were evaluated by means of cone calorimeter test (ASTM E 1354). Variables tested were different surface layer treatments, adhesives used for veneering, surface layer thicknesses, and processing...

  19. Anterior makeover on fractured teeth by simple composite resin restoration

    Directory of Open Access Journals (Sweden)

    Eric Priyo Prasetyo

    2011-09-01

    Full Text Available Background: In daily practice dentists usually treat tooth fractures with more invasive treatments such as crown, veneer and bridges which preparation require more tooth structure removal. While currently there is trend toward minimal invasive dentistry which conserves more tooth structure. This is enhanced with the vast supply of dental materials and equipment in the market, including restorative materials. Provided with these supporting materials and equipment and greater patient’s demand for esthetic treatment, dentists must aware of the esthetics and basic principle of conserving tooth which should retain tooth longevity. Purpose: This article showed that a simple and less invasive composite resin restoration can successfully restore anterior esthetic and function of fractured teeth which generally treated with more invasive treatment options. Case: A 19 year-old female patient came with fracture on 21 and 22. This patient had a previous history of dental trauma about nine years before and was brought to a local dentist for debridement and was given analgesic, the involved teeth were not given any restorative treatment. Case management: The fractured 21 and 22 were conventionally restored with simple composite resin restoration. Conclusion: Fracture anterior teeth would certainly disturbs patient’s appearance, but these teeth could be managed conservatively and economically by simple composite resin restoration.Latar belakang: Dalam praktek sehari-hari pada umumnya dokter gigi merawat fraktur dengan restorasi invasif seperti mahkota, veneer dan jembatan yang semuanya memerlukan pengambilan jaringan gigi lebih banyak, sedangkan saat ini trend perawatan gigi lebih menuju kearah invasif minimal yang mempertahankan jaringan gigi sebanyak mungkin. Keadaan ini ditunjang oleh tersedianya berbagai macam bahan dan peralatan kedokteran gigi di pasaran, termasuk bahan restorasi. Dengan tersedianya bahan dan peralatan yang mendukung serta tingginya

  20. Evaluation of the use potential of nine species of genus Eucalyptus for production of veneers and plywood panels

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2013-06-01

    Full Text Available The objective of thisstudywas to evaluate the use potential of nine species of Eucalyptus for production of veneer sheets and multilaminated plywood panels. Veneers were cut using a pilot laminating lathe to a nominal thickness of 2.0 mm. Analysis included finding values of overall yield and yield according to three quality classes for the nine relevant species. Plywood panels were manufactured in a laboratory, consisting of five 2.0 mm veneer sheets which were bonded together with phenol-formaldehyde resin at a weight of 360 g/m2 (double line. The panels were compressed using a specific pressure of 10 kgf/cm2, a temperature of 140ºC and a pressing time of 10 minutes. Results indicated that, with the exception of E. phaeotricha and E. pellita, all other Eucalyptus species had above 50% average veneer yield after lamination. Results of glue line shear testing and static bending parallel and perpendicular demonstrated that species Eucalyptus grandis, Eucalyptus saligna, Eucalyptus dunnii, Eucalyptus globulus, Eucalyptus viminalis, Eucalyptus robusta and Eucalyptus pellita have great potential within the parameters of this study for use in the production of veneer sheets and plywood panels intended for outdoor use.

  1. SEM evaluation of human gingival fibroblasts growth onto CAD/CAM zirconia and veneering ceramic for zirconia

    Science.gov (United States)

    Zizzari, Vincenzo; Borelli, Bruna; De Colli, Marianna; Tumedei, Margherita; Di Iorio, Donato; Zara, Susi; Sorrentino, Roberto; Cataldi, Amelia; Gherlone, Enrico Felice; Zarone, Fernando; Tetè, Stefano

    2013-01-01

    Summary Aim To evaluate the growth of Human Gingival Fibroblasts (HGFs) cultured onto sample discs of CAD/CAM zirconia and veneering ceramic for zirconia by means of Scanning Electron Microscope (SEM) analysis at different experimental times. Methods A total of 26 experimental discs, divided into 2 groups, were used: Group A) CAD/CAM zirconia (3Y-TZP) discs (n=13); Group B) veneering ceramic for zirconia discs (n=13). HGFs were obtained from human gingival biopsies, isolated and placed in culture plates. Subsequently, cells were seeded on experimental discs at 7,5×103/cm2 concentration and cultured for a total of 7 days. Discs were processed for SEM observation at 3h, 24h, 72h and 7 days. Results In Group A, after 3h, HGFs were adherent to the surface and showed a flattened profile. The disc surface covered by HGFs resulted to be wider in Group A than in Group B samples. At SEM observation, after 24h and 72h, differences in cell attachment were slightly noticeable between the groups, with an evident flattening of HGFs on both surfaces. All differences between Group A and group B became less significant after 7 days of culture in vitro. Conclusions SEM analysis of HGFs showed differences in terms of cell adhesion and proliferation, especially in the early hours of culture. Results showed a better adhesion and cell growth in Group A than in Group B, especially up to 72h in vitro. Differences decreased after 7 days, probably because of the rougher surface of CAD/CAM zirconia, promoting better cell adhesion, compared to the smoother surface of veneering ceramic. PMID:24611089

  2. The influence of felling season and log-soaking temperature on the wetting and phenol formaldehyde adhesive bonding characteristics of birch veneer

    Science.gov (United States)

    Anti Rohumaa; Christopher G. Hunt; Charles R. Frihart; Pekka Saranpää; Martin Ohlmeyer; Mark Hughes

    2014-01-01

    Most adhesive studies employing wood veneer as the substrate assume that it is a relatively uniform material if wood species and veneer thickness are constant. In the present study, veneers from rotary cut birch (Betula pendula Roth) were produced from logs harvested in spring, autumn and winter, and soaked at 20°C and 70°C prior to peeling. Firstly...

  3. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.

    Science.gov (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean

    2012-07-01

    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had significantly higher flexural strength (p Empress Esthetic/CAD groups. Monolithic core

  4. Illuminating light-dependent color shifts in core and veneer layers of dental all-ceramics

    Science.gov (United States)

    Lee, Yong-Keun; Cha, Hyun-Suk; Yu, Bin

    2014-09-01

    The color of an object is perceived differently depending on the ambient light conditions. Since dental all-ceramic restorations are fabricated by building up several layers to reproduce the tooth shade, the optical properties of each layer should be optimized for successful shade reproduction. This study aimed to determine the separate contributions of the color shifts in each of the core and veneer layers of all-ceramics by switching the illuminating lights on the color shifts of layered ceramics. Specimens of seven kinds of core ceramics and the corresponding veneer ceramics for each core were fabricated with a layered thickness of 1.5 mm. A sintering ceramic was used as a reference core material. The Commission Internationale de l'Eclairage (CIE) color coordinates of core, veneer, and layered specimens were measured with a spectroradiometer under the CIE illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp) simulating lights. Color shifts of the layered specimens were primarily determined by the CIE a* shifts (D65 to A switch) or by the CIE b* shifts (D65 to F9 switch) of the veneer layer. The color coordinates shifts in the constituent layers differentially influenced those of the layered specimens by the kind of switched lights. Therefore, the optical properties of the constituent layers of all-ceramics should be controlled to reflect these findings.

  5. Kubelka-Munk reflectance theory applied to porcelain veneer systems using a colorimeter.

    Science.gov (United States)

    Davis, B K; Johnston, W M; Saba, R F

    1994-01-01

    The purpose of this study was to demonstrate the ability of Kubelka-Munk reflectance theory to predict color parameters of veneer porcelain on various backings using colorimetric measurements. Tristimulus absorption and scattering coefficients were used to predict the respective tristimulus reflectance values of A1, D3, and translucent porcelain samples after they had been bonded to light and dark substrates using universal, opaque, and untinted shades of bonding resin. Observed and predicted reflectance values exhibited high correlation (r2 > or = 0.93 for each porcelain shade). Kubelka-Munk theory offers an accurate prediction for the resultant colorimetric reflectance parameters of veneer porcelain bonded to variously colored backings.

  6. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    Science.gov (United States)

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Fracture Resistance of Zirconia Restorations with a Modified Framework Design

    Directory of Open Access Journals (Sweden)

    sakineh Nikzadjamnani

    2017-12-01

    Full Text Available Objectives: Chipping is one of the concerns related to zirconia crowns. The reasons of chipping have not been completely understood. This in-vitro study aimed to assess the effect of coping design on the fracture resistance of all-ceramic single crowns with zirconia frameworks. Materials and Methods: Two types of zirconia copings were designed (n=12: (1 a standard coping (SC with a 0.5mm uniform thickness and (2 a modified coping (MC consisted of a lingual margin of 1mm thickness and 2mm height connected to a proximal strut of 4mm height and a 0.3mm-wide facial collar. After veneer porcelain firing, the crowns were cemented to metal dies. Afterwards, a static vertical load was applied until failure. The modes of failure were determined. Data were calculated and statistically analyzed by independent samples T-test. P<0.05 was considered statistically significant.Results: The mean and standard deviation (SD of the final fracture resistance equaled to 3519.42±1154.96 N and 3570.01±1224.33 N in SC and MC groups, respectively; the difference was not statistically significant (P=0.9. Also, the mean and SD of the initial fracture resistance equaled to 3345.34±1190.93 N and 3471.52±1228.93 N in SC and MC groups, respectively (P=0.8. Most of the specimens in both groups showed the mixed failure mode. Conclusions: Based on the results, the modified core design may not significantly improve the fracture resistance.

  8. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.

  9. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.

    Science.gov (United States)

    Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu

    2018-06-01

    The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effects of particles thickness and veneer reiforced layer in the properties of oriented strand boards OSB

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2009-03-01

    Full Text Available This work evaluated the effects of particle thickness and veneer reinforced layer on the physical and mechanicalproperties of OSB made of Pinus taeda L. The boards were manufactured with particle thickness of 0.4, 0.7 and 1.0 mm and phenolformaldehyderesin in the proportion of 6% of solid content. To the veneer reinforced layer was used veneer from Pinus taeda with 2.0mm of thickness. The increase in the slenderness (length/thickness ratio of thins particles, results in the higher values of MOE andMOR in the cross direction. The increase in the particles thickness contributed to higher values of the board internal bond. Thedifferent particles thickness did not clearly affected on the physical properties of OSB. The veneer reinforced layer results in the higheraverage values of MOE and MOR in the cross direction. All of the results of MOE and MOR obtained for boards with differentthickness attend tominimum values required per CSA 0437 (CSA, 1993. For the internal bond, the results were satisfactory to boardsmanufactured with particles thickness of 0.7 and 1.0 mm. According to the results the main conclusions were: (i The increase in theparticles thickness contributed to lower values of MOE and MOR, and higher values of the board internal bond; (ii the veneerreinforced layer increased MOE and MOR values in the cross direction.

  11. Esthetic Rehabilitation of Anterior Teeth with Porcelain Laminates and Sectional Veneers

    NARCIS (Netherlands)

    Gresnigt, Marco; Ozcan, Mutlu

    2011-01-01

    Full-coverage bonded porcelain restorations offer predictable treatment options in dentistry, but a certain amount of tooth material must be removed to allow space for the required thickness of the restorative material. Laminate veneers and inlays are considered minimally invasive, but they also

  12. Ceramic Veneers and Direct-Composite Cases of Amelogenesis Imperfecta Rehabilitation.

    Science.gov (United States)

    Shibata, S; Taguchi, Cmc; Gondo, R; Stolf, S C; Baratieri, L N

    2016-01-01

    The aim of this article is to present two case reports for the treatment of patients affected with amelogenesis imperfecta. One case was treated with composite resin and the other case with ceramic veneers. Esthetic and functional results were achieved using both treatments, and a review of advantages and disadvantages is presented.

  13. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    Science.gov (United States)

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.

  14. The changing veneer and plywood industry of Michigan and Wisconsin.

    Science.gov (United States)

    Gary R. Lindell; Lewis T. Hendricks

    1972-01-01

    Analyzes trends in the hardwood veneer and plywood industry of Michigan and Wisconsin between 1964 and 1969. In that period, red oak and hard maple replaced yellow birch as the major species used. Log supplies were adequate. Wall paneling was the major end market with doorskins next. Excess plywood producing capacity is a chronic problem.

  15. Esthetic restorations of maxillary anterior teeth with orthodontic treatment and porcelain laminate veneers: a case report.

    Science.gov (United States)

    Moon, Ji-Eun; Kim, Sung-Hun; Han, Jung-Suk; Yang, Jae-Ho; Lee, Jai-Bong

    2010-06-01

    If orthodontists and restorative dentists establish the interdisciplinary approach to esthetic dentistry, the esthetic and functional outcome of their combined efforts will be greatly enhanced. This article describes satisfying esthetic results obtained by the distribution of space for restoration by orthodontic treatment and porcelain laminate veneers in uneven space between maxillary anterior teeth. It is proposed that the use of orthodontic treatment for re-distribution of the space and the use of porcelain laminate veneers to alter crown anatomy provide maximum esthetic and functional correction for patients with irregular interdental spacing.

  16. Effect of Silviculture on the Yield and Quality of Veneers

    Science.gov (United States)

    Leslie H. Groom; Ray Newbold; Jim Guldin

    2002-01-01

    The structural and aesthetic value of wood is typically sacrificed in an attempt to meet demand. This paper addresses the financial and quality aspects of silvicultural choices as it relates to wood veneers. Five trees each were harvested from an uneven-aged stand and from the following even- aged stands: intensive plantation, conventional plantation, and natural...

  17. Late Veneer consequences on Venus' long term evolution

    Science.gov (United States)

    Gillmann, C.; Golabek, G.; Tackley, P. J.; Raymond, S. N.

    2017-12-01

    Modelling of Venus' evolution is able to produce scenarios consistent with present-day observation. These results are however heavily dependent on atmosphere escape and initial volatile inventory. This primordial history (the first 500 Myr) is heavily influenced by collisions. We investigate how Late Veneer impacts change the initial state of Venus and their consequences on its coupled mantle/atmosphere evolution. We focus on volatile fluxes: atmospheric escape and mantle degassing. Mantle dynamics is simulated using the StagYY code. Atmosphere escape covers both thermal and non-thermal processes. Surface conditions are calculated with a radiative-convective model. Feedback of the atmosphere on the mantle through surface temperature is included. Large impacts are capable of contributing to atmospheric escape, volatile replenishment and energy transfer. We use the SOVA hydrocode to take into account volatile loss and deposition during a collision. Large impacts are not numerous enough to substantially erode Venus' atmosphere. Single impacts don't have enough eroding power. Swarms of small bodies (history of the planet and leads to lower present-day surface temperatures. Total depletion of the mantle seems unlikely, meaning either few large impacts (1 to 4) or low energy (slow, grazing…) collisions. Combined with the lack of plate tectonics and volatile recycling in the interior of Venus, Late Veneer collisions could help explain why Venus seems dry today.

  18. Investigations of subcritical crack propagation of the Empress 2 all-ceramic system.

    Science.gov (United States)

    Mitov, Gergo; Lohbauer, Ulrich; Rabbo, Mohammad Abed; Petschelt, Anselm; Pospiech, Peter

    2008-02-01

    The mechanical properties and slow crack propapagation of the all-porcelain system Empress 2 (Ivoclar Vivadent, Schaan, Liechtenstein) with its framework compound Empress 2 and the veneering compounds "Empress 2 and Eris were examined. For all materials, the fracture strength, Weibull parameter and elastic moduli were experimentally determined in a four-point-bending test. For the components of the Empress 2 system, the fracture toughness K(IC) was determined, and the crack propagation parameters n and A were determined in a dynamic fatigue method. Using these data, life data analysis was performed and lifetime diagrams were produced. The development of strength under static fatigue conditions was calculated for a period of 5 years. The newly developed veneering ceramic Eris showed a higher fracture strength (sigma(0)=66.1 MPa) at a failure probability of P(F)=63.2%, and crack growth parameters (n=12.9) compared to the veneering ceramic Empress 2 (sigma(0)=60.3 MPa). For Empress 2 veneer the crack propagation parameter n could only be estimated (n=9.5). This is reflected in the prognosis of long-term resistance presented in the SPT diagrams. For all materials investigated, the Weibull parameter m values (Empress 2 framework m=4.6; Empress 2 veneer m=7.9; Eris m=6.9) were much lower than the minimum demanded by the literature (m=15). The initial fracture strength value alone is not sufficient to characterize the mechanical resistance of ceramic materials, since their stressability is time-dependent. Knowledge about the crack propagation parameters n and A are of great importance when preclinically predicting the clinical suitability of dental ceramic materials. The use of SPT diagrams for lifetime calculation of ceramic materials is a valuable method for comparing different ceramics.

  19. Esthetic, occlusal, and periodontal rehabilitation of anterior teeth with minimum thickness porcelain laminate veneers.

    Science.gov (United States)

    da Cunha, Leonardo Fernandes; Pedroche, Lorena Oliveira; Gonzaga, Carla Castiglia; Furuse, Adilson Yoshio

    2014-12-01

    Ceramic veneers of minimum thickness provide satisfactory esthetic outcomes while preserving the dental structure. Dental ceramics can both improve the esthetic appearance and reestablish the strength and function of teeth. In worn anterior teeth, functional surfaces, for example, anterior and lateral guidance, can be restored effectively. The characteristics of dental ceramics, such as color stability and mechanical and optical properties, make this material a good choice for indirect restorations, especially when optimum function and esthetics are required. This clinical report presents an occlusal, periodontal, and restorative solution with minimum thickness glass ceramic veneers for worn anterior teeth with multiple diastemas. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Effect of inadequate ferrule segment location on fracture resistance of endodontically treated teeth

    Directory of Open Access Journals (Sweden)

    Satheesh B Haralur

    2018-01-01

    Full Text Available Introduction: The circumferential 2 mm ferrule during the fabrication of the crown is strongly advocated for the long-term clinical success. During the routine clinical practice, the dentist encounters the endodontically treated tooth (ETT with inadequacy of the ferrule in some segment due to caries, abrasion, and erosions. The aim of this in vitro study was to investigate the consequence of inadequate segmental ferrule location on fracture strength of the root canal-treated anterior and posterior teeth. Materials and Methods: Fifty each maxillary canine and mandibular premolar intact human teeth were root canal treated and sectioned at 2 mm above the cementum-enamel junction. The teeth samples were divided into 5 groups of 10 each. The G-I and G-V samples had the 360° ferrule and complete absence of the ferrule, respectively. The G-II had the inadequate ferrule on the palatal surface, while G-III and G-IV had inadequate ferrule at buccal and proximal area. Teeth samples were subsequently restored with glass-reinforced fiber post, composite core, and full veneer metal crown. The samples were tested with universal testing machine under static load to record the fracture resistance. The acquired data were subjected to ANOVA and Tukey's post hoc statistical analysis. Results: The G-I with circumferential ferrule showed the higher fracture resistance. The teeth samples with lack of the ferrule had the least fracture resistance. Among the segmental absence of ferrule, teeth samples with lack of the proximal ferrule were least affected. Deficiency of a ferrule on the lingual wall significantly affected the fracture strength in both anterior and posterior ETT. Conclusions: The ETT with sectional inadequacy of the ferrule is significantly more effective in resisting the fracture in comparison to the complete absence of the ferrule.

  1. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  2. PRELIMINARY STUDY OF PLYWOOD PRODUCED WITH PARICÁ (Schizolobium amazonicum Huber ex Ducke VENEERS MODIFIED BY THERMO-MECHANICAL TREATMENT

    Directory of Open Access Journals (Sweden)

    Larissa Medeiros Arruda

    2011-05-01

    Full Text Available The objective of this preliminary research was to study the effects of thermo-mechanical modification in veneers of Paricá (Schizolobium amazonicum Huber ex Ducke to improve plywood hygroscopicity and mechanical properties. The amount of 24 veneers was used with the dimensions 25 x 25 cm, that were compressed under different times (5, 10 and 15 minutes at 150°C and pressure at 1 N.mm-2, constituting three treatments and one untreated. Plywood were bonded with resorcinol-formaldehyde, glue consumption of 360 g.m-2 at ambient temperature and pressure of 1 N.mm-2 for 10 hours. The samples were evaluated by colorimetric analysis and physical and mechanical properties. Colorimetric analysis showed that there was a darkening of the wood toward the increase of treatment time. The treatment was not efficient in reducing swelling, only reducing absorption of water. The mechanical properties were not significantly affected by the treatment.

  3. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-04-01

    Framework design is reported to influence chipping in zirconia-based restorations, which is an important cause of failure of such restorations. Residual stress profile in the veneering ceramic after the manufacturing process is an important predictive factor of the mechanical behavior of the material. The objective of this study is to investigate the influence of framework thickness on the stress profile measured in zirconia-based structures. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 1.5 mm thick veneering ceramic layer. Six different framework thicknesses from 0.5 mm to 3 mm were studied. Two different cooling procedures were also investigated. Compressive stresses were observed in the surface, and tensile stresses in the depth of most of the samples. The slow cooling procedure was found to promote the development of interior tensile stresses, except for the sample with a 3mm thick framework. With the tempering procedure, samples with a 1.5 mm thick framework exhibited the most favorable stress profile, while thicker and thinner frameworks exhibited respectively in surface or interior tensile stresses. The measurements performed highlight the importance of framework thickness, which determine the nature of stresses and can explain clinical failures encountered, especially with thin frameworks. The adequate ratio between veneering ceramic and zirconia is hard to define, restricting the range of indications of zirconia-based restorations until a better understanding of such a delicate veneering process is achieved. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. A randomized controlled clinical trial of 3-unit posterior zirconia-ceramic fixed dental prostheses (FDP) with layered or pressed veneering ceramics: 3-year results.

    Science.gov (United States)

    Naenni, Nadja; Bindl, Andreas; Sax, Caroline; Hämmerle, Christoph; Sailer, Irena

    2015-11-01

    The aim of the present pilot study was to test whether or not posterior zirconia-ceramic fixed dental prostheses (FDPs) with pressed veneering ceramic exhibit less chipping than FDPs with layered veneering ceramics. Forty patients (13 female, 27 male; mean age 54 years (range 26.1-80.7 years) in need of one maxillary or mandibular three-unit FDP in the second premolar or molar region were recruited and treated at two separate centers at the University of Zurich according to the same study protocol. The frameworks were made out of zirconia using a CAD/CAM system (Cerec Sirona, Bensheim, Germany). The patients were randomly assigned to either the test group (zirconia frameworks veneered with pressed ceramic; IPS e.max ZirPress, Ivoclar Vivadent AG, Schaan, Liechtenstein; n=20) or the control group (layered veneering ceramic; IPS e.max Ceram, Ivoclar Vivadent AG, Schaan, Liechtenstein; n=20). All FDPs were adhesively cemented and evaluated at baseline (i.e., cementation), at 6 months and at 1 and 3 years of clinical service. The survival of the reconstruction was recorded. The technical outcome was assessed using modified United States Public Health Services (USPHS) criteria. The biologic parameters analyzed at abutment teeth and analogous non-restored teeth included probing pocket depth (PPD), plaque control record (PCR), bleeding on probing (BOP), and tooth vitality (CO2). Data was descriptively analyzed and survival was calculated using Kaplan-Meier statistics. 36 patients (25 female, 11 male; mean age 52.3 years) with 18 test and 18 control FDPs were examined after a mean follow-up of 36 months (95% CI: 32.6-39.1 months). Comparison of groups was done by Crosstabulation showing even distribution of the respective restored teeth amidst the groups. Survival rate was 100% for both test and control FDPs. Chipping of the veneering ceramic tended to occur more frequently in test (n=8; 40%) than in control (n=4; 20%) FDPs, albeit not significantly (p=0.3). No further

  5. Color management of porcelain veneers: influence of dentin and resin cement colors

    NARCIS (Netherlands)

    Dozic, A.; Tsagkari, M.; Khashayar, G.; Aboushelib, M.

    2010-01-01

    Objective: Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence

  6. Visual versus Colorimetric Data Analysis for Color Determination in Resin Veneers

    Directory of Open Access Journals (Sweden)

    Raluca DIMA

    2012-03-01

    Full Text Available The color of natural teeth depends on their capacity to modify the incident light (to change the wave length of incident light. Mainly two types of observation modes are used: diffuse illumination 0% and 45%; the angles represent incidence of illumination and observation on the surface of the object whose color is determined. The patients have been properly selected to receive direct resin veneers on their frontal maxillary incisors. Visually we observed and determined color directly using natural incident light between 10 am and 16 pm, the observer was positioned away from patient so the tooth to examine was at the level of observer’s eye (incidence angles were mainly similar. Vita Easy Shade colorimeter was used to establish the color of the restoration before and after it was performed. The Expanded Visual Rating Scale for Appearance Match (EVRSAM supplied statistically comparable data as the literature; the comparison between visual and colorimetric data makes us suppose that visual color determination is a necessary but not sufficient tool for the esthetic success of any veneer restoration.

  7. Equilibrium moisture content of OSB panels produced with veneer inclusion and different types of adhesive

    Directory of Open Access Journals (Sweden)

    Lourival Marin Mendes

    2014-03-01

    Full Text Available The aim of this study was to evaluate different statistical models to estimate the equilibrium moisture content of OSB panels exposed to different conditions of air temperature and relative humidity, And also to evaluate the influence of the adhesive and veneer inclusion in the equilibrium moisture content. The panels were produced with three different adhesive types (phenol-formaldehyde - FF, melamine-urea-formaldehyde - MUF, and phenol-melamine-urea-formaldehyde - PMUF and with and without veneer inclusion. The evaluation of the equilibrium moisture content of the panels was carried out at temperatures of 30, 40 and 50°C and relative humidity of 40, 50, 60, 70, 80 and 90%. The modeling of equilibrium moisture content was performed using the statistical non-linear and polynomial models. In general, the polynomial models are most indicated for determining the equilibrium moisture content of OSB. The models adjusted only with air relative humidity presented the best precision measurements. The type of adhesive affected the equilibrium moisture content of the panels, being observed for adhesives PMUF and FF the same trend of variation, and the highest values obtained for the panels produced with adhesive MUF. The veneer inclusion decreased the equilibrium moisture content only in the panels with MUF adhesive.

  8. [Effect of repeated sintering and variations in thickness on the color and microstructure of dental lithium disilicate-based glass ceramic veneers].

    Science.gov (United States)

    Cui, Huang; Jia, Yu; Shaofeng, Meng; Biyun, Gao

    2017-08-01

    Objective The aim of this study is to evaluate the effect of repeated sintering and variation in thickness on the color and microstructure of dental lithium disilicate-based glass ceramic veneers. Methods A total of 24 computer aided design and computer aided manufacturing (CAD/CAM) veneers was fabricated using the IPS e.max-CAD LS2 and then randomly divided into four groups (S0, S1, S2, S3; n=6). Each group was sintered 0, 1, 2, 3 times individually according to the manufacturer's recommendation. The color parameters (L, C, H, a, b values) of all the specimens were measured by a Vita easyshade dental colorimeter. The results were statistically analyzed using the SAS 9.1.3 software for MANOVA and LSD. Subsequently, the microstructures of the intersecting surfaces of the specimens were observed by scanning electron microscopy (SEM). Results After repeated sintering, the L value significantly decreased (P<0.05). For the C and b values, statistical differences were observed among the groups except between S2 and S3. SEM results showed that the interlocking microstructures of rod-shaped Li₂Si₂O₅ crystals became more compact when the number of sintering times was increased. Conclusion Repeated sintering exhibited significant influence on the color of the IPS e.max-CAD LS2 veneers.

  9. EFFECTS OF PRESS PRESSURE ON GLUE LINE THICKNESS AND PROPERTIES OF LAMINATED VENEER LUMBER GLUED WITH MELAMINE UREA FORMALDEHYDE ADHESIVE

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt,

    2012-07-01

    Full Text Available Laminated veneer lumbers (LVLs were manufactured from half-round sliced I-214 hybrid poplar clone veneers with MUF adhesives using press pressures ranging from 2.5 to 15 kg cm-2. The results showed that the press pressures affected the glue line thickness (GLT and the physical and mechanical properties of the LVLs. Higher specific gravity (SG and mechanical properties, but lower GLT were developed as a result of using higher press pressures. The optimum press pressure was found to be 10 kg cm-2 in relation to GLT, SG, and mechanical properties. Significant linear correlations were found between GLT and mechanical properties. GLT can be used to determine the quality of wood bonding and may become a valuable tool for this purpose. Reliable data on the optimum GLT and press pressures can be used to design safe wood bonding applications in all aspects of wood based composites, as well as wood constructions when appropriate techniques are adopted to measure the GLT.

  10. Testing the Late-Veneer hypothesis with selenium isotopes

    Science.gov (United States)

    Labidi, J.; Koenig, S.; Bennett, N.; Kurzawa, T.; Aierken, E.; Shahar, A.; Schoenberg, R.

    2016-12-01

    Selenium (Se) is a siderophile element displaying an excess abundance in Earth's mantle compared to experimental predictions [1], which may be attributed to the Late-Veneer. As Se is also volatile, testing the late-veneer addition of Se can constrain the origin of other volatile elements on Earth. Here we combine high-precision Se isotope measurements of metal-silicate partitioning experiments and chondrites to assess whether planetary differentiation could leave a measurable Se isotopic signature on planetary mantles. We performed Se isotopic measurements of 5 metal-silicate partitioning experiments and 20 chondrites of all major classes. Experiments were conducted at 1 GPa and 1650 C for 1 to 4 hours using the piston-cylinder apparatus at Carnegie's Geophysical Laboratory. After wet chemistry, data were obtained on a ThermoFisher Scientific™ NeptunePlus MC-ICP-MS at the University of Tübingen with a 74Se/77Se double spike technique. δ82/76Se values are given relative to NIST SRM-3149 and the external reproducibility calculated from duplicate meteorite analyses is ≤ 0.1‰ (2 s.d.). Chondrites vary over a 0.8‰ range of δ82/76Se values. CIs and CMs show evidence for heavier 82Se/76Se ratios, likely due to mixing processes in the proto-planetary nebula. When these isotopically heavier meteorites are excluded, remaining chondrites have δ82/76Se values varying over a 0.3‰ range, within uncertainty of previous results [2]. We suggest that these chondrites may be used to estimate a δ82/76Se value of bulk planets. At the conditions of our experiments, the partition coefficients for Se log Dmetal-silicate range from 0.7±0.1 to 1.9±0.1, consistent with previous work [1]. A small but resolvable Se isotopic fractionation was observed: 82Se/76Se ratios were enriched by ≤ 0.5‰ in the silicates relative to the metals. Thus, given current uncertainties for Se isotopic measurements, marginal differences between planetary mantles and chondrites may be resolved

  11. The influence of fire retardants on the properties of beech and poplar veneers and plywood

    Directory of Open Access Journals (Sweden)

    Miljković Jovan

    2005-01-01

    Full Text Available Rising demands for fire resistance properties of wood construction and elements matching new standards have been an important part of building codes during the last decade. On the other side, lack of more detailed research on interaction between wood species and selected fire retardant chemicals even with basically one is evident. This is particularly truth with domestic wood species. In this research, beech and poplar veneers were immersed in 25% solutions of monoammonium phosphate (MP and sodium acetate (SA and impregnated for different periods of time. To determine the preliminary level of fire retardancy achieved in veneers before manufacturing of finished plywood, thermo gravimetric (TG and derivative thermo gravimetric (DTG methods were used. TG and DTG analyses of treated and untreated wood, as well as of fire retardants alone, were performed. The next properties of impregnated and no impregnated veneers and plywood were determined: absorption of imp regnant solution (A, weight percent gain (WPG of imp regnant, equilibrium moisture content (EMC, pH values, and in the case of plywood, strength and fire resistance. Fire resistance of plywood was tested in accordance with standard test for resistance to the effects of fire and the most efficient fire retardant, monoammonium phosphate, had the same result as TG/DTG analyses, which pointed out the validity of TG methods in predicting fire resistance of future products.

  12. Aesthetic composite veneers for an adult patient with amelogenesis imperfecta: a case report.

    Science.gov (United States)

    Brignall, Ian; Mehta, Shamir B; Banerji, Subir; Millar, Brian J

    2011-11-01

    This case has been presented as part of the continual assessment requirement for the MSc in Aesthetic Dentistry, King's College Dental Institute. Amelogenesis imperfecta (AI) is a hereditary disorder of enamel formation, affecting both the permanent and deciduous dentitions. It can be classified into hypoplastic, hypomaturation and hypocalcified types and presents with different hereditary patterns. The aim of this article is to provide an overview of amelogenesis imperfecta, including a detailed case report for an aesthetically concerned adult patient presenting in general practice with a Witkop's Type IA defect managed with the placement of direct, layered resin composite veneers. Amelogenesis imperfecta patients are susceptible to the restorative cycle of replacement restorations like any other patient, but start with a distinct disadvantage.This case report demonstrates a minimally invasive, relatively simple and cost-effective option for the aesthetic correction of a case of hypoplastic amelogenesis imperfecta with layered composite veneers. Dent Update 2011; 38:594-603

  13. Comparison of Marginal Fit and Fracture Strength of a CAD/CAM Zirconia Crown with Two Preparation Designs

    Directory of Open Access Journals (Sweden)

    Hamid Jalali

    2016-08-01

    Full Text Available Objectives: The purpose of this in vitro study was to compare the marginal adaptation and fracture resistance of a zirconia-based all-ceramic restoration with two preparation designs.Materials and Methods: Twenty-four mandibular premolars were randomly divided into two groups (n=12; the conventional group received a peripheral shoulder preparation and the modified group received a buccal shoulder and proximal/lingual chamfer preparation. The marginal fit of the zirconia crowns (Cercon was evaluated using a stereomicroscope. After cementation, load was applied to the crowns. The mean fracture load and the mean marginal gap for each group were analyzed using t-test (P=0.05.Results: The mean marginal gap was 71±16µm in the conventional group and 80±10µm in the modified group, with no significant difference (P=0.161. The mean fracture strength was 830±153N for the conventional group and 775±125N for the modified group, with no significant difference (P=0.396. All but one fracture occurred in the veneering ceramic.Conclusion: Less aggressive preparation of proximal and lingual finish lines for the preservation of tooth structure in all-ceramic restorations does not adversely affect the marginal adaptation or fracture strength of the final restoration.

  14. Spherical powder for retaining thermosetting acrylic resin veneers.

    Science.gov (United States)

    Tanaka, T; Atsuta, M; Uchiyama, Y; Nakabayashi, N; Masuhara, E

    1978-03-01

    1. Nine different sizes of spherical powder were prepared, and their effectiveness as retentive devices was evaluated against those available commercially. 2. Smaller-diameter spherical powder (No. 5) gave the best results of all retaining devices tested. 3. The physical properties of the resins play an important role in the retentive strength with No. 5 retention beads. The retentive strength was reduced when brittle resin was used. 4. The retentive strength of the resin veneer was greatly affected by the angle of stress at the incisal resin. The retentive strength increased as the angle between the longitudinal axis of the specimen and the direction of stress decreased.

  15. Fracture analysis of randomized implant-supported fixed dental prostheses

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F.; Mehler, Alex; Clark, Arthur E.; Neal, Dan; Anusavice, Kenneth J.

    2014-01-01

    Objective Fractures of posterior fixed dental all-ceramic prostheses can be caused by one or more factors including prosthesis design, flaw distribution, direction and magnitude of occlusal loading, and nature of supporting infrastructure (tooth root/implant), and presence of adjacent teeth. This clinical study of implant-supported, all-ceramic fixed dental prostheses, determined the effects of (1) presence of a tooth distal to the most distal retainer; (2) prosthesis loading either along the non-load bearing or load bearing areas; (3) presence of excursive contacts or maximum intercuspation contacts in the prosthesis; and (4) magnitude of bite force on the occurrence of veneer ceramic fracture. Methods 89 implant-supported FDPs were randomized as either a three-unit posterior metal-ceramic (Au-Pd-Ag alloy and InLine POM, Ivoclar, Vivadent) FDP or a ceramic-ceramic (ZirCAD and ZirPress, Ivoclar, Vivadent) FDP. Two implants (Osseospeed, Dentsply) and custom abutments (Atlantis, Dentsply) supported these FDPs, which were cemented with resin cement (RelyX Universal Cement). Baseline photographs were made with markings of teeth from maximum intercuspation (MI) and excursive function. Patients were recalled at 6 months and 1 to 3 years. Fractures were observed, their locations recorded, and images compared with baseline photographs of occlusal contacts. Conclusion No significant relationship exists between the occurrence of fracture and: (1) the magnitude of bite force; (2) a tooth distal to the most distal retainer; and (3) contacts in load-bearing or non-load-bearing areas. However, there was a significantly higher likelihood of fracture in areas with MI contacts only. Clinical Significance This clinical study demonstrates that there is a need to evaluate occlusion differently with implant-supported prostheses than with natural tooth supported prostheses because of the absence of a periodontal ligament. Implant supported prostheses should have minimal occlusion and

  16. Automated knot detection with visual post-processing of Douglas-fir veneer images

    Science.gov (United States)

    C.L. Todoroki; Eini C. Lowell; Dennis Dykstra

    2010-01-01

    Knots on digital images of 51 full veneer sheets, obtained from nine peeler blocks crosscut from two 35-foot (10.7 m) long logs and one 18-foot (5.5 m) log from a single Douglas-fir tree, were detected using a two-phase algorithm. The algorithm was developed using one image, the Development Sheet, refined on five other images, the Training Sheets, and then applied to...

  17. The Investigation on Feasibility of Oriented Strand Boards to Parquet Production from Mixed Residual Veneer Popular and Beech

    Directory of Open Access Journals (Sweden)

    Saeid Kamrani

    2013-06-01

    Full Text Available The objective of this study was to investigate of feasibility of using residual veneer (popular and beechto manufacture oriented strand board (OSB parquet. Percentage of mixed residual veneer popular to beech was 40%to 60% respectly. In this study press time (6, 8 and 10 min and press temperature (170º, 180ºwere selected as variables, other factors being kept constant. Results indicated that increase of press temperature had no significant effect on modules of rupture, modules of elasticity and hardness but had significant effect on internal bonding, water absorption and thickness swelling. However results indicated that increase of press time had significant effect on total physical and mechanical properties of boards.

  18. Survival of resin infiltrated ceramics under influence of fatigue.

    Science.gov (United States)

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, Pceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while

  19. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: preliminary results.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J

    2014-02-01

    The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0

  20. On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures.

    Science.gov (United States)

    Chai, Herzl; Lee, James J-W; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2014-08-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  1. Effect of Provisional Cements on Shear Bond Strength of Porcelain Laminate Veneers

    OpenAIRE

    Altintas, Subutay Han; Tak, Onjen; Secilmis, Asli; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. Methods: The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each to...

  2. Hardwood Face Veneer and Plywood Mill Closures in Michigan and Wisconsin Since 1950

    Science.gov (United States)

    Lewis T. Hendricks

    1966-01-01

    In recent years there has been a great deal of concern about the closure of numberous hardwood face veneer and plywood mills in Michigan and Wisconsin. As part of an overall study of that industry in the northern Lake States region, the basic reasons leading to the closure of these mills were investigated. In the past 15 years, there have been eight known mill...

  3. Randomized Clinical Trial of Indirect Resin Composite and Ceramic Veneers : Up to 3-year Follow-up

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Kalk, Warner; Ozcan, Mutlu

    2013-01-01

    Purpose: This randomized controlled split-mouth clinical trial evaluated the short-term survival rate of indirect resin composite and ceramic laminate veneers. Materials and Methods: A total of 10 patients (mean age: 48.6 years) received 46 indirect resin composite (Estenia; n = 23) and ceramic

  4. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    Science.gov (United States)

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  5. Bruxism in prospective studies of veneered zirconia restorations-a systematic review.

    Science.gov (United States)

    Schmitter, Marc; Boemicke, Wolfgang; Stober, Thomas

    2014-01-01

    The objectives of this work were to systematically review the effect of bruxism on the survival of zirconia restorations on teeth and to assess the prevalence of nocturnal masseter muscle activity in a clinical sample. A Medline search was performed independently and in triplicate using the term "zirconia" and activating the filter "clinical trial." Furthermore, three other electronic databases were searched using the same term. Only papers published in English on prospective studies of veneered zirconia frameworks on teeth were included. To estimate the prevalence of sleep bruxism in clinical settings, subjects with no clinical signs of bruxism and who did not report grinding and/or clenching were examined by use of a disposable electromyographic device. The initial search resulted in 107 papers, of which 22 were included in the analysis. Bruxers were excluded in 20 of these articles. In 1 study bruxers were not excluded, and 1 study did not provide information regarding this issue. The methods used to identify bruxers were heterogeneous/not described, and no study used reliable, valid methods. Of 33 subjects without clinical signs of bruxism, nocturnal muscle activity exceeded predefined muscle activity for 63.8% of the subjects. There is a lack of information about the effect of bruxism on the incidence of technical failure of veneered zirconia restorations because all available studies failed to use suitable instruments for diagnosis of bruxism. Nocturnal muscle activity without clinical symptoms/report of bruxism was observed for a relevant number of patients.

  6. Rehabilitation of a patient with amelogenesis imperfecta using porcelain veneers and CAD/CAM polymer restorations: A clinical report.

    Science.gov (United States)

    Saeidi Pour, Reza; Edelhoff, Daniel; Prandtner, Otto; Liebermann, Anja

    2015-01-01

    The complete dental rehabilitation of patients with a vertical dimension loss (VDL) caused by structural enamel deficits associated with amelogenesis imperfecta (AI) represents a difficult challenge for restorative teams. Accurate analysis and treatment planning that includes esthetic and functional evaluations and adequate material selection are important prerequisites for successful results. Long-term provisional restorations play an important role in exploring and elucidating the patients' esthetic demands and functional needs. Restorative treatment options can vary from requiring only oral hygiene instructions to extensive dental restorations that include composite fillings, ceramic veneers, metal-ceramic, or all-ceramic crowns. This case report describes a full-mouth rehabilitation of a patient with amelogenesis imperfecta including the case planning, bite replacement, preparation, and restoration setting steps with an experimental CAD/CAM polymer and porcelain veneers.

  7. [Study on color of thermosetting resin for veneer crown].

    Science.gov (United States)

    Kamitomai, H

    1989-02-01

    Based on the viewpoint that stresses the importance of achieving natural colors and forms for veneer crown, four representative kinds of thermosetting resins were investigated colorimetrically in an attempt to clarify the relationship between the thickness and color of resins in opaque, dentin and enamel colors respectively. A spectrophotometer was used to measure the colors, the CIE colorimetric system employed to show the readings, and the CIE 1964 U*V*W* space was utilized to indicate the color differences, with the following results. 1. In the case of dentin, certain specific colors were observed for thickness of 1.3 to 1.8 mm when used alone, but when applied over opaque the range was 0.2 to 0.5 mm lower than when used alone. 2. Enamel resins were grouped into two types according to different color groups, one group similar to achromatic color with low limpidity and the other similar to the dentin color with high limpidity. The former type became more grayer with an increase in thickness when applied over dentin. The latter type showed no difference in color even when the thickness increased. This study has shown that the facing color results vary depending on the color properties of the different resins used. Therefore, it is advisable that careful consideration be given to these differencies in order to achieve the intended color facing.

  8. The effect of veneering and heat treatment on the flexural strength of Empress 2 ceramics.

    Science.gov (United States)

    Cattell, M J; Palumbo, R P; Knowles, J C; Clarke, R L; Samarawickrama, D Y D

    2002-05-01

    The aims of the study were to test and compare the biaxial flexural strength and reliability of Empress 2 ceramics after heat treatment and the addition of the veneering material and to characterise their microstructures. Forty disc specimens (2 x 14 mm) and forty disc specimens (1 x 14 mm) were produced by heat pressing in the EP 500 press furnace. Group 1 (2 x 14 mm Empress 2 core) was as heat pressed and group 2 (2 x 14 mm Empress 2 core) was subjected to the recommended firing cycles. Groups 3 and 4 (1 x 14 mm Empress 2 core) were veneered with the dentine material and heat-treated as per group 2. Groups 1, 2 and 3 were lapped to 800 grit silicon carbide paper on the compressive surface only and group 4 on both the compressive and tensile test surfaces. Twenty disc specimens per group were tested using the biaxial flexure test at a crosshead speed of 0.15 mm/min. Specimens were characterised using X-ray diffraction (XRD) and secondary electron imaging (SEM). Mean biaxial flexural strengths (MPa+/-SD) were group 1: 265.5+/-25.7; group 2: 251.3+/-30.2; group 3: 258.6+/-21.4 and group 4: 308.6+/-37.7. There was no statistical difference between groups 1, 2 and 3 (p>0.05), but differences for group 4 (pEmpress 2 core material and an amorphous glass and some evidence of a crystalline phase in the dentine material. CONCLUSIONS; Veneering or heat treatment of Empress 2 ceramics did not significantly affect the mean biaxial flexural strength (p>0.05) or reliability. Surface modification of the Empress 2 core material increased the mean biaxial flexural strength (p<0.05).

  9. Effect of resin shades on opacity of ceramic veneers and polymerization efficiency through ceramics.

    Science.gov (United States)

    Öztürk, Elif; Chiang, Yu-Chih; Coşgun, Erdal; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta

    2013-11-01

    The aim of this study was to assess the effect of different resin cement shades on the opacity and color difference of ceramics and to determine the polymerization efficiency of the resin cement at different shades after curing through ceramics. Two different ceramics (IPS e.max Press and IPS Empress(®)CAD, Ivoclar Vivadent) were used for this study. A light-cured veneer luting resin (Variolink Veneer, Ivoclar Vivadent) in four different shades of HV+1, HV+3, LV-1, and LV-3 was used for the colorimetric measurements. The color and spectral reflectance of the ceramics were measured according to the CIELab color scale relative to the standard illuminant D65 on a reflection spectrophotometer (ColorEye7000A, USA). Color differences (ΔE values) and the contrast ratios (CR) of the different groups of samples were calculated. In order to analyse the polymerization efficiency of the resin cements, the micromechanical properties of the resins were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). The results were analysed using one-way ANOVA and Tukey's HSD post hoc tests (SPSS 18.0). The one-way ANOVA test showed that the values of ΔE and CR of the different specimen groups were significantly different (p<0.05). Group 1 (20.7 ± 0.5) (IPS-CAD without resin cement) exhibited the highest and group 10 (14.8 ± 0.5) (e.max:HV+3) exhibited the lowest ΔE value. Significant differences in the micromechanical properties were identified among the tested resin cements in different shades (p<0.05). Resin cement shade is an important factor for the opacity of a restoration. Furthermore, the resin shade affects the micromechanical properties of the underlying resin cement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Secondary overprinting of S-Se-Te signatures in the Earth's mantle: Implications for the Late Veneer

    Science.gov (United States)

    Koenig, S.; Luguet, A.; Lorand, J.; Pearson, D.

    2013-12-01

    Sulphur, Selenium and Tellurium are both chalcophile and highly siderophile elements (HSE) with near-chondritic ratios and absolute abundances in the terrestrial mantle that exceed those predicted by core-mantle differentiation[1]. These 'excess' HSE abundances have been attributed to addition of ca. 0.5% of chondrite-like material that hit the Earth in its accretionary stage between 4 to 3.8 billion years ago after core-mantle differentiation (Late Veneer[2]). Therefore, like other HSE, S, Se and Te are considered potential tracers for the composition of the Late Veneer, provided that their bulk silicate Earth abundances are properly constrained. In contrast to ca. 250 ppm S, Se and Te are ultra-trace elements in the terrestrial mantle. Like all HSE, they are furthermore controlled by base metal sulphides (BMS) and micrometric platinum group minerals (PGMs)[3]. This strong control exerted by the host mineralogy and petrology on the S-Se-Te systematics at both the micro-scale and the whole-rock scale makes detailed mineralogical and petrological studies of BMS and PGM a pre-requisite to fully understand and accurately interpret the whole-rock signatures. Here we combine in-situ sulphide data and detailed mineralogical observations with whole-rock S-Se-Te-HSE signatures of both lherzolites and harburgites from different geodynamic settings. We demonstrate that the near-chondritic Se and Te signature of 'fertile' mantle rocks (Se/Te ≈9×5) is not a primitive signature of the Earth's mantle, but rather reflects strong enrichment in metasomatic HSE host phases, which erased previous pristine signatures. Consequently, current attempts to identify a potential Late Veneer composition are seriously flawed because, neither refertilisation/metasomatism nor true melt depletion (e.g. harzburgitic residues) have been taken into account for the Primitive Upper Mantle composition estimate[4]. Our combined whole rock and in-situ sulphide data indicate a refertilisation trend

  11. Clinical experiences of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Jemt, T

    1999-01-01

    Titanium frameworks have been used in the endentulous implant patient for the last 10 years. However, knowledge of titanium frameworks for the partially dentate patient is limited. To report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw. A consecutive group of 383 partially edentulous patients were, on a routine basis, provided with fixed partial prostheses supported by Brånemark implants in the mandible or maxilla. Besides conventional frameworks in cast gold alloy, 58 patients were provided with titanium frameworks with three different veneering techniques, and clinical and radiographic 5-year data were collected for this group. The overall cumulative survival rate was 95.6% for titanium-framework prostheses and 93.6% for implants. Average bone loss during the follow-up period was 0.4 mm. The most common complications were minor veneering fractures. Loose and fractured implant screw components were fewer than 2%. An observation was that patients on medications for cardiovascular problems may lose more implants than others (p laser-welded titanium frameworks was similar to that reported for conventional cast frames in partially edentulous jaws. Low-fusing porcelain veneers also showed clinical performance comparable to that reported for conventional porcelain-fused-to-metal techniques.

  12. Estimating the spread rate of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer using fluorescence

    Science.gov (United States)

    Toni Antikainen; Anti Rohumaa; Christopher G. Hunt; Mari Levirinne; Mark Hughes

    2015-01-01

    In plywood production, human operators find it difficult to precisely monitor the spread rate of adhesive in real-time. In this study, macroscopic fluorescence was used to estimate spread rate (SR) of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer. This method could be an option when developing automated real-time SR measurement for...

  13. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  14. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  15. [Fracture resistance of Procera Allceram depending on the framework design--an in vitro study].

    Science.gov (United States)

    Hagmann, Edgar; Marinello, Carlo P; Zitzmann, Nicola U

    2006-01-01

    Procera AllCeram is one of the all-ceramic systems with an aluminium-oxide core employing CAD/CAM technology. The aim of the current study was to investigate the fracture resistance of Procera AllCeram full-ceramic crowns with a reduced core design compared to the conventional method. In addition, a possible influence of the preparation form (molars or premolars) and the cementation material (glas-ionomer or composite) was analyzed. For both preparation forms, 30 ceramic cores with reduced margins (collarless cores, test) and 30 cores with extended cores (control) were veneered with porcelain in a standardized procedure (total 120 crowns). For the test group, Procera-AllCeram-margin ceramic material was used for the porcelain collar. 40 crowns each were cemented on stainless steel dies with either Ketac-Cem Aplicap or Panavia F. The additional 40 crowns were set on polyurethane dies without cementation and occlusally loaded until fracture occurred. Among the molar crowns, no differences were observed in fracture resistance neither for the different core designs (test or control) nor for the cementation materials. For the premolar form, fusing of a porcelain margin was associated with a reduction in fracture resistance, while the use of composite cement was accompanied with an increase. The present in vitro results indicate that for Procera AllCeram crowns with a highly undulating preparation margin, a conventional core design combined with adhesive cementation is preferable, especially in the posterior region due to higher chewing forces; this assumption needs to be proven in clinical studies.

  16. Influence of a thin veneer of low-hydraulic-conductivity sediment on modelled exchange between river water and groundwater in response to induced infiltration

    Science.gov (United States)

    Rosenberry, Donald O.; Healy, Richard W.

    2012-01-01

    A thin layer of fine-grained sediment commonly is deposited at the sediment–water interface of streams and rivers during low-flow conditions, and may hinder exchange at the sediment–water interface similar to that observed at many riverbank-filtration (RBF) sites. Results from a numerical groundwater-flow model indicate that a low-permeability veneer reduces the contribution of river water to a pumping well in a riparian aquifer to various degrees, depending on simulated hydraulic gradients, hydrogeological properties, and pumping conditions. Seepage of river water is reduced by 5–10% when a 2-cm thick, low-permeability veneer is present on the bed surface. Increasing thickness of the low-permeability layer to 0·1 m has little effect on distribution of seepage or percentage contribution from the river to the pumping well. A three-orders-of-magnitude reduction in hydraulic conductivity of the veneer is required to reduce seepage from the river to the extent typically associated with clogging at RBF sites. This degree of reduction is much larger than field-measured values that were on the order of a factor of 20–25. Over 90% of seepage occurs within 12 m of the shoreline closest to the pumping well for most simulations. Virtually no seepage occurs through the thalweg near the shoreline opposite the pumping well, although no low-permeability sediment was simulated for the thalweg. These results are relevant to natural settings that favour formation of a substantial, low-permeability sediment veneer, as well as central-pivot irrigation systems, and municipal water supplies where river seepage is induced via pumping wells

  17. Effect of luting agent on the load to failure and accelerated-fatigue resistance of lithium disilicate laminate veneers

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Ozcan, Mutlu; Carualho, Marco; Lazari, Priscilla; Cune, Marco S.; Razavi, Peywand; Magne, Pascal

    2017-01-01

    Objective. The aim of this study was to investigate the influence of the luting agent on the application of laminate veneers (LVs) in an accelerated fatigue and load-to-failure test after thermo-cyclic aging. Methods. Sound maxillary central incisors (N = 40) were randomly divided into four groups

  18. Novel UV cured polymers for coating and recycling cellulosics, application to a unique paper / veneer from the waste banana tree

    International Nuclear Information System (INIS)

    Dennis, G.R.; Garnett, J.L.; Jarrett, K.J.

    2007-01-01

    Work involving UV curing and cure-grafting processes on material from the waste banana tree has been performed. Water compatible oligomers of unique structure and processing novel properties have been used in this treatment. The material from the waste banana tree has been obtained by a peeling process and can be treated either as a type of paper or as a modified timber veneer leading to two general lines of potential commercial products. The peeled product is coated with formulations containing the novel oligomers and UV cured. The advantages of using these unique water compatible oligomers in all general UV curing systems are discussed. The effect of including nanoparticle fillers in these coating formulations is considered. The effect of the presence of lignin in the banana ply paper on the curing process is examined by comparing the banana ply paper curing data with analogous results from a pure cellulose Whatman 41 paper. Two UV lamps have been used in these studies, a Fusion F-300 and a Con-Trol-Cure LED, the latter shown to be safer from body exposure considerations because it operates in a 385-405 nm wavelength band. A mechanism for the curing and cure-grafting process on banana ply paper/veneer has been proposed. The commercial potential of this process is discussed especially the economic advantages of using the banana ply paper/veneer which is not chemically pulped. (Author)

  19. Effect of Static and Cyclic Loading on Ceramic Laminate Veneers Adhered to Teeth with and Without Aged Composite Restorations

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Ozcan, Mutlu; Kalk, Warner; Galhano, Graziela

    2011-01-01

    Purpose: Existing composite restorations on teeth are often remade prior to the cementation of fixed dental prostheses. The aim of this study was to evaluate the effect of static and cyclic loading on ceramic laminate veneers adhered to aged resin composite restorations. Materials and Methods:

  20. Effect of stacking sequence on mechanical properties neem wood veneer plastic composites

    Science.gov (United States)

    Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.

    2018-04-01

    This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.

  1. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  2. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    Science.gov (United States)

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Double segmental tibial fractures - an unusual fracture pattern

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2012-02-01

    Full Text Available 【Abstract】A case of a 50-year-old pedestrian who was hit by a bike and suffered fractures of both bones of his right leg was presented. Complete clinical and radiographic assessment showed double segmental fractures of the tibia and multisegmental fractures of the fibula. Review of the literature revealed that this fracture pattern was unique and only a single case was reported so far. Moreover, we discussed the possible mechanisms which can lead to such an injury. We also discussed the management of segmental tibial fracture and the difficulties encountered with them. This case was managed by modern osteosynthesis tech- nique with a pleasing outcome. Key words: Fracture, bone; Tibia; Fibula; Nails

  4. Evaluation of the color durability of acrylic resin veneer materials after immersion in common beverages at different time intervals: A spectrophotometric study.

    Science.gov (United States)

    Kohli, Shivani; Bhatia, Shekhar

    2015-01-01

    Proper function, esthetics, and cost are the prime factors to be considered while selecting bridge veneering materials. The purpose of the study is to evaluate color durability of acrylic veneer materials after immersion in common beverages at different time intervals. Spectrophotometer was used for taking color measurements based on the transmission of light through the specimens made of the selected materials which were Tooth moulding powder (DPI) and Acrylux (Ruthinium). Thirty specimens of standardized dimensions were prepared from each material. The specimens were divided into three groups of 10 each. One group of each material was immersed in tea (TajMahal) and another group of each material in cola (Pepsi) as the staining solutions. The remaining group of 10 from each material served as control and was stored in distilled water. Color measurements were obtained pre-immersion, and after 1, 15, and 30 days of immersion. Tooth moulding powder displayed better color durability than Acrylux over the 1 month immersion period in both staining solutions. Tea resulted in more discoloration compared to cola (Pepsi). The difference in the color durability of Acrylux and Tooth moulding powder may be attributed to the differences in the composition of tested resin veneering materials, i.e. their polar properties, which contribute to the absorption of staining solution, and the different brands and the strengths of the solutions.

  5. Evaluation of the color durability of acrylic resin veneer materials after immersion in common beverages at different time intervals: A spectrophotometric study

    Directory of Open Access Journals (Sweden)

    Shivani Kohli

    2015-06-01

    Full Text Available Background: Proper function, esthetics, and cost are the prime factors to be considered while selecting bridge veneering materials. The purpose of the study is to evaluate color durability of acrylic veneer materials after immersion in common beverages at different time intervals. Methods: Spectrophotometer was used for taking color measurements based on the transmission of light through the specimens made of the selected materials which were Tooth moulding powder (DPI and Acrylux (Ruthinium. Thirty specimens of standardized dimensions were prepared from each material. The specimens were divided into three groups of 10 each. One group of each material was immersed in tea (TajMahal and another group of each material in cola (Pepsi as the staining solutions. The remaining group of 10 from each material served as control and was stored in distilled water. Color measurements were obtained pre-immersion, and after 1, 15, and 30 days of immersion. Results: Tooth moulding powder displayed better color durability than Acrylux over the 1 month immersion period in both staining solutions. Tea resulted in more discoloration compared to cola (Pepsi. Conclusion: The difference in the color durability of Acrylux and Tooth moulding powder may be attributed to the differences in the composition of tested resin veneering materials, i.e. their polar properties, which contribute to the absorption of staining solution, and the different brands and the strengths of the solutions.

  6. Ceramic (Feldspathic & IPS Empress II) vs. laboratory composite (Gradia) veneers; a comparison between their shear bond strength to enamel; an in vitro study.

    Science.gov (United States)

    Nikzad, S; Azari, Abbas; Dehgan, S

    2010-07-01

    Patient demand for aesthetic dentistry is steadily growing. Laminates and free metal restorations have evolved in an attempt to overcome the invasiveness nature of full veneer restorations. Although many different materials have been used for making these restorations, there is no single material that fits best for all purposes. Two groups of ceramic material (Feldspathic and IPS Empress II) and one group of laboratory composite (Gradia) discs (10 discs in each group; 4 mm in diameter and 2 mm in thickness) were prepared according to the manufacturer's instruction. The surface of ceramic discs were etched and silanized. In Gradia group, liquid primer was applied on composite surfaces. Thirty freshly extracted sound human molars and premolars were randomly divided into three groups. The enamel surface of each tooth was slightly flattened (0.3 mm) on the buccal or lingual side and then primed and cemented to the prepared discs with the aid of a dental surveyor. The finishing specimens were thermocycled between 5 degrees C and 55 degrees C for 2500 cycles and then prepared for shear bond strength testing. The resulting data were analyzed by one-way anova and Tukey HSD test. The fractured surfaces of each specimen were inspected by means of stereomicroscope and SEM. There is significant difference between the bond strength of materials tested. The mean bond strengths obtained with Feldspathic ceramic, IPS Empress II and Gradia were 33.10 +/- 4.31 MPa, 26.04 +/- 7.61 MPa and 14.42 +/- 5.82 MPa, respectively. The fracture pattern was mainly mixed for ceramic groups. More scientific evidence needed for standardization of bonding protocols.

  7. Bilateral femoral neck fractures resulting from pregnancy-associated osteoporosis showed bone marrow edema on magnetic resonance imaging.

    Science.gov (United States)

    Kasahara, Kyoko; Kita, Nobuyuki; Kawasaki, Taku; Morisaki, Shinsuke; Yomo, Hiroko; Murakami, Takashi

    2017-06-01

    Femoral neck fractures resulting from pregnancy-associated osteoporosis is a rare condition. Herein, we report an undoubted case of pregnancy-associated osteoporosis in a 38-year-old primiparous patient with pre-existing anorexia nervosa who suffered bilateral femoral neck fractures in the third trimester and early post-partum period. Magnetic resonance imaging revealed femoral neck fractures as well as diffuse marrow edema involving both femoral heads, which are considered under ordinary circumstances as characteristic imaging findings of transient osteoporosis of the hip. Based on our experience, we propose that pregnancy-associated osteoporosis might be present in femoral neck fractures attributed to transient osteoporosis of the hip in pregnancy. Conversely, bone status should be carefully and accurately estimated in cases of potential transient osteoporosis of the hip in pregnancy to reduce future fracture risk. © 2017 The Authors Journal of Obstetrics and Gynaecology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Obstetrics and Gynecology.

  8. Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate

    Science.gov (United States)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.

    2017-10-01

    This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.

  9. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  10. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  11. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  12. Hip Fractures: What Information Does the Evidence Show That Patients and Families Need to Decrease 30-Day Readmission?

    Science.gov (United States)

    Gardner, Kristin OʼMara

    2015-01-01

    The current bundled payment reimbursement from the Centers for Medicare & Medicaid Services will not cover the additional cost of hospital readmission for the same diagnosis, and patients with hip fractures have one of the highest cost-saving opportunities when compared with other admission reasons. Common reasons for readmission to the hospital after hip fracture include pneumonia, dehydration, and mobility issues. The learning modalities including visual, aural, read/write, and kinesthetic were used to make recommendations on how the education can be incorporated into the instruction of patients with hip fractures and their families. These learning techniques can be used to develop education to decrease possibility of 30-day readmission after hip fracture. Nurses must focus their education to meet the needs of each individual patient, adapting to different types of adult learners to increase the health literacy of patients with hip fractures and their families.

  13. The influence of log soaking temperature on surface quality and integrity performance of birch (Betula pendula Roth) veneer

    Science.gov (United States)

    Anti Rohumaa; Toni Antikainen; Christopher G. Hunt; Charles R. Frihart; Mark Hughes

    2016-01-01

    Wood material surface properties play an important role in adhesive bond formation and performance. In the present study, a test method was developed to evaluate the integrity of the wood surface, and the results were used to understand bond performance. Materials used were rotary cut birch (Betula pendula Roth) veneers, produced from logs soaked at 20 or 70 °C prior...

  14. 3D quantification of clinical marginal and internal gap of porcelain laminate veneers with minimal and without tooth preparation and 2-year clinical evaluation.

    Science.gov (United States)

    Karagözoğlu, İrem; Toksavul, Suna; Toman, Muhittin

    2016-01-01

    The aims of this clinical study were to compare internal three-dimensional (3D) adaptation of porcelain laminate veneers (PLV) with minimal tooth preparation and without tooth preparation (prepless) and to evaluate the clinical outcomes at baseline and following 6, 12, and 24 months after luting. Thirty-one prepless PLV and 31 PLV with minimal tooth preparation were fabricated using lithium disilicate glass-ceramic material and placed in 12 patients (8 women, 4 men; 18 to 40 years old). All PLV were luted with an adhesive luting system (Variolink veneer). A silicone replica was obtained to measure internal adaptation of each PLV using a low viscosity polyvinyl siloxane impression material just before luting. Silicone replicas were scanned in x-ray micro computerized tomography (micro CT). Clinical evaluations took place at baseline (2 days after luting) and following 6, 12, and 24 months after luting. Marginal integrity, marginal discoloration, secondary caries, tooth sensitivity, and fracture were evaluated following FDI criteria. Replica scores were analyzed using Mann-Whitney U and Student's t test (α = .05). Kaplan-Meier statistical analysis was done for the survival rate of PLV. FDI criteria scores were analyzed using Pearson's chi-square test (α = .05). The median marginal gaps for PLV-without-tooth-preparation and PLV-with-minimal-tooth-preparation groups were 100 μm and 140 μm respectively. There was a statistically significant difference between the two groups with respect to marginal gap (P = .04). The mean internal adaptation for the PLV-without-tooth-preparation group was 217.17 ± 54.72 μm, and was 170.67 ± 46.54 μm for the PLV-with-minimaltooth- preparation group. There was a statistically significant difference between the two groups (P = .001). Based on FDI criteria, 100% of the PLV were rated satisfactory during the 2-year period. In this in-vivo study, mean and median values of marginal gap and internal adaptation for PLV with minimal tooth

  15. Risk of hip fracture after osteoporosis fractures. 451 women with fracture of lumbar spine, olecranon, knee or ankle

    DEFF Research Database (Denmark)

    Lauritzen, J B; Lund, B

    1993-01-01

    In a follow-up study during 1976-1984, the risk of a subsequent hip fracture was investigated in women aged 60-99 years, hospitalized for the following fractures: lumbar spine (n 70), olecranon (n 52), knee (n 129) and ankle (n 200). Follow-up ranged from 0 to 9 years. Observation time of the 4...... different fractures were 241, 180, 469, and 779, person-years, respectively. In women aged 60-79 years with one of the following fractures the relative risk of a subsequent hip fracture was increased by 4.8 (lumbar spine), 4.1 (olecranon), 3.5 (knee) and 1.5 (ankle). The relative risk of hip fracture showed...... a tendency to level off 3 years after the primary fracture....

  16. Shear Bond Strengths between Three Different Yttria-Stabilized Zirconia Dental Materials and Veneering Ceramic and Their Susceptibility to Autoclave Induced Low-Temperature Degradation

    Directory of Open Access Journals (Sweden)

    Manoti Sehgal

    2016-01-01

    Full Text Available A study was undertaken to evaluate the effect of artificial aging through steam and thermal treatment as influencing the shear bond strength between three different commercially available zirconia core materials, namely, Upcera, Ziecon, and Cercon, layered with VITA VM9 veneering ceramic using Universal Testing Machine. The mode of failure between zirconia and ceramic was further analyzed as adhesive, cohesive, or mixed using stereomicroscope. X-ray diffraction and SEM (scanning electron microscope analysis were done to estimate the phase transformation (m-phase fraction and surface grain size of zirconia particles, respectively. The purpose of this study was to simulate the clinical environment by artificial aging through steam and thermal treatment so as the clinical function and nature of the bond between zirconia and veneering material as in a clinical trial of 15 years could be evaluated.

  17. Photostability and moisture uptake properties of wood veneers coated with a combination of thin sol-gel films and light stabilizers

    Science.gov (United States)

    Mandla A. Tshabalala; Ryan Libert; Christian M. Schaller

    2011-01-01

    In recent years, there has been increased interest in the use of inorganic UV blocking nanoparticles for photostabilization of wood surfaces. Photostability and moisture uptake properties of wood veneers coated with a combination of hybrid inorganic-organic thin sol-gel films and organic light stabilizers was investigated. The light stabilizers were applied by brushing...

  18. Ankle fractures have features of an osteoporotic fracture.

    Science.gov (United States)

    Lee, K M; Chung, C Y; Kwon, S S; Won, S H; Lee, S Y; Chung, M K; Park, M S

    2013-11-01

    We report the bone attenuation of ankle joint measured on computed tomography (CT) and the cause of injury in patients with ankle fractures. The results showed age- and gender-dependent low bone attenuation and low-energy trauma in elderly females, which suggest the osteoporotic features of ankle fractures. This study was performed to investigate the osteoporotic features of ankle fracture in terms of bone attenuation and cause of injury. One hundred ninety-four patients (mean age 51.0 years, standard deviation 15.8 years; 98 males and 96 females) with ankle fracture were included. All patients underwent CT examination, and causes of injury (high/low-energy trauma) were recorded. Mean bone attenuations of the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis were measured on CT images. Patients were divided into younger age (fractures than the younger age group. With increasing age, bone attenuations tended to decrease and the difference of bone attenuation between the genders tended to increase in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis. Ankle fracture had features of osteoporotic fracture that is characterized by age- and gender-dependent low bone attenuation. Ankle fracture should not be excluded from the clinical and research interest as well as from the benefit of osteoporosis management.

  19. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  20. 利用响应面法研究微孔处理杨木单板的胶合性能%Bonding Properties of Poplar Veneer Punched with Micro-holes by Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    唐忠荣; 黄健; 戴玉玲; 丰江拓

    2015-01-01

    利用响应面法分析研究了经微孔处理后的杨木单板的胶合性能。通过对杨木单板进行微孔处理,可使胶黏剂通过微孔渗入单板体内,增加杨木单板的本体强度,同时也可使相邻胶层透过微孔形成一体而增加单板的胶合强度等,以期制造出一种高性能的地板基材。结果表明:在试验范围内,随微孔孔径增大,孔距减小和施胶量的增加,其胶合强度增加;随热压压力增加,胶合强度先增强,当压力超过0.8 MPa,胶合强度反而降低。%We studied the bonding properties of poplar veneer punched with micro-holes by using response surface experiment. The permeability of poplar veneer increased after micro-hole punching.The adhesive could penetrate into the veneer through these micro holes, and the poplar veneer was strengthened.Through micro holes, the neighboring glue lines formed a whole to increase the bonding strength of veneers.Expecting to produce a high performance floor material.The bonding strength of poplar plywood increased with the increasing of micro-hole diameter,resin content , and the decreasing of holes distance.With the increasing of hot pressing pressure, the bonding strength was improved firstly, however, it declined when the pressure exceeded 0.8 MPa.

  1. Traumatic subchondral fracture of the femoral head in a healed trochanteric fracture.

    Science.gov (United States)

    Lee, Sang Yang; Niikura, Takahiro; Iwakura, Takashi; Kurosaka, Masahiro

    2014-07-11

    An 82-year-old woman sustained a trochanteric fracture of the left femur after a fall. Fracture fixation was performed using proximal femoral nail antirotation (PFNA) II, and she was able to walk with a T-cane after 3 months. Eleven months following the operation, the patient presented with left hip pain after a fall. Radiographs showed a subchondral collapse of the femoral head located above the blade tip. The authors removed the PFNA-II and subsequently performed cemented bipolar hemiarthroplasty. Histological evaluation of the femoral head showed osteoporosis with no evidence of osteonecrosis. Repair tissue, granulation tissue and callus formation were seen at the collapsed subchondral area. Based on these findings, a traumatic subchondral fracture of the femoral head in a healed trochanteric fracture was diagnosed. A traumatic subchondral fracture of the femoral head may need to be considered as a possible diagnosis after internal fixation of the trochanteric fracture. 2014 BMJ Publishing Group Ltd.

  2. Comparison of Metal-Ceramic and All-Ceramic Three-Unit Posterior Fixed Dental Prostheses: A 3-Year Randomized Clinical Trial.

    Science.gov (United States)

    Nicolaisen, Maj H; Bahrami, Golnosh; Schropp, Lars; Isidor, Flemming

    2016-01-01

    The aim of this randomized clinical study was to compare the 3-year clinical outcome of metal-ceramic fixed dental prostheses (MC-FDPs) and zirconia all-ceramic fixed dental prostheses (AC-FDPs) replacing a posterior tooth. A sample of 34 patients with a missing posterior tooth were randomly chosen to receive either a MC-FDP (n = 17) or an AC-FDP (n = 17). The FDPs were evaluated at baseline and yearly until 3 years after cementation. They were assessed using the California Dental Association assessment system. Periodontal parameters were measured at the abutment teeth, and the contralateral teeth served as control. The statistical unit was the FDP/patient. The survival rates for MC-FDPs and AC-FDPs were 100%. The success rate was 76% and 71% for MC-FDPs and AC-FDPs, respectively. Three technical complications were observed in the MC-FDP group and five in the AC-FDP group, all chipping fractures of the ceramic veneer. Furthermore, one biologic complication in the MC-FDP group (an apical lesion) was observed. No framework fractures occurred. All patients had optimal oral hygiene and showed no bleeding on periodontal probing at any of the recalls. Only minor changes in the periodontal parameters were observed during the 3 years of observation. Three-unit posterior MC-FDPs and AC-FDPs showed similar high survival rates and acceptable success rates after 3 years of function, and ceramic veneer chipping fracture was the most frequent complication for both types of restorations.

  3. Fracture Strength of Three-Unit Implant Supported Fixed Partial Dentures with Excessive Crown Height Fabricated from Different Materials

    Directory of Open Access Journals (Sweden)

    Vahideh Nazari

    2017-01-01

    Full Text Available Objectives: Fracture strength is an important factor influencing the clinical long-term success of implant-supported prostheses especially in high stress situations like excessive crown height space (CHS. The purpose of this study was to compare the fracture strength of implant-supported fixed partial dentures (FPDs with excessive crown height, fabricated from three different materials.Materials and Methods: Two implants with corresponding abutments were mounted in a metal model that simulated mandibular second premolar and second molar. Thirty 3-unit frameworks with supportive anatomical design were fabricated using zirconia, nickel-chromium alloy (Ni-Cr, and polyetheretherketone (PEEK (n=10. After veneering, the CHS was equal to 15mm. Then; samples were axially loaded on the center of pontics until fracture in a universal testing machine at a crosshead speed of 0.5 mm/minute. The failure load data were analyzed by one-way ANOVA and Games-Howell tests at significance level of 0.05.Results: The mean failure loads for zirconia, Ni-Cr and PEEK restorations were 2086±362N, 5591±1200N and 1430±262N, respectively. There were significant differences in the mean failure loads of the three groups (P<0.001. The fracture modes in zirconia, metal ceramic and PEEK restorations were cohesive, mixed and adhesive type, respectively.Conclusions: According to the findings of this study, all implant supported three-unit FPDs fabricated of zirconia, metal ceramic and PEEK materials are capable to withstand bite force (even para-functions in the molar region with excessive CHS.Keywords: Dental Implants; Polyetheretherketone; Zirconium oxide; Dental Restoration Failure; Dental Porcelain

  4. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  5. Effect of bleaching and repolishing procedures on coffee and tea stain removal from three anterior composite veneering materials.

    Science.gov (United States)

    Türkün, L Sebnem; Türkün, Murat

    2004-01-01

    Discolored teeth can be treated with resin veneers, but their color changes when confronted with staining solutions. Polishing procedures can provide a remedy for highly stained composites, but they tend to remove some materials as well. However, bleaching procedures are an effective, nondestructive method for solving the problem. The aim of this study was to compare the color change of three veneer composites exposed to staining solutions and to evaluate the effectiveness of a 15% hydrogen peroxide bleaching agent and three polishing systems to remove the stain. Forty-five disks (12 x 2 mm) each of Clearfil ST (Kuraray Co. Ltd., Osaka, Japan), Esthet-X (Dentsply/Caulk, Milford DE, USA), and Filtek A110 (3M ESPE, St. Paul, MN, USA) were prepared. The specimens were polished with Sof-Lex (3M ESPE), Enhance (Dentsply/Caulk), or PoGo (Dentsply/Caulk). Five specimens for each material-polishing system combination were immersed in coffee (Nescafe Classic, Nestle SA, Vevey, Switzerland) or tea (Earl Grey, Lipton, Blackfriars-London, England) for 7 days. The remaining disks were stored in water. Color measurements were made with a spectrophotometer (X-Rite Seroice SP78, Loaner, Köln, Germany) at baseline; after 1, 3, 5, and 7 days; and after bleaching and repolishing. After 1 week, one side of the specimens was bleached with Illuminé-office (Dentsply De Trey GmbH, Konstanz, Germany) for 1 hour, and the other side was repolished for 30 seconds. All comparisons of color change for the polishing systems, times, and staining solutions were subjected to repeated measurements of analysis of variance. Paired t-test was used to examine whether significant color differences (deltaE*) occurred during immersion at the specified time intervals (p < or = .05). Filtek A110 was the least stained resin composite. Its color remained under a deltaE* value of 2 during the study. Clearfil ST exhibited the most color change after 1 week. All specimens polished with Enhance showed less

  6. Radiotherapy of pathologic fractures and skeletal lesions bearing the risk of fracture

    International Nuclear Information System (INIS)

    Rieden, K.; Kober, B.; Mende, U.; Zum Winkel, K.

    1986-01-01

    Radiotherapy is of great importance in the treatment of pathologic fractures and skeletal lesions bearing the risk of fracture which are induced by malignomas, especially if these are in an advanced stage. In dependence on site and extent of skeletal destruction as well as on the general tumor dissemination, it can be distinguished between palliative radiotherapy and curative radiotherapy aiming at analgesia and remineralization. A retrospective analysis of 27 pathologic fractures and 56 skeletal lesions bearing the risk of fracture in malignoma patients showed an analgetic effect obtained by radiotherapy in 67% of pathological fractures and in 80% of skeletal lesions bearing the risk of fracture, whereas a remineralization could be demonstrated for 33% of pathological fractures and 50% of destructions bearing the risk of fracture. A stabilization of destructions progressing before therapy was found in 55% of pathological fractures and 40% of skeletal lesions bearing the risk of fracture. Thus a partial loading, supported by orthopedic prostheses, was possible for more than 50% of all patients. (orig.) [de

  7. Influence of ageing on glass and resin bonding of dental glass-ceramic veneer adhesion to zirconia: A fracture mechanics analysis and interpretation.

    Science.gov (United States)

    Swain, M V; Gee, C; Li, K C

    2018-04-26

    Adhesion plays a major role in the bonding of dental materials. In this study the adhesion of two glass-ceramic systems (IPS e.max and VITABLOCS) to a zirconia sintered substrate using a glass (for IPS e.max) and resin (VITABLOCS) before and after exposure to ageing for 14 days in distilled water at 37 °C are compared using two interfacial fracture mechanics tests, the 3 point bend Schwickerath (Kosyfaki and Swain, 2014; Schneider and Swain, 2015) and 4 point bend (Charalambides et al., 1989) approaches. Both tests result in stable crack extension from which the strain energy release rate (G, N/m or J/m 2 ) can be determined. In the case of the 3 PB test the Work of Fracture was also determined. In addition, the Schwickerath test enables determination of the critical stress for the onset of cracking to occur, which forms the basis of the ISO (ISO9693-2:2016) adhesion test for porcelain ceramic adhesion to zirconia. For the aged samples there was a significant reduction in the resin-bonded strengths (Schwickerath) and strain energy release rate (both 3 and 4 PB tests), which was not evident for the glass bonded specimens. Critical examination of the force-displacement curves showed that ageing of the resin resulted in a major change in the form of the curves, which may be interpreted in terms of a reduction in the critical stress to initiate cracking and also in the development of an R-curve. The extent of the reduction in strain energy release rate following ageing was greater for the Schwickerath test than the Charalambides test. The results are discussed in terms of; the basic mechanics of these two tests, the deterioration of the resin bonding following moisture exposure and the different dimensions of the specimens. These in-vitro results raise concerns regarding resin bonding to zirconia. The present study uses a novel approach to investigate the role of ageing or environmental degradation on the adhesive bonding of two dental ceramics to zirconia

  8. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  9. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  10. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  11. Design of pedestrian truss bridge with Sengon-Rubber laminated veneer lumber

    Science.gov (United States)

    Herbudiman, B.; Pranata, Y. A.; Pangestu, L.

    2017-12-01

    Timber bridges are one of the bridge that has long been used, but nowadays, large dimension of sawn timber has limited supply and also it is not environmental-friendly. Laminated veneer lumber (LVL) is a engineered wood that becomes one of the promising alternative, because it is made from lower quality wood that processed to be used as a more quality one. The bridge planned to be a pedestrian truss bridge with length of 9 m, width of 3 m, height of 2.5 m, and using bolt and steel plate as its connection system. Mechanical properties of LVL obtained directly from laboratory test result. Bridge modeling and planning for wood construction refers to SNI 7973:2013, while the loading refers to SNI 1725:2016. Based on the modelling and calculation, the dimension of truss frame and girder beam which are 9 cm x 9 cm and 9 cm x 18 cm have adequate strengths and satisfy deflection requirement.

  12. Influence of perforation erosion on multiple growing hydraulic fractures in multi-stage fracturing

    Directory of Open Access Journals (Sweden)

    Yongming Li

    2018-02-01

    Full Text Available In multi-stage hydraulic fracturing, the limited-entry method is widely used to promote uniform growth of multiple fractures. However, this method's effectiveness may be lost because the perforations will be eroded gradually during the fracturing period. In order to study the influence of perforation erosion on multiple growing hydraulic fractures, we combined the solid–fluid coupled model of hydraulic fracture growth with an empirical model of perforation erosion to implement numerical simulation. The simulations show clearly that the erosion of perforation will significantly deteriorate the non-uniform growth of multiple fractures. Based on the numerical model, we also studied the influences of proppant concentration and injection rates on perforation erosion in multi-stage hydraulic fracturing. The results indicate that the initial erosion rates become higher with the rising proppant concentration, but the growth of multiple hydraulic fractures is not sensitive to the varied proppant concentration. In addition, higher injection rates are beneficial significantly to the limited-entry design, leading to more uniform growth of fractures. Thus, in multi-stage hydraulic fracturing enough high injection rates are proposed to keep uniform growths. Keywords: Unconventional oil and gas reservoir, Horizontal well, Perforation friction, Perforation erosion, Multi-stage hydraulic fracturing, Numerical simulation, Mathematic model, Uniform growth of fractures

  13. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    OpenAIRE

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis

  14. INFLUENCE OF SILANE HEAT TREATMENT ON THE TENSILE BOND STRENGTH BETWEEN EX-3 SYNTHETIC VENEERING PORCELAIN AND COMPOSITE RESIN USING FIVE DIFFERENT ACTIVATION TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Spartak Yanakiev

    2017-02-01

    Full Text Available Purpose: The purpose of the present study is to assess the effect of five different silane activation temperatures and eight activation methods on the tensile bond strength between one veneering porcelain and one composite resin material. Material and methods: A total of 81 ceramic rods were made of EX-3 veneering ceramic (Kuraray Noritake Dental, Japan. Sintered ceramic bars were grinded with diamond disks to size 10x2x2mm ± 0,05mm. The front part of each bar was polished. After ultrasonic cleaning in distilled water, the specimens were divided into nine groups. Silane was activated with air at room temperature, 38º С, 50º С, 100º С, 120º С using a custom made blow drier. In a silicone mold, a composite resin Z250 (3М ESPE, St. Paul, USA was condensed toward the bond ceramic surface. A total of 81 specimens approximately 2,0 cm long were prepared for tensile bond testing. One way ANOVA, followed by Bonferroni and Games-Howell tests were used for statistical analysis. Results: The lowest tensile bond strength was observed in the control group (3,51MPa. Group 2 yielded the highest bond strength among all groups (19,54MPa. Silane heat treatment enhanced the bond strength for all treatment methods. Within the polished specimens, the highest bond strength was yielded with warm air at 120ºС (11,31MPa. Conclusion: The most effective method for bonding Z250 composite resin to EX-3 veneering ceramic includes HF etching, silane, and adhesive resin. The most effective heat treatment method for bonding is hot air at 120ºС.

  15. Comparison of surgical techniques of 111 medial malleolar fractures classified by fracture geometry.

    Science.gov (United States)

    Ebraheim, Nabil A; Ludwig, Todd; Weston, John T; Carroll, Trevor; Liu, Jiayong

    2014-05-01

    Evaluation of operative techniques used for medial malleolar fractures by classifying fracture geometry has not been well documented. One hundred eleven patients with medial malleolar fractures (transverse n = 63, oblique n = 29, vertical n = 7, comminuted n = 12) were included in this study. Seventy-two patients had complicating comorbidities. All patients were treated with buttress plate, lag screw, tension band, or K-wire fixation. Treatment outcomes were evaluated on the basis of radiological outcome (union, malunion, delayed union, or nonunion), need for operative revision, presence of postoperative complications, and AOFAS Ankle-Hindfoot score. For transverse fractures, tension band fixation showed the highest rate of union (79%), highest average AOFAS score (86), lowest revision rate (5%), and lowest complication rate (16%). For oblique fractures, lag screws showed the highest rate of union (71%), highest average AOFAS score (80), lowest revision rate (19%), and lowest complication rate (33%) of the commonly used fixation techniques. For vertical fractures, buttress plating was used in every case but 1, achieving union (whether normal or delayed) in all cases with an average AOFAS score of 84, no revisions, and a 17% complication rate. Comminuted fractures had relatively poor outcomes regardless of fixation method. The results of this study suggest that both tension bands and lag screws result in similar rates of union for transverse fractures of the medial malleolus, but that tension band constructs are associated with less need for revision surgery and fewer complications. In addition, our data demonstrate that oblique fractures were most effectively treated with lag screws and that vertical fractures attained superior outcomes with buttress plating. Level III, retrospective comparative series.

  16. In Vitro Comparison of Marginal and Internal Fit of Press-on-Metal Ceramic (PoM) Restorations with Zirconium-Supported and Conventional Metal Ceramic Fixed Partial Dentures Before and After Veneering.

    Science.gov (United States)

    Varol, Seda; Kulak-Özkan, Yasemin

    2015-07-01

    To compare marginal and internal fit between 3- and 4-unit press-on-metal (PoM) ceramic, zirconia-supported, and conventional metal ceramic fixed partial dentures (FPDs) before and after veneering. Ten pieces for each 3- and 4-unit MC, IPS InLine PoM, and IPS e.max ZirCAD/Zir Press FPDs were produced. Cross-sections from silicone replicas were examined and measured with a light microscope. Occlusal, axial, intermarginal, and marginal mean adaptation scores of cross-sectioned replicas and means of measurements obtained from 4 sites were calculated independently. Mean values for molars were 78.44 ± 32.01 μm (MC), 89.84 ± 29.20 μm (PoM), and 85.17 ± 28.49 μm (Zir). Premolar values were 76.08 ± 27.92 μm (MC), 89.94 ± 23.49 μm (PoM), and 87.18 ± 28.25 μm (Zir). No difference existed between the means of 3- and 4-unit FPDs except the molar-intermarginal region. The mean value of 4-unit FPDs (93.88 ± 25.41 μm) was less than the 3-unit FPDs (103.68 ± 24.55 μm) at the molar-inter marginal region. A gap increase was observed in all sites except the molar-axio-occlusal region after veneering. According to the mean difference, gap increases at the molar-marginal, molar-intermarginal, and premolar-intermarginal regions were statistically significant. A statistical difference was found at the molar-marginal region for 4-unit MCR (p = 0.041) and 4-unit PoM FPDs (p = 0.042) before and after veneering. Gap increase after veneering of 4-unit metal ceramics at molar-intermarginal, premolar-marginal, and premolar-intermarginal regions (p = 0.020; p = 0.015; p = 0.004) was significant. The gap measurements of the IPS InLine PoM and IPS e.max ZirCAD/Zir Press groups were all clinically acceptable. No studies on marginal and internal fit in the IPS InLine PoM system have been published to date. This study should be supported with future studies. No significant increase was observed after press-veneering the IPS e.max ZirCAD frameworks with an IPS e.max ZirPress material

  17. Dynamic fracture characterization of material

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Liaw, B.M.

    1981-01-01

    The influences of a wide range of material properties, i.e. of A533B steel, a silicon nitride ceramic and a Homalite-100 photoelastic polymer, as well as the influences of the specimen sizes on the dynamic fracture response of fracture specimens are presented in this paper. The results of a numerical study show that the dynamic fracture responses of these fracture specimens of proportional dimensions were indistinguishable provided the normalized dynamic fracture toughness versus normalized crack velocity relations of the three materials coincide. The limited results suggest that should the normalized dynamic fracture toughness versus normalized crack velocity relations between prototype and model materials coincide, then dynamic fracture experiments on scaled models can be used to infer the dynamic fracture response of the prototype. (orig./HP)

  18. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  19. Quantifying Discrete Fracture Network Connectivity in Hydraulic Fracturing Stimulation

    Science.gov (United States)

    Urbancic, T.; Ardakani, E. P.; Baig, A.

    2017-12-01

    Hydraulic fracture stimulations generally result in microseismicity that is associated with the activation or extension of pre-existing microfractures and discontinuities. Microseismic events acquired under 3D downhole sensor coverage provide accurate event locations outlining hydraulic fracture growth. Combined with source characteristics, these events provide a high quality input for seismic moment tensor inversion and eventually constructing the representative discrete fracture network (DFN). In this study, we investigate the strain and stress state, identified fracture orientation, and DFN connectivity and performance for example stages in a multistage perf and plug completion in a North American shale play. We use topology, the familiar concept in many areas of structural geology, to further describe the relationships between the activated fractures and their effectiveness in enhancing permeability. We explore how local perturbations of stress state lead to the activation of different fractures sets and how that effects the DFN interaction and complexity. In particular, we observe that a more heterogeneous stress state shows a higher percentage of sub-horizontal fractures or bedding plane slips. Based on topology, the fractures are evenly distributed from the injection point, with decreasing numbers of connections by distance. The dimensionless measure of connection per branch and connection per line are used for quantifying the DFN connectivity. In order to connect the concept of connectivity back to productive volume and stimulation efficiency, the connectivity is compared with the character of deformation in the reservoir as deduced from the collective behavior of microseismicity using robustly determined source parameters.

  20. Computed tomograms of blowout fracture

    International Nuclear Information System (INIS)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo.

    1985-01-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author)

  1. Computed tomograms of blowout fracture

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo

    1985-02-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author).

  2. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  3. Dental implant suprastructures using cobalt-chromium alloy compared with gold alloy framework veneered with ceramic or acrylic resin: a retrospective cohort study up to 18 years.

    Science.gov (United States)

    Teigen, Kyrre; Jokstad, Asbjørn

    2012-07-01

    An association between the long-term success and survival of implant-supported prostheses as a function of biomaterial combinations has not been established. The use of cast cobalt-chromium for the suprastructure framework may be an alternative to the conventional approach of using type 3 gold alloys. A retrospective chart audit of all patients who had received implant-supported fixed dental prostheses (FDP) before 1996 was identified in a private practice clinic. Data were recorded for FDPs made from four combinations of alloy frameworks and veneering material, i.e. type 3 gold and cobalt-chromium with ceramic or prefabricated acrylic teeth. The extracted data from the charts were subjected to explorative statistical tests including Kaplan-Meier survival analyses. Patients (n=198) with 270 short and extensive FDPs supported entirely by 1117 implants were identified. The average follow-up observation periods varied between 4 and 220 months, with an average of 120 months. The success and survival, as well as event rates and types of biological and technical complications, were similar for implant-supported FDPs using cobalt-chromium and type 3 gold alloy frameworks veneered with ceramics or prefabricated acrylic teeth. An influence of the suprastructure biomaterial combination on the clinical performance of the individual supporting implants could not be established. Implant-supported FDPs made from type 3 gold or cobalt-chromium frameworks and veneered with ceramic or prefabricated acrylic teeth demonstrate comparable clinical performance. The biomaterial combinations do not appear to influence the success or survival of the individual implants. © 2011 John Wiley & Sons A/S.

  4. Effects of multiple firings on the microstructure of zirconia and veneering ceramics.

    Science.gov (United States)

    Alkurt, Murat; Yeşil Duymus, Zeynep; Gundogdu, Mustafa

    2016-01-01

    The aim of study was to evaluate the effects of multiple firings on the microstructures of zirconia and two ceramics. Vita VM9 (VMZ) and Cerabien ZR (C-Z) ceramics on a zirconia framework and zirconia without veneering ceramic (WO-Z) were evaluated. Firing methods included firing two, five, and ten times (n=10). The effects of multiple firings on the surface hardness of the materials were evaluated using a Vickers hardness (HV) tester. Data were analyzed by two-way ANOVA and Tukey's test (α=0.05). After firing five and ten times, the hardness of VM-Z and C-Z increased significantly (p0.05). In the XRD analysis, zirconia had similar tetragonal (t)-monoclinic (m) phase transformations of Y-TZP after the different firing times. Clinically, multiple firings did not affect the microstructure of zirconia, but the structures of the two ceramics were affected.

  5. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    Science.gov (United States)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  6. Three-year clinical follow-up of posterior teeth restored with leucite-reinforced ips empress onlays and partial veneer crowns.

    Science.gov (United States)

    Murgueitio, Rafael; Bernal, Guillermo

    2012-07-01

    The aim of this study was to analyze the survival rate and failure mode of IPS leucite-reinforced ceramic onlays and partial veneer crowns regarding thickness under the following clinical conditions: vital versus nonvital teeth, tooth location, and type of opposing dentition. Teeth were prepared according to established guidelines for ceramic onlays and partial veneer crowns. Before cementation, the restorations were measured for occlusal thickness at the central fossa, mesial, and distal marginal ridges, and functional and nonfunctional cusps. A total of 210 ceramic restorations were cemented in 99 patients within a mean observation period of 2.9 ± 1.89 years. The mode of failure was classified and evaluated as (1) adhesive, (2) cohesive, (3) combined failure, (4) decementation, (5) tooth sensitivity, and (6) pulpal necrosis. Kaplan, log-rank, and Cox regression tests were used for statistical analysis. The failure rate was 3.33% (7/210). Increased material thickness produced less probability of failures. Vital teeth were less likely to fail than nonvital teeth. Second molars were five times more susceptible to failure than first molars. Tooth sensitivity postcementation and the type of opposing dentition were not statistically significant in this study. In this study, thickness of the restorations, tooth vitality, and location of teeth in the dental arch influenced restoration failures. © 2012 by the American College of Prosthodontists.

  7. Ceramic materials for porcelain veneers: part II. Effect of material, shade, and thickness on translucency.

    Science.gov (United States)

    Barizon, Karine T L; Bergeron, Cathia; Vargas, Marcos A; Qian, Fang; Cobb, Deborah S; Gratton, David G; Geraldeli, Saulo

    2014-10-01

    Information regarding the differences in translucency among new ceramic systems is lacking. The purpose of this study was to compare the relative translucency of the different types of ceramic systems indicated for porcelain veneers and to evaluate the effect of shade and thickness on translucency. Disk specimens 13 mm in diameter and 0.7-mm thick were fabricated for the following 9 materials (n=5): VITA VM9, IPS Empress Esthetic, VITA PM9, Vitablocks Mark II, Kavo Everest G-Blank, IPS Empress CAD, IPS e.max CAD, IPS e.maxPress, and Lava Zirconia. VITA VM9 served as the positive control and Lava as the negative control. The disks were fabricated with the shade that corresponds to A1. For IPS e.maxPress, additional disks were made with different shades (BL2, BL4, A1, B1, O1, O2, V1, V2, V3), thickness (0.3 mm), and translucencies (high translucency, low translucency). Color coordinates (CIE L∗ a∗ b∗) were measured with a tristimulus colorimeter. The translucency parameter was calculated from the color difference of the material on a black versus a white background. One-way ANOVA, the post hoc Tukey honestly significant difference, and the Ryan-Einot-Gabriel-Welsch multiple range tests were used to analyze the data (α=.05). Statistically significant differences in the translucency parameter were found among porcelains (PPM9, Empress Esthetic>Empress CAD>Mark II, Everest, e.max CAD>e.max Press>Lava. Significant differences also were noted when different shades and thickness were compared (Pceramic systems designed for porcelain veneers present varying degrees of translucency. The thickness and shade of lithium disilicate ceramic affect its translucency. Shade affects translucency parameter less than thickness. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Seismic characterization of fracture properties

    International Nuclear Information System (INIS)

    Myer, L.R.; Hopkins, D.; Cook, N.G.W.; Pyrak-Nolte, L.J.

    1990-01-01

    The purpose of this paper is to show that there is a relationship, both empirical and theoretical, between the measured seismic response, the mechanical stiffness (also referred to as specific stiffness) of fractures and their hydraulic conductivity. Laboratory measurements of the mechanical stiffness, hydraulic conductivity and seismic properties of natural fractures are summarized. A theoretical model for the amplitude and group time delay for compressional and shear waves transmitted across a single fracture is presented. Predictions based on this model are compared with laboratory measurements. Finally, the results for a single fracture are extended to multiple parallel fractures. 13 refs., 6 figs

  9. Analysis of Flow Behavior for Acid Fracturing Wells in Fractured-Vuggy Carbonate Reservoirs

    Directory of Open Access Journals (Sweden)

    Mingxian Wang

    2018-01-01

    Full Text Available This study develops a mathematical model for transient flow analysis of acid fracturing wells in fractured-vuggy carbonate reservoirs. This model considers a composite system with the inner region containing finite number of artificial fractures and wormholes and the outer region showing a triple-porosity medium. Both analytical and numerical solutions are derived in this work, and the comparison between two solutions verifies the model accurately. Flow behavior is analyzed thoroughly by examining the standard log-log type curves. Flow in this composite system can be divided into six or eight main flow regimes comprehensively. Three or two characteristic V-shaped segments can be observed on pressure derivative curves. Each V-shaped segment corresponds to a specific flow regime. One or two of the V-shaped segments may be absent in particular cases. Effects of interregional diffusivity ratio and interregional conductivity ratio on transient responses are strong in the early-flow period. The shape and position of type curves are also influenced by interporosity coefficients, storativity ratios, and reservoir radius significantly. Finally, we show the differences between our model and the similar model with single fracture or without acid fracturing and further investigate the pseudo-skin factor caused by acid fracturing.

  10. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  11. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  12. Effect of provisional cements on shear bond strength of porcelain laminate veneers.

    Science.gov (United States)

    Altintas, Subutay Han; Tak, Onjen; Secilmis, Asli; Usumez, Aslihan

    2011-08-01

    The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each tooth. Restorations were fixed with one of three different provisional cements: eugenol-free provisional cement (Cavex), calcium hydroxide (Dycal), and light-cured provisional cement (Tempond Clear). Provisional restorations were removed with either a dental explorer and air-water spray, or a cleaning bur (Opticlean). In the control group, provisional restorations were not used on the surfaces of specimens. IPS Empress 2 ceramic discs were luted with a dual-cured resin cement (Panavia F). Shear bond strength was measured using a universal testing machine. Data were statistically analyzed by ANOVA, Tukey's HSD and Dunnett tests. Surfaces were examined by scanning electronic microscopy. Significant differences were found between the control group and both the light-cured provisional cement groups and the eugenol-free provisional cement-cleaning bur group (Pprovisional cement showed the lowest bond strength values. Selection of the provisional cement is an important factor in the ultimate bond strength of the final restoration. Calcium hydroxide provisional cement and cleaning with a dental explorer are advisable.

  13. Effect of Sandblasting on Shear Bond Strength Composite Resin Veneer

    Directory of Open Access Journals (Sweden)

    Octarina Octarina

    2013-07-01

    Full Text Available Attachment between restoration and enamel surface in indirect resin composite veneer restoration (IRCV is obtained using multi-step (MS resin cement. Recently, a one step self-adhesive dual-cured resin cement (SADRC was introduced. Objective: To determine the effect of sandblasting on shear bond strength (SBS of IRCV to enamel using MS resin cement and SADRC. Methods: Forty specimens of buccal surface of enamel human were light-cured in Solidilite chamber and were divided into two groups: IRCV without sandblasting (n=20 and with sandblasting for 10 seconds (n=20 and then bonded to enamel using MS (n=10 and SADRC (n=10, respectively. After 24h SBS of specimens were tested using a Universal Testing Machine. Data were analyzed statistically by one-way ANOVA. Results: The average SBS value of IRCV without SB and bonded with MS was 18.95+7.80MPa and MS with SB was 19.30+ SB (4.85+2.12MPa and SADRC with SB (9.57+3.45MPa(p<0.05. Conclusion: increased SBS VIRK to enamel using MS resin cement than SADRC.  

  14. Minimally invasive restoration of a maxillary central incisor with a partial veneer.

    Science.gov (United States)

    Horvath, Sebastian; Schulz, Claus-Peter

    2012-01-01

    Minimally invasive treatment modalities allow for the preservation of sound tooth substance. However, by limiting the preparation to the extent of a defect, the transition between restoration and natural tooth may be moved to more visible areas. The materials available for the restoration of a limited defect in the anterior area are either resin composite materials or porcelain. A patient was presented who asked for the replacement of a discolored filling on the maxillary right central incisor. Tooth preparation was limited to the extent of the old filling, and a porcelain partial veneer restoration was fabricated. Despite the horizontal finish line in the middle of the clinical crown, a result could be achieved that was regarded as a success by the patient. This type of restoration proves to be a suitable alternative to direct composite restorations in the anterior area for the reconstruction of a limited defect, eg, due to a dental trauma.

  15. Using glass-graded zirconia to increase delamination growth resistance in porcelain/zirconia dental structures.

    Science.gov (United States)

    Chai, Herzl; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2018-01-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy G C was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  17. TIBIAL PERIPROSTHETIC FRACTURE COMBINED WITH TIBIAL STEM STRESS FRACTURE FROM TOTAL KNEE ARTHROPLASTY

    OpenAIRE

    Fonseca, Fernando; Rebelo, Edgar; Completo, Antonio

    2011-01-01

    Total knee arthroplasty complications related to the prosthetic material are very rare, except for polyethylene wear. We report the case of a 58-year-old woman who came to the emergency service of our hospital with a periprosthetic tibial fracture (Mayo Clinic type I). Careful examination showed that this fracture was concomitantly associated with a tibial stem fatigue fracture. The prosthesis and the stem were sent to an independent biomechanics laboratory for evaluation. A finite-element CA...

  18. Diagnosis of vertebral fractures on lateral chest X-ray: Intraobserver agreement of semi-quantitative vertebral fracture assessment

    International Nuclear Information System (INIS)

    Jagt-Willems, H.C. van der; Munster, B.C. van; Leeflang, M.; Beuerle, E.; Tulner, C.R.; Lems, W.F.

    2014-01-01

    Highlights: • (Lateral) chest X-ray's are often performed in older individuals for various reasons. • Vertebral fractures are visualized on lateral chest X-ray, but the diagnosis of vertebral fractures is until now only validated on (lateral) spine X-ray's. • This study shows that a (lateral) chest X-ray is sufficient for the diagnosis of vertebral fractures. • Older individuals with a vertebral fracture on a (lateral) chest X-ray do not need further radiography with thoracic spine X-ray or vertebral fracture assessment with DXA. - Abstract: Background: In clinical practice lateral images of the chest are performed for various reasons. As these lateral chest X rays show the vertebrae of the thoracic and thoraco-lumbar region, we wondered if these X-rays can be used for evaluation of vertebral fractures instead of separate thoracic spine X-rays. Methods: To evaluate the agreement and intraobserver reliability of the semi-quantitative method for vertebral fractures on the lateral chest X-ray (X-chest) in comparison to the lateral thoracic spine X-ray (X-Tspine), two observers scored vertebral fractures on X-Tspine and twice on X-chest, separately, blinded and in different time periods. Agreement and Cohens’ kappa were calculated for a diagnosis of any fracture on patient level and on vertebral body level. The study was done in patients visiting an outpatient geriatric day clinic, with a high prevalence of vertebral fractures. Results: 109 patients were included. The intraobserver agreement for X-chest versus X-Tspine was 95–98% for the two levels of fracturing, with a Cohen's kappa of 0.88–0.91. The intraobserver agreement and reliability of the re-test on the X-chest showed an agreement between 91 and 98% with a Cohen's kappa of 0.81–0.93. More vertebrae were visible on the X-chest, mean 10.2, SD 0.66 versus mean 9.8, SD 0.73 on the X-Tspine (p < 0.001). Conclusion: The results show good agreement and intraobserver reliability on

  19. Diagnosis of vertebral fractures on lateral chest X-ray: Intraobserver agreement of semi-quantitative vertebral fracture assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jagt-Willems, H.C. van der, E-mail: Hvanderjagt@spaarneziekenhuis.nl [Department of Geriatrics, Slotervaart Hospital, Amsterdam (Netherlands); Department of Internal Medicine, Spaarne Hospital, Hoofddorp (Netherlands); Munster, B.C. van [Department of Internal Medicine, Academic Medical Center, Amsterdam (Netherlands); Department of Geriatrics, Gelre Hospitals, Apeldoorn (Netherlands); Leeflang, M. [Department of Geriatrics, Gelre Hospitals, Apeldoorn (Netherlands); Beuerle, E. [Department of Radiology, Slotervaart Hospital, Amsterdam (Netherlands); Tulner, C.R. [Department of Geriatrics, Slotervaart Hospital, Amsterdam (Netherlands); Lems, W.F. [Department of Rheumatology, VU Medical Center, Amsterdam (Netherlands)

    2014-12-15

    Highlights: • (Lateral) chest X-ray's are often performed in older individuals for various reasons. • Vertebral fractures are visualized on lateral chest X-ray, but the diagnosis of vertebral fractures is until now only validated on (lateral) spine X-ray's. • This study shows that a (lateral) chest X-ray is sufficient for the diagnosis of vertebral fractures. • Older individuals with a vertebral fracture on a (lateral) chest X-ray do not need further radiography with thoracic spine X-ray or vertebral fracture assessment with DXA. - Abstract: Background: In clinical practice lateral images of the chest are performed for various reasons. As these lateral chest X rays show the vertebrae of the thoracic and thoraco-lumbar region, we wondered if these X-rays can be used for evaluation of vertebral fractures instead of separate thoracic spine X-rays. Methods: To evaluate the agreement and intraobserver reliability of the semi-quantitative method for vertebral fractures on the lateral chest X-ray (X-chest) in comparison to the lateral thoracic spine X-ray (X-Tspine), two observers scored vertebral fractures on X-Tspine and twice on X-chest, separately, blinded and in different time periods. Agreement and Cohens’ kappa were calculated for a diagnosis of any fracture on patient level and on vertebral body level. The study was done in patients visiting an outpatient geriatric day clinic, with a high prevalence of vertebral fractures. Results: 109 patients were included. The intraobserver agreement for X-chest versus X-Tspine was 95–98% for the two levels of fracturing, with a Cohen's kappa of 0.88–0.91. The intraobserver agreement and reliability of the re-test on the X-chest showed an agreement between 91 and 98% with a Cohen's kappa of 0.81–0.93. More vertebrae were visible on the X-chest, mean 10.2, SD 0.66 versus mean 9.8, SD 0.73 on the X-Tspine (p < 0.001). Conclusion: The results show good agreement and intraobserver reliability on

  20. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Science.gov (United States)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  1. Incidence and epidemiology of tibial shaft fractures.

    Science.gov (United States)

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  3. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  4. Influence of resin cement shade on the color and translucency of ceramic veneers.

    Science.gov (United States)

    Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto

    2016-01-01

    This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  5. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    Science.gov (United States)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  6. Atraumatic femoral neck fracture secondary to prolonged lactation induced osteomalacia

    Directory of Open Access Journals (Sweden)

    Dhammapal Sahebrao Bhamare

    2013-01-01

    Full Text Available Presenting a case of atraumatic fracture neck femur secondary to 2 years of prolonged lactation. A 26-year-old lactating mother presented with pain in left hip from last 12 months. She was apparently alright before and during pregnancy. Plain radiograph showed a complete undisplaced fracture of femoral neck. Osteomalacia was diagnosed by radiological and serological investigations. The fracture was fixed using AO type cannulated cancellous screws. The fracture showed good clinical and radiological union at 3 months. Literature review shows that this is a first case of atraumatic fracture of neck femur due to prolonged lactational osteomalacia. It showed that even apparently healthy Indians are susceptible to osteomalacia, more so during pregnancy and lactation and can be presented as atraumatic fracture. Although considered relatively stable, a compression type incomplete fracture neck femur may progress to a complete fracture if not treated in time.

  7. Diagnostic Accuracy of 2-Dimensional Computed Tomography for Articular Involvement and Fracture Pattern of Posterior Malleolar Fractures.

    Science.gov (United States)

    Meijer, Diederik T; de Muinck Keizer, Robert-Jan O; Doornberg, Job N; Sierevelt, Inger N; Stufkens, Sjoerd A; Kerkhoffs, Gino M M J; van Dijk, C Niek

    2016-01-01

    Up to 44% of ankle fractures have involvement of the posterior tibial margin. Fracture size and morphology are important factors to guide treatment of these fragments, but reliability of plain radiography in estimating size is low. The aim of the current study was to evaluate the accuracy of 2-dimensional computed tomography (2DCT) in the assessment of posterior malleolar fractures. Additionally, the diagnostic accuracy of 2DCT and its value in preoperative planning was evaluated. Thirty-one patients with 31 ankle fractures including a posterior malleolar fragment were selected. Preoperative CT scans were analyzed by 50 observers from 23 countries. Quantitative 3-dimensional CT (Q3DCT) reconstructions were used as a reference standard. Articular involvement of the posterior fragment was overestimated on 2DCT by factors 1.6, 1.4, and 2.2 for Haraguchi types I, II, and III, respectively. Interobserver agreement on operative management ("to fix, or not to fix?") was substantial (κ = 0.69) for Haraguchi type I fractures, fair (κ = 0.23) for type II fractures, and poor (κ = 0.09) for type III fractures. 2DCT images led to a change in treatment of the posterior malleolus in 23% of all fractures. Surgeons would operatively treat type I fractures in 63%, type II fractures in 67%, and type III fractures in 22%. Surgeons overestimated true articular involvement of posterior malleolar fractures on 2DCT scans. 2DCT showed some additional value in estimating the involved articular surface when compared to plain radiographs; however, this seemed not yet sufficient to accurately read the fractures. Analysis of the CT images showed a significant influence on choice of treatment in 23% with a shift toward operative treatment in 12% of cases compared to evaluating plain lateral radiographs alone. Level III, comparative study. © The Author(s) 2015.

  8. Effect of log soaking and the temperature of peeling on the properties of rotary-cut birch (Betula pendula Roth) veneer bonded with phenol-formaldehyde adhesive

    Science.gov (United States)

    Anti Rohumaa; Akio Yamamoto; Christopher G. Hunt; Charles R. Frihart; Mark Hughes; Jaan Kers

    2016-01-01

    Heating logs prior to peeling positively affects the surface properties of veneer as well as the wood-adhesive bond strength. However, the mechanism behind this increase in strength is not fully understood. The aim of the present study was to separate the influence of soaking temperature and peeling temperature on the physical surface properties and bonding quality....

  9. Invasion-Flowback Processes During Hydraulic Fracturing Well Interference

    Science.gov (United States)

    Kenzhekhanov, Shaken; He, Kai; Xu, Liang; Lord, Paul; Lozano, Martin; Neeves, Keith; Yin, Xiaolong

    2017-11-01

    Drainage-imbibition cycles that simulate hydraulic fracturing fluid's invasion and flowback during well interference were investigated using NOA81 microfluidic micromodels. Well interference is quite common in unconventional oil and gas fields. It is not unusual for the fracturing fluid injected into a well to be discovered in a nearby well. Normally, the effect of such interference is considered to be negative, as fracturing fluid will be imbibed into the porous rock and block the flow path of hydrocarbons. However, field data show that some interferences are beneficial, and microfluidic experiments presented in this study show that surfactant in the fracturing fluid may be a reason for the observed positive interference. Two fluid drainage-imbibition cycles were conducted in micromodels. The first cycle simulates fracturing of the old well and the second cycle simulates fluid invasion from the new well into the old well's fracture network. The experimental data show that while most such interferences indeed can cause production loss, when the old well's fracturing fluid does not contain surfactant yet the new well's fracturing fluid does, interference can be positive, as the residual water saturation in the porous medium is effectively reduced by surfactants.

  10. Comparison in bone turnover markers during early healing of femoral neck fracture and trochanteric fracture in elderly patients

    Directory of Open Access Journals (Sweden)

    Shota Ikegami

    2009-10-01

    Full Text Available Healing of fractures is different for each bone and bone turnover markers may reflect the fracture healing process. The purpose of this study was to determine the characteristic changes in bone turnover markers during the fracture healing process. The subjects were consecutive patients with femoral neck or trochanteric fracture who underwent surgery and achieved bone union. There were a total of 39 patients, including 33 women and 6 men. There were 18 patients (16 women and 2 men with femoral neck fracture and 21 patients (17 women and 4 men with trochanteric fracture. Serum bone-specific alkaline phosphatase (BAP was measured as a bone formation marker. Urine and serum levels of N-terminal telopeptide of type I collagen (NTX, as well as urine levels of C-terminal telopeptide of type I collagen (CTX and deoxypyridinoline (DPD, were measured as markers of bone resorption. All bone turnover markers showed similar changes in patients with either type of fracture, but significantly higher levels of both bone formation and resorption markers were observed in trochanteric fracture patients than in neck fracture patients. BAP showed similar levels at one week after surgery and then increased. Bone resorption markers were increased after surgery in patients with either fracture. The markers reached their peak values at three weeks (BAP and urinary NTX, five weeks (serum NTX and DPD, and 2-3 weeks (CTX after surgery. The increase in bone turnover markers after hip fracture surgery and the subsequent decrease may reflect increased bone formation and remodeling during the healing process. Both fractures had a similar bone turnover marker profile, but the extent of the changes differed between femoral neck and trochanteric fractures.

  11. Comparison in bone turnover markers during early healing of femoral neck fracture and trochanteric fracture in elderly patients.

    Science.gov (United States)

    Ikegami, Shota; Kamimura, Mikio; Nakagawa, Hiroyuki; Takahara, Kenji; Hashidate, Hiroyuki; Uchiyama, Shigeharu; Kato, Hiroyuki

    2009-10-10

    Healing of fractures is different for each bone and bone turnover markers may reflect the fracture healing process. The purpose of this study was to determine the characteristic changes in bone turnover markers during the fracture healing process. The subjects were consecutive patients with femoral neck or trochanteric fracture who underwent surgery and achieved bone union. There were a total of 39 patients, including 33 women and 6 men. There were 18 patients (16 women and 2 men) with femoral neck fracture and 21 patients (17 women and 4 men) with trochanteric fracture. Serum bone-specific alkaline phosphatase (BAP) was measured as a bone formation marker. Urine and serum levels of N-terminal telopeptide of type I collagen (NTX), as well as urine levels of C-terminal telopeptide of type I collagen (CTX) and deoxypyridinoline (DPD), were measured as markers of bone resorption. All bone turnover markers showed similar changes in patients with either type of fracture, but significantly higher levels of both bone formation and resorption markers were observed in trochanteric fracture patients than in neck fracture patients. BAP showed similar levels at one week after surgery and then increased. Bone resorption markers were increased after surgery in patients with either fracture. The markers reached their peak values at three weeks (BAP and urinary NTX), five weeks (serum NTX and DPD), and 2-3 weeks (CTX) after surgery. The increase in bone turnover markers after hip fracture surgery and the subsequent decrease may reflect increased bone formation and remodeling during the healing process. Both fractures had a similar bone turnover marker profile, but the extent of the changes differed between femoral neck and trochanteric fractures.

  12. Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Witherspoon, P.A.

    1983-01-01

    A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations

  13. Natural convection and dispersion in a tilted fracture

    International Nuclear Information System (INIS)

    Woods, A.W.; Linz, S.J.

    1992-01-01

    In many geophysical situations, fluid is contained in long narrow fractures embedded within an impermeable medium of different thermal conductivity; and there may be a uniform vertical temperature gradient imposed upon the system. We show that whenever the slot is tilted to the vertical, convection develops in the fluid, even if the background temperature increases with height. Using typical values for the physical properties of a water-filled fracture, we show that the Earth's geothermal gradient produces a convective flow in a fracture; this has an associated dispersion coefficient D T ∼10 2 -10 3 D in fractures about a centimetre wide. We show that this shear dispersion could transport radioactive material, of half-life 10 4 years, tens of metres along the fracture within one half-life; without this dispersion, the material would only diffuse a few metres along the fracture within one half-life. (author)

  14. Radiological study of the mandibular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Kyoung A; Koh, Kwang Jun [Department of Oral and Maxillofacial Radiology, School of Dentistry, and Institute of Oral Bio Science, Chonbuk National University, Jeonju (Korea, Republic of)

    2009-06-15

    To classify and evaluate mandibular fractures. The author classified mandibular fractures of 284 patients who were referred to the Chonbuk National University Dental Hospital during the period from March 2004 to June 2007. This study was based on the conventional radiographs as well as computed tomographs which were pertained to the 284 patients who have had the mandibular fractures including the facial bone fractures. And mandibular fractures were classified with respect to gender, age, site and type of the fractures. More frequently affected gender with mandibular fracture was male with the ratio of 3.3 : 1. The most frequently affected age with mandibular fracture was third decade (38%), followed by fourth decade (16%), second decade (15%), fifth decade (11%), sixth decade (7%), seventh decade (5%), eighth decade (4%), first decade (4%), and ninth decade (0.3%). The most frequent type of mandibular fracture was single fracture (58%), followed by double fracture (39%), triple fracture (3%). The most common site of mandibular fracture was mandibular condyle as 113 cases (27.7%) and the next was mandibular symphysis as 109 cases (26.7%), mandibular angle as 103 cases (25.3%), mandibular body as 83 cases (20.3%) in order. The sum of fracture sites were 408 sites and there were 1.4 fracture sites per one patient. The number of mandible fractures accompanied with facial bone fractures were 41 cases (14.4%). The results showed the most frequent type and common site of mandibular fracture was single fracture and mandibular condyle respectively.

  15. Radiological study of the mandibular fractures

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Kyoung A; Koh, Kwang Jun

    2009-01-01

    To classify and evaluate mandibular fractures. The author classified mandibular fractures of 284 patients who were referred to the Chonbuk National University Dental Hospital during the period from March 2004 to June 2007. This study was based on the conventional radiographs as well as computed tomographs which were pertained to the 284 patients who have had the mandibular fractures including the facial bone fractures. And mandibular fractures were classified with respect to gender, age, site and type of the fractures. More frequently affected gender with mandibular fracture was male with the ratio of 3.3 : 1. The most frequently affected age with mandibular fracture was third decade (38%), followed by fourth decade (16%), second decade (15%), fifth decade (11%), sixth decade (7%), seventh decade (5%), eighth decade (4%), first decade (4%), and ninth decade (0.3%). The most frequent type of mandibular fracture was single fracture (58%), followed by double fracture (39%), triple fracture (3%). The most common site of mandibular fracture was mandibular condyle as 113 cases (27.7%) and the next was mandibular symphysis as 109 cases (26.7%), mandibular angle as 103 cases (25.3%), mandibular body as 83 cases (20.3%) in order. The sum of fracture sites were 408 sites and there were 1.4 fracture sites per one patient. The number of mandible fractures accompanied with facial bone fractures were 41 cases (14.4%). The results showed the most frequent type and common site of mandibular fracture was single fracture and mandibular condyle respectively.

  16. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  17. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  18. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    International Nuclear Information System (INIS)

    Moinereau, D.; Faidy, C.; Valeta, M.P.; Bhandari, S.; Guichard, D.

    1997-01-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs

  19. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Moinereau, D [Electricite de France, Dept. MTC, Moret-sur-Loing (France); Faidy, C [Electricite de France, SEPTEN, Villeurbanne (France); Valeta, M P [Commisariat a l` Energie Atomique, Dept. DMT, Gif-sur-Yvette (France); Bhandari, S; Guichard, D [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-09-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs.

  20. Evaluation of bond strength between grooved titanium alloy implant abutments and provisional veneering materials after surface treatment of the abutments: An in vitro study

    Directory of Open Access Journals (Sweden)

    Gowtham Venkat

    2017-01-01

    Full Text Available Introduction: Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. Aim: This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Materials and Methods: Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell–Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman–Keuls post hoc test. Results: The laser-etched samples showed higher bond strength. Conclusion: Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this

  1. Evaluation of Bond Strength between Grooved Titanium Alloy Implant Abutments and Provisional Veneering Materials after Surface Treatment of the Abutments: An In vitro Study.

    Science.gov (United States)

    Venkat, Gowtham; Krishnan, Murugesan; Srinivasan, Suganya; Balasubramanian, Muthukumar

    2017-01-01

    Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell-Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman-Keuls post hoc test. The laser-etched samples showed higher bond strength. Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this study confirmed that a combination of surface treatments and bond agents enhances the

  2. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  3. Interobserver variation in classification of malleolar fractures

    International Nuclear Information System (INIS)

    Verhage, S.M.; Hoogendoorn, J.M.; Rhemrev, S.J.; Keizer, S.B.; Quarles van Ufford, H.M.E.

    2015-01-01

    Classification of malleolar fractures is a matter of debate. In the ideal situation, a classification system is easy to use, shows good inter- and intraobserver agreement, and has implications for treatment or research. Interobserver study. Four observers distributed 100 X-rays to the Weber, AO and Lauge-Hansen classification. In case of a trimalleolar fracture, the size of the posterior fragment was measured. Interobserver agreement was calculated with Cohen's kappa. Agreement on the size of the posterior fragment was calculated with the intraclass correlation coefficient. Moderate agreement was found with all classification systems: the Weber (K = 0.49), AO (K = 0.45) and Lauge-Hansen (K = 0.47). Interobserver agreement on the presence of a posterior fracture was substantial (K = 0.63). Estimation of the size of the fragment showed moderate agreement (ICC = 0.57). Classification according to the classical systems showed moderate interobserver agreement, probably due to an unclear trauma mechanism or the difficult relation between the level of the fibular fracture and syndesmosis. Substantial agreement on posterior malleolar fractures is mostly due to small (<5 %) posterior fragments. A classification system that describes the presence and location of fibular fractures, presence of medial malleolar fractures or deep deltoid ligament injury, and presence of relevant and dislocated posterior malleolar fractures is more useful in the daily setting than the traditional systems. In case of a trimalleolar fracture, a CT scan is in our opinion very useful in the detection of small posterior fragments and preoperative planning. (orig.)

  4. Interobserver variation in classification of malleolar fractures

    Energy Technology Data Exchange (ETDEWEB)

    Verhage, S.M.; Hoogendoorn, J.M. [MC Haaglanden, Department of Surgery, The Hague (Netherlands); Secretariaat Heelkunde, MC Haaglanden, locatie Westeinde, Postbus 432, CK, The Hague (Netherlands); Rhemrev, S.J. [MC Haaglanden, Department of Surgery, The Hague (Netherlands); Keizer, S.B. [MC Haaglanden, Department of Orthopaedic Surgery, The Hague (Netherlands); Quarles van Ufford, H.M.E. [MC Haaglanden, Department of Radiology, The Hague (Netherlands)

    2015-10-15

    Classification of malleolar fractures is a matter of debate. In the ideal situation, a classification system is easy to use, shows good inter- and intraobserver agreement, and has implications for treatment or research. Interobserver study. Four observers distributed 100 X-rays to the Weber, AO and Lauge-Hansen classification. In case of a trimalleolar fracture, the size of the posterior fragment was measured. Interobserver agreement was calculated with Cohen's kappa. Agreement on the size of the posterior fragment was calculated with the intraclass correlation coefficient. Moderate agreement was found with all classification systems: the Weber (K = 0.49), AO (K = 0.45) and Lauge-Hansen (K = 0.47). Interobserver agreement on the presence of a posterior fracture was substantial (K = 0.63). Estimation of the size of the fragment showed moderate agreement (ICC = 0.57). Classification according to the classical systems showed moderate interobserver agreement, probably due to an unclear trauma mechanism or the difficult relation between the level of the fibular fracture and syndesmosis. Substantial agreement on posterior malleolar fractures is mostly due to small (<5 %) posterior fragments. A classification system that describes the presence and location of fibular fractures, presence of medial malleolar fractures or deep deltoid ligament injury, and presence of relevant and dislocated posterior malleolar fractures is more useful in the daily setting than the traditional systems. In case of a trimalleolar fracture, a CT scan is in our opinion very useful in the detection of small posterior fragments and preoperative planning. (orig.)

  5. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    Science.gov (United States)

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  6. The influence of lathe check depth and orientation on the bond quality of phenol-formaldehyde-bonded birch plywood

    Science.gov (United States)

    Anti Rohumaa; Christopher G. Hunt; Mark Hughes; Charles R. Frihart; Janne Logren

    2013-01-01

    During the rotary peeling of veneer for plywood or the laminated veneer lumber manufacture, checks are formed in the veneer that are as deep as 70 – 80 % of the veneer thickness. The results of this study show that, during adhesive bond testing, deep lathe checks in birch (Betula pendula Roth.) veneer significantly reduce the shear strength and the...

  7. Masking properties of ceramics for veneer restorations.

    Science.gov (United States)

    Skyllouriotis, Andreas L; Yamamoto, Hideo L; Nathanson, Dan

    2017-10-01

    The translucency and opacity of ceramics play a significant role in emulating the natural color of teeth, but studies of the masking properties and limitations of dental ceramics when used as monolayer restorations are lacking. The purpose of this in vitro study was to determine the translucency of 6 materials used for veneer restorations by assessing their translucency parameters (TPs), contrast ratios (CRs), and potential to mask dark tooth colors. Ten square- or disk-shaped specimens (0.5-mm thickness, shade A2) were fabricated from Vitablocks Mark II (VMII; Vita Zahnfabrik), IPS e.max CAD LT (EMXC LT; Ivoclar Vivadent AG), IPS e.max CAD HT (EMXC HT; Ivoclar Vivadent AG), IPS Empress CAD LT (EMP LT; Ivoclar Vivadent AG), IPS e.max Press LT (EMXP LT; Ivoclar Vivadent AG), and CZR (CZR; Kuraray Noritake Dental Inc). Their luminance (Y) values over black and over white tiles were measured, followed by their color (CIELab) over black tiles and white tiles and shaded A2 (control group), A3.5, A4, and B4 acrylic resin blocks. All measurements were performed using a spectrophotometer in 2 different areas on each specimen. Then CRs, TPs, and color differences (over shaded backgrounds) were determined. Data were subjected to 1-way and 2-way ANOVA (α=.05) for analysis. Mean CR values of EMXP LT were significantly higher than those of the other tested materials, whereas VMII and EMXC HT had the lowest values (Pmasking properties against the A4 background. The color differences of most tested ceramics were more acceptable when tested against the B4 background (ΔE*≤3.3). Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Plain film analysis of acetabular fracture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Soo; Han, Sang Suk; Yoon, Eu Giene; Cha, Seong Sook; Eun, Tchoong Kie; Chung, Duck Hwan [Inje Medical College Paik Hospital, Pusan (Korea, Republic of)

    1986-02-15

    Acetabular fracture can result in severe limitation of the motion of the hip joint, which supports total weight of human body. Because of different methods of surgical approach according to fracture type, precise interpretation of X-ray films of acetabular fracture is required. We reviewed 38 cases of simple X-ray films showing acetabular fracture. The results were as follows: 1. Almost 60% of the cases-were in their 2nd and 3rd decades. 2. Twenty cases were male, and 18 cases were female. 3. The most common cause of the injury was traffic accident (33 cases, 86.8%), followed by fall down (4 cases, 10.5%), and slip down (1 case, 2.7%). 4. Elementary fractures were 21 cases (55.3%), and associated fractures were 17 cases (44.7%). 5. Among elementary fractures, posterior wall fractures were 9 cases (23.7%), followed by anterior column fractures (8 cases, 21.1%), anterior wall fractures (4 cases, 10.5%). 6. Among associated fractures, T-shaped fractures were 8 cases (21.1%), followed by both column fractures (6 cases, 15.8%), anterior and hemitransverse fractures (3 cases, 7.8%). 7. Other pelvic bone fractures associated with the acetabular fracture were as follows: fractures of contralateral pubic rami (6 cases, 15.8%) contralateral iliac bone (1 case, 2.6%) and ipsilateral iliac bone (1 case, 2.6%). 8. Injuries of other organs adjacent to the acetabulum were as follows: rupture of the bladder (3 cases, 7.9%), urethra (2 cases, 5.3%) and uterus (1 cases, 2.6%)

  9. Plain film analysis of acetabular fracture

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Han, Sang Suk; Yoon, Eu Giene; Cha, Seong Sook; Eun, Tchoong Kie; Chung, Duck Hwan

    1986-01-01

    Acetabular fracture can result in severe limitation of the motion of the hip joint, which supports total weight of human body. Because of different methods of surgical approach according to fracture type, precise interpretation of X-ray films of acetabular fracture is required. We reviewed 38 cases of simple X-ray films showing acetabular fracture. The results were as follows: 1. Almost 60% of the cases-were in their 2nd and 3rd decades. 2. Twenty cases were male, and 18 cases were female. 3. The most common cause of the injury was traffic accident (33 cases, 86.8%), followed by fall down (4 cases, 10.5%), and slip down (1 case, 2.7%). 4. Elementary fractures were 21 cases (55.3%), and associated fractures were 17 cases (44.7%). 5. Among elementary fractures, posterior wall fractures were 9 cases (23.7%), followed by anterior column fractures (8 cases, 21.1%), anterior wall fractures (4 cases, 10.5%). 6. Among associated fractures, T-shaped fractures were 8 cases (21.1%), followed by both column fractures (6 cases, 15.8%), anterior and hemitransverse fractures (3 cases, 7.8%). 7. Other pelvic bone fractures associated with the acetabular fracture were as follows: fractures of contralateral pubic rami (6 cases, 15.8%) contralateral iliac bone (1 case, 2.6%) and ipsilateral iliac bone (1 case, 2.6%). 8. Injuries of other organs adjacent to the acetabulum were as follows: rupture of the bladder (3 cases, 7.9%), urethra (2 cases, 5.3%) and uterus (1 cases, 2.6%).

  10. Whitby Mudstone, flow from matrix to fractures

    Science.gov (United States)

    Houben, Maartje; Hardebol, Nico; Barnhoorn, Auke; Boersma, Quinten; Peach, Colin; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Fluid flow from matrix to well in shales would be faster if we account for the duality of the permeable medium considering a high permeable fracture network together with a tight matrix. To investigate how long and how far a gas molecule would have to travel through the matrix until it reaches an open connected fracture we investigated the permeability of the Whitby Mudstone (UK) matrix in combination with mapping the fracture network present in the current outcrops of the Whitby Mudstone at the Yorkshire coast. Matrix permeability was measured perpendicular to the bedding using a pressure step decay method on core samples and permeability values are in the microdarcy range. The natural fracture network present in the pavement shows a connected network with dominant NS and EW strikes, where the NS fractures are the main fracture set with an orthogonal fracture set EW. Fracture spacing relations in the pavements show that the average distance to the nearest fracture varies between 7 cm (EW) and 14 cm (NS), where 90% of the matrix is 30 cm away from the nearest fracture. By making some assumptions like; fracture network at depth is similar to what is exposed in the current pavements and open to flow, fracture network is at hydrostatic pressure at 3 km depth, overpressure between matrix and fractures is 10% and a matrix permeability perpendicular to the bedding of 0.1 microdarcy, we have calculated the time it takes for a gas molecule to travel to the nearest fracture. These input values give travel times up to 8 days for a distance of 14 cm. If the permeability is changed to 1 nanodarcy or 10 microdarcy travel times change to 2.2 years or 2 hours respectively.

  11. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  12. [Wear intensity and surface roughness of microhybrid composite and ceramic occlusal veneers on premolars after the thermocycling and cyclic mechanical loading tests].

    Science.gov (United States)

    Zhang, H Y; Jiang, T; Cheng, M X; Zhang, Y W

    2018-02-18

    To evaluate the wear intensity and surface roughness of occlusal veneers on premolars made of microhybrid composite resin or two kinds of ceramics in vitro after the thermocycling and cyclic mechanical loading tests. In the study,24 fresh extracted human premolars without root canal treatment were prepared (cusps reduction of 1.5 mm in thickness to simulate middle to severe tooth wear, the inclinations of cusps were 20°). The prepared teeth were restored with occlusal veneers made of three different materials: microhybrid composite, heat-pressed lithium disilicate ceramic and computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramic in the thickness of 1.5 mm. The occlusal veneers were cemented with resin cement. The specimens were fatigued using the thermocycling and cyclic mechanical loading tests after being stored in water for 72 h. The wear of specimens was measured using gypsum replicas and 3D laser scanner before and after the thermocycling and cyclic mechanical loading tests and the mean lost distance (mm) was used to indicate the level of wear. The surfaces of occlusal contact area were observed and the surface roughness was recorded using 3D laser scanning confocal microscope before and after the fatigue test. Differences between the groups were compared using ONE-way ANOVA(Pcomposite group, heat-pressed lithium disilicate ceramic group, and CAD/CAM lithium disilicate ceramic group was (-0.13±0.03) mm, (-0.05±0.01) mm and (-0.05±0.01) mm, the wear of microhybrid composite was significantly higher than the two ceramic groups(Pcomposite was significantly higher than the two ceramic groups(Pcomposite(P=0.005) and CAD/CAM lithium disilicate ceramic (P=0.010). From the view of wear speed, microhybrid composite was significantly higher than the two kinds of ceramics, but it was similar to enamel when the opposing tooth was natural. The surface roughness before the themocycling and cyclic mechanical loading test of microhybrid

  13. The radiological diagnosis of stress fracture

    International Nuclear Information System (INIS)

    Li Yonggang; Wang Renfa; Zhang Jingfeng; Wang Min

    2005-01-01

    Objective: To study the radiological features and biomechanics of stress fracture. Methods: The X-ray, CT, MRI, and ECT signs in 20 cases of stress fracture and its correlation to biomechanics were analyzed. Results: Of the 20 cases, 14 cases occurred in the tibia, 2 cases in the metatarsal bone, 1 case in the rib, 1 case in the neck of femur and ribs, 1 case in the middle-inferior part of the femur, and 1 case in the fibula. Tow early cases of stress fracture demonstrated a characteristic sign of 'gray cortex'. The spherical or abnormal generation of bony callus and periosteum proliferation that demonstrated 'double cortex' sign in 2 cases were the sign of bone remodeling and the 'button sign' was the sign of bone healing. CT scan could clearly show the pathologic changes of bone and the soft tissue edema. Bone callus showed low signal on T 1 WI and slight high signal on T 2 WI. The area of bone edema on MRI that demonstrated low signal on T 1 WI and high signal on T 2 WI was larger than that on CT. MRI showed a linear band of low signal on both T 1 WI and T 2 WI in the area of bone fracture. ECT showed a focal area of increased uptake in the abnormal areas. The areas of bone stress fracture were characteristic and accorded with the biomechanical weak area in the bone. Conclusion: Stress fracture occurs in the special parts of the bone and has characteristic imaging features. X-ray should still be used to find the fracture of bones in the first inspection. CT and MRI are very helpful in the differentiation. Although sensitive, bone scan has lower specificity than either CT or MRI. (authors)

  14. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  15. Correlation of Hip Fracture with Other Fracture Types: Toward a Rational Composite Hip Fracture Endpoint

    Science.gov (United States)

    Colón-Emeric, Cathleen; Pieper, Carl F.; Grubber, Janet; Van Scoyoc, Lynn; Schnell, Merritt L; Van Houtven, Courtney Harold; Pearson, Megan; Lafleur, Joanne; Lyles, Kenneth W.; Adler, Robert A.

    2016-01-01

    Purpose With ethical requirements to the enrollment of lower risk subjects, osteoporosis trials are underpowered to detect reduction in hip fractures. Different skeletal sites have different levels of fracture risk and response to treatment. We sought to identify fracture sites which cluster with hip fracture at higher than expected frequency; if these sites respond to treatment similarly, then a composite fracture endpoint could provide a better estimate of hip fracture reduction. Methods Cohort study using Veterans Affairs and Medicare administrative data. Male Veterans (n=5,036,536) aged 50-99 years receiving VA primary care between1999-2009 were included. Fractures were ascertained using ICD9 and CPT codes and classified by skeletal site. Pearson correlation coefficients, logistic regression and kappa statistics, were used to describe the correlation between each fracture type and hip fracture within individuals, without regards to the timing of the events. Results 595,579 (11.8%) men suffered 1 or more fractures and 179,597 (3.6%) suffered 2 or more fractures during the time under study. Of those with one or more fractures, rib was the most common site (29%), followed by spine (22%), hip (21%) and femur (20%). The fracture types most highly correlated with hip fracture were pelvic/acetabular (Pearson correlation coefficient 0.25, p<0.0001), femur (0.15, p<0.0001), and shoulder (0.11, p<0.0001). Conclusions Pelvic, acetabular, femur, and shoulder fractures cluster with hip fractures within individuals at greater than expected frequency. If we observe similar treatment risk reductions within that cluster, subsequent trials could consider use of a composite endpoint to better estimate hip fracture risk. PMID:26151123

  16. Identification of fracture zones and its application in automatic bone fracture reduction.

    Science.gov (United States)

    Paulano-Godino, Félix; Jiménez-Delgado, Juan J

    2017-04-01

    The preoperative planning of bone fractures using information from CT scans increases the probability of obtaining satisfactory results, since specialists are provided with additional information before surgery. The reduction of complex bone fractures requires solving a 3D puzzle in order to place each fragment into its correct position. Computer-assisted solutions may aid in this process by identifying the number of fragments and their location, by calculating the fracture zones or even by computing the correct position of each fragment. The main goal of this paper is the development of an automatic method to calculate contact zones between fragments and thus to ease the computation of bone fracture reduction. In this paper, an automatic method to calculate the contact zone between two bone fragments is presented. In a previous step, bone fragments are segmented and labelled from CT images and a point cloud is generated for each bone fragment. The calculated contact zones enable the automatic reduction of complex fractures. To that end, an automatic method to match bone fragments in complex fractures is also presented. The proposed method has been successfully applied in the calculation of the contact zone of 4 different bones from the ankle area. The calculated fracture zones enabled the reduction of all the tested cases using the presented matching algorithm. The performed tests show that the reduction of these fractures using the proposed methods leaded to a small overlapping between fragments. The presented method makes the application of puzzle-solving strategies easier, since it does not obtain the entire fracture zone but the contact area between each pair of fragments. Therefore, it is not necessary to find correspondences between fracture zones and fragments may be aligned two by two. The developed algorithms have been successfully applied in different fracture cases in the ankle area. The small overlapping error obtained in the performed tests

  17. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  18. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Ding Jianlin; Liang Lihua; Wang Yujia

    2006-01-01

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  19. Isolated Fracture of the Coracoid Process

    Directory of Open Access Journals (Sweden)

    Ali Güleç

    2014-01-01

    Full Text Available Coracoid fractures are rarely seen fractures. In the shoulder girdle, coracoid process fractures generally accompany dislocation of the acromioclavicular joint or glenohumeral joint, scapula corpus, clavicula, humerus fracture, or rotator cuff tear. Coracoid fractures can be missed and the treatment for coracoid process fractures is still controversial. In this paper, a 34-year-old male manual labourer presented to the emergency department with complaints of pain and restricted movement in the left shoulder following a traffic accident. On direct radiographs and computerised tomography images a fragmented fracture was observed on the base of the coracoid process. In addition to the coracoid fracture, a mandibular fracture was determined. The patient was admitted for surgery on both fractures. After open reduction, fixation was made with a 3.5 mm cannulated screw and washer. At the postoperative 6th week, bone union was determined. The patient returned to his previous occupation pain-free and with a full range of joint movement. In conclusion, in the current case of isolated fragmented coracoid process fracture showing minimal displacement in a patient engaged in heavy manual work, surgery was preferred as it was thought that nonunion might be encountered particularly because of the effect of forces around the coracoid.

  20. Functional outcome of intra-articular tibial plateau fractures: the impact of posterior column fractures.

    Science.gov (United States)

    van den Berg, Juriaan; Reul, Maike; Nunes Cardozo, Menno; Starovoyt, Anastasiya; Geusens, Eric; Nijs, Stefaan; Hoekstra, Harm

    2017-09-01

    INTRODUCTION: Although regularly ignored, there is growing evidence that posterior tibial plateau fractures affect the functional outcome. The goal of this study was to assess the incidence of posterior column fractures and its impact on functional outcome and general health status. We aimed to identify all clinical variables that influence the outcome and improve insights in the treatment strategies. A retrospective cohort study including 218 intra-articular tibial plateau fractures was conducted. All fractures were reclassified and applied treatment was assessed according to the updated three-column concept. Relevant demographic and clinical variables were studied. The patient reported outcome was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). Median follow-up was 45.5 (IQR 24.9-66.2) months. Significant outcome differences between operatively and non-operatively treated patients were found for all KOOS subscales. The incidence of posterior column fractures was 61.9%. Posterior column fractures, sagittal malalignment and an increased complication rate were associated with poor outcome. Patients treated according to the updated three-column concept, showed significantly better outcome scores than those patients who were not. We could not demonstrate the advantage of posterior column fracture fixation, due to a limited patient size. Our data indicates that implementation of the updated three-column classification concept may improve the surgical outcome of tibial plateau fractures. Failure to recognize posterior column fractures may lead to inappropriate utilization of treatment techniques. The current concept allows us to further substantiate the importance of reduction and fixation of posterior column fractures with restoration of the sagittal alignment. 3.

  1. For early diagnosis of the fracture healing, nonunion and avascular necorsis

    International Nuclear Information System (INIS)

    Kim, Y. C.; Lee, S. H.; Lee, Y. C.; Whang, I. S.; Kim, H. S.

    1981-01-01

    Complications of non-union and avascular necrosis during fracture healing process are the most important problems. Early detection of the evidence of non-union and avascular necrosis and follow-up study of fracture healing process will reduce complications and sequellae in fracture patients. Femoral neck and tibial shaft are the most important fracture sites where non-union and/or avascular necorsis are frequently developed. Osteomedullography was performed in 30 cases of fracture, 21 femoral neck, 8 tibial shafts and 1 talar neck, in the Department of Radiology of national Medical Center during the period form August 1977 to March 1981. The following results were obtained: 1. 16 patients of femoral neck fracture were performed osteomedullography one. Non-union showing no crossing vein through the fracture site was noted in 12 cases from 16 patients. 4 cases from the 12 patients of non-union showed decreased viability but 2 case revealed good viability of the femoral head. 1 case from 4 case of good union of fracture showed no evidence of viability of the femoral head. 2. More than twice of osteomedullography were performed in 5 cases of femoral neck fracture, and crossing vein was not appeared in 4 cases at 3 weeks after fracture. 3 cases showed crossing veins at 6 weeks, and 1 case revealed evidence of avascular necrosis of the femoral head at 9 weeks. 3. In 8 cases of tibial shaft fracture, 4 cases were non-union. Another 4 cases revealed intraosseous veins crossing in fracture site or additional Kaski's osteomedullographic signs, indicating bony union. 4. One talar neck fracture showed bony union with decreased viability of the bony on 12 months after fracture. 5. Osteomedullography is considered as very important study for the early diagnosis of the fracture healing, non-union and avascular necrosis

  2. For early diagnosis of the fracture healing, nonunion and avascular necorsis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y C; Lee, S H; Lee, Y C; Whang, I S; Kim, H S [National Medical Center, Seoul (Korea, Republic of)

    1981-09-15

    Complications of non-union and avascular necrosis during fracture healing process are the most important problems. Early detection of the evidence of non-union and avascular necrosis and follow-up study of fracture healing process will reduce complications and sequellae in fracture patients. Femoral neck and tibial shaft are the most important fracture sites where non-union and/or avascular necorsis are frequently developed. Osteomedullography was performed in 30 cases of fracture, 21 femoral neck, 8 tibial shafts and 1 talar neck, in the Department of Radiology of national Medical Center during the period form August 1977 to March 1981. The following results were obtained: 1. 16 patients of femoral neck fracture were performed osteomedullography one. Non-union showing no crossing vein through the fracture site was noted in 12 cases from 16 patients. 4 cases from the 12 patients of non-union showed decreased viability but 2 case revealed good viability of the femoral head. 1 case from 4 case of good union of fracture showed no evidence of viability of the femoral head. 2. More than twice of osteomedullography were performed in 5 cases of femoral neck fracture, and crossing vein was not appeared in 4 cases at 3 weeks after fracture. 3 cases showed crossing veins at 6 weeks, and 1 case revealed evidence of avascular necrosis of the femoral head at 9 weeks. 3. In 8 cases of tibial shaft fracture, 4 cases were non-union. Another 4 cases revealed intraosseous veins crossing in fracture site or additional Kaski's osteomedullographic signs, indicating bony union. 4. One talar neck fracture showed bony union with decreased viability of the bony on 12 months after fracture. 5. Osteomedullography is considered as very important study for the early diagnosis of the fracture healing, non-union and avascular necrosis.

  3. Direct Imaging of Natural Fractures and Stress Compartments Stimulated by Hydraulic Fracturing

    Science.gov (United States)

    Lacazette, A.; Vermilye, J. M.

    2014-12-01

    shows a TFI of a single frac stage in the Eagle Ford FmFm that is unusually symmetrical and smooth near the perforations. Color shows intensity of cumulative seismic activity (red = high, violet = low). Note that the energy decreases and the complexity increases as the frac quenches in the natural fracture system.

  4. Foal Fractures: Osteochondral Fragmentation, Proximal Sesamoid Bone Fractures/Sesamoiditis, and Distal Phalanx Fractures.

    Science.gov (United States)

    Reesink, Heidi L

    2017-08-01

    Foals are susceptible to many of the same types of fractures as adult horses, often secondary to external sources of trauma. In addition, some types of fractures are specific to foals and occur routinely in horses under 1 year of age. These foal-specific fractures may be due to the unique musculoskeletal properties of the developing animal and may present with distinct clinical signs. Treatment plans and prognoses are tailored specifically to young animals. Common fractures not affecting the long bones in foals are discussed in this article, including osteochondral fragmentation, proximal sesamoid bone fractures/sesamoiditis, and distal phalanx fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Surgical Management of a Mandible Subcondylar Fracture

    Directory of Open Access Journals (Sweden)

    Dong Hee Kang

    2012-07-01

    Full Text Available Open reduction and anatomic reduction can create better function for the temporomandibularjoint, compared with closed treatment in mandible fracture surgery. Therefore, the doubleminiplate fixation technique via mini-retromandibular incision was used in order to makethe most stable fixation when performing subcondylar fracture surgery. Those approachesprovide good visualization of the subcondyle from the posterior edge of the ramus, allow thesurgeon to work perpendicularly to the fracture, and enable direct fracture management.Understanding the biomechanical load in the fixation of subcondylar fractures is alsonecessary in order to optimize fixation methods. Therefore, we measured the biomechanicalloads of four different plate fixation techniques in the experimental model regardingmandibular subcondylar fractures. It was found that the loads measured in the two-platefixation group with one dynamic compression plate (DCP and one adaption plate showed thehighest deformation and failure loads among the four fixation groups. The loads measuredin the one DCP plate fixation group showed higher deformation and failure loads than theloads measured in the two adaption plate fixation group. Therefore, we conclude that theselection of the high profile plate (DCP is also important in order to create a stable load in thesubcondylar fracture.

  6. Teeth in the Line of Fracture: To Retain or Remove?

    Science.gov (United States)

    Samson, Jimson; John, Reena; Jayakumar, Shalini

    2010-01-01

    The purpose of this study was to analyze mandibular fracture site, relationship of the fracture line to the periodontium, vitality of teeth, displacement of the fracture segments and their implications, and determine whether to retain or remove the teeth in the fracture line. Fifty patients with 62 fractures were involved in this study. An electric pulp tester was used to measure the pulpal response. The degree of fracture displacement and the relationship of the fracture line to the periodontium were evaluated using panoramic radiographs. Fractures of the parasymphysis region constituted a majority of 60.87% in the gross displacement category. Four of 50 patients showed no response presurgically and minimal response postoperatively on pulp vitality testing. Patients with teeth in the fracture line showing no response on pulp vitality testing should be advised extraction to avoid further complications. PMID:22132255

  7. Risk factors for trochanteric and femoral neck fracture.

    Science.gov (United States)

    Díaz, A R; Navas, P Z

    The differences between the two main types of fracture of proximal end of the femur, trochanteric and cervical fractures, are still a subject of study, and could be the key to a better understanding of its pathophysiology and prevention. The aim of this study is to determine whether epidemiological differences in the distribution of risk factors associated with hip fracture exist between these two entities. A descriptive cross-sectional study of 428 patients over the age of 65 admitted for trochanteric or cervical fractures in 2015, in which gender, age, previous diagnosis, external causes associated with fracture and place of the event were recorded. There were 220 patients with a cervical fracture (51.4%) and 208 patients with a trochanteric fracture (48.6%). The average age was higher in the trochanteric fracture, observing a constant increase with age only in women with trochanteric fractures. Cervical fracture showed a significant association with cerebrovascular disease (p=0.039) and trochanteric fracture with accidental falls (p=0.047) and presence of 5-9 previous diseases (p=0.014). A regression analysis maintained this association in the case of a cerebrovascular disease (OR 2.6, 95%CI 1.1-6.4) and the presence of 5-9 diseases (OR 1.5, 95%CI 1.1-2.3). Trochanteric fractures are associated with women patients of more advanced ages, 5-9 previous diseases and accidental falls. Cerebrovascular disease shows a higher prevalence in cervical fractures. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Fracture heuristics: surgical decision for approaches to distal radius fractures. A surgeon's perspective.

    Science.gov (United States)

    Wichlas, Florian; Tsitsilonis, Serafim; Kopf, Sebastian; Krapohl, Björn Dirk; Manegold, Sebastian

    2017-01-01

    Introduction: The aim of the present study is to develop a heuristic that could replace the surgeon's analysis for the decision on the operative approach of distal radius fractures based on simple fracture characteristics. Patients and methods: Five hundred distal radius fractures operated between 2011 and 2014 were analyzed for the surgeon's decision on the approach used. The 500 distal radius fractures were treated with open reduction and internal fixation through palmar, dorsal, and dorsopalmar approaches with 2.4 mm locking plates or underwent percutaneous fixation. The parameters that should replace the surgeon's analysis were the fractured palmar cortex, and the frontal and the sagittal split of the articular surface of the distal radius. Results: The palmar approach was used for 422 (84.4%) fractures, the dorsal approach for 39 (7.8%), and the combined dorsopalmar approach for 30 (6.0%). Nine (1.8%) fractures were treated percutaneously. The correlation between the fractured palmar cortex and the used palmar approach was moderate (r=0.464; p<0.0001). The correlation between the frontal split and the dorsal approach, including the dorsopalmar approach, was strong (r=0.715; p<0.0001). The sagittal split had only a weak correlation for the dorsal and dorsopalmar approach (r=0.300; p<0.0001). Discussion: The study shows that the surgical decision on the preferred approach is dictated through two simple factors, even in the case of complex fractures. Conclusion: When the palmar cortex is displaced in distal radius fractures, a palmar approach should be used. When there is a displaced frontal split of the articular surface, a dorsal approach should be used. When both are present, a dorsopalmar approach should be used. These two simple parameters could replace the surgeon's analysis for the surgical approach.

  9. Fracture healing using degradable magnesium fixation plates and screws.

    Science.gov (United States)

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Characterization of reservoir fractures using conventional geophysical logging

    Directory of Open Access Journals (Sweden)

    Paitoon Laongsakul

    2011-04-01

    Full Text Available In hydrocarbon exploration fractures play an important role as possible pathways for the hydrocarbon flow and bythis enhancing the overall formation’s permeability. Advanced logging methods for fracture analysis, like the boreholeacoustic televiewer and Formation Microscanner (FMS are available, but these are additional and expensive tools. However,open and with water or hydrocarbon filled fractures are also sensitive to electrical and other conventional logging methods.For this study conventional logging data (electric, seismic, etc were available plus additional fracture information from FMS.Taking into account the borehole environment the results show that the micro-spherically focused log indicates fractures byshowing low resistivity spikes opposite open fractures, and high resistivity spikes opposite sealed ones. Compressional andshear wave velocities are reduced when passing trough the fracture zone, which are assumed to be more or less perpendicularto borehole axis. The photoelectric absorption curve exhibit a very sharp peak in front of a fracture filled with bariteloaded mud cake. The density log shows low density spikes that are not seen by the neutron log, usually where fractures,large vugs, or caverns exist. Borehole breakouts can cause a similar effect on the logging response than fractures, but fracturesare often present when this occurs. The fracture index calculation by using threshold and input weight was calculatedand there was in general a good agreement with the fracture data from FMS especially in fracture zones, which mainlycontribute to the hydraulic system of the reservoir. Finally, the overall results from this study using one well are promising,however further research in the combination of different tools for fracture identification is recommended as well as the useof core for further validation.

  11. Incidence and epidemiology of tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Hansen, Sandra Hope

    2015-01-01

    Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large....... The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have...... frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. Conclusion: This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type...

  12. The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ 1 has a controlling impact on aperture...

  13. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  14. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  15. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  16. Prediction of fracture initiation in square cup drawing of DP980 using an anisotropic ductile fracture criterion

    Science.gov (United States)

    Park, N.; Huh, H.; Yoon, J. W.

    2017-09-01

    This paper deals with the prediction of fracture initiation in square cup drawing of DP980 steel sheet with the thickness of 1.2 mm. In an attempt to consider the influence of material anisotropy on the fracture initiation, an uncoupled anisotropic ductile fracture criterion is developed based on the Lou—Huh ductile fracture criterion. Tensile tests are carried out at different loading directions of 0°, 45°, and 90° to the rolling direction of the sheet using various specimen geometries including pure shear, dog-bone, and flat grooved specimens so as to calibrate the parameters of the proposed fracture criterion. Equivalent plastic strain distribution on the specimen surface is computed using Digital Image Correlation (DIC) method until surface crack initiates. The proposed fracture criterion is implemented into the commercial finite element code ABAQUS/Explicit by developing the Vectorized User-defined MATerial (VUMAT) subroutine which features the non-associated flow rule. Simulation results of the square cup drawing test clearly show that the proposed fracture criterion is capable of predicting the fracture initiation with sufficient accuracy considering the material anisotropy.

  17. Internal Fixation of Cervical Fractures in Three Horses.

    Science.gov (United States)

    Rossignol, Fabrice; Brandenberger, Olivier; Mespoulhes-Rivière, Céline

    2016-01-01

    To describe the surgical treatment outcome of cervical fractures in 3 horses. Case report. Three client-owned horses with cervical vertebral fractures. Three horses were refered for neck stiffness, pain, and ataxia after a cervical trauma because of a fall. Radiographic examination showed an oblique displaced fracture of the caudal aspect of the body of the second cervical vertebra (C2) in horse 1, an oblique displaced fracture of the caudal aspect of C4 involving the disc between C4 and C5 in horse 2, and a displaced transverse fracture of the body of the axis (C2) extending to the lateral arches and involving the vertebral canal in horse 3. In horse 1, the fracture was reduced and stabilized using a 14-hole narrow DCP plate, applied ventrally, and fixed with cancellous screws. A cervical fusion was performed. In horses 2 and 3, fracture fixation was performed using a 5-hole narrow LCP and 5 mm locking screws. All horses showed improvement and returned to full activity. The fracture healed in all horses. Internal fixation of cervical fracture in these horses was associated with minimal complications, and was associated with healing and a highly functional outcome in all horses. The LCP was preferred and would be recommended for ventral stabilization of selected cases of vertebral fractures. © Copyright 2015 by The American College of Veterinary Surgeons.

  18. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  19. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures.

    Science.gov (United States)

    Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E

    1997-04-01

    In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.

  20. Trochanteric fractures

    International Nuclear Information System (INIS)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  1. Influence of resin cement shade on the color and translucency of ceramic veneers

    Science.gov (United States)

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  2. Influence of resin cement shade on the color and translucency of ceramic veneers

    Directory of Open Access Journals (Sweden)

    Daiana Kelly Lopes HERNANDES

    Full Text Available ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3 layer on color change, translucency parameter (TP, and chroma of low (LT and high (HT translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B and white (W background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  3. High revision rate but good healing capacity of atypical femoral fractures. A comparison with common shaft fractures.

    Science.gov (United States)

    Schilcher, Jörg

    2015-12-01

    Healing of complete, atypical femoral fractures is thought to be impaired, but the evidence is weak and appears to be based on the delayed healing observed in patients with incomplete atypical fractures. Time until fracture healing is difficult to assess, therefore we compared the reoperation rates between women with complete atypical femoral fractures and common femoral shaft fractures. We searched the orthopaedic surgical registry in Östergötland County for patients with subtrochanteric and femoral shaft fractures (ICD-10 diagnosis codes S72.2, S72.3 and M84.3F) between January 1st 2007 and December 31st 2013. Out of 895 patients with surgically treated femoral shaft fractures, 511 were women 50 years of age or older. Among these we identified 24 women with atypical femoral shaft fractures, and 71 with common shaft fractures. Reoperations were performed in 6 and 5 patients, respectively, odds ratio 4.4 (95% CI 1.2 to 16.1). However, 5 reoperations in the atypical fracture group could not be ascribed to poor healing. In 3 patients the reoperation was due to a new fracture proximal to a standard intramedullary nail. In 2 patients the distal locking screws were removed due to callus formation that was deemed incomplete 5 months post-operatively. The one patient with poor healing showed faint callus formation at 5 months when the fracture was dynamised and callus remained sparse at 11 months. Among patients with common shaft fractures, 2 reoperations were performed to remove loose screws, 2 because of peri-implant fractures and 1 reoperation due to infection. Reoperation rates in patients with complete atypical femoral fractures are higher than in patients with common shaft fractures. The main reason for failure was peri-implant fragility fractures which might be prevented with the use of cephalomedullary nails at the index surgery. Fracture healing however, seems generally good. A watchful waiting approach is advocated in patients with fractures that appear to

  4. Surgical Management of a Mandible Subcondylar Fracture

    Directory of Open Access Journals (Sweden)

    Dong Hee Kang

    2012-07-01

    Full Text Available Open reduction and anatomic reduction can create better function for the temporomandibular joint, compared with closed treatment in mandible fracture surgery. Therefore, the double miniplate fixation technique via mini-retromandibular incision was used in order to make the most stable fixation when performing subcondylar fracture surgery. Those approaches provide good visualization of the subcondyle from the posterior edge of the ramus, allow the surgeon to work perpendicularly to the fracture, and enable direct fracture management. Understanding the biomechanical load in the fixation of subcondylar fractures is also necessary in order to optimize fixation methods. Therefore, we measured the biomechanical loads of four different plate fixation techniques in the experimental model regarding mandibular subcondylar fractures. It was found that the loads measured in the two-plate fixation group with one dynamic compression plate (DCP and one adaption plate showed the highest deformation and failure loads among the four fixation groups. The loads measured in the one DCP plate fixation group showed higher deformation and failure loads than the loads measured in the two adaption plate fixation group. Therefore, we conclude that the selection of the high profile plate (DCP is also important in order to create a stable load in the subcondylar fracture.

  5. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines

    2018-02-14

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.

  6. Survival times of patients with a first hip fracture with and without subsequent major long-bone fractures.

    Science.gov (United States)

    Angthong, Chayanin; Angthong, Wirana; Harnroongroj, Thos; Naito, Masatoshi; Harnroongroj, Thossart

    2013-01-01

    Survival rates are poorer after a second hip fracture than after a first hip fracture. Previous survival studies have included in-hospital mortality. Excluding in-hospital deaths from the analysis allows survival times to be evaluated in community-based patients. There is still a lack of data regarding the effects of subsequent fractures on survival times after hospital discharge following an initial hip fracture. This study compared the survival times of community-dwelling patients with hip fracture who had or did not have a subsequent major long-bone fracture. Hazard ratios and risk factors for subsequent fractures and mortality rates with and without subsequent fractures were calculated. Of 844 patients with hip fracture from 2000 through 2008, 71 had a subsequent major long-bone fracture and 773 did not. Patients who died of other causes, such as perioperative complications, during hospitalization were excluded. Such exclusion allowed us to determine the effect of subsequent fracture on the survival of community-dwelling individuals after hospital discharge or after the time of the fracture if they did not need hospitalization. Demographic data, causes of death, and mortality rates were recorded. Differences in mortality rates between the patient groups and hazard ratios were calculated. Mortality rates during the first year and from 1 to 5 years after the most recent fracture were 5.6% and 1.4%, respectively, in patients with subsequent fractures, and 4.7% and 1.4%, respectively, in patients without subsequent fractures. These rates did not differ significantly between the groups. Cox regression analysis and calculation of hazard ratios did not show significant differences between patients with subsequent fractures and those without. On univariate and multivariate analyses, age fracture. This study found that survival times did not differ significantly between patients with and without subsequent major long-bone fractures after hip fracture. Therefore, all

  7. Longitudinal stress fracture: patterns of edema and the importance of the nutrient foramen

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Joseph G.; Widman, David; Holsbeeck, Marnix van [Department of Radiology, Henry Ford Hospital, Detroit, MI 48202 (United States)

    2003-01-01

    We reviewed the MR appearances of six cases of longitudinal stress fracture of the lower extremity.Results. One fracture was in the femur and five were in the tibia. Four of the tibial fractures showed edema starting in the mid-tibia at the level of the nutrient foramen with the fracture on the anteromedial cortex. The other tibial fracture started at the nutrient foramen. Three fractures (two tibial and the femur fracture) showed eccentric marrow edema; all fractures showed either eccentric periosteal reaction or soft tissue edema.Conclusion. Primary diagnosis of longitudinal stress fracture is made by finding a vertical cleft on one or more axial images. Secondary signs of position of the nutrient foramen and patterns of edema may be useful. (orig.)

  8. Tracer dispersion in two-dimensional rough fractures.

    Science.gov (United States)

    Drazer, G; Koplik, J

    2001-05-01

    Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.

  9. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  10. Epidemiology of hip fracture: Worldwide geographic variation

    Directory of Open Access Journals (Sweden)

    Dinesh K Dhanwal

    2011-01-01

    Full Text Available Osteoporosis is a major health problem, especially in elderly populations, and is associated with fragility fractures at the hip, spine, and wrist. Hip fracture contributes to both morbidity and mortality in the elderly. The demographics of world populations are set to change, with more elderly living in developing countries, and it has been estimated that by 2050 half of hip fractures will occur in Asia. This review conducted using the PubMed database describes the incidence of hip fracture in different regions of the world and discusses the possible causes of this wide geographic variation. The analysis of data from different studies show a wide geographic variation across the world, with higher hip fracture incidence reported from industrialized countries as compared to developing countries. The highest hip fracture rates are seen in North Europe and the US and lowest in Latin America and Africa. Asian countries such as Kuwait, Iran, China, and Hong Kong show intermediate hip fracture rates. There is also a north-south gradient seen in European studies, and more fractures are seen in the north of the US than in the south. The factors responsible of this variation are population demographics (with more elderly living in countries with higher incidence rates and the influence of ethnicity, latitude, and environmental factors. The understanding of this changing geographic variation will help policy makers to develop strategies to reduce the burden of hip fractures in developing countries such as India, which will face the brunt of this problem over the coming decades.

  11. Osteomedullography: for early diagnosis of the fracture healing, nonunion and avascular necrosis

    International Nuclear Information System (INIS)

    Kim, Y. C.; Lee, S. H.; Lee, Y. C.; Whang, I. S.; Kim, H. S.

    1981-01-01

    Complications of non-union and avascular necrosis during fracture healing process are the most important problem. Early detection of the evidence of non-union and avascular necrosis and follow-up study of fracture healing process will reduce complications and sequellae in fracture patients. Femoral neck and tibial shaft are the most important fracture sites where non-union and/or avascular necrosis are frequently developed. Osteomedullography was performed in 30 cases of fracture, 21 femoral neck, 8 tibial shafts and 1 talar neck, in the Department of Radiology of National Medical Center during the period from August 1977 to March 1981. The following results were obtained: 1. 16 patients of femoral neck fracture were performed osteomedullography once. Non-union showing no crossing vein through the fracture site was noted in 12 cases from 16 patients. 4 cases from the 12 patients of non-union showed decreased viability but 2 case revealed good viability of the femoral head. 1 case from 4 cases of good union of fracture showed no evidence of viability of the femoral head. 2. More than twice of osteomedullography were performed in 5 cases of femoral neck fracture, and crossing vein was not appeared in 4 cases at 3 weeks after fracture. 3 cases showed crossing veins at 6 weeks, and 1 case revealed evidence of avascular necrosis of the femoral head at 9 weeks. 3. In 8 cases of tibial shaft fracture, 4 cases were non-union. Another 4 cases revealed intraosseous veins crossing in fracture site or additional Kaski's osteomedullographic signs, indicating bony union. 4. One talar neck fracture showed bony union with decreased viability of the body on 12 month after fracture. 5. Osteomedullography is considered as very important study for the early diagnosis of the fracture healing, non-union and avascular necrosis

  12. Osteomedullography: for early diagnosis of the fracture healing, nonunion and avascular necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y C; Lee, S H; Lee, Y C; Whang, I S; Kim, H S [National Medical Center, Seoul (Korea, Republic of)

    1981-12-15

    Complications of non-union and avascular necrosis during fracture healing process are the most important problem. Early detection of the evidence of non-union and avascular necrosis and follow-up study of fracture healing process will reduce complications and sequellae in fracture patients. Femoral neck and tibial shaft are the most important fracture sites where non-union and/or avascular necrosis are frequently developed. Osteomedullography was performed in 30 cases of fracture, 21 femoral neck, 8 tibial shafts and 1 talar neck, in the Department of Radiology of National Medical Center during the period from August 1977 to March 1981. The following results were obtained: 1. 16 patients of femoral neck fracture were performed osteomedullography once. Non-union showing no crossing vein through the fracture site was noted in 12 cases from 16 patients. 4 cases from the 12 patients of non-union showed decreased viability but 2 case revealed good viability of the femoral head. 1 case from 4 cases of good union of fracture showed no evidence of viability of the femoral head. 2. More than twice of osteomedullography were performed in 5 cases of femoral neck fracture, and crossing vein was not appeared in 4 cases at 3 weeks after fracture. 3 cases showed crossing veins at 6 weeks, and 1 case revealed evidence of avascular necrosis of the femoral head at 9 weeks. 3. In 8 cases of tibial shaft fracture, 4 cases were non-union. Another 4 cases revealed intraosseous veins crossing in fracture site or additional Kaski's osteomedullographic signs, indicating bony union. 4. One talar neck fracture showed bony union with decreased viability of the body on 12 month after fracture. 5. Osteomedullography is considered as very important study for the early diagnosis of the fracture healing, non-union and avascular necrosis.

  13. Development of a fixation device for robot assisted fracture reduction of femoral shaft fractures: a biomechanical study.

    Science.gov (United States)

    Weber-Spickschen, T S; Oszwald, M; Westphal, R; Krettek, C; Wahl, F; Gosling, T

    2010-01-01

    Robot assisted fracture reduction of femoral shaft fractures provides precise alignment while reducing the amount of intraoperative imaging. The connection between the robot and the fracture fragment should allow conventional intramedullary nailing, be minimally invasive and provide interim fracture stability. In our study we tested three different reduction tools: a conventional External Fixator, a Reposition-Plate and a Three-Point-Device with two variations (a 40 degrees and a 90 degrees version). We measured relative movements between the tools and the bone fragments in all translation and rotation planes. The Three-Point-Device 90 degrees showed the smallest average relative displacement and was the only device able to withstand the maximum applied load of 70 Nm without failure of any bone fragment. The Three-Point-Device 90 degrees complies with all the stipulated requirements and is a suitable interface for robot assisted fracture reduction of femoral shaft fractures.

  14. Ballistic fractures: indirect fracture to bone.

    Science.gov (United States)

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  15. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  16. Association of Obesity with Forearm Fractures, Bone Mineral Density and Fracture Risk (FRAX® During Postmenopausal Period

    Directory of Open Access Journals (Sweden)

    Erkan Mesci

    2016-08-01

    Full Text Available Objective: The aim of this study was to investigate the association among obesity with bone mineral density (BMD and subsequent fracture risk among postmenopausal women with a previous forearm fracture. Materials and Methods: The study enrolled obese (n=40 and normal-weight (n=40 postmenopausal women who had a previous forearm fracture. BMD measurements were obtained using a GE-LUNAR DPX dual energy X-ray absorptiometry scan for all subjects. FRAX® fracture risk scores were calculated taking into account former fractures and current risk factors of the subjects. Both groups were compared with respect to their BMD values, T scores, FRAX® risk scores and frequency of previous fractures. Results: No difference was observed between groups with regard to mean age, mean age of menopause onset and mean serum calcium, phosphorus and alkaline phosphatase levels (p>0.05 for all. Statistically, obese patients showed highly significantly greater mean BMD values at lumbar spine (L1-L4 and femoral neck in comparison to subjects with normal body weight (p=0.000 for all. Obese patients had a lower 10-year probability of a major osteoporotic fracture on average as determined by FRAX® fracture risk score compared to that in normal-weight subjects (p<0.05. Also, obese group had a lower 10-year probability of a hip fracture versus normal-weight subjects (p<0.01. Both groups were found to have a similar frequency of previous fractures. Conclusion: Although obese patients in this study had greater BMD values and lower FRAX® risk scores, the probability of subsequent fractures predicted for the obese group was not lower when compared to that predicted for normal-weight group. It should be kept in mind that obesity may not necessarily be protective against fractures and treatment algorithms based solely on BMD might be inadequate to predict future fracture risk.

  17. MRI evaluation and treatment of osteoporotic vertebral compression fracture

    International Nuclear Information System (INIS)

    Yamaguchi, Ken; Otani, Koji

    2003-01-01

    The purpose of this study was to investigate the relation between Gd-DTPA enhanced MRI findings and the prognosis of the fractured vertebral body in the patients with fresh osteoporotic compression vertebral fractures. Subjects were 8 cases, 11 vertebrae. All of the cases were treated with no bed rest and no corset. MRI and radiographs were taken within 1 week after injury. MRI signal intensity of the fractured vertebral body altered low on T1WI at acute phase. When the fractured vertebrae were enhanced at whole area with Gd-DTPA at acute phase, the vertebrae showed no progression of wedge deformity by follow up radiographs. On the other hand, when the fractured vertebrae were not enhanced at whole area, the vertebrae showed progression of wedge deformity. These findings suggests that vertebral fractures in osteoporosis should be taken MRI including GD-DTPA in acute phase after injury. When the fractured vertebrae are enhanced with Gd-DTPA in whole body at acute phase, the fracture may need no special treatment. In conclusion, Gd-DTPA enhanced MRI may be useful to determine the prognosis of the osteoporotic compression fracture. (author)

  18. [Effect of core: dentin thickness ratio on the flexure strength of IPS Empress II heat-pressed all-ceramic restorative material].

    Science.gov (United States)

    Liu, Yi-hong; Feng, Hai-lan; Bao, Yi-wang; Qiu, Yan

    2007-02-18

    To evaluate the effect of core:dentin thickness ratio on the flexure strength, fracture mode and origin of bilayered IPS Empress II ceramic composite specimens. IPS Empress II core ceramic, dentin porcelain and bilayered composite specimens with core:dentin thickness ratio of 2:1 and 1:1 were tested in three-point flexure strength. Mean strengths and standard deviations were determined. The optical microscopy was employed for identification of the fracture mode and origin. The flexure strength of dentin porcelain was the smallest(62.7 MPa), and the strength of bilayered composite specimens was smaller than single-layered core ceramic(190.2 MPa). The core: dentin ratio did not influence the strength of bilayered composite specimens. The frequency of occurrence of bilayered specimen delaminations was higher in the group of core: dentin thickness ratio of 1:1 than in the group of 2:1. IPS Empress II core ceramic was significantly stronger than veneering dentin porcelain. Core:dentin thickness ratio could significantly influence the fracture mode and origin, and bilayered IPS Empress II ceramic composite specimens showed little influence in the fracture strength.

  19. Onset of density-driven instabilities in fractured aquifers

    Science.gov (United States)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  20. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  1. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  2. Elastic fracture in driven media

    International Nuclear Information System (INIS)

    Lung Chiwei; Wang Shenggang; Long Qiyi

    1999-08-01

    Fracture as one of the mechanical properties of materials is structurally dependent. Defects, defect assemblies, grain boundaries and sub-boundaries materials, modify the local stress intensity factors intensively. Brittle fracture prefers to confine to the grain boundary where the specific surface energy is lower than that in the grain. Again, transgranular cracking may occur on the crystal cleavage plane or planes where the local toughness is lowered by dislocation interaction and motion. This paper shows the complexity of the fractal dimension or roughness index of fractured surfaces in materials with metallographic structures or in inhomogeneous media. (author)

  3. Structural optimization of the fibre-reinforced composite substructure in a three-unit dental bridge.

    Science.gov (United States)

    Shi, Li; Fok, Alex S L

    2009-06-01

    Failures of fixed partial dentures (FPDs) made of fibre-reinforced composites (FRC) have been reported in many clinical and in vitro studies. The types of failure include debonding at the composite-tooth interface, delamination of the veneering material from the FRC substructure and fracture of the pontic. The design of the FRC substructure, i.e. the position and orientation of the fibres, will affect the fracture resistance of the FPD. The purpose of this study was to find an optimal arrangement of the FRC substructure, by means of structural optimization, which could minimize the failure-initiating stresses in a three-unit FPD. A structural optimization method mimicking biological adaptive growth was developed for orthotropic materials such as FRC and incorporated into the finite element (FE) program ABAQUS. Using the program, optimization of the fibre positions and directions in a three-unit FPD was carried out, the aim being to align the fibre directions with those of the maximum principal stresses. The optimized design was then modeled and analyzed to verify the improvements in mechanical performance of the FPD. Results obtained from the optimization suggested that the fibres should be placed at the bottom of the pontic, forming a U-shape substructure that extended into the connectors linking the teeth and the pontic. FE analyses of the optimized design indicated stress reduction in both the veneering composite and at the interface between the veneer and the FRC substructure. The optimized design obtained using FE-based structural optimization can potentially improve the fracture resistance of FPDs by reducing some of the failure-initiating stresses. Optimization methods can therefore be a useful tool to provide sound scientific guidelines for the design of FRC substructures in FPDs.

  4. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  5. Multidetector Computed Tomography of Cervical Spine Fractures in Ankylosing Spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Koivikko, M.P.; Kiuru, M.J.; Koskinen, S.K. [Helsinki Univ. Central Hospital, Toeoeloe Trauma Center (Finland). Dept. of Radiology

    2004-11-01

    Purpose: To analyze multidetector computed tomography (MDCT) cervical spine findings in trauma patients with advanced ankylosing spondylitis (AS). Material and Methods: Using PACS, 2282 cervical spine MDCT examinations requested by emergency room physicians were found during a period of 3 years. Of these patients, 18 (16 M, aged 41-87, mean 57 years) had advanced AS. Primary imaging included radiography in 12 and MRI in 11 patients. Results: MDCT detected one facet joint subluxation and 31 fractures in 17 patients: 14 transverse fractures, 8 spinous process fractures, 2 Jefferson's fractures, 1 type I and 2 type II odontoid process fractures, and 1 each: atlanto-occipital joint fracture and C2 laminar fracture plus isolated transverse process and facet joint fractures. Radiographs detected 48% and MRI 60% of the fractures. MRI detected all transverse and odontoid fractures, demonstrating spinal cord abnormalities in 72%. Conclusion: MDCT is superior to plain radiographs or MRI, showing significantly more injuries and yielding more information on fracture morphology. MRI is valuable, however, in evaluating the spinal cord and soft-tissue injuries. Fractures in advanced AS often show an abnormal orientation and are frequently associated with spinal cord injuries. In these patients, for any suspected cervical spine injuries, MDCT is therefore the imaging modality of choice.

  6. Fracture criteria of reactor graphite under multiaxial stresses

    International Nuclear Information System (INIS)

    Sato, S.; Kawamata, K.; Kurumada, A.; Oku, T.

    1987-01-01

    New fracture criteria for graphite under multiaxial stresses are presented for designing core and support materials of a high temperature gas cooled reactor. Different kinds of fracture strength tests are carried out for a near isotropic graphite IG-11. Results show that, under the stress state in which tensile stresses are predominant, the maximum principal stress theory is seen as applicable for brittle fracture. Under the stress state in which compressive stresses are predominant there may be two fracture modes for brittle fracture, namely, slipping fracture and mode II fracture. For the former fracture mode the maximum shear stress criterion is suitable, but for the latter fracture mode a new mode II fracture criterion including a restraint effect for cracks is verified to be applicable. Also a statistical correction for brittle fracture criteria under multiaxial stresses is discussed. By considering the allowable stress values for safe design, the specified minimum ultimate strengths corresponding to a survival probability of 99% at the 95% confidence level are presented. (orig./HP)

  7. Occupational health and safety issues in Ontario sawmills and veneer/plywood plants: a pilot study.

    Science.gov (United States)

    Verma, Dave K; Demers, Cecil; Shaw, Don; Verma, Paul; Kurtz, Lawrence; Finkelstein, Murray; des Tombe, Karen; Welton, Tom

    2010-01-01

    A pilot study was conducted within the Ontario sawmill and veneer/plywood manufacturing industry. Information was collected by postal questionnaire and observational walk-through surveys. Industrial hygiene walk-through surveys were conducted at 22 work sites, and measurements for wood dust, noise, and bioaerosol were taken. The aim of the study was to obtain data on the current status regarding health and safety characteristics and an estimate of wood dust, noise, and bioaerosol exposures. The occupational exposure to wood dust and noise are similar to what has been reported in this industry in Canada and elsewhere. Airborne wood dust concentration ranged between 0.001 mg/m³ and 4.87 mg/m³ as total dust and noise exposure ranged between 55 and 117 dB(A). The study indicates the need for a more comprehensive industry-wide study of wood dust, noise, and bioaersols.

  8. Occupational Health and Safety Issues in Ontario Sawmills and Veneer/Plywood Plants: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Dave K. Verma

    2010-01-01

    Full Text Available A pilot study was conducted within the Ontario sawmill and veneer/plywood manufacturing industry. Information was collected by postal questionnaire and observational walk-through surveys. Industrial hygiene walk-through surveys were conducted at 22 work sites, and measurements for wood dust, noise, and bioaerosol were taken. The aim of the study was to obtain data on the current status regarding health and safety characteristics and an estimate of wood dust, noise, and bioaerosol exposures. The occupational exposure to wood dust and noise are similar to what has been reported in this industry in Canada and elsewhere. Airborne wood dust concentration ranged between 0.001 mg/m3 and 4.87 mg/m3 as total dust and noise exposure ranged between 55 and 117 dB(A. The study indicates the need for a more comprehensive industry-wide study of wood dust, noise, and bioaersols.

  9. Ankle fracture spur sign is pathognomonic for a variant ankle fracture.

    Science.gov (United States)

    Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G

    2015-02-01

    The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.

  10. Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.

    Science.gov (United States)

    Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael

    2017-04-01

    To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either 100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from 100% displacement of the fracture compared with only 54% of the CnIR group (P fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  11. Microseismic Velocity Imaging of the Fracturing Zone

    Science.gov (United States)

    Zhang, H.; Chen, Y.

    2015-12-01

    Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By

  12. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures.

    Science.gov (United States)

    Maeda, Yuki; Sugano, Nobuhiko; Saito, Masanobu; Yonenobu, Kazuo

    2011-03-01

    Many studies that analyzed bone mineral density (BMD) and skeletal factors of hip fractures were based on uncalibrated radiographs or dual-energy xray absorptiometry (DXA). Spatial accuracy in measuring BMD and morphologic features of the femur with DXA is limited. This study investigated differences in BMD and morphologic features of the femur between two types of hip fractures using quantitative computed tomography (QCT). Forty patients with hip fractures with normal contralateral hips were selected for this study between 2003 and 2007 (trochanteric fracture, n=18; femoral neck fracture, n=22). Each patient underwent QCT of the bilateral femora using a calibration phantom. Using images of the intact contralateral femur, BMD measurements were made at the point of minimum femoral-neck cross-sectional area, middle of the intertrochanteric region, and center of the femoral head. QCT images also were used to measure morphologic features of the hip, including hip axis length, femoral neck axis length, neck-shaft angle, neck width, head offset, anteversion of the femoral neck, and cortical index at the femoral isthmus. No significant differences were found in trabecular BMD between groups in those three regions. Patients with trochanteric fractures showed a smaller neck shaft angle and smaller cortical index at the femoral canal isthmus compared with patients with femoral neck fractures. We conclude that severe osteoporosis with thinner cortical bone of the femoral diaphysis is seen more often in patients with trochanteric fracture than in patients with femoral neck fracture. Level IV, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.

  13. Reliability Estimation for Single-unit Ceramic Crown Restorations

    Science.gov (United States)

    Lekesiz, H.

    2014-01-01

    The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. PMID:25048249

  14. The effects of the local fracture stress and carbides on the cleavage fracture characteristics of Mn-Mo-Ni low alloy steels in the transition region

    International Nuclear Information System (INIS)

    Yang, Won Jon; Huh, Moo Young; Roh, Sung Joo; Lee, Bong Sang; Oh, Yong Jun; Hong, Jun Hwa

    2000-01-01

    In the ductile-brittle transition temperature region of SA508 C1.3 Mn-Mo-Ni low alloy steels, the relationship of the local fracture stress and carbides influencing the cleavage fracture behavior was investigated. Based on the ASTM E1921-97 standard method, the reference transition temperatures were determined by three point bending fracture toughness tests. A local fracture stress σ f * , was determined from a theoretical stress distribution in front of crack tip using the cleavage initiation distance measured in each fractured specimen surface. The local fracture stress values showed a strong relationship with toughness characteristics of the materials and those were larger in the materials of smaller carbide size. Quantitative analysis of carbides showed that carbides larger than a certain size are mainly responsible for the cleavage fracture in the ductile-brittle transition temperature region. (author)

  15. Flow characteristics through a single fracture of artificial fracture system

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    Fracture flow in rock masses is one of the most important issues in petroleum engineering, geology, and hydrogeology. Especially, in case of the HLW disposal, groundwater flow in fractures is an important factor in the performance assessment of the repository because the radionuclides move along the flowing groundwater through fractures. Recently, the characterization of fractures and the modeling of fluid flow in fractures are studied by a great number of researchers. Among those studies, the hydraulic behavior in a single fracture is one of the basic issues for understanding of fracture flow in rockmass. In this study, a fluid flow test in the single fracture made of transparent epoxy replica was carried out to obtain the practical exponent values proposed from the Cubic law and to estimate the flow rates through a single fracture. Not only the relationship between flow rates and the geometry of fracture was studied, but also the various statistical parameters of fracture geometry were compared to the effective transmissivity data obtained from computer simulation.

  16. The relation of sulcus nervi radialis with the fracture line of humerus fracture and radial nerve injury

    DEFF Research Database (Denmark)

    Ozden, Hilmi; Demir, Ahmet; Guven, Gul

    2008-01-01

    PURPOSE: Radial nerve is closely in contact with the bone in sulcus nervi radialis (SNR). Location of SNR shows ethnic differences. Radial nerve is a big problem in humerus fractures and its surgery. In this study, we aimed to examine if humerus fractures of this region increases the probability...

  17. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  18. Clavicle fractures - incidence of supraclavicular nerve injury

    Directory of Open Access Journals (Sweden)

    Pedro Jose Labronici

    2013-08-01

    Full Text Available OBJECTIVE: To analyze retrospectively 309 fractures in the clavicle and the relation with injury of the supraclavicular nerve after trauma. METHODS: It was analyzed 309 patients with 312 clavicle fractures. The Edinburgh classification was used. Four patients had fractures in the medial aspect of the clavicle, 33 in the lateral aspect and 272 in the diaphyseal aspect and three bilateral fractures. RESULTS: 255 patients were analyzed and five had paresthesia in the anterior aspect of the thorax. Four patients had type 2 B2 fracture and one type 2 B1 fracture. All patients showed spontaneous improvement, in the mean average of 3 months after the trauma. CONCLUSION: Clavicle fractures and/ or shoulder surgeries can injure the lateral, intermediary or medial branches of the supraclavicular nerve and cause alteration of sensibility in the anterior aspect of the thorax. Knowledge of the anatomy of the nerve branches helps avoid problems in this region.

  19. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Science.gov (United States)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  20. Assessment of fracture toughness of structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Junyor, José Onésimo; Faria, Stéfanno Bruno; Rocha, Nirlando Antônio; Reis, Emil; Vilela, Jefferson José, E-mail: ze_onezo@hotmail.com, E-mail: sbrunofaria@gmail.com, E-mail: nar@cdtn.br, E-mail: emilr@cdtn.br, E-mail: jjv@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro Universitário de Belo Horizonte (UNIBH), MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The fracture toughness parameters are applied to estimate the lifetime of mechanical components and define the criteria of safe failure and tolerable damages. This information allows equipment to be used longer with a high degree of safety. These techniques are applied in the Leak-Before-Break (LBB) concept that is accepted for designing the piping system of the primary circuit of the pressurized water reactor (PWR). In this work, fracture toughness tests such as J{sub IC} and CTOD were performed on some structural steels. The fracture toughness parameters were determined using SE(B) and C(T) test specimens. The fracture toughness values for the same material varied according to the type specimen. The parameter δ{sub 1c} showed different values when it was calculated using the ASTM E1820 standard and using the BS 7448: Part 1 standard. These results indicate that procedures of these standards need to be improved. Two systems with different sensitivity in the force measurement were used that showed similar results for toughness fracture but the dispersion was different. (author)

  1. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  2. Assessing alternative conceptual models of fracture flow

    International Nuclear Information System (INIS)

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  3. The International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS)--quality of life during the first 4 months after fracture.

    Science.gov (United States)

    Borgström, F; Lekander, I; Ivergård, M; Ström, O; Svedbom, A; Alekna, V; Bianchi, M L; Clark, P; Curiel, M D; Dimai, H P; Jürisson, M; Kallikorm, R; Lesnyak, O; McCloskey, E; Nassonov, E; Sanders, K M; Silverman, S; Tamulaitiene, M; Thomas, T; Tosteson, A N A; Jönsson, B; Kanis, J A

    2013-03-01

    The quality of life during the first 4 months after fracture was estimated in 2,808 fractured patients from 11 countries. Analysis showed that there were significant differences in the quality of life (QoL) loss between countries. Other factors such as QoL prior fracture and hospitalisation also had a significant impact on the QoL loss. The International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS) was initiated in 2007 with the objective of estimating costs and quality of life related to fractures in several countries worldwide. The ICUROS is ongoing and enrols patients in 11 countries (Australia, Austria, Estonia, France, Italy, Lithuania, Mexico, Russia, Spain, UK and the USA). The objective of this paper is to outline the study design of ICUROS and present results regarding the QoL (measured using the EQ-5D) during the first 4 months after fracture based on the patients that have been thus far enrolled ICUROS. ICUROS uses a prospective study design where data (costs and quality of life) are collected in four phases over 18 months after fracture. All countries use the same core case report forms. Quality of life was collected using the EQ-5D instrument and a time trade-off questionnaire. The total sample for the analysis was 2,808 patients (1,273 hip, 987 distal forearm and 548 vertebral fracture). For all fracture types and countries, the QoL was reduced significantly after fracture compared to pre-fracture QoL. A regression analysis showed that there were significant differences in the QoL loss between countries. Also, a higher level of QoL prior to the fracture significantly increased the QoL loss and patients who were hospitalised for their fracture also had a significantly higher loss compared to those who were not. The findings in this study indicate that there appear to be important variations in the QoL decrements related to fracture between countries.

  4. Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450 °C-550 °C

    Science.gov (United States)

    Zhao, Yanyun; Liang, Mengtian; Zhang, Zhenyu; Jiang, Man; Liu, Shaojun

    2018-04-01

    In order to analyze the fracture toughness and fracture behavior (J-R curves) of China Low Activation Martensitic (CLAM) steel under the design service temperature of Test Blanket Module of the International Thermonuclear Experimental Reactor, the quasi-static fracture experiment of CLAM steel was carried out under the temperature range of 450 °C-550 °C. The results indicated that the fracture behavior of CLAM steel was greatly influenced by test temperature. The fracture toughness increased slightly as the temperature increased from 450 °C to 500 °C. In the meanwhile, the fracture toughness at 550 °C could not be obtained due to the plastic deformation near the crack tip zone. The microstructure analysis based on the fracture topography and the interaction between dislocations and lath boundaries showed two different sub-crack propagation modes: growth along 45° of the main crack direction at 450 °C and growth perpendicular to the main crack at 500 °C.

  5. Modeling flow and transport in fracture networks using graphs

    Science.gov (United States)

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than

  6. Fracture of the styloid process associated with the mandible fracture

    Directory of Open Access Journals (Sweden)

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  7. Coupled processes in single fractures, double fractures and fractured porous media

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed

  8. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  9. Chance Fracture Secondary to a Healed Kyphotic Compression Osteoporotic Fracture

    Directory of Open Access Journals (Sweden)

    Teh KK

    2009-11-01

    Full Text Available Chance fracture is an unstable vertebral fracture, which usually results from a high velocity injury. An elderly lady with a previously healed osteoporotic fracture of the T12 and L1 vertebra which resulted in a severe kyphotic deformity subsequently sustained a Chance fracture of the adjacent L2 vertebrae after a minor fall. The previously fracture left her with a deformity which resulted in significant sagittal imbalance therefore predisposing her to this fracture. This case highlights the importance of aggressive treatment of osteoporotic fractures in order to prevent significant sagittal imbalance from resultant (i.e. kyphotic deformity.

  10. Subchondral insufficiency fractures of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.; Cassar-Pullicino, V.N. [Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG, Shropshire (United Kingdom); Darby, A.J. [Department of Pathology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG, Shropshire (United Kingdom)

    2004-02-01

    The aim of this study was to increase awareness of, and to show the variable clinical and radiological features of, subchondral insufficiency fractures of the femoral head. The clinical and radiological findings in 7 patients with subchondral insufficiency fractures of the femoral head were reviewed retrospectively. The diagnosis was confirmed histologically in 4 patients. Radiographs were performed in all patients, MRI in 5 and scintigraphy in 4 patients. Radiographs showed varying degrees of femoral head collapse in 4 patients. In the remaining 3 patients radiographs showed a normal femoral head, regional osteoporosis and focal sclerosis, respectively. Magnetic resonance imaging showed a low-signal band on T1- and T2-weighted images in the subchondral bone adjacent or parallel to the articular surface associated with bone marrow oedema. Scintigraphy showed increased uptake in the femoral head. Insufficiency fractures of the femoral head are easily overlooked or confused with avascular necrosis and, when there is significant joint destruction, osteoarthritis. Unsuspected insufficiency fracture of the femoral head can lead to significant and rapid loss of bone stock in osteoporotic patients waiting for arthroplasty for osteoarthritis. Increased awareness of this condition will hopefully lead to earlier diagnosis and a successful outcome of conservative treatment. (orig.)

  11. Conservative management of fracture scaphoid

    Directory of Open Access Journals (Sweden)

    Mittal V

    2006-01-01

    Full Text Available Background : Conservative management of fracture scaphoid with cast is still the most common modality of management, but the results following this protocol are not always satisfactory. Methods : Twenty five patients with fracture scaphoid were treated with a below elbow scaphoid cast and were followed up for minimum duration of one year. On follow up patients were examined clinicoradiologically and functional results were evaluated using the modification of the Mayo wrist scoring chart. Results : Nineteen fractures showed union, two were malunited and five went for nonunion. Two fractures developed avascular necrosis and three patients had wrist arthritis on follow up. Nineteen patients had excellent functional results, one had good results and six patients had poor results. Patients with delayed diagnosis had nonunion and poor functional results. Patients with premature removal of cast had comparatively inferior results Conclusion : For displaced unstable fracture, open reduction and internal fixation should be the preferred modality of treatment as cast treatment gives unacceptably high rate of malunion and nonunion with poor functional results.

  12. Radioisotopic and Radiological Evaluation in Patient with Stress Fracture

    International Nuclear Information System (INIS)

    Ko, Kwang Seop; Kim, Jai Young; Kang, Sung Koo; Kim, So Yon; Lee, Gwon Jun

    1987-01-01

    The stress fracture is a disease caused by and abnormal stress to the normal bone with constant, repeated pull. Early detection of stress fracture plays an important role in treatment and prevention of its complication. Bone scintigraphy was performed to evaluate 18 patients with stress fracture of the lower extremities from May, 1985 to April, 1987, in the Department of Internal Medicine of National Police Hospital. The results were as follows: 1) Seventeen of the 18 cases showed positive bone scans at the initial study performed from 1 week to 5 months after the onset of symptom. 2) Ten of the 18 patients had findings of stress fracture at the initial X-ray film. Two out of 8 negative case revealed positive findings in the follow-up studies. 3) The bone scans in the 2 cases taken 5 months after the onset of symptom; the one showed only slightly increased radio uptake, the other showed no abnormal findings. In conclusion, bone scanning is a more sensitive indicator of early stress fracture than radiologic study, The healing phase is characterized by a gradual decline in radioactivity at the fracture site in concordance with subsidence of symptom.

  13. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  14. Digital Smile Design concept delineates the final potential result of crown lengthening and porcelain veneers to correct a gummy smile.

    Science.gov (United States)

    Trushkowsky, Richard; Arias, David Montalvo; David, Steven

    Prior to initiating any treatment, it is necessary to visualize the desired outcomes. It then becomes possible to formulate the steps required to achieve this result. Digital Smile Design (DSD) utilizes patient input and information gathered through diagnostic procedures to create an esthetic treatment scheme. In the case presented here, the NYUCD Esthetic Evaluation Form, intraoral and extraoral photographs, mounted diagnostic casts, physical examination, and radiographs were the diagnostic modalities. The gathered information served as a starting point for a wax-up and intraoral mock-up. This case report demonstrates how the DSD served as a template for crown lengthening procedures and design of the final porcelain veneer restorations.

  15. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    OpenAIRE

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare en...

  16. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures.

    Science.gov (United States)

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  17. CIRI FINIR KUPAS KAYU JABON (ANTHOCEPHALUS CADAMBA

    Directory of Open Access Journals (Sweden)

    Abigael Kabe

    2013-12-01

    Full Text Available Fast growing jabon is largely rotary-cut to produce veneer for plywood, com-ply, and LVL. In order to provide better information on veneer production and utilization, in this study the effects of wood juvenility and veneer thickness on lathe checks of jabon rotary-cut veneer were evaluated. Before veneer manufacturing, the jabon log was boiled at 50 and 75 °C for 4 and 8 hours respectively. The boiled logs were peeled to produce veneer of 1 and 2 mm thick. Lathe checks of veneers were measured under an optical video microscope. The rotary-cut veneer was grouped and evaluated separately at every segmented ring of 1 cm from pith to bark. The results showed that wood juvenility and veneer thickness had an important effect on lathe checks for the rotary-cut veneer. In general, the number of lathe check of the veneer increases with increasing veneer thickness and increase from pith to bark. Boiling of logs before rotary-cutting could decrease the value of lathe check. The results indicated that boiling of logs at 50 °C for 8 hours, and at 75 °C for 4 and 8 hours could minimize the number of lathe checks in manufacturing of 1 and 2 mm rotary-cut veneer from juvenile wood jabon.

  18. Tensile fracture behaviors of T-ZnOw/polyamide 6 composites

    International Nuclear Information System (INIS)

    Shi Jing; Wang Yong; Liu Li; Bai Hongwei; Wu Jun; Jiang Chongxi; Zhou, Zuowan

    2009-01-01

    As a part of serial work about the application of tetra-needle-shaped zinc oxide whisker (T-ZnOw) in polymer composites, this work is focused on the crystallization and tensile fracture behaviors of T-ZnOw/polyamide 6 (T-ZnOw/PA6) composites. Our results show that the addition of T-ZnOw improves the composites tensile strength greatly. For virgin PA6, the stress-strain curve exhibits double-yielding phenomenon. Surface modified T-ZnOw reinforced PA6 composites exhibit higher yield stress and smaller strain-to-fracture compared with virgin PA6. The morphologies of tensile-fractured surfaces show that, addition of T-ZnOw changes the fracture mode from crazing-tearing/brittle fracture mode of virgin PA6 into fibrillation/brittle fracture mode of PA6 composites. Especially, the fracture process of T-ZnOw in composites during the tensile test has been characterized by scanning electronic microscope (SEM) and the corresponding reinforcement mechanism has been discussed.

  19. The Place of Ultrasonography in the Evaluation of Rib Fractures

    Directory of Open Access Journals (Sweden)

    Fulya Bakılan

    2015-12-01

    Full Text Available Objective: The aim of this study was to investigate whether ultrasonography is superior to chest x-ray in detecting rib fractures in patients with minor blunt chest trauma and chest pain. Materials and Methods: Ultrasonography findings of 32 patients with minor blunt chest trauma showing no evidence of a rib fracture on anteroposterior chest x-rays, were documented. Presence of cortical discontinuities, acoustic shadows, reverberation artifacts, and hematoma by ultrasonography was proposed as the diagnostic criteria for detecting the rib fracture. Results: Rib fracture was detected in 20 patients (62.5% according to ultrasonography results. A mildly displaced fracture was detected in 7 patients (35%, hematoma was detected in 3 patients (15% and multiple fractures (in 5th, 6th, 7th, and 8th ribs were detected in 1 patient (5%. Conclusion: The results of our study showed that ultrasonography is superior to chest x-ray, in detecting rib fractures.

  20. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  1. Benign compression fractures of the spine: signal patterns

    International Nuclear Information System (INIS)

    Ryu, Kyung Nam; Choi, Woo Suk; Lee, Sun Wha; Lim, Jae Hoon

    1992-01-01

    Fifteen patients with 38 compression fractures of the spine underwent magnetic resonance(MR) imaging. We retrospectively evaluated MR images in those benign compression fractures. MR images showed four patterns in T1-weighted images. MR imaging patterns were normal signal(21), band like low signal(8), low signal with preservation of peripheral portion of the body(8), and diffuse low signal through the vertebral body(1). The low signal portions were changed to high signal intensities in T2-weighted images. In 7 of 15 patients (11 compression fractures), there was a history of trauma, and the remaining 8 patients (27 compression fractures) had no history of trauma. Benign compression fractures of trauma, remained 8 patients (27 compression fractures) were non-traumatic. Benign compression fractures of the spine reveal variable signal intensities in MR imagings. These patterns of benign compression fractures may be useful in interpretation of MR imagings of the spine

  2. Fracture modelling of a high performance armour steel

    Science.gov (United States)

    Skoglund, P.; Nilsson, M.; Tjernberg, A.

    2006-08-01

    The fracture characteristics of the high performance armour steel Armox 500T is investigated. Tensile mechanical experiments using samples with different notch geometries are used to investigate the effect of multi-axial stress states on the strain to fracture. The experiments are numerically simulated and from the simulation the stress at the point of fracture initiation is determined as a function of strain and these data are then used to extract parameters for fracture models. A fracture model based on quasi-static experiments is suggested and the model is tested against independent experiments done at both static and dynamic loading. The result show that the fracture model give reasonable good agreement between simulations and experiments at both static and dynamic loading condition. This indicates that multi-axial loading is more important to the strain to fracture than the deformation rate in the investigated loading range. However on-going work will further characterise the fracture behaviour of Armox 500T.

  3. Relationships between fractures

    Science.gov (United States)

    Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.

    2018-01-01

    Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.

  4. Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

    Science.gov (United States)

    Treece, Graham M; Gee, Andrew H; Tonkin, Carol; Ewing, Susan K; Cawthon, Peggy M; Black, Dennis M; Poole, Kenneth E S

    2015-11-01

    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model does not result in any significant improvement. © 2015 The Authors. Journal of Bone and Mineral Research

  5. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    Directory of Open Access Journals (Sweden)

    Gultekin Gulbahar

    2015-01-01

    Full Text Available First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  6. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  7. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  8. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  9. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  10. Osteonecrosis or spontaneous fractures following renal transplantation

    International Nuclear Information System (INIS)

    Andresen, J.; Nielsen, H.E.; Aarhus Univ.

    1981-01-01

    31 renal transplant recipients with posttransplant development of osteonecrosis or spontaneous fractures were evaluated with regard to age, duration of dialysis before transplantation. Determination of metacarpal bone mass at the time of transplantation and registration of bone resorption and soft tissue calcification at the time of transplantation and at the time of onset of osteonecrosis and spontaneous fractures were made. Apart from the increased mean age in patients with spontaneous fractures no difference was seen between the groups. Osteonecrosis and spontaneous fractures occurred in areas of trabecular bone. It seems most likely that after renal transplantation the patients show bone complications of different localization. (orig.) [de

  11. Dating fractures and fracture movement in the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Gascoyne, M.; Brown, A.; Ejeckam, R.B.; Everitt, R.A.

    1997-04-01

    This report examines and summarizes all work that has been done from 1980 to the present in determining the age of rock crystallization, fracture initiation, fracture reactivation and rates of fracture movement in the Lac du Bonnet Batholith to provide information for Atomic Energy of Canada Limited's (AECL) Canadian Nuclear Fuel Waste Management Program. Geological and petrographical indicators of relative age (e.g. cross-cutting relationships, sequences of fracture infilling minerals, P-T characteristics of primary and secondary minerals) are calibrated with radiometric age determinations on minerals and whole rock samples, using 87 Rb- 87 Sr, 40 K- 39 Ar, 40 Ar- 39 Ar and fission track methods. Most fractures and fracture zones inclined at low angles are found to be ancient features, first formed in the Early Proterozoic under conditions of deuteric alteration. Following some movement on fractures in the Late Proterozoic and Early Paleozoic, reactivation of fractures during the Pleistocene is established from uranium-series dating methods and use of stable isotopic contents of fracture infilling minerals (mainly calcite). Some indication of movement on fracture zones during the Pleistocene is given by electron spin resonance dating techniques on fault gouge. The slow rate of propagation of fractures is indicated by mineral infillings, their P-T characteristics and U-series calcite ages in a fracture in sparsely fractured rock, accessible from AECL's Underground Research Laboratory. These results collectively indicate that deep fractures observed in the batholith are ancient features and the fracturing and jointing in the upper 200 m is relatively recent (< 1 Ma) and largely a result of stress release. (author)

  12. Spontaneous stress fractures of the femoral neck

    International Nuclear Information System (INIS)

    Dorne, H.L.; Lander, P.H.

    1985-01-01

    The diagnosis of spontaneous stress fractures of the femoral neck, a form of insufficiency stress fracture, can be missed easily. Patients present with unremitting hip pain without a history of significant trauma or unusual increase in daily activity. The initial radiographic features include osteoporosis, minor alterations of trabecular alignment, minimal extracortical or endosteal reaction, and lucent fracture lines. Initial scintigraphic examinations performed in three of four patients showed focal increased radionuclide uptake in two and no focal abnormality in one. Emphasis is placed on the paucity of early findings. Evaluation of patients with persistent hip pain requires a high degree of clinical suspicion and close follow-up; the sequelae of undetected spontaneous fractures are subcapital fracture with displacement, angular deformity, and a vascular necrosis of the femoral head

  13. Pengaruh Tebal Venir dan Berat Labur Perekat terhadap Keteguhan Rekat Kayu Lapis Damar

    OpenAIRE

    Santoso, Adi

    1995-01-01

    This paper present the study results on the effect of veneer thickness and glue spread on bonding strength of damar (Agathis spec.) plywood. The responses observed were the corrected absorption height measurement, depth of lathe check of veneers, veneers thickness, moisture content, specific gravity and plywood bonding strength. The design employed was tire randomized completely design with factorial experiment.The results showed that the effect of veneers thickness on plywood bondi...

  14. Impaired Fracture Healing after Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    Philipp Lichte

    2015-01-01

    Full Text Available Impaired fracture healing can occur in severely injured patients with hemorrhagic shock due to decreased soft tissue perfusion after trauma. We investigated the effects of fracture healing in a standardized pressure controlled hemorrhagic shock model in mice, to test the hypothesis that bleeding is relevant in the bone healing response. Male C57/BL6 mice were subjected to a closed femoral shaft fracture stabilized by intramedullary nailing. One group was additionally subjected to pressure controlled hemorrhagic shock (HS, mean arterial pressure (MAP of 35 mmHg for 90 minutes. Serum cytokines (IL-6, KC, MCP-1, and TNF-α were analyzed 6 hours after shock. Fracture healing was assessed 21 days after fracture. Hemorrhagic shock is associated with a significant increase in serum inflammatory cytokines in the early phase. Histologic analysis demonstrated a significantly decreased number of osteoclasts, a decrease in bone quality, and more cartilage islands after hemorrhagic shock. μCT analysis showed a trend towards decreased bone tissue mineral density in the HS group. Mechanical testing revealed no difference in tensile failure. Our results suggest a delay in fracture healing after hemorrhagic shock. This may be due to significantly diminished osteoclast recruitment. The exact mechanisms should be studied further, particularly during earlier stages of fracture healing.

  15. Comparative Evaluation of Effects of Laser Modalities on Shear Bond Strengths of Veneering Porcelains to Laser Sintered Substructures: An In Vitro Study.

    Science.gov (United States)

    Gorler, Oguzhan; Saygin, Aysegul Goze

    2017-06-01

    Laser modalities and direct metal laser sintering (DMLS) have a potential to enhance micromechanical bonding between dental super- and infrastructures. However, the effect of different manufacturing methods on the metal-ceramic bond strength needs further evaluation. We investigated the effect of surface treatment with Er:YAG, Nd:YAG, and Ho:YAG lasers on the shear bond strength (SBS) of high-fusion dental porcelains (Vita and G-Ceram) to infrastructures prepared with DMLS in vitro settings. Study specimens (n = 128) were randomly divided into study subsets (n = 8), considering treatment types applied on the surface of infrastructures, including sandblasting and selected laser modalities; infrastructure types as direct laser sintered (DLS) and Ni-Cr based; and superstructure porcelains as Vita and G-Ceram. The SBS test was performed to assess the effectiveness of surface modifications that were also examined with a stereo microscope. Considering laser procedure types, the highest SBS values were obtained by Er:YAG laser, followed by, with a decreasing efficiency, Ho:YAG laser and sandblasting procedures, and Nd:YAG laser procedure (p laser decreases the bonding of Vita and G-Ceram in all the infrastructures compared with sandblasting. Considering porcelains, the highest SBS values were obtained by Vita (p laser procedures caused surface irregularities as revealed by the stereo microscopic examination. In current experimental settings, Er:YAG laser applied to DLS infrastructure veneered with Vita porcelain increases bonding strength more distinctly, and Nd:YAG laser applied to Ni-Cr-based infrastructure veneered with G-Ceram porcelain alters bonding strength unfavorably.

  16. Short-term effects of teriparatide versus placebo on bone biomarkers, structure, and fracture healing in women with lower-extremity stress fractures: A pilot study

    Directory of Open Access Journals (Sweden)

    Ellen A. Almirol

    2016-09-01

    Conclusions: In this randomized, pilot study, brief administration of TPTD showed anabolic effects that TPTD may help hasten fracture healing in premenopausal women with lower-extremity stress fractures. Larger prospective studies are warranted to determine the effects of TPTD treatment on stress fracture healing in premenopausal women.

  17. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  18. Fracture toughness of manet II steel

    International Nuclear Information System (INIS)

    Gboneim, M.M.; Munz, D.

    1997-01-01

    High fracture toughness was evaluated according to the astm and chromium (9-12) martensitic steels combine high strength and toughness with good corrosion and oxidation resistance in a range of environments, and also show relatively high creep strength at intermediate temperatures. They therefore find applications in, for example, the offshore oil and gas production and chemical industries i pipe work and reaction vessels, and in high temperature steam plant in power generation systems. Recently, the use of these materials in the nuclear field was considered. They are candidates as tubing materials for breeder reactor steam generators and as structural materials for the first wall and blanket in fusion reactors. The effect of ageing on the tensile properties and fracture toughness of a 12 Cr-1 Mo-Nb-v steel, MANET II, was investigated in the present work. Tensile specimens and compact tension (CT) specimens were aged at 550 degree C for 1000 h. The japanese standards. Both microstructure and fracture surface were examined using optical and scanning electron microscopy (SEM). The results showed that ageing did not affect the tensile properties. However, the fracture toughness K Ic and the tearing modules T were reduced due to the ageing treatment. The results were discussed in the light of the chemical composition and the fracture surface morphology. 9 figs., 3 tabs

  19. Selective perceptions of hydraulic fracturing.

    Science.gov (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  20. Quantitative MR imaging in fracture dating--Initial results.

    Science.gov (United States)

    Baron, Katharina; Neumayer, Bernhard; Widek, Thomas; Schick, Fritz; Scheicher, Sylvia; Hassler, Eva; Scheurer, Eva

    2016-04-01

    For exact age determinations of bone fractures in a forensic context (e.g. in cases of child abuse) improved knowledge of the time course of the healing process and use of non-invasive modern imaging technology is of high importance. To date, fracture dating is based on radiographic methods by determining the callus status and thereby relying on an expert's experience. As a novel approach, this study aims to investigate the applicability of magnetic resonance imaging (MRI) for bone fracture dating by systematically investigating time-resolved changes in quantitative MR characteristics after a fracture event. Prior to investigating fracture healing in children, adults were examined for this study in order to test the methodology for this application. Altogether, 31 MR examinations in 17 subjects (♀: 11 ♂: 6; median age 34 ± 15 y, scanned 1-5 times over a period of up to 200 days after the fracture event) were performed on a clinical 3T MR scanner (TimTrio, Siemens AG, Germany). All subjects were treated conservatively for a fracture in either a long bone or in the collar bone. Both, qualitative and quantitative MR measurements were performed in all subjects. MR sequences for a quantitative measurement of relaxation times T1 and T2 in the fracture gap and musculature were applied. Maps of quantitative MR parameters T1, T2, and magnetisation transfer ratio (MTR) were calculated and evaluated by investigating changes over time in the fractured area by defined ROIs. Additionally, muscle areas were examined as reference regions to validate this approach. Quantitative evaluation of 23 MR data sets (12 test subjects, ♀: 7 ♂: 5) showed an initial peak in T1 values in the fractured area (T1=1895 ± 607 ms), which decreased over time to a value of 1094 ± 182 ms (200 days after the fracture event). T2 values also peaked for early-stage fractures (T2=115 ± 80 ms) and decreased to 73 ± 33 ms within 21 days after the fracture event. After that time point, no

  1. Calcaneal Fractures and Böhler’s Angle

    Directory of Open Access Journals (Sweden)

    Lindsey Spiegelman

    2017-01-01

    Full Text Available History of present illness: 40-year-old male presents to the emergency department after falling off a ladder. He was repairing a window when he fell, landing on the ground 12 feet below. The patient landed onto his feet bilaterally and then fell backwards onto his buttocks. On arrival, the patient had bilateral foot pain. He denied any back pain, headache, or loss of consciousness. Significant findings: The right ankle lateral radiograph shows a comminuted, non-displaced fracture of the posterior calcaneus (red arrow in addition to fracture fragments along the heel pad margin (blue arrow. The left ankle lateral radiograph shows a displaced, comminuted fracture of the mid to posterior calcaneus with extension into the subtalar joint posteriorly (purple arrow. There is subcutaneous air seen anteriorly to the tibiotalar joint space (green arrow in addition to a joint effusion. Of note, the Böhler’s angle in the left x-ray is 16 degrees which is consistent with a fracture (see red annotation showing Böhler’s angle. Discussion: Calcaneal fractures occur typically in adults who have undergone significant axial load on their feet secondary to a fall from high height.2,3 There are two broad types of calcaneal fractures: intraarticular and extraarticular.2 The intraarticular fractures are colloquially referred to as a “Lover’s Fracture” as they have been known to occur in those jumping out of a tall window to escape the wrath of a lover’s spouse.1 Calcaneal fractures are best diagnosed with a CT scan or with lateral x-ray by measuring Böhler’s angle.2,3 This is the angle formed by the intersection of two lines demonstrated on a normal lateral ankle radiograph. The first line is drawn between the superior aspect of the anterior process of the calcaneus (point A and the superior edge of the posterior articular facet (point B. The second line is drawn between the superior aspect of the posterior calcaneal tuberosity (point C and point B.2

  2. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  3. Transstyloid, transscaphoid, transcapitate fracture: a variant of scaphocapitate fractures.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2014-01-01

    Transstyloid, transscaphoid, transcapitate fractures are uncommon. We report the case of a 28-year-old man who sustained this fracture following direct trauma. The patient was successfully treated by open reduction internal fixation of the scaphoid and proximal capitate fragment, with a good clinical outcome at 1-year follow-up. This pattern is a new variant of scaphocapitate fracture as involves a fracture of the radial styloid as well.

  4. Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in

  5. Effect of light-curing method and indirect veneering materials on the Knoop hardness of a resin cement

    Directory of Open Access Journals (Sweden)

    Nelson Tetsu Iriyama

    2009-06-01

    Full Text Available This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC activated solely by chemical reaction (control group or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram or composite (Artglass disc. Light curing was carried out using conventional halogen light (XL2500 for 40 s (QTH; light emitting diodes (Ultrablue Is for 40 s (LED; and Xenon plasma arc (Apollo 95E for 3 s (PAC. Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C, the samples (n = 5 were sectioned for hardness (KHN measurements, taken in a microhardness tester (50 gF load 15 s. The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05. The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values.

  6. Self-healing in fractured GaAs nanowires

    International Nuclear Information System (INIS)

    Wang Jun; Lu Chunsheng; Wang Qi; Xiao Pan; Ke Fujiu; Bai Yilong; Shen Yaogen; Wang Yanbo; Chen Bin; Liao Xiaozhou; Gao Huajian

    2012-01-01

    Molecular dynamics simulations are performed to investigate a spontaneous self-healing process in fractured GaAs nanowires with a zinc blende structure. The results show that such self-healing can indeed occur via rebonding of Ga and As atoms across the fracture surfaces, but it can be strongly influenced by several factors, including wire size, number of healing cycles, temperature, fracture morphology, oriented attachment and atomic diffusion. For example, it is found that the self-healing capacity is reduced by 46% as the lateral dimension of the wire increases from 2.3 to 9.2 nm, and by 64% after 24 repeated cycles of fracture and healing. Other factors influencing the self-healing behavior are also discussed.

  7. Central tarsal bone fracture in the border collie.

    Science.gov (United States)

    Guilliard, M

    2007-07-01

    Fracture of the plantar process of the central tarsal bone together with a dorsomedial displacement of the body of the bone was seen in six border collies. All injuries occurred during free exercise, with no extrinsic trauma. Three dogs had concomitant tarsal fractures. Primary treatment was by lag screwing the central tarsal bone to the fourth tarsal bone. All cases eventually made an excellent recovery. The superficial radiographic appearance was of a luxation of the bone as reported in a previous series, but appraisal of the radiographs showed evidence of fracture in all cases. A cadaver study to assess the mechanism of luxation showed that it is unlikely to occur naturally.

  8. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  9. Concomitant upper limb fractures and short-term functional recovery in hip fracture patients: does the site of upper limb injury matter?

    Science.gov (United States)

    Di Monaco, Marco; Castiglioni, Carlotta; Vallero, Fulvia; Di Monaco, Roberto; Tappero, Rosa

    2015-05-01

    The aim of this study was to evaluate functional recovery in a subgroup of hip fracture patients who sustained a simultaneous fracture at the upper limb, taking into account the site of upper limb injury. Of 760 patients admitted consecutively to the authors' rehabilitation hospital because of a fall-related hip fracture, 700 were retrospectively investigated. Functional outcome was assessed using Barthel Index scores. In 49 of the 700 patients, a single fall resulted in both a hip fracture and a fracture of either wrist (n = 34) or proximal humerus (n = 15). The patients with concomitant shoulder fractures had lower median Barthel Index scores after rehabilitation (70 vs. 90, P = 0.003), lower median Barthel Index effectiveness (57.1 vs. 76.9, P = 0.018), and prolonged median length of stay (42 vs. 36 days, P = 0.011) than did the patients with isolated hip fractures. Significant differences persisted after adjustment for six potential confounders. The adjusted odds ratio for achieving a Barthel Index score lower than 85 was 6.71 (95% confidence interval, 1.68-26.81; P = 0.007) for the patients with concomitant shoulder fractures. Conversely, no prognostic disadvantages were associated with concomitant wrist fractures. Data show a worse functional recovery and a prolonged length of stay in the subgroup of hip fracture patients who sustained a concomitant fracture at the proximal humerus, but not at the wrist.

  10. High prevalence of simultaneous rib and vertebral fractures in patients with hip fracture.

    Science.gov (United States)

    Lee, Bong-Gun; Sung, Yoon-Kyoung; Kim, Dam; Choi, Yun Young; Kim, Hunchul; Kim, Yeesuk

    2017-02-01

    The purpose was to evaluate the prevalence and location of simultaneous fracture using bone scans in patients with hip fracture and to determine the risk factors associated with simultaneous fracture. One hundred eighty two patients with hip fracture were reviewed for this study. Clinical parameters and bone mineral density (BMD) of the lumbar vertebra and femoral neck were investigated. To identify acute simultaneous fracture, a bone scan was performed at 15.4±4.1days after hip fracture. The prevalence and location of simultaneous fracture were evaluated, and multivariate logistic regression analysis was performed to determine the risk factors. Simultaneous fracture was observed in 102 of 182 patients, a prevalence of 56.0%. Rib fracture was the most common type of simultaneous fracture followed by rib with vertebral fracture. The BMD of the lumbar vertebra was significantly lower in patients with simultaneous fracture (p=0.044) and was identified as an independent risk factor (odds ratio: OR 0.05, 95% confidence interval: CI 0.01-0.57). The prevalence of simultaneous fracture was relatively high among patients with hip fracture, and BMD was significantly lower in patients with simultaneous fracture than in patients without it. Surgeons should be aware of the possibility of simultaneous fracture in patients with hip fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. External fixation of tibial pilon fractures and fracture healing.

    Science.gov (United States)

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  12. Radiographic anatomy of the proximal femur: femoral neck fracture vs. transtrochanteric fracture

    Directory of Open Access Journals (Sweden)

    Ana Lecia Carneiro Leão de Araújo Lima

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the correlation between radiographic parameters of the proximal femur with femoral neck fractures or transtrochanteric fractures. METHODS: Cervicodiaphyseal angle (CDA, femoral neck width (FNW, hip axis length (HAL, and acetabular tear drop distance (ATD were analyzed in 30 pelvis anteroposterior view X-rays of patients with femoral neck fractures (n = 15 and transtrochanteric fractures (n = 15. The analysis was performed by comparing the results of the X-rays with femoral neck fractures and with transtrochanteric fractures. RESULTS: No statistically significant differences between samples were observed. CONCLUSION: There was no correlation between radiographic parameters evaluated and specific occurrence of femoral neck fractures or transtrochanteric fractures.

  13. Prior nonhip limb fracture predicts subsequent hip fracture in institutionalized elderly people.

    Science.gov (United States)

    Nakamura, K; Takahashi, S; Oyama, M; Oshiki, R; Kobayashi, R; Saito, T; Yoshizawa, Y; Tsuchiya, Y

    2010-08-01

    This 1-year cohort study of nursing home residents revealed that historical fractures of upper limbs or nonhip lower limbs were associated with hip fracture (hazard ratio = 2.14), independent of activities of daily living (ADL), mobility, dementia, weight, and type of nursing home. Prior nonhip fractures are useful for predicting of hip fracture in institutional settings. The aim of this study was to evaluate the utility of fracture history for the prediction of hip fracture in nursing home residents. This was a cohort study with a 1-year follow-up. Subjects were 8,905 residents of nursing homes in Niigata, Japan (mean age, 84.3 years). Fracture histories were obtained from nursing home medical records. ADL levels were assessed by caregivers. Hip fracture diagnosis was based on hospital medical records. Subjects had fracture histories of upper limbs (5.0%), hip (14.0%), and nonhip lower limbs (4.6%). Among historical single fractures, only prior nonhip lower limbs significantly predicted subsequent fracture (adjusted hazard ratio, 2.43; 95% confidence interval (CI), 1.30-4.57). The stepwise method selected the best model, in which a combined historical fracture at upper limbs or nonhip lower limbs (adjusted hazard ratio, 2.14; 95% CI, 1.30-3.52), dependence, ADL levels, mobility, dementia, weight, and type of nursing home independently predicted subsequent hip fracture. A fracture history at upper or nonhip lower limbs, in combination with other known risk factors, is useful for the prediction of future hip fracture in institutional settings.

  14. Fracture propagation in gas pipelines - relevance to submarine lines

    Energy Technology Data Exchange (ETDEWEB)

    Fearnehough, G D [British Gas Corp., Newcastle upon Tyne. Engineering Research Station

    1976-09-01

    This paper reviews the factors which control fracture propagation in pipes and suggests how they are influenced by submarine environments. If fracture arrest capability is required then these factors should be considered in terms of the design philosophy and the maximum tolerable length of fracture which can be repaired. The paper shows that brittle fracture characteristics of submarine pipelines are probably similar to land based lines and fracture arrest can only be guaranteed by appropriate material toughness specification. Resistance to ductile fracture propagation in submarine lines is enhanced by lower design stresses, thicker pipe, concrete coating and the effect of hydrostatic head on gas dynamics. However, additional factors due to submarine design can be deleterious viz: uncertainty about backfill integrity and a tendency of thicker steels to low fracture resistance arising from 'separation' formation. Attention is drawn to problems which may arise with transportation of gases rich in hydrocarbons and the use of mechanical methods of fracture arrest.

  15. Laboratory studies of radionuclide transport in fractured Climax granite

    International Nuclear Information System (INIS)

    Failor, R.; Isherwood, D.; Raber, E.; Vandergraaf, T.

    1982-06-01

    This report documents our laboratory studies of radionuclide transport in fractured granite cores. To simulate natural conditions, our laboratory studies used naturally fractured cores and natural ground water from the Climax Granite Stock at the Nevada Test Site. For comparison, additional tests used artificially fractured granite cores or distilled water. Relative to the flow of tritiated water, 85 Sr and /sup 95m/Tc showed little or no retardation, whereas 137 Cs was retarded. After the transport runs the cores retained varying amounts of the injected radionuclides along the fracture. Autoradiography revealed some correlation between sorption and the fracture fill material. Strontium and cesium retention increased when the change was made from natural ground water to distilled water. Artificial fractures retained less 137 Cs than most natural fractures. Estimated fracture apertures from 18 to 60 μm and hydraulic conductivities from 1.7 to 26 x 10 -3 m/s were calculated from the core measurements

  16. Contaminant transport in fractured porous media: analytical solution for a two-member decay chain in a single fracture

    International Nuclear Information System (INIS)

    Sudicky, E.A.; Frind, E.O.

    1984-01-01

    An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions

  17. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis

    International Nuclear Information System (INIS)

    Dunn, Andrew J.; Campbell, Robert S.D.; Mayor, Peter E.; Rees, Dai

    2008-01-01

    The objective was to retrospectively record the CT and MRI features and healing patterns of acute, incomplete stress fractures of the pars interarticularis. The CT scans of 156 adolescents referred with suspected pars interarticularis stress fractures were reviewed. Patients with incomplete (grade 2) pars fractures were included in the study. Fractures were assessed on CT according to vertebral level, location of cortical involvement and direction of fracture propagation. MRI was also performed in 72 of the 156 cases. MRI images of incomplete fractures were assessed for the presence of marrow oedema and cortical integrity. Fracture healing patterns were characterised on follow-up CT imaging. Twenty-five incomplete fractures were identified in 23 patients on CT. All fractures involved the inferior or infero-medial cortex of the pars and propagated superiorly or superolaterally. Ninety-two percent of incomplete fractures demonstrated either complete or partial healing on follow-up imaging. Two (8%) cases progressed to complete fractures. Thirteen incomplete fractures in 11 patients confirmed on CT also had MRI, and 92% demonstrated oedema in the pars. Ten out of thirteen fractures (77%) showed a break in the infero-medial cortex with intact supero-lateral cortex, which correlated with the CT findings. MRI incorrectly graded one case as a complete (grade 3) fracture, and 2 cases as (grade 1) stress reaction. Six fractures had follow-up MRI, 67% showed partial or complete cortical healing, and the same number showed persistent marrow oedema. Incomplete fracture of the pars interarticularis represents a stage of the evolution of a complete stress fracture. The direction of fracture propagation is consistent, and complete healing can be achieved in most cases with appropriate clinical management. CT best demonstrates fracture size and extent, and is the most appropriate modality for follow-up. MRI is limited in its ability to fully depict the cortical integrity of

  18. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Andrew J.; Campbell, Robert S.D. [Royal Liverpool and Broadgreen University Teaching Hospitals, Department of Medical Imaging, Liverpool (United Kingdom); Mayor, Peter E. [Leighton Hospital, Department of Medical Imaging, Crewe, Cheshire (United Kingdom); Rees, Dai [Robert Jones and Agnes-Hunt Orthopaedic Hospital, Department of Orthopaedic Surgery, Oswestry, Shropshire (United Kingdom)

    2008-05-15

    The objective was to retrospectively record the CT and MRI features and healing patterns of acute, incomplete stress fractures of the pars interarticularis. The CT scans of 156 adolescents referred with suspected pars interarticularis stress fractures were reviewed. Patients with incomplete (grade 2) pars fractures were included in the study. Fractures were assessed on CT according to vertebral level, location of cortical involvement and direction of fracture propagation. MRI was also performed in 72 of the 156 cases. MRI images of incomplete fractures were assessed for the presence of marrow oedema and cortical integrity. Fracture healing patterns were characterised on follow-up CT imaging. Twenty-five incomplete fractures were identified in 23 patients on CT. All fractures involved the inferior or infero-medial cortex of the pars and propagated superiorly or superolaterally. Ninety-two percent of incomplete fractures demonstrated either complete or partial healing on follow-up imaging. Two (8%) cases progressed to complete fractures. Thirteen incomplete fractures in 11 patients confirmed on CT also had MRI, and 92% demonstrated oedema in the pars. Ten out of thirteen fractures (77%) showed a break in the infero-medial cortex with intact supero-lateral cortex, which correlated with the CT findings. MRI incorrectly graded one case as a complete (grade 3) fracture, and 2 cases as (grade 1) stress reaction. Six fractures had follow-up MRI, 67% showed partial or complete cortical healing, and the same number showed persistent marrow oedema. Incomplete fracture of the pars interarticularis represents a stage of the evolution of a complete stress fracture. The direction of fracture propagation is consistent, and complete healing can be achieved in most cases with appropriate clinical management. CT best demonstrates fracture size and extent, and is the most appropriate modality for follow-up. MRI is limited in its ability to fully depict the cortical integrity of

  19. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  20. Osteoporotic compression fracture of the thoracolumbar spine and sacral insufficiency fracture: incidence and analysis of the relationship according to the clinical factors

    International Nuclear Information System (INIS)

    Kong, Jeong Hwa; Park, Ji Sun; Ryu, Kyung Nam

    2006-01-01

    To evaluate the incidence of sacral insufficiency fracture in osteoporotic patient with compression fracture of the thoracolumbar (T-L) spine on magnetic resonance image (MRI), and to analyze the correlation of variable clinical factors and the incidence of sacral insufficiency fracture. We retrospectively reviewed 160 patients (27 men, 133 women; age range of 50 to 89 years) who underwent spinal MRI and had compression fracture of the T-L spine. Compression fractures due to trauma or tumor were excluded. We evaluated the incidence of sacral insufficiency fracture according to the patients' age, sex, number of compression fractures, and the existence of bone marrow edema pattern of compression fracture. During the same period, we evaluated the incidence of spinal compression fracture in the patients of pelvic insufficiency fracture. Out of the 160 patients who had compression fracture in the T-L spine, 17 (10.6%) had insufficiency fracture of the sacrum. Compression fracture occurred almost 5 times more frequently in women (27:133), but the incidence of sacral insufficiency fracture was 2/27 for men (7.4%) and 15/133 for women (11.3%), with no statistically significant difference (ρ = 0.80). According to age, the ratio of insufficiency fracture to compression fracture was 0% (0/23) in the 50's, 10.6% (7/66) in the 60's, 12.5% (7/56) in the 70's, and 20.0% (3/15) in the 80's. In respect of single and multiple compression fracture, the incidence of sacral insufficiency fracture was 8/65 for men (12.3%) and 9/95 for women (9.5%), showing no significant difference (ρ = 0.37). In the patients with and without compression fracture with bone marrow edema, insufficiency fracture occurred in 5/76 (6.6%) and 12/84 (14.3%), respectively. On the other hand, of the 67 patients who had pelvic insufficiency fracture, 27 (40.3%) also had spinal compression fracture. About 10% of the patients with osteoporotic compression fracture in the T/L spine also had pelvic sacral

  1. High prevalence of radiological vertebral fractures in HIV-infected males.

    Science.gov (United States)

    Torti, Carlo; Mazziotti, Gherardo; Soldini, Pier Antonio; Focà, Emanuele; Maroldi, Roberto; Gotti, Daria; Carosi, Giampiero; Giustina, Andrea

    2012-06-01

    Age-related co-morbidities including osteoporosis are relevant in patients responding to combination antiretroviral therapy (cART). Vertebral fractures are common osteoporotic fractures and their diagnosis is useful for managing at-risk individuals. However, there are few data from HIV-infected patients. Therefore, the aim of this study was to determine the prevalence of and factors associated with vertebral fractures in a population of HIV-infected males. A cross-sectional study of 160 HIV-infected patients with available chest X-rays was conducted from 1998 to 2010. One hundred and sixty-three males with comparable age and with no history of HIV infection were recruited as controls. Semi-quantitative evaluation of vertebral heights in lateral chest X-rays and quantitative morphometry assessment of centrally digitized images using dedicated morphometry software were utilized to detect prevalent vertebral fractures. The result showed that the vertebral fractures were detected in 43/160 (26.9%) HIV-infected patients and in 21/163 (12.9%) controls (P = 0.002). In HIV-infected patients with fractures, 27 had two or more fractures and ten patients had severe fractures. The prevalence of any fractures and multiple fractures in HIV-infected patients receiving cART (29.6 and 20.0%) was slightly higher than in HIV-infected patients not exposed to cART (17.1 and 5.7%), but significantly higher than control subjects (12.9 and 3.7%). At multivariable analyses, body mass index and diabetes mellitus were independently correlated with vertebral fractures in HIV-infected patients. We concluded that a significant proportion of HIV-infected males receiving cART showed vertebral fractures. Furthermore, proactive diagnosis of vertebral fragility fractures is particularly relevant in patients who are overweight or suffer from diabetes.

  2. Schizophrenia, antipsychotics and risk of hip fracture

    DEFF Research Database (Denmark)

    Sørensen, Holger J; Jensen, Signe O W; Nielsen, Jimmi

    2013-01-01

    In a nationwide study using linkage of Danish hospital registers we examined predictors of hip fracture (ICD-10: S72) in 15,431 patients with schizophrenia (ICD-10: F20 or ICD-8: 295) and 3,807,597 population controls. Shorter education, disability pension, lifetime alcohol abuse, somatic co......-morbidity, antipsychotics (IRR=1.19; 95% CI 1.15-1.24), antidepressant (IRR=1.18; 95% CI 1.16-1.20), anticholinergics (IRR=1.29; 95% CI 1.22-1.36), benzodiazepines (IRR=1.06; 95% CI 1.04-1.08) and corticosteroids (IRR=1.44; 95% CI 1.36-1.53) were significant predictors. In 556 persons with schizophrenia and hip fracture...... (matched to 1:3 to schizophrenia controls without hip fracture), antipsychotic polypharmacy predicted hip fracture. Analyses among antipsychotic monotherapy patients showed no differential effect of individual antipsychotics. A dose-response relationship of hip fracture and lifetime antipsychotics...

  3. Remote monitoring of air movement through a high-rise, brick veneer and steel-stud wall system

    Energy Technology Data Exchange (ETDEWEB)

    Niemeyer, T.A.; Genge, G.R. [GRG Building Consultants Inc. (Canada)

    2011-07-01

    Since the early 20th century, research on building enclosures has been going on in the form of field investigations and laboratory testing, but real-time monitoring of buildings is relatively new. Compact sensors and programmable data logging equipment have allowed thorough, real-time trend analysis of occupied buildings. This paper discusses the remote monitoring of air movement using a high-rise brick veneer and steel-stud wall system. This equipment was installed across the exterior wall assembly. Temperature and air moisture content within the stud cavity and outdoor to indoor air pressure difference was measured across the entire assembly and in series across the various components of the wall. For outdoor conditions, local airport weather records were used. Comparing collected temperature data and the theoretical thermal model, it was concluded that there was air leakage. From the overall project, lessons learned included that is was important to minimize discomfort, both in aesthetics and in the number of requests for access to homes for analyses.

  4. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures

    International Nuclear Information System (INIS)

    Lentle, B.C.; Brown, J.P.; Khan, A.

    2007-01-01

    Given the increasing evidence that vertebral fractures are underdiagnosed and not acted on, Osteoporosis Canada and the Canadian Association of Radiologists initiated a project to develop and publish a set of recommendations to promote and facilitate the diagnosis and reporting of vertebral fractures. The identification of spinal fractures is not uniform. More than 65% of vertebral fractures cause no symptoms. It is also apparent that vertebral fractures are inadequately recognized when the opportunity for diagnosis arises fortuitously. It is to patients' benefit that radiologists report vertebral fractures evident on a chest or other radiograph, no matter how incidental to the immediate clinical indication for the examination. The present recommendations can help to close the gap in care in recognizing and treating vertebral fractures, to prevent future fractures and thus reduce the burden of osteoporosis-related morbidity and mortality, as well as fracture-related costs to the health care system. Several studies indicate that a gap exists in regard to the diagnosis of vertebral fractures and the clinical response following such diagnosis. All recommendations presented here are based on consensus. These recommendations were developed by a multidisciplinary working group under the auspices of the Scientific Advisory Council of Osteoporosis Canada and the Canadian Association of Radiologists. Prevalent vertebral fractures have important clinical implications in terms of future fracture risk. Recognizing and reporting fractures incidental to radiologic examinations done for other reasons has the potential to reduce health care costs by initiating further steps in osteoporosis diagnosis and appropriate therapy. Physicians should be aware of the importance of vertebral fracture diagnosis in assessing future osteoporotic fracture risk. Vertebral fractures incidental to radiologic examinations done for other reasons should be identified and reported. Vertebral fractures

  5. Correlation of fracture index with BMD T score in postmenopausal females

    International Nuclear Information System (INIS)

    Chaudhary, U.J.; Osman, S.S.; Moazam, S.; Shah, S.I.A.

    2004-01-01

    Objective: To find the correlation between fracture index and BMD T-score so that fracture index can be used as a predictive tool for fracture risk estimation in post menopausal females. Design: A cross-sectional study was conducted on a sample of 396 women age 50 years and above. BMD T-score measurements using ultrasound and fracture index calculation based on the risk factor assessment were performed. Results: The study results showed that when fracture index increases BMD T-score decreased to osteoporotic range and correlation coefficient is -0.162. Conclusion: When fracture index increases, BMD T-score decreases therefore we can use fracture index as an assessment tool for predicting fracture risk in postmenopausal females. (author)

  6. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  7. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  8. Isolated Transverse Clivus Fracture without Neurodeficit: Case Report and Review of Literature

    International Nuclear Information System (INIS)

    Akar, Ömer; Yaldiz, Can; Özdemir, Nail; Yaman, Onur; Dalbayrak, Sedat

    2015-01-01

    Clivus is a bony surface in the posterior cranial fossa, serving as the support of the brainstem and thus neighboring important structures because of its location. Skull base fractures that cannot be shown by conventional radiography can be clearly imaged by high-resolution bone window computed tomography. A 44 years-old male referred to the emergency department because of a traffic accident in the car. His only complaint was a severe neckache. His X-ray examination showed no pathology. The computed tomographic examination showed no parenchymal pathology, but a isolated transverse fracture in the clivus. The computed tomographic examination showed isolated transverse fracture in the clivus our case presented in this paper is the first case of transverse clivus fracture without additional cranial bone fracture and neurologic deficit in the literature

  9. Peroneal tendon displacement accompanying intra-articular calcaneal fractures.

    Science.gov (United States)

    Toussaint, Rull James; Lin, Darius; Ehrlichman, Lauren K; Ellington, J Kent; Strasser, Nicholas; Kwon, John Y

    2014-02-19

    Peroneal tendon displacement (subluxation or dislocation) accompanying an intra-articular calcaneal fracture is often undetected and under-treated. The goals of this study were to determine (1) the prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures, (2) the association of tendon displacement with fracture classifications, (3) the association of tendon displacement with heel width, and (4) the rate of missed diagnosis of the tendon displacement on radiographs and computed tomography (CT) scans and the resulting treatment rate. A retrospective radiographic review of all calcaneal fractures presenting at three institutions from June 30, 2006, to June 30, 2011, was performed. CT imaging of 421 intra-articular calcaneal fractures involving the posterior facet was available for review. The prevalence of peroneal tendon displacement was noted and its associations with fracture classification and heel width were evaluated. Peroneal tendon displacement was identified in 118 (28.0%) of the 421 calcaneal fracture cases. The presence of tendon displacement was significantly associated with joint-depression fractures compared with tongue-type fractures (p displacement had been identified in the radiology reports. Although sixty-five (55.1%) of the fractures with tendon displacement had been treated with internal fixation, the tendon displacement was treated surgically in only seven (10.8%) of these cases. Analysis of CT images showed a 28% prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures. Surgeons and radiologists are encouraged to consider this association.

  10. Influence of fracture extension on in-situ stress in tight reservoir

    Science.gov (United States)

    Zhang, Yongping; Wei, Xu; Zhang, Ye; Xing, Libo; Xu, Jianjun

    2018-01-01

    Currently, hydraulic fracturing is an important way to develop low permeability reservoirs. The fractures produced during the fracturing process are the main influencing factors of changing in-situ stress. In this paper, the influence of fracture extension on in-situ stress is studied by establishing a mathematical model to describe the relationship between fracture length and in-situ stress. The results show that the growth rate gradually decreases after the fracture reaches a certain length with the increase of fracturing time; the continuous extension of the fracture is the main factor to change the in-situ stress. In order to reduce the impact on the subsequent fracture extension due to the changing of in-situ stress, controlling fracturing time and fracture length without affecting the stimulated reservoir effect is an important way. The results presented in this study can effectively reduce the impact of changing of in-situ stress on subsequent fracturing construction.

  11. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  12. BMD T-score discriminates trochanteric fractures from unfractured controls, whereas geometry discriminates cervical fracture cases from unfractured controls of similar BMD.

    Science.gov (United States)

    Pulkkinen, P; Partanen, J; Jalovaara, P; Jämsä, T

    2010-07-01

    The ability of bone mineral density (BMD) to discriminate cervical and trochanteric hip fractures was studied. Since the majority of fractures occur among people who are not diagnosed as having osteoporosis, we also examined this population to elucidate whether geometrical risk factors can yield additional information on hip fracture risk beside BMD. The study showed that the T-score criterion was able to discriminate fracture patients from controls in the cases of trochanteric fractures, whereas geometrical measures may discriminate cervical fracture cases in patients with T-score >-2.5. Low bone mineral density (BMD) is a well-established risk factor for hip fracture. However, majority of fractures occur among people not diagnosed as having osteoporosis. We studied the ability of BMD to discriminate cervical and trochanteric hip fractures. Furthermore, we examined whether geometrical measures can yield additional information on the assessment of hip fracture risk in the fracture cases in subjects with T-score >-2.5. Study group consisted of postmenopausal females with non-pathologic cervical (n = 39) or trochanteric (n = 18) hip fracture (mean age 74.2 years) and 40 age-matched controls. BMD was measured at femoral neck, and femoral neck axis length, femoral neck and shaft cortex thicknesses (FNC and FSC), and femoral neck-shaft angle (NSA) were measured from radiographs. BMD T-score threshold of -2.5 was able to discriminate trochanteric fractures from controls (p trochanteric fractures occurred in individuals with T-score fractures. Twenty of these fractures (51.3%) occurred in individuals with BMD in osteoporotic range and 19 (48.7%) in individuals with T-score >-2.5. Within these non-osteoporotic cervical fracture patients (N = 19) and non-osteoporotic controls (N = 35), 83.3% were classified correctly based on a model including NSA and FNC (p trochanteric fractures could be discriminated based on a BMD T-score fracture cases would remain under-diagnosed if

  13. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    International Nuclear Information System (INIS)

    Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong

    2015-01-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  14. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Dagang [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Chen, Bin, E-mail: bchen@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Ye, Wei [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Gou, Jihua [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Fan, Jinghong [Division of Mechanical Engineering, Alfred University, Alfred, NY 14802 (United States)

    2015-12-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  15. CT appearance of congenital defect resembling the Hangman's fracture

    International Nuclear Information System (INIS)

    Williams, J.P. III; Baker, D.H.; Miller, W.A.

    1999-01-01

    Purpose. Congenital defects of C2 are rare and can be confused with Hangman's fractures. CT has been advocated as aiding in differentiation between an acute fracture and congenital defects. Methods. We present a case of a 2-year-old recent accident victim, who was erroneously diagnosed by plain film and CT as having a Hangman's fracture. Results. The CT demonstrated an atypical appearance of a congenital defect. Conclusion. This case shows that the radiographic differentiation between a Hangman's fracture and a congenital defect is more difficult than previously described. (orig.)

  16. Hot and Steamy Fractures in the Philippines: The Geological Characterization and Permeability Evaluation of Fractures in the Southern Negros Geothermal Field, Philippines

    Science.gov (United States)

    Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.

    2016-12-01

    Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  17. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  18. Jogger's fracture and other stress fractures of the lumbo-sacral spine

    International Nuclear Information System (INIS)

    Abel, M.S.

    1985-01-01

    The posterior rings of the lower lumbo-sacral vertebrae are subject to stress fractures at any part - pedicle, pars, or lamina. The site of fracture is apparently determined by the axis of weight bearing. The three illustrative clinical examples cited include a jogger with a laminar fracture, a ballet dancer with pedicle fractures, and a nine-year-old boy with fractures of pars and lamina. Chronic low back pain is the typical complaint with stress fractures of the lower lumbo-sacral spine. Special imaging techniques are usually needed to demonstrate these lesions, including vertebral arch views, multi-directional tomography, and computed tomography (CT). (orig.)

  19. Viscoplastic fracture transition of a biopolymer gel.

    Science.gov (United States)

    Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P

    2018-06-13

    Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.

  20. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  1. on GAGD EOR in Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Misagh Delalat

    2013-01-01

    Full Text Available The gas-assisted gravity drainage (GAGD process is designed and practiced based on gravity drainage idea and uses the advantage of density difference between injected CO2 and reservoir oil. In this work, one of Iran western oilfields was selected as a case study and a sector model was simulated based on its rock and fluid properties. The pressure of CO2 gas injection was close to the MMP of the oil, which was measured 1740 psia. Both homogeneous and heterogeneous types of fractures were simulated by creating maps of permeability and porosity. The results showed that homogeneous fractures had the highest value of efficiency, namely 40%; however, in heterogeneous fractures, the efficiency depended on the value of fracture density and the maximum efficiency was around 37%. Also, the effect of injection rate on two different intensities of fracture was studied and the results demonstrated that the model having higher fracture intensity had less limitation in increasing the CO2 injection rate; furthermore, its BHP did not increase intensively at higher injection rates either. In addition, three different types of water influxes were inspected on GAGD performance to simulate active, partial, and weak aquifer. The results showed that strong aquifer had a reverse effect on the influence of GAGD and almost completely disabled the gravity drainage mechanism. Finally, we inventively used a method to weaken the aquifer strength, and thus the gravity drainage revived and efficiency started to increase as if there was no aquifer.

  2. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made

  3. Esthetic modification of cast dental-ceramic restorations.

    Science.gov (United States)

    Campbell, S D

    1990-01-01

    The advantages and disadvantages of conventional opaque substructures (eg, metal ceramic restorations) used for creating esthetic complete crown restorations are reviewed, and the esthetic advantages of veneering a translucent crown (Dicor) are considered. An appropriate aluminous veneering porcelain was identified (Vitadur Veneer). This veneer porcelain was chosen to match the thermal coefficient of expansion of the cast glass-ceramic substructure. A flexural strength study was then completed and it showed no difference in the strength of the veneered and nonveneered translucent cast glass-ceramic specimens. Scanning electron microscopy revealed that the interface between the porcelain veneer and cast glass-ceramic substructure had no visible porosity and resulted in a continuous-appearing structure. Potential coping designs, as well as the clinical applications and ramifications of this modified crown, are discussed.

  4. Poroelastic Response of Orthotropic Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2011-12-16

    In this paper, an algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented in this article quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton’s second coefficient and satisfies 0 ≤ B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further aim of the discussion is to determine the number of the poroelastic constants that needs to be known by other means to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio af ≃ 0.1 and the pore fluid is liquid water, then for several cases considered, Skempton’s B ≃ 0.9, and so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ≃ 0.1, in these examples. The results do, however, depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann’s equations for homogeneous—but anisotropic—poroelasticity. Relationships to Skempton’s analysis of saturated soils are also noted. Finally, the article concludes

  5. Rib fractures predict incident limb fractures: results from the European prospective osteoporosis study.

    Science.gov (United States)

    Ismail, A A; Silman, A J; Reeve, J; Kaptoge, S; O'Neill, T W

    2006-01-01

    Population studies suggest that rib fractures are associated with a reduction in bone mass. While much is known about the predictive risk of hip, spine and distal forearm fracture on the risk of future fracture, little is known about the impact of rib fracture. The aim of this study was to determine whether a recalled history of rib fracture was associated with an increased risk of future limb fracture. Men and women aged 50 years and over were recruited from population registers in 31 European centres for participation in a screening survey of osteoporosis (European Prospective Osteoporosis Study). Subjects were invited to complete an interviewer-administered questionnaire that included questions about previous fractures including rib fracture, the age of their first fracture and also the level of trauma. Lateral spine radiographs were performed and the presence of vertebral deformity was determined morphometrically. Following the baseline survey, subjects were followed prospectively by annual postal questionnaire to determine the occurrence of clinical fractures. The subjects included 6,344 men, with a mean age of 64.2 years, and 6,788 women, with a mean age of 63.6 years, who were followed for a median of 3 years (range 0.4-5.9 years), of whom 135 men (2.3%) and 101 women (1.6%) reported a previous low trauma rib fracture. In total, 138 men and 391 women sustained a limb fracture during follow-up. In women, after age adjustment, those with a recalled history of low trauma rib fracture had an increased risk of sustaining 'any' limb fracture [relative hazard (RH)=2.3; 95% CI 1.3, 4.0]. When stratified by fracture type the predictive risk was more marked for hip (RH=7.7; 95% CI 2.3, 25.9) and humerus fracture (RH=4.5; 95% CI 1.4, 14.6) than other sites (RH=1.6; 95% CI 0.6, 4.3). Additional adjustment for prevalent vertebral deformity and previous (non-rib) low trauma fractures at other sites slightly reduced the strength of the association between rib fracture and

  6. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  7. Femoral neck fracture following groin irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, Perry W; Roberts, Heidi L; Perez, Carlos A

    1995-04-30

    Purpose: The incidence and risk factors are evaluated for femoral neck fracture following groin irradiation for gynecologic malignancies. Methods and Materials: The radiation therapy records of 1313 patients with advanced and recurrent cancer of the vagina, vulva, cervix, and endometrium, treated at the Mallinckrodt Institute of Radiology from 1954 to 1992, were reviewed. Median follow-up was 12.7 years. From this group, 207 patients were identified who received irradiation to the pelvis and groins with anterposterior-posterior anterior (AP-PA), 18 MV photons. Data were reviewed regarding irradiation dose to the femoral neck and other presumed risk factors including age, primary site, stage, groin node status, menopausal status, estrogen use, cigarette use, alcohol consumption, and osteoporosis. Results: The per-patient incidence of femoral neck fracture was 4.8% (10 out of 207). Four patients developed bilateral fractures. However, the cumulative actuarial incidence of fracture was 11% at 5 years and 15% at 10 years. Cox multivariate analysis of age, weight, and irradiation dose showed that only irradiation dose may be important to developing fracture. Step-wise logistic regression of presumed prognostic factors revealed that only cigarette use and x-ray evidence of osteoporosis prior to irradiation treatment were predictive of fracture. Conclusion: Femoral head fracture is a common complication of groin irradiation for gynecologic malignancies. Fracture in our database appears to be related to irradiation dose, cigarette use, and x-ray evidence of osteoporosis. Special attention should be given in treatment planning (i.e., shielding of femoral head/neck and use of appropriate electron beam energies for a portion of treatment) to reduce the incidence of this complication.

  8. Femoral neck fracture following groin irradiation

    International Nuclear Information System (INIS)

    Grigsby, Perry W.; Roberts, Heidi L.; Perez, Carlos A.

    1995-01-01

    Purpose: The incidence and risk factors are evaluated for femoral neck fracture following groin irradiation for gynecologic malignancies. Methods and Materials: The radiation therapy records of 1313 patients with advanced and recurrent cancer of the vagina, vulva, cervix, and endometrium, treated at the Mallinckrodt Institute of Radiology from 1954 to 1992, were reviewed. Median follow-up was 12.7 years. From this group, 207 patients were identified who received irradiation to the pelvis and groins with anterposterior-posterior anterior (AP-PA), 18 MV photons. Data were reviewed regarding irradiation dose to the femoral neck and other presumed risk factors including age, primary site, stage, groin node status, menopausal status, estrogen use, cigarette use, alcohol consumption, and osteoporosis. Results: The per-patient incidence of femoral neck fracture was 4.8% (10 out of 207). Four patients developed bilateral fractures. However, the cumulative actuarial incidence of fracture was 11% at 5 years and 15% at 10 years. Cox multivariate analysis of age, weight, and irradiation dose showed that only irradiation dose may be important to developing fracture. Step-wise logistic regression of presumed prognostic factors revealed that only cigarette use and x-ray evidence of osteoporosis prior to irradiation treatment were predictive of fracture. Conclusion: Femoral head fracture is a common complication of groin irradiation for gynecologic malignancies. Fracture in our database appears to be related to irradiation dose, cigarette use, and x-ray evidence of osteoporosis. Special attention should be given in treatment planning (i.e., shielding of femoral head/neck and use of appropriate electron beam energies for a portion of treatment) to reduce the incidence of this complication

  9. Clinical Performance of One-Piece, Screw-Retained Implant Crowns Based on Hand-Veneered CAD/CAM Zirconia Abutments After a Mean Follow-up Period of 2.3 Years.

    Science.gov (United States)

    Schnider, Nicole; Forrer, Fiona Alena; Brägger, Urs; Hicklin, Stefan Paul

    The aim of this study was to evaluate the clinical performance of one-piece, screw-retained implant crowns based on hand-veneered computer-aided design/computer-aided manufacture (CAD/CAM) zirconium dioxide abutments with a crossfit connection at least 1 year after insertion of the crown. Consecutive patients who had received at least one Straumann bone level implant and one-piece, screw-retained implant crowns fabricated with CARES zirconium dioxide abutments were reexamined. Patient satisfaction, occlusal and peri-implant parameters, mechanical and biologic complications, radiologic parameters, and esthetics were recorded. A total of 50 implant crowns in the anterior and premolar region were examined in 41 patients. The follow-up period of the definitive reconstructions ranged from 1.1 to 3.8 years. No technical and no biologic complications had occurred. At the reexamination, 100% of the implants and reconstructions were in situ. Radiographic evaluation revealed a mean distance from the implant shoulder to the first visible bone-to-implant contact of 0.06 mm at the follow-up examination. Screw-retained crowns based on veneered CAD/CAM zirconium dioxide abutments with a crossfit connection seem to be a promising way to replace missing teeth in the anterior and premolar region. In the short term, neither failures of components nor complications were noted, and the clinical and radiographic data revealed stable hard and soft tissue conditions.

  10. 'Cable-maker's clavicle': stress fracture of the medial clavicle

    International Nuclear Information System (INIS)

    Peebles, C.R.; Sulkin, T.; Sampson, M.A.

    2000-01-01

    A 50-year-old man presented with a non-traumatic painful swelling over the medial clavicle. Radiographs showed a poorly defined fracture and the possibility of an underlying pathology was raised. Computed tomography suggested a stress fracture. This prompted a further, more detailed occupational history to be obtained from the patient, which revealed a hitherto undescribed cause of clavicular stress fracture and obviated the need for further imaging or biopsy. (orig.)

  11. Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36830 (United States); Shao, Lingmin [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Gao, Jianmin, E-mail: jmgao@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Guo, Hongwu, E-mail: hwg5052@163.com [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Chen, Yao [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Cheng, Qingzheng; Via, Brian K. [Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36830 (United States)

    2015-03-15

    Highlights: • Investigate the selective absorption of different wavelengths of UV–vis light by dyed wood chromophores. • Identify connection between light wavelengths and surface color changes and chemical structure degradation. • Study hypochromic effect based on surface reflectance and K/S absorption changes during UV–vis irradiation. - Abstract: The surface of dyed wood is prone to discoloration when exposed to light irradiation which significantly decreases its decorative effect and shortens its service life. The influence of light wavelength exposure to the surface of dyed wood was investigated to study the effect on discoloration and degradation. Acid Blue V and Acid Red GR dyed wood veneers were subjected to light exposure with different wavelengths from the UV to visible region (254–420 nm). Results showed that the surface discoloration of dyed wood was linearly related to lignin concentration and dyes degradation and the consequent transformation of chromophoric groups such as aromatic (C=C) and carbonyl (C=O) through methoxy reaction. The dyes, lignin and some active constituents were degraded severely, even at short exposures. Acid Blue V dyed wood exhibited greater discoloration than the Acid Red GR treatment. The reflectance and K/S absorption curve showed a hypochromic effect on the dyed wood surface. The dyes and wood chemical structure played a complex and combined role on the selective absorption of different wavelengths of light. The color change rate was apparent with 254 nm exposure in the initial stages, but a greater discoloration rate occurred on the samples irradiated at 313 and 340 nm than at 254 and 420 nm with the time prolonged. The degradation rate and degree of discoloration correlated well with the light energy and wavelength.

  12. PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures.

    Science.gov (United States)

    Schliemann, Benedikt; Seifert, Robert; Theisen, Christina; Gehweiler, Dominic; Wähnert, Dirk; Schulze, Martin; Raschke, Michael J; Weimann, Andre

    2017-01-01

    The high rigidity of metal implants may be a cause of failure after fixation of proximal humerus fractures. Carbon fiber-reinforced polyetheretherketone (PEEK) plates with a modulus similar to human cortical bone may help to overcome this problem. The present study assesses the biomechanical behavior of a PEEK plate compared with a titanium locking plate. Unstable two- and three-part fractures were simulated in 12 pairs of cadaveric humeri and were fixed with either a PEEK or a titanium locking plate using a pairwise comparison. With an optical motion capture system, the stiffness, failure load, plate bending, and the relative motion at the bone-implant interface and at the fracture site were evaluated. The mean load to failure for two- and three-part fracture fixations was, respectively, 191 N (range 102-356 N) and 142 N (range 102-169 N) in the PEEK plate group compared with 286 N (range 191-395 N) and 258 N (range 155-366 N) in the titanium locking plate group. The PEEK plate showed significantly more bending in both the two- and three-part fractures (p PEEK plate showed lower fixation strength and increased motion at the bone-implant interface compared with a titanium locking plate.

  13. Operative Fixation of Rib Fractures Indications, Techniques, and Outcomes.

    Science.gov (United States)

    Galos, David; Taylor, Benjamin; McLaurin, Toni

    2017-01-01

    Rib fractures are extremely common injuries and vary in there severity from single nondisplaced fractures to multiple segmental fractures resulting in flail chest and respiratory compromise. Historically, rib fractures have been treated conservatively with pain control and respiratory therapy. However this method may not be the best treatment modality in all situations. Operative fixation of select rib fractures has been increasing in popularity especially in patients with flail chest and respiratory compromise. Newer techniques use muscle sparing approaches and precontoured locking plate technology to obtain stable fixation and allow improved respiration. Current reports shows that rib fracture fixation offers the benefits of improved respiratory mechanics and improved pain control in the severe chest wall injury with resultant improvement in patient outcomes by decreasing time on the ventilator, time in the intensive care unit, and overall hospital length of stay.

  14. Fracture toughness of irradiated and recovered vessel steels

    International Nuclear Information System (INIS)

    Perosanz, F.; Lapena, J.

    1998-01-01

    This paper presents the fracture toughness measurements carried out on three vessel steels in an irradiated condition and after a post-irradiation recovery treatment. A statistical approach and the fracture parameters corresponding to two theoretical models of the fracture tests are used for evaluating toughness. Test results show that the neutron fluence gradually transforms the fracture behaviour of the vessel steels from ductile to brittle and seriously reduces their fracture toughness. The effectiveness of the recovery treatment, as evaluated from the toughness measurements, is confirmed, although the efficiency is not the same for the steels and depends on the evaluation parameter except in the case of almost complete recovery. The recovery effect increases with the received neutron fluence if the toughness values after treatment are compared with those in the irradiated condition rather than those in the as received condition. (orig.)

  15. Thermal fracture and pump limit of Nd: glass

    International Nuclear Information System (INIS)

    Wang Mingzhe; Ma Wen; Tan Jichun; Zhang Yongliang; Li Mingzhong; Jing Feng

    2011-01-01

    Based on published fracture experiments and 3D transient finite-element analyses, and taking the first principal stress as the criterion and the Griffith crack theory to determine the critical fracture stress, a Weibull statistical model is established to predict the fracture possibility of Nd: glass with certain pump parameters. Other issues which limit the pump power are also presented. The results show that the fracture limit of laser medium depends on the optical polishing technology. For a short pulse and high energy Nd: glass laser, taking America's polishing technology in the 1990s as reference,the pump saturation limits the pump power to 18 kW/cm 2 when the repetition rate is lower than 1 Hz, while the thermal fracture limits the pump power when the repetition rate is higher than 10 Hz. (authors)

  16. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  17. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    Science.gov (United States)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  18. Petrous bone fracture: a virtual trauma analysis.

    Science.gov (United States)

    Montava, Marion; Deveze, Arnaud; Arnoux, Pierre-Jean; Bidal, Samuel; Brunet, Christian; Lavieille, Jean-Pierre

    2012-06-01

    The temporal bone shields sensorineural, nervous, and vascular structures explaining the potential severity and complications of trauma related to road and sport accidents. So far, no clear data are available on the exact mechanisms involved for fracture processes. Modelization of structures helps to answer these concerns. Our objective was to design a finite element model of the petrous bone structure to modelize temporal bone fracture propagation in a scenario of lateral impact. A finite element model of the petrous bone structure was designed based on computed tomography data. A 7-m/s lateral impact was simulated to reproduce a typical lateral trauma. Results of model analysis was based on force recorded, stress level on bone structure up to induce a solution of continuity of the bony structure. Model simulation showed that bone fractures follow the main axes of the petrous bone and occurred in a 2-step process: first, a crush, and second, a massive fissuration of the petrous bone. The lines of fracture obtained by simulation of a lateral impact converge toward the middle ear region. This longitudinal fracture is located at the mastoid-petrous pyramid junction. Using this model, it was possible to map petrous bone fractures including fracture chronology and areas of fusion of the middle ear region. This technique may represent a first step to investigate the pathophysiology of the petrous bone fractures, aiming to define prognostic criteria for patients' care.

  19. False negative rate of syndesmotic injury in pronation-external rotation stage IV ankle fractures

    Directory of Open Access Journals (Sweden)

    Kwang-Soon Song

    2013-01-01

    Full Text Available Background: To investigate false negative rate in the diagnosis of diastasis on initial static anteroposterior radiograph and reliability of intraoperative external rotational stress test for detection of concealed disruption of syndesmosis in pronation external rotation (PER stage IV (Lauge-Hansen ankle fractures. Materials and Methods: We prospectively studied 34 PER stage IV ankle fractures between September 2001 and September 2008. Twenty (59% patients show syndesmotic injury on initial anteroposterior radiographs. We performed an intraoperative external rotation stress test in other 14 patients with suspicious PER stage IV ankle fractures, which showed no defined syndesmotic injury on anteroposterior radiographs inspite of a medial malleolar fracture, an oblique fibular fracture above the syndesmosis and fracture of the posterior tubercle of the tibia. Results: All 14 fractures showed different degrees of tibiofibular clear space (TFCS and tibiofibular overlapping (TFO on the external rotation stress test radiograph compared to the initial plain anteroposterior radiograph. It is important to understand the fracture pattern characterstic of PER stage IV ankle fractures even though it appears normal on anteroposterior radiographs, it is to be confirmed for the concealed syndesmotic injury through a routine intraoperative external rotational stress radiograph.

  20. Predicting Early Mortality After Hip Fracture Surgery: The Hip Fracture Estimator of Mortality Amsterdam.

    Science.gov (United States)

    Karres, Julian; Kieviet, Noera; Eerenberg, Jan-Peter; Vrouenraets, Bart C

    2018-01-01

    Early mortality after hip fracture surgery is high and preoperative risk assessment for the individual patient is challenging. A risk model could identify patients in need of more intensive perioperative care, provide insight in the prognosis, and allow for risk adjustment in audits. This study aimed to develop and validate a risk prediction model for 30-day mortality after hip fracture surgery: the Hip fracture Estimator of Mortality Amsterdam (HEMA). Data on 1050 consecutive patients undergoing hip fracture surgery between 2004 and 2010 were retrospectively collected and randomly split into a development cohort (746 patients) and validation cohort (304 patients). Logistic regression analysis was performed in the development cohort to determine risk factors for the HEMA. Discrimination and calibration were assessed in both cohorts using the area under the receiver operating characteristic curve (AUC), the Hosmer-Lemeshow goodness-of-fit test, and by stratification into low-, medium- and high-risk groups. Nine predictors for 30-day mortality were identified and used in the final model: age ≥85 years, in-hospital fracture, signs of malnutrition, myocardial infarction, congestive heart failure, current pneumonia, renal failure, malignancy, and serum urea >9 mmol/L. The HEMA showed good discrimination in the development cohort (AUC = 0.81) and the validation cohort (AUC = 0.79). The Hosmer-Lemeshow test indicated no lack of fit in either cohort (P > 0.05). The HEMA is based on preoperative variables and can be used to predict the risk of 30-day mortality after hip fracture surgery for the individual patient. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  1. Mortality Following Periprosthetic Proximal Femoral Fractures Versus Native Hip Fractures.

    Science.gov (United States)

    Boylan, Matthew R; Riesgo, Aldo M; Paulino, Carl B; Slover, James D; Zuckerman, Joseph D; Egol, Kenneth A

    2018-04-04

    The number of periprosthetic proximal femoral fractures is expected to increase with the increasing prevalence of hip arthroplasties. While native hip fractures have a well-known association with mortality, there are currently limited data on this outcome among the subset of patients with periprosthetic proximal femoral fractures. Using the New York Statewide Planning and Research Cooperative System, we identified patients from 60 to 99 years old who were admitted to a hospital in the state with a periprosthetic proximal femoral fracture (n = 1,655) or a native hip (femoral neck or intertrochanteric) fracture (n = 97,231) between 2006 and 2014. Within the periprosthetic fracture cohort, the indication for the existing implant was not available in the data set. We used mixed-effects regression models to compare mortality at 1 and 6 months and 1 year for periprosthetic compared with native hip fractures. The risk of mortality for patients who sustained a periprosthetic proximal femoral fracture was no different from that for patients who sustained a native hip fracture at 1 month after injury (3.2% versus 4.6%; odds ratio [OR], 0.90; 95% confidence interval [CI], 0.68 to 1.19; p = 0.446), but was lower at 6 months (3.8% versus 6.5%; OR, 0.74; 95% CI, 0.57 to 0.95; p = 0.020) and 1 year (9.7% versus 15.9%; OR, 0.71; 95% CI, 0.60 to 0.85; p accounting for age and comorbidities. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  2. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  3. Discrete fracture modelling of the Finnsjoen rock mass: Phase 2

    International Nuclear Information System (INIS)

    Geier, J.E.; Axelsson, C.L.; Haessler, L.; Benabderrahmane, A.

    1992-04-01

    A discrete fracture network (DFN) model of the Finnsjoen site was derived from field data, and used to predict block-scale flow and transport properties. The DFN model was based on a compound Poisson process, with stochastic fracture zones, and individual fracture concentrated around the fracture zones. This formulation was used to represent the multitude of fracture zones at the site which could be observed on lineament maps and in boreholes, but were not the focus of detailed characterization efforts. Due to a shortage of data for fracture geometry at depth, distributions of fracture orientation and size were assumed to be uniform throughout the site. Transmissivity within individual fracture planes was assumed to vary according to a fractal model. Constant-head packer tests were simulated with the model, and the observed transient responses were compared with actual tests in terms of distributions of interpreted transmissivity and flow dimension, to partially validate the model. Both simulated and actual tests showed a range of flow dimension from sublinear to spherical, indicating local variations in the connectivity of the fracture population. A methodology was developed for estimation of an effective stochastic continuum from the DFN model, but this was only partly demonstrated. Directional conductivities for 40 m block were estimated using the DFN model. These show extremely poor correlation with results of multiple packer tests in the same blocks, indicating possible limitation of small-scale packer tests for predicting block-scale properties. Estimates are given of effective flow porosity and flow wetted surface, based on the block-scale flow fields calculated by the DFN model, and probabilistic models for the relationships among local fracture transmissivity, void space, and specific surface. The database for constructing these models is extremely limited. A review is given of the existing database for single fracture hydrologic properties. (127 refs

  4. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  5. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  6. Hot and steamy fractures in the Philippines: the characterisation and permeability evaluation of fractures of the Southern Negros Geothermal Field, Negros Oriental, Philippines

    Science.gov (United States)

    Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan

    2017-04-01

    Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  7. Theoretical and laboratory investigations of flow through fractures in crystalline rock

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Watkins, D.J.; Tsang, Y.W.

    1981-01-01

    A theoretical model developed for flow through a deformable fracture subject to stresses was successfully tested against laboratory experiments. The model contains no arbitrary parameters and can be used to predict flow rates through a single fracture if the fractional fracture contact area can be estimated and if stress-deformation data are available. These data can be obtained from laboratory or in situ tests. The model has considerable potential for practical application. The permeability of ultralarge samples of fractured crystalline rock as a function of stresses was measured. Results from tests on a pervasively fractured 1-m-diameter specimen of granitic rock showed that drastically simplifying assumptions must be used to apply theoretical models to this type of rock mass. Simple models successfully reproduce the trend of reduced permeability as stress is applied in a direction normal to the fracture plane. The tests also demonstrated how fracture conductivity increases as a result of dilatancy associated with shear displacements. The effect of specimen size on the hydraulic properties of fractured rock was also investigated. Permeability tests were performed on specimens of charcoal black granite containing a single fracture subjected to normal stress. Results are presented for tests performed on a 0.914-m-diameter specimen and on the same specimen after it had been reduced to 0.764 m in diameter. The data show that fracture conductivity is sensitive to stress history and sample disturbance

  8. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures.

    Science.gov (United States)

    Kakar, Sanjeev; Einhorn, Thomas A; Vora, Siddharth; Miara, Lincoln J; Hon, Gregory; Wigner, Nathan A; Toben, Daniel; Jacobsen, Kimberly A; Al-Sebaei, Maisa O; Song, Michael; Trackman, Philip C; Morgan, Elise F; Gerstenfeld, Louis C; Barnes, George L

    2007-12-01

    Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the time-course of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling. Since FDA approval of PTH [PTH(1-34); Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 microg/kg PTH(1-34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Quantitative muCT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to

  9. Geology and fracture system at Stripa. Technical information report No. 21

    International Nuclear Information System (INIS)

    Olkiewicz, A.; Gale, J.E.; Thorpe, R.; Paulsson, B.

    1979-02-01

    The Stripa test site has been excavated in granitic rock between 338 m and 360 m below the ground surface, and is located under the north limb of an ENE-plunging synclinal structure. The granitic rocks, in the areas mapped, are of Archean age and are dominated by a reddish, medium-grained, massive monzogranite that shows varying degrees of deformation. The granitic rocks have been intruded by diabase (dolerite) and pegmatite dikes. Surface and subsurface mapping shows that the Stripa granite is highly fractured and that there are at least four joint sets in the area of the test excavations. In addition to the joints, the rock mass contains fissures, fracture zones, and small-scale shear zones, representing the complete spectrum of the fracture family. Most of the fractures are lined with chlorite, occasionally with calcite. Many of the small-scale shear fractures are filled or coated with epidote. Offsets of pegmatite dikes formed by these fractures are usually limited to one to two meters. Water seepage is observed only as drops from fractures or moist fracture surfaces. It was found that reconstruction of the local three-dimensional fracture system is the heater-experiment sites was difficult, and in some cases subjective. Such reconstruction is a prerequisite to accurate interpretation of thermal and mechanical data from such sites

  10. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  11. Cough-induced rib fractures.

    Science.gov (United States)

    Hanak, Viktor; Hartman, Thomas E; Ryu, Jay H

    2005-07-01

    To define the demographic, clinical, and radiological features of patients with cough-induced rib fractures and to assess potential risk factors. For this retrospective, single-center study, we identified all cases of cough-induced rib fractures diagnosed at the Mayo Clinic in Rochester, Minn, over a 9-year period between January 1, 1996, and January 31, 2005. Bone densitometry data from patients' medical records were analyzed, and T scores were used to classify patients into bone density categories. The mean +/- SD age of the 54 study patients at presentation was 55+/-17 years, and 42 patients (78%) were female. Patients presented with chest wall pain after onset of cough. Rib fracture was associated with chronic cough (> or =3 weeks' duration) in 85% of patients. Rib fractures were documented by chest radiography, rib radiography, computed tomography, or bone scan. Chest radiography had been performed in 52 patients and revealed rib fracture in 30 (58%). There were 112 fractured ribs in 54 patients. One half of patients had more than one fractured rib. Right-sided rib fractures alone were present in 17 patients (26 fractured ribs), left-sided in 23 patients (35 fractured ribs), and bilateral in 14 patients (51 fractured ribs). The most commonly fractured rib on both sides was rib 6. The fractures were most common at the lateral aspect of the rib cage. Bone densitometry was done in 26 patients and revealed osteopenia or osteoporosis in 17 (65%). Cough-induced rib fractures occur primarily in women with chronic cough. Middle ribs along the lateral aspect of the rib cage are affected most commonly. Although reduced bone density is likely a risk factor, cough-induced rib fractures can occur in the presence of normal bone density.

  12. Advances in Imaging Approaches to Fracture Risk Evaluation

    Science.gov (United States)

    Manhard, Mary Kat